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We develop a tractable dynamic model of productivity growth and technology

spillovers that is consistent with the emergence of real world empirical produc-

tivity distributions. Firms can improve productivity by engaging in in-house re-

search and developmenmt (R&D) or, alternatively, by trying to imitate other firms’

technologies, subject to the limits of their absorptive capacities. The outcome of

both strategies is stochastic. The choice between in-house R&D and imitation

is endogenous, and is based on firms’ profit maximization motive. Firms closer

to the technological frontier face fewer imitation opportunities, and choose in-

house R&D, while firms farther from the frontier try to imitate more productive

technologies. The resulting balanced-growth equilibrium features persistent pro-

ductivity differences even when starting from ex ante identical firms. The long-

run productivity distribution can be described as a traveling wave with tails fol-

lowing a Pareto distribution as can be observed in the empirical data.
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Figure 1. The left-hand panel shows the TFP distribution of French firms over the years from
1995 to 2003 (vertical axes in logarithmic scale). The right-hand panel shows the mean and stan-
dard deviation of the log TFP, with fitted regression lines.

1. Introduction

There are large and persistent productivity differences not only across countries (e.g.,
Feyrer 2008, Quah 1997, Durlauf 1996), but also across firms and plants within countries
(Baily et al. 1992). Such differences largely reflect the use of different technologies and
managerial practices (see, e.g., Bloom and Van Reenen 2011, Doms et al. 1997). Con-
sider, for instance, the distribution of total factor productivity (TFP) from a balanced
panel of 17,404 French firms in the periods between 1995 to 2003.1  Figure 1 shows how
the empirical distribution evolves over time. (Note that many of the figures are shown in
color in the online version.) Three main features emerge. First, the distribution of high-
productivity firms is well described by a power law.2 Second, the distribution of low-
productivity firms also is approximated by a power law, although this approximation is
less accurate, arguably due to noisy data at low productivity levels. Third, the distribu-
tion is well approximated by a distribution that shifts in an affine way at a constant rate
over time. We call a distribution with the latter characteristics a traveling wave.3 While
entry, exit, and reallocation are important determinants of firm dynamics, they alto-
gether account for only 25% of total productivity growth (Acemoglu 2009, Chapter 18).
Therefore, a theory of firm-level productivity dynamics must explain the determinants
of the accumulation of technical knowledge among incumbent firms. To further the un-
derstanding of these factors, in this paper we propose a theory, related to Acemoglu et al.

1The data are from the Amadeus data base provided by Bureau van Dijk. The firm-level TFPs are es-
timated following the method introduced by Levinsohn and Petrin (2003). A detailed description of the
estimation method and additional details about the data can be found in Appendix B.2 in the Technical
Appendix.

2Pareto distributions are also observed for distributions of several other economic variables of interest
(e.g., firm size) in numerous empirical studies (e.g., Gabaix 1999, Saichev et al. 2010, de Wit 2005).

3In Section 5, we provide a formal definition (Definition 1) of a traveling wave.
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(2006), where firms can upgrade productivity over time through two alternative strate-
gies: either by carrying out “in-house research and development” (R&D) or by imitating
technologies used by other firms. The choice is driven by a standard profit-maximizing
motive. The focus of the theory on the innovation-vs.-imitation margin is motivated
by two observations. On the one hand, an important source of differences in techno-
logical know-how is the large variation across firms in R&D investments and in their
success (Coad 2009, Cohen and Klepper 1992, 1996). On the other hand, many firms do
not invest at all in R&D; their productivity increases through the adoption of technol-
ogy already in use from other firms. Thus, technical knowledge diffuses over time, albeit
only slowly (Griliches 1957, Eeckhout and Jovanovic 2002, Geroski 2000, Stoneman 2002,
Comin and Mestieri 2014). Our theory can reproduce, both qualitatively and quantita-
tively, the empirical regularities outlined above.

The model economy is a Schumpeterian quality-ladder growth model, in the spirit
of Acemoglu et al. (2006), where differentiated intermediate goods are produced by
monopolistically competitive firms. Firms producing different varieties have heteroge-
neous productivities that increase over time driven by firms’ endeavors to improve their
technologies. For simplicity, we abstract from resource costs of R&D or imitation—the
two strategies for increasing productivity. Since a firm cannot pursue both R&D and im-
itation at the same time, the opportunity cost of imitating is the return from R&D and
vice versa. R&D activity is modeled as a draw from an exogenous distribution of produc-
tivity upgrades. Imitation is modeled as a “matching process” whereby each imitating
firm is randomly matched with another firm, and can then succeed or fail in imitating
the other firm’s technology. The optimal choice between the two strategies hinges on
the firm’s position in the overall productivity distribution. Firms far from the technol-
ogy frontier are more likely to be matched with higher productivity firms and optimally
choose imitation. In contrast, firms close to the technology frontier are less likely to
find better firms from which they can learn and, therefore, are more prone to choosing
in-house R&D.4 Our model yields a steady-state productivity distribution with trend-
ing productivity resembling the empirical distribution of Figure 1. More formally, the
theoretical distribution is a traveling wave with an exponentially growing average and
power-law tails. We obtain an analytical representation of the equilibrium law of mo-
tion of the distribution in terms of a system of ordinary differential equations (ODEs),
and even a complete analytical characterization of the steady-state distribution (trav-
eling wave) consistent with the equilibrium law of motion. This characterization is the
main contribution of our paper.

We contrast the results with alternative environments. We show that, on the one
hand, a traveling wave would not emerge in an economy where some firms always do
R&D and others always imitate. In such an economy, the variance of the productivity
distribution would grow over time, counterfactually. The reason is that the subpopu-
lation of innovating firms would be excluded from any spillover from the growth at the

4More formally, in our model there exists a relative productivity threshold below which firms always
imitate and above which they always innovate. This prediction of our model is consistent with the empirical
evidence that firms closer to the technology frontier engage in more R&D investments (see Griffith et al.
2003).
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frontier, causing an ever-growing lower tail. On the other hand, the traveling wave would
emerge in an economy in which each firm is assigned randomly to an innovation strat-
egy in every period. Thus, what matters for our result is not that firms choose optimally
between R&D and imitation, but that there is some “mixing” so that in every period firms
lagging behind resort to imitation with some probability. More generally, the crux of the
result is that all firms end up benefiting, sooner or later, from the spillovers accruing
from the frontier productivity growth. Such spillovers ensure that a firm whose produc-
tivity is relatively low can grow more quickly as the frontier moves farther away. The case
of profit-maximizing firms choosing between innovation and imitation is an economi-
cally interesting example of this mechanism: any repeatedly unsuccessful firm pursuing
R&D can avoid falling too far behind by switching to imitation.

As an important extension, we study an economy in which firms have a limited ca-
pacity to absorb knowledge through imitation (Cohen and Levinthal 1989, Kogut and
Zander 1992, Nelson and Phelps 1966). Namely, when a firm is matched with a more
productive one, it can absorb only a (stochastic) share of the knowledge possessed by
the other firm. The assumption of a limited absorptive capacity has no major bearing
on the qualitative characterization of the equilibrium. However, this realistic feature
turns out to improve significantly the quantitative fit of the theory, e.g., relative to the
empirical distribution of Figure 1. Intuitively, in the model with an unlimited absorptive
capacity, laggard firms benefit strongly from the spillovers arising from progress at the
frontier. Thus, if one calibrates the model so as to fit the productivity spread observed
in the data, the model (which is very parsimonious in the number of parameters) over-
predicts productivity growth. In contrast, the model with a limited absorptive capacity
slows down convergence within the distribution, yielding a much better fit with the em-
pirical distribution. Another insight (hinging on numerical analysis) is that when the
absorptive capacity is sufficiently small relative to the return to innovation, one obtains
an ever-growing variance rather than a traveling wave.

The explicit formulation of firms’ R&D behavior and the endogenous choice be-
tween innovation and imitation distinguishes our model from most of the previous lit-
erature. Klette and Kortum (2004) model the R&D decisions of multiproduct firms, but
do not discuss imitation. Luttmer (2007) focuses on entry, exit, and selection in a world
where incumbent firms are subject to exogenous productivity shocks, and entrant firms
can imitate incumbents. His model, like ours, generates a traveling wave. There are
two main differences relative to our paper. First, we focus on the endogenous decision
of innovation vs. imitation by incumbent firms. Second, from a technical standpoint,
Luttmer (2007) proposes an environment with continuous firm sizes, while here we an-
alyze a Schumpeterian quality-ladder model with discrete productivity steps. Neverthe-
less, despite the differences, in both cases a traveling wave solutions can be obtained.
Moreover, Acemoglu and Cao (2015) construct, as we do, a Schumpeterian model. They
obtain Zipf’s law for large firm sizes, while we focus on productivity. In their model, in-
cumbent firms engage in incremental innovations, while entry is associated with radical
innovations and creative destruction (i.e., the successful entrant replaces the incum-
bent). As in Luttmer (2007), their model does not feature an endogenous choice of the
R&D strategy. Ghiglino (2012) constructs a search-based growth model that generates
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Pareto-distributed productivity levels focusing on the recombination of existing tech-
nologies into novel ones. In Perla and Tonetti (2014) firms can choose either to produce,
or to search for existing technologies to imitate.5 Differently from our model, their paper
features no in-house R&D. Other papers focusing on innovation and imitation include
Eeckhout and Jovanovic (2002) and Atkeson and Burstein (2010). None of these focuses
on the innovation-vs.-imitation trade-off.

Alvarez et al. (2008), Lucas (2009), and Lucas and Moll (2014) study models of tech-
nology diffusion using the framework of Eaton and Kortum (1999). Each producer draws
from a random sample of firms and “copies” the technology of the firm with which it is
matched whenever the latter has a better technology. These papers are related to our
work, and explore dimensions that we do not consider. For instance, Lucas and Moll
(2014) focus on the trade-off in the use of time between production and imitation and
on the effects of progressive taxation. Relative to our contribution, these authors neither
model explicitly the strategic decisions of firms whether to undertake in-house R&D or
to copy other firms, nor do they take into account limitations in the ability of firms to
imitate external knowledge. Because in their model firms can only copy from existing
firms (or ideas), the equilibrium dynamics would converge in the long run to a mass
point corresponding to the productivity level of the most productive firm. To avoid such
a degenerate long-run distribution, they assume an unbounded distribution of knowl-
edge. This is not necessary in our model, since here firms that are close to the technology
frontier choose endogenously to innovate (i.e., draw from an exogenous productivity
distribution) rather than to adopt technologies from a pool of existing ideas.

Our paper is also related to two recent contributions that were written simultane-
ously and independently of our paper. Benhabib et al. (2014) study a simplified de-
terministic framework where agents make an optimal portfolio choice between invest-
ments in innovation and adoption. Luttmer (2012) extends the model of selection and
growth of Luttmer (2007) to an environment in which also incumbent firms can perform
imitation. He obtains, as we do, convergence to a stable (balanced growth) productivity
distribution. However, both the environment and the technique of analysis are differ-
ent. In particular, in his model productivity growth is governed by a Brownian motion
while we consider a standard Schumpeterian quality-ladder model. In this respect, our
paper also relates to earlier Schumpeterian growth literature where firms make a choice
between innovation and imitation, including Cheng and Dinopoulos (1996), Segerstrom
(1991), Jovanovic and Rob (1990), and Acemoglu et al. (2006). These papers, however, do
not study the endogenous evolution of the productivity distribution of firms.

The paper is organized as follows. The static model environment is introduced in
Section 2. Section 3 discusses the law of motion of the productivity distribution. Sec-
tion 4 studies the evolution of the distribution in an economy where the innovation
strategy (in-house R&D vs. imitation) is a deterministic fixed effect of each firm. Sec-
tion 5 yields the main result, characterizing the productivity distribution in a model
where firms choose optimally whether to perform in-house R&D or to imitate. Sections 6
and 7 consider two extensions, and Section 8 concludes. The proofs of all propositions

5For a recent extension of this model, see Benhabib et al. (2016).
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and lemmas, together with some additional results referred to in the text, are provided
in Appendix A. Additional technical material, including extensions and details of the
calibration, are provided in Technical Appendix B, available in a supplementary file on
the journal website, http://econtheory.org/supp/1437/supplement.pdf.

2. The model

In the following sections we provide a microfoundation of our model based on a mo-
nopolistically competitive environment with a competitive fringe in each sector (see
Section 2.1), and we introduce the basic processes of innovation and imitation (see Sec-
tion 2.2) leading to productivity improvements.

2.1 Environment

The model economy is a version of Acemoglu et al. (2006) comprising a competitive final
good sector and a continuum of unit measure of monopolistic sectors producing differ-
entiated intermediated goods. The final good, denoted by Y(t), is produced by a repre-
sentative firm using labor and a set of intermediate goods xi(t), i ∈ N = {1�2� � � � �N}. Its
technology is represented by the production function

Y(t)= 1
α
L1−α

N∑
i=1

Ai(t)
1−αxi(t)α� α ∈ (0�1)�

where t denotes time, xi is the intermediate good i, and Ai is the technology level of
industry i. We normalize the labor force to unity, L= 1. The final good can be used for
consumption, as an input to R&D, and also as an input to the production of intermediate
goods. Its price is set to be the numeraire. The profit maximization program yields the
inverse demand function for intermediate goods:

pi(t)=
(
Ai(t)

xi(t)

)1−α
�

Each intermediate good i is produced by a technology leader who has access to the best
technology. By this best-practice technology the marginal cost of producing any inter-
mediate input equals one unit of the final good. The leader is subject to the potential
competition of a fringe of firms that can produce the same input albeit at a higher con-
stant marginal cost, χ, where 1 < χ ≤ 1/α. Note that a higher value of χ indicates less
competition. Bertrand competition implies that each technology leader monopolizes
its market, sets the price equal to the unit cost of the fringe, pi(t) = χ, and sells the
quantity xi(t) = χ−1/(1−α)Ai(t). Namely, the equilibrium entails a limit price strategy
and an inactive fringe as in Acemoglu et al. (2006). The profit earned by the incumbent
in any intermediate sector i is then proportional to productivity,

πi(t)= (pi(t)− 1)xi(t)=ψAi(t)� (1)

http://econtheory.org/supp/1437/supplement.pdf
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where we denote ψ≡ ((χ− 1)/α)χ−1/(1−α). In equilibrium, gross output is proportional
to aggregate productivity,

Y tot(t)= 1
α
χ−α/(1−α)

N∑
i=1

Ai(t)= 1
α
χ−α/(1−α)A(t)�

where aggregate productivity is A(t) = ∑N
i=1Ai(t). Similarly, net aggregate output, de-

fined as final output minus the cost of intermediate production, is given by Ynet(t) =
Y tot(t)−∑N

i=1 xi(t)= ζA(t), where ζ ≡ (χ− α)(1/α)χ−1/(1−α).6
Throughout the rest of the paper, when referring to firm i we always mean the most

efficient producer in sector i. Moreover, our population of firms comprises only the set
of technology leaders in each sector. These choices are not a source of confusion since
fringe firms are inactive in equilibrium.

2.2 Technological change

The productivity of each intermediate good i ∈ N is assumed to take on values along a
quality ladder with rungs spaced proportionally by a factor Ā > 1. Productivity starts
at Ā0 = 1 and the subsequent rungs are Ā1, Ā2, Ā3, � � � . Firm i, which has achieved ai
productivity improvements, then has productivityAi = Āai .

Firm i’s productivity Ai ∈ {1� Ā� Ā2� � � �} grows as a result of technology improve-
ments, either undertaken in-house (innovation) or due to the imitation and absorp-
tion of other firms’ technologies. The technology comes from firms in other sectors
that were successful in innovating in their area of activity (Kelly 2001, Rosenberg 1976,
Fai and Von Tunzelmann 2001). We consider a discrete time model where in each time
period from t to t + 	t, 	t > 0, a firm i is selected at random and decides either to imi-
tate another firm or to conduct in-house R&D, depending on which option yields higher
expected profits.7

2.2.1 Innovation If firm i conducts in-house R&D at time t, then it makesϑ(t) produc-
tivity improvements and its productivity changes as

Ai(t +	t)= Āai(t)+ϑ(t) =Ai(t)Āϑ(t)� (2)

where ϑ(t) ≥ 0 is a nonnegative integer-valued random variable with a certain distri-
bution. Let us denote ηb ≡ P(ϑ(t) = b) for b = 0�1�2� � � � to quantify the distribution,
satisfying

∑∞
b=0ηb = 1. From the productivity growth dynamics above we can go to an

equivalent system by changing to the log productivity ai(t) = logAi(t)/ log Ā. We can
simplify the notation if we take Ā as the base of the logarithm, so that log Ā = 1. This

6Given the proportionate relationship between productivity and output, all results we derive on produc-
tivity also hold for firm size (as measured, e.g., by value added). However, since we are mainly interested in
the process of technological change and productivity growth, we focus on productivity instead of firm size
dynamics.

7We explain the innovation and imitation process in more detail in Section 3 below.
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Figure 2. Illustration of the innovation process of firm i with log productivity logAi =
ai log Ā= ai (setting log Ā= 1). With probability η1 firm i makes one productivity improvement
and advances by one log-productivity unit, with probability η2 firm i makes two productivity
improvements and advances by two log-productivity units, etc.

allows us to write log productivity as ai(t)= logAi(t). Then taking logs of the in-house
update map in (2) gives

ai(t +	t)= ai(t)+ϑ(t)� (3)

An illustration of this productivity growth process can be seen in Figure 2. Note that log
productivity undergoes a simple stochastic process with additive noise, while produc-
tivity follows a stochastic process with multiplicative noise, with the stochastic factor
being the random variable Āϑ. In the limit of continuous time we obtain a geometric
Brownian motion for productivity (see, e.g., Saichev et al. 2010, p. 9).

In our analysis below, we restrict attention to the case in which innovation is an in-
cremental step-by-step process , i.e., η0 = 1 − p, η1 = p, ηb = 0 for b = 2�3� � � � . This is
for simplicity. All results can be extended to the case in which ηb > 0 for all b≤ B <∞.

2.2.2 Imitation In the case of imitation, firm i with productivity Ai(t) selects another
firm j at random from the population of firms, N , and attempts to imitate its produc-
tivity Aj(t) as long as Aj(t) > Ai(t), which is equivalent to aj(t) > ai(t). Conditional
on firm i selecting a firm j with higher productivity, firm i tries to climb the rungs
of the quality ladder that separates it from aj(t). We assume that each firm climbs
each rung with a success probability q ∈ [0�1]. Moreover, the attempt finishes after
the first failure. This reflects the fact that knowledge absorption is cumulative and the
growth of knowledge builds on the already existing knowledge base (Weitzman 1998,
Kogut and Zander 1992).

Taking the above-mentioned process of imitation more formally, firm i’s productivity
changes according to

Ai(t +	t)=Ai(t)Āκ = Āai(t)+κ� (4)

where κ is a random variable that takes values in {0�1�2� � � � � aj(t)− ai(t)} and denotes
the number of rungs to be climbed toward aj(t). The distribution of κ depends on the
distance aj(t)− ai(t) and is quantified as

P(κ= k|aj(t)− ai(t)= d)=
⎧⎨
⎩
qk(1 − q) if 0 ≤ k< d
qk if k= d
0 otherwise.
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Figure 3. Illustration of the imitation of log productivity aj of firm j through firm i with log
productivity ai, where the log productivity of firm i is logAi = ai log Ā = ai (setting log Ā = 1).
Firm i successfully imitates two log-productivity units (with probability q2) but fails to imitate
the third log-productivity unit (with probability 1 − q). It then ends up with a log productivity of
ai + 2.

Note that
∑∞
k=0 P(κ= k)= 1, as necessary for a proper probability measure. Moreover,

for q= 0 we have that Ai(t + 	t)=Ai(t), for q = 1 we have Ai(t + 	t)=Aj(t) while for
0< q < 1 it holds thatAi(t)≤Ai(t+	t)≤Aj(t). This motivates us to call the parameter
q a measure of firms’ absorptive capacities. The higher is q, the better firms are able to
climb rungs on the quality ladder.

Switching to log productivity and setting log Ā= 1 in (4) we obtain8

ai(t +	t)= ai(t)+ κ� (5)

An illustration of this imitation process can be seen in Figure 3.

3. Evolution of the productivity distribution

In this section, we analyze the evolution of the productivity distribution. We first estab-
lish some useful notation. We then proceed by characterizing the equilibrium dynamics
of the productivity distribution.

3.1 Characterization of the productivity dynamics

Consider the distribution of log productivity ai(t)= logAi(t) in the population of N ∈ N

firms over time, where N is assumed to be a large number. Let S denote the set
of log-productivity values, that is, S = {log Ā�2 log Ā� � � �}. Assuming that log Ā = 1
this is simply the set of positive integers, N. Further, let Pa(t) indicate the fraction
of firms having log productivity a ∈ S at time t ∈ T. Thus, the row vector P(t) =
(P1(t)�P2(t)� � � � �Pa(t)� � � �) represents the distribution of log productivity at time t. No-
tice that the vector is infinite to the right. It holds that Pa(t) ≥ 0 and

∑∞
a=1 Pa(t)= 1. In

8If firm i with log productivity ai(t) attempts to imitate firm j with log productivity aj(t) > ai(t), then the

expected log productivity i obtains is given by Et [ai(t +	t)|ai(t)= a�aj(t)= b] = ∑b−a−1
c=0 (a+ c)(1 − q)qc +

bqb−a = a+q(1 −qb−a)/(1 −q). If q < 1 and b is much larger than a, the approximation Et [ai(t+	t)|ai(t)=
a�aj(t) = b] ≈ a+ q/(1 − q) holds. In this case, the log-productivity firm i obtains through imitation does
not depend on the log productivity of firm j but only on its success probability q. However, it depends on
the log productivity of firm j if aj(t) is close to ai(t). The latter becomes effective, for example, for firms with
a high productivity when there are only few other firms remaining with higher productivities that could be
imitated.
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what follows we may omit for simplicity either a or t in the arguments of Pa(t)whenever
it causes no confusion.

Our dynamics of innovation and imitation induces a discrete time, discrete space
family of Markov chains ((PN(t))t∈T)∞N=N0

, where each member (PN(t))t∈T indexed by
N ≥N0 (N0 ∈ N being some arbitrary lower bound on the number of firms) is a Markov
chain that takes on values in the state space PN = {P ∈ R

|S|
+ :N · P ∈ N

|S|�
∑
a∈S Pa = 1},

i.e., the state space of frequency vectors for a specifiedN indicating the fraction of firms
with a certain log productivity a ∈ S . At times t ∈ T = {0�	t�2	t� � � �}, with 	t = 1/N ,
exactly one firm in the population ofN firms is selected at random and given the oppor-
tunity to introduce a technology improvement (through either innovation or imitation,
as discussed in the following sections). The probability Tab : PN → R

|S|×|S|
+ that a firm

that is selected with log productivity a switches to log productivity b at time t is given by

Tab(P)= P

(
PN(t +	t)= P + 1

N
(eb − ea)

∣∣∣PN(t)= P
)
�

where ea ∈R
|S| is the standard unit basis vector corresponding to log productivity a ∈ S .

The transition probabilities of our Markov chain (PN(t))t∈T are then given by

P(PN(t +	t)= P + z|PN(t)= P)

=
⎧⎨
⎩
PaTab(P) if z = (1/N)(eb − ea), a�b ∈ S, a 	= b
1 −∑

a∈S
∑
b 	=a PaTab(P) if z = 0

0 otherwise.

With these definitions we are able to derive the differential equation governing the evo-
lution of the productivity distribution by using the following proposition.9

Proposition 1. Consider the Markov chain (PN(t))t∈T with transition matrix T(P). De-
fine V (P)≡ P(t)(T(P)− I) and let

V̄ (P)=
⋂
ε>0

cl
(
conv

(
V
({P ′ ∈R

|S|
+ : ‖P − P ′‖ ≤ ε})))

be the closed convex hull of all values of V that obtain vectors P ′ arbitrarily close to P .
Then in the limit of a large number N of firms, the evolution of the log-productivity dis-
tribution P(t) is given by the differential inclusion

∂P(t)

∂t
∈ V̄ (P(t)) (6)

for some initial distribution P(0) : S → [0�1]. Moreover, if T(P) is Lipschitz continuous in
P , then the evolution of the log-productivity distribution P(t) is given by the differential
equation

∂P(t)

∂t
= V (P(t))= P(t)(T(P(t))− I

)
� (7)

9This proposition is an application of deterministic approximation theorems for discrete time Markov
chains (cf. Kurtz 1970, Sandholm 2010). We refer in particular to Chapter 10 of Sandholm (2010) for a more
detailed discussion of these approximation techniques.
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Note that Proposition 1 covers the general case of the transition matrix T(P) not be-
ing Lipschitz continuous. Then the evolution of the log-productivity distribution follows
a differential inclusion (i.e., a set-valued differential equation) as in (6).10 In the case
of a Lipschitz continuous T(P), we can simply write the evolution of the productivity
distribution as a differential equation, which is stated in (7). Moreover, at all points of
continuity of T(P) the differential inclusion is actually a differential equation.

In the following sections, we derive the matrix T(P) with elements Tab(P), a�b ∈ S ,
under the individual firms’ laws of motion associated with innovation in (3) and imita-
tion in (5), respectively.

In Section 4 we look at the case where the decision to innovate vs. imitate is exoge-
nous and fixed; this will be in contrast to the case in which a given firm will either imitate
or innovate at different times, as will naturally occur when the choice is endogenous.
Moreover, in the exogenous case, one can show that the log-productivity distribution of
the population of the firms engaging in in-house R&D converges to a normal distribu-
tion with increasing variance over time (cf. Proposition 2). However, we do not observe
such a divergence in the variance of empirically observed productivities as illustrated
in Figure 1. In a more realistic model, it is therefore necessary to allow firms to engage
in both innovation and imitation so as to advance their productivity levels. This is the
case we are going to discuss in the subsequent Section 5, where the general model is
introduced.

4. Exogenous innovation–imitation strategies

In this section, we introduce some key notation and provide an analysis of the evolution
of the productivity distribution in a world where R&D strategies are exogenous with a
fixed fraction of innovators and imitators. We consider three cases: in Section 4.1 all
firms engage in in-house R&D, in Section 4.2 all firms try to imitate, and in Section 4.3
some firms always do in-house R&D, while others always imitate. We are not interested
per se in these environments. However, they provide a useful contrast with (and in-
tuition for) the results of Section 5, where firms choose optimally between in-house
R&D and imitation, and where we present the main contribution of the paper. The
reader who is more interested in the productivity dynamics with endogenous innova-
tion choice might however skip these sections and start directly with Section 5.

4.1 Innovation only

Assume that all firms do in-house R&D or, equivalently, that firms have no absorptive
capacity for imitation (q= 0). Innovation is assumed to yield a stochastic return and to
have an incremental step-by-step nature. Namely, a firm engaging in R&D either moves
one step upward in the productivity ladder or experiences no productivity change.11 The

10See also Aubin and Cellina (1984).
11The assumption of step-by-step innovation is for simplicity. In the working paper version (König et al.

2014), we consider a more general formulation where firms doing R&D face a positive probability of making
0�1�2� � � � �m steps forward, wherem<∞.
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probability of success is given by p > 0, assumed to be independent of the firm’s initial
productivity. More formally, we can write the transition matrix due to in-house R&D as

Tin =

⎛
⎜⎜⎜⎝

1 −p p 0 � � � 0 � � �

0 1 −p p 0 � � � 0
0 0 1 −p p 0 � � �
���

���
� � �

� � �
� � �

� � �

⎞
⎟⎟⎟⎠ �

From Proposition 1 it follows that, as N → ∞, the evolution of the log-productivity dis-
tribution in (7) follows the ODE ∂P(t)/∂t = P(t)(Tin − I). This is a diffusion equation
with a positive drift. The central limit theorem implies then that the log productivity ap-
proaches a Gaussian shape as t grows. Both the mean and the variance rise linearly with
t, as stated more formally by the following proposition.

Proposition 2. Assume q = 0 and p > 0. Then, for large N , the log-productivity distri-
bution approaches a normal distribution N (tp� tp(1 − p)) for large t. The productivity
distribution converges to a log-normal distribution with mean μA = etp(1+(1/2)(1−p)) and
variance σ2

A = (etp(1−p) − 1)e2tp+tp(1−p).

4.2 Imitation only

Next we consider the polar opposite case in which firms have no capacity to innovate
through in-house R&D, and can progress only by imitating other firms’ technologies.
More formally, we assume q > 0 and p = 0. The long-run outcome is easy to guess: all
firms will converge to the same productivity level, equal to the largest productivity in
the initial distribution. In spite of this counterfactual implication, this is an instructive
warm-up case, as it provides key insights for our main result.

The probability that a firm with log productivity a attains through imitation a log
productivity b > a is given by

T im
ab (P) = qb−aPb + qb−a(1 − q)Pb+1 + qb−a(1 − q)Pb+2 + · · ·

= qb−a
(
Pb + (1 − q)

∞∑
k=1

Pb+k

)
(8)

= qb−a(Pb + (1 − q)(1 − Fb))�

where F is the cumulative distribution of P , Fb = ∑b
c=1 Pc . The first term in the sum

corresponds to a firm with log productivity a being matched with a firm with log pro-
ductivity b > a and successfully climbing up all the b − a rungs. This happens with
probability qb−a; the second term describes the case in which the firm is matched with a
firm with log productivity b + 1, but climbs only b − a rungs, failing to climb the last
rung; and so on. See also Figure 3. If b < a, the firm has nothing to imitate, thus
T im
ab (P) = 0. The probability for the firm not to make any improvement is, therefore,

T im
aa (P)= 1 −∑

b>a T
im
ab (P).
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The transition matrix Tim with elements given by (8) is “interactive” and is given by12

Tim(P)=

⎛
⎜⎜⎜⎝
S1(P) q(P2 + (1 − q)(1 − F2)) q2(P3 + (1 − q)(1 − F3)) � � �

0 S2(P) q(P3 + (1 − q)(1 − F3)) � � �

0 0 S3(P)
� � �

���
���

� � �
� � �

⎞
⎟⎟⎟⎠ �

where Sa(P)≡ 1−∑∞
b=a+1 Tim

ab (P)= 1−∑∞
b=a+1 q

b−a(Pb+ (1−q)(1−Fb)). In the case of
q = 1, which will be the benchmark of our analysis below, this simplifies to Sa(P)= Fa.
In accordance with Proposition 1, for large N , the evolution of the log-productivity dis-
tribution is given by

∂P(t)

∂t
= P(t)(Tim(P(t))− I

)
� (9)

From (9) we can derive a system of differential equations governing the evolution of the
cumulative log-productivity distribution.

Proposition 3. Assume q > 0 and p= 0. Then, for large N , the evolution of the cumu-
lative log-productivity distribution F(t) is given by

∂Fa(t)

∂t
= Fa(t)2 − Fa(t)+ (1 − q)(1 − Fa(t))

a−1∑
b=0

qbFa−b(t)� a ∈ S� (10)

for some initial distribution F(0) : S → [0�1] with finite support. Then there exists a max-
imal initial log productivity am such that Fa(0) = 1 for all a ≥ am, and as t → ∞, the
distribution converges to

lim
t→∞Fa(t)=

{
0 if a < am

1 if a≥ am,

i.e., limt→∞ Pam(t)= 1

In the special case of q = 1, we recover the knowledge growth dynamics analyzed by
Lucas (2009).

4.3 Innovation and imitation

Consider next the evolution of the productivity distribution in a world where innova-
tion strategies are exogenous, i.e., N1 firms do in-house R&D while N2 = N −N1 firms
imitate, where N1 ∈ {0�1� � � � �N}. In this case, the dynamics of the productivity fron-
tier is governed by the firms engaged in in-house R&D. The resulting evolution of the
productivity distribution is as analyzed in Section 4.1.13 There we show that the produc-
tivity distribution of firms doing R&D converges to a log-normal distribution with an

12A Markov chain is interactive if the transition probabilities depend on the current distribution (Conlisk
1976).

13A more formal analysis of the case in which there are both innovators and imitators is provided in
Appendix A.1.



1066 König, Lorenz, and Zilibotti Theoretical Economics 11 (2016)

ever increasing variance (see Proposition 2). Since the proportion of innovators and im-
itators is fixed, this implies that also the variance of the distribution of the total popula-
tion of firms must diverge.14 Since the empirical evidence discussed in the introduction
(cf. Figure 1) suggests that there is no such increase in the variance of the distribution, a
model with an exogenous proportion of innovators and imitators yields counterfactual
predictions.

5. Endogenous choice of the innovation strategy

This section contains the main result of the paper. We assume that firms choose whether
to innovate through in-house R&D or to imitate other firms based on a standard value-
maximization objective. In our environment, this is equivalent to maximizing the ex-
pected profit in every period. In turn, (1) shows that the profit is linearly increasing
in the technology level. Thus, profit-maximizing firms endeavor simply to maximize
the expected level of technology every period.15 The intuitive reason for this equiva-
lence is that there are no sunk costs: The opportunity cost of innovation is the return
from imitation, and vice versa, and firms can switch back and forth between innovation
and imitation with no adjustment cost. Hence, forward-looking firms simply choose the
strategy (either in-house R&D or innovation) so as to maximize the expected number of
improvements along the quality ladder.

Let Ein
i [Ai(t+	t)|Ai(t)] and E

im
i [Ai(t+	t)|Ai(t)�P(t)] denote the expected produc-

tivity for a firm whose current productivity is Ai(t), conditional on choosing in-house
R&D and imitation, respectively. Recall that expected profits are proportional to ex-
pected productivities (see (1) in Section 2.1). Thus, the profit-maximizing firm i chooses
in-house R&D whenever

E
in
i [Ai(t +	t)|Ai(t)]> E

im
i [Ai(t +	t)|Ai(t)�P(t)]� (11)

where the expected productivity from innovation is given by

E
in
i [Ai(t +	t)|Ai(t)] =Ai(t)((1 −p)+pĀ)�

while the expected productivity from imitation is

E
im
i [Ai(t +	t)|Ai(t)�P(t)]

=Ai(t)
(
Sai(t)P(t)+

∞∑
b=ai(t)+1

Āb−ai(t)qb−ai(t)
(
Pb(t)+ (1 − q)(1 − Fb(t))

))
�

14In particular, there is divergence in the subpopulation of firms carrying out R&D, as these do not ben-
efit from the spillover associated with the progress in the frontier technology. It is possible to characterize
the dynamics of the cumulative log-productivity distribution in terms of a differential equation, although
this admits no closed-form solution. The analysis is deferred to Appendix A.1.

15For a formal proof, see Proposition 8 in Appendix A.2, showing that the firm’s value function is increas-
ing in its technology level.
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and Sa(P)= 1 − ∑∞
b=a+1 Tim

ab (P), as defined in Section 4.2. The decision rule in (11) can
alternatively be captured by the indicator function

χim(ai(t)�P(t))=
{

1 if aim
i (ai(t)�P(t))≥ ain

i (ai(t))

0 otherwise,
(12)

where ain
i (ai(t))≡ logEin

i [Ai(t+	t)|Ai(t)] and aim
i (ai(t)�P(t))≡ logAim

i (Ai(t)�P(t)). In
words, χim(ai(t)�P(t)) ∈ {0�1} is the indicator variable being 1 if firm i pursues imitation
and being 0 if the firm pursues in-house R&D. Similarly, we define χin(ai(t)�P(t))≡ 1 −
χim(ai(t)�P(t)).

To achieve a complete analytical characterization, in the rest of this section we re-
strict our attention to economies in which firms have no absorptive capacity limits,
q= 1. We shall return to the more general case in Section 6.

Proposition 4. Assume that q = 1. Then for any P there exists a unique threshold log
productivity a∗(P) ∈ S such that (i) χim(a�P) = 1 (and χin(a�P) = 0) for a ≤ a∗(P) and
(ii) χim(a�P)= 0 (and χin(a�P)= 1) for a > a∗(P).

Proposition 4 establishes that the decision about the innovation strategy has a
threshold property: relatively backward firms (i.e., those weakly below the threshold
a∗(P)) optimally choose to imitate, while more advanced firms (i.e., those above the
threshold a∗(P)) choose to innovate.

We now turn to the equilibrium dynamics. The transition matrix T(P) is the sum
of the transition matrices for innovation and imitation given in Sections 4.1 and 4.2,
respectively, each weighted by the respective indicator function from (12). The equi-
librium dynamics of the log-productivity distribution can be represented by the differ-
ential inclusion in (6) in Proposition 1. However, it is not possible to express the equi-
librium dynamics in terms of the ODE (7). The reason is that whenever ain

i (a
∗(P)) =

aim
i (a

∗(P)�P), i.e., firms at the productivity level a∗ are indifferent between in-house
R&D and imitation, the indicator function χim(a∗(P)�P) is discontinuous in P . This vi-
olates the standard continuity condition under which we can represent the dynamics as
an ODE. Since proving our main result using the theory of differential inclusions would
be more involved, we roundabout this technical complication by replacing the discon-
tinuous indicator function by a continuous approximation. This allows us to the express
the equilibrium dynamics in terms of an ODE (see (14) below). More formally, we define
the continuous logistic function

χim
β (ai(t)�P(t))= 1

1 + e−β(aim
i (ai(t)�P(t))−ain

i (ai(t)))
� (13)

with the property that limβ→∞χim
β (ai(t)�P(t)) = χim(ai(t)�P(t)). For large β, we then

have that χim
β (ai(t)�P(t)) ≈ χim(ai(t)�P(t)). In the working paper version (König et al.

2014), we propose an explicit microfoundation for such a formulation, whereby firms
are subject to stochastic shocks affecting their productivity in performing in-house R&D,
and these shocks then create a time-varying comparative advantage for different firms.
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Replacing χim by χim
β and assuming a large population of firms (N → ∞) allows us

to write the evolution of the log-productivity distribution as16

∂P(t)

∂t
= P(t)(T(P)− I)= P(t)((I − D(P))Tin + D(P)Tim(P)− I

)
(14)

for some initial distribution P(0) : S → [0�1], where D(P) denotes the diagonal matrix
with diagonal elements given by χim

β (a�P) for all a ∈ S . Making explicit the individual
equation for each relative frequency, Pa, yields

∂Pa(t)

∂t
= Pa(t)

(
a−1∑
b=1

χim
β (b�P)Pb(t)+χim

β (a�P)Sa(P)

)
+ (1 −p)Pa(t)(1 −χim(a�P))

(15)
+pPa−1(t)(1 −χim

β (a− 1�P))− Pa(t)� a ∈ S�

The system of ODEs in (15), expressed in terms of Pa, can be turned into a system of
ODEs in terms of the complementary cumulative productivity distribution, Ga(t)= 1 −
Fa(t), as indicated in the following proposition.

Proposition 5. Assume a large population of firms with unlimited absorptive capacity
limits (q = 1). Let the decision rule χim(ai(t)�P(t)) be approximated by the continuous
(logistic) function χim

β (ai(t)�P(t)) given by (13). Then, in the limit of β→ ∞, for all a ∈ S ,
the dynamics of the cumulative log-productivity distribution is

∂Ga(t)

∂t
=

{
Ga(t)−Ga(t)2 if a≤ a∗(P)
(1 −G
a∗(t)�(t))Ga(t)−p(Ga(t)−Ga−1(t)) if a > a∗(P).

(16)

The system of ODEs (16) can be solved numerically subject to the boundary condi-
tions lima→∞Ga(t)= 0 and lima→1Ga(t)= 1. More interestingly, it is possible to charac-
terize analytically a steady-state distribution consistent with (16).17 Contrary to the case
in which firms are assigned exogenously to in-house R&D and innovation, and consis-
tent with the empirical evidence, this distribution has a constant variance. Moreover,
contrary to the case of pure imitation this productivity distribution grows over time at a
constant rate. Next we provide a formal definition of a traveling wave:

Definition 1. The log-productivity distribution Ga(t) is a traveling wave if it is of the
formGa(t)= g(a− νt) for some nonincreasing function g : R→ [0�1], where ν ≥ 0 is the
traveling wave velocity.

Note that Definition 1 implies that a traveling wave has the property that Ga(t) =
Ga+νs(t + s) for any s ≥ 0. The following proposition shows that a traveling wave with
two exponential tails is a solution for the log-productivity distribution satisfying (16).

16Note that this representation is legitimate for aβ<∞, although later we will focus on the limit in which
β→ ∞, which is the economically interesting case. See also Section 7 for further discussion.

17By a steady-state distribution, we mean a distribution whose shape is preserved over time, up to
changes in its mean. See the more formal definition of a traveling wave in Definition 1.
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Proposition 6. A function g : R → [0�1] and a traveling wave velocity ν ≥ 0 exist such
that a traveling waveGa(t)= g(a− νt) is a steady-state solution of (16), with a threshold
given by a∗(t)= a∗

0 + νt, for a constant a∗
0 determined by the initial condition, a∗

0 = a∗(0).
The shape of the traveling wave for a≤ a∗(t) is

Ga(t)= 1

1 + ( 1
g0

− 1
)
e(a−a∗

0−νt)/ν � (17)

with g0 = g(0). For a > a∗(t) there exists a p∗ > 0 such that for all 0 < p < p∗ the two
inequalities

∞∑
k=−∞

cke
−λk(a−νt) ≤Ga(t)≤

∞∑
k=−∞

cke
−λk(a−νt) (18)

hold with appropriate constants ck, ck, and exponents λk, λk having strictly positive real
parts. Consequently, the following asymptotic results hold for the associated probability
mass function Pa(t)=Ga−1(t)−Ga(t):18

Pa(t)=
{
e
a−νt
ν + o(1) if a� a∗(t)

O(e−λ0(a−νt)) if a� a∗(t).
(19)

The first part of the proposition establishes that if the log-productivity distribution
follows the equilibrium law of motion dictated by (15) (or, identically, by (16)), then in
the stationary state, the distribution reproduces itself over time, up to a trend in a∗(t)
whose growth is pinned down by ν.19 The distribution is a traveling wave with velocity
ν, i.e., a distribution whose second and higher moments remain constant over time.

Observe that the second part of Proposition 6 requires that the in-house R&D suc-
cess probability p is bounded from above. While this assumption is necessary for the
proof of this part of the proposition, in all the numerical simulations shown in the fol-
lowing sections we did not find a departure of the exponential decay of the right tail of
the distribution.

For a≤ a∗(t) in (17) we can provide an exact characterization of the solution of (16),
while above the threshold in (18) we can only provide a lower and an upper bound to
the exact solution. This is because the second part of (16) (for a > a∗(t)) is more compli-
cated to analyze. To see this, note that the mass of firms with log productivity a below
the threshold a∗(t) can only change through imitation of firms with higher log produc-
tivities, where the mass of such firms is given by Ga(t). In contrast, the change in the
mass of firms above the threshold has two different components: First, it can change
due to productivity gains from innovation, which are determined by the innovation suc-
cess probability p. Second, there is an influx of imitating firms that become innovating
firms in the next period, and in every period the mass of these imitating firms is given

18We define g(x)=O(f(x)) if and only if |g(x)/f (x)| is bounded from above by a constant (which in our
case is 1) as x→ ∞. Moreover, g(x)= o(f (x)) if and only if g(x)/f (x)→ 0 as x→ ∞, and g(x)∼ f (x) if and
only if g(x)/f (x)→ 1 as x→ ∞. The latter can also be written as g(x)= f (x)+ o(f (x)).

19Note that a∗(t) in Proposition 6 can be related to the cutoff a∗(P) by using the floor function, where
a∗(P(t))= 
a∗

0 + νt� = 
a∗(t)�, that is, the largest integer no greater than the threshold a∗(t).
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by F
a∗(t)�(t)= 1 −G
a∗(t)�(t). This is why G
a∗(t)�(t) appears only in the second part of
(16), and because of these two components and the term proportional toG
a∗(t)�(t) this
part of (16) is more difficult to analyze.

The bounds in (18) for values of the log productivity above the threshold a∗(t) exploit
recent results in the mathematics literature for the analysis of so-called delay differential
equations (DDE) (cf. Bellman and Cooke 1963, Driver 1977, Smith 2010), showing that
the solutions to such DDE can be written as a linear combination of exponential func-
tions (cf. Asl and Ulsoy 2003, Yi and Ulsoy 2006). More precisely, one can show that due
to the appearance of the term G
a∗(t)�(t) in the second part of (16) we need to solve a
linear DDE with nonconstant coefficients. We can, however, establish upper and lower
bounds to the solution to this equation that are themselves solutions to linear DDEs with
constant coefficients. Asl and Ulsoy (2003) have shown that the latter can be expressed
as sums of exponential functions with well defined exponents. For log productivities far
above the threshold only the dominating exponential terms in these sums remain, and
so they provide exponential upper and lower bounds for the tail of the distribution. The
details (including a more explicit characterization of the constants ck, ck, and exponents
λk, λk) can be found in the proof of Proposition 6 in Appendix A.3.

The productivity distribution characterized by (17) and (18) features both a right-
hand and a left-hand power-law tail, similar to what we observe in the data (see Fig-
ure 1).20 More precisely, the lower tail of the distribution follows immediately from the
logistic expression in (17); the upper tail of the distribution corresponds to the approx-
imation of the sum

∑∞
k=−∞ cke−λk(a−νt) in the lower bound of (18) where only the term

for k= 0 is retained, whereas all other terms of the sequence become negligible when a
is far above the threshold a∗(t), and the upper and lower bounds in (18) get arbitrarily
close to each other. A numerical analysis of the solution shows that only a few terms in
the sum are sufficient to obtain a good approximation of the whole stationary distribu-
tion.21�22 Moreover, even considering only the dominant exponent (i.e., λ0) in the lower
bound in (18) yields a fairly accurate approximation. In this case, the solution becomes
very simple: λ0 turns out to be the unique root of the transcendental equation23

(e− 1)eλ0(λ0 − 1)− (Ā− 1)e1−λ0(1 + λ0)+ Ā+ e− 2 − e− 1
p

= 0� (20)

while the traveling wave velocity ν is given by

ν = 1
λ0

(
1 +p(eλ0 − 1)− p(Ā− 1)(1 − e1−λ0)

e− 1

)
� (21)

20Note that Pa(t)∝ e−λa = e−λ logA =A−λ.
21Figure 10 in Appendix A.3 compares the solution obtained from a direct numerical integration of (16)

with that obtained from the analytical solution of (17) and (18), after truncating the sequence of exponents
λk to k ∈ {0�−1}. The numerical solution is very well approximated over the entire support; additional
terms would not alter the distribution in any visible way.

22The Lambert function has always at most two real roots, corresponding in our notation to k = 0 (the
“dominant root”) and k= −1. See, e.g., Asl and Ulsoy (2003), Corless et al. (1996).

23The details of this derivation can be found in Remark 3 in Appendix A.3.
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Figure 4. Examples of numerical solutions of the system of ODEs in (14) with different initial
conditions. In all cases, we set p = 0�1, q = 1, and log Ā = 1, yielding λ = 2�1 (cf. (20)). The top
left panel shows the traveling wave with an exponential decay with λ = 2�1. The other three
panels show the transition from different initial conditions. The top right panel shows an initial
distribution decaying exponentially with an exponent λ= 5. The tail of the distribution increases
until it reaches the stationary value of λ = 2�1, as in the top left panel. The bottom left panel
shows the transition from a uniform initial distribution on the interval [0�1]. The bottom right
panel shows the transition from a Poisson initial distribution with parameter 3. In all cases, the
distribution converges to the traveling wave in the top left panel.

Proposition 6 yields an existence result: a traveling wave with an associated particu-
lar probability mass function is a steady-state solution for the log-productivity distribu-
tion.24 For other initial distributions different from the steady-state distribution there
will be transitional dynamics. We are unable to establish formal conditions that guaran-
tee that the distribution converges to the traveling wave in Proposition 6. However, we
have obtained convergence in numerically computed solutions of the system of ODEs
in (16) with a variety of initial distributions. Figure 4 shows three such cases. The top left
panel shows, for reference, a simulation in which the initial condition is consistent with
the steady-state distribution—no transitional dynamics.25

The top right panel considers an initial exponential distribution with a steeper tail
than in (17) and (18). As the figure shows, the tail of the distribution increases during
the transition. The bottom left panel shows the case of a uniform initial distribution.
Finally, the bottom right panel shows a simulation starting from a Poisson distribution.
In all cases, the distributions converge to the stationary distribution shown in the top
left panel.26

24However, we are unable to make any claim about the uniqueness of the steady-state distribution.
Luttmer (2012) proves uniqueness in a related setup. However, the model is different, and it is not clear
whether similar techniques can be extended to our framework.

25Note that the imitation–innovation threshold lies to the right of the maximum of the distribution. In
the region around the maximum, firms imitate and the distribution is characterized by the logistic expres-
sion (1 + (1/g0 − 1)e(a−a∗

0−νt)/ν)−1. In the region where firms innovate, the log productivity is well approxi-
mated by an exponentially decaying function.

26The code can be obtained upon request from the authors.
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Figure 5. Examples of numerical solutions of the system of ODEs in (14) with different values
of q. In all cases we set log Ā= 1 and p= 0�1. The top left panel shows an economy where growth
is driven by innovation only (q= 0). The top right panel shows the case in which p= q= 0�1. The
bottom panels show, respectively, the case of q= 0�2 and q= 0�5.

6. Limited absorptive capacity

In this section we consider the more general model in which firms have a limited abil-
ity to absorb other firms’ technologies. We are motivated by the observation that the
steady-state distribution characterized in Proposition 6 fits the data well in a qualitative
but not in a quantitative sense. Intuitively, if one calibrates the key parameter of the
model, p, to fit the tails of the empirical distribution in Figure 1 (and, in particular, to fit
the variance of the distribution), the model overpredicts the growth rate. The intuitive
reason is that the convergence rate of imitating firms is too high. Then, so as to fit the
spread of the distribution, one must increase the rate of success of innovation, inducing
fast growth. Alternatively, if one targets the growth rate by setting a lower value of p, the
model yields too low a variance.27

To address this quantitative failure, we extend the model to allow for q ≤ 1. The
analysis of the case in which q < 1 can only be done with the aid of numerical methods
(i.e., by numerical integration of (15)). Figure 5 shows numerically computed solutions
of the system of ODEs in (15) for a probability of success of innovation p = 0�1. The
figure shows four cases corresponding to different values of q.28 As shown more formally
in the analysis of Section 4, the solution in the case without imitation, q = 0, features a
log-normal shape (i.e., a parabola in the semi-log plot) with a growing variance over
time (see the top left panel). The same qualitative property extends to the case of q= p,
i.e., when a step of imitation is as likely as a step of innovation (q = p). However, for q
sufficiently large the distribution converges to a traveling wave with stable exponential

27Recall from our discussion in Section 4.2 that in the extreme case of p→ 0 the distribution shrinks to a
degenerate distribution with mass 1 localized at the highest initial productivity value.

28All computations started with the initial distribution P(0)= (1�0� � � � �0) and levels of log productivity

ranging over a = 1� � � � �50. Twenty time steps are shown (t = 55� +5� � ��150; in colors from blue to red in the
online version of Figure 5).
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Figure 6. Comparison of the empirical distributions of Figure 1 with the calibrated model
(p = 0�0049 and q = 0�106) for the years 1995, 1999, and 2003. The empirical productivity val-
ues have been binned to produce the histogram shown in the figure, using 11 bins across all
observed productivity values.

tails. This is clearly visible in the bottom right panel, where the exponential tails are
straight lines in the logarithmic scale of the plot.29 Hence, our analysis suggests that a
value of q considerably larger than p is necessary to match the data in Figure 1.

Next, we calibrate the parameters of our model to match the empirical productivity
distribution. The details of our calibration procedure are in Appendix B.3. The best
match is obtained by setting p= 0�0049 and q= 0�106. Figure 6 displays a comparison of
the empirical distributions with the calibrated model for the years 1995, 1999, and 2003.
The comparison between the simulated and the empirical distributions shows that the
model can reproduce the observed pattern well.

7. Noisy choice of innovation and imitation

In this section, we generalize the results of Section 5 to the case in which the noise in the
firm’s choice of innovation strategy is noninfinitesimal (cf. (13)). The main goal of this
extension is to provide a robust intuition for the driving force behind the emergence of
a traveling wave. We show, in particular, that the optimal choice of innovation and imi-
tation, is not essential. Rather, the traveling wave emerges whenever the model features
a stochastic switching of firms between innovation and imitation strategies.30

We assume that the probability that a firm with log productivity ai(t) pursues im-
itation is given by (13). The decision rule in (13) can be motivated by assuming that

29Additional numerical analysis suggests that such traveling waves with exponential tails also emerge for
lower innovation probabilities whenever q≥ 5p.

30We would like to thank the co-editor for pointing this out.



1074 König, Lorenz, and Zilibotti Theoretical Economics 11 (2016)

firms’ profits from in-house R&D are exposed to stochastic shocks (see the accompa-
nying working paper, König et al. (2014), for further details), while the limiting case in
which β→ ∞ is analyzed in Section 5. Allowing for nonnegligible noise has no major
qualitative implications. Since the innovation strategy is chosen less and less efficiently
as we decrease β, the model predicts a lower productivity growth rate. While the general
case can only be analyzed numerically, analytical results can be obtained for the polar
case in which we let β → 0. This yields χim

β (a�P) → 0�5, namely, every firm chooses

randomly between imitation and in-house R&D, irrespective of a and P .31

Setting χim
β (b�P)= 0�5 in (15) and summing over a yields the equilibrium dynamics

governed by the system of ODEs

∂Fa(t)

∂t
= 1

2
(Fa(t)

2 − Fa(t))− p

2
(Fa(t)− Fa−1(t)) (22)

for all a ∈ S . The next proposition establishes that there exists a traveling wave solution
to (22).

Proposition 7. Let Fa(t) be a solution of (22) with a Heaviside initial distribu-
tion Fa(0) = �(a − am) for some am ≥ 1 and define mε(t) = inf{a : Fa(t) > ε}. Then
limt→∞ mε(t)

t = ν, for some constant ν ≥ 0, and Fa(t) is a traveling wave of the form
Fa(t)= f (a− νt) for some nondecreasing function f :R+ → [0�1].

In addition, one can show that the limiting log-productivity distribution decays ex-
ponentially in the tails, similar to what we have found in Proposition 6.32

 Figure 7 il-
lustrates examples of numerically computed solutions of the system of ODEs in (22) for
p= 0�1, q= 1, and log Ā= 1, showing the transition from the same initial conditions as
in Figure 5 to a traveling wave with stable shape. We observe that the distribution moves
more slowly to the right than in Figure 5 due to the suboptimal random mixing between
in-house R&D and imitation.

While we do not view a model in which firms choose their innovation strategy ran-
domly as particularly appealing, its analysis yields interesting insights about the formal
properties of the model. In particular, the existence of a traveling wave contrasts sharply
with the result of the model in Section 4 where a fixed number of firms imitate and
the rest do in-house R&D. In that model, the variance of productivity grows over time,
whereas in the model of this section the variance does not blow up—despite the fact
that in both cases the proportion of innovators and imitators is assumed to be constant.
The key difference is that in the case of deterministic innovation strategies the variance
increases over time within the population of in-house innovators that are permanently
barred from the spillovers. In this section’s model, in contrast, even firms failing repeat-
edly to innovate through in-house R&D are assigned, sooner or later, to imitation. When
this happens, they can benefit from the productivity spillovers generated by successful
firms. The fact that laggard innovators switch with positive probability into imitation,
prevents the emergence of an ever-growing tail of the distribution.

31This model is similar to the one analyzed in Majumdar and Krapivsky (2001).
32The proof is available upon request.
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Figure 7. Examples of numerical solutions of the system of ODEs in (22) with β = 0 (random
choice of imitation vs. in-house R&D), given different initial conditions. In all cases, we set
p = 0�1, q = 1, and log Ā = 1. The initial conditions are the same as in Figure 5. In all cases,
we observe the transition to a traveling wave with a stable shape.

In conclusion, it is not per se the optimal choice of innovation vs. imitation that
yields a stable distribution. What matters is productivity spillovers coupled with the
assumption that all firms can benefit from them with a positive probability. The profit-
maximizing behavior of firms is a particular case of this model featuring an efficient
sorting of firms into the two strategies.

8. Conclusion

In this paper we construct a model of endogenous technological change, productivity
growth, and technology spillovers that is consistent with empirically observed produc-
tivity distributions. The innovation process is governed by a combined process of firms’
in-house R&D activities and adoption of other firms’ existing technologies. The emerg-
ing productivity distributions can be described as traveling waves with a constant shape
and power-law tails, matching the empirically observed distributions.

The current model can be extended in a number of directions. We sketch three ex-
tensions in Appendix B.1. First, we outline a model of productivity growth and technol-
ogy adoption that includes the possibility that a firm’s productivity may also be reduced
due to exogenous events such as the expiration of a patent. Second, we allow for entry
and exit. Third, we consider an alternative model of capacity constraints on the ability
of firms to adopt and imitate external knowledge, whereby below a relative productivity
threshold firms become unable to imitate. In this case, the model can generate “conver-
gence clubs” such as those documented in empirical studies of cross-country income
differences (e.g., Feyrer 2008, Quah 1997, Durlauf and Johnson 1995).

Finally, one could extend our framework by introducing heterogeneous interactions
in the form of a network in the imitation process and analyze the emerging productivity
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distributions, such as in Kelly (2001), Di Matteo et al. (2005), Ehrhardt et al. (2006), König
(2014). We leave this avenue for future research.

Appendix A: Additional results

A.1 Analysis of Section 4.3: Exogenous innovation strategies

In Section 4.3 we consider a model in which the innovation strategy (either in-house
R&D or imitation) is a fixed characteristic of firms. We state that in this case the pro-
ductivity distribution has an ever-increasing variance. In this appendix we provide the
details of the analysis. In particular, in (24) below we provide a differential equation that
completely characterizes the dynamics of the log-productivity distribution.

Denote by P(1)a (t) the fraction of innovators (with a total of N1 innovators) with log
productivity a at time t and similarly denote by P(2)a (t) the fraction of imitators (with a
total ofN2 imitators) with log productivity a at time t. The total fraction of firms with log
productivity a at time t can then be written as

Pa(t)= N1P
(1)
a (t)+N2P

(2)
a (t)

N1 +N2
= n1P

(1)
a (t)+ n2P

(2)
a (t)�

where we have introduced the population shares of innovators n1 =N1/N and imitators
n2 =N2/N with N =N1 +N2. The evolution of the log-productivity distribution P(1)(t)
of innovating firms is independent of the imitating firms and, by virtue of Proposition 1,
it is given by (see also Section 4.1)

∂P(1)(t)

∂t
= P(1)(t)(Tin − I)�

Thus, the variance of the distribution increases over time.
For completeness, we also characterize the evolution of the log-productivity distri-

bution P(2)a (t) of imitating firms. This is given by (see also Section 4.2)

∂P(2)a (t)

∂t
= Pa(t)

a∑
b=1

P(2)b (t)− P(2)a (t)

(
1 −

a−1∑
b=1

Pb(t)

)
� (23)

The first term in the above equation takes into account the fraction of imitating firms
with log productivities smaller than or equal to a that imitate a firm with log productiv-
ity a. The second term considers the imitating firms with log productivity a that imitate
a firm with log productivity larger than a. This is equivalent to the residual firms that fail
to imitate a firm with log productivity larger than a.

Summing over a and rearranging terms, one can then derive from (23) the dynamics
of the cumulative log-productivity distribution Fa(t), which is given by

∂Fa(t)

∂t
= Fa(t)2 − Fa(t)− n1F

(1)
a (t)Fa(t)+ n1F

(1)
a (t)− n1pP

(1)
a (t)� (24)



Theoretical Economics 11 (2016) Innovation vs. imitation 1077

Given the solution for P(1)a (t) (and F(1)a (t), respectively) and a fixed value of a, (24) is a
Riccati first-order, linear differential equation with nonconstant, nonlinear coefficients,
for which no closed-form solution exists.33

A.2 Analysis of Section 5: The dynamic problem of the firm

In the text we state that when a firm maximizes its expected productivity increase, it
also maximizes its present value. Thus, the static optimization studied in the text is
equivalent to a dynamic value-maximization problem. We consider for simplicity time
increments of 	t = 1. The dynamic problem of the firm is then given by

V0(Ai(0)�P(0))= max
(si(t)∈{im�in})T−1

t=0

E

[
T−1∑
t=0

δtπ
si(t)
i (t)

∣∣∣Ai(0)�P(0)
]
�

whereπsi(t)i (t)=ψAi(t)Āϑsi(t) is the per period profit of firm i choosing the R&D strategy
si(t) ∈ {im� in}, ϑsi(t) are the random increments along the quality ladder under strategy
si(t), and δ is a discount factor. The corresponding Bellman equation is given by

Vt(Ai(t)�P(t))= max
si∈{im�in}

{
ψAi(t)E[Āϑsi |Ai(t)�P(t)]

+ δE[Vt+1(Ai(t)Ā
ϑsi �P(t + 1))|Ai(t)�P(t)

]}
�

This can be written as

Vt(Ai(t)�P(t))= max
{∫

dF in(ϑ)
(
ψAi(t)Ā

ϑ + δVt+1(Ai(t)Ā
ϑ�P(t + 1))

)
�

(25)∫
dF im(ϑ|Ai(t)�P(t))

(
ψAi(t)Ā

ϑ + δVt+1(Ai(t)Ā
ϑ�P(t + 1))

)}
�

Similar to Theorem 1 in Lippman and McCall (1976), we can state the following lemma.

Lemma 1. The value function Vt(Ai(t)�P(t)) of (25) is increasing in the productivity of
firm i,Ai(t), for all i= 1� � � � � n and t ≥ 0.

With the above lemma we are now able to state the following proposition.

Proposition 8. Consider the value function of (25). Then for each period t it is optimal
for firm i to choose the strategy si(t) ∈ {im� in} that gives it the highest expected productiv-
ity in that period.

33For a fixed log productivity a, denote y(t)= Fa(t). Then one can write from (24) the differential equa-

tion dy(t)/dt + ay(t)2 + b(t)y(t)= c(t), where a= −1, b(t)= 1 + n1F
(1)
a (t), and c(t)= n1(F

(1)
a (t)−pP(1)a (t)).



1078 König, Lorenz, and Zilibotti Theoretical Economics 11 (2016)

A.3 Proofs of propositions and lemmas

In this section, we provide a formal proof of the propositions and lemmas in the text.
It is convenient to introduce the random variable ζNP whose distribution describes the
stochastic increments of (PN(t))t∈T from the state P ∈ PN :

P(ζNP = z)= P(PN(t +	t)= P + z|PN(t)= P)�
Moreover, following the notation in Sandholm (2010, Chapter 10.2), we introduce the
functions

V N(P) ≡NE[ζNP ]
AN(P) ≡NE[|ζNP |]
ANδ (P) ≡NE[|ζNP I{|ζNP |>δ}|]�

We then can state the following lemma.

Lemma 2. Consider some sequence (δN)∞N=N0
with limN→∞ δN = 0. Then we have that

(i) limN→∞ supP∈PN |V N(P)− V (P)| = 0

(ii) supN supP∈PN AN(P) <∞
(iii) limN→∞ supP∈PN ANδN (P)= 0.

Proof. In the following text, we prove conditions (i)–(iii). First observe that

V N(P) =NE[ζNP ]

=N
∑
a�b≥1

1
N
(eb − ea)P

(
ζNP = 1

N
(eb − ea)

)

=N
∑
a�b≥1

1
N
(eb − ea)PaTab(P)

=
∑
a≥1

ea

(∑
b≥1

PbTba(P)− Pa
∑
b≥1

Tab(P)

)

=
∑
a≥1

eaVa(P)= V (P)�

which is independent of N . This implies that condition (i) is satisfied. Further, observe
that since |ea − eb| = √

2 for a 	= b and 0 otherwise, (PN(t))t∈T has jumps of at most√
2/N . Hence, for δN = √

2/N ,

AN
δN
(P)=NE[|ζNP I{|ζNP |>√

2/N}|] = 0

and condition (iii) holds. Finally, we find that

AN(P)=NE[|ζNP |] ≤N
√

2
N

= √
2<∞
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and condition (ii) is also satisfied. �

We now can give the proof of Proposition 1.

Proof of Proposition 1. Note that the indicator function for imitation, χim(a�P), of
(12) has a point of discontinuity at the threshold log productivity a∗, and so does V (P)=
T(P)− I. Let ‖P‖ denote the L2 norm in R

|S|
+ . Define

V̄ (P)=
⋂
ε>0

cl
(
conv

(
V
({P ′ ∈R

S+ : ‖P − P ′‖ ≤ ε}))) (26)

as the closed convex hull of all values of V that obtain vectors P ′ arbitrarily close to P .
We then can state the following theorem (Gast and Gaujal 2010).34,35

Theorem 1. Let V̄ (P) be upper semicontinuous and assume that there exists a c > 0 such
that ‖V̄ (P)‖ ≤ c. Then for all T > 0,

inf
P∈DT (P(0))

sup
0≤t≤T

‖PN(t)− P(t)‖ p→ 0�

where P(t) is a solution of the differential inclusion

∂P

∂t
∈ V̄ (P)� (27)

with initial conditions P(0) for any t ∈ [0�T ], T ∈ R+, andDT(P(0)) denotes the set of all
solutions of (27) starting from P(0).

For any P where V (P) is continuous, also V̄ (P)= {V (P)}, while if V (P) is discontin-
uous, V̄ (P) is the set-valued function defined in (26). By Lemma 2, V (P) is bounded,
and so we have that V̄ (P) is bounded and upper semicontinuous. Hence, the require-
ments of Theorem 1 are satisfied and (27) describes the dynamics of the log-productivity
distribution in the limit ofN being large for any t ∈ [0�T ]. �

Proof of Proposition 2. Observe that in the case of pure innovation the log pro-
ductivity ai(t) = logAi(t) of firm i grows according to (2), from which we get ai(t) =
ai(0) + ∑t

j=1ϑ(tj), where tj ≥ 0 denotes the time at which the jth innovation arrives.
Assuming that the random variables ϑ(t) are independent and identically distributed
with finite mean μϑ < ∞ and variance σ2

ϑ < ∞, then by virtue of the central limit
theorem,

∑t
j=1ϑ(tj) converges to a normal distribution N (μϑt�σ2

ϑt). Consequently,

Ai(t) converges to a log-normal distribution with mean μA = etμϑ+(1/2)tσ2
ϑ and variance

σ2
A = (etσ

2
ϑ − 1)e2tμϑ+tσ2

ϑ . Setting η0 = 1 − p, η1 = p, and ηb = 0 for b = 2�3� � � � , and
noting that μϑ = p and σ2

ϑ = p(1 −p) yields the desired proposition. �

34See also Roth and Sandholm (2013).
35The set V̄ (P) is upper semicontinuous if for any P ∈ R

|S| and any open set O containing V̄ (P), there
exists a neighborhood N of P such that V̄ (N) ∈O.
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Proof of Proposition 3. Inserting (8) into the differential equation (9) and summing
over a yields the evolution of the cumulative log-productivity distribution F(t) in the
general case of q ∈ [0�1] as given by

∂Fa(t)

∂t
= Pa(1 − q)(1 − Fa)+ PaFa

+ Pa−1q(1 − q)(1 − Fa)+ Pa−1(1 − q)(1 − Fa)+ Pa−1Fa

+ Pa−2q
2(1 − q)(1 − Fa)+ Pa−2q(1 − q)(1 − Fa)

+ Pa−2(1 − q)(1 − Fa)+ Pa−2Fa

+ · · ·
− Fa�

This can be written as

∂Fa(t)

∂t
= Fa(t)2 + (1 − q)(1 − Fa(t))

a−1∑
b=0

qbFa−b(t)− Fa(t)�

and the first part of the proposition follows.
Next, consider an initial distribution Fa(0) with finite support. Then there exists a

maximal initial log productivity am such that Fa(0)= 1 for all a ≥ am. From (10) we see
that for all a≥ am it must hold that ∂Fa(t)/∂t = 0 and so Fa(t)= 1 for all t ≥ 0. In contrast,
for all a < am and q > 0 there exists a positive probability that a firm with log productivity
b > a is imitated, leading to a decrease in Fa(t). Eventually, we then have that

lim
t→∞Fa(t)=

{
0 if a < am

1 if a≥ am.

This concludes the proof of the proposition. �

Proof of Proposition 4. We see from the definition of the imitation indicator func-
tion in (12) that χim(a�P(t))= 1 is equivalent to aim(a�P) > ain(a). This can be written
as

a+ log(1 −p+ Āp)︸ ︷︷ ︸
innovation

≤ a+ log

(
Fa(t)+

∞∑
b=a+1

eb−aPb(t)
)

︸ ︷︷ ︸
imitation

�

Rearranging terms yields

1 −p+ Āp≤ Fa(t)+
∞∑
b=1

ebPb−a(t)

or, equivalently,

1 −p+ Āp≤ 1 −Ga(t)+
∞∑
b=1

ebPb+a(t)= 1 +
∞∑
b=1

(eb − 1)Pb+a(t)�
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That is,

p(Ā− 1)≤
∞∑
b=1

(eb − 1)Pb+a(t)�

The existence of a threshold a∗ such thatχim(a�P(t))= 1 for all a≤ a∗ andχim(a�P(t))=
0 for all a > a∗ can then be written as

∞∑
b=a+1

(eb−a − 1)Pb(t)
{≥ p(Ā− 1) if a≤ a∗
<p(Ā− 1) if a > a∗.

(28)

The validity of this inequality, as well as the uniqueness and existence of a∗, is equivalent
to the strict monotonicity of the function f (a� t) defined by

f (a� t)≡
∞∑

b=a+1

(eb−a − 1)Pb(t)� (29)

The function f (a� t) is strictly monotonically decreasing if f (a − 1� t) − f (a� t) =
(e− 1)Pa(t) > 0. This holds for all a in the support S of Pa(t), where Pa(t) > 0. Hence,
if at time t for all a ∈ S we have that Pa(t) > 0, then there exists a unique threshold log
productivity a∗ satisfying the above condition.

Consider a small time interval 	t > 0. We show that if Pb(t) satisfies the above condi-
tion, then it also must hold that f (a− 1� t +	t)− f (a� t +	t) > 0. First, consider a≤ a∗.
Then for q= 1, Pa(t) > 0, and Fa(t) > Fa−1(t) we get

f (a− 1� t +	t)− f (a� t +	t) = (e− 1)Pa(t +	t)
= (e− 1)(Fa(t +	t)− Fa−1(t +	t))
= (e− 1)(Fa(t)2 − Fa−1(t)

2)

> 0�

Alternatively, we can write for a > a∗, Pa(t+	t)= (1 −p)Pa(t)+pPa−1(t), which is pos-
itive given that Pa(t) > 0 and p ∈ [0�1] and so f (a� t + 	t) is monotonically decreasing.
For 	t → 0 we then obtain the corresponding result in continuous time. �

Remark 1. Assume that we can extend Pa(t) to real-valued a, which is identical to
Pa(t) at the discrete a ∈ S , but allows Pa(t) to be evaluated at a ∈ R, using the same
functional form of Pa(t) also for real values of a. Then at all points of continuity of
f (a� t) ≡ ∑∞

b=a+1(e
b−a − 1)Pb(t) we can identify a threshold log productivity a∗(t) ∈ R

satisfying

f (a∗(t)� t)=
∞∑

b=a∗(t)+1

(eb−a∗(t) − 1)Pb(t)= p(Ā− 1)� (30)

that is, evaluated at a = a∗(t), the inequality in (28) becomes an equality (see also Fig-
ure 8). At the points of discontinuity of f (a� t) = ∑∞

b=a+1(e
b−a − 1)Pb(t), the threshold
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Figure 8. An illustration of the monotonically decreasing function f (a� t) ≡∑∞
b=a∗(t)+1(e

b−a∗(t) − 1)Pb(t) of (29) in the proof of Proposition 4, where its continuous ex-
tension is shown with a dashed line while the function values at the discrete values a ∈ S are
indicated with vertical lines.

condition becomes

a∗(t)= max

{
a ∈R≥1 :

∞∑
b=a+1

(eb−a − 1)Pb(t)≥ p(Ā− 1)

}
� (31)

Because f (a� t) is monotonically decreasing, and the original function and its extension
on continuous a evaluated at the discrete values of a are always identical, it must hold
that the largest discrete value of a such that f (a� t)≥ p(Ā− 1) from (28) must be equiv-
alent to 
a∗(t)�, where a∗(t) is obtained from (30) for all continuity points of f (a� t) and
from (31) for all discontinuity points of f (a� t). This observation will be useful for the
proof of Proposition 6.

Proof of Proposition 5. From (15) we find that in the limit of β→ ∞ the evolution
of the log-productivity distribution can be written as

∂Pa(t)

∂t
=

⎧⎨
⎩
Pa(t)(Fa−1(t)+ Fa(t))− Pa(t) if a≤ a∗
Pa(t)Fa∗(t)+ (1 −p)Pa(t)− Pa(t) if a= a∗ + 1
Pa(t)Fa∗(t)+ (1 −p)Pa(t)+pPa−1(t)− Pa(t) if a > a∗ + 1,

where we have omitted the dependency on P in a∗(P) to simplify the notation. For the
dynamics of the cumulative log-productivity distribution Fa(t) = ∑a

b=1 Pa(t) we then
get, for a≤ a∗,

∂Fa(t)

∂t
=

a∑
b=1

∂Pb(t)

∂t

=
a∑
b=1

(Pb(t)(Fb−1(t)− Fb(t))− Pb(t))

= Fa(t)
2 − Fa(t)�
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where in the last line we have used the results obtained in Proposition 3. Next, for a =
a∗ + 1 we get

∂Fa∗+1(t)

∂t
=

a∗∑
b=1

dPb(t)

dt
+ ∂Pa∗+1(t)

∂t

= Fa∗+1(t)
2 − Fa∗+1(t)+ Pa∗+1(t)Fa∗(t)−pPa∗+1(t)

= Fa∗(t)2 − Fa∗(t)− (Fa∗+1(t)− Fa∗(t))(p− Fa∗(t))

= −(1 − Fa∗+1(t))Fa∗(t)−p(Fa∗+1(t)− Fa∗(t))�

Similarly, for a > a∗ + 1 we get

∂Fa(t)

∂t
=

a∗∑
b=1

∂Pb(t)

∂t
+ ∂Pa∗+1(t)

∂t
+

a∑
b=a∗+2

∂Pb(t)

∂t

= Fa∗(t)2 − Fa∗(t)+ Pa∗+1(t)Fa∗(t)−pPa∗+1(t)

+
a∑

b=a∗+2

(
Fa∗(t)Pb(t)−p(Pb(t)− Pb−1(t))

)
= −(1 − Fa(t))Fa∗(t)−p(Fa(t)− Fa−1(t))�

Putting the above results together we can write

∂Fa(t)

∂t
=

{
Fa(t)

2 − Fa(t) if a≤ a∗
(Fa(t)− 1)Fa∗(t)−p(Fa(t)− Fa−1(t)) if a > a∗.

Note that for all a ≥ 1 and t ≥ 0 we have that ∂Fa(t)/∂t ≤ 0. Finally, note that from the
above equation it follows that the dynamics of the complementary cumulative distribu-
tion function (cdf),Ga(t)= 1 − Fa(t), is given by

∂Ga(t)

∂t
=

{−(Ga(t)2 −Ga(t)) if a≤ a∗
(1 −Ga∗(t))Ga(t)−p(Ga(t)−Ga−1(t)) if a > a∗. �

Before proceeding with the proof of Proposition 6, the following lemma will be
useful.36

Lemma 3. Consider the delay differential equations g′(x) = G(x�g(x)�g(x − 1)) and
f ′(x) = F(x� f (x)� f (x− 1)) for x > −1, with identical preshape functions g(x) = f (x) =
φ(x) for x ∈ [−1�0] and F being a continuous function satisfying a Lipschitz condition
with respect to f . IfG≤ F , then g(x)≤ f (x). Analogously, ifG≥ F , then g(x)≥ f (x).

Proof. We proceed by the “method of steps” (Smith 2010, Section 3). For x ∈ [0�1), both
g(x) and f (x)must satisfy the ODEs

g′(x)=G(x�g(x)�φ(x− 1)) (32)

36A similar result can be found in Theorem 3.6 in Smith (2010).
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and

f ′(x)= F(x� f (x)�φ(x− 1))� (33)

By the “comparison lemma” (see Theorem 3.2 in Waltman 2004 or Lemma 3.4 in Khalil
2002) for ordinary differential equations (ODEs) it follows from the fact that G ≤ F and
that, by assumption, F is a continuous function satisfying a Lipschitz condition with
respect to f , that on the interval [0�1)we must have that f (x)≥ g(x). We may repeat the
above argument to extend the inequality still further to the right. Indeed, for 1 ≤ x < 2,
g(x)must satisfy the ODE

g′(x)=G(x�g(x)�g(x− 1))�

where g(x− 1) in the interval [1�2) is the predetermined solution of the ODE (32), and
f (x)must satisfy the ODE

f ′(x)= F(x�g(x)�g(x− 1))�

where f (x − 1) in the interval [1�2) is the predetermined solution of the ODE (33).
Similarly, by the comparison lemma for ODEs we then must have that f (x) ≥ g(x) for
x ∈ [1�2). We then can repeat this argument to establish the inequality f (x)≥ g(x) for all
x >−1. A similar reasoning can be applied to the case of F ≤G showing that f (x)≤ g(x)
for all x >−1. �

We are now able to prove Proposition 6.

Proof of Proposition 6. In the following discussion, we show that the stationary
log-productivity distribution Fa(t) is a traveling wave, f (a− a∗(t)) with a∗(t)= a∗

0 − νt,
consistent with Definition 1.37 Note that this is equivalent to assuming that the com-
plementary distribution, Ga(t) = 1 − Fa(t), has a traveling wave form g(a − a∗(t)) =
g(a−a∗

0 − νt)= 1 − f (a−a∗
0 − νt). We then proceed by showing that there exists a p∗ > 0

such that for p < p∗, the distribution has asymptotic exponential tails. Note that as the
function f (·) takes real-valued arguments, it can be thought of as an underlying contin-
uous distribution such that at each date t and for each a ∈ S , the fraction of firms with
probability less than or equal to a at date t, denoted Fa(t), is equal to f (a− a∗

0 − νt) for
some constant ν.38

We first check that a traveling wave satisfies the threshold condition of Proposition 4.
By definition, for the threshold log productivity a∗(t) (possibly real-valued) it must hold
that the expected productivity gains from innovation are equal to the expected produc-
tivity gains from imitation at all continuity points of the distribution, which is equivalent
to (see (30) in Remark 1)

Fa∗(t)(t)+
∞∑

b=a∗(t)+1

eb−a∗(t)Pb(t)= 1 +p(Ā− 1)� (34)

37The constant a∗
0 in the argument of f (a− a∗

0 − νt) does not change its dependency on a− νt character-
izing a traveling wave.

38We would like to thank the co-editor for pointing this out.
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We now show that if the cdf Fa(t) has a traveling wave form f (a− a∗(t)) and the thresh-
old log productivity a∗(t) grows linearly with t, i.e., a∗(t) = a∗

0 + νt, for an appropriate
traveling wave velocity ν, then the threshold condition in (34) is always satisfied. Time
invariance of the left-hand side of (34) requires that39

Fa∗(t+1)(t + 1)+
∞∑

b=a∗(t+1)+1

eb−a∗(t+1)Pb(t + 1)= Fa∗(t)(t)+
∞∑

b=a∗(t)+1

eb−a∗(t)Pb(t)�

With our guess for the traveling wave we have that Fa∗(t)(t) = f (0) = Fa∗(t+1)(t + 1).
Hence, what remains to be shown is that

e−a∗(t+1)
∞∑

b=a∗(t+1)+1

ebPb(t + 1)= e−a∗(t)
∞∑

b=a∗(t)+1

ebPb(t)�

We then have that

e−a∗(t+1)
∞∑

b=a∗(t+1)+1

ebPb(t + 1)

= e−a∗(t)−ν
∞∑

b=a∗(t)+ν+1

eb(Fb(t + 1)− Fb−1(t + 1))

= e−a∗(t)−ν
∞∑

b=a∗(t)+ν+1

eb
(
f (b− a∗(t)− ν)− f (b− 1 − a∗(t)− ν))

= e−a∗(t)−ν
∞∑

b=a∗(t)+1

eb+ν
(
f (b− a∗(t))− f (b− a∗(t)− 1)

)

= e−a∗(t)−ν
∞∑

b=a∗(t)+1

eb+ν(Fb(t)− Fb−1(t))

= e−a∗(t)
∞∑

b=a∗(t)+1

ebPb(t)�

and the equality follows. Hence, we have shown that a threshold a∗(t) grows linearly
with t as a∗(t) = a∗

0 + νt and the assumption of a traveling wave is consistent with the
threshold condition.

In the following discussion, we show that there exists a solution of the traveling wave
form g(a− a∗(t)) to (16) and (34) (or equivalently, (28)) with a∗(t) = a∗(0)+ νt by ana-
lyzing the solution of (16) for both cases of the log productivity a above and below the
threshold a∗(t). We then proceed by showing that the stationary distribution has expo-
nential tails.

Case 1: a ≤ a∗(t). We assume that the log-productivity distribution for values of a
below the threshold a∗(t) has a traveling wave form. Inserting g(a− a∗(t))=Ga(t) into

39Without loss of generality (w.l.o.g.) we consider a time increment 	t = 1.
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(16), where a∗(t)= νt + a∗
0, and denoting x= a− a∗(t)= a− a∗

0 − νt then gives for x≤ 0
(corresponding to a≤ a∗(t)) that

−νg′(x)= g(x)− g(x)2

or, equivalently, the logistic differential equation

g′(x)= −1
ν
(g(x)− g(x)2)�

The standard solution of this logistic differential equation is given by

g(x)= 1

1 + ( 1
g0

− 1
)
ex/ν

� (35)

with the boundary condition g0 = g(0). Thus, we have that limx→−∞ g(x)= 1. In partic-
ular, for x→ −∞ we have that g(x)∼ e−x/ν and the solution decays exponentially. Now
(35) establishes (17) as

Ga(t)= g(a− a∗(t))= 1

1 + ( 1
g0

− 1
)
e(a−a∗

0−νt)/ν �

We then have that Pa(t) = Ga−1(t) − Ga(t) ∼ e(a−νt)/ν , which is equivalent to writing
Pa(t)= e(a−νt)/ν + o(1) for a much smaller than a∗(t)= νt + a∗

0, and we have shown the
first part of (19).

Case 2: a > a∗(t). In the following discussion we focus on the case of a > a∗(t) and
assume that the threshold a∗(t) grows linearly with t, that is, a∗(t)= a∗

0 + νt. Moreover,
we assume that Ga(t)= g(a− a∗(t)). Substituting x≡ a− a∗(t)= a− a∗

0 − νt in (16) for
a > a∗(t) and noting that40

G
a∗(t)�(t) = g(
a∗(t)� − a∗(t))

= g(
a∗
0 + νt� − (a∗

0 + νt))
= g(
a− x� − (a− x))
= g(x+ 
−x�)

for any integer a, by introducing g0 from above as a constant we then get

−νg′(x) = (
1 − g(x+ 
−x�))g(x)−p(g(x)− g(x− 1))

= (1 − g0)g(x)−p(g(x)− g(x− 1))− (
g(x+ 
−x�)− g0

)
g(x) (36)

= (1 − g0)g(x)−p(g(x)− g(x− 1))− ε(x)g(x)
for x > 0, x+ 
−x� ∈ [−1�0], where we have used the fact that ∂Ga(t)/∂t = −νg′(x) and
we have denoted

ε(x)≡ g(x+ 
−x�)− g0� (37)

40We would like to thank an anonymous referee for pointing this out.
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Next note that due to the monotonicity of g(x) we have that ε(x)≥ 0. Further note that
the DDE (36) depends on values of the function g(x) in the interval x ∈ [−1�0], which is
given by (35) and is thus predetermined for computing the solution of (36). Rearranging
terms, we can write (36) in the form

g′(x)+ 1 − g0 −p
ν

g(x)+ p

ν
g(x− 1)= ε(x)

ν
g(x)� (38)

Denoting a≡ (1 − g0 −p)/ν and b≡ p/ν, the solution of (38) can be written as the solu-
tion of the integral equation (cf. Bellman and Cooke 1963, Eq. (9.3.2), p. 267)

g(x)= g0h(x)− b
∫ 0

−1
h(x− y − 1)φ(y)dy + 1

ν

∫ x

0
h(x− y)ε(y)g(y)dy (39)

for x > 0 and h(x) being the solution to the homogeneous part of the DDE (38), i.e.,
where the right-hand side is set to zero,41 and φ(x) is the predetermined solution for
g(x) in the interval x ∈ [−1�0] from (35). For any x > 0, g(x) in the left-hand side of (39)
is determined by g(y) for values of y < x. So recursively, (39) completely specifies g at
any point x as a function of g evaluated at points y smaller than x. This shows existence
of the solution. A more detailed discussion can be found in Section 9 in Bellman and
Cooke (1963) and the method of steps introduced in Section 3 in Smith (2010), where
the existence of solutions to DDEs is proven in a recursive manner. The existence of
such a solution to the DDE (38) thus justifies our assumption of a traveling wave.

Hence, we have shown that there exists a solution to (16) and (34) (or, equiva-
lently, (28)) with a∗(t) = a∗(0) + νt for some constant ν, where we set Ga(t) equal to
g(a− a∗(t))= g(a− a∗

0 − νt) for any a ∈ S . This justifies our assumption of a traveling
wave.42

In what follows we derive upper and lower bounds for the solution of (36), and from
these bounds we analyze its asymptotic behavior in the limit of large x. In particular
we will show that there exists a p∗ > 0 such that for all p < p∗, the tail of g(x) can be
bounded from above and from below by exponentially decaying functions.43

Let us denote

ε≡ sup
x≥0

ε(x)= sup
x≥0

{
g(x+ 
−x�)− g0

} = sup
y∈[−1�0]

{g(y)− g0} = g(−1)− g0� (40)

and define g(x) as the solution to the delay differential equation

g′(x)+ 1 − g0 −p
ν

g(x)+ p

ν
g(x− 1)= ε

ν
g(x)� (41)

41This solution is analyzed in (42) below.
42Observe that while ε(x) is only piecewise continuous, g(x) in (39) is continuous in x as the last term

in (39) is an integral over a piecewise continuous function, which is continuous (cf., e.g., Shilov 1996, para-
graph 9.39). As also the logistic function in (35) is continuous, we obtain that g(x) is continuous for all x.
Consequently, Pb(t) =Gb−1(t)−Gb(t) is continuous, and f (a� t) = ∑∞

b=a+1(e
b−a − 1)Pb(t) in Remark 1 is

continuous in a, as it is the composition of continuous functions.
43Observe that this rules out, for example, any polynomially decaying functions.
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By virtue of Lemma 3, the solution g(x) of (41) then is an upper bound to the solution
g(x) of (38).44 Next, Lemma 3 implies that g(x) ≤ g(x), where g(x) solves the delay dif-
ferential equation

g′(x)+ 1 − g0 −p
ν

g(x)+ p

ν
g(x− 1)= 0� (42)

Note that both (41) and (42) are instances of a first-order linear homogeneous delay
differential equation (DDE) with constant coefficients (cf. Bellman and Cooke 1963,
Driver 1977, Smith 2010). In the following text we first solve (41), while (42) can be solved
in an analogous way.

Recall that the DDE (41) depends on values of the function g(x) in the interval x ∈
[−1�0], which is given by (35) and thus is predetermined. Asl and Ulsoy (2003) call this
the preshape function, which we have denoted byφ(x). Inserting the definition of ε from
(40) into (41) we then have to solve the DDE

g′(x)+ 1 −p− g(−1)
ν

g(x)+ p

ν
g(x− 1)= 0� x ∈ (0�∞)

(43)

g(x)=φ(x)= 1

1 + ( 1
g0

− 1)e
x
ν

� x ∈ [−1�0]�

Asl and Ulsoy (2003) have shown that such a DDE admits a solution of the form45

g(x)=
∞∑

k=−∞
cke

−λkx� (44)

with appropriate constants ck. That is, the solution to the DDE in (43) is a linear combi-
nation of exponential functions. We have that g′(x) = −∑∞

k=−∞ ckλke−λkx, and insert-
ing into the DDE (43) yields

ν

∞∑
k=−∞

ckλke
−λkx = (1 − g(−1)−p)

∞∑
k=−∞

cke
−λkx +p

∞∑
k=−∞

cke
−λk(x−1)�

This can be written as

∞∑
k=−∞

cke
−λkx(λkν− (1 − g(−1)−p)−peλk)= 0� (45)

The coefficients λk in (45) are the roots of the characteristic equation (cf. Asl and Ulsoy
2003)

λkν = 1 − g(−1)−p(1 − eλk)� (46)

44In particular, we can write G(x�g(x)�g(x − 1)) ≡ g′(x) = −((1 − g0 − p)/ν)g(x) − (p/ν)g(x − 1) +
(ε/ν)g(x) and G(x�g(x)�g(x − 1)) ≡ g′(x) = −((1 − g0 − p)/ν)g(x) − (p/ν)g(x − 1) + (ε(x)/ν)g(x). Be-
cause ε ≥ ε(x) we must have that G ≥ G. Moreover, we have that G is continuous and linear in g, and
hence Lipschitz in g. It follows that Lemma 3 applies.

45See in particular (3) and (15) in Asl and Ulsoy (2003).
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Figure 9. Left panel: The two real Lambert W functions. Right panel: The two real roots λ0

and λ1 solving (46) for ν = 1, g(−1)= 0�5, and p= 0�1 indicated with dashed lines, and given by
λ0 = 0�5783 and λ−1 = 3�4018.

The roots of (46) can be written in closed form as

λk = g(−1)+p− 1
ν

+Wk
(

−p
ν
e−(g(−1)+p−1)/ν

)
� (47)

where Wk(z) is the kth branch of the Lambert W function satisfying Wk(z)eWk(z) = z for
k = 0�±1�±2� � � � (cf. Corless et al. 1996). Note that there can be at most two real roots
W0(z) andW−1(z). An illustration is given in the left panel of Figure 9.46 The real parts of
the higher order roots are dominated by those ofW0(z) andW−1(z) (Asl and Ulsoy 2003).
As (p/ν)e−(g(−1)+p−1)/ν ≥ 0, there exist either two real roots or we have the case that both
coincide, namely when the argument −(p/ν)e−(g(−1)+p−1)/ν of the Lambert function in
(47) equals − 1

e and when λ0 = λ−1 = (g(−1)+p− 1 − ν)/ν. The further the two roots are
separated from each other, the closer is the argument −(p/ν)e−(g(−1)+p−1)/ν of the Lam-
bert function to zero (see Figure 9, left panel), which is the case for example when the
innovation success probability p is small. Moreover, the existence of real roots requires
that (p/ν)e−(g(−1)+p−1)/ν ≤ 1/e or, equivalently,p/ν ≤ e−(1−g(−1))/νep/ν−1. An illustration
for the two real roots λ0 and λ−1 solving (46) is shown in the right panel of Figure 9.

We next show that all the roots of the characteristic equation (46) have positive real
parts. Corollary 4.10 in Smith (2010, p. 56)47 shows that a sufficient condition for all roots
x of the equation x− b− cex = 0 to have a positive real part is b > 0 and |b|> |c|. We can
write (46) as λk−(1−p−g(−1))/ν−(p/ν)eλk = 0, so that the corresponding coefficients
are b = (1 − p− g(−1))/ν and c = p/ν. The sufficient condition then becomes 1 − p−
g(−1) > p or, equivalently, 1

2(1 − g(−1)) > p. First, assume that g0 < 1. Because g(−1) is
determined by the logistic function in (35), which is strictly smaller than 1 if g0 < 1, we

46Note further that |W0(z)| ≤ |W−1(z)| while the bounds lnz − ln lnz ≤ W0(z) ≤ lnz − 1
2 ln lnz for every

z ≥ e and 1<−W−1(z)≤ −1/z for every z ∈ (−1/e�0) hold.
47In particular, part (i) of Corollary 4.10 in Smith (2010) considers the equation y + b+ ce−ry = 0, with b,

c being real coefficients and r > 0. Then, if b > 0 and |b| > |c|, all the roots have negative real parts for all
r ≥ 0. Substituting x = −y and setting r = 1 gives x− b− cey = 0, which is the equation that we consider.
Finally, note that if all the roots y have negative real parts, then all the roots x= −y must have positive real
parts.
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have that 1
2(1 −g(−1)) > 0. Let p∗ > 0 be the smallest possible value of 1

2(1 −g(−1)). We
then can always find a (real-valued) p between p∗ and 0 such that the inequality holds
for all p less than p∗. Next assume that g0 = 1. From the logistic function in (35) we
know that g0 = 1 implies that also g(−1)= 1. Moreover, from (40) we can conclude that
ε= 0. In this case the solutions to the upper and lower bounds in (41) and (42) coincide,
and must be equivalent to the solution to the original equation (36), which is uniformly
bounded by 1 as it is a complementary cumulative distribution function. Thus there
cannot be any positive real parts in the characteristic roots. This shows that all the roots
λk of the characteristic equation (46) have positive real parts for p small enough.48

The coefficients ck in (44) follow from the preshape function, which can be written
as (see (77) in Asl and Ulsoy 2003)49

φ(x)≡ 1

1 + ( 1
g0

− 1
)
ex/ν

=
∞∑

k=−∞
cke

−λkx� x ∈ [−1�0]� (48)

So as to compute the Lambert coefficients, ck, consider a 2K + 1 discretization{
−1�−2K − 1

2K
�−2K − 2

2K
� � � � �− 2

2K
�− 1

2K
�0

}

of the interval [−1�0]. Taking into account only 2K+1 Lambert coefficients in (48), such
that

φ(x)≈
K∑

k=−K
cke

−λkx� x ∈ [−1�0]�

we get⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(0)

φ(− 1
2K )

φ(− 2
2K )

���

φ(− 2K−2
2K )

φ(− 2K−1
2K )

φ(−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
φ

≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−λ−K ·0 � � � e−λK ·0

e−λ−K ·(−1/(2K)) � � � e−λK ·(−1/(2K))

e−λ−K ·(−2/(2K)) � � � e−λK ·(−2/(2K))

���

e−λ−K ·(−(2K−2)/(2K)) � � � e−λK ·(−(2K−2)/(2K))

e−λ−K ·(−(2K−1)/(2K)) � � � e−λK ·(−(2K−1)/(2K))

e−λ−K ·(−1) � � � e−λK ·(−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�K

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c−K
c−K+1

c−K+2

���

cK−2

cK−1

cK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
c

�

We then have that c ≈�−1
K φ, which becomes exact in the limit ofK→ ∞, and the Lam-

bert coefficients ck are given by

ck = lim
K→∞

(�−1
K φ)k�

48In our numerical simulations we find that this condition actually holds for any value of p that we have
considered.

49Any continuous function φ(x) can be represented as an infinite series using the Lambert coefficients,

ck, and the Lambert modes, e−λkx (Asl and Ulsoy 2003).
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Note that for large x the dominant term in (44) is the one with the smallest exponent, so
that asymptotically it holds that50

g(x)∼ e−λ0x� x→ ∞�

where λ0 is the smallest root of the characteristic (46).
Similarly, the lower bound from the solution of the DDE (41) is given by

g(x)=
∞∑

k=−∞
cke

−λkx� (49)

with appropriate constants ck, where the exponents λk solve the characteristic equation

λk = g0 +p− 1
ν

+Wk
(

−p
ν
e−(g0+p−1)/ν

)
� (50)

Hence, we have that g(x) ≤ g(x) ≤ g(x), and we have shown (18). Observe further that

g(x)− g(x) ∼ e−λ0x − e−λ0x ∼ e−λ0x → 0 for large x when λ0 > λ0.51 Moreover, we have

that g(x) = O(e−λ0x) for large x,52 so that we can write Ga(t) = O(e−λ0(a−νt)) as a be-
comes much larger than a∗(t). AsPa(t)=Ga−1(t)−Ga(t), the same asymptotic behavior
holds for Pa(t). This proves the second part of (19). �

Remark 2. In our numerical simulations we find that the perturbation ε(x) in (37) is
typically small and can be neglected to obtain a fairly good approximation. A compar-
ison of the numerical solution of (16) with the analytical predictions from (35) below
the threshold and the solution of the DDE (42) above the threshold, together with the
solution of (49) with exponents from (50) for K = 3 Lambert modes and the exponent
λ0 obtained from (20), are shown in Figure 10. The figure shows fairly good agreement
between the theoretical predictions and a direct numerical integration of (16).

Remark 3. In the following discussion we show how (20) and (21) are computed. Moti-
vated by Remark 2, we assume that the perturbation ε(x) can be neglected, so that the
solution to the original DDE (38) is sufficiently well approximated by the solution to the
DDE (42). Observe that the exponents λk in (50) depend on the endogenous variables
ν and g0, and so (50) cannot be used to compute λk directly. In the following text we
avoid this problem by assuming that the solution to the DDE (42), given in (49), is dom-
inated by the smallest exponent λ0 (corresponding to the term with the smallest decay
as x increases), and then we proceed by computing this exponent.

First note that from the threshold condition in (34) we obtain

∞∑
b=1

(eb − 1)Pb+a∗(t)(t)= p(Ā− 1)�

50Recall that we have shown above that all λk have positive real parts.
51Because g(x)≤ g(x) we must have that e−λ0x ≤ e−λ0x for large x, implying that λ0 > λ0.
52This is because limx→∞ g(x)/g(x)≤ 1. See also the definition in footnote 18.
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Figure 10. The stable shape of the complementary cumulative distribution function Ga(t) for
p = 0�1 (left panel) and the corresponding probability mass function Pa(t) (right panel). The
traveling wave has been detrended such that 
a∗(t)� coincides with the origin. (Recall that the
artwork is in color in the online version.) The red vertical line indicates the threshold 
a∗(t)�. The
blue stars indicate the numerical solution of (16). The black line for values below the threshold
is computed with the analytical solution from (35), where G
a∗(t)� is taken from the numerical
solution of (16). The black line for values above the threshold is obtained from a numerical inte-
gration of the DDE (42) (using Matlab’s dde23 solver) with the preshape function from (35). The
magenta line indicates the solution for values above the threshold obtained from (49) with expo-
nents from (50) and K = 3 Lambert modes. The green line indicates the exponent λ0 obtained
from (20).

Using (49) we have thatGa(t)= ∑∞
k=−∞ cke−λk(a−νt), and we can write

Pa(t) =Ga−1(t)−Ga(t)

=
∞∑

k=−∞
ck(e

λk − 1)e−λk(a−νt)

=
∞∑

k=−∞
c̃ke

−λk(a−νt)�

where we have denoted c̃k ≡ ck(eλk − 1). It then follows that

p(Ā− 1) =
∞∑
b=1

(eb − 1)
∞∑

k=−∞
c̃ke

−λk(b+a∗(t)−νt)

=
∞∑
b=1

(eb − 1)
∞∑

k=−∞
c̃ke

−λk(b+a∗
0) (51)

=
∞∑

k=−∞
c̃ke

−λka∗
0

∞∑
b=1

(eb − 1)e−λkb
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=
∞∑

k=−∞
c̃ke

−λka∗
0

(
1

eλk−1 − 1
+ 1

1 − eλk
)
�

As discussed in the proof of Proposition 6, the more the principal root λ0 is separated
from the other roots, the closer is the argument −(p/ν)e−(g0+p−1)/ν of the Lambert W
function in (50) to zero. Then only the principal Lambert mode dominates in (51), and
we can write

p(Ā− 1)= c̃0e
−λ0a

∗
0

(
1

eλ0−1 − 1
+ 1

1 − eλ0

)
+ o(1)� (52)

The complementary cumulative distribution function (ccdf) evaluated at the threshold
can be written as

g0 =Ga∗(t)(t)=
∞∑
k=0

cke
−λka∗

0 =
∞∑

k=−∞

c̃k

eλk − 1
e−λka∗

0 �

Similarly, when the principal Lambert mode dominates in the above equation we obtain

g0 = c̃0

eλ0 − 1
e−λ0a

∗
0 + o(1)�

so that (46) can be written as

λ0ν = 1 − c̃0

eλ0 − 1
e−λ0a

∗
0 −p(1 − eλ0)+ o(1)� (53)

Inserting c̃0e
−λ0a

∗
0 from (52) into (53) (and dropping terms of o(1)) then gives

λ0ν = 1 − p(Ā− 1)
eλ0 − 1

(
1

eλ0−1 − 1
+ 1

1 − eλ0

)−1

−p(1 − eλ0)�

Hence, simplifying this expression we obtain the traveling wave velocity ν as a function
of the principal exponent λ0 given by

ν = 1
λ0

(
1 +p(eλ0 − 1)− p(Ā− 1)(1 − e1−λ0)

e− 1

)
� (54)

The traveling wave velocity ν as a function of λ0 for different values of p can be seen in
Figure 11 (left panel). Of particular interest will be the smallest admissible value of ν.53

Note that the right-hand side of (54) is a convex function of λ0, which is characterized by
a unique global minimum (see also the left panel in Figure 11). The corresponding value
of λ0 minimizing ν can be found from the corresponding first-order condition (FOC)
given by

dν

dλ0
= 1 − e+p(Ā+ e− 2)+ (e− 1)eλ0p(λ0 − 1)− (Ā− 1)e1−λ0p(1 + λ0)

(e− 1)λ2
0

= 0�

53A generic selection principle applies, where an extremal value for ν is realized from sufficiently steep
initial conditions (Van Saarloos 2003, Bramson 1983).
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Figure 11. Left panel: The traveling wave velocity ν as a function of λ0 for different values of
p= 0�1, p= 0�5, and p= 1. Right panel: The ν minimizing value of λ0 for the same values of p.
The figures show that the minimizing value of λ0 is decreasing for increasing values of p and,
consequently, the front of the traveling wave becomes steeper. Moreover, the velocity ν of the
traveling wave increases with increasing values of p.

The FOC from above is equivalent to

e− 1

Ā+ e− 2 + (e− 1)eλ0(λ0 − 1)− (Ā− 1)e1−λ0(1 + λ0)
= p�

which is illustrated in Figure 11 (right panel). This equation can be further simplified to

eλ0(λ0 − 1)− Ā− 1
e− 1

e1−λ0(1 + λ0)+ Ā+ e− 2
e− 1

= 1
p
� (55)

A comparison of the exponentially decaying solution with λ0 obtained from (55) and the
numerical solution of (16) is shown in Figure 10.

Proof of Lemma 1. Let T be the terminal period. Then we have that

VT−1(Ai(T − 1)�P(T − 1))

= max
{∫

dF in(ϑ)ψAi(T − 1)Āϑ�
∫
dF im(ϑ|Ai(T − 1)�P(T − 1))ψAi(T − 1)Āϑ

}

=ψAi(T − 1)max
{∫

dF in(ϑ)Āϑ�

∫
dF im(ϑ|Ai(T − 1)�P(T − 1))Āϑ

}
�

Observe that the expected productivity gain from imitation,
∫
dF im(ϑ|Ai(T − 1)�

P(T − 1))Āϑ, is increasing in Ai(T − 1), and the expected productivity gain from
innovation,

∫
dF in(ϑ)Āϑ, is nondecreasing in Ai(T − 1). Hence, VT−1(Ai(T − 1)�

P(T − 1)) is increasing in Ai(T − 1). Next, as the induction hypothesis, assume that
VT−t(Ai(T − t)�P(T − t)) is increasing inAi(T − t). Then we have that

VT−t−1(Ai(T − t − 1)�P(T − t − 1))

= max
{∫

dF in(ϑ)ψAi(T − t − 1)Āϑ + δVT−t(Ai(T − t − 1)Āϑ�P(T − t))�
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dF im(ϑ|Ai(T − t − 1)�P(T − t − 1))ψAi(T − t − 1)Āϑ

+ δVT−t(Ai(T − t − 1)Āϑ�P(T − t))
}
�

As both, VT−t(·� ·) and the per period profit
∫
dFsi(t)(ϑ|·)ψAi(·)Āϑ are increasing in the

productivity Ai(·) (for both strategies, innovation, si(t)= in, and imitation, si(t)= im),
it follows that also VT−t−1(·� ·) is increasing in the productivity. This proves the induction
step. �

Proof of Proposition 8. Assume for a contradiction that the value function is in-
creasing in the productivity Ai(t), but that the optimal strategy is not to maximize the
expected productivity gain in that period. Then not only the current expected per pe-
riod profit is smaller, but, because of the monotonicity of the value function, also the
expected value function in the next period is lower. However, this contradicts the as-
sumption that the strategy is optimal, and thus cannot be the solution to the Bellman
equation (25). �

In the following text, we derive a lemma and a corollary that will help us to show that
(22) admits a traveling wave solution with a stable shape.54 First, from (22) we can derive
the following lemma.

Lemma 4. Let F(1)a (t) and F(2)a (t) be solutions of (22) with initial data chosen such that
F
(1)
a (0)≥ F(2)a (0). Then for all t > 0 we have that F(1)a (t)≥ F(2)a (t).

Proof. We introduce the difference

Va(t)= F(2)a (t)− F(1)a (t)�

In the following discussion, we show that if Va(0)≤ 0, then Va(t)≤ 0 for all t > 0. We can
write (22) as

∂Fa(t)

∂t
+ Fa(t)= 2q− 1

2
Fa(t)

2 + 3 − 2q−p
2

Fa(t)+ p

2
Fa−1(t)�

We then get for Va(t),

∂Va(t)

∂t
+ Va(t) = 2q− 1

2
(
(F(2)a (t))2 − (F(1)a (t))2

)+ 3 − 2q−p
2

Va(t)+ p

2
Va−1(t)

= 2q− 1
2︸ ︷︷ ︸
≥0

Va(t)︸ ︷︷ ︸
≤0

(F(2)a (t)+ F(1)a (t))︸ ︷︷ ︸
≥0

+ 3 − 2q−p
2︸ ︷︷ ︸
≥0

Va(t)︸ ︷︷ ︸
≤0

+ p

2︸︷︷︸
≥0

Va−1(t)︸ ︷︷ ︸
≤0

�

Hence, we find that if Va(t)≤ 0 for all a≥ 0, then also ∂Va(t)/∂t + Va(t)≤ 0.

54Our results follow Bramson (1983), who analyzed the traveling wave solution u(x� t)=w(x− νt) of the
Kolmogorov equation ∂u/∂t = f (u)+ ∂2u/∂x2.
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Next we show that if Va(t)≤ 0 and ∂Va(t)/∂t + Va(t)≤ 0, then also Va(t + s)≤ 0 for all
s > 0. For this purpose, let ε= s/n with n ∈ N. For n sufficiently large (and ε sufficiently
small) we can use a first-order Taylor approximation to write

Va(t + ε) = Va(t)+ ∂Va(t)

∂t
ε

Va(t + 2ε) = Va(t + ε)+ ∂Va(t + ε)
∂t

ε

���

Va(t + nε) = Va(t + (n− 1)ε)+ ∂Va(t + (n− 1)ε)
∂t

ε�

We can assume that Va(t) ≤ 0. If ∂Va(t)/∂t ≤ 0, then we also have that Va(t + ε) ≤ 0.
Otherwise, we observe that

Va(t + ε)= Va(t)+ ∂Va(t)

∂t
ε≤ Va(t)+ ∂Va(t)

∂t
≤ 0�

so that also in this case Va(t+ ε)≤ 0. We can repeat this argument for all ε�2ε� � � � � nε= s
and show that Va(t + s)≤ 0. �

A direct consequence of Lemma 4 is the following corollary.

Corollary 1. Let Fa(t) be a solution of (22) with Heaviside initial data, that is,

Fa(0)=�(a− am)=
{

0 if a < am

1 if a≥ am.

Further, define mε(t) = inf{a : Fa(t) ≥ ε} for any ε ∈ [0�1]. Then we have that Fa−mε(t)(t)
converges to some function fε(a) as t → ∞.

Proof. For t0� b ∈R+ we set, for any a≥ 0,

F(1)a (t) = Fa−mε(t0)(t)

F(2)a (t) = Fa−mε(t0+b)(t + b)�

If we start from Heaviside initial data we have that F(1)a (0) ≥ F(2)a (0) and Lemma 4 ap-
plies.55 It follows that F(1)a (t)≥ F(2)a (t) for all t > 0. We then can write

0 ≤ Fa−mε(t0+b)(t0 + b)≤ Fa−mε(t0)(t0)≤ 1�

55To see this, note that mε(t) is increasing in t as Fa(t) is decreasing in t because the right-hand side of

(22) is always less than zero. Consequently, it holds that F(1)a (0) = Fa−mε(t0)(0) = �(a − (am +mε(t0))) ≥
�(a− (am +mε(t0 + b))) = Fa−mε(t0+b)(0). The latter is, by definition of the Heaviside function, an upper
bound for any probability distribution function with support restricted to the interval [am +mε(t0 +b)�∞).
This applies in particular to F(2)a (0)= Fa−mε(t0+b)(b) for any b ∈ R+, so that we have that F(1)a (0) ≥ F(2)a (0).
Hence, we can make use of Lemma 4.
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Figure 12. Illustration of distributions Fa(t) and Fa(t + s) at times t and t + s for s > 0.

For each value of b this is a decreasing sequence of real numbers that is bounded from
below and thus its infimum is the limit. In particular, since t0� b and εwere chosen arbi-
trarily, we obtain that Fa−m0(t)(t) converges to some f (a) ≥ 0 from above as t → ∞. An
illustration can be seen in Figure 12. �

We are now in place to give a proof of Proposition 7.

Proof of Proposition 7. Let ε > 0. Then by Corollary 1 it holds that

lim
t→∞Fa−mε(t)(t)= fε(a)�

Because of convergence it holds for the total derivative that

lim
t→∞

dFa−mε(t)(t)
dt

= 0

or, equivalently,

∂Fa−mε(t)(t)
∂t

+ ∂Fa−mε(t)(t)
∂a

dmε(t)

dt
= o(1)�

Using (22), the above equation can be written as

o(1)= 2q− 1
2

Fa−mε(t)(t)2 + 1 − 2q−p
2

Fa−mε(t)(t)+ p

2
Fa−mε(t)−1(t)

+ ∂Fa−mε(t)(t)
∂a

dmε(t)

dt
�

Integrating over [0�α), we obtain

o(1)=
∫ α

0

(
2q− 1

2
Fa−mε(t)(t)2 + 1 − 2q−p

2
Fa−mε(t)(t)+ p

2
Fa−mε(t)−1(t)

)
da

+ (Fα−mε(t)(t)− F0−mε(t)(t))
dmε(t)

dt
�

Looking at the limit over time (limt→∞ on both sides), we obtain

o(1)=
∫ α

0

(
2q− 1

2
fε(a)

2 + 1 − 2q−p
2

fε(a)+ p

2
fε(a− 1)

)
da

+ (fε(a)− fε(0)) lim
t→∞

dmε(t)

dt
�
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As everything except limt→∞ dmε(t)/dt does not depend on t, we can conclude that there
is a constant ν such that limt→∞ dmε(t)/dt = ν.

Further, we must have that Fmε(t)(t) = Fmε(t+s)(t + s) or, equivalently, Fνt(t) =
Fν(t+s)(t + s), and this is satisfied for Fa(t) = f (a − νt). It follows that the solution of
(22) must be a traveling wave. Note that due to the stable shape of the traveling wave,
the above result holds for any value of ε. �
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