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Appendix B. Stochastic Deadlines

Proposition B1. Suppose that T = ∞ and ǫ > 0. There exists a symmetric equilibrium in which the

high types always persist; the low types with belief γ concede with a flow rate equal to ǫ(α− γ)/(2(1−

γ∗)γ) if γ(t) ∈ (0,min{1, α}), concede with probability one if γ = 0 and persist if γ ∈ [min{1, α}, 1);

and the belief γ(t) of the low types solves (16) with the initial value γ0 if γ0 < min{1, α}, and is equal

to γ0 if γ0 ∈ [min{1, α}, 1).

Proof. First, we derive the differential equation (16) for the equilibrium belief evolution. Note that

the expected payoff of the low types from conceding is still given by (2). The payoff from persisting

becomes

γ(t)x(t)dt (υL + β) +
(

γ(t)(1− x(t)dt) + (1− γ(t))
)

(1− ǫdt)(−κdt+ UL(t+ dt))

+ǫdt
(

(1− γ(t))υH+υL+β
2 + γ(t)(1 − x(t)dt)2υL+β

2

)

,

where x(t) denotes the flow rate of concession by the low types. Equating the two payoff expressions

and using the same Bayes’ rule as in the proof of Lemma 1 immediately give us (16). The corresponding

flow rate of concession is

x(t) =
ǫ(α− γ(t))

2(1 − γ∗)γ(t)
.

For the case of γ0 ∈ (0,min{1, α}), it suffices to verify that the equilibrium payoff of the high types

is at least as large as the payoff from deviating to conceding, which is equal to υL regardless of ǫ. The

differential equation for the value function of the high types is

U ′
H(γ) = −

(α− γ∗)β + (1− γ∗)(υH − υL + β)

(1− γ)(α− γ)
+

α− γ + 2(1 − γ∗)γ

γ(1− γ)(α − γ)
(υH + β − UH(γ)),

with the boundary condition UH(0) = υH + β. The solution to this differential equation is

UH(γ) = υH + β −

(

1−
1− γ

γ

K(γ)

2(1 − γ∗)

)

(α− γ∗)β + (1− γ∗)(υH − υL + β)

(α− γ∗) + (1− γ∗)
,

where

K(γ) ≡ α− α

(

α(1 − γ)

α− γ

)2ǫβ/(2κ−ǫβ)

.

1



Note that K(γ) > 0 for all γ ∈ (0, α), regardless of whether α is greater or less than one. Since

(α− γ∗)β + (1− γ∗)(υH − υL + β)

(α− γ∗) + (1− γ∗)
≤ υH − υL + β,

it follows immediately from Assumption 1 that UH(γ) ≥ υL for all γ.

For the case of γ0 ∈ [min{1, α}, 1), in equilibrium the game ends with exogenous exit, with a

terminal payoff of (υH + υL + β)/2 to the high types and

γ
2υL + β

2
+ (1− γ)

υH + υL + β

2

to the low types. Further, the exogenous exit time follows an exponential distribution with parameter

ǫ, and hence the expected duration of the game is 1/ǫ. Thus, the equilibrium expected payoff loss from

delay is κ/ǫ for both the high and low types. If the low types deviate to conceding, the expected payoff

is

γβ + (1− γ)υH < γ
2υL + β

2
+ (1− γ)

υH + υL + β

2
−

κ

ǫ
,

because γ < α. For the high types, the expected payoff from concession is υL, which is lower than the

equilibrium payoff because υH − υL + β > 2κ/ǫ, by Assumption 1 and by the assumption that α < 1.

Proposition B2. Suppose that T = ∞. For any γ0 > γ∗, the optimal exogenous exit rate is either

zero or infinity.

Proof. It suffices to establish that UH(γ0) for the case γ0 < min{1, α} is decreasing in ǫ for γ0 > γ∗.

It is convenient to use the fact that limγ0→0K(γ0) = 0 to write

K(γ0) =

∫ γ0

0
k(γ) dγ,

where

k(γ) =
2(1− γ∗)

(1− γ)2

(

α(1 − γ)

α− γ

)(2κ+ǫβ)/(2κ−ǫβ)

.

The term K(γ0)(1− γ0)/γ0 is decreasing in γ0 because its derivative is

1−γ0
γ0

k(γ0)−
1
γ2
0
K(γ0)

= − α
γ2
0

(

1−
(

α(1−γ0)
α−γ0

)2ǫβ/(2κ−ǫβ) (2(1−γ∗)γ0
α−γ0

+ 1
)

)

= − α
γ2
0

∫ γ0
0 2(1− γ∗)

(

α(1−γ)
α−γ

)2ǫβ/(2κ−ǫβ)
γ((α−γ∗)+(1−γ∗))

(α−γ)2(1−γ)
dγ,

which is negative as α > γ∗. Now, since limγ0→0K(γ0) = 0, and thus

lim
γ0→0

K(γ0)

γ0
= lim

γ0→0
k(γ0) = 2(1− γ∗),
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we have
1− γ0
γ0

K(γ0)

2(1 − γ∗)
< 1

for all γ0 > 0. Because the coefficient on K(γ0) in the UH(γ0) function is increasing in ǫ, a sufficient

condition for UH(γ0) to be decreasing in ǫ is that K(γ0) is increasing in α. A sufficient condition for

the latter is that ln k(γ0) is increasing in α, or

− ln

(

α(1− γ0)

α− γ0

)

+
(α− 1)γ0
α(1− γ0)

(α− γ∗) + (1− γ∗)

2(1 − γ∗)
> 0.

Since the above is equal to zero at γ0 = 0, it is sufficient if its derivative with respect to γ0 is strictly

positive. This derivative is given by

(

α− 1

α− γ0

)2( 1

1− γ0
−

1

2(1 − γ∗)

)

.

Therefore, UH(γ0) decreases with ǫ so long as γ0 > γ∗.

Appendix C. Deadline Penalties

Proposition C1. Suppose that T < ∞, and λ ∈ (0, β/2). There is a symmetric equilibrium in which

the high types always persist; the strategy of the low types at time t with any belief γ is such that: (i)

if t = T , concede with probability one if γ ≤ γ
∗
, with probability zero if γ ≥ γ∗, and with probability

Y (γ) if γ ∈ (γ
∗
, γ∗); (ii) if T − t ∈ (0, B(γ)], persist; and (iii) if T − t > B(γ), concede at a flow rate

κ/(βγ) if γ > 0 and with probability one if γ = 0.

Proof. Case (i) is already established in the text. Here we provide explicit formulas that will be used

in the rest of Appendix D. The two critical beliefs in the deadline game are

γ
∗
≡ υH−υL−β+2λ

υH−υL+4λ ,

γ∗ ≡
υH−υL−β+2λ

υH−υL
.

The equilibrium probability of concession by the low types for γ ∈ (γ
∗
, γ∗), given in equation (18), is

Y (γ) =
υH − υL − β + 2λ− (υH − υL)γ

4λγ
.

The equilibrium payoff function for the low types in the deadline game, given by (19), is

U0
L(γ0) =



















γ0(υL + β/2− λ) + (1− γ0)υH if γ0 ∈ [0, γ
∗
),

γ0υL + (1− γ0)υH + γ0Y (γ0)(β/2 − λ) if γ0 ∈ [γ
∗
, γ∗],

γ0(υL + β/2− λ) + (1− γ0)((υH + υL + β)/2 − λ) if γ0 ∈ (γ∗, 1);
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and for the high types is given by

U0
H(γ) =



















υH + β if γ ∈ [0, γ
∗
),

Y (γ)(υH + β) + (1− Y (γ))((υH + υL + β)/2 − λ) if γ ∈ [γ
∗
, γ∗],

(υH + υL + β)/2 − λ if γ ∈ (γ∗, 1).

For case (ii), the equilibrium payoff to the low types at any time t′ ∈ [t, T ) from persisting through-

out the game is given by

γ
(

Ỹ (γ)(υL + β) + (1− Ỹ (γ))
(2υL + β

2
− λ

))

+ (1− γ)
(υH + υL + β

2
− λ

)

− κ(T − t′),

where Ỹ (γ) is 1 for γ ≤ γ
∗
, 0 for γ ≥ γ∗ and Y (γ) otherwise. It is easy to show that if t′ = t and

T − t = B(γ), the above is equal to UL(γ), the deviation payoff to a low type from conceding at time t′

given the equilibrium strategy of the low type opponent. Thus, there is no incentive for the low types

to deviate for any time t′ ∈ [t, T ). For the high types, at any t′ ∈ [t, T ] the equilibrium payoff from

persisting is

Ỹ (γ)(υH + β) + (1− Ỹ (γ))
(υH + υL + β

2
− λ

)

− κ(T − t′).

The payoff from conceding right away is υL. It is optimal for the high types to persist if

Ỹ (γ)(υH − υL + β) + (1− Ỹ (γ))
(υH − υL + β

2
− λ

)

≥ κT.

We have just argued that the low types weakly prefer persisting until the deadline followed by conceding

with probability Ỹ (γ) to conceding immediately. Since Ỹ (γ) > 0 for γ < γ∗, the equilibrium condition

of the low types implies that

γỸ (γ)
(2υL + β

2
− λ

)

+ γ(1 − Ỹ (γ))υL + (1− γ)υH − κ(T − t) ≥ UL(γ),

or

γỸ (γ)
(β

2
− λ

)

≥ κ(T − t).

By Assumption 1 and the assumption that λ ≤ β/2, we have

Ỹ (γ)(υH − υL + β) + (1− Ỹ (γ))
(υH − υL + β

2
− λ

)

>
υH − υL + β

2
− λ > γỸ (γ)

(β

2
− λ

)

,

and thus the equilibrium condition of the high types is satisfied. For the case of γ ≥ γ∗ we have

Ỹ (γ) = 0, and the equilibrium condition of the low types is

γ
(2υL + β

2
− λ

)

+ (1− γ)
(υH + υL + β

2
− λ

)

− κ(T − t) ≥ γυL + (1− γ)υH ,

4



which implies

γ
(β

2
− λ
)

> κ(T − t).

Thus, the equilibrium condition of the high types is satisfied.

For case (iii), for any initial belief γ0, either T > D(γ0), in which case the proof is the same as

the case of no deadlines in Section 3, or otherwise on the equilibrium path there is a unique time

S(T ; γ0) = S satisfying

T − S = B(g(S; γ0)).

By construction, the low types are indifferent between conceding and persisting for all t ∈ [0, S), so

there is no profitable deviation before t = S. Further, by construction, the equilibrium payoff to the

low types at t = S is

UL(S) = g(S; γ0)
(

Ỹ (γ0)(υL + β) + (1− Ỹ (γ0))
2υL+β

2 − λ
)

+(1− g(S; γ0))
(

υH+υL+β
2 − λ

)

− κ(T − S).

Thus, by the argument for cases (i) and (ii) above there is no profitable deviation for the low types

after t = S either. For the high types, given the arguments for cases (i) and (ii), it suffices to show that

there is no profitable deviation before t = S. The equilibrium payoff function UH(γ) at any γ = g(t; γ0)

for t < S is given by the solution to the differential equation (6) with the boundary condition that

UH(g(S; γ0)) = Ỹ (g(S; γ0))(υH + β)− κ(T − S)

+
(

1− Ỹ (g(S; γ0))
)(

υH+υL+β
2 − λ

)

.

The claim that it is optimal for the high types to persist at all t < S follows from identical arguments

as in the proof of Proposition 2.

Proposition C2. Suppose that λ ∈ (0, β/2). There exist thresholds γ and γ, with γ
∗
< γ < γ∗ < γ <

1, such that the optimal deadline for any initial belief γ0 is D∗(γ0) if γ0 ∈ (γ, γ), and is zero otherwise.

Proof. We first verify that the welfare effects are positive in Regions I and II but negative in Region

III in Figure 2.

In Region II, the phase-switch time S is defined by the indifference condition for the low types at

the boundary B:

κ(T − S) = g(S; γ0)Y (g(S; γ0))
(β

2
− λ

)

.

Taking derivative with respect to T , and using the definition of Y in equation (18), we obtain:

∂S

∂T
=

8λβ

8λβ + (1− g(S; γ0))(υH − υL)(β − 2λ)
.
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Now, an explicit calculation of ∂UH(γ0)/∂T given in equation (20) yields:

∂UH (γ0)
∂T = κ

8λβg(S;γ0)

(

(β + 2λ)(υH − υL + β + 2λ)

+(υH − υL)(β − 2λ)(γ∗ − g(S; γ0))
)

∂S
∂T − κ.

Since ∂S/∂T > 0, by Assumption 1 the above expression is greater than:

κ
(β + 2λ)2 + (υH − υL)(β − 2λ)(γ∗ − g(S; γ0))

g(S; γ0)
(

8λβ + (1− g(S; γ0))(υH − υL)(β − 2λ)
) − κ,

which is equal to κ/g(S; γ0)− κ > 0.

In Region I, the phase-switch time S is defined by the indifference condition:

κ(T − S) =
g(S; γ0)− γ∗
2(1− γ∗)

β − λ.

Take derivative respect to T to get

∂S

∂T
=

2(1− γ∗)

1− 2γ∗ + g(S; γ0)
.

Furthermore, by Assumption 1,

υH + β − UH(S) =
υH − υL + β

2
+ κ(T − S) + λ >

β

2

1− 2γ∗ + g(S; γ0)

1− γ∗
.

Finally, since x(S) = κ/(βg(S; γ0)), we have

∂UH(γ0)

∂T
= −κ+ x(S)(υH + β − UH(S))

∂S

∂T
> 0.

In Region III, the phase-switch time S is defined by:

κ(T − S) = g(S; γ0)
(β

2
− λ

)

.

Take derivative respect to T to get

∂S

∂T
=

2(1− γ∗)

2(1− γ∗)− (1− g(S; γ0))(1− γ∗)
.

Furthermore,

υH + β − UH(S) = κ(T − S) =
g(S; γ0)

2

1− γ∗
1− γ∗

β.

Therefore,
∂UH(γ0)

∂T = −κ+ x(S)(υH + β − UH(S)) ∂S∂T

= −κ+
κ(1−γ

∗
)

2(1−γ∗)−(1−g(S;γ0))(1−γ
∗
)

≤ 2κ(γ∗−γ
∗
)

2(1−γ∗)−(1−γ
∗
) ,
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which is negative.

The remainder of the proof is to compare the value of ex ante welfare UL(γ0) at the two local

maxima of zero and D∗(γ0) for γ0 > γ
∗
.

Under the deadline T = D∗(γ0), the payoff to the low types is simply U∗
L(γ0) = UL(γ0) as in (3).

To compute the payoff to the high types, we solve the differential equation (6) with the boundary

condition

UH(γ
∗
) = υH + β − κB(γ

∗
).

This gives the payoff to the high types when the deadline is T = D∗(γ0):

U∗
H(γ0) = υH + β − 1−γ0

γ0

(

ln
(

1−γ0
1−γ

∗

)

+
γ0−γ

∗

(1−γ0)(1−γ
∗

)

)

β

−1−γ0
γ0

γ2
∗

1−γ
∗

(

β
2 − λ

)

.

The difference in ex ante welfare U∗
L(γ0)− U0

L(γ0) is

1

2− γ0
(U∗

L(γ0)− U0
L(γ0)) +

1− γ0
2− γ0

(U∗
H(γ0)− U0

H(γ0)) ≡
1

2(2 − γ0)
∆(γ0).

Since Y (γ
∗
) = 1, we have

∆(γ
∗
) = −γ

∗
(β − 2λ)− γ

∗
(1− γ

∗
)(β − 2λ) < 0.

Since Y (γ∗) = 0, we have

∆(γ∗) = (1− γ∗)(υH − υL + β − 2λ)− 2(1−γ
∗
)2

γ
∗

γ2
∗

1−γ
∗

(β − 2λ)

−2(1−γ
∗
)2

γ
∗

(

ln
(

1−γ
∗

1−γ
∗

)

+
γ
∗
−γ

∗

(1−γ
∗
)(1−γ

∗

)

)

β.

Using Assumption 1, we can show that

∆(γ∗) ≥
1− γ∗

β + 2λ

(

(1− γ
∗
)(β − 2λ)2 + 8(1 − γ∗)λβ

)

> 0.

Thus, there exists a γ ∈ (γ
∗
, γ∗) such that ∆(γ) = 0. Taking derivatives of ∆(γ0) with respect to

γ0 ∈ (γ
∗
, γ∗) and evaluating at γ using ∆(γ) = 0 yield

∆′(γ) =
γ
∗
(1−γ

∗

)

γ(γ
∗
−γ

∗

)(υH − υL + β + 2λ) +
γ
∗

(2γ−γ
∗
(1+γ))

γ(1−γ)(γ
∗
−γ

∗

) (β − 2λ)− 2β

>
1−γ

∗

γ
∗
−γ

∗

(υH − υL + β + 2λ) +
2γ

∗

−γ
∗
(1+γ

∗

)

(1−γ
∗

)(γ
∗
−γ

∗

)(β − 2λ)− 2β

>
(1−γ

∗

)γ
∗

γ
∗
−γ

∗

(β + 2λ) +
2γ

∗

−γ
∗
(1+γ

∗

)

(1−γ
∗

)(γ
∗
−γ

∗

)(β − 2λ)− 2β,

where the first inequality follows because the first term in the expression is decreasing in γ while the

second term is increasing in γ, and the second inequality uses Assumption 1 and the assumption that

λ < β/2. The above can be shown to be equal to

β − 2λ

2

(

υH − υL − β

λ

(

υH − υL − β

β + 2λ
+

3

2

)

+
β − 2λ

β + 2λ
+

β − 2λ

λ

)

,
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which is positive because λ < β/2. As a result, γ is unique, with ∆(γ0) > 0 if γ0 ∈ (γ, γ∗), and the

opposite holding if γ0 ∈ (γ
∗
, γ).

At the other end, we have

lim
γ0→1

∆(γ0) = −(β − 2λ) < 0.

Thus, there exists a γ ∈ (γ∗, 1) such that ∆(γ) = 0. The derivative of ∆(γ0) with respect to γ0 ∈ (γ∗, 1)

is given by

∆′(γ0) = −2(υH − υL + 2λ)− 3β +
(1−γ2

0 )γ
2
∗

γ2
0 (1−γ

∗

)
(β − 2λ)

+
2(1−γ2

0 )

γ2
0

(

ln
(

1−γ0
1−γ

∗

)

+
γ0−γ

∗

(1−γ0)(1−γ
∗

)

)

β.

As in the case of λ = 0, the sum of the last two terms in the above expression is increasing in γ0 and

approaches 4β as γ0 approaches 1. Thus,

∆′(γ0) < −2(υH − υL + λ) + β < 0,

because λ < β/2. It follows that γ is uniquely defined in (γ∗, 1), and ∆(γ0) > 0 for γ0 ∈ (γ∗, γ) and

the opposite holds for γ0 ∈ (γ, 1).

Appendix D. Discounting

Proposition D1. Let T be finite. There exists a symmetric equilibrium in which the high types

always persist, and the strategy (y(t), x(t)) and the belief γ(t) of the low types are such that:



















y(t) = 0, x(t) = rUL(γ(t))/(βγ(t)), γ(t) = g(t; γ0) if T − t > B(g(t; γ0)), t < D(γ0),

y(t) = 0, x(t) = 0, γ(t) = g(S(T ; γ0); γ0) if B(g(t; γ0)) ≥ T − t > 0, t < D(γ0),

y(t) = 1, γ(t) = 0 if T > t ≥ D(γ0);



















y(T ) = 0, γ(T ) = g(S(T ; γ0); γ0) if g(S(T ; γ0); γ0) > γ∗,

y(T ) = 2UL(γ∗)(e
r(T−S(T ;γ0)) − 1)/(βγ∗), γ(T ) = γ∗ if g(S(T ; γ0); γ0) = γ∗,

y(T ) = 1, γ(T ) = g(S(T ; γ0); γ0) if g(S(T ; γ0); γ0) < γ∗.

Proof. Case (i): T ≥ D(γ0). Following the same steps as in the proof of Proposition 1, we only need

to show that it is optimal for the high types to always persist for t < D(γ0). Using UH(0) = υH + β as

the boundary condition, we can solve the differential equation (23) and obtain

UH(γ) =
υH + β

υL + β

UL(γ)

γ

(

1−

(

(1− γ)υH
UL(γ)

)(υL+β)/υL
)

.
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We claim that UH(γ) is decreasing. The derivative U ′
H(γ) is

−(υH + β)

(υL + β)(1− γ)γ2

(

(1− γ)υH −

(

(1− γ)υH
UL(γ)

)(υL+β)/υL

(γ(υL + β) + (1− γ)υH)

)

.

Thus, U ′
H(γ) ≤ 0 if and only if

(1− γ)υH

(

1 +
γυL

(1− γ)υH

)(υL+β)/υL

≥ γ(υL + β) + (1− γ)υH ,

which is true because the left-hand-side is greater than or equal to

(1− γ)υH

(

1 +
υL + β

υL

γυL
(1− γ)υH

)

= γ(υL + β) + (1− γ)υH .

We now have

UH(γ) ≥ UH(1) =
(υH + β)υL

υL + β
> υL,

implying that it is optimal for the high types to persist for any t < D(γ0).

Case (ii): T ≤ B(γ0). Following the proof in case (i) of Proposition 2, it is enough to observe that for

the high types, at any t ≤ T , persisting for the rest of the game yields

(

y(υH + β) + (1− y)υH+υL+β
2

)

e−r(T−t) ≥ υH+υL+β
2 e−rB(γ0)

≥ υH+υL+β
2 e−rB(1) ≥ υL.

Case (iii): T ∈ (B(γ0),D(γ0)). Following the proof in case (ii) of Proposition 2, we note that for the

high types, at any t < S(T ; γ0) and corresponding belief γ = g(t; γ0) of the low types, the equilibrium

payoff UH(γ) is given by the following solution to the differential equation (23):

UH(γ) =
υH + β

υL + β

UL(γ)

γ

(

1− C

(

(1− γ)υH
UL(γ)

)(υL+β)/υL
)

,

where C is a constant determined by the boundary condition:

UH(g(S; γ0)) =

(

y(υH + β) + (1− y)
υH + υL + β

2

)

e−r(T−S).

We need to show that UH(γ) ≥ υL, which is equivalent to:

(

1− υL(υL+β)
υH+β

γ
UL(γ)

)(

(1−γ)υH
UL(γ)

)−(υL+β)/υL

≥ C =
(

1− υL(υL+β)
υH+β

g(S;γ0)
UL(g(S;γ0))

UH (g(S;γ0))
υL

)(

(1−g(S;γ0))υH
UL(g(S;γ0))

)−(υL+β)/υL
.

The left-hand-side of the above is increasing in γ because its derivative is equal to

(

(1−γ)υH
UL(γ)

)−(υL+β)/υL υL+β
(1−γ)UL(γ)

(

1− υL
υH+β

γ(υL+β)+(1−γ)υH
γυL+(1−γ)υH

)

≥
(

(1−γ)υH
UL(γ)

)−(υL+β)/υL υL+β
(1−γ)UL(γ)

(

1− υL
υH+β

υL+β
υL

)

≥ 0.
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Thus, the left-hand-side attains a minimum at γ = g(S; γ0). Therefore it is greater than

(

1− υL(υL+β)
υH+β

g(S;γ0)
UL(g(S;γ0))

)(

(1−g(S;γ0))υH
UL(g(S;γ0))

)−(υL+β)/υL

≥
(

1− υL(υL+β)
υH+β

g(S;γ0)
UL(g(S;γ0))

UH(g(S;γ0))
υL

)(

(1−g(S;γ0))υH
UL(g(S;γ0))

)−(υL+β)/υL
,

where the last inequality follows because UH(g(S; γ0)) ≥ υL by case (ii).

Proposition D2. There exists a γ ∈ (γ∗, 1) such that the length of the deadline T that maximizes

UT (γ0) is D∗(γ0) if γ0 ∈ (γ∗, γ), and is 0 otherwise.

Proof. The first part of the proof is the welfare analysis of a marginal extension of deadline in the

regions corresponding to those marked in Figure 1. Clearly, the analysis in Regions IV, V, and VI is

identical to that for the case of additive delay cost.

In Region II, where T ∈ [D∗(γ0),D∗(γ0)), the effect of lengthening the deadline is to make the low

types persist longer after the phase switch, but concede with a larger probability when the deadline

arrives. Since the behavior of the players during the concession phase does not depend on T , the

phase-switch time S(T ; γ0) is also independent of T . Once the negotiation enters the persistence

phase, the low types persist from time S(T ; γ0) through T , and then concede with probability y(T ) =

2UL(γ∗)(e
r(T−S(T ;γ0)) − 1)/(βγ∗). The payoff to the high type at the deadline is

U0
H(γ∗; y(T )) = y(T )(υH + β) + (1− y(T ))

υH + υL + β

2
.

Lengthening the deadline increases the delay for the high types, but also increases their chance of

getting their favorite decision rather than a coin toss. The net effect on the welfare of the high types is

∂UH(γ0)
∂T = e−r(T−S)

(

∂U0
H
(γ∗;y(T ))
∂T − rU0

H(γ∗; y(T ))
)

= e−r(T−S)

2

(

(υH − υL + β)∂y(T )
∂T − r((υH + υL + β) + y(T )(υH − υL + β))

)

= re−r(T−S)

2

(

(υH − υL + β)2UL(γ∗)
γ∗β

− (υH + υL + β)
)

= re−r(T−S)

2

(

(υH − υL + β)2υLβ + 2υH + 2υH
υH−υL

β − (υH + υL + β)
)

≥ 0.

Next, consider Region I where T ∈ [B(γ0),D∗(γ0)). From the deadline play of the low types, the

payoff to the high types at t = S(T ; γ0) is

UH(S(T ; γ0)) =
υH + υL + β

2
e−r(T−S(T ;γ0)).

Lengthening the deadline affects the welfare of the high types by changing the boundary value UH(S(T ; γ0))

directly and by prolonging the concession phase through increasing S(T ; γ0). The overall effect is

∂UH(γ0)

∂T
= −rUH(S(T ; γ0)) + x(S(T ; γ0))(υH + β − UH(S(T ; γ0)))

∂S(T ; γ0)

∂T
.
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The loss of a longer deadline is rUH(S(T ; γ0)), while the gain is the increased length of the concession

phase times the flow rate of concession times the value of the resulting improvement in the decision.

The phase-switch time S is defined by the indifference condition:

T − S =
1

r
ln

U0
L(g)

UL(g)
,

where we write g = g(S(T ; γ0); γ0) to economize on notation. Taking derivative respect to T , and using

the fact that ġ = −(1− g)rUL(g)/β, we obtain:

∂S

∂T
=

2βU0
L(g)

((υL + β)2 − υHυL)(1 − g) + ((υL + β)2 − υ2L)g
.

Therefore, ∂UH(0)/∂T is equal to:

rUL(g)
gβ

(

υH + β − υH+υL+β
2

UL(g)
U0
L
(g)

)

∂S
∂T − υH+υL+β

2
rUL(g)
U0
L
(g)

≥ − r(υH+β)(2υL+β)
2(υL+β)

UL(g)
U0
L
(g)

+ rUL(g)
gβ

(υH+β)U0
L
(g)

(υL+β)U0
L
(g)

= r(υH+β)UL(g)
2(υL+β)U0

L
(g)

1−g
g (υH + υL + β) ≥ 0.

Finally, consider Region III where T ∈ [B(γ0),D(γ0)) for γ0 < γ∗ or T ∈ [D∗(γ0),D(γ0)) for

γ0 ≥ γ∗. The analysis is similar to Region I, except that the boundary value becomes

UH(S(T ; γ0)) = (υH + β)e−r(T−S(T ;γ0)).

Take derivative of the phase-switch time S with respect to T to get:

∂S

∂T
=

2U0
L(g)

g(2υL + β) + (1 + g)υH
.

Furthermore, ∂UH(0)/∂T is equal to

−r(υH + β)UL(g)
U0
L
(g)

+ r(υH + β)UL(g)
gβ

(

1− UL(g)
U0
L
(g)

)

2U0
L
(g)

g(2υL+β)+(1−g)υH

= r(υH + β)UL(g)
U0
L
(g)

(

−1 +
U0
L
(g)

g(2υL+β)+(1−g)υH

)

= −r υH+β
2

UL(g)
U0
L
(g)

g(2υL+β)
g(2υL+β)+(1−g)υH

≤ 0.

The second part of the proof is to compare the value of UT (γ0) at the two local maxima T = 0 and

T = D∗(γ0) for γ0 > γ∗. Under T = D∗(γ0), we have U∗
L(γ0) = γ0υL + (1 − γ0)υH , and solving (23)

with the boundary condition UT
H(γ∗) = (υH + β)e−rB(γ∗), we obtain

U∗
H(γ0) =

υH + β

υL + β

UL(γ0)

γ0

(

1−

(

1−
γ∗(υL + β)

U0
L(γ∗)

)(

(1− γ0)/(1 − γ∗)

UL(γ0)/UL(γ∗)

)(υL+β)/υL
)

.
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For γ0 = γ∗, we have

U∗
H(γ∗)− U0

H(γ∗) = (υH + β)UL(γ∗)
U0
L
(γ∗)

− υH+υL+β
2

= 1
2U0

L
(γ∗)

(

UL(γ∗)(2(υH + β)− (υH + υL + β))− γ∗β
υH+υL+β

2

)

= γ∗β
4U0

L
(γ∗)

((

υL
β + υH

υH−υL−β

)

2(υH − υL + β))− (υH + υL + β)
)

> γ∗β
4U0

L
(γ∗)

((

υL
β + 1

)

2(υH − υL + β))− (υH + υL + β)
)

> γ∗β
4U0

L
(γ∗)

(2(υH − υL + β) + 3υL − (υH + υL + β)) > 0.

Therefore,

lim
γ0↓γ∗

U∗(γ0)− U0(γ0) =
1− γ∗
2− γ∗

(U∗
H(γ∗)− U0

H(γ∗)) > 0.

Furthermore,

lim
γ0↑1

U∗(γ0)− U0(γ0) = U∗
L(1) − U0

L(1) = −
β

2
< 0.

Therefore, there exists γ ∈ (γ∗, 1) such that U∗(γ)− U0(γ) = 0.

Finally, note that the derivative of U∗(γ0)− U0(γ0) is

U∗(γ0)− U0(γ0)

2− γ0
−

U∗
H(γ0)− U0

H(γ0)

2− γ0
−

υH − υL
2(2− γ0)

+
1− γ0
2− γ0

∂U∗
H(γ0)

∂γ0
.

When the first term is equal to zero, we must have U∗
H(γ) > U0

H(γ). We show that U∗
H(γ0) is decreasing,

and hence U∗(γ0) − U0(γ0) is decreasing when it is equal to zero. The derivative of U∗
H(γ0) has the

same sign as

C∗ −
(1− γ0)υH

γ0(υL + β) + (1− γ0)υH

(

UL(γ0)

(1− γ0)υH

)(υL+β)/υL

,

where

C∗ =
2(1− γ∗)υH − γ∗β

γ∗(2υL + β) + 2(1− γ∗)υH

(

UL(γ∗)

(1− γ∗)υH

)(υL+β)/υL

.

It can be shown that the second term above is increasing in γ0, and is therefore greater than or equal

to
(1− γ∗)υH

γ∗(υL + β) + (1− γ∗)υH

(

UL(γ∗)

(1− γ∗)υH

)(υL+β)/υL

> C∗.

We have shown that U∗(γ0) − U0(γ0) is decreasing when it is equal to zero. This implies that γ is

unique and is such that U∗
H(γ0) > U0

H(γ0) if and only if γ0 ∈ (γ∗, γ).

12


