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Abstract

Prominent research argues that consumers often use personal budgets to man-
age self-control problems. This paper analyzes the link between budgeting and self-
control problems in consumption-saving decisions. It shows that the use of good-
specific budgets depends on the combination of a demand for commitment and the
demand for flexibility resulting from uncertainty about intratemporal trade-offs be-
tween goods. It explains the subtle mechanism which renders budgets useful com-
mitments, their interaction with minimum-savings rules (another widely-studied
form of commitment), and how budgeting depends on the intensity of self-control
problems. This theory matches several empirical findings on personal budgeting.
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1 Introduction
Many studies argue that personal budgeting is a pervasive part of consumer behavior.1
This practice involves grouping expenses into categories and constraining each with an
implicit or explicit cap applied to a specified time period (a week, a month, etc.).2 While
this practice cannot be explained by the classic life-cycle theory of the consumer, it
has important consequences. It can account for “mysterious” large differences in wealth
accumulation between consumers, which time or risk preferences cannot explain (Ameriks
John et al. (2003)). By violating the principle of fungibility of money, it shapes demand
differently from satiation and income effects (Heath Chip and Soll Jack B. (1996)). It
affects how firms promote their products so as to avoid competing for the same budget
(Wertenbroch Klaus (2002)). It is at the foundation of the economics of commitment
devices (Bryan Gharad et al. (2010)). Almost all existing studies informally suggest that
consumers use budgets to manage self-control problems, often caused by present bias,
which interfere with their saving goals (Thaler Richard H. (1999); Ameriks John et al.
(2003); Antonides Gerrit et al. (2011)).

Despite this consensus, a formal investigation of the link between budgeting and self-
control problems seems to be missing. The paper offers such a foundation using a broadly
studied aspect of time preferences: present bias. It shows, however, that present bias
alone cannot explain budgeting. Present-biased consumers value constraints on future
choices. But for budgets to emerge, this preference for commitment has to be combined
with a preference for flexibility of a precise but plausible kind, namely, that caused
by uncertainty about intratemporal trade-offs—for instance, due to good-specific taste
shocks. The paper also uncovers a tension between good-specific budgets and minimum-
savings rules, an often-studied form of commitment. This leads to a negative relationship
between the level of present bias and the use of budgets. These predictions help organize
the evidence on budgeting and can guide future empirical studies.

Consider an agent, Ann, who has two selves: a time-consistent self-0 and a present-
biased self-1.3 Both selves have the same per-period consumption utility. In each period,
self-1 chooses consumption and savings subject to the usual income constraint. Suppose
that (i) consumption involves multiple goods (not a single uniform commodity), and (ii)
both selves’ preferences depend on a state of the world (capturing taste shocks) which
affects not only the rate of substitution between present and future utility, but also the

1See Bakke Edward Wight (1940), Rainwater Lee et al. (1962), Thaler Richard H. and Shefrin Hersh
M. (1981), Thaler Richard (1985), Henderson Pamela W. and Peterson Robert A. (1992), Baumeister
Roy F. et al. (1994), Heath Chip and Soll Jack B. (1996), Zelizer Viviana A. Rotman (1997), Thaler
Richard H. (1999), Wertenbroch Klaus (2002), Ameriks John et al. (2003), Benabou Roland and Tirole
Jean (2004), Antonides Gerrit et al. (2011), Beshears John et al. (2016).

2This paper uses the term “personal budgeting” rather than “mental accounting” because the latter
has the much broader meaning of a general process whereby people frame events, outcomes, and decisions.
This also includes choice bracketing, narrow framing, and gain-loss utility, which differ from budgeting.

3Dual-self models appear in Thaler Richard H. and Shefrin Hersh M. (1981), Benabou Roland and
Pycia Marek (2002), Bernheim B. Douglas and Rangel Antonio (2004), Benhabib Jess and Bisin Alberto
(2005), Fudenberg and Levine (2006, 2012), Loewenstein George and O’Donoghue Ted (2007), Brocas
Isabelle and Carrillo Juan D. (2008), Chatterjee Kalyan and Krishna R. Vijay (2009), and Ali S. Nageeb
(2011).
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rates of substitution between goods within periods. In each period, before the state
realizes, Ann’s self-0 can adopt a commitment plan dictating which income allocations
self-1 is allowed to choose. This creates a trade-off between commitment and flexibility.
The paper focuses on plans that can freely combine good-specific budgets and an overall
limit on consumption expenses via a savings floor. This is in line with its motivation
and offers an interesting lower bound on self-0’s payoff. Of course, one would want to
allow for general forms of commitment, which is however much harder in the presence of
feature (i) and (ii) (see Section 4) and is beyond the scope of the paper.4

Feature (i) and (ii) are the key differences between this paper and Amador Manuel
et al. (2006), where consumption involves a single commodity and taste shocks affect
only the intertemporal utility trade-off. That paper shows that, under very general
conditions on the shock distribution, the optimal rule is to impose a saving floor and
grant self-1 flexibility otherwise—even if self-0 can choose among arbitrarily general forms
of commitment. To establish a benchmark, Section 3.2 shows that their result carries
over to a world with multiple goods if there is no uncertainty about intratemporal trade-
offs between goods. Intuitively, in this case binding good-specific budgets force self-1 to
choose inefficient consumption bundles, which is akin to wasting resources (i.e., “money
burning”). But Amador Manuel et al. (2006) already showed that money burning is
generally suboptimal.

Uncertain intratemporal trade-offs change things substantially, as summarized by the
main results of the paper. First, if the goods satisfy appropriate substitutability and
normality conditions, optimal commitment plans always involve good-specific budgets
when present bias is sufficiently weak, but only a savings floor when present bias is
sufficiently strong. Second, fixing a weak bias, for some range of parameters the optimal
plans combine budgets with a savings floor, but for another range they rely only on the
budgets. By contrast, in Amador Manuel et al. (2006) optimal plans always involve a
savings floor.5 The substitutability and normality conditions ensure that the consumption
distortions caused by budgets curtail how much self-1 gains in terms of present utility by
undersaving, thereby resulting in higher savings. This improvement matters more than
those distortions for the time-consistent self-0.

To see the intuition for these results, suppose Ann consumes two goods and is un-
certain whether her marginal utility of each good will be high or low. Anticipating her
tendency to undersave, she first considers setting a savings floor. This will limit over-
spending if both marginal utilities are high, which make her want to consume a lot of
both goods. If only one marginal utility turns out to be high, however, the floor may not
bind; and this is especially likely if present bias is weak. In this case, Ann realizes that
she will still overspend and this will be mostly driven by the good with high marginal
utility. She can then also cap this good with a targeted budget, which raises her savings
because now she can overspend only on the good with low marginal utility. On the other
hand, when present bias is stronger, overspending becomes more severe even for the good

4This paper takes the process of noticing an expense and reporting it to its budget as a defining
aspect of budgeting itself. To focus on the issues of interest here, it also assumes that people stick to
their commitment plans, as justified in Section 2.

5These properties continues to hold for partially naive agents who incorrectly anticipate their bias.
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with low marginal utility, and the budget leads to a small (if any) rise in savings at the
cost of rationing a good with high marginal utility. As a result, Ann prefers to adopt
only a savings floor, for it curbs undersaving without distorting consumption.

The results involve some noteworthy subtleties. An agent may adopt budgets, which
distort consumption spending, even though her selves always agree on how to divide
every dollar between goods within a period. By contrast, a binding floor distorts only
the income division between spending and saving. Perhaps counterintuitively, it is not
the case that if a present-biased agent adds budgets to a floor, then a more biased agent
should do the same. In addition, agents who use budgets may also set tighter floors, as
the budgets’ distortions lower the value of leaving more income for consumption. Once
budgets are allowed, agents with a stronger present bias may adopt a slacker floor (in
contrast to Proposition 5 in Amador Manuel et al. (2006)). Section 3 further discusses the
results in relation to the evidence on budgeting, highlighting findings that other theories
struggle to explain.

This paper expands our understanding of consumption-savings behavior under self-
control problems and the resulting demand for commitment. Since Thaler and Shefrin’s
(1981) and Laibson’s (1997) seminal work, the literature has almost always assumed a
single, per-period, commodity (“money”).6 As this paper shows, that assumption is not
innocuous with present-biased consumers (in contrast to the case of time-consistent con-
sumers) and this crucially depends on uncertain intratemporal trade-offs. The literature
has focused on the problem of curbing undersaving and the usefulness of devices like illiq-
uid assets and savings accounts. This paper shows that consumers can do strictly better
by (also) adopting good-specific budgets, which opens the door to other commitment
devices, such as personal budgeting services.7 It also suggests which type of consumers
will demand which type of devices, which can be used by third-party providers.8

To derive its results, the paper uses different techniques from the standard mechanism-
design approach. The idea is to exploit the information in the Lagrange multipliers for
the constraints that budgets and savings floors add to self-1’s optimization problem.
Relying on sensitivity-analysis techniques (Luenberger David G. (1969)), we can use
this information to quantify, after appropriately adjusting for self-1’s bias, the marginal
benefit for self-0 of modifying a budget or a floor.

Related Literature. Existing explanations of personal budgeting are based on Thaler
(1985). Using the notions of “transaction utility” and gain-loss utility, he argues that
agents treat the consequences of each transaction in isolation. Given this, they can solve
their consumption-savings problems by means of transaction-specific budgets, a result
which echoes Strotz Robert H. (1957). In reality, people set budgets for sufficiently

6Brocas Isabelle and Carrillo Juan D. (2008) discuss a model with two goods, one of which has ex-ante
uncertain utility, and self-1 is fully myopic. In this case, the optimal commitment strategy consists of
a non-linear plan that punishes spending on one good by cutting spending on the other, which is not a
budgeting plan. Even if one focuses on these plans, self-0 never sets budgets with a fully myopic self-1
(cf Proposition 3).

7This kind of services are currently offered by firms like Mint, Quicken, and StickK.
8In reality, it may be hard to observe each consumer’s degree of present bias and offer devices

accordingly. Some of the issues that arise in this case are analyzed by Galperti Simone (2015).
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long periods so that each covers many transactions. Also, in Thaler’s deterministic
model, the agents can achieve the same utility with and without budgets; but with
uncertainty, they would never set binding budgets. Therefore, they do not exhibit a strict
demand for budgets as commitment devices. Finally, transaction and gain-loss utility
differ conceptually from self-control problems, which the literature views as the main
cause of budgeting. Gain-loss utility can explain other phenomena of mental accounting,
such as choice bracketing (Koch Alexander K. and Nafziger Julia (2016)), which however
differ from budgeting.

Other papers in the mechanism-design literature studied the trade-offs between com-
mitment and flexibility, usually imposing no restriction on the feasible mechanisms.
Amador Manuel et al. (2006) and Halac Marina and Yared Pierre (2014) are the closest
to the present paper.9 It borrows their baseline model, but adds multiple consumption
goods and uncertainty about intratemporal trade-offs. In so doing, it shows how this
uncertainty affects the commitment-flexibility trade-off and its solutions. Another dif-
ference is that Halac Marina and Yared Pierre (2014) focus on the role of information
persistency. In their setting, an optimal commitment plan can distort future choices, even
though they cause no conflict between the agent’s selves given today’s choice. Persistency
links self-1’s current information and expected utility from future choices, which can be
used to relax today’s incentive constraints, as in other dynamic mechanism-design prob-
lems.10 Correlation among self-1’s pieces of information is not the driver of the present
paper’s results.

An older literature examined how rationing affects consumer behavior (Howard David
H. (1977), Ellis Christopher J. and Naughton Barry J. (1990), Madden Paul (1991)). By
setting a savings floor or good-specific budgets, an agent essentially rations his future
selves as the government may ration consumers. In contrast to that literature, here ra-
tioning assumes the role of a commitment device. That literature showed that predicting
the budgets’ effects is far from trivial. Its insights will be useful to identify conditions
under which budgets can help the agent.

2 The Model
Consider an agent, Ann, who lives for two periods. In the first, she chooses a consumption
bundle c = (c1, c2) ∈ R2

+ and a level of savings s ∈ R+. In the second period, consumption
involves a single good and hence equals s. Ann receives her income, normalized to 1, in
the first period.

Ann has self-control problems, caused by a conflict between a long-run self-0 and a
short-run self-1. Their preferences depend on some taste shocks, represented by the state
(θ, r1, r2), where θ > 0 and r = (r1, r2) ∈ R2. In each period both selves have the same
(concave) consumption utility: u(c; r) in period 1 and v(s) in period 2. In period 1,

9See also Athey Susan et al. (2005), Ambrus Attila and Egorov Georgy (2013), and Amador Manuel
and Bagwell, Kyle (2013).

10See, for example, Courty Pascal and Li Hao (2000), Battaglini Marco (2005), Pavan Alessandro
et al. (2014).

5



however, self-0 and self-1 evaluate streams (c, s) using respectively the utility functions
θu(c; r) + v(s) and θu(c; r) + βv(s).

For clarity and tractability, for now assume that

u(c; r) = u1(c1; r1) + u2(c2; r2) with ∂2ui(ci; ri)

∂ci∂ri
= ui

cr(ci; ri) > 0 for i = 1, 2.

Self-1’s present bias is captured by β ∈ (0, 1). Self-0 knows β (sophistication); we will
discuss naiveté later.

A key novelty of this model is that the state affects both inter- and intratemporal
trade-offs. While θ affects only the substitution rate between present and future utility, r
also affects the substitution rates between goods within period 1. Hereafter, let ω = (θ, r),
G be its distribution, and Ω the state space. G is allowed to have rich forms of dependence
as well as full independence across θ, r1, and r2.

Self-0 delegates the consumption-savings choice to self-1 by designing a commitment
plan dictating which choices self-1 is allowed to implement. In the case of budgeting,
such a plan involves spending limits on specific consumption categories, denoted by bi
(for budget), or an overall limit on consumption expenditures implemented through a
minimum-savings rule f (for floor). Formally, let

F = {(c, s) ∈ R3
+ : c1 + c2 + s ≤ 1}.

Think of ci and s as the share of income allocated to good i and savings. A budgeting
plan, B, can then be expressed as follows:

B = {(c, s) ∈ F : s ≥ f, c1 ≤ b1, c2 ≤ b2},

where f ∈ [0, 1] and bi ∈ [0, 1] for i = 1, 2. Let B be the set of all budgeting plans. From
the ex-ante viewpoint, we will call f and bi binding if they bind with strictly positive
probability under G. Note that B defines a specific subclass of commitment plans which—
though intuitive and tractable—rules out many other possible ways of restricting self-1’s
choices. Section 4 discusses some intricacies of allowing for more general plans.

In reality, agents commit to their plans prior to observing all the necessary information
for making a decision. This creates a trade-off between commitment and flexibility. In
the model, first self-0 commits to a plan B, then only self-1 observes ω and chooses some
(c, s) from B. Self-0 designs B to maximize her expected payoff from self-1’s choices.
Note that if self-0 knew ω, the problem would be uninteresting: Setting f at the level
of savings that self-0 finds optimal given ω always induces self-1 to choose c and s that
maximize self-0’s utility.

The goal of the paper is to understand whether and how self-0 sets minimum-savings
rules and good-specific budgets. The problem can be stated as

max
B∈B

U(B) =

∫
Ω

[θu(c(ω); r) + v(s(ω))]dG(ω) (1)

s.t. (c(ω), s(ω)) ∈ arg max
(c,s)∈B

θu(c; r) + βv(s), ω ∈ Ω. (2)

A solution will be called an optimal plan.
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Technical Assumptions

Information distributions: Let Ω = [θ, θ] × [r1, r1] × [r2, r2], where 0 < θ < θ < +∞
and 0 < ri < ri < +∞ for i = 1, 2. We will only assume that the joint probability
distribution G of (θ, r1, r2) has full support (that is, G(O) > 0 for every open O ⊂ Ω).
The conditions on θ and θ rule out the implausible situation where Ann does not care at
all about the present or the future.11 The conditions on ri and ri have bite only when
combined with the properties of u listed next.
Differentiability, monotonicity, concavity: v is twice continuously differentiable with v′ >
0 and v′′ < 0. For i = 1, 2 and ri ∈ [ri, ri], ui(·; ri) : R+ → R is twice differentiable with
ui
c(·; ri) > 0 and ui

cc(·; ri) < 0; also, ui
c and ui

cc are continuous on (0, 1] × [ri, ri]. This
implies that ui

c is bounded below and away from zero; this non-satiation property seems
plausible to the extent that i refers to “food,” “housing,” or “entertainment” and a period
corresponds to a week or a month.
Boundary conditions: lims→0 v

′(s) = +∞ and limc→0 u
i
c(c; ri) = +∞ for ri ∈ [ri, ri] and

i = 1, 2. This will allow us to focus on interior solutions.

Discussion of the Model

Nothing significant changes if Ann receives income in both periods and can borrow in
period 1, or if the consumption bundle c involve more than two goods. In fact, the proofs
consider the general case of n ≥ 2 goods. It is straightforward to allow for multiple goods
also in the second period.

The two selves’ preferences are consistent with the quasi-hyperbolic discounting model
of Laibson David (1997) and with viewing the agent as a household aggregating its
members’ preferences, which are time consistent but heterogeneous (Jackson Matthew
O. and Yariv Leeat (2015)). A public finance interpretation of the model is also possible
along the lines of Halac Marina and Yared Pierre (2014). In each period, a government
chooses spending on a list of public goods and services, c, and saving or borrowing, s,
subject to the constraint given by the tax revenues. The government may exhibit present
bias as a consequence of aggregating the preferences of heterogeneous citizens (Jackson
Matthew O. and Yariv Leeat (2015)) or uncertainty in the political turnover (Aguiar
Mark and Amador Manuel (2011)).

The assumed information structure has some redundancy, as both an increase in θ and
an increase in all components of r render period-1 consumption more valuable. Nonethe-
less, it is convenient for differentiating uncertainty about intra- and intertemporal trade-
offs and for showing that the former is crucial for budgets to arise (Section 3.2). In a
nutshell, this is because it allows for situations where overspending is driven by all goods
and situations where it is mostly driven by only some good.

To focus on the issues of interest for this paper, it is assumed that Ann sticks to her
plans. This is not a minor assumption, of course, but the literature has proposed several
mechanisms which can justify it. These include a desire for internal consistency (Festinger

11A similar assumption appears in Amador Manuel et al. (2006), who point out that with unbounded
support it may be optimal to grant self-1 full flexibility.
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Leon (1962)), the plans’ working as reference points (Heath Chip et al. (1999), Hsiaw
Alice (2013)), self-reputation mechanisms (Benabou Roland and Tirole Jean (2004)),
internal control processes that prevent impulsive processes from breaking ex-ante rules
(Benhabib Jess and Bisin Alberto (2005)), and self enforcement sustained by threats of
switching to less desirable equilibria (Bernheim B. Douglas et al. (2015)). Perhaps in
reality people are able to carry out their plans provided that they are not too stringent
or costly ex post. Even in this case, it is worth understanding which forces lead people
to find budgets and floors useful despite their ex-post inefficiency. For instance, some
present-biased agents may not use budgets not because they cannot stick to them, but
simply because they do not find them useful. This can also be valuable for third parties
which design commitment devices to help people stick to their plans (such as firms like
Mint, Quicken, and StickK).

3 Optimal Budgeting Plans

3.1 Preliminaries

First of all, treating self-0’s payoff as a function of f , b1, and b2, one can easily establish
existence of an optimal plan using the Maximum Theorem.12

It is worth defining two benchmark allocations. For each ω, let (cd(ω), sd(ω)) be self-
1’s choice if granted full discretion, namely, the solution to max(c,s)∈F{θu(c; r) + βv(s)}.
Also, let (cp(ω), sp(ω)) represent what self-0 would like self-1 to choose in ω, which is
the solution to max(c,s)∈F{θu(c; r)+ v(s)}. Call (cd, sd) the full-discretion allocation and
(cp, sp) the first-best (or planned) allocation. They satisfy the following useful properties.
Remark 1.
1. (cp, sp) and (cd, sd) are continuous in ω;
2. Each component of (cp, sp) and (cd, sd) takes values in a closed interval and is bounded
2. away from zero;
3. For i = 1, 2, cpi and cdi are strictly increasing in ri and θ and decreasing in rj for j ̸= i;
4. sp and sd are strictly decreasing in θ, r1, and r2;
5. For ω ∈ Ω, sd(ω) < sp(ω) and sd(ω) is continuous and strictly increasing in β;
6. For ω ∈ Ω and i = 1, 2, cdi (ω) is continuous and strictly decreasing in β.

Another property worth noting is that all consumption goods are normal for both selves.13

For illustration, consider a fully symmetric model with respect to good 1 and 2.
Since self-1 saves whatever he does not consume (v′ > 0), we can focus on his choices of c
represented in Figure 1. Note that c’s on negative-45◦ lines closer to the origin correspond
to a higher s. To understand the shape of cp, suppose for the moment that θ takes only
one value. Start from (θ, r1, r2), which leads to the highest s. If we raise r1 up to r1, cp1
increases while cp2 and sp decrease, which means that we move along the south part of the
dashed line. If we now start from (θ, r1, r2) and raise r2 up to r2, cp2 increases while cp1 and

12See Lemma 2 in the Appendix.
13This property follows, for instance, from Proposition 1 in Quah John K-H (2007).
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Figure 1: First-best and Full-discretion Allocations

sp decrease; that is, we move along the east part of the dashed line. Proceeding this way,
we can map the entire dashed line; continuity of cp implies that its range extends inside
the boundary in Figure 1. Self-1’s systematic undersaving shifts the cd region away from
the origin; the stronger his bias, the bigger the shift. Figure 1 also highlights the effect
of uncertain intratemporal trade-offs. If r were certain (but not θ), both cp and cd would
collapse to an upward sloping line so that the state calling for minimal savings always
coincides with that calling for maximal consumption of both goods.

3.2 A Benchmark: Known Intratemporal Trade-offs

This section shows that if we remove the uncertainty about intratemporal trade-offs—
while keeping that about the intertemporal trade-off and multiple goods—then most
of the time optimal plans involve a savings floor but no good-specific budgets. This
benchmark will help us disentangle the role of uncertain intratemporal trade-offs from
the multidimensionality of consumption.

For the sake of the argument, in this section imagine that self-0 observes r (but not θ)
before designing her plan—self-1 continues to observe θ and r. We can then examine the
problem defined by (1) and (2) treating r as fixed. Let Gr denote the distribution of θ
given r. To state the result, we need some minor conditions about Gr. Assume that Gr
has a strictly positive, continuous, density function gr on [θ, θ]. Define

H(θ) = 1−Gr(θ)− (1− β)θgr(θ), θ ∈ [θ, θ],

and
θ∗ = min

{
θ ∈ [θ, θ] : ∫ θθ′H(θ̂)dθ̂ ≤ 0 for all θ′ ≥ θ

}
.

Proposition 1. Suppose H is non-increasing over [θ, θ∗]. Then, a plan B that satisfies
f = sd(θ∗) and b1 = b2 = 1 is optimal.

As Amador Manuel et al. (2006) noted, for many distributions—especially those com-
monly used in applications-–H satisfies the above condition for all β ∈ [0, 1]. More
generally, if gr is uniformly bounded away from 0 and changes at a bounded rate, the
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condition on H holds when β is sufficiently high. Importantly, as we will see, high βs
characterize the settings with uncertain intratemporal trade-offs where plans using only
f are not optimal.

Proposition 1 follows from Amador et al.’s (2006) main result, once we establish the
following key point: If self-0 knows r, she can focus on commitment plans that regulate
only savings and total consumption expenses, but not how these are divided between
goods. The reason is as follows. Unlike a binding f , which distorts only the income
division between spending and saving, a binding bi also distorts consumption.14 Thus,
by forcing self-1 to consume inefficient bundles, budgets lower the utility he can get from
what he does not save. To lower this utility, however, another method is simply to not let
self-1 spend all of 1− s. The literature called this “money burning.”15 Spending a share
of 1− s efficiently can achieve any utility obtained by spending 1− s inefficiently: For all
c ∈ R2

+ there exists y ≤ c1+c2 that yields u(c; r) = u∗(y; r), where u∗(y; r) is the indirect
utility of spending y. Different realizations of the intratemporal trade-offs may affect
how self-0 wants to “punish” self-1 for undersaving, holding s fixed. But without that
uncertainty, the optimal punishment is unique and can always be achieved with money
burning, provided that its amount can flexibly depend on the chosen s. This requires
more general forms of commitment than budgeting plans. Formally, let

F tc = {(y, s) ∈ R2
+ : y + s ≤ 1}.

Given Dtc ⊂ F tc, self-1 maximizes θu(c; r)+βv(s) subject to c1+c2 ≤ y and (y, s) ∈ Dtc.

Lemma 1. Suppose uncertainty affects only the intertemporal utility trade-off. There
exists an optimal D ⊂ F with U(D) = U∗ if and only if there exists an optimal Dtc ⊂ F tc

with U(Dtc) = U∗.

Thus, when only the intertemporal trade-off is uncertain, whether consumption involves
one or multiple goods is irrelevant, as long as we allow for general commitment plans.

Proposition 1 goes one step further by showing that the number of consumption goods
is irrelevant even when self-1 can use only minimum-savings rules. Given Lemma 1, since
the constraint c1 + c2 ≤ y will always bind for self-1, the problem becomes

max
Dtc⊂F tc

∫ θ

θ

[θu∗(y(θ); r) + v(s(θ))]gr(θ)dθ

s.t. (y(θ), s(θ)) ∈ arg max
(y,s)∈Dtc

{θu∗(y; r) + βv(s)}, θ ∈ [θ, θ].

This is isomorphic to the problem studied by Amador Manuel et al. (2006). Proposition 1
then follows from their Proposition 3.

14One way to see this is that the positive Lagrange multiplier for the binding ci ≤ bi introduces a
wedge between the goods’ marginal utilities.

15Besides Amador Manuel et al. (2006), papers that study money burning in delegation problems
include Ambrus Attila and Egorov Georgy (2017), Ambrus Attila and Egorov Georgy (2013), Amador
Manuel and Bagwell Kyle (2013), Amador Manuel and Bagwell, Kyle (2013).
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3.3 Main Results

We now returns to the model where both inter- and intratemporal trade-offs are uncertain
for self-0. The next result is in sharp contrast with the benchmark established before.

Proposition 2. There exists β∗ ∈ (0, 1) such that, if β∗ < β < 1, then every optimal B ∈
B must include binding good-specific budgets.16

The Appendix shows how to derive β∗, which can be significantly smaller than 1. Propo-
sition 2 is silent about whether good-specific budgets are always combined with a floor.
Section 3.4 shows that both cases are possible.

Do optimal plans always require good-specific budgets? The answer is no.

Proposition 3. There exists β∗ ∈ (0, 1) such that, if β < β∗, then every optimal B ∈ B
involves only a binding savings floor.

The Appendix shows how to calculate β∗, which can be significantly larger than 0 and
depends on G only through its support. Using this, we can show that weaker biases
suffice to render budgets suboptimal when the uncertainty on intratemporal trade-offs
shrinks in the following sense.

Corollary 1. Consider two agents who have the same utility functions u and v and
their uncertainty has supports [θ, θ] × [r1, r1] × [r2, r2] and [θ, θ] × [r′1, r

′
1] × [r′2, r

′
2]. Let

β∗ and β′
∗ be the corresponding thresholds in Proposition 3. If (r′1, r

′
2) ≩ (r1, r2) and

(r′1, r
′
2) ≨ (r1, r2), then β′

∗ > β∗.

This corollary echoes the benchmark result of Section 3.2: That case corresponds to the
limit as ri − ri → 0 for i = 1, 2. We saw that, under minor conditions, in the limit
essentially β∗ = 1.

One subtlety of the model is that f , b1, and b2 can bind simultaneously, thereby
affecting self-1’s choices in possibly complex ways. To handle this, the proof proceeds in
several steps, which are sketched here to also uncover the intuitions for the results.

The first step is to consider how self-0 would use f in isolation. In this case, the
best f lies strictly between the highest and lowest first-best savings, sp and sp, and rises
as β falls. Though similar, this step is not a corollary of Amador et al.’s (2006) results
and uses different techniques. Intuitively, self-0 never finds any s < sp justifiable, and f
never distorts the chosen c because the two selves have the same consumption utility u.
Consequently, self-0 always sets f ≥ sp. Setting f = sp cannot be optimal, as raising f
a bit causes a second-order loss when sp(ω) = sp, but a first-order gain when sp(ω) > sp

and f binds. A similar logic explains why f < sp. Thus, f has to balance the benefit of
curbing undersaving and the cost of causing oversaving. A lower β raises the optimal f
because the benefit of raising f grows if self-1 tends to undersave more, but the cost
stays the same: When self-0 wants s < f , self-1 does too and f binds for any β. To
obtain these properties, the proof shows that the derivative of self-0’s payoff in f exists,

16All proofs are in the Appendix.

11



has a simple form, and is decreasing in β. This uses the fact that we can focus on the
states where f will bind for self-1 and so s = f , which allows us to immediately infer
the effect of varying f on self-0’s savings utility, v. Since both selves share u, the effect
on self-0’s consumption utility can be inferred from self-1’s indirect utility from spending
1 − f via Lagrangian sensitivity analysis, which links this effect to the marginal utility
of any good at the chosen c. These effects are shown to matter for a set of states with
strictly positive probability using the continuity of self-1’s choices in f and ω and the
full support of G.

The second step is to consider how self-0 would use bi in isolation. It turns out that
capping even only one good dominates granting self-1 full discretion. To see why, start
from the level of bi where it starts to bind (i.e., bi = cdi = maxω c

d
i (ω)). Lowering bi creates

a benefit and a cost for self-0, when bi binds. The cost is that it distorts consumption. But
this is initially a second-order cost, because the full-discretion cd is efficient, in the sense
of equalizing marginal utilities between goods. The benefit is that bi curbs undersaving,
which is of first-order importance for self-0. Overall bi should then benefit self-0, but
there is a subtlety: Self-1 should not reallocate income to the unrestricted cj much faster
than to s, which is not obvious and need not be true. This key property holds for the
additively separable u, but also more generally (cf Section 4). Once this is established,
the proof uses the fact that both selves share u to show that self-0’s payoff can be written
as her savings utility scaled by (1− β) plus self-1’s total payoff subject to bi. Lagrangian
sensitivity analysis on the latter pins down the second-order negative effects of bi. The
former part directly quantifies the first-order positive effects of bi. These effects again
matter for a set of states with strictly positive probability for the same reasons as before.

These points highlight the general mechanism whereby multidimensional consumption
can help to curb the consequences of present bias. A budget bi incentivizes self-1 to save
more because it forces him to choose inefficient bundles—not just to spend less on ci,
which he could fully shift to cj—and this inefficiency limits the present utility self-1 can
gain by undersaving.

c1

c2

(b) Weak Bias

cp

cd

sp

f

cd1 10

1

cd2

b1

b2

(a) Strong Bias

c1

c2

cd

sp

f

cd1 10

1

cd2

cp

Figure 2: Optimal Budgeting Plans – Intuition
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The above two steps are combined to obtain Proposition 2. Intuitively, when present
bias is weak an optimal plan must use budgets because they help improve savings when
doing so via f would require it to be too tight. Consider Figure 2, which focuses on con-
sumption choices and reports the full-discretion and first-best allocations from Figure 1.
Graphically, b1 defines a vertical line allowing only c1’s to its left, b2 defines a horizontal
line allowing only c2’s below it, and f defines a line with slope −1 allowing only c’s below
it. Thus, in Figure 2(b) for instance, self-1 must choose c within the diamond-shaped re-
gion to the south-west of the solid lines f , b1, and b2. Uncertain intratemporal trade-offs
imply that the states where both selves want to spend the most on c1 or c2 (which map
to the light-shaded areas) are not the states where they want to save the least (which
map to the dark-shaded areas). Indeed, by Remark 1 for i = 1, 2 and k = p, d

cki = cki (θ, ri, r−i) > cki (θ, ri, r−i) and sk = sk(θ, ri, r−i) < sk(θ, ri, r−i).

We saw that if self-0 can use only f , she relaxes it as β rises; that is, the f line moves
farther away from the origin. Consequently, f constrains choices in the dark-shaded area,
but at some point stops affecting them in the light-shaded areas—compare panel (a) to
(b). To curb undersaving in these states, self-0 prefers not to use f , but can add budgets
that bind when f does not (as in (b)). As noted, such budgets benefit self-0.

The proof of Proposition 3 first shows that it is never optimal to let self-1 save s < sp.
Intuitively, if B allows this, raising f up to sp uniformly improves self-0’s savings utility;
moreover, since all goods are normal, the resulting lower spendable income renders any
budget in B less likely to bind and distort c, which again benefits self-0. Now note that
when β is sufficiently small, self-1 always wants to save s < sp. Hence, when bi forces
self-1 to spend less on ci, he shifts all the money to cj, but not s. Since budgets distort c,
if they do not raise s, they cannot benefit self-0 and hence be part of optimal plans.

It is now easy to see why shrinking uncertainty about intratemporal trade-offs expands
the set of strong biases for which optimal plans use only f (Corollary 1). Budgets are
useful to curb undersaving in states with large asymmetry in the goods’ marginal utilities
(recall Figure 2). If this asymmetry shrinks, so does the scope for budgets to be useful.

As should be expected, the strongest bias for which optimal plans use good-specific
budgets depends on the details of the context. This does not change the main takeaway.
As β falls, for every B it raises the probability of the states where self-1 is constrained
by B’s actual lower bound on savings at some s̃ ≥ sp. Since in these states binding
budgets only distort c, their appeal falls accordingly. How self-0 balances the distortions
in those states with the budgets’ benefits in other states ultimately depends on their
distribution G. Nonetheless, since self-0 can always set f = s̃, for β’s below some β̂ ≥ β∗
every optimal plan must use only f .

Finally, one may think that these results are driven by the fact that budgets and the
savings floor are substitute tools—in the sense that, everything else equal, optimal plans
set a slacker f if they can also use b1 and b2. Their interaction is actually more subtle.
By curbing self-1’s undersaving, b1 and b2 lower the return of tightening f , which can
result in a slacker f . At the same time, b1 and b2 also lower the return of loosening f
because they prevent self-1 from consuming efficiently the extra spendable income, which
can result in a tighter f . Therefore, when agents can also use budgets, their savings floor
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need not vary monotonically with β. This is another difference from Amador Manuel
et al. (2006), who predict that f decreases in β. Clearly, all constraints are eventually
removed as β → 1, yet this need not occur monotonically along the way.

3.4 Optimal Plans can Involve no Minimum-savings Rule

This section shows that with multiple goods there exist both settings where self-0 com-
bines budgets with a savings floor and settings where she uses only the budgets. By
contrast, in the case of a single good optimal plans always involve a binding floor.17 We
will focus on the following symmetric model: u1(c; r) = u2(c; r) = r ln(c), r1 = r2 = r > 0,
r1 = r2 = r > r, and v(s) = ln(s).18

Proposition 4. There exist full-support distributions G such that f , b1, and b2 are all
binding for every optimal B ∈ B. There also exist full-support distributions G′ such that,
for every optimal B ∈ B, b1 and b2 are binding, but f never binds.

While the result holds for full-support distributions, its intuition can be best explained
by considering a three-state case. Let ω0 = (θ, r1, r2), ω1 = (θ, r1, r2), and ω2 = (θ, r1, r2)
with respective probabilities g, 1

2
(1 − g), and 1

2
(1 − g). Remark 1 and symmetry imply

that
sd(ω0) < sd(ω1) = sd(ω2), cd1(ω

2) = cd2(ω
1) < cd1(ω

1) = cd2(ω
2), cd1(ω

0) = cd2(ω
0);

similar properties hold for (cp, sp). By continuity, there exists β < 1 sufficiently high that
sd(ω1) = sd(ω2) > sp(ω0); hereafter, fix such a β. There exists θ sufficiently close to θ
that cp1(ω1) > cp1(ω

0) and cp2(ω
2) > cp2(ω

0). Figure 3(a) represents this situation, focussing
again on consumption. Concretely, imagine that Ann has two friends, Becky and Cindy.
In a given week, Ann may go out with Becky (ω1), Cindy (ω2), or both together (ω0).
Ann likes shopping for clothes with Becky and trying new restaurants with Cindy. When
out with both, she enjoys both activities even more. Finally, Ann anticipates that, once
in the store or the restaurant, she will tend to spend too much.

One can show that if Ann deems going out with both friends sufficiently likely (i.e.,
g > g∗ for some g∗ ∈ (0, 1)), then she wants to set a binding f as well as budgets for
both goods. In fact, the optimal B satisfies f = sp(ω0), b1 = cp1(ω

1), and b2 = cp2(ω
2).19

The intuition is this. If Ann was sure to go out with one friend at a time, she could
set f so as to eliminate splurging in ω1 and ω2—this f corresponds to the dotted line
in Figure 3(a). However, this f will be too stringent if she ends up going out with both
friends. Since this is very likely, Ann prefers f = sp(ω0). She knows that this f will not
bind when she is out with only one friend. But for this case she can curb overspending
using b1 and b2; also, here she can do so without affecting her choice in ω0.

17See Proposition 2 and 10 in Amador Manuel et al. (2006).
18The function ln(·) violates the continuity and differentiability assumptions of Section 2 at 0, but

this is irrelevant for the analysis.
19This claim is shown as part of the constructive proof of Proposition 4. The specific levels of b1 and

b2 are just a byproduct of logarithmic payoffs.
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Figure 3: Three-State Example (cdi = cd(ωi) and cpi = cp(ωi))

A simple change of this three-state setting suffices to explain why optimal plans can
involve only good-specific budgets. Fix g > g∗ and all the other parameters, except θ.
If we increase θ, both selves want to consume more in ω0. This eventually leads to a
situation as in Figure 3(b), where cp1(ω

0) > cp1(ω
1) and cp2(ω

0) > cp2(ω
2). In this case,

Ann wants to keep b1 and b2, but drop f . In fact, her optimal B satisfies b1 = b2 and
cpi (ω

i) < bi < cpi (ω
0) for every i = 1, 2, but f = 0.20 Figure 3(b) helps with the intuition.

Now Ann is willing to spend even more in ω0. Therefore, the budgets she would set to
curb splurging in ω1 and ω2 start to bind also in ω0. As a result, she wants to relax them.
She realizes, however, that her first-best spending on clothes and food in ω0 is just above
those budgets. Relaxing them a bit will allow her to curb splurging in ω1 and ω2 as well
as ω0. Since these budgets already push savings above the first best in ω0, Ann cannot
benefit by adding a binding f .

In short, a weakly present-biased agent may use only good-specific budgets for the
following reason. To curb undersaving in states with large asymmetry in consumption
marginal utilities, she may prefer to use the budgets rather than a savings floor, which
would have to be too stringent. Together the budgets then impose a cap on total spending.
If this already ensures sufficiently high savings in states where present consumption is
very valuable overall, then any binding floor will have to cause additional oversaving and
this inefficiency can exceed the floor’s commitment benefits.

4 Discussion
Theory and Evidence. How does this theory relate to the evidence on budgeting and
other explanations thereof? One finding is that people may set budgets on “unobjec-

20Again, this claim is shown as part of the constructive proof of Proposition 4. Note that, although
this three-state example is intuitive, it takes some work to rule out the possibility of multiple, perhaps
asymmetric, optimal plans featuring different properties from those in the proposition.
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tionable goods like sports tickets and blue jeans” (Heath Chip and Soll Jack B. (1996))
or housing, food, and even charitable giving (Thaler (1985, 1999)). This is difficult to
explain with an alternative theory arguing that people set budgets for the goods they find
tempting (“vice goods”)—although this can be true in some cases. By contrast, present
bias combined with uncertain intratemporal trade-offs can lead people to set budgets on
“unobjectionable goods,” as doing so helps them manage their overall tendency to over-
spend better than with just a savings floor. Thus, it is not the tempting nature of a good
that matters.

Another plausible theory is that budgeting is a technique to simplify the complex
matter of household finance (Simon Herbert A. (1965); Johnson Michael D. (1984)). This
theory is complementary to the one in this paper, but again struggles to explain some
evidence. For instance, it is not clear why computational complexity would lead people
to systematically set budgets which seem too strict and to cause underconsumption, as
found by Heath Chip and Soll Jack B. (1996). By contrast, present-biased people do
optimally set budgets that systematically bind and thus exhibit those properties.

The prediction that only weakly biased agents should use good-specific budgets is
consistent with some findings in Antonides Gerrit et al. (2011). In their sample, people
who exhibit a “short-term time orientation” (which according to their description is con-
sistent with strong present bias) are less likely to use budgets than people who exhibit
a “long-term time orientation” (a weak bias). Unfortunately, Antonides Gerrit et al.
(2011) do not measure how stringent budgets or floors are in relation to present bias. For
that matter, we saw that this relation need not be monotonic. As an alternative expla-
nation, strongly biased agents may not use budgets because they are less sophisticated
or able to commit. The anticipated bias (not the true one) is what matters for self-0’s
problem, however. Therefore, by Proposition 2 underestimating that bias—not entirely,
of course—may actually render it more likely that self-0 finds budgets beneficial. If this
same agent were instead sophisticated, he might not adopt any budget by Proposition 3.
We also saw that once a strongly biased agent can use a savings floor, the reason why
budgets do not work for him is not that he cannot honor them: Even if he could, they
would strictly lower his utility.

Relaxing Separability. The message of the paper generalizes to settings where utility
is not separable across goods. Continue to assume that u(c; r) is strictly concave in c and
twice differentiable with continuous uci(c; r) > 0 and ucicj(c; r) in both arguments for all i
and j. We saw that budgets help curb self-1’s undersaving if (a) they increase savings and
(b) there exist states which call for high consumption of some good, but not of all goods.
Property (b) holds if some good is a sufficiently strong substitute of all other goods.
Property (a) holds if the capped good is a Hicks substitute of savings (Howard David
H. (1977)); in general, such a good always exists (Madden Paul (1991), Theorem 2). As
noted, however, a budget has to curb undersaving faster than it exacerbates overspending
on other goods, for it to benefit self-0. Given space constraints, these properties are stated
directly in terms of allocations.

Condition 1. Both (cp, sp) and (cd, sd) are interior for every ω. Both sp and sd are
strictly decreasing in θ and ri for i = 1, 2. There exists some good j which satisfies
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the following: (1) cpj and cdj are strictly increasing in θ and rj and decreasing in ri for
i ̸= j; (2) there exists ε > 0 such that, for every bj < maxω c

d
j (ω), self-1’s optimal (c∗, s∗)

subject to plans involving only bj satisfies s∗(ω)− sd(ω) ≥ ε[cdj (ω)− c∗j(ω)] for all ω ∈ Ω.

Appendix 6.6 presents an example which satisfies Condition 1.
To state the result, consider a more general class of budgeting plans, denoted by B,

which allow to also set good-specific floors and a savings cap:
B = {(c, s) ∈ F : f0 ≤ s ≤ b0, f1 ≤ c1 ≤ b1, f2 ≤ c2 ≤ b2},

where fi, bi ∈ [0, 1] satisfy fi ≤ bi for i = 0, 1, 2 and f0 + f1 + f2 ≤ 1.
Proposition 5. Under Condition 1, there exists β∗ ∈ (0, 1) such that, if β∗ < β < 1,
then every optimal B ∈ B must use distorting good-specific restrictions.

The proof is omitted, because using Condition 1, one can adapt the proof of Proposition 2
to show that plans using only f0 are strictly dominated for sufficiently high β. Since
setting a binding b0 is never optimal, the result follows.

Do optimal good-specific restrictions always take the form of budgets? The answer
depends on the substitutability and complementarity between goods and between each
good and savings, which can be affected by the restrictions themselves. A sufficient
condition for optimal plans to never use f1 and f2 is that all goods are Hicks substitutes
and collectively sufficiently normal (see Ellis Christopher J. and Naughton Barry J. (1990)
for a formal statement of this property). Given this, by Theorems 3 and 4 of Madden
Paul (1991) two goods remain substitutes independently of which goods are restricted,
and Ellis and Naughton’s (1990) analysis implies that, given any f1 and f2, relaxing them
raises s. Hence, since f1 and f2 distort consumption, they strictly harm self-0. Optimal
plans use only b1 and b2 for the example in Appendix 6.6.

General Mechanisms. One may wonder how the best among all conceivable plans (not
just those in B) looks like and whether it belongs to B. These are important questions,
but also hard in the presence of multidimensional consumption and uncertainty. The
main challenges come from the income constraint and the complexity of the incentive
constraints, which as usual cannot be reduced to only the local ones. One can try to
apply here the insights from multidimensional screening (Rochet Jean-Charles and Stole
Lars A. (2003)), but substantive differences remain. First, screening problems allow for
transfers. Here, one can view the utility from savings as a transfer and use Rochet
and Choné’s (1998) approach to simplify the incentive constraints and self-0’s objective.
But the state-wise income constraint, the second difference from screening, cannot be
simplified. General techniques exist for handling such constraints (Luenberger David G.
(1969)), but unlike in the case of unidimensional consumption, here they do not go far.

5 Concluding Remarks
This paper provides a theoretical analysis of the link between self-control problems and
personal budgeting using a parsimonious consumption-savings model with a present-
biased agent. Unlike minimum-savings rules, good-specific spending caps help to curtail
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overspending because they cause inefficiencies in consumption which lower the return
from undersaving, thereby counteracting present bias. Consequently, good-specific bud-
gets are no free lunch and are used only by agents who are weakly biased and uncertain
about their intratemporal trade-offs between goods. Those who are strongly biased or
do not face such uncertainty prefer to rely exclusively on a minimum-savings rule.

This theory offers insights into the subtle forces underlying a widely observed phe-
nomenon, which has far-reaching consequences for consumer behavior and welfare by
affecting demand differently from satiation and income effects and by significantly con-
tributing to households’ wealth accumulation. The theory matches existing empirical
findings, such as that often people set budgets for goods normally not viewed as tempt-
ing and only those who exhibit weak present bias seem to use budgets. The theory also
suggests new directions for enriching the sparse evidence on budgeting by demonstrat-
ing its dependence on uncertain intratemporal trade-offs, and for designing commitment
devices whose functions are targeted to the right type of present-biased agents.

6 Appendix

6.1 Technical Lemmas

Lemma 2. There exists B that maximizes U(B) over B.

Proof. Each B ∈ B can be viewed as an element (f,b) of the compact set [0, 1]n+1. Thus, we
can think that self-0 chooses (f,b) ∈ [0, 1]n+1.

Given any such (f,b), let (c(ω|f,b), s(ω|f,b)) be self-1’s optimal allocation in state ω from
the compact set Bf,b defined by (f,b). Since Bf,b is convex (Theorem 2.1 in Rockafellar R.
Tyrrell (1997)), (c(ω|f,b), s(ω|f,b)) is unique for every ω ∈ Ω by strict concavity of self-1’s
utility function. Clearly, the correspondence that for each (f,b) ∈ [0, 1]n+1 maps to Bf,b
is non-empty, compact valued, and continuous. It follows from the Maximum Theorem that
(c(ω|·, ·), s(ω|·, ·)) is continuous for every ω ∈ Ω.

We can now show that self-0’s payoff is continuous in (f,b). For each (f,b) ∈ [0, 1]n+1, let

U(f,b) =
∫
Ω
[θu(c(ω|f,b); r) + v(s(ω|f,b)]dG(ω).

Since the integrand is continuous in (f,b) for every ω ∈ Ω and is uniformly bounded over B(f,b),
Lebesgue’s Dominated Convergence Theorem implies the claimed property of U(·, ·).

A second application of the Maximum Theorem gives the result.

Lemma 3. Fix i ∈ {1, . . . , n} and consider B ∈ B with bj = 1 for all j ̸= i. For any ω,
if bi < cdi (ω), self-1 chooses s > sd(ω) and cj > cdj (ω) for all j ̸= i.

Proof. Let i = 1 and b1 ∈ (0, cd1(ω)). Consider self-1’s problem in state ω to maximize θu(c, r)+
βv(s) for (c, s) ∈ F subject to c1 ≤ b1. The first-order conditions of its Lagrangian are
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βv′(s(ω)) = µ(ω), θu1c(c1(ω); r1) = µ(ω) + λ1(ω), and θuic(ci(ω); ri) = µ(ω) for all i ̸= 1, where
µ(ω) ≥ 0 and λ1(ω) ≥ 0 are the Lagrange multipliers for

∑n
i=1 ci ≤ 1 and c1 ≤ b1.

Suppose s(ω) ≤ sd(ω). Since c1(ω) = b1 < cd1(ω) and s(ω)+
∑

j cj(ω) = sd(ω)+
∑

j c
d
j (ω) = 1

by strong monotonicity of preferences, cj(ω) > cdj (ω) for some j ̸= 0, 1. By strict concavity of
uj and v, θujc(cj(ω); rj) < θujc(cdj (ω); rj) = βv′(sd(ω)) ≤ βv′(s(ω)). This violates the first-order
conditions for c(ω). So we must have s(ω) > sd(ω). This in turn implies that θujc(cj(ω); rj) =
βv′(s(ω)) < βv′(sd(ω)) = θujc(cdj (ω); rj) for j ̸= i. By concavity, cj(ω) > cdj (ω) for j ̸= 1.

For k = p, d, let sk = minω sk(ω) and sk(ω) = maxω sk(ω). Focussing on f ∈ [sd, sp],21

denote by Bf the corresponding policy in B.

Lemma 4. Define Ω(f) = {ω ∈ Ω : sd(ω) ≤ f} and let cf (ω) be the maximizer of u(c; r)
subject to

∑n
i=1 ci ≤ 1− f . Then, U(Bf ) is differentiable in f over [sd, sp] with

d

df
U(Bf ) =

∫
Ω(f)

[
v′(f)− θuci(cf (ω); r)

]
dG, for any i = 1, . . . , n.

Proof. Given f and any ω, define

ũ(f ;ω) ≡ u(cf (ω); r) = max
{c∈Rn

+:
∑n

i=1 ci≤1−f}
u(c; r). (3)

and Ũ(f ;ω) = θũ(f ;ω)+v(f). Since u(·; r) is strictly concave in c, so is ũ(·; r) in f by standard
arguments. Hence, Ũ(·;ω) is also strictly concave in f . Now consider Ũ ′(f ;ω). Whenever it is
defined, Ũ ′(f ;ω) = θũ′(f ;ω)+v′(f). By first-order conditions of the Lagrangian defining ũ(f ; r),
we have uci(cf (ω); r) = λ(ω; f) for i = 1, . . . , n, where λ(ω; f) is the Lagrange multiplier for∑n

i=1 ci ≤ 1 − f . Since cf (ω) is continuous in f for every ω, so is λ(ω; f). By Theorem 1, p.
222, of Luenberger David G. (1969), λ(ω; f ′)(f ′′ − f ′) ≤ ũ(f ′; r)− ũ(f ′′; r) ≤ λ(ω; f ′′)(f ′′ − f ′)
for every f ′, f ′′ ∈ (0, 1). Continuity of λ(ω; ·) implies that ũ′(f ; r) exists for every f ∈ (0, 1)
and ũ′(f ; r) = −λ(ω; f) = −uci(cf (ω); r). Therefore,

Ũ ′(f ;ω) = v′(f)− θuci(cf (ω); r), ω ∈ Ω. (4)

For any f , denote by (cf , sf ) self-1’s behavior as a function of ω under Bf . By the Maximum
Theorem, (cf (ω), sf (ω)) is continuous in both f and ω. Since fixing any s both selves would
choose the same c in every ω, by definition

Ψ(f) ≡ U(Bf ) =

∫
Ω
Ũ(sf (ω);ω)dG.

Consider any f > f̂ and recall that Ω(f) = {ω : sd(ω) ≤ f}. Then,

Ψ(f)−Ψ(f̂) =

∫
Ω(f)

[
Ũ(f ;ω)− Ũ(sf̂ (ω);ω)

]
dG

=

∫
Ω(f)∩(Ω(f̂))

c

[
Ũ(f ;ω)− Ũ(sf̂ (ω);ω)

]
dG+

∫
Ω(f̂)

[
Ũ(f ;ω)− Ũ(f̂ ;ω)

]
dG;

21Any other f is dominated by one in this range.
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the first equality holds because sf (ω) = sf̂ (ω) for ω /∈ Ω(f) and sf (ω) = f for ω ∈ Ω(f). Divide
both sides by f − f̂ and consider the limit as f ↓ f̂ . First, for all ω, we have

lim
f↓f̂

Ũ(f ;ω)− Ũ(f̂ ;ω)

f − f̂
= Ũ ′(f̂ ;ω).

Since Ũ(·;ω) is concave,∣∣∣∣∣ Ũ(f ;ω)− Ũ(f̂ ;ω)

f − f̂

∣∣∣∣∣ ≤ max
{∣∣∣Ũ ′(f ;ω)

∣∣∣ , ∣∣∣Ũ ′(f̂ ;ω)
∣∣∣} .

Since Ũ ′(f ;ω) is continuous in ω and f as illustrated by (4),
∣∣∣Ũ ′(f ;ω)

∣∣∣ is bounded by some
M < +∞ for (f, ω) ∈ [sd, sp]× Ω. Therefore, by Lebesgue’s Bounded Convergence Theorem,

lim
f↓f̂

∫
Ω(f̂)

Ũ(f ;ω)− Ũ(f̂ ;ω)

f − f̂
dG =

∫
Ω(f̂)

Ũ ′(f̂ ;ω)dG.

Consider now the second part of the limit. Again, by concavity of Ũ(·;ω) and since sf (ω) ∈
[sd, sp] for f ∈ [sd, sp], we have ∣∣∣∣∣ Ũ(f ;ω)− Ũ(sf̂ (ω);ω)

f − sf̂ (ω)

∣∣∣∣∣ ≤ M.

Therefore,∣∣∣∣∣
∫
Ω(f)∩(Ω(f̂))

c

Ũ(f ;ω)− Ũ(sf̂ (ω);ω)

f − f̂
dG

∣∣∣∣∣ ≤
∫
Ω(f)∩(Ω(f̂))

c

∣∣∣∣∣ Ũ(f ;ω)− Ũ(sf̂ (ω);ω)

f − f̂

∣∣∣∣∣ dG
≤

∫
Ω(f)∩(Ω(f̂))

c

∣∣∣∣∣ Ũ(f ;ω)− Ũ(sf̂ (ω);ω)

f − sf̂ (ω)

∣∣∣∣∣ dG
≤ M

∫
Ω(f)∩(Ω(f̂))

c
dG.

Observe that Ω(f)∩
(
Ω(f̂)

)c
= {ω : f̂ < sf̂ (ω) ≤ f}, which converges to an empty set as f ↓ f̂ .

Since then the second part of the limit converges to zero as f ↓ f̂ , for every f̂ ∈ [sd, sp)

Ψ′(f̂+) =

∫
Ω(f̂)

Ũ ′(f̂ ;ω)dG.

A similar argument implies that Ψ′(f̂−) =
∫
Ω(f̂) Ũ

′(f̂ ;ω)dG for everyf̂ ∈ (sd, sp]. Hence, Ψ(f)

is differentiable over [sd, sp].

6.2 Proof of Lemma 1

Fix r. Recall the definition of U(D) in (1) of the main text and that (c(θ), s(θ)) represents
self-1’s optimal choice in state θ. There exists D ⊂ F such that U(D) ≥ U(D′) for all D′ ⊂ F if
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and only if there exist functions χ : [θ, θ] → Rn
+ and t : [θ, θ] → R+ that satisfy two conditions:

(1) for all θ, θ′ ∈ [θ, θ]

θu(χ(θ); r) + βv(t(θ)) ≥ θu(χ(θ′); r) + βv(t(θ′))

and
n∑

i=1

χi(θ) + t(θ) ≤ 1;

(2) the pair (χ, t) maximizes ∫ θ

θ
[θu(χ(θ); r) + v(t(θ))] gr(θ)dθ.

On the other hand, there exists Dtc ⊂ F tc such that U(Dtc) ≥ U(D̂tc) for all D̂tc ⊂ F tc if
and only if there exist functions φ : [θ, θ] → R+ and τ : [θ, θ] → R+ that satisfy two conditions:
(1’) for all θ, θ′ ∈ [θ, θ]

θu∗(φ(θ); r) + βv(τ(θ)) ≥ θu∗(φ(θ′); r) + βv(τ(θ′)),

where u∗(y; r) = max{c′∈Rn
+:

∑n
i=1 c

′
i≤y} u(c

′; r), and

φ(θ) + τ(θ) ≤ 1;

(2’) the pair (φ, τ) maximizes∫ θ

θ
[θu∗(φ(θ); r) + v(τ(θ))] gr(θ)dθ.

Suppose (χ, t) that satisfies condition (1) and (2). Then, by our discussion on money
burning before the statement of Lemma 1, there exists a function φ : [θ, θ] → R+ such that
u∗(φ(θ); r) = u(χ(θ); r) and φ(θ) ≤

∑n
i=1 χi(θ) for all θ ∈ [θ, θ]. Hence, letting τ ≡ t, we have

that (φ, τ) satisfies both (1’) and (2’).
Suppose (φ, τ) satisfy conditions (1’) and (2’). For every θ ∈ [θ, θ], let

χ(θ) = argmax
{c∈Rn

+:
∑n

i=1 ci≤φ(θ)}
u(c; r).

Then, by definition, u(χ(θ); r) = u∗(φ(θ); r) for all θ ∈ [θ, θ]. Letting t ≡ τ , we have that (χ, t)
satisfy both (1) and (2).

6.3 Proof of Proposition 2

The proof uses the following three lemmas.

Lemma 5. When self-0 can set only f , every optimal f satisfies sp < f < sp.
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Proof. We will show that Ψ′(f) > 0 for all f ∈ (sd, sp] and Ψ′(f−) < 0 for f = sp. Recall that
(cf , sf ) is continuous in f for every ω and therefore so is Ψ(f). These observations imply that
every optimal f∗ is in (sp, sp).

For any f ∈ (sd, sp], define Ω+(f) = {ω : sp(ω) > f} and Ω−(f) = {ω : sp(ω) ≤ f}. For
ω ∈ Ω+(f), consider the fictitious problem maximizing θu(c; r) + v(s) for (c, s) ∈ Rn+1

+ subject
to s+

∑
i ci ≤ 1 and s ≤ f . Letting µ(ω) and ϕ+(ω) be the corresponding Lagrange multipliers,

the first-order conditions are22 v′(s) = µ(ω) + ϕ+(ω) and θuci(c; r) = µ(ω) for all i. Clearly,
s = f and ϕ+(ω) > 0 for ω ∈ Ω+(f). Also, conditional on s = f , both selves would choose the
same c in state ω, which is therefore cf (ω). Using (4), it follows that, for every i,

ϕ+(ω) = v′(f)− θuci(cf (ω);ω) = Ũ ′(f ;ω), ω ∈ Ω+(f). (5)

For ω ∈ Ω−(f), consider the fictitious problem of maximizing θu(c; r) + v(s) for (c, s) ∈ Rn+1
+

subject to s +
∑

i ci ≤ 1 and s ≥ f . Letting µ(ω) and ϕ−(ω) be the corresponding Lagrange
multipliers, the first-order conditions are v′(s) = µ(ω) − ϕ−(ω) and θuci(c; r) = µ(ω) for all i.
Clearly, s = f and ϕ−(ω) ≥ 0 for ω ∈ Ω−(f). Also, conditional on s = f , both selves would
choose the same c in state ω, which is therefore cf (ω). Using (4), it follows that, for every i,

ϕ−(ω) = θuci(cf (ω); r)− v′(f) = −Ũ ′(f ;ω), ω ∈ Ω−(f).

Consider any f ∈ (sd, sp]. Recall that Ω(f) = {ω : sd(ω) ≤ f}. Using Lemma 4, we have

Ψ′(f) =

∫
Ω(f)∩Ω+(f)

Ũ ′(f ;ω)dG+

∫
Ω(f)∩Ω−(f)

Ũ ′(f ;ω)dG =

∫
Ω(f)∩Ω+(f)

ϕ+(ω)dG,

where the last equality follows because either Ω−(f) = ∅ or ϕ−(ω) = 0 for ω ∈ Ω−(f). The
function ϕ+(ω) is strictly positive over Ω(f)∩Ω+(f). We need to show that G(Ω(f)∩Ω+(f)) >
0, which implies Ψ′(f) > 0. This is immediate if f ∈ (sd, sp), because Ω+(f) = Ω. Consider
f = sp. Clearly, Ω(sp) ∩ Ω+(sp) contains the open set Ω

◦
(sp) ∩ Ω+(sp) = {ω : sd(ω) < sp <

sp(ω)}. If we this set is non-empty, we are done because G has full support. Both Ω
◦
(sp) and

Ω+(sp) are nonempty. Suppose that Ω+(sp) ∩ Ω
◦
(sp) = ∅. Then, for every ω ∈ Ω+(sp), we

have sd(ω) ≥ sp and that Ω◦
(sp) ⊂ Ω−(sp) = {ω : sp(ω) = sp}. Now, consider ω̂ ∈ Ω

◦
(sp) and

any sequence {ωn} in Ω+(sp) converging to ω̂. We have that limωn→ω̂ inf sd(ωn) ≥ sp > sd(ω̂).
But this violates the continuity of sd—a contradiction.

Now consider f = sp. Using again Lemma 4, we have

Ψ′(sp−) =

∫
Ω(sp)

Ũ ′(sp;ω)dG =

∫
Ω
Ũ ′(sp;ω)dG = −

∫
Ω
ϕ−(ω)dG,

where ϕ−(ω) > 0 for all ω such that sp(ω) < sp. Therefore, Ψ′(sp−) < 0.23

Let E(β) be the set of optimal floors and u∗(y; r) the indirect utility of spending y ∈ [0, 1].
22Here—and in the other proofs—the complementary slackness conditions are omitted for simplicity.
23It is easy to see that the optimal f satisfies f ≤ sp. Suppose f ∈ (sp, 1). Then, for all ω, self-1 chooses

s(ω) = f and c(ω) = cf (ω). Take any f ′ ∈ (sp, f). Then, for every ω, f ′ = ζ(ω)f + (1 − ζ(ω))sp(ω)
for some ζ(ω) ∈ (0, 1). Therefore, for every ω, Ũ(f ′;ω) > Ũ(f ;ω) because Ũ(sp(ω);ω) > Ũ(f ;ω) and
Ũ(·;ω) is strictly concave. It follows that self-0’s payoff is strictly larger under f ′ than under f .
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Lemma 6. E(β) is decreasing in β in the strong set order.24 The largest optimal f converges
monotonically to sp as β ↑ 1. There exists β > 0 such that E(β) = {f} for all β ≤ β, where f

satisfies f < sp and
U(Bf ) = max

f∈[sp,sp]

∫
Ω
[θu∗(1− f ; r) + v(f)]dG.

Proof. Fix f ∈ [sd, sp]. The set Ω(f) in Lemma 4 depends on β via (cd, sd). By standard
arguments, if β < β′ < 1, then sd(ω;β) < sd(ω;β′) for every ω and hence Ω(f ;β′) ⊂ Ω(f ;β).
Also, Ω−(f) ⊂ Ω(f ;β) for every β < 1 because sd(ω;β) < sp(ω) for every ω. So, if β < β′ < 1,

Ψ′(f ;β)−Ψ′(f ;β′) =

∫
(Ω(f ;β)\Ω(f ;β′))∩Ω+(f)

ϕ+(ω)dG ≥ 0,

where the inequality uses (5). By standard results, E(β) decreases in the strong set order.
Define f(β) = max{f : f ∈ E(β)}. Since f(β) ≥ sp for all β and f(·) is decreas-

ing, limβ↑1 f(β) exists; denote it by f(1−) ≥ sp. Clearly, f(1) = sp. Now suppose that
f(1−) > f(1). By a similar argument, for any f > sp, limβ↑1Ψ

′(f ;β) exists and equals
−
∫
Ω−(f) ϕ(ω)dG < 0. Therefore, for β close enough to 1, f(β) ≥ f(1−) cannot be optimal—a

contradiction which implies f(1−) = f(1).
Note that sd(β) = maxΩ sd(s;β) falls monotonically to 0 as β ↓ 0. Let β = max{β ∈ [0, 1] :

sd(β) ≤ sp}, which is strictly positive because sp > 0. Then, Ω(f) = Ω for all β ≤ β and
f ∈ [sp, sp] and hence

Ψ(f ;β) =

∫
Ω
[θu(cf (ω); r) + v(f)]dG. (6)

From the proof of Lemma 4, u(cf (ω); r) = ũ(f ;ω) is strictly concave in f for all ω. Thus, the
maximizer of (6) is unique. From the proof of Lemma 5, the derivative of (6) is negative at sp
and hence f < sp.

We now show that self-0 benefits from using only bi.

Lemma 7. Fix i and consider plans Bbi with bj = 1 for all j ̸= i and f = 0. There
exists bi < maxω cdi (ω) ≡ cdi such that U(Bbi) > U(F ).

Proof. Fix i = 1 and any b1 ∈ (0, cd1]. Let (cb1 , sb1) describe self-1’s choices under Bb1 and

Φ(b1) =

∫
Ω
[θu(cb1(ω); r) + v(sb1(ω))]dG.

Let Ω(b1) = {ω : cd1(ω) > b1}. Since cd1 is continuous, Ω(b1) is non-empty and open if b1 < cd1,
and hence G(Ω(b1)) > 0. We have

Φ(b1)− Φ(cd1) =

∫
Ω(b1)

{[θu(cb1(ω); r) + v(sb1(ω))]− [θu(cd(ω); r) + v(sd(ω))]}dG

= (1− β)

∫
Ω(b1)

[
v(sb1(ω))− v(sd(ω))

]
dG

24Given two sets E and E′ in R, E ≥ E′ in the strong set order if, for every f ∈ E and
f ′ ∈ E′, min{f, f ′} ∈ E′ and max{f, f ′} ∈ E (Milgrom Paul and Shannon Chris (1994)).
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+

∫
Ω(b1)

[
Ṽ (cb11 (ω);ω)− Ṽ (cd1(ω);ω)

]
dG,

where
Ṽ (b̂1;ω) = max

{(c,s)∈Rn+1
+ :

∑n
j=1 cj≤1,c1≤b̂1}

{θu(c; r) + βv(s)}.

Clearly, Ṽ (cd1(ω);ω) ≥ Ṽ (b1;ω) for all ω. From the first-order conditions of the Lagrangian
defining Ṽ (b̂1;ω), we have λ1(ω; b̂1) = θu1c(c

b̂1
1 (ω); r1) − βv′(sb̂1(ω)), where λ1(ω; b̂1) is the

Lagrange multiplier for c1 ≤ b̂1. Since (cb̂1(ω), sb̂1(ω)) is continuous in b̂1 and ω, so is λ1(ω; b̂1).
Again by Theorem 1, p. 222, of Luenberger David G. (1969), Ṽ ′(b̂1;ω) exists for all b̂1 and
equals λ1(ω; b̂1). It follows that Ṽ ′(cd1(ω);ω) = 0 for all ω by the definition of (cd, sd). By
the Mean Value Theorem (MVT), Ṽ (cb11 (ω);ω) − Ṽ (cd1(ω);ω) = Ṽ ′(χ(ω);ω)(cb11 (ω) − cd1(ω))
and v(sb1(ω)) − v(sd(ω)) = v′(ξ(ω))(sb1(ω) − sd(ω)), where χ(ω) ∈ [cb11 (ω), cd1(ω)] and ξ(ω) ∈
[sd(ω), sb1(ω)].

Let bε1 = cd1 − ε for some ε > 0. Fix ω ∈ Ω(bε1) and, for now, drop the dependence on ω.
Recall that sbε1 +

∑
i c

bε1
i = sd +

∑
i c

d
i = 1. Since sb

ε
1 > sd for ε > 0 (Lemma 3), we can write

− c
bε1
1 − cd1
sb

ε
1 − sd

= 1 +
∑
j ̸=1

c
bε1
j − cdj

sb
ε
1 − sd

. (7)

Now, for any bε1, the first-order condition βv′(s) − θujc(cj ; rj) = 0 must hold for every j ̸= 1.
Therefore, again by the MVT, for all j ̸= 1

c
bε1
j − cdj =

β[v′(sb
ε
1)− v′(sd)]

θujcc(ζj ; rj)
(8)

for some ζ ∈ [cdj , c
bε1
j ]. Now, since v′′ is continuous, v′(y)−v′(ŷ) ≥ v′′[y− ŷ] for every y > ŷ ≥ sd,

where v′′ = minξ∈[sd,1] v′′(ξ) < 0. Therefore, using (7) and (8),

− c
bε1
1 − cd1
sb

ε
1 − sd

= 1 +
1

sb
ε
1 − sd

∑
j ̸=1

β

θujcc(ζj ; rj)
[v′(sb

ε
1)− v′(sd)]

≤ 1 +
1

sb
ε
1 − sd

∑
j ̸=1

βv′′

θujcc(ζj ; rj)
[sb

ε
1 − sd] ≤ 1 +

βv′′

θ

∑
j ̸=1

1

ujcc
,

where the first inequality uses ujcc < 0 and ujcc = maxξ∈[sd,1],rj∈[rj ,rj ] u
j
cc(ξ; rj) < 0. Letting K =[

1 + βv′′

θ

∑
j ̸=1

1

uj
cc

]−1
, it follows that sbε1(ω)− sd(ω) ≥ K

[
cd1(ω)− c

bε1
1 (ω)

]
for every ω ∈ Ω(bε1).

These observations imply that Φ(bε1)− Φ(cd1) is bounded below by∫
Ω(bε1)

[
K(1− β)v′(ξ(ω))− Ṽ ′(χ(ω);ω)

]
(cd1(ω)− bε1)dG. (9)

Since v′ is continuous and strictly positive everywhere and ξ(ω) ∈ [sd, 1] with sd > 0 for all
ω ∈ Ω(bε1), there exists a finite κ > 0 such that v′(ξ(ω)) ≥ κ for all ω ∈ Ω(bε1).

Next let Ω(bε1) = {ω : cd1(ω) ≥ bε1}. By continuity of cd1, Ω(·) is a compact-valued and
continuous correspondence. Note that Ṽ ′(χ(ω);ω) = Ṽ ′(cd1(ω);ω) = 0 if cd1(ω) = bε1. We have

sup
ω∈Ω(bε1)

Ṽ ′(χ(ω);ω) = sup
ω∈Ω(bε1)

Ṽ ′(χ(ω);ω) ≤ max
bε1≤ζ≤cd1,ω∈Ω(bε1)

Ṽ ′(ζ;ω) ≡ κ(bε1).
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Clearly, κ(bε1) ≥ 0 for every ε > 0, κ(bε1) ≤ κ(bε
′
1 ) for ε′ > ε > 0, and limε→0 κ(b

ε
1) = 0 because

κ(·) is continuous. Therefore, there exists ε∗ > 0 such that κ(bε∗1 ) < κ(1− β)K. It follows that
for all ε ∈ (0, ε∗], expression (9) is strictly positive, and hence Φ(bε

∗
1 ) > Φ(cd1).

We can now complete the proof. By Lemma 6, f(β) falls monotonically to sp when β ↑ 1.
Also, for every i = 1, . . . , n, sd(θ, ri, r−i;β) rises monotonically to sp(θ, ri, r−i) as β ↑ 1. By
Remark 1, sp(θ, ri, r−i) > sp. Given this, define

β∗ = inf{β ∈ (0, 1) : f(β) < max
i

sd(θ, ri, r−i;β)}.

Clearly, β∗ < 1 and, for every β > β∗, we have sd(θ, ri, r−i;β) > f(β) for at least some
i = 1, . . . , n. Hereafter, fix β > β∗ and any i that satisfies this last condition.

For ε ≥ 0, consider bεi = cdi − ε as in Lemma 7, where cdi = cdi (θ, ri, r−i) by Remark 1.
Let Φ(bεi , f(β)) be self-0’s payoff from adding bεi to the existing f(β). We will show that there
exists ε > 0 such that Φ(bεi , f(β)) > Φ(b0i , f(β)) = U(Bf(β)). To do so, for any ε ≥ 0, let (cε, sε)
be self-1’s choice function under (bεi , f(β)) and Ω(bεi ) = {ω ∈ Ω : c0i (ω) > bεi}. Then,

Φ(bεi , f(β))− Φ(b0i , f(β)) =

∫
Ω(bεi )

{[θu(cε(ω); r) + v(sε(ω))]− [θu(c0(ω); r) + v(s0(ω))]}dG.

Note that, if there exists ε > 0 such that (cε(ω), sε(ω)) = (cd(ω), sd(ω)) for all ω ∈ Ω(bεi ) and
0 < ε < ε, then for such ε’s the previous difference equals Φ(bεi )−Φ(cdi ) in the proof of Lemma 7.
By the conclusion of that proof, there exists ε∗∗ ∈ (0, ε) such that Φ(bε∗∗i , f(β)) > Φ(b0i , f(β)).

Thus we only need to prove the existence of ε. Let Ω(f(β)) = {ω ∈ Ω : sd(ω) ≤ f(β)},
which is compact by continuity of sd. Define c̃i = maxΩ(f(β)) c

0
i (ω). Since sd(θ, ri, r−i) >

f(β), (θ, ri, r−i) /∈ Ω(f(β)) and hence c0i (θ, ri, r−i) = cdi (θ, ri, r−i), where cdi (θ, ri, r−i) = cdi by
Remark 1. We must also have c̃i < cdi : Indeed, for all ω ∈ Ω(f(β)), optimality requires

θuic(ci(ω); ri) = βv′(f(β)) + λ0(ω) > βv′(sd(θ, ri, r−i)) = θuic(c
d
i ; ri),

where λ0(ω) ≥ 0 is the Lagrange multiplier for s ≥ f(β). If ω is such that c0i (ω) > c̃i, then
ω /∈ Ω(f(β))—otherwise it would contradict the definition of c̃i—and hence c0(ω) = cd(ω). Let
ε = cdi − c̃i > 0. By construction for ε ∈ (0, ε), c0i (ω) > bεi implies c0(ω) = cd(ω), as desired.

6.4 Proof of Proposition 3 and Corollary 1

Lemma 8. For every β ∈ (0, 1), if B ∈ B is optimal, then max{f, 1−
∑n

i=1 bi} ≥ minω∈Ω sp(ω).

Proof. Define σ = max{f, 1 −
∑n

i=1 bi}. Since s(ω) +
∑n

i=1 ci(ω) = 1, s(ω) ≥ σ for all ω.
Without loss of generality, we can let σ = minΩ s(ω): If minΩ s(ω) > σ, we could raise f to the
level minΩ s(ω) and nothing would change.

Now fix β ∈ (0, 1). Suppose B′ is optimal, but σ′ < sp. Consider B′′ ∈ B equal to B′,
except for f ′′ = sp. Since B′ is convex and compact, the ensuing allocation (c′, s′) is continuous
in ω. So, Ω(sp) = {ω ∈ Ω : s′(ω) < sp} contains an open subset and G(Ω(sp)) > 0. Consider
ω ∈ Ω(sp) and the problem of maximizing θu(c; r)+ v(s) for (c, s) ∈ Rn+1

+ subject to ci ≤ b′i for

25



i = 1, . . . , n and s ≤ f . For any f < sp, the latter must bind because, by the logic of Lemma 3,
self-0 would want to save at least sp(ω) ≥ sp if facing only ci ≤ b′i for i = 1, . . . , n. Therefore,
self-0’s payoff from this fictitious problem is strictly increasing in f for f ≤ sp. When self-1
faces B′′, the constraint s ≥ sp must bind, so his allocation (c′′(ω), sp) solves maxu(c; r) subject
to c ∈ Rn

+, ci ≤ b′i, and
∑n

i=1 ci ≤ 1 − sp. This allocation coincides with self-0’s allocation in
the fictitious problem with f = sp. Hence, in ω, (c′′(ω), sp) is strictly better for self-0 than
(c′′(ω), s′(ω)). For all ω ∈ Ω(sp), self-0’s payoff is then strictly larger under B′′ than B′. Since
for ω /∈ Ω(sp) self-1’s allocation is unchanged, U(B′′) > U(B′)—a contradiction.

Given Lemma 8, we now complete the proof of Proposition 3. We first show that there exists
β∗∗ > 0 such that, if β < β∗∗, then for any B ∈ B with σ ≥ sp the resulting allocation (c, s)
satisfies s(ω) = σ for all ω ∈ Ω. It is enough to show that s(θ, r) = s = maxΩ s(ω) must equal σ.
By strict concavity of v, v′(s) ≤ v′(sp) < +∞ because sp > 0. By considering the Lagrangian of
self-1’s problem in ω = (ω, r), we have that (c(ω), s(ω)) must satisfy βv′(s) + ϕ0(ω) + γi(ω) =
θuic(ci(ω); ri) for all i = 1, . . . , n, where ϕ0(ω) ≥ 0 and γi(ω) ≥ 0 are the Lagrange multipliers
for s ≥ f and ci ≤ bi. For every i = 1, . . . , n, since ci(ω) ≤ 1 and ui(·; ri) is strictly concave,
uic(ci(ω); ri) ≥ uic(1; ri) > 0. Now let

β∗∗ = min
i

θuic(1; ri)

v′(sp)
> 0. (10)

Then, for every β < β∗∗, we have βv′(s(ω)) < θuic(ci(ω); ri) for all i = 1, . . . , n. Therefore,
ϕ0(ω) + γi(ω) > 0 for all i = 1, . . . , n. Hence, either ϕ0(ω) > 0, in which case s = f = σ; or
γi(ω) > 0 for all i = 1, . . . , n, in which case s = 1−

∑n
i=1 ci(ω) = 1−

∑n
i=1 bi = σ.

Finally, let β < β∗ = min{β, β∗∗} where β > 0 was defined in Lemma 6. Let Bβ ∈ B
be an optimal plan for β. By Lemma 8, σβ ≥ sp. The previous result then implies that
U(Bβ) =

∫
Ω[θu(c(ω); r) + v(σβ)]dG. Hence,

U(Bβ) ≤
∫
Ω
[θu(cσβ

(ω); r) + v(σβ)]dG ≤
∫
Ω
[θu(cf (ω); r) + v(f)]dG = U(Bf ),

where the first inequality holds since u(c(ω); r) ≤ max{c∈Rn
+:

∑n
i=1 ci≤σβ} u(c; r) = u(cσβ

(ω); r)
for all ω ∈ Ω and from the definition of f in Lemma 6. If Bβ involves budgets that bind for
a set Ω′ with G(Ω′) > 0, then u(c(ω); r) < u(cσβ

(ω); r) for all ω ∈ Ω′ and U(Bβ) < U(Bf ).
Therefore, optimal plans can only use f .

Finally, let r′, r, r′, and r satisfy the properties in Corollary 1. Then sp′ = sp(θ, r′) ≥
sp(θ, r) = sp with strict inequality if r ̸= r′ (Remark 1). Similarly, for β ∈ (0, 1), sd′(β) =
sd(θ, r′;β) ≤ sd(θ, r;β) = sd(β) with strict inequality if r′ ̸= r. The definition of β∗∗ in (10),
the strict concavity of v, and r′i ≥ ri imply that β′

∗∗ > β∗∗. The definition of β in the proof of
Lemma 6 and the fact that sd is strictly increasing in β imply that β′ > β. Therefore β′

∗ > β∗.

6.5 Proof of Proposition 4

The proof is constructive: It first establishes the claimed properties for the illustrative three-
state setting in Section 3.4, which are then used for the general result.
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Part I. Let ω0 = (θ, r1, r2), ω1 = (θ, r1, r2), and ω2 = (θ, r1, r2) with respective probabilities
g, 1−g

2 , and 1−g
2 . Choose β < 1 so that sd(ω1) = sd(ω2) > sp(ω0) and θ so that cp1(ω1) > cp1(ω

0)
and cp2(ω

2) > cp2(ω
0).

Lemma 9. There exists g∗ ∈ (0, 1) such that, if g > g∗, then the optimal B ∈ B satisfies
f = sp(ω0), b1 = cp1(ω

1), and b2 = cp2(ω
2).

Existence of an optimal B follows from an argument similar to the proof of Lemma 2. Claims
1–5 characterize its properties.
Claim 1. There exists g∗ ∈ (0, 1) such that, if g > g∗ and self-0 can use only f , she sets
f = sp(ω0).

Proof. We can focus on f ∈ [sd(ω1), sp(ω1)] ∪ {sp(ω0)}. For simplicity, let U(c, s;ω) =
θu(c; r) + v(s). If f = sp(ω0), by symmetry self-0’s payoff is gU(cp(ω0), sp(ω0);ω0) + (1 −
g)U(cd(ω1), sd(ω1);ω1); if instead f ∈ [sd(ω1), sp(ω1)], self-0’s payoff is gU(cf (ω0), f ;ω0)+(1−
g)U(cf (ω1), f ;ω1), where cf (ω) is defined in Lemma 4. Thus, f = sp(ω0) identifies the best B
that uses only f if

g

1− g
> max

f∈[sd(ω1),sp(ω1)]

U(cf (ω1), f ;ω1)− U(cd(ω1), sd(ω1);ω1)

U(cp(ω0), sp(ω0);ω0)− U(cf (ω0), f ;ω0)
≥ 0. (11)

The term on the right-hand side is well defined; also, for all f ∈ [sd(ω1), sp(ω1)] we have
U(cp(ω1), sp(ω1);ω1) ≥ U(cf (ω1), f ;ω1) ≥ U(cd(ω1), sd(ω1);ω1) and U(cp(ω0), sp(ω0);ω0) >
U(cf (ω0), f ;ω0) because sd(ω1) > sp(ω0).

Hereafter, assume that g > g∗.
Claim 2. Fix i ∈ {1, 2}. Suppose self-0 knows that the state is ωi and can only use bi. Then,
bi = cpi (ω

i) is optimal.

Proof. Let i = 1. The argument in the proof of Lemma 7 implies that it is optimal to set
b1 < cd1(ω

1). To find the optimal b1, consider first self-1’s problem to maximize θ[r ln(c1) +
r ln(c2)] + β ln(s) subject to s+ c1 + c2 ≤ 1 and c1 ≤ b1. Since both constraints must bind, this
becomes maxs∈[0,1]{θ r ln(1− b1 − s) + β ln(s)}. The solution is characterized by the first-order
conditions, which lead to

s(b1) =
β

θ r + β
(1− b1) and c2(b1) =

θ r

θ r + β
(1− b1).

Given this, self-0’s payoff in ω1 as a function of b1 becomes (up to a constant)

θ[r ln(b1) + r ln(1− b1)] + ln(1− b1). (12)

The optimal b1 is again characterized by the first-order condition, which leads to

b1 =
θr

1 + θ[r + r]
. (13)
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Finally, cp1(ω1) results from maximizing θ[r ln(c1) + r ln(c2)] + ln(s) subject to s+ c1 + c2 ≤ 1.
Substituting s = 1− c1 − c2 and combining the first-order conditions yields

cp1(ω
1) =

θr

1 + θ[r + r]
.

Claim 3. Fix i ∈ {1, 2}. Suppose self-0 knows that the state is ωi. Then, she strictly prefers
to use only bi than only b−i.

Proof. Let i = 1. Similar calculations to the proof of Claim 2 imply that if self-0 can impose
only b2, she sets

b2 =
θ r

1 + θ[r + r]
. (14)

We want to argue that self-0’s payoff in ω1 is strictly larger if she uses only b1 as in (13) than
if she uses only b2 as in (14). Substituting the choices implied by b1 and b2 into self-0’s utility
function, one can show that b1 in (13) is strictly better than b2 in (14) if and only if

(1 + θr) ln(β + θr)− (1 + θ r) ln(β + θ r) > (1 + θr) ln(1 + θr)− (1 + θ r) ln(1 + θ r).

To show that this holds, consider φ(β, r) = (1 + θr) ln(β + θr) for 0 < β < 1 and r > 0. Since

φβr(β, r) =
∂

∂r

(
1 + θr

β + θr

)
=

θ(β − 1)

(β + θr)2
< 0,

φ(β, r)− φ(β, r) is strictly decreasing in β. Continuity gives the result.

Claim 4. If B is optimal, then f can bind at most in ω0.

Proof. If f binds in all ωs, then B is weakly dominated by a policy using only f and no
budgets, as they distort c without raising s. Given g > g∗, by Claim 1 the latter plan is strictly
dominated by one using only f = sp(ω0). Clearly, if f binds in ω1 and ω2, it must bind in ω0.

Now suppose that f binds only in ω0 and another state, say, ω1. There are two cases:
Case 1: b1 does not bind in ω2. Then, removing b1 leads to a weakly superior policy in which
f binds only in ω0 and ω1. Given g > g∗, however, the gain from raising f above sp(ω0) to
improve self-1’s allocation only in ω1 does not justify the loss created in ω0. Therefore, B is
again strictly dominated by the policy obtained if we remove b1 and set f = sp(ω0).
Case 2: b1 binds also in ω2. This implies that f has to bind in all ωs. Indeed, since b1 binds in
both ω1 and ω2, self-1 chooses c1 = b1 in both states; also, since in ω2 good 2 is more valuable
than in ω1, self-1 wants to allocate more income to good 2 than to s relative to ω1, and so f also
binds in ω2. But we know that such a policy is strictly dominated by using only f = sp(ω0).

Claim 5. If B involves binding budgets, then bi can bind at most in ωi for i = 1, 2.
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Proof. Without loss, consider b1. Suppose first that b1 binds in all states, which implies that
c1(ω

i) = b1 for all i = 0, 1, 2. There are five cases to consider:
Case 1: Neither b2 nor f bind in any state. Since θ > θ, c2(ω0) > c2(ω

2). The plan cannot be
optimal because, given b1, self-0 would be strictly better off by adding an f that binds only in
ω0: Even if b1 were binding for self-0 in ω0, she would strictly prefer c2 < c2(ω

0) of good 2.
Case 2: b2 binds in all states. Then, c2(ωi) = b2 and s(ωi) = 1 − b1 − b2 for all i = 0, 1, 2.
This plan is strictly dominated by one that imposes only f = 1− b1 − b2—because budgets are
distorting—which is in turn strictly dominated by the plan with only f = sp(ω0) given g > g∗.
Case 3: b2 binds in no state. Then, as in case 1, for B to be optimal f must bind at least
in ω0 and only in ω0 by Claim 4. Since by assumption b1 binds in all states, it must be
that b1 < cp1(ω

1). Indeed, if b1 ≥ cp1(ω
1), the optimal f equals sp(ω0); since by assumption

cp1(ω
0) < cp1(ω

1), b1 cannot bind in ω0. It follows that, with regard to ω0 and ω1, self-0 would
be strictly better off replacing b1 and f with b̂1 = cp1(ω

1) and f̂ = sp(ω0). With regard to ω2,
self-0 would be better off by replacing b2 with b̂2 = cp2(ω

2): By Claim 3, even if b1 were perfectly
tailored for ω2, it would be strictly dominated in ω2 by b̂2.
Case 4: b2 binds only in ω0. Since self-1’s choices satisfy c2(ω

0) > c2(ω
2) if the plan used only

b1, it follows that self-0 can obtain in all ωs the same allocations induced by B if she uses an f
that binds only in ω0. Such a plan, however, is again strictly dominated as in case 3.
Case 5: b2 binds in ω0 and in ω2. Since self-1’s choices satisfy c2(ω

0) > c2(ω
2) if the plan used

only b1, self-0 could again obtain the same allocation in all ωs with an f that binds only in ω0

and ω2. By Claim 4, however, such a plan cannot be optimal.
Now suppose b1 binds in only two states. If these are ω1 and ω0, by the same argument as

in case 3 above self-0 is strictly better off by replacing b1 and f with b̂1 = cp1(ω
1) and f̂ = sp(ω0)

as well as b2 with b̂2 = cp2(ω
2). If b1 binds in ω1 and ω2, it must also bind in ω0—which is the

case we considered before. Indeed, if b1 binds in ω2, then it will also bind at the fictitious state
(θ, r, r) and hence in ω0 where both goods are more valuable. Lastly, b1 cannot bind only in
ω0 and ω2: It would have to bind also in ω1, since in ω1 good 1 is more valuable than in ω2.

Finally, suppose b1 binds in only one ω. We have just argued that if b1 binds in ω2, it must
also bind in ω1. Thus, we have to rule out the case where b1 binds only in ω0. This is possible
only if in ω0 also b2 binds, inducing self-1 to overconsume good 1. However, such a b2 must also
bind in ω2, but we just showed that a bi cannot bind in more than one ω.

Part II. The three-state setting can be modified so that the optimal B uses only b1 and b2. Fix
g > g∗ and the other parameters, except θ. Raise θ to θ

′ so that cpi (ω0) > cpi (ω
1) for i = 1, 2.

Lemma 10. There exists θ
′ such that in the optimal B ∈ B both b1 and b2 bind, but f never

binds. In particular, the optimal B satisfies b1 = b2 and cpi (ω
i) < bi < cpi (ω

0) for i = 1, 2.

Start from θ that implies cpi (ω
1) > cpi (ω

0) for i = 1, 2 and hence leads to the optimal
B in Lemma 9. If we raise θ, cp1(ω

0) and cp2(ω
0) rise continuously while always satisfying

cp1(ω
0) = cp2(ω

0). There exists a unique θ† such that, when θ = θ
†, cpi (ω1) = cpi (ω

0) for i = 1, 2.
For θ ≤ θ

†, the optimal B remains b1 = cp1(ω
1), b2 = cp2(ω

2), and f = sp(ω0), where the latter
falls continuously as θ rises towards θ†.

Now, let B(θ) ⊂ B be the set of optimal Bs as a function of θ. By the previous argument,
B(θ) is singleton for θ ≤ θ

†. Define the distance between any B and B′ as the Euclidean distance
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between (f, b1, b2) describing B and (f ′, b′1, b
′
2) describing B′. By the Maximum Theorem, B(θ)

is upper hemicontinuous in θ.25 By choosing θ > θ
† sufficiently close to θ

†, we can make the
distance between B(θ

†
) and every B ∈ B(θ) arbitrarily small. There exists ε > 0 such that, if

θ ∈ (θ
†
, θ

†
+ ε), for every B ∈ B(θ) we have (1) bi(θ) < cdi (ω

i) for i = 1, 2 and (2) f(θ) can bind
neither in ω1 nor in ω2. To see (2), note that B(θ†) contains the plan defined by bi(θ

†
) = cpi (ω

i)

for i = 1, 2 and f(θ
†
) = sp(ω0), where f(θ

†
) = 1 − b1(θ

†
) − b2(θ

†
) and hence f is redundant.

Thus, B(θ) contains no plan with f(θ) > 1− b1(θ)− b2(θ), as such plans are strictly dominated
for the same argument that rules them out in the proof of Lemma 9. Since the largest value of
f(θ) must be close to f(θ

†
) for θ ∈ (θ

†
, θ

†
+ ε), f(θ) cannot bind in ω1 and ω2 as well.

Fix θ ∈ (θ
†
, θ

†
+ ε). Claims 6–9 characterize the properties of every B ∈ B(θ).

Claim 6. For every B ∈ B(θ), b1(θ) and b2(θ) must bind in ω0—that is, ci(ω0) = bi(θ) for
i = 1, 2. Given this, s(ω0) = 1− b1(θ)− b2(θ) and hence f can be removed.

Proof. Note that self-0’s objective in ωi as a function of bi is strictly concave and decreasing
for bi > cpi (ω

i) (see (12)). Thus, if for example b1(θ) is not binding for self-1 in ω0—that is,
b1(θ) > c1(ω

0)—self-0 can lower b1 without affecting self-1’s choice in ω0 and ω2 and strictly
improve her payoff in ω1. Hence, the initial plan would not be optimal.

Claim 7. b1(θ) = b2(θ) for every B ∈ B(θ).

Proof. Without loss, suppose b1(θ) > b2(θ). Note that b2(θ) < cd2(ω
0) because, otherwise, we

would have b1(θ) > cd1(ω
0) = cd2(ω

0), contradicting the previous claim. Consider the alternative
with bε1 = b1(θ) − ε and bε2 = b2(θ) + ε for ε > 0. For ε small, bε1 and bε2 continue to bind in
ω0, so 1− bε1 − bε2 = s(ω0). In ω0, self-0’s payoff is higher, because given s(ω0) the chosen c is
closer to being symmetric and hence to the best one according to self-0’s preference. Due to
symmetry and the strict concavity in self-0’s payoff induced by bi in ωi for i = 1, 2 (see (12)),
the decrease in the her payoff in ω2 resulting from the slacker b2 is more than compensated by
the increase in ω1 resulting from the tighter b1. Hence, overall self-0’s payoff is strictly larger
with (bε1, b

ε
2) than with (b1(θ), b2(θ)), contradicting the optimality of the latter plan.

Claim 8. 1− b1(θ)− b2(θ) > sp(ω0) for every B ∈ B(θ).

Proof. If 1− b1(θ)− b2(θ) < sp(ω0), self-0 can set f = sp(ω0) and get a strictly higher payoff in
ω0 without affecting self-1’s choices in ω1 and ω2. If 1−b1(θ)−b2(θ) = sp(ω0), then bi = cpi (ω

0)
for i = 1, 2 and so (c(ω0), s(ω0)) = (cp(ω0), sp(ω0)). Therefore, it would be possible to lower
both b1(θ) and b2(θ) by the same small ε, in order to induce a first-oder gain in self-0’s payoff
in ω1 and ω2 because bi(θ) > cpi (ω

i) for i = 1, 2, while causing only a second-order loss in ω0.

Claim 9. All B ∈ B(θ) have the same b1 and b2 and satisfies the properties in Lemma 10.
25Although self-0’s and self-1’s utility functions are not continuous at the boundary of R3

+ due to their
logarithmic form, this is irrelevant because it is never optimal to choose B that forces 0 allocation to
some dimension. Formally, there exists ε > 0 such that, if we required f ≤ 1 − ε and bi ≥ ε for all
i = 1, 2, we would never affect self-0’s problem.
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Proof. Let b1 = b2 = b. Self-0’s payoff in ω1 and ω2 is given by (12) up to a constant:
θ[r ln(b)+r ln(1−b)]+ln(1−b). Her payoff in ω0 is given, up to a constant, by 2θr ln(b)+ln(1−2b).
Therefore, self-0’s expected payoff from b is strictly concave. To see that cpi (ωi) > bi > cpi (ω

0)
for i = 1, 2, consider the following. A bi > cpi (ω

i) is strictly dominated by bi = cpi (ω
i) for every i,

as this is the optimal level of bi in ωi. Consequently, we must have bi < cpi (ω
i), because by

assumption 1− cp1(ω
1)− cp2(ω

2) > sp(ω0) for θ > θ
† and so reducing bi below cpi (ω

i) by the same
small amount for i = 1, 2 causes a first-order gain in ω0 and a second-oder loss in ω1 and ω2.

Part III. Let Gfb be a distribution over (ω0, ω1, ω2) that leads to Lemma 9 and G the uniform
over [θ, θ] × [r, r]2. Let Gb be a distribution that leads to Lemma 10 and G

′ the uniform over
[θ, θ

′
] × [r, r]2, where θ

′ is as in Lemma 10. For α ∈ [0, 1], let Gfb
α = αGfb + (1 − α)G and

Gb
α = αGb + (1− α)G

′. Proposition 4 follows from the next result.

Corollary 2. (1) There exists α ∈ (0, 1) such that, given Gfb
α , f , b1, and b2 are all binding

for every optimal B. (2) There exists α′ ∈ (0, 1) such that, given Gb
α′, for every optimal B both

b1 and b2 bind, but f never binds.

Proof. Let Bf ⊂ B contain all Bs that can use only f , Bb all Bs that can use both b1 and
b2, and Bbi all Bs that can use only bi for i = 1, 2. To indicate that self-0’s expected payoff is
computed using some distribution Ĝ, we will use the notation U(B; Ĝ).
Part (1): For every B and α ∈ [0, 1], U(B;Gfb

α ) = αU(B;Gfb) + (1− α)U(B;G). Now define

W fb
f (α) = max

B∈Bf

U(B;Gfb
α ) and W fb

b (α) = max
B∈Bb

U(B;Gfb
α ), α ∈ [0, 1].

Both W fb
f and W fb

b are well defined by the same argument of Lemma 2 and continuous functions
of α by the Maximum Theorem.26 Let Bfb denote the optimal plan in Lemma 9. Note that
U(Bfb;G) is finite since self-1’s resulting choices are bounded away from 0 in all dimensions.
We have that limα↑1 U(Bfb;Gfb

α ) − W fb
j (α) > 0 for both j = f and j = b. Therefore, there

exists α̂ ∈ (0, 1) such that Bfb strictly dominates every B ∈ Bf ∪ Bb given Gfb
α̂ .

Part (2): For every B and α ∈ [0, 1], U(B;Gb
α) = αU(B;Gb)+ (1−α)U(B;G

′
). Let Bb denote

the optimal plan in Lemma 10. By the same logic of the proof of Part (1), there exists α′′ ∈ (0, 1)
such that, for α ∈ (α′′, 1), Bb strictly dominates every B ∈ Bf ∪ Bb ∪ Bb1 ∪ Bb2 given Gb

α. It
remains to show that there exists α′ ∈ (α′′, 1) such that Bb strictly dominates every B ∈ B
given Gb

α′ . To this end, define B(α) = argmaxB∈B U(B;Gb
α). B(·) is upper hemicontinuous

by the Maximum Theorem. Note that B(1) is characterized by (f∗, b∗1, b
∗
2) such that b∗1 and b∗2

are unique and satisfy Lemma 10, and f∗ ∈ [0, f ] where f = 1 − b∗1 − b∗2. For every η > 0,
there exists ε > 0 such that, if α ∈ (1 − ε, 1], then f ∈ [0, f + η], b1 ∈ (b∗1 − η, b∗1 + η), and
b2 ∈ (b∗2 − η, b∗2 + η) for every (f, b1, b2) corresponding to some B ∈ B(α). Choosing η small
enough ensures that for all B ∈ B(α) we have (1) 1− b1 − b2 > sp(ω0), (2) removing f leads to
a plan such that b1 and b2 bind in ω0, and (3) f cannot bind in ω1 and ω2, as self-1’s choice of
s strictly exceeds f in ω1 and ω2 under all B ∈ B(1).

Take any B ∈ B(α) and fix its b1 and b2. The f completing B must be optimally chosen
given b1 and b2. We claim that it must satisfy f ≤ 1− b1 − b2 = k for α sufficiently close to 1.

26Recall Footnote 25.
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Suppose not. Consider self-0’s expected gain from imposing f > k. The gain in ω0 is

(1− β)[v(f)− v(k)] + V (f ;ω0)− V (k;ω0), (15)

and the expected gain under the distribution G
′ is∫

Ω(f)

{
(1− β)[v(f)− v(ŝ(ω))] + V (f ;ω)− V (ŝ(ω);ω)

}
dG

′
, (16)

where Ω(f) ⊂ Ω′ = [θ, θ
′
]× [r, r]2 is the set of states in which f affects self-1’s choices, (ĉ, ŝ) is

self-1’s allocation function under the policy using only b1 and b2, and

V (k;ω) = max
{(c,s)∈B:c1≤b1,c2≤b2,s≥k}

{θu(c; r) + βv(s)}, k ∈ [k, 1], ω ∈ Ω′.

Since V (f ;ω) ≤ V (ŝ(ω);ω) and ŝ(ω) ≥ k for all ω ∈ Ω′, for all f ≥ k, (16) is bounded above by∫
Ω(f)

(1− β)[v(f)− v(ŝ(ω))]dG′ ≤ (1− β)[v(f)− v(k)].

Note that the right-hand side of this expression depends on α only via k.
Now focus on V (k;ω0). For every f > k, (1) f always binds, because k > sp(ω0) and

hence self-1 wants to choose s < f ; (2) only one bi can bind, because if both bind, then
s(ω0) = k < f , which is impossible; (3) one bi never binds, because goods are normal, so for
all f > k self-1’s chooses ci(ω

0) < bi for at least one i = 1, 2. Without loss, suppose that b2
never binds. If we remove b2, V (k;ω0) equals self-1’s indirect utility under the plan defined by
k ∈ [k, 1] and b1 only, denoted by V (k;ω0, b1). By the same argument of Lemma 4, V (k;ω0, b1)

is continuously differentiable in k for k ∈ (0, 1] and V
′
(k;ω0, b1) = −λ(ω0; k), where λ(ω0; k)

is the Lagrange multiplier associated to s ≥ k. Using the Lagrangian defining V (k;ω0, b1), we
have λ(ω0; k) = θ

′
u2c(c2(ω

0; k); r)−βv′(k). Note that λ(ω0; k) > 0 for all k ∈ [k, 1], because such
floor levels must always bind for self-1. Moreover, λ(ω0; k) is strictly increasing in k ∈ [k, 1]
because v is strictly concave, uicc < 0, and c2(ω

0; k) is non-increasing in k by normality of goods.
Therefore, V ′

(k;ω0) = −λ(ω0; k) for all k ∈ (k, 1] and V
′
(k+;ω0) = −λ(ω0; k), where the plus

denotes the right derivative.27 Moreover, V ′
(k;ω0) is strictly decreasing in k.

Observe that
(1− β)v′(k) + V

′
(k;ω0) = v′(k)− θ

′
u2c(c2(ω

0; k); r), (17)

which is strictly negative. This is because b1 < cp1(ω
0) and b2 < cp2(ω

0) by Lemma 10 since α is
close to 1, which implies that b1 and b2 must bind for self-0; consequently, f = k and b1 must
also bind for self-0. The right-hand side of (17) coincides with the negative of the Lagrange
multiplier associated with s ≥ k in self-0’s problem that also includes c1 ≤ b1.

Recall that k depends on α—hence denote it by kα—and consider

gV
′
(kα;ω

0) + [αg + (1− α)](1− β)v′(kα). (18)

This is strictly negative for α = 1, in which case k1 = 1 − b∗1 − b∗2. By continuity of (18) in
(α, k) and upper hemicontinuity of B(α), there exists ε > 0 such that (18) is strictly negative
for α ∈ (1− ε, 1]. By the monotonicity of v′ and V

′
(·;ω0), (18) is strictly decreasing for k ≥ kα.

27V (k;ω0) is not differentiable at k = k, as V (k;ω0) is constant for k < k and V
′
(k−;ω0) = 0.
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Finally, for every α ∈ (1− ε, 1] and f > kα,

[αg + (1− α)](1− β)[v(f)− v(kα)] + g[V (f ;ω0)− V (kα;ω
0)]

=

∫ f

kα

{
[αg + (1− α)](1− β)v′(k) + gV

′
(k;ω0)

}
dk

<
{
[αg + (1− α)](1− β)v′(kα) + gV

′
(kα;ω

0)
}
(f − kα) < 0.

We conclude that self-0 is strictly worse off by imposing a binding f in addition to b1 and b2,
and hence every optimal B must use binding budgets for both goods, but no binding f .

6.6 Example of Non-Additive Utility

Suppose that

u(c; r) = 1

1− γ

(
r1c

e−1
e

1 + r2c
e−1
e

2

) e
e−1

(1−γ)

and v(s) =
s1−γ

1− γ
.

Assume that e > 1, 0 < γ < 1, and e ≤ 1/γ. By standard calculations, given total expenditures
y ∈ [0, 1] in a period, the optimal allocation to good i is

ci(r; y) = y
rei

re1 + re2
. (19)

We now show that (cd, sd) satisfies Condition 1—similar steps establish the desired proper-
ties of (cp, sp). For every ω ∈ Ω, maximizing

θτ(r)
1− γ

(1− s)1−γ +
β

1− γ
s1−γ

yields

sd(ω) =
β

1
γ

[θτ(r)]
1
γ + β

1
γ

.

Clearly, sd(s) is always interior and strictly decreasing in θ, r1, and r2. Replacing y with
1− sd(ω) into (19), we get that cdi (ω) is strictly increasing in θ and ri and satisfies

∂

∂rj
cdi (ω) ∝ sd(ω)

1− γ

γ(e− 1)
− 1.

Thus, for ∂cdi (ω)/∂rj (and similarly ∂cpi (ω)/∂rj) to be strictly negative for all ω, a sufficient
condition is that

1− γ

γ(e− 1)
<

1

sp
,

because sd(ω) < sd < sp < 1.28

28Recall that sk = maxω sk(ω) for k = d, p.
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Now consider setting only a budget on good 1 (or equivalently on good 2). We will show
that, whenever b1 binds, increasing it leads to lower savings and that part (2) of Condition 1
holds. Suppose b1 binds in state ω. Then, self-1’s choice satisfies c∗2(ω) = 1 − s∗(ω) − b1 and
the optimal s∗(ω) solves the first-order condition

θu2(b1, 1− s∗(ω)− b1; r) = β [s∗(ω)]−γ .

Therefore,
∂

∂b1
s∗(ω) =

θ[u21(c; r)− u22(c; r)]
θu22(c; r)− γβ

s1+γ

∣∣∣∣∣
(c,s)=(c∗(ω),s∗(ω))

.

A sufficient condition for this to be strictly negative is that u21(c; r) ≥ 0, which holds under
our assumptions since u21(c; r) ∝ 1−γe. Finally, since self-1’s allocation to s and c2 is bounded
away from zero for every b1 ≤ cd1 and u22(c; r) and u21(c; r) are continuous in both arguments, it
follows that ∂s∗/∂b1 is uniformly bounded away from zero. Therefore, part (2) of Condition 1
holds. Note that in the previous argument we can replace b1 with f1. Therefore, in this
example, binding good-specific floors lead to lower savings, and hence they are never part of
optimal plans.
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