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Abstract
We show that sovereign debt is unsustainable if debt contracts are not supported by direct sanc-

tions and default carries only a ban from ever borrowing in financial markets even in the presence of
uninsurable risks and time-varying interest rate. This extension of Bulow and Rogoff (1989) requires
that the present value of the endowment be finite under the most optimistic valuation. We provide
examples where this condition fails and sovereign debt is sustained by the threat of loss of insurance
opportunities upon default, despite the fact that the most pessimistic valuation of the endowment, the
natural debt limit, is finite.
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at early stages of the project.

1



Appendix A. Restrictions on prices 18
Appendix B. Competitive equilibrium 22
Appendix C. Markov pricing 24
Appendix D. Arbitrage-free pricing 28
References 29

1. INTRODUCTION

The impossibility result of Bulow and Rogoff (1989) asserts that sovereign debt cannot
be supported by a country’s reputation for repayments when default carries only a ban
from ever borrowing in financial markets.1 The intuition is that, when debt cannot be rolled
over, a country can always improve upon contractual arrangements that involve repayments
(positive net transfers from the country to foreign investors) by defaulting at a contingency
associated with the maximal debt exposure. Under complete markets, debt is unsustainable
when it is bounded by a finite present value of the sovereign’s future endowment (the
natural debt limit). This paper extends the analysis to incomplete markets.

The argument of Bulow and Rogoff (1989) is one of arbitrage: by defaulting, the sover-
eign can save upon repayments, increase current consumption and replicate the same con-
sumption pattern for the future without borrowing. In the presence of uninsurable risks,
however, this arbitrage may not be feasible: even though all securities are available after
default, some insurance opportunities may not be replicable without issuing further debt.
Hence, the sovereign may prefer to repay the debt in order to maintain access to the op-
portunities of risk diversification that the asset market provides, even if incomplete. As
illustrated by examples, this implicit threat of insurance loss can sustain sovereign debt, in
contrast with the case of complete markets, when borrowing is bounded by a finite natural
debt limit. In order to restore the validity of Bulow and Rogoff (1989), we need to identify
conditions for replication after default.

Replication may fail because the cost of providing insurance in an averse contingency
may become prohibitively high when debt cannot be issued. This happens when, for in-
stance, assets have to be held for long phases of depreciation before insurance is needed,
whereas hedging against an unfavorable state would be feasible when debt is permitted.
The cost of providing insurance at future contingencies can be estimated as the largest
present value of needed resources, whereas borrowing can only be secured by the smallest
present value of future income, the natural debt limit.2 This cost may be infinite, even when
the natural debt limit is finite, thus preventing insurance after default. Such a situation has
no counterpart under complete markets because, when the natural debt limit is finite, so is
the cost of insurance. Replication under incomplete markets is guaranteed if the most op-
timistic valuation of future endowment is finite, a property that we refer to as high implied

1Bulow and Rogoff (1989) led to a vast literature studying alternative mechanisms enforcing debt repayment
in the absence of sanctions. We refer to Aguiar and Amador (2014) and Wright (2013) for a thorough discussion
of the literature.

2Under incomplete markets, the present value of non-tradable claims is ambiguous, and asset prices only
impose bounds under no arbitrage conditions. We refer to Santos and Woodford (1997), LeRoy and Werner
(2001) and our Appendix D for these basic principles.

2



interest rates by analogy to Alvarez and Jermann (2000). We show that, under an addi-
tional technical assumption, this is sufficient to restore the validity of Bulow and Rogoff
(1989).

Our analysis applies to any arbitrary set of securities and, subject to high implied interest
rates, to any process of prices. Beyond the generality, the absence of further restrictions on
prices allows us to embed our conclusions in a competitive equilibrium framework, where
the pricing kernel is in general time-varying and simple Markov equilibria fail to exist (see
Duffie et al. (1994)).3 Allowing for any set of securities clarifies that the structure of the
asset market plays no direct role in determining incentives to default. Indeed, for any given
asset structure, depending on prices, the condition of high implied interest rates might hold
or fail, and so do incentives to default. The extent of insurance is larger the richer the
variety of financial assets, but this equally affects the sovereign before and after default.

Our time-varying pricing kernel is in line with some recent literature on sovereign de-
fault risk, which moves away from the traditional risk-neutral pricing in order to provide
a better understanding of risk premia, the term-structure and movements along the busi-
ness cycle (see Arellano (2008), Arellano and Ramanarayanan (2012) and Hatchondo et al.
(2016)). Our work also delivers some methodological insights into the construction of dy-
namic replicating portfolios when several securities are traded in the market. This seems
particularly relevant for disentangling the interplay between maturity choice, hedging mo-
tives and repayment incentives in a framework in which the government issues bonds of
several maturities, a case which requires to handle the payoff space generated by a set
of securities (see Hatchondo and Martinez (2009), Chatterjee and Eyigungor (2012) and
Aguiar et al. (2016)).

The restrictions on prices needed to prove the existence of incentives to default obtain at
a competitive equilibrium under some primitive conditions on fundamentals. In particular,
as proved by Santos and Woodford (1997), when the dividend accruing to the market port-
folio is at least a constant fraction of the overall endowment, the most optimistic valuation
of the aggregate endowment is necessarily finite. This case is of considerable interest on
empirical grounds, because of the work of Abel et al. (1989) on dynamic efficiency. Fur-
thermore, when individuals’ preferences satisfy a uniform form of impatience, the value of
the market portfolio cannot grow unboundedly relative to the aggregate endowment. This
guarantees that the most optimistic present value of claims in the remote future vanishes,
which is the additional technical property needed to establish Bulow and Rogoff (1989).4

Under Markov pricing, the conditions for the validity of Bulow and Rogoff (1989) can
be verified by means of a dominant root (Perron-Frobenius) approach. This requires an
extension to incomplete markets of the method for the characterization of dynamic effi-
ciency (most prominently, Aiyagari and Peled (1991)). The dominant root estimates the
long-term interest rate, and the conditions for Bulow and Rogoff (1989) are satisfied when
the long-term interest rate is positive net of growth. Incidentally, this approach is suitable

3In a competitive economy with collateral constraints, Gottardi and Kubler (2015) show that Markov equilib-
ria on a finite support do not in general exist with more than two individuals. Most of their analysis also extends
to the equilibria with solvency constraints as in Alvarez and Jermann (2000) and Hellwig and Lorenzoni (2009).

4It is worth noticing that these restrictions on prices are exactly those ruling out speculative bubbles on secu-
rities in positive net supply for any valuation of their fundamental value consistent with no arbitrage opportunities
(Santos and Woodford (1997)).
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to accommodate time-varying interest rate in traditional frameworks for sovereign debt
analysis (e.g., Eaton and Gersovitz (1981)).

Our paper is related to the work of Hellwig and Lorenzoni (2009) on self-enforcing
debt. Indeed, they also argue that sovereign debt is sustainable when the interest rate
is sufficiently low so as to provide repayment incentives. At a competitive equilibrium,
individuals are able to exactly refinance outstanding obligations by issuing new claims.
Hence, as debt can be rolled over, the sovereign has no incentive to default. In contrast,
in our examples, debt cannot be rolled over, as it is bounded by a finite natural debt limit,
and the sovereign prefers to repay the debt because default would be too costly in terms of
implied loss of insurance.

Pesendorfer (1992) studies repayment incentives of small open economies trading with
competitive risk-neutral foreign investors while having access to a limited set of financial
assets. His analysis differs from ours in a crucial aspect: the punishment in Pesendorfer
(1992) is that defaulters may not hold a negative position in any of the available assets; we
instead do allow defaulters to sell assets short, but only insofar as their portfolio does not
involve negative payoffs (future net obligations or net liabilities). Our formulation is more
in the spirit of Bulow and Rogoff (1989)’s cash-in-advance contract: an up-front payment
in exchange of positive contingent deliveries in the future. Importantly, under Pesendorfer
(1992)’s more severe punishment, sovereign debt could be sustainable even when markets
are complete.

A recent work of Auclert and Rognlie (2016) also extends Bulow and Rogoff (1989) to
incomplete markets. They only consider a risk-free bond and a constant, strictly positive
interest rate, which permits a constructive proof of a replication policy upon default. Our
analysis is more general, as we allow for time-varying interest rate and any asset structure.
However, due to our minimal assumptions, the replication strategy only obtains abstractly
by means of a duality argument. To this extent, the papers are complementary.

The paper is organized as follows. In section 2, we present the intuition for our analysis.
In section 3, we lay out the fundamentals of the economy. In section 4, we discuss the
restrictions on the asset pricing kernel. In section 5, we restore the validity of Bulow and
Rogoff (1989) under restrictions on prices. In section 6, we present examples on the failure
of Bulow and Rogoff (1989) in incomplete markets. For completeness, we gather some
technical properties of incomplete-markets pricing in Appendices A and D. Furthermore,
we present some relevant implications of competitive equilibrium in Appendix B. Finally,
we develop the analysis under Markov pricing in Appendix C.

2. ILLUSTRATIVE CASE

We develop the intuition for unsustainable sovereign debt in a simple deterministic
economy. Our approach is different from the original argument in Bulow and Rogoff
(1989). This alternative method brings out the logic that underlies the incentives to de-
fault in a way that can then be immediately extended to uncertainty even under incomplete
markets.

Time, t, is discrete, and the initial date is t = 0. The sovereign is entitled to an endow-
ment e = (. . . , et, . . .) ≥ 0, and consumes c = (. . . , ct, . . .) ≥ 0. At any period t, the
sovereign’s preferences are given by an increasing (recursive) utility function. Following
Bulow and Rogoff (1989), monotonicity is the only restriction on preferences.
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The sovereign has access to international capital markets, where, at any time t, it can
trade a one-period discount bond at price qt > 0. The flow budget constraint requires that

pt+1vt+1 + pt (ct − et) ≤ ptvt,

where p = (. . . , pt, . . .) � 0 is a sequence for present-value prices and v = (. . . , vt, . . .)

is the evolution of sovereign wealth. For notational convenience, we state the budget con-
straint in terms of present-value prices, that is, by compounding interest rates over time,

qt =
pt+1

pt
.

The sovereign holds vt+1 units of the one-period bond in period t, each delivering one unit
of consumption in the following period. This quantity is a claim if positive (because the
sovereign purchases the bond) and a liability if negative (because the sovereign sells short
the bond). We assume that vt < 0 in some period t, for otherwise no default incentive
would arise.

Bulow and Rogoff (1989) assume that sovereign debt, −vt, never exceeds the market
value of a claim on the country’s future income stream, that is,

−vt ≤ gt =
1

pt

∑
r≥0

pt+ret+r.

Clearly, this is restrictive only if the claim has finite value or, according to the terminology
of Alvarez and Jermann (2000), only if the hypothesis of high implied interest rates is
satisfied. It is interesting to notice that, when this limit is violated (that is, vt + gt < 0 in
some period t), the country is necessarily running a Ponzi game. Indeed, the present value
of the future income stream evolves according to

pt+1gt+1 + ptet = ptgt.

Thus, consolidating with the budget constraint,

pt+1 (vt+1 + gt+1) ≤ pt (vt + gt) .

This reveals that

lim inf
t

ptvt = lim
t

pt (vt + gt) = inf
t
pt (vt + gt) ,

where we use the fact that limt ptgt = 0 due to the hypothesis of high implied interest
rates. Hence,

lim inf
t

ptvt ≥ 0 if and only if inf
t
(vt + gt) ≥ 0.

Bulow and Rogoff (1989) argue that, when the plan involves liabilities over time (that
is, vt < 0 in some period t), the country will have an incentive to default and to revert to
cash-in-advance contracts. These are budget-balanced plans involving no debt over time,
that is, in this simple deterministic economy, budget-balanced plans fulfilling an additional
no borrowing constraint. In this sense, reputational debt is unsustainable.

In general, a default incentive for the sovereign balances a benefit (no repayments ac-
cording to the previous debt obligations) with a cost (reduced trade opportunities, due to
the subsequent no borrowing constraint). The intuition of Bulow and Rogoff (1989)’s para-
dox is instead grounded on a pure arbitrage principle: the sovereign is able to replicate the
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−ptvt

ptbtpresent value

period t

FIGURE 1. Envelope

previous consumption plan without borrowing and, hence, incurs no substantial cost upon
default. The crucial step is the construction of this replication policy.

Define b = (. . . , bt, . . .) as the sequence satisfying, at every t,

bt = sup
r≥0

1

pt
pt+r (−vt+r) .

In economic terms, bt is the minimum amount of resources that enables the sovereign to
pay back the debt in any arbitrary date beginning from t (investing this amount in period t

delivers (pt/pt+r) bt ≥ −vt+r after r periods). This value is finite since debt is bounded
by the present value of the country’s income stream. In particular, observing that −vt+r ≤
gt+r at any future period,

−vt ≤ bt ≤ sup
r≥0

1

pt
pt+rgt+r ≤ gt.

Furthermore, as debt in present value might be lower at future dates,

(B) ptbt = max {−ptvt, pt+1bt+1} .

Finally, notice that b0 > 0, as we assume that the country holds a debt in some period t.
The construction of this sort of envelope is illustrated by Figure 1: the drops in the dashed
line (ptbt) reflect contractions in the future peaks of the dotted line (−ptvt)

Condition (B) reveals that replication is feasible. Indeed, the alternative financial plan
w = v + b ≥ 0 satisfies the budget constraint with no liabilities, that is,

pt+1 (vt+1 + bt+1) + pt (ct − et) ≤ pt (vt + bt) .

In other terms, at every point in time, bt is the minimum amount of resources that would
allow the sovereign to dispense with liabilities at no cost in terms of future trade opportu-
nities. Furthermore, by condition (B), if the inequality is slack, i.e.,

pt+1bt+1 < ptbt,

then wt = vt + bt = 0. This uncovers a strict benefit from defaulting, and restarting with
wt = 0, because current consumption can be increased by the amount ptbt−pt+1bt+1 > 0.
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In the spirit of Bulow and Rogoff (1989), in this situation, sovereign debt has reached its
maximum expansion and, thus, the country begins a repayment policy. Defaulting allows
the country to save on these repayments and enjoy higher consumption.

For default not to be profitable, the sequence b must be rolling-over exactly, that is,

pt+1bt+1 = ptbt.

This implies that sovereign debt is recurrently at a peak over time (or the peak is never
reached) and, therefore, a real repayment policy never begins. No default incentive emerges,
but this contradicts the assumption that debt is bounded by the present value of the future
income stream. More precisely, in this case,

0 < p0b0 = lim
t

ptbt ≤ lim
t

ptgt = 0,

where the fact that limt ptgt = 0 is an implication of the hypothesis of high implied interest
rates.

We develop this line of reasoning in order to provide a proof under incomplete markets.
In particular, we construct an analogous envelope of future liabilities. Under incomplete
markets, however, valuation is ambiguous for streams that are not tradable in the market
and so is the construction of the envelope. We show that the process corresponding to
the most pessimistic (largest) valuation of future liabilities, when finite, is suitable for the
replication policy. To ensure that this is the case, we need the largest present value of
the country’s future income to be finite. This rules out any incentive to default, but the
sovereign might still be borrowing recurrently, as in the deterministic economy discussed
above. To eliminate this residual case, we need to slightly strengthen the hypothesis on the
pricing kernel: the optimistic valuation of future claims should vanish in the remote future.

3. FUNDAMENTALS

3.1. Uncertainty. Trading occurs at each date-event in the set S along an infinite horizon.
Time is indexed by t in T = {0, 1, 2, . . .}. We use the common notation st to denote one
of the date-events in S that may be reached in period t in T. Date-events in S are endowed
with a partial ordering �, that is, whenever date-event st+r (st−r) in S succeeds (precedes)
date-event st in S, we write st+r � st (st � st−r). Thus,

{
st+1 ∈ S : st+1 � st

}
is the

finite set of immediate successors of date-event st in S, whereas
{
st ∈ S : st+1 � st

}
is

the unique predecessor of date-event st+1 in S. There is a unique initial date-event s0 in
S . The set S, endowed with the partial order �, is the event-tree.

The continuation tree at date-event st in S is S (st) = {st+r ∈ S : st+r � st}. A finite
contingent truncation F (st) of the continuation tree S (st) is a finite set of �-unordered
elements in S (st) such that any date-event in S (st) admits either a (weak) successor or a
(weak) predecessor in F (st). Figure 2 presents an example of a contingent truncation in
a simple binomial tree: the continuation tree is initiated at the date-event corresponding to
the first solid circle, while a contingent truncation is identified by the thick circles.

3.2. Basic notation. Denote by L the linear space of all maps x : S → R. A map x in
L is positive, x ≥ 0, when x (st) ≥ 0 for every date-event st in S; non-trivially positive,
x > 0, when positive and x (st) > 0 for some date-event st in S; strictly positive, x � 0,
when x (st) > 0 for every date-event st in S. The positive cone is L+ = {x ∈ L : x ≥ 0}.
For an element x on L, (x (st))st∈D is also regarded as an element of the linear space L
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FIGURE 2. Contingent truncation

for any subset D of S, that is, as an element of L such that x (st) = 0 at every date-event
st not in the subset D of S.

3.3. Consumption and preferences. We let e be the element of L+ representing the sov-
ereign’s endowment process of the single commodity, where e (st) in R+ is the available
value at date-event st in S. The sovereign’s preferences on consumption plans c in L+ are
defined by a contingent utility function U : L+ → L, where U (c) (st) is the utility value
beginning from date-event st in S. It is assumed that U (ĉ) (st) > U (c̃) (st) whenever
(ĉ (st+r))st+r∈S(st) > (c̃ (st+r))st+r∈S(st). Strict monotonicity is the only restriction on
preferences.

3.4. Markets. To simplify notation, at no loss of generality, incomplete markets are rep-
resented by a linear subspace V of L such that v is in V if and only if

(
v
(
st+1

))
st+1�st

is also in V for every st in S. In other terms, the space of tradable claims decomposes
sequentially in a collection of components for every date-event, each with deliveries only
at subsequent date-events. For a tradable claim v in V , we use the canonical decompo-
sition v = v+ − v−, separating claims v+ in L+ from liabilities v− in L+. These are
interpreted as net positions, since the portfolio composition is not explicit. We maintain
the common assumption that some strictly positive element u on L is also in V , that is,
available financial instruments allow for a (possibly risky) strictly positive transfer.5 The
presence of a risk-free bond would be sufficient to ensure this, though it is more demanding
than necessary.

For a better understanding, as an example, consider the case where a finite set J of
securities is traded at every date-event st in S.6 Each security j in J is represented as a
payoff process Rj in L, interpreted as promises to deliver at successor nodes. A portfolio
z in LJ specifies holdings of available securities at all contingencies, with zj (s

t) in R
being the holding of security j in J at date-event st in S. In this case, the space of tradable
contingent claims V consists of all v in L such that, for some portfolio process z in LJ , at

5This assumption is minimal. When all securities deliver positive payoffs, it fails only if no security can be
used to transfer resources at some subsequent date-event. This implies that these future markets are disconnected
from the past.

6More generally, the set of traded securities might be varying over time, as for instance in Magill and Quinzii
(1994), Hernández and Santos (1996), Levine and Zame (1996) and Santos and Woodford (1997). Securities
might be of any maturity and in positive (or even negative) net supply. All these features are irrelevant for the
budget restrictions, as assets are priced under no arbitrage conditions.
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every date-event st in S,

(
v
(
st+1

))
st+1�st

=

∑
j∈J

Rj

(
st+1

)
zj
(
st
)

st+1�st

.

In other terms, each process v in V corresponds to the payoff of some trading plan z in
LJ . Notice that, in this notation, an elementary Arrow security at date-event st in S is a
security j in J with payoff Rj

(
ŝt+1

)
= 1 at a specific successor ŝt+1 � st and payoff

Rj

(
st+1

)
= 0 at any other successor st+1 � st. A risk-free bond, instead, is a security j

in J with constant payoff Rj

(
st+1

)
= 1 at every successor st+1 � st.

To maintain the analogy with complete markets, the market pricing of securities is rep-
resented as an element ϕ on V .7 Thus, at every date-event st in S, the market value of any
portfolio with deliveries

(
v
(
st+1

))
st+1�st

in V is given by∑
st+1�st

ϕ
(
st+1

)
v
(
st+1

)
.

No arbitrage implies that, whenever
(
v
(
st+1

))
st+1�st

in V is a (non-trivial) positive
claim, then its market value must be strictly positive. In other terms, any (non-trivially)
positive claim is costly on the market.

An implicit price p in P is a strictly positive element of L satisfying, for every tradable
claim v in V , at every date-event st in S,∑

st+1�st

ϕ
(
st+1

)
v
(
st+1

)
=

1

p (st)

∑
st+1�st

p
(
st+1

)
v
(
st+1

)
.

By the assumption of no arbitrage, implicit prices exist and form a (non-empty) convex
cone P . Observe that only the ratios are relevant for the determination of such implicit
prices. This provides an equivalent representation of the asset pricing kernel. Indeed, as
prices are invariant on the space of tradable claims V , at every date-event st in S, the
market value of claims v in V is given by

inf
p∈P

1

p (st)

∑
st+1�st

p
(
st+1

)
v
(
st+1

)
= sup

p∈P

1

p (st)

∑
st+1�st

p
(
st+1

)
v
(
st+1

)
.

Here we take these basic facts as a primitive framework. They are well-established results
in the literature (see, for instance, Magill and Quinzii (1996), Santos and Woodford (1997)
and LeRoy and Werner (2001)). To make the paper self-contained, the relevant theorems
are collected in Appendix D.

3.5. Natural debt limit. To disentangle incentives to default, we impose restrictions on
borrowing that rule out Ponzi schemes. In particular, as in Bulow and Rogoff (1989), and
in line with a well-established tradition in the literature (see Aguiar and Amador (2014)),
we assume that borrowing is bounded by a finite natural debt limit.

The natural debt limit is the maximum amount of debt that can be repaid in (almost)
finite time out of the future endowment. As established by Hernández and Santos (1996),
Levine and Zame (1996) and Santos and Woodford (1997), when markets are incomplete,

7This is at no loss of generality, as we assume that the Law of One Price is satisfied (see LeRoy and Werner
(2001)).
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this limit is determined as the worst valuation of future endowment. Thus, sovereign debt
is restricted, at every date-event st in S, by

v
(
st
)
≥ − inf

p∈P

1

p (st)

∑
st+r∈S(st)

p
(
st+r

)
e
(
st+r

)
.

This solvency constraint guarantees the existence of a repayment policy in finite time con-
ditional on the set of available securities. Under limited commitment, however, the sover-
eign might default on debt obligations even when a complete repayment is feasible.

In general, without any further assumptions on prices, the natural debt limit might be
infinite, because any debt can be repaid in finite time. In our analysis, we restrict prices so
as to rule out this situation, that is, we assume that

(E) inf
p∈P

1

p (s0)

∑
st∈S

p
(
st
)
e
(
st
)

is finite.

When individuals can commit, debt is only constrained by their repayment capacity and
the natural debt limit is necessarily finite, because otherwise unbounded debt would pre-
vent the existence of optimal plans (Santos and Woodford (1997), Proposition 2.3). Under
limited commitment, as shown by Hellwig and Lorenzoni (2009) (see also Bidian and Be-
jan (2015)), repayment incentives might require low interest rates and, thus, condition (E)
might fail at a competitive equilibrium. We shall later on illustrate some primitive assump-
tions on fundamentals that imply a finite natural debt limit even under limited commitment.

3.6. Self-enforcing contracts. A contract c in L+ is sustained by a financial plan v in V

if, at every date-event st in S ,∑
st+1�st

ϕ
(
st+1

)
v
(
st+1

)
+
(
c
(
st
)
− e

(
st
))

≤ v
(
st
)
.

Obviously, the budget constraint is vacuous when Ponzi games are not ruled out. Thus, we
say that a contract c in L+ is budget-feasible if it is sustained by a financial plan v in V

bounded by the finite natural debt limit.
The sovereign can default at any date-event. Upon default all securities remain available

subject to a no liability restriction. Thus, after default, financial plans w are restricted to
V ∩ L+. A budget-feasible contract c in L+ is immune to default if, at every date-event st

in S, for every alternative contract ĉ in L+ which is sustained by a restricted financial plan
w in V ∩L+ with w (st) = 0, U (c) (st) ≥ U (ĉ) (st). In other terms, a contract is immune
to default whenever, at every date-event, a country would not benefit from defaulting and
trading subject to the no liability restriction thereafter.

For the understanding of default incentives, it is important to identify the role of liabili-
ties in providing insurance opportunities. To this purpose, we say that a contract c in L+ is
replicable whenever it is sustained by a financial plan w in V ∩L+. When a contract is not
replicable, default involves the implicit cost of restricting insurance opportunities. Notice
that default might be profitable even though the contract is not replicable, because the cost
of restricted insurance opportunities is overwhelmed by the gain from saved repayments.
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4. HIGH INTEREST RATES

4.1. Conditions on prices. We here present the condition under which we establish that
sovereign debt is unsustainable when markets are incomplete. This condition ensures that
the government can replicate the same consumption pattern after default. When it fails,
debt might be sustainable as the government might prefer to repay in order to preserve
insurance opportunities. We provide examples of this under condition (E), that is, a finite
natural debt limit (see section 6).

To extend Bulow and Rogoff (1989), we further restrict prices by assuming that

(F) sup
p∈P

1

p (s0)

∑
st∈S

p
(
st
)
e
(
st
)

is finite.

That is, the value of the endowment is (uniformly) finite for all prices consistent with
the absence of arbitrage opportunities. In analogy with the terminology used in complete
markets (see Alvarez and Jermann (2000)), we refer to this property as high implied interest
rates.

Under complete markets, high implied interest rates deliver the continuity of the pricing
kernel in a topology which is coherent with impatience: the value of residual claims in the
remote future vanishes. We need a similar property for Bulow and Rogoff (1989) under
incomplete markets, namely,

(H) lim
t→∞

sup
p∈P

1

p (s0)

∑
st∈St

∑
st+r∈S(st)

p
(
st+r

)
e
(
st+r

)
= 0,

where St contains all date-events in S at date t in T. When the pricing kernel satisfies
condition (H), we say that it exhibits uniformly high implied interest rates.

We clarify the relation occurring among restrictions (E), (F) and (H) in Appendix A.
These conditions are all equivalent under complete markets, whereas they are progressively
more restrictive when markets are incomplete: condition (H) implies condition (F) which
in turn implies condition (E). In a non-growing economy, condition (H) is satisfied, for
instance, when the (possibly time-varying) interest rate is uniformly positive. Condition
(F) fails when the risk-free bond is the only asset and the endowment obeys a random-walk
process, with sufficiently large variance, even if the interest rate is positive and, hence, the
natural debt limit is finite (that is, condition (E) holds true).

The nature of condition (H), as a reinforcement of condition (F), is rather technical: it
rules out prices attaching relatively high value to the remote future (see Appendix A). In
general, condition (F) does not imply condition (H) when markets are incomplete. For a
Markov pricing kernel, however, these conditions are equivalent (see Appendix C).

4.2. Competitive equilibrium. The hypothesis of uniformly high implied interest rates
restricts prices and, hence, endogenous variables. However, it can be derived from as-
sumptions on fundamentals at a competitive equilibrium under incomplete markets.8 To
this purpose, it is relevant to notice that the analysis of Santos and Woodford (1997) ap-
plies independently of the nature of borrowing constraints, provided that these constraints
do not induce mandatory savings. Thus, in particular, debt can be restricted by endogenous

8Competitive equilibrium under incomplete markets is studied, among others, by Magill and Quinzii (1994),
Hernández and Santos (1996), Levine and Zame (1996) and Santos and Woodford (1997).
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limits preventing default, as in Zhang (1997), Alvarez and Jermann (2000) and Hellwig and
Lorenzoni (2009). Though we do not pursue this line of research, some details of equilib-
rium implications are presented in Appendix B.

Condition (F) is enforced when infinite-maturity securities in positive net supply (such
as Lucas trees) are traded in the market and their overall dividend is at least a fraction
of the aggregate endowment. The price of a security is necessarily finite at a competitive
equilibrium and, by no arbitrage, dominates its fundamental value, that is, the present value
of dividends for any consistent process of state prices (i.e., any p in P ). This imposes a
uniform bound on the present value of dividends and, so, as dividends are at least a share
of the endowment, on the present value of the endowment. Notice that this implication
holds true as far as the asset market is arbitrage-free.9

To ensure that also condition (H) holds true at a competitive equilibrium requires an
additional hypothesis on preferences. The purpose of this restriction is to avoid that the
market value of the aggregate portfolio grows unboundedly relative to the endowment. At
each contingency, impatience imposes a bound on the market value of securities, because
individuals would otherwise profit by dismissing a small fraction of their portfolio, in-
creasing their current consumption by a large amount and balancing their budget with a
permanent small contraction of future consumption. When impatience is uniform across
contingencies, this bound cannot grow over time relative to the aggregate endowment,
hence enforcing condition (H) in an economy where aggregate dividends are at least a
share of the endowment.

4.3. Verifiability. Verifying for high implied interest rates, even under complete markets,
is not straightforward when prices are not recursive. However, when the pricing is Markov
(that is, prices evolve according to a simple Markov process), the determination of high
implied interest rates simplifies considerably. In fact, we extend the dominant root (Perron-
Frobenius) approach (e.g., Aiyagari and Peled (1991)) to incomplete markets. This analysis
is developed in Appendix C.

We show that condition (F) holds true if and only if the dominant root is less than unity.
This root is related to the yield to maturity of a long-term discount bond (a sort of a long-
term interest rate) and it does not exceed unity exactly when the long-term yield is strictly
positive. Furthermore, under Markov pricing, condition (H) is as restrictive as condition
(F) and, so, has not autonomous role.

Most of the literature on sovereign debt focuses on time-invariant interest rate with
risk-neutral pricing (see Aguiar and Amador (2014) and Wright (2013)). Some recent
quantitative work, however, points out that risk premia might be relevant for understanding
sovereign bond prices and that this requires to consider non-risk-neutral pricing kernels
(see, for instance, Arellano (2008), Arellano and Ramanarayanan (2012) and Hatchondo
et al. (2016)). Our analysis provides a simple condition to verify whether interest rates are
high in such frameworks.

9It is worth remarking that, in an economy without outside assets, condition (F) might fail at a competitive
equilibrium even when borrowing is restricted by the natural debt limit and, hence, condition (E) holds true.
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5. UNSUSTAINABLE DEBT

We here show that, under uniformly high implied interest rates, sovereign debt is unsus-
tainable. This extends Bulow and Rogoff (1989)’s result (see also Martins-da-Rocha and
Vailakis (2016)) under more restrictive assumptions than those for complete markets. Im-
portantly, we provide an alternative argument which applies independently of the extension
to market incompleteness.

We show that, under condition (F), the contract is replicable without debt (although
in general the replication policy can only be identified abstractly by means of a duality
argument). This implies that the default option is profitable unless the sovereign debt is
recurrently expanding over time in present value. This residual circumstance cannot occur
when condition (F) holds uniformly (i.e., under condition (H)), as it would otherwise imply
a Ponzi scheme. In complete markets, the uniformity follows by assumption since prices
have a sequential representation. In incomplete markets, a non-sequential price, as the limit
of admissible sequential prices, cannot be ruled out, unless some uniformity of valuation
is imposed on the pricing kernel (see Appendix A for a thorough discussion). Importantly,
when the pricing kernel is Markovian, the uniformity always obtains under high implied
interest rates (see Appendix C).

Proposition 5.1 (Sovereign debt paradox). Under uniformly high implied interest rates, a
budget-feasible contract c in L+ is immune to default only if it involves no liabilities. That
is, any financial plan v in V sustaining this contract subject to the finite natural debt limit
must be positive.

The proof unfolds as in the deterministic case presented in Section 2. We first construct
an envelope process that captures the cost of servicing outstanding debt at any future con-
tingent truncation. The observation that under uncertainty truncations must be contingent
is essential for the whole argument, an issue that is absent in a deterministic environment.
It ensures that the envelope process is not inflating over time and therefore is a suitable can-
didate for replication. When this process is implemented by available securities, it allows
the government to default, save on the debt service and reproduce the same consumption
pattern in the future without issuing further debt. However, with a general incomplete
market structure, the envelope process might not lie in the space of tradable claims. We
overcome this issue by appealing to some basic results for the transfer of resources under
incomplete markets: the current cost of meeting a future debt obligation, using available
securities, can be computed as its largest valuation at state prices consistent with no ar-
bitrage opportunities. Thus, the envelope corresponding to the largest valuation of future
debt identifies a feasible replicating strategy.

Proof. Let g in L+ be given, at every date-event st in S, by

g
(
st
)
= sup

p∈P

1

p (st)

∑
st+r∈S(st)

p
(
st+r

)
e
(
st+r

)
.

Consider a budget-feasible contract c in L+ which is sustained by a financial plan v in V

subject to the finite natural debt limit. Given a date-event st in S, define

b
(
st
)
= sup

p∈P
sup

F(st)⊂S(st)

1

p (st)

∑
st+r∈F(st)

p
(
st+r

) (
−v
(
st+r

))
≥ −v

(
st
)
,
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where F (st) is any finite contingent truncation of S (st) (for the definition, see section
3.1). Notice that, for fixed price p in P , given any contingent truncation F (st) of S (st),

1

p (st)

∑
st+r∈F(st)

p
(
st+r

) (
−v
(
st+r

))
≤ 1

p (st)

∑
st+r∈F(st)

p
(
st+r

)
g
(
st+r

)
≤ g

(
st
)
,

where we use the fact that the process g in L+ dominates the natural debt limit and satisfies
the weak roll-over condition∑

st+1�st

p
(
st+1

)
g
(
st+1

)
+ p

(
st
)
e
(
st
)
≤ p

(
st
)
g
(
st
)
.

Therefore, the process b in L obeys −v ≤ b ≤ g. Furthermore, the fact that truncations are
contingent implies that b in L fulfils the following property:

b(st) = max

{
−v(st), sup

p∈P

1

p(st)

∑
st+1�st

p(st+1)b(st+1)

}
.

This happens because F (st) is a non-trivial finite contingent truncation of S (st) if and
only if

F
(
st
)
=

⋃
st+1�st

F
(
st+1

)
,

where F
(
st+1

)
is a finite contingent truncation of S

(
st+1

)
for every st+1 � st in S.

By the Theorem of Duality (see Appendix D), there exists a tradable claim b∗ in V such
that, at every date-event st in S,

b
(
st
)
≤ b∗

(
st
)

and ∑
st+1�st

ϕ
(
st+1

)
b∗
(
st+1

)
= sup

p∈P

1

p(st)

∑
st+1�st

p(st+1)b(st+1).

Therefore, at every date-event st in S,∑
st+1�st

ϕ
(
st+1

) (
v
(
st+1

)
+ b∗

(
st+1

))
+
(
c
(
st
)
− e

(
st
))

≤

sup
p∈P

1

p (st)

∑
st+1�st

p
(
st+1

) (
v
(
st+1

)
+ b

(
st+1

))
+
(
c
(
st
)
− e

(
st
))

≤
(
v
(
st
)
+ b

(
st
))

≤
(
v
(
st
)
+ b∗

(
st
))

.

If there is a date-event st in S such that

b
(
st
)
> sup

p∈P

1

p (st)

∑
st+1�st

p
(
st+1

)
b
(
st+1

)
,

then v (st)+b (st) = 0. Define the process w in V ∩L+ as w (st) = v (st)+b (st) = 0 and
w (st+r) = v (st+r) + b∗ (st+r) ≥ 0 at any strict successor st+r in S (st). This sustains
the given consumption plan without exhausting the budget at the date event st in S. That
is, the consumption plan c in L+ is not immune to default, a contradiction.

It follows that, at every date-event st in S, we must have

b
(
st
)
= sup

p∈P

1

p (st)

∑
st+1�st

p
(
st+1

)
b
(
st+1

)
.
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The last condition implies that, for every arbitrary η > 0, there exists a price process p in
P such that, at every date-event st in S,

b
(
st
)
≤ 1

p (st)

∑
st+1�st

p
(
st+1

)
b
(
st+1

)
+ ηe

(
st
)
.

Hence, recalling that b ≤ g, we get

b
(
s0
)

≤ 1

p (s0)

∑
st+1∈St+1

p
(
st+1

)
b
(
st+1

)
+ η

1

p (s0)

∑
st−r∈S0,t

p
(
st−r

)
e
(
st−r

)
≤ 1

p (s0)

∑
st+1∈St+1

p
(
st+1

)
g
(
st+1

)
+ η

1

p (s0)

∑
st−r∈S0,t

p
(
st−r

)
e
(
st−r

)
,

where St (respectively, S0,t) contains all date-events in S at date t in T (respectively, from
the initial date up to date t in T). Taking the limit, by uniformly high implied interest rates
(condition (H)), this implies that, for any arbitrary η > 0,

b
(
s0
)
≤ η

1

p (s0)

∑
st∈S

p
(
st
)
e
(
st
)
,

which shows that b
(
s0
)
≤ 0. Reproducing the argument beginning from any date-event

proves that b ≤ 0 and, as v + b ≥ 0, v ≥ 0, thus establishing the claim. �

6. EXAMPLES

We here present some examples of failure of Bulow and Rogoff (1989) under incom-
plete markets. The cause of this failure is that the incompleteness of markets does not allow
for replication when debt is prohibited after default. Differently from Hellwig and Loren-
zoni (2009), the valuation of future endowment is finite for some prices, i.e., condition (E)
is satisfied. However, condition (F) and, therefore, condition (H) are violated. Notice that
the failure of replication itself does not imply that the country cannot benefit from default,
because the cost might be compensated by the saving on debt repayments. We prove that
incentives to default do indeed disappear in the examples.

Example 6.1. The first example is simple but it delivers the basic intuition underlying the
failure of Bulow and Rogoff (1989)’s result. The economy is subject to binomial uncer-
tainty over states S = {l, h} occurring with equal probability. The initial state is h in S.
To fix ideas, also assume that preferences over consumption are additively separable, i.e.,

U (c)
(
s0
)
=
∑
st∈S

βtµt

(
st
)
u
(
c
(
st
))

,

where u : R+ → R is a per-period utility function, 1 > β > 0 is the discount factor and
µt (s

t) is the unconditional probability of date-event st in S. Here, as well as in the other
examples, the set of date-events S consists of all partial histories of Markov states in S

having strictly positive probability, given a predefined initial Markov state in S.
Markets are incomplete. Indeed, at every date-event st in S, there is a single asset with

payoffs (Rl, Rh) = (1,−1) and price q (st) = 0. The endowment is (el, eh) = (0, 2). The
economy begins at state h in S with an inherited liability v

(
s0
)
= −1. Trivially, holding

one unit of the security permits complete insurance at constant consumption c (st) = 1 at
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every date-event st in S. However, whenever the economy is in state h in S, the country
holds a liability. We verify whether default is profitable in such contingencies.

Upon default, liabilities are not allowed. Hence, in this simple economy, no asset can
be traded and autarchy is the only budget-feasible consumption after default. In general,
defaulting may produce no benefit, thus violating Bulow and Rogoff (1989)’s result. In-
deed, a sufficient condition for this is that the instantaneous utility function satisfies the
following inequality

(1− β) (u (2)− u (1)) < β

(
u (1)− u (2) + u (0)

2

)
.

That is, the sovereign cannot benefit from defaulting if the current gain of not repaying the
debt is compensated by the loss of smoothing future consumption.

Remark 6.1. Observe that in this example condition (F) and, hence, condition (H) is
violated while condition (E) is satisfied. Indeed, the present value of the endowment is
infinite (respectively, finite) for every implicit price process p∗ in P such that, at every
date-event st in S , p∗ (st) = (1/2)

t
δt with δ > 1 (respectively, 0 < δ < 1).

Example 6.2. The previous example does not satisfy one of our assumptions because
markets do not permit a strictly positive transfer. We here develop a more complicated
example under this additional restriction. Uncertainty is given by Markov states S =

{l,m, h}, all occurring with the same probability. The economy begins in state h in S.
As in the previous example, preferences are assumed to be additively separable with a

per-period utility function of the form

u (c) =
c1−(1/γ) − 1

1− (1/γ)
,

where γ > 0 is the elasticity of intertemporal substitution. Notice that, for any γ in the
interval (0, 1/2), this utility function is uniformly bounded from above, as

(*) u (c) ≤ −1

1− (1/γ)
≤ 1.

Furthermore, as it can be verified by direct computation, for every 1 > η > 0,

(**) lim
γ→0

u (1− η) = lim
γ→0

(1− η)
1−(1/γ) − 1

1− (1/γ)
= −∞.

The important implication is that any small drop in consumption induces an arbitrarily
large loss in utility when γ > 0 is sufficiently small.

At every date-event st in S, there are only two securities paying off, for some suffi-
ciently small 1 > ε > 0, (Rl, Rm, Rh) = (1, ε, 0) and (Rl, Rm, Rh) = (0, ε, 1). The
price of each security is q = (1/3)β(1 + ε), where 1 > β > 0 is the discount factor.
The endowment is (el, em, eh) = (0, 1, 2). Notice that strictly positive holdings of both
securities permit a strictly positive transfer, as long as ε > 0, thus satisfying our general
assumptions.

Notice that a balanced portfolio delivers (vl, vm, vh) = (1, 0,−1). This sustains full-
insurance with constant consumption c (st) = 1 at every date-event st in S. Furthermore,
it is optimal for all sufficiently large bounded debt limits. Does the country benefit from
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defaulting when holding a liability (and, hence, at the initial date-event s0 in S when the
economy is in state h in S)?

Preliminarily notice that, at every date-event st in S, by budget feasibility without lia-
bilities, consumption is bounded by a process ξ in L+ such that, at every date-event st in
S ,

ξ
(
st+1

)
≥ 1

q
ξ
(
st
)
+ e

(
st+1

)
,

for some sufficiently large initial value ξ
(
s0
)

in R+. Such bounds overestimate the payoffs
of available assets (because 1 > ε > 0). Moreover, they hold true independently of any
sufficiently small ε > 0. We assume that the following inequality is satisfied:

(†)
q

ε
>

1

3

β

ε
> 1.

Under this condition, we evaluate default incentives along a sequence of monotonically
vanishing γ > 0.

Suppose that there exists a sequence of consumption plans (cγ)γ>0 such that each plan
is supported by a trading strategy involving no liabilities and guarantees an overall utility
after defaulting at least equal to the overall utility from full insurance. That is, given any
γ > 0, assume that

U (cγ)
(
s0
)
≥ U (c)

(
s0
)
= 0.

At no loss of generality, it can be assumed that the sequence of consumption plans con-
verges, that is, at every date-event st in S, c0 (st) = limγ→0 c

γ (st) ≤ ξ (st). We first
argue that this limit guarantees at least the full-insurance consumption.

To verify this, assume that, at some date-event st in S, c0 (st) < 1 − η for some
1 > η > 0. By condition (**), this implies an infinite loss, which cannot be compensated
by bounded gains in other periods, because of (*). Hence, at every date-event st in S, the
consumption in the limit exceeds the full-insurance consumption, that is, c0 (st) ≥ 1. We
shall now argue by contradiction.

The example is constructed in such a way that, as long as the economy remains in state
m in S, the net return on securities is negative (by condition (†), because the price of the
security is q, while its payoff is ε). Hence, it is costly to roll over resources in order to
provide insurance when the averse state l in S occurs again. Indeed, consider a date-event
st in S in which the economy is in state m in S. Suppose that the economy remains in
state m in S for r in N consecutive dates and, after this phase, enters the averse state l in
S. This happens at the date-event st+r in S. A direct computation yields

c0
(
st+r

)
≤
(
1

q

)(
ε

q

)r−1

ξ
(
st
)
.

For the computation of this bound, we use the fact that, in the limit as γ > 0 vanishes, the
endowment is completely consumed in state m in S. Initial resources are rolled over so
as to overestimate their contribution to consumption when the economy enters in state l in
S. For a sufficiently large r in N, by condition (†), full-insurance consumption cannot be
guaranteed.

Remark 6.2. We can verify that, for Example 6.2, condition (F) and, hence, condition
(H) is violated, while condition (E) is satisfied. Indeed, as the economy is stationary, state
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prices (πl, πm, πh) in RS
+ are only restricted by the two pricing equations

πh + επm = q =
1

3
β (1 + ε) and πl + επm = q =

1

3
β (1 + ε) .

State prices correspond to the ratios of implicit present value prices in our general analysis.
For any choice of (stationary) state prices π in RS

+, the present value of the endowment, if
finite, is determined by the system of equations

gl (π) = el + πlgl (π) + πmgm (π) + πhgh(π),

gm (π) = em + πlgl (π) + πmgm (π) + πhgh (π) ,

gh (π) = eh + πlgl (π) + πmgm (π) + πhgh (π) .

We shall now argue that the value is finite for some state prices and infinite for other state
prices.

Setting πh = πl = 0, we obtain πm = (q/ε). For these state prices, the present value
of the endowment satisfies

gm (π) = em + πlgl (π) + πmgm (π) + πhgh (π) ≥ em +
q

ε
gm (π) .

No positive solution exists whenever ε > 0 fulfils condition (†) in Example 6.2, thus
showing that condition (F) and, hence, condition (H) is violated.

To show that condition (E) holds true, it suffices to exhibit alternative state prices π

in RS
+ for which the value of the endowment is finite. For instance, setting πh = πm =

πl = (1/3)β, a positive solution exists and is bounded by the value of receiving surely the
largest endowment forever, eh/ (1− β).

7. CONCLUSION

We have shown, by means of examples, that market incompleteness may induce in-
centives for repayment when liabilities are prohibited after default. A sovereign may not
benefit from defaulting on its debt and positive borrowing can be sustainable by reputation.
But the Bulow and Rogoff (1989)’s result does extend to economies with uninsurable risks
if the pricing functional satisfies stronger restrictions. In particular, repayment incentives
disappear when the value of the most optimistic valuation of future endowment eventually
vanishes in the long-run.

APPENDIX A. RESTRICTIONS ON PRICES

This is a rather technical appendix that clarifies the nature of the different hypotheses on
prices. We begin with showing that, as the terminology suggests, uniformly high implied
interest rates (condition (H)) are more demanding than simply high implied interest rates
(condition (F)).

Proposition A.1 (High interest rates). Condition (H) implies condition (F).

Proof. Indeed, assuming that (F) is violated, we can show that, for any ε > 0, at every date
t in T,

sup
p∈P

1

p (s0)

∑
st∈St

∑
st+r∈S(st)

p
(
st+r

)
e
(
st+r

)
≥ ε,

18



thus violating restriction (H). To this purpose, it suffices to argue that, for every t in T,

sup
p∈P

1

p(s0)

∑
st−r∈S0,t

p
(
st−r

)
e
(
st−r

)
is finite,

where S0,t contains all contingencies in S from the initial date up to date t in T. This is
what we accomplish in the following, by exploiting that some strictly positive claim u is
in the tradable space V .

Fixing any t in T, suppose that
(
w
(
st+1

))
st+1∈St+1 is a tradable claim in V ∩ L+. It

is immediate to verify that there exists a tradable claim (w (st))st∈St in V ∩L+ such that,
for every price p in P , at every date-event st in St∑

st+1�st

p
(
st+1

)
w
(
st+1

)
+ p

(
st
)
e
(
st
)
≤ p

(
st
)
w
(
st
)
.

This is true because, for some sufficiently large λ > 0, the expansion λ (u (st))st∈St is an
arbitrarily large strictly positive tradable claim in V ∩ L+, where u is the strictly positive
claim in V . Therefore, by backward induction, beginning with

(
w
(
st+1

))
st+1∈St+1 = 0,

there exists a sufficiently large w
(
s0
)

in R+ such that, for every p in P ,∑
st−r∈S0,t

p
(
st−r

)
e
(
st−r

)
≤ p

(
s0
)
w
(
s0
)
,

thus proving the claim. �

We now present an example in which condition (H) is certainly satisfied: when interest
rate is uniformly positive in an economy with bounded endowment. We also provide an
example in which condition (H) fails when the natural debt limit is finite, that is, condition
(E) holds true. This happens when the endowment evolves according to a random-walk,
the risk-free bond is the only asset and interest rate is constant, provided that the variance
of the endowment is sufficiently large.

Example A.1. Consider an economy with bounded endowment and a tradable risk-free
bond yielding unitary payoff. The pricing kernel is assumed to satisfy, for some sufficiently
large 1 > β > 0, at every date-event st in S,

β ≥ sup
p∈P

1

p (st)

∑
st+1�st

p
(
st+1

)
.

As the right-hand side is the price of the bond, this restriction imposes a sort of lower
bound on the interest rates uniformly across all contingencies. When this uniform lower
bound exists, the hypothesis of uniformly high implied interest rates is satisfied. Indeed,
given any price p in P , at every t in T, it follows that

β
∑
st∈St

p
(
st
)
≥

∑
st+1∈St+1

p
(
st+1

)
,

where St contains all date-events in S at date t in T. Therefore, at every t in T,

1

p (s0)

∑
st∈St

∑
st+r∈S(st)

p
(
st+r

)
e
(
st+r

)
≤ η

βt

1− β

where η > 0 is such that e (st) ≤ η for every st in S.
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Example A.2. Consider an economy in which the endowment process evolves as a random
walk, that is, at every date-event st in S ,

e
(
st
)
=

∑
st+1�st

µt+1

(
st+1|st

)
e
(
st+1

)
,

where µt+1

(
st+1|st

)
is the probability conditional on date-event st in S. There is only a

risk-free bond (with unitary deliveries) having a price that is constantly equal to 1 > β > 0

at all contingencies. We further assume that the conditional variance of the endowment
process satisfies

1 ≤ β
∑

st+1�st

µt+1

(
st+1|st

)(e
(
st+1

)
e (st)

)2

.

In such an environment, we verify that condition (E) holds true, while condition (F) fails.
To verify condition (E), notice that a particular price p in P is given by p (st) =

βtµt (s
t) at every date-event st in S, where µt (s

t) is the unconditional probability of
date-event st in S. By the random walk property of the endowment, its present value is
finite at this price, that is,∑

st∈S

p
(
st
)
e
(
st
)
=
∑
st∈S

βtµt

(
st
)
e
(
st
)
=

(
1

1− β

)
e
(
s0
)
.

To uncover the violation of condition (F), notice that another particular price p∗ in P is
given by p∗ (st) = βtµt (s

t) e (st) at every date-event st in S. Indeed, observe that, by the
random-walk hypothesis for the endowment,

1

p∗ (st)

∑
st+1�st

p∗
(
st+1

)
= β.

Given any date-event st in S, simple computations deliver

p∗
(
st
)
e
(
st
)
≤

∑
st+1�st

p∗
(
st+1

)
e
(
st+1

)
,

where we have exploited the hypothesis on the conditional variance of the endowment
process. Thus, high implied interest rates (condition (F)) are violated, as there is a price p∗

in P such that the value of the endowment is inflating over time.

To conclude, we provide a (rather technical) characterization of uniformly high implied
interest rates. The violation of uniformly high implied interest rates occurs if and only if
some price in the closure of admissible prices contains a bubble, that is, a non-negligible
value at infinity. Under complete markets, such a circumstance is ruled out by assumption,
as prices have a sequential representation. When markets are incomplete, a non-sequential
price, as the limit of admissible prices, cannot be ruled out, unless some uniformity of
valuation is imposed on the pricing kernel. As a complement to this characterization, we
provide an example in which condition (F) is satisfied and condition (H) is violated.

Consider the linear space

L (e) = {x ∈ L : |x| ≤ λe for some λ > 0} ,
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which is a Banach lattice when endowed with the norm ‖x‖ = inf {λ > 0 : |x| ≤ λe}.
As usual, let L∗ (e) be its norm dual. Notice that, by Alaoglu’s Theorem (Aliprantis and
Border (2006), Theorem 6.21), the closed unit ball in L∗ (e) is weak-∗ compact.

Under high implied interest rates, the space of (normalized) state prices,

P0 =
{
p ∈ P : p

(
s0
)
= 1
}
,

can be regarded as a set in the positive cone of L∗ (e), where the duality operation is given
by

p (x) =
∑
st∈S

p
(
st
)
x
(
st
)
.

Notice that, in general, the set P0 is not weak-∗ closed in L∗ (e), though, by Alaoglu’s
Theorem, it is contained in a weak-∗ compact set.

Proposition A.2 (Value at infinity). Under high implied interest rates, the condition of
uniformly high implied interest rates is satisfied if and only if, for every p in the weak-∗
closure of P0 in L∗ (e),

lim
t∈T

p
(
et
)
= p (e) ,

where et in L is the truncation of e in L at date t in T.

Proof. For necessity, suppose that the equivalent condition is violated. By positivity, this
means that there exists ε > 0 such that, for some p∗ in the weak-∗ closure of P0, at every t

in T,
p∗
(
e− et

)
= p∗ (e)− p∗

(
et
)
> ε.

As p∗ lies in the weak-∗ closure of P0, for every t in T, it can be approximated by some p

in P0 such that
p
(
e− et

)
> ε.

Thus, for every t in T,
sup
p∈P0

p
(
e− et

)
> ε,

which contradicts the fact that condition (H) is satisfied.
For sufficiency, suppose that the equivalent condition is satisfied and assume a violation

of uniformly high implied interest rates. By monotonicity, this implies that there exists
ε > 0 such that, for every t in T,

sup
p∈P0

p
(
e− et

)
≥ ε.

At every t in T, consider the restricted set

P̄0,t =
({

p ∈ P̄0 : p
(
e− et

)
≥ ε
})

,

where P̄0 is the weak-∗ closure of P0 in the positive cone of L∗ (e). Observe that P̄0,t is a
non-empty closed subset of the compact set P̄0 and that, by monotonicity, P̄0,t+1 ⊂ P̄0,t.
By the Finite Intersection Property, as P̄0 is compact,

p∗ ∈
⋂
t∈T

P̄0,t ⊂ P̄0.

For such an element p∗ of P̄0, p∗ (e) ≥ p∗ (et) + ε for every t in T, thus delivering a
contradiction. �
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Example A.3. The Markov states are S =
{
(lt)t∈T , (ht)t∈T

}
, with l0 being the initial

state and each ht being an absorbing state. In period t in T, when the economy is in state
lt, with equal probability, it will move to the absorbing state ht+1 or to state lt+1. The
endowment is e = (1− β) in state lt and e = β−t (1− β) in state ht. The only asset is an
uncontingent bond, delivering a unitary payoff, with constant price 1 > β > 0.

To verify that condition (F) holds true, notice the most optimistic valuation of the en-
dowment satisfies the recursive equation

g (lt) = (1− β) + sup
(πl,πh)∈R+×R+

πlg (lt+1) + πhg (ht+1)

subject to
πl + πh = β.

Furthermore, by direct computation, g (ht) = β−t. It also immediate to prove that this
recursive equation is solved by

g (lt) = 1 + β−t.

We now shall argue that condition (H) is instead violated.
For fixed non-initial t in T, consider the following feasible sequence of Markov states

in S:
(l0, . . . , lt−1, ht, ht, . . .) .

Let D be the path of date-events in S corresponding to the selected sequence of Markov
states and construct a price p in the closure of P by means of p

(
st̂
)
= β t̂, if st̂ lies in D,

and p
(
st̂
)
= 0, otherwise. For such a price p in P , direct computation shows that

1

p (s0)

∑
st∈St

∑
st+r∈S(st)

p
(
st+r

)
e
(
st+r

)
=
∑
r∈T

βt+rβ−t (1− β) = 1.

Thus, the residual does not vanish, which shows that condition (H) cannot be satisfied.

APPENDIX B. COMPETITIVE EQUILIBRIUM

We here show that, at a competitive equilibrium, condition (H) is necessarily enforced
under some assumptions on fundamentals. More precisely, we consider an infinite-horizon
economy with sequential incomplete markets as in Santos and Woodford (1997). Their
framework is particularly suitable for our analysis because they do not introduce any spe-
cific hypothesis on the nature of debt limits (apart from ruling out mandatory savings). For
the sake of completeness, we illustrate how to adapt their arguments to our purposes.

For each individual i in a finite set I , the budget constraint, at date-event st in S, takes
the form

q
(
st
)
· zi
(
st
)
+
(
ci
(
st
)
− ei

(
st
))

≤ vi
(
st
)
,

where the evolution of wealth is given by

vi
(
st+1

)
= R

(
st+1

)
· zi
(
st
)
.

Here the process zi in LJ describes the portfolio of securities (in a finite set J), with prices
q in LJ , and the process R in LJ represents their (one-period) payoffs. Market clearing
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for securities requires, at every date-event st in S ,∑
i∈I

zi
(
st
)
= z̄

(
st
)
= z̄

(
s0
)
,

where the constant process z̄ in LJ captures the net supply of securities. Market clearing
for consumption, at every date-event st in S, takes the form∑

i∈I

ci
(
st
)
=
∑
i∈I

ei
(
st
)
+ ȳ

(
st
)
= ē

(
st
)
,

where ȳ in L+ is the aggregate dividend of securities and ē in L+ is the aggregate overall
endowment. We assume that the aggregate divided is delivered by some infinite-maturity
securities in positive net supply (i.e., such that z̄j

(
s0
)
> 0). In addition, no security is in

negative net supply (i.e., z̄j
(
s0
)
≥ 0 for every j in J).

We now describe the assumptions on fundamentals that are crucial for uniformly high
implied interest rates at a competitive equilibrium. These restrictions are introduced and
discussed in Santos and Woodford (1997) (as well as in Levine and Zame (1996) and
Magill and Quinzii (1994)). For brevity, and to simplify notation, we only present the
derived implications that are essential for our condition (H).

First, we assume that the aggregate dividend is at least a fraction of the aggregate en-
dowment, that is, for some sufficiently small ε > 0, at every date-event st in S,

(*) εē
(
st
)
≤ ȳ

(
st
)
.

In the terminology of Santos and Woodford (1997), this is the hypothesis that the aggregate
endowment is bounded by a trading portfolio (in positive net supply). This restriction on
fundamentals necessarily implies condition (F) at a competitive equilibrium (Santos and
Woodford (1997), Lemma 2.4): the market value of securities bounds the present value
of dividends (the fundamental value) for all prices consistent with no arbitrage; as the
aggregate endowment is at least a fraction of the aggregate dividend, its present value is
also finite for all prices.

Second, we assume that preferences satisfy uniform impatience as in Santos and Wood-
ford (1997) (see also Levine and Zame (1996) and Magill and Quinzii (1994)). This im-
poses a uniform bound on the rate of substitution between current and permanent future
consumption. The hypothesis is more restrictive than simply impatience, though it is sat-
isfied by additively-separable (bounded) utility functions with constant discounting. We
refer to Santos and Woodford (1997) for a precise definition (Assumption (A.3) and the
discussion thereafter) and only illustrate its relevant implication at a competitive equilib-
rium.

Santos and Woodford (1997) (Equation (6.17) in the proof of Lemma 3.8) show that,
for every individual i in I , at every date-event st in S,

(**) (1− γ) q
(
st
)
· zi
(
st
)
≤ ē

(
st
)
,

where 1 > γ > 1 is given by the hypothesis of uniform impatience. This restriction
holds true because otherwise the individual would benefit from an expansion of current
consumption balanced by a permanent γ-contraction of future consumption, thus contra-
dicting optimality.
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We now expand the analysis in Santos and Woodford (1997) in order to derive our
condition (H) under the stated primitive assumptions. Adding across individuals, and using
market clearing, condition (**) implies, at every date-event st in S,

(†)
(
1− γ

#I

)
q
(
st
)
· z̄
(
s0
)
≤ ē

(
st
)
,

where #I in N is the number of individuals. For any price p in P , the fundamental value
is bounded by the market value of the security (Santos and Woodford (1997), Proposition
2.1). Thus, by (†),(

1− γ

#I

) ∑
st+r∈S(st)

p
(
st+r

)
ȳ
(
st+r

)
≤ p

(
st
)
ē
(
st
)

and, using condition (*),

ε

(
1− γ

#I

) ∑
st+r∈S(st)

p
(
st+r

)
ē
(
st+r

)
≤ p

(
st
)
ē
(
st
)

Therefore, for some sufficiently small η > 0, for every price p in P , at every date-event st

in S,

(††) η
∑

st+r∈S(st)

p
(
st+r

)
ē
(
st+r

)
≤ p

(
st
)
ē
(
st
)

Fixing a period t in T, we add up terms in inequality (††) so as to obtain

(t+ 1) η
∑
st∈St

∑
st+r∈S(st)

p
(
st+r

)
ē
(
st+r

)
≤

∑
st−r∈S0,t

p
(
st−r

)
ē
(
st−r

)
,

where St (respectively, S0,t) contains all date-events at period t in T (respectively, from
the initial period up to period t in T). In computing the series on the left-had side, we drop
all positive terms corresponding to date-events occurring before period t in T. The above
implies

sup
p∈P

1

p (s0)

∑
st∈St

∑
st+r∈S(st)

p
(
st+r

)
ē
(
st+r

)
≤ 1

η

(
1

t+ 1

)
sup
p∈P

1

p (s0)

∑
st∈S

p
(
st
)
ē
(
st
)
.

As condition (F) is satisfied, the right-hand side vanishes in the limit, so proving that
condition (H) holds true.

APPENDIX C. MARKOV PRICING

We here consider a Markov economy with finite state space. When the pricing kernel
is Markovian, we provide a complete characterization of uniformly high implied interest
rates (i.e., condition (H)). We accomplish this by extending the dominant root (Perron-
Frobenius) approach to incomplete markets (see Aiyagari and Peled (1991) for a well-
established economic application to complete markets). This analysis can be of indepen-
dent interest, as a way of introducing time-varying interest rate in widely adopted frame-
works (e.g., Eaton and Gersovitz (1981)).

Fundamentals are governed by a Markov process on the finite state space S, with strictly
positive transition probabilities. We assume that the endowment satisfies e (s) > 0 for
every state s in S. Markov state prices π in RS×S are represented as a matrix, with
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π (s, s′) ≥ 0 being the implicit price in state s in S of one unit of consumption to be deliv-
ered in state s′ in S. As markets are incomplete (and a strictly positive claim is tradable),
there is a compact set Π ⊂ RS×S of such state prices. Under these premises, condition (F)
amounts to verify the existence of positive solution to the system of equations, for every s

in S,

(M) g (s) = e (s) + Π (g) (s) ,

where, with some abuse of notation,

Π(g) (s) = sup
π∈Π

∑
s′∈S

π (s, s′) g (s′) .

Notice that, by no arbitrage (as far as all states can be reached with strictly positive proba-
bility), for every g in RS

+, at every state s in S,

(*) Π(g) (s) = 0 only if g = 0.

This is a sort of indecomposability property.
The pricing kernel Π is a sublinear operator, that is, it is subadditive, Π(g′ + g′′) ≤

Π(g′) + Π (g′′), and positive homogeneous, Π(λg) = λΠ(g) for every λ in R+. This is
the relevant implication of market incompleteness. To deal with this case, we provide an
extension of Perron-Frobenius theorem to sublinear (rather than linear) operators.

The dominant root ρ (Π) of the pricing kernel Π is defined as the (strictly positive)
eigenvalue such that, for some (non-zero) eigenvector d in RS

+,

ρ (Π) d = Π(d) .

Notice that, necessarily, this eigenvector is strictly positive, i.e., d (s) > 0 for every s in
S, because of property (*). The dominant root exists by an adaptation of Perron-Frobenius
Theorem to sublinear operators.

Proposition C.1 (Dominant root). A unique dominant root ρ (Π) of the pricing kernel Π
exists.

Proof. Consider the canonical unitary simplex ∆ =
{
d ∈ RS

+ :
∑

s∈S d (s) = 1
}

and en-
dow RS with the norm ‖d‖1 =

∑
s∈S |d (s)|. An eigenvector d in ∆ is the fixed point of

the continuous map

d 7→ Π(d)

‖Π(d)‖1
,

with the associated eigenvalue being ρ (Π) = ‖Π(d)‖1. It exists by Brouwer Fixed Point
Theorem (Aliprantis and Border (2006), Corollary 17.56). To verify that the dominant
root is unique, suppose that ρ′ > 0 and ρ′′ > 0 are both dominant roots with ρ′ > ρ′′.
As corresponding eigenvectors are strictly positive, consider the largest λ > 0 such that
λd′ ≤ d′′ and, at no loss of generality, assume that λ = 1. Hence, by monotonicity,

ρ′d′ ≤ Π(d′) ≤ Π(d′′) ≤ ρ′′d′′,

a contradiction because ρ′ > ρ′′. �

Remark C.1. An interesting interpretation of the dominant root is related to the yield to
maturity of long-term discount bounds, or the long-term interest rate. Indeed, assume that
safe bonds of any maturity are traded in every state s in S. The yield to maturity of a
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one-period discount bound issued in state s in S is given by

r1 (s) =
1

Π (1) (s)
− 1.

Analogously, given any n in N, the yield to maturity of an n-period discount bond issued
in state s in S can be computed as

rn (s) =
1

n
√
Πn (1) (s)

− 1.

Notice that, by monotonicity, for every state s in S,

λ∗ρ (Π)
n
d (s) ≤ Πn (1) (s) ≤ λ∗ρ (Π)

n
d (s) ,

where d in RS
+ is an eigenvector associated with the dominant root and λ∗ > 0 and λ∗ > 0

are chosen so as to satisfy λ∗d ≤ 1 ≤ λ∗d. Hence,

ρ (Π) n
√
λ∗d (s) ≤ n

√
Πn (1) (s) ≤ ρ (Π) n

√
λ∗d (s).

It follows that the dominant root corresponds to the long-run yield to maturity, or long-run
interest rate, that is, for every s in S,

lim
n→∞

rn (s) = lim
n→∞

1
n
√
Πn (1) (s)

− 1 =
1

ρ (Π)
− 1.

Remark C.2. It is worth noticing that the dominant root can be less than unity even when
interest rate is negative in some state of nature. To verify this, consider the following
example. Markets are complete and, hence, there are unique state prices π in RS×S . These
state prices are given by (

π11 π12

π21 π22

)
=

(
1
4

7
4

1
28

7
28

)
The price of the safe bond in the first state is π11 + π12 = 2, thus implying a negative
interest rate. However, the dominant root is ρ (Π) = 1/2, with associated eigenvector
(d1, d2) = (1, 1/7).

Proposition C.2 (High implied interest rates). A solution g in RS
+ to equations (M) exists

if and only if ρ (Π) < 1.

Proof. Arguing by contradiction, suppose that ρ (Π) ≥ 1 and that, for some g in RS
+,

g = e+Π(g) .

Choose λ ≥ 0 as the largest value satisfying g ≥ λd, where d in RS
+ is an eigenvector

associated with the dominant root. Also, e ≥ εd for some sufficiently small ε > 0. By
monotonicity,

g ≥ e+Π(λd) ≥ εd+Π(λd) ≥ (ε+ ρ (Π)λ) d ≥ (ε+ λ) d,

a contradiction. To prove the reverse implication, consider the operator T : RS
+ → RS

+

given by
T (g) = e+Π(g) .

Endow the linear space RS with the (equivalent) norm

‖g′ − g′′‖ = inf {λ ≥ 0 : |g′ − g′′| ≤ λd} .
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Monotone sublinearity implies

T (g′′) ≤ T (g′ + ‖g′ − g′′‖ d) ≤ T (g′) + ρ (Π) ‖g′ − g′′‖ d

and
T (g′) ≤ T (g′′ + ‖g′ − g′′‖ d) ≤ T (g′′) + ρ (Π) ‖g′ − g′′‖ d.

Thus,
‖T (g′)− T (g′′)‖ ≤ ρ (Π) ‖g′ − g′′‖ .

The Contraction Mapping Theorem (Aliprantis and Border (2006), Theorem 3.51) guaran-
tees existence, and uniqueness, of the solution to equations (M). �

As condition (F) is satisfied if and only if the system of equations (M) admits a positive
solution, the above proposition provides a complete characterization in a Markov setting.
We now turn to condition (H) and show that, under Markovian pricing, it is not more
restrictive than condition (F).

Proposition C.3 (Characterization). Condition (H) is satisfied if and only if ρ (Π) < 1.

Proof. We only have to verify that condition (H) is satisfied when ρ (Π) < 1. Notice that,
for every price p in P , at every date-event st in S, there is π in Π such that

p
(
st+1

)
= π (st, st+1) p

(
st
)
,

where we use the fact that a date-event is a sequence of Markov states, that is, st =

(s0, s1, . . . , st) in St+1. Assuming that g ≤ d at no loss of generality, for every t in
T, given a price p in P ,

1

p (s0)

∑
st∈St

∑
st+r∈S(st)

p
(
st+r

)
e
(
st+r

)
≤ 1

p (s0)

∑
st∈St

p
(
st
)
g (st)

≤ 1

p (s0)

∑
st∈St

p
(
st
)
d (st)

≤ ρ (Π)
t
d (s0) .

To verify the upper bound in the extreme right-hand side, just argue by induction. Clearly,
g
(
s0
)
≤ d (s0). Furthermore, at every t in T,

1

p (s0)

∑
st+1∈St+1

p
(
st+1

)
d (st+1) ≤ 1

p (s0)

∑
st∈St

p
(
st
) ∑

st+1∈S

π (st, st+1) d (st+1)


≤ 1

p (s0)

∑
st∈St

p
(
st
)
Π(d) (st)

≤ 1

p (s0)

∑
st∈St

p
(
st
)
ρ (Π) d (st)

≤ ρ (Π)
1

p (s0)

∑
st∈St

p
(
st
)
d (st) .

This proves the claim as ρ (Π) < 1. �
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APPENDIX D. ARBITRAGE-FREE PRICING

We here collect some basic facts about arbitrage-free asset pricing which are used in the
body of the text. These are well-known implications of duality. We provide simple proofs
for convenience, independently of their applications in this paper.

The space of tradable claims Y is a linear subspace of some (finite-dimensional) linear
space X , endowed with its canonical ordering. The pricing of tradable claims is given by a
linear map ϕ : Y → R. This map is arbitrage free, in the sense that, for any claim y in Y ,
y > 0 only if ϕ (y) > 0. We assume that there exists a strictly positive tradable claim u in
Y with ϕ (u) = 1. This needs not be the safe asset, though a safe asset would be sufficient
for this property to be satisfied. The internal product on X is denoted by x · y.

Let Π be the convex set of positive linear functionals π in X such that, for every y in Y ,

ϕ (y) = π · y.

Here is the Fundamental Theorem of Finance.

Fundamental Theorem of Finance. The set Π is compact and contains a strictly positive
linear functional π on X .

Proof. Notice that the convex set K = {x ∈ X+ : x · u = 1} does not interest the linear
subspace Z = {y ∈ Y : ϕ (y) = 0}. By the Strong Separation Theorem (Aliprantis and
Border (2006), Theorem 5.58), there exists a non-null π in X such that, for every k in K

and for every z in Z,
π · k > π · z.

As Z is a linear space, π · z = 0 for every z in Z. If π · x ≤ 0 for some non-null x in X+,
then

0 ≥ 1

x · u
π · x ≥ π ·

(
1

x · u
x

)
> 0,

a contradiction. Hence, π is a strictly positive positive linear functional on X . We next
show that π is in Π.

At no loss of generality, it can be assumed that π · ȳ = ϕ (ȳ) > 0 for some ȳ in Y .
Given any y in Y , suppose that ϕ (y) > π · y. Hence,

ϕ

(
y − ϕ (y)

ϕ (ȳ)
ȳ

)
= 0 and π ·

(
y − ϕ (y)

ϕ (ȳ)
ȳ

)
< 0,

a contradiction. The set Π is compact as it is contained in {π ∈ X+ : π · u = ϕ (u)}. �

When markets are incomplete, Π contains multiple value kernels. Nevertheless, values
are restricted by upper and lower bounds.

Theorem of Duality. For every x in X ,

max
π∈Π

π · x = min
y∈Y

{ϕ (y) : x ≤ y}

and
min
π∈Π

π · x = max
y∈Y

{ϕ (y) : y ≤ x} .
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Proof. We prove the first statement only, as the argument is specular for the other state-
ment. We first show that there exists ȳ in Y such that x ≤ ȳ and

ϕ (ȳ) = min
y∈Y

{ϕ (y) : x ≤ y} .

Observe that, for some sufficiently large λ > 0,

−λu ≤ x ≤ λu,

where u is the strictly positive claim in Y . Thus, by no arbitrage,

−λϕ (u) ≤ inf
y∈Y

{ϕ (y) : x ≤ y} ≤ λϕ (u) .

This shows that the infimum is finite. For every n in N, there exists a claim yn in {y ∈ Y : x ≤ y}
such that

ϕ (yn) ≤ inf
y∈Y

{ϕ (y) : x ≤ y}+ 1

n
.

If the sequence (yn)n∈N is bounded, then the claim follows. Otherwise, observe that ŷn =

yn/ ‖yn‖ is also a tradable claim in Y satisfying
x

‖yn‖
≤ ŷn

and

ϕ (ŷn) ≤ infy∈Y {ϕ (y) : x ≤ y}
‖yn‖

+
1

n ‖yn‖
.

Taking a subsequence of (ŷn)n∈N in Y converging to ŷ in Y , we obtain that ŷ > 0 and
ϕ (ŷ) ≤ 0, contradicting no arbitrage.

Clearly, π · (x− ȳ) ≤ 0 for every π in Π. To prove that the opposite inequality is
satisfied by some π in Π, consider the convex set C in R×X defined by

{(ϕ (ȳ − y) , y − x) ∈ R×X : y ∈ Y } .

This set does not intersect R+ × X++. Hence, by the Separating Hyperplane Theorem,
there exists a non-null (µ, π) in R+ ×X+ such that, for every y in Y ,

µϕ (ȳ − y) ≤ π · (x− y) .

It can be verified that µ > 0 and, hence, µ = 1 at no loss of generality. Also,

0 ≤ ϕ (ȳ − ȳ) ≤ π · (x− ȳ) ≤ 0,

thus proving that π · (x− ȳ) = 0. Finally, notice that, when y lies in Y , also (ȳ − y) is in
Y . It follows that

ϕ (y) ≤ ϕ (ȳ − (ȳ − y)) ≤ π · (x− (ȳ − y)) ≤ π · y.

As Y is a linear space, it is also true that ϕ (−y) ≤ π · (−y). We conclude that, for every
y in Y ,

ϕ (y) = π · y,
which reveals that π is an element of Π. �
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