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Optimal adaptive testing: Informativeness and incentives
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We introduce a learning framework in which a principal seeks to determine the
ability of a strategic agent. The principal assigns a test consisting of a finite se-
quence of tasks. The test is adaptive: each task that is assigned can depend on
the agent’s past performance. The probability of success on a task is jointly deter-
mined by the agent’s privately known ability and an unobserved effort level that
he chooses to maximize the probability of passing the test. We identify a simple
monotonicity condition under which the principal always employs the most (sta-
tistically) informative task in the optimal adaptive test. Conversely, whenever the
condition is violated, we show that there are cases in which the principal strictly
prefers to use less informative tasks.

Keywords. Adaptive testing, dynamic learning, ratcheting, testing experts.

JEL classification. C44, D82, D83.

1. Introduction

In this paper, we introduce a learning framework in which a principal seeks to deter-
mine the privately known ability of a strategic agent. The principal can assign various
tasks to the agent, with different types of the agent varying in their ability to complete
a given task.1 The agent, who is privately informed about his ability, can, through un-
observable actions, affect the outcome on each assigned task and thereby influence the
information the principal receives. How does strategic behavior by the agent affect the
optimal choice of tasks by the principal? When is learning optimized by assigning more
informative tasks?
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Our model can be applied to a number of settings. For example, a manager may
choose which tasks to assign to determine whether an employee is suitable for pro-
motion, an employer chooses which questions to ask in a job interview to determine
whether a candidate should be hired, and computerized standardized testing assigns
questions with the aim of uncovering a student’s ability. In each of these scenarios, in-
formation is obtained by observing the agent’s performance over a sequence of tasks,
and the principal’s choice of which task to assign may depend on the agent’s past per-
formance. Consequently, the agent can, to some extent, control the path of assigned
tasks through his performance.

At a more abstract level, our exercise builds on the classic “sequential choice of ex-
periments” problem in statistics (see, for instance, Chapter 14 of DeGroot 2005). In
this problem, a researcher who wants to learn about an unknown parameter has at her
disposal a collection of “experiments,” each of which is associated with a different distri-
bution of signals about the parameter. In one formulation, the principal can run a fixed
number of experiments, and chooses each experiment sequentially only after observing
the outcomes of the preceding ones. A key result in this literature pertains to the case
in which one experiment is more informative, in the sense of Blackwell (1953), than all
others available to the researcher. In this case, the optimal strategy is independent of the
history and simply involves repeatedly drawing from the most informative experiment.
We refer to this as Blackwell’s result (see Corollary 4.4 in DeGroot 1962). We introduce
strategic behavior into this framework and ask how this strategic behavior by the agent
affects the optimal choice of experiments. In particular, does Blackwell’s result carry
over?

Following the literature on standardized testing, we refer to the optimal task assign-
ment problem that we study as an “adaptive testing” problem. The principal has a fixed
number of time periods—corresponding, for instance, to the “tenure clock” in academic
institutions or the duration of an interview—over which to evaluate the agent, and a fi-
nite collection of different tasks that can be assigned. The agent’s probability of success
on a particular task depends on his ability (or type) and his choice of action (or effort),
neither of which are directly observable to the principal. For instance, the agent may
deliberately choose actions that lead to failure if doing so leads to future path of tasks
that are more likely to make him look better. Higher actions correspond to a greater
probability of success.

The principal first commits to a test. The test begins by assigning the agent a task.
Upon seeing the assigned task, the agent chooses his effort level. Depending on the re-
alized success or failure on the first task, the test assigns another task to the agent in the
next period, and the agent again chooses his effort. The test continues in this way, with
the assigned task in each period possibly depending on the entire history of previous
successes and failures. At the end of a fixed number of periods, the test issues a verdict
indicating whether the agent passes or fails given the history of tasks and the agent’s
performance. The principal’s goal is to pass the agent if and only if his type belongs
to a particular set (which we refer to as the set of good types). As in Meyer (1994), the
principal’s objective is solely to learn; there are no payoffs associated directly with task
completion.
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The agent seeks to maximize the probability with which he passes the test. In par-
ticular, there are no transfers between the principal and the agent.2 Moreover, to focus
on the effect of the agent’s effort choice on learning, we abstract away from cost-saving
incentives by assuming that effort is costless.

A natural benchmark is the optimal test under the assumption that the agent always
chooses the highest effort level. Given this strategy, designing the optimal test is essen-
tially a special case of the sequential choice of experiments problem, which can in prin-
ciple be solved by backward induction (although qualitative properties of the solution
are hard to obtain except in the simplest of cases). We refer to this benchmark solution
as the optimal full-effort test (OFT).

In our strategic environment, Blackwell’s result does not hold in general (see Exam-
ple 2). Our main result (Theorem 2) shows that it does hold if a property we refer to
as group monotonicity is satisfied, namely, if there does not exist a task at which some
bad type has higher ability than some good type. If group monotonicity holds, then it is
optimal for the principal always to assign the most informative task and for the agent al-
ways to choose the highest effort (in particular, the optimal test coincides with the OFT).
Furthermore, the verdict takes a simple form: the agent passes whenever he succeeds at
more than some fixed number of tasks.3

We provide a partial converse (Theorem 3) to this result, which indicates that when-
ever a task violates group monotonicity, there is an environment that includes that task
in which always assigning the most informative task is not optimal for the principal.
This implies that a task may be the statistically most informative but may not be able to
induce maximal learning because assigning it fails to provide the requisite incentives for
the strategic agent.

Taken together, these results suggest that in organizations with limited task breadth,
where good workers perform better at all tasks (for given levels of effort), managers can
optimally learn by assigning the most informative task. However, in organizations that
require more task-specific specialization by employees, managers should be concerned
about strategic behavior by workers affecting learning.4 Similarly, strategic responses
must be factored in evaluations of job candidates when they differ in their breadth and
level of specialization (such as interviews for academic positions).

In a static setting, the intuition behind our main result is straightforward. Since all
types can choose not to succeed on the assigned task, the principal can learn about the
agent’s type only if success is rewarded with a higher probability of passing the test. In
that case, all types choose the highest effort, since doing so maximizes the probability
of success. Group monotonicity then ensures that good types have a higher probability
of passing than do bad types. Since strategic behavior plays no role, assigning the most
informative task is optimal for the principal.

2This assumption is consistent with the observation in Baker et al. (1988) that in many organizations,
promotion is the only means used for providing incentives.

3This feature of the optimal test is reminiscent of the optimal contract in the (two outcome version of
the) dynamic, pure moral hazard framework of Hölmstrom and Milgrom (1987), where the agent’s overall
compensation depends only on the number—and not the order—of successes.

4Prasad (2009) and Ferreira and Sah (2012) are recent examples of models where workers can be either
generalists or specialists.
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The dynamic setting is complicated by the fact that the agent must consider how
his performance on each task affects the subsequent tasks that will be assigned: he
may have an incentive to perform poorly on a task if doing so makes the remainder
of the test easier, and thereby increases the ultimate probability of passing. For exam-
ple, in job interviews, despite it reflecting badly on him, an interviewee may want to
deliberately feign ignorance on a particular question, fearing that the line of inquisi-
tion that would otherwise follow would be more damaging. Milgrom and Roberts (1992)
(see Chapter 7) document strategic shirking in organizations where an employee’s own
past performance is used as a benchmark for evaluation. In our model, workers are not
judged relative to their past performance; however, strategic choice of effort can be used
to influence future task assignment and, ultimately, the likelihood of promotion.

It is worth stressing that in our model, even with group monotonicity, there are cases
in which some types choose not to succeed on certain tasks in the optimal test (see
Example 4). If, however, there is one task q that is more informative than the others,
then this turns out not to be an issue. Given any test that, at some histories, assigns
tasks other than q, we show that one can recursively replace each of those tasks with q

together with a randomized continuation test in a way that does not make the principal
worse off. While this procedure resembles Blackwell garbling in the statistical problem,
in our case one must be careful to consider how each such change affects the agent’s
incentives; group monotonicity ensures that any change in the agent’s strategy resulting
from these modifications to the test can only improve the principal’s payoff.

In Section 6, we consider optimal testing when tasks are not comparable in terms of
informativeness. We show that under group monotonicity, the OFT is optimal when the
agent has only two types (Theorem 4). However, when there are more than two types,
this result does not hold: Example 4 shows that even if high effort is always optimal for
the agent in the OFT, the principal may be able to do better by inducing some types to
shirk. Example 5 and the examples in Appendix B demonstrate a wealth of possibilities
(even with group monotonicity).

In Section 7, we consider several extensions of the model. First, we show that our
main result continues to hold if the principal can offer the agent a menu of tests from
which the agent chooses one (Theorem 5). We also extend the model to allow for the set
of available tasks to vary over time. In this case, the optimal test may induce strategic
shirking even if it always assigns the most informative task. Finally, we argue that our
main result continues to hold if the principal lacks commitment power.

Related literature

Our model and results are related to several distinct strands of the literature. As in the
literature on career concerns (beginning with Holmström 1999), we explore how un-
observable effort choices affect learning about an agent’s ability. However, our model
differs insofar as there are no monetary transfers and the agent has private information
about his ability.5 In addition, our model incorporates task assignment by the princi-
pal. Perhaps the closest related work in this literature is Dewatripont et al. (1999). They

5This latter feature of our model more closely resembles the work on screening job applicants using
application fees (Guasch and Weiss 1980, Nalebuff and Scharfstein 1987).
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provide conditions under which the market may prefer a less informative monitoring
technology (relating the agent’s action to performance variables) to a more informative
one and vice versa.

More broadly, while more information is always beneficial in a nonstrategic single-
agent setting, it can sometimes be detrimental in multi-agent environments. Examples
include oligopolies Mirman et al. (1994) and elections Ashworth et al. (2017). While
more information is never harmful to the principal in our setting (since she could al-
ways choose to ignore it), our focus is on whether less informative tasks can be used to
alter the agent’s strategy in a way that generates more information.

Our model provides a starting point for studying how managers assign tasks when
they benefit from learning about workers’ abilities (for instance, to determine their suit-
ability for important projects). Unlike our setting, dynamic contracting is often modeled
with pure moral hazard, where the principal chooses bonus payments so as to generate
incentives to exert costly effort (see, for instance, Rogerson 1985, Hölmstrom and Mil-
grom 1987). However, there are a few recent exceptions that feature both adverse selec-
tion and moral hazard. The works of Gerardi and Maestri (2012) and Halac et al. (2016)
differ from ours in focus. In these papers, the principal’s goal is to learn an unknown
state of the world (not the agent’s type) and they characterize the optimal transfer sched-
ule for a single task (whereas we study optimal task allocation when promotions are the
only means to provide incentives). Gershkov and Perry (2012) also consider a model with
transfers, but in their setting, the principal is concerned primarily with matching the
complexity of the tasks (which are not assigned by the principal and are instead drawn
independently in each period) and the quality of the agent.

The literature on testing forecasters (for surveys, see Foster and Vohra 2011,
Olszewski 2015) shares with our model the aim of designing a test to uncover the type of
a strategic agent (an “expert”). In that literature, the expert makes probabilistic forecasts
about an unknown stochastic process, and the principal seeks to determine whether
the expert knows the true probabilities or is completely ignorant. Our model differs in
a number of ways; in particular, the principal assigns tasks and the agent chooses an
unobservable action that affects the true probabilities.

Finally, our work is related to the literature on multi-armed bandit problems (an
overview can be found in Bergemann and Välimäki 2006), in which a principal chooses
in each period which arm to pull—just as, in our model, she chooses which task to
assign—and learns from the resulting outcome. The main trade-off is between maxi-
mizing short-term payoffs and the long-term gains from learning. Our model can be
thought of as a first step toward understanding bandit problems in which a strategic
agent can manipulate the information received by the decision-maker.

2. Model

A principal (she) is trying to learn the private type of an agent (he) by observing his
performance on a sequence of tasks over T periods.6 At each period t ∈ {1� � � � �T }, she

6Note that T is exogenously fixed. If the principal could choose T , she would always (weakly) prefer it to
be as large as possible. Thus, an equivalent alternate interpretation is that the principal has up to T periods
to test the agent.
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assigns the agent a task qt from a finite set Q of available tasks. We interpret two identical
tasks qt = qt ′ assigned at time periods t �= t ′ as two different tasks of the same difficulty;
the agent being able to succeed on one of the tasks does not imply that he is sure to be
able to succeed on the other.

Faced with a task qt ∈ Q, the agent chooses an effort level at ∈ [0�1]; actions in the
interior of the interval may be interpreted as randomization between 0 and 1. All actions
have the same cost, which we normalize to 0.7 We refer to at = 1 as full effort and refer to
any at < 1 as shirking. Depending on the agent’s ability and effort choice, he may either
succeed (s) or fail (f ) on a given task. This outcome is observed by both the principal
and the agent.

Type space

The agent’s ability (which stays constant over time) is captured by his privately known
type θi : Q → (0�1), which belongs to a finite set � = {θ1� � � � � θI}.8 In period t, the prob-
ability of a success on a task qt when the agent chooses effort at is atθi(qt).

The type determines the highest probability of success on each task, obtained when
the agent chooses full effort. Zero effort implies sure failure.9 Note that, as is common in
dynamic moral hazard models, the agent’s probability of success on a given task is inde-
pendent of events that occur before t (such as him having faced the same task before).

Before period 1, the principal announces and commits to an (adaptive) test. The test
determines which task is assigned in each period depending on the agent’s performance
so far, and the final verdict given the history at the end of period T .

Histories

At the beginning of period t, ht denotes a nonterminal public history (or simply a his-
tory) up to that point. Such a history lists the tasks faced by the agent and the corre-
sponding successes or failures in periods 1� � � � � t − 1. The set of (nonterminal) histories
is denoted by H = ⋃

t=1�����T (Q × {s� f })t−1. We write HT+1 = (Q × {s� f })T for the set of
terminal histories.

Similarly, hA
t denotes a history for the agent describing his information before

choosing an effort level in period t. In addition to the information contained in the
history ht , hA

t also contains the task he currently faces.10 Thus the set of all histories for
the agent is given by HA = ⋃

t=1�����T (Q× {s� f })t−1 ×Q.
For example, h3 = {(q1� s)� (q2� f )} is the history at the beginning of period 3 in which

the agent succeeded on task q1 in the first period and failed on task q2 in the second. The
corresponding history hA

3 = {(q1� s)� (q2� f )�q3} also includes the task in period 3.

7We make the assumption of identical cost across actions to focus purely on learning, as it ensures that
strategic action choices are not muddied by cost-saving incentives.

8The restriction that θi(q) �= 0 or 1 simplifies some arguments but is not necessary for any of our results.
9The agent’s ability to fail for sure is not essential, as none of our results are affected by making the lowest

possible effort strictly positive.
10By not including the agent’s actions in hA

t , we are implicitly excluding the possibility that the agent
conditions his effort on his own past choices. Allowing for this would only complicate the notation and
make no difference for our results.
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Deterministic test

A deterministic test (T �V) consists of functions T : H → Q and V : HT+1 → {0�1}. Given
a history ht at the beginning of period t, the task qt assigned to the agent is T (ht). At a
terminal history hT+1, the verdict V(hT+1) is the probability with which the agent passes
the test.

Test

A (random) test ρ is a distribution over deterministic tests.
As mentioned above, the principal commits to the test in advance. Before period 1,

a deterministic test is drawn according to ρ and assigned to the agent. The agent knows
ρ but does not observe which deterministic test is realized. He can, however, update as
the test proceeds based on the sequence of tasks that have been assigned so far.

Note that even if the agent is facing a deterministic test, since the tasks he faces can
depend on his stochastic performance so far in the test, he may not be able to perfectly
predict which task he will face in subsequent periods.

Strategies

A strategy for type θi is given by a mapping σi : HA → [0�1] from histories for the agent
to effort choices; given a history hA

t in period t, the effort in period t is at = σi(h
A
t ). We

denote the profile of strategies by σ = (σ1� � � � �σI).

Agent’s payoff

Regardless of the agent’s type, his goal is to pass the test. Accordingly, faced with a de-
terministic test (T �V), the payoff of the agent at any terminal history hT+1 is the prob-
ability with which he passes, which is given by the verdict V(hT+1). Given a test ρ, we
denote by ui(h;ρ�σi) the expected payoff of type θi when using strategy σi conditional
on reaching history h ∈ H .

Principal’s beliefs

The principal’s prior belief about the agent’s type is given by (π1� � � � �πI), with πi being
the probability the principal assigns to type θi (thus πi ≥ 0 and

∑I
i=1 πi = 1). Similarly,

for any h ∈ H ∪ HT+1, π(h) = (π1(h)� � � � �πI(h)) denotes the principal’s belief at history
h. We assume that each of these beliefs is consistent with Bayes’ rule given the agent’s
strategy; in particular, at the history h1 =∅, (π1(h1)� � � � �πI(h1)) = (π1� � � � �πI).

Principal’s payoff

The principal partitions the set of types � into disjoint subsets of good types {θ1� � � � � θi∗}
and bad types {θi∗+1� � � � � θI}, where i∗ ∈ {1� � � � � I − 1}. At any terminal history hT+1, she
gets a payoff of 1 if the agent passes and has a good type, −1 if the agent passes and has
a bad type, and 0 if the agent fails. Therefore, her expected payoff from a deterministic
test (T �V) is given by EhT+1[

∑i∗
i=1 πi(hT+1)V(hT+1)− ∑I

i=i∗+1 πi(hT+1)V(hT+1)], where
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the distribution over terminal histories depends on both the test and the agent’s strat-
egy.11

One might expect the principal to receive different payoffs depending on the exact
type of the agent, not only whether the type is good or bad. All of our results extend to
the more general model in which the principal receives a payoff of γi from passing type
θi, and a payoff normalized to 0 from failing any type. Assuming without loss generality
that the types are ordered so that γi ≥ γi+1 for each i, the cutoff i∗ dividing good and
bad types then satisfies γi ≥ 0 if i ≤ i∗ and γi ≤ 0 if i > i∗. The principal’s problem with
these more general payoffs and prior π is equivalent to the original problem with prior

π ′ given by π′
i = |γi|πi

/∑I
j=1 |γj|πj . Since our results are independent of the prior, this

transformation allows us to reduce the problem to the simple binary payoffs for passing
the agent described above.

Optimal test

The principal chooses and commits to a test that maximizes her payoff subject to the
agent choosing his strategy optimally. Facing a test ρ, we write σ∗

i to denote an optimal
strategy for type θi, that is, a strategy satisfying

σ∗
i ∈ argmax

σi

ui(h1;ρ�σi)�

Note that this implicitly requires the agent to play optimally at all histories occurring
with positive probability given the strategy.

Given her prior, the principal solves

max
ρ

EhT+1

[
V(hT+1)

(
i∗∑
i=1

πi(hT+1)−
I∑

i=i∗+1

πi(hT+1)

)]
�

where the expectation is taken over terminal histories (the distribution of which de-
pends on the test, ρ, and the strategy σ∗ = (σ∗

1 � � � � �σ
∗
I )), and the beliefs are updated

from the prior using Bayes’ rule (wherever possible). To keep the notation simple, we do
not explicitly condition the principal’s beliefs π on the agent’s strategy.

An equivalent and convenient way to represent the principal’s problem is to state it
in terms of the agent’s payoffs as

max
ρ

[
i∗∑
i=1

πivi(ρ)−
I∑

i=i∗+1

πivi(ρ)

]
� (1)

where vi(ρ) := ui(h1;ρ�σ∗
i ) is the expected payoff type θi receives from choosing an op-

timal strategy in the test ρ. Note in particular that whenever some type of the agent has
multiple optimal strategies, the principal is indifferent about which one he employs.

11As in Meyer (1994), we want to focus on the principal’s optimal learning problem. This is why we
abstract away from payoffs associated with task completion.
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3. Benchmark: The optimal nonstrategic test

Our main goal is to understand how strategic effort choice by the agent affects the prin-
cipal’s ability to learn his type. Thus a natural benchmark is the statistical problem in
which the agent is assumed to choose full effort at every history.

Formally, in this benchmark, the principal solves the problem

max
T �V

EhT+1

[
V(hT+1)

(
i∗∑
i=1

πi(hT+1)−
I∑

i=i∗+1

πi(hT+1)

)]
� (2)

where the distribution over terminal histories is determined by the test (T �V) together
with the full-effort strategy

σN
i

(
hA

) = 1 for all hA ∈ HA

for every i. We refer to the solution (T N�VN) to this problem as the optimal full-effort
test (OFT). Notice that we have restricted attention to deterministic tests; we argue be-
low that this is without loss.

In principle, it is straightforward to solve for the OFT by backward induction. The
principal can first choose the optimal task at all period T histories and beliefs along with
the optimal verdicts corresponding to the resulting terminal histories. Observe from
(2) that the payoff is linear in the verdicts, so that even if randomization of verdicts is
allowed, the optimal choice can always be taken to be either 0 or 1. Moreover, there is no
benefit in randomizing tasks: if two tasks yield the same expected payoffs, the principal
can choose either one.

Once tasks in period T and verdicts have been determined, it remains to derive the
tasks in period T − 1 and earlier. At any history hT−1, the choice of task determines the
beliefs corresponding to success and failure. In either case, the principal’s payoff as a
function of those beliefs has already been determined above. Hence the principal simply
chooses the task that maximizes her expected payoff. This process can be continued all
the way to period 1 to determine the optimal sequence of tasks. At each step, by the same
argument as in period T , there is no benefit from randomization. Since the principal
may be indifferent between tasks at some history and between verdicts at some terminal
history, the OFT need not be unique.

This problem is an instance of the general sequential choice of experiments prob-
lem from statistics that we describe in the Introduction. The same backward induction
procedure can be applied to (theoretically) solve this more general problem. However, it
is typically very difficult to explicitly characterize or to describe qualitative properties of
the solution, even in relatively simple special cases that fit within our setting Bradt and
Karlin (1956).

4. Informativeness

Although the sequential choice of experiments problem is difficult to solve in general,
there is a prominent special case that allows for a simple solution: the case in which one
task is more Blackwell informative than the others.
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Blackwell informativeness

We say that a task q is more Blackwell informative than another task q′ if there are num-
bers αs�αf ∈ [0�1] such that

⎡
⎢⎣
θ1(q) 1 − θ1(q)

���
���

θI(q) 1 − θI(q)

⎤
⎥⎦

[
αs 1 − αs

αf 1 − αf

]
=

⎡
⎢⎣
θ1

(
q′) 1 − θ1

(
q′)

���
���

θI
(
q′) 1 − θI

(
q′)

⎤
⎥⎦ � (3)

This is the classic notion of informativeness. Essentially, it says that q is more informa-
tive than q′ if the latter can be obtained by adding noise to—or garbling—the former.
Note that Blackwell informativeness is a partial order; it is possible for two tasks not to
be ranked in terms of Blackwell informativeness.

A seminal result due to Blackwell (1953) is that, in any static decision problem, re-
gardless of the decision-maker’s preferences, she is always better off with information
from a more Blackwell informative experiment than from a less informative one. This
result carries over to the sequential setting: if there is one experiment that is more Black-
well informative than every other, then it is optimal for the decision-maker always to use
that experiment (see Section 14.17 in DeGroot 2005). Since the OFT is a special case of
this more general problem, if there is a task q that is the most Blackwell informative, then
T N(h) = q at all h ∈ H . The following theorem is the formal statement of Blackwell’s
result applied to our context.

Theorem 1 (Blackwell 1953). Suppose there is a task q that is more Blackwell informative
than all other tasks q′ ∈ Q. Then there is an OFT in which the task q is assigned at every
history.

In our setting, it is possible to strengthen this result because the principal’s pay-
off takes a special form; Blackwell informativeness is a stronger property than what is
needed to guarantee that the OFT features only a single task. We use the term “informa-
tiveness” (without the additional “Blackwell” qualifier) to describe the weaker property
appropriate for our setting.

Informativeness

Let θG(q�π) =
∑

i≤i∗ πiθi(q)∑
i≤i∗ πi

be the probability, given belief π, that success is observed on

task q conditional on the agent being a good type, under the assumption that the agent

chooses full effort. Similarly, let θB(q�π)=
∑

i>i∗ πiθi(q)∑
i>i∗ πi

be the corresponding probability

of success conditional on the agent being a bad type. We say that a task q is more infor-
mative than another task q′ if, for all beliefs π, there are numbers αs(π)�αf (π) ∈ [0�1]
such that[

θG(q�π) 1 − θG(q�π)

θB(q�π) 1 − θB(q�π)

][
αs(π) 1 − αs(π)

αf (π) 1 − αf (π)

]
=

[
θG

(
q′�π

)
1 − θG

(
q′�π

)
θB

(
q′�π

)
1 − θB

(
q′�π

)
]
� (4)
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To see that Blackwell informativeness is the stronger of these two notions, note that
any αs and αf that satisfy (3) must also satisfy (4) for every belief π. The following exam-
ple, consisting of three types and two tasks, shows that the converse need not hold.

Example 1. Suppose there are three types (I = 3) and two tasks, Q = {q�q′}. Success
probabilities if the agent chooses full effort are

q q′
θ1 0�9 0�4
θ2 0�8 0�2
θ3 0�2 0�1�

(5)

The first column corresponds to the probability θi(q) of success on task q, and the sec-
ond column corresponds to that on task q′. If i∗ = 2 (so that types θ1 and θ2 are good
types), q is more informative than q′. Intuitively, this is because the performance on
task q is better at differentiating θ3 from θ1 and θ2. However, if i∗ = 1, then q is no longer
more informative than q′. This is because performance on task q′ is better at differen-
tiating θ1 from θ2. Thus, if the principal’s belief assigns high probabilities to θ1 and θ2,
she can benefit more from task q′, whereas if her belief assigns high probability to types
θ1 and θ3, she can benefit more from q. Since Blackwell informativeness is independent
of the cutoff i∗, neither q nor q′ is more Blackwell informative than the other. ♦

Although weaker than Blackwell’s condition (3), informativeness is still a partial or-
der, and in many cases no element of Q is more informative than all others. However,
when there exists a most informative task, our main result shows that Blackwell’s result
continues to hold for the design of the optimal test in our setting, even when the agent
is strategic, provided that a natural monotonicity condition is satisfied. A key difficulty
in extending the result is that informativeness is defined independently of the agent’s
actions and, as the examples in Appendix B demonstrate, in some cases the principal
can benefit from strategic behavior by the agent.

5. Informativeness and optimality

5.1 The optimal test

The following example shows that strategic behavior by the agent can cause Blackwell’s
result to fail in our model.

Example 2. Suppose there are three types (I = 3) and one period (T = 1), with i∗ = 2.
There are two tasks, Q = {q�q′}, with success probabilities given by the matrix

q q′
θ1 0�5 0�35
θ2 0�2 0�5
θ3 0�4 0�4�
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The principal’s prior belief is

(π1�π2�π3) = (0�3�0�2�0�5)�

Note that task q is more Blackwell informative than q′.12 If the agent was not strate-
gic, the optimal test would assign task q and verdicts V{(q� s)} = 0 and V{(q� f )} = 1. In
this case, all types would choose a1 = 0, yielding the principal a payoff of 0 (which is the
same payoff she would get from choosing either task and V{(q� s)} = V{(q� f )} = 0).

Can the principal do better? Assigning task q and reversing the verdicts makes a1 = 1
a best response for all types of the agent but would result in a negative payoff for the
principal. Instead, it is optimal for the principal to assign task q′ along with verdicts
V{(q′� s)} = 1 and V{(q′� f )} = 0. Full effort is a best response for all types and this yields
a positive payoff. ♦

Notice that in the last example, the types are not ordered in terms of their ability on
the tasks the principal can assign. In particular, for each task, the bad type can succeed
with higher probability than some good type. This feature turns out to play an important
role in determining whether Blackwell’s result holds; our main theorem shows that the
following condition is sufficient for Blackwell’s result to carry over to our model.

Group monotonicity We say that group monotonicity holds if, for every task q ∈ Q,
θi(q)≥ θj(q) whenever i ≤ i∗ < j.

This assumption says that the two groups are ordered in terms of ability in a way that
is independent of the task: good types are always at least as likely to succeed as bad ones
when full effort is chosen.

The proof of our main result builds on a key lemma that, under the assumption
of group monotonicity, provides a simple characterization of informativeness that dis-
penses with the unknowns αs(·) and αf (·), and is typically easier to verify than the orig-
inal definition.

Lemma 1. Suppose group monotonicity holds. Then a task q is more informative than q′
if and only if

θi(q)

θj(q)
≥ θi

(
q′)

θj
(
q′) and

1 − θj(q)

1 − θi(q)
≥ 1 − θj

(
q′)

1 − θi
(
q′) for all i ≤ i∗ and j > i∗�

Intuitively, a task is more informative if there is a higher relative likelihood that the agent
has a good type conditional on a success, and a bad type conditional on a failure. Using
this lemma, it is now straightforward to verify that q is more informative than q′ in the
type space (5) when i∗ = 2 but not when i∗ = 1.

We are now in a position to state our main result.

Theorem 2. Suppose that there is a task q that is more informative than every other task
q′ ∈Q and that group monotonicity holds. Then any OFT is an optimal test. In particular,
it is optimal for the principal to assign task q at all histories and the full-effort strategy
σN is optimal for the agent.

12The corresponding values of αs and αf in (3) are 0�1 and 0�6, respectively.
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This result states that the principal cannot enhance learning by inducing strategic
shirking through the choice of tasks, a strategy that helps her in Examples 4 and 5. If
the principal assigns only the most informative task, it follows from Lemma 2 that she
should assign the same verdicts as in the OFT, and the full-effort strategy is optimal for
the agent. The optimal verdicts take the form of a cutoff rule where the agent gets a
verdict of 1 whenever he succeeds on more than a cutoff number of tasks. Put differently,
the only thing that matters is the number of successes and not their order, a feature
that can also be found in the dynamic moral hazard environment of Hölmstrom and
Milgrom (1987).

While superficially similar, there are critical differences between Theorem 2 and
Blackwell’s result (Theorem 1). In the latter, where the agent is assumed to always
choose the full-effort strategy, the optimality of using the most Blackwell informative
task q can be shown constructively by garbling. To see this, suppose that at some history
h in the OFT, the principal assigns a task q′ �= q, and let αs and αf denote the correspond-
ing values that solve (3). In this case, the principal can replace task q′ with q and appro-
priately randomize the continuation tests to achieve the same outcome. More specifi-
cally, at the history {h� (q� s)}, she can choose the continuation test following {h� (q′� s)}
with probability αs and, with the remaining probability 1 − αs , choose the continua-
tion test following {h� (q′� f )}. A similar randomization using αf can be done at history
{h� (q� f )}.

This construction is not sufficient to yield the result when the agent is strategic. First,
if αf > 0, unless all types choose full effort, garbling the continuation test in this way
does not generate the same outcome: any type choosing zero effort reaches the continu-
ation test after {h� (q′� s)} with zero probability before the change and positive probabil-
ity after the change. Second, replacing the task q′ by q and garbling can alter incentives
in a way that changes the agent’s optimal strategy and, consequently, the principal’s pay-
off. To see this, suppose that full effort is optimal for some type θi at hA = (h�q′). This
implies that the agent’s expected probability of passing the test is higher in the contin-
uation test following {h� (q′� s)} than in the continuation test following {h� (q′� f )}. Now
suppose the principal replaces task q′ by q and garbles the continuation tests as de-
scribed above. Type θi may no longer find full effort to be optimal. In particular, if
αf > αs, then zero effort will be optimal after the change, since failure on task q gives
a higher likelihood of obtaining the continuation test that he is more likely to pass.13

Therefore, the simple garbling argument does not imply Theorem 2. Instead, the proof
exploits the structure of informativeness in our particular context captured by Lemma 1,
which, when coupled with a backward induction argument, enables us to verify that the
continuation tests can be garbled in a way that does not adversely affect incentives.

In our model, i∗ is fixed. One could instead ask whether Blackwell’s result holds for
all i∗ when the agent is strategic (that is, for any threshold i∗ such that the principal
wants to fail the agent if and only if his type has index greater than i∗). It follows from

13One can show that if q is more Blackwell informative than q′, group monotonicity implies that the
corresponding values of αf and αs cannot satisfy αf > αs . For our weaker notion of informativeness, the
relevant values of αf and αs may depend on the posterior distribution of types conditional on the history,
which in turn depends on the agent’s strategy earlier in the test.
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Theorem 2 that the result continues to hold if (i) group monotonicity is replaced with
the stronger full monotonicity condition that θi(q) ≥ θj(q) whenever i < j, and (ii) the
definition of informativeness is strengthened to require the existence, for each partition
of the set of types into sets G = {θ1� � � � � θi∗} and B = {θi∗+1� � � � � θI}, of αs(π) and αf (π)

satisfying (4).14

In the nonstrategic benchmark model, Blackwell’s result can be strengthened to
eliminate less informative tasks even if there is no most informative task. More pre-
cisely, if q�q′ ∈ Q are such that q is more informative than q′, then there exists an OFT in
which q′ is not assigned at any history (and thus any OFT for the set of tasks Q \ {q′} is
also an OFT for the set of tasks Q). The intuition behind this result is essentially the same
as for Blackwell’s result: whenever a test assigns task q′, replacing it with q and suitably
garbling the continuation tests yields the same joint distribution of types and verdicts.

In the strategic setting, this more general result does not hold. For example, there
exist cases with one bad type in which zero effort is optimal for the bad type in the first
period and full effort is strictly optimal for at least one good type; one such case is de-
scribed in Example 8 in Appendix B. Letting q denote the task assigned in the first period,
adding any task q̃ to the set Q that is easier than q, and assigning q̃ instead of q does not
change the optimal action for any type; doing so only increases the payoff of any type
that strictly prefers full effort. Since only good types have this preference, such a change
increases the principal’s payoff. If, in addition, q is more informative than q̃, then the
optimal test for the set of tasks Q∪ {q̃} is strictly better for the principal than that for the
set Q, which implies that q̃ must be assigned with positive probability at some history,
and the generalization of Blackwell’s result fails.

5.2 On the structure of the model

While Theorem 2 may seem intuitive, as Example 2 indicates, it does rely on group
monotonicity. The following partial converse to Theorem 2 extends the logic of Exam-
ple 2 to show that, in a sense, group monotonicity is necessary for Blackwell’s result to
hold in the strategic setting.

Theorem 3. Suppose q is such that θi(q) < θj(q) for some i and j such that i ≤ i∗ < j.
Then there exist q′ and π such that q is more Blackwell informative than q′, and for each
test length T , if Q = {q�q′}, no optimal test assigns task q at every history h ∈ H .

The idea behind this result is that if θi(q) < θj(q) and the test always assigns q, type

j can pass with at least as high a probability as can type i. When the principal assigns
high prior probability to these two types, she is better off assigning a task q′ (at least at
some histories) for which θi(q

′) > θj(q
′) (and such a less Blackwell informative q′ always

exists) so as to advantage the good type.
The next example demonstrates that even if group monotonicity holds, Blackwell’s

result can also break down if we alter the structure of the agent’s payoffs. When all types
choose full effort, success on a task increases the principal’s belief that the type is good.

14We are grateful to an anonymous referee for this observation.
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Not surprisingly, if some types prefer to fail the test, this can give them an incentive to
shirk in a way that overturns Blackwell’s result.

Example 3. Suppose there are two types (I = 2), one good and one bad, and one period
(T = 1). The principal has two tasks, Q = {q�q′}, with success probabilities given by the
matrix

q q′
θ1 0�9 0�8
θ2 0�9 0�1�

The principal’s prior belief is

(π1�π2)= (0�5�0�5)�

Compared to the main model, suppose that the principal’s payoffs are the same, but
the agent’s are type-dependent: type θ1 prefers a verdict of 1 to 0, while type θ2 has
the opposite preference.15 One interpretation is that verdicts represent promotions to
different departments. The principal wants to promote type θ1 to the position corre-
sponding to verdict 1 and promote type θ2 to the position corresponding to verdict 0, a
preference that the agent shares.

Task q′ is trivially more Blackwell informative than task q since the performance on
task q (conditional on full effort) conveys no information.16 Faced with a nonstrategic
agent, the optimal test would assign task q′ and verdicts V{(q′� s)} = 1 and V{(q′� f )} = 0.
Faced with a strategic agent, the optimal test is to assign task q and verdicts V{(q� s)} = 1
and V{(q� f )} = 0. In each of these tests, type θ1 chooses a1 = 1 and type θ2 chooses
a1 = 0. Thus the probability with which θ2 gets verdict 0 remains the same, but the
probability with which θ1 gets verdict 1 is higher with the easier task q. ♦

6. Noncomparable tasks

In many cases, tasks cannot be ordered by informativeness. What can we say about the
design of the optimal test and its relationship to the OFT in general?

The next result shows that when group monotonicity holds, any OFT is an optimal
test when there are only two types (I = 2); for strategic actions to play an important role,
there must be at least three types.

Theorem 4. Suppose group monotonicity holds. If I = 2, any OFT is an optimal test and
makes the full-effort strategy σN optimal for the agent.

To see why the strategy σN is optimal for the agent in some optimal test, suppose
there is an optimal test in which the good type strictly prefers to shirk at some his-
tory hA. This implies that his expected payoff following a failure on the current task
at hA is higher than that following a success. Now suppose the principal altered the test

15Given these preferences, it is not clear that full effort is the most relevant benchmark. Our point here
is simply to show that, as stated, our result does not carry over to this setting.

16The corresponding αs and αf in (3) are both 0.9.
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by replacing the continuation test following a success with that following a failure (in-
cluding replacing the corresponding verdicts). This would make full effort optimal for
both types since the continuation tests no longer depend on success or failure at hA.
Since the good type chose zero effort before the change, there is no effect on his payoff.
Similarly, the bad type’s payoff cannot increase: if he strictly preferred full effort be-
fore the change, then he is made worse off, and otherwise his payoff is also unchanged.
Therefore, this change cannot lower the principal’s payoff. A similar argument applies
to histories where the bad type prefers to shirk (in which case we can replace the con-
tinuation test following a failure with that following a success). Such a construction can
be used inductively at all histories where there is shirking.17

Given this argument, Theorem 4 follows if σN is optimal in every OFT. This can be
seen using a similar argument to that above, except for the case in which both types
strictly prefer to shirk at some history. However, it turns out that this case cannot happen
when the continuation tests after both outcomes are chosen optimally.

When there are more than two types, even if group monotonicity holds, there need
not be an optimal test in which the fully informative strategy is optimal. The following
example shows that, even if the full-effort strategy σN is optimal in some OFT, the opti-
mal test may differ; the principal can sometimes benefit from distorting the test relative
to the OFT so as to induce shirking by some types.

Example 4. Suppose there are three types (I = 3) and three periods (T = 3), with i∗ = 2
(so that types θ1 and θ2 are good types). There are two tasks, Q = {q�q′}, and the success
probabilities are given by the matrix

q q′
θ1 1 0�5
θ2 0�5 0�5
θ3 0�5 0�4�

Note that the types are ranked in terms of ability (in particular, group monotonicity
holds), and the tasks are ranked in terms of difficulty. The principal’s prior belief is

(π1�π2�π3) = (0�06�0�44�0�5)�

The OFT (T N�VN) is represented by the tree in Figure 1. The OFT always assigns
the task q′. The agent passes the test if he succeeds at least twice in the three periods.
Intuitively, the principal assigns a low prior probability to type θ1, and so designs the test
to distinguish between types θ2 and θ3, for which q′ is better than q. Given that only a
single task is used, group monotonicity implies that the optimal verdicts feature a cutoff
number of successes required to pass.18

17The discussion has ignored the effect of a change following a given period t history on the effort choices
at all periods t ′ < t; indeed, earlier actions might change. However, it is straightforward to argue that if a
type’s payoff goes down at a given history after such a change, the (optimal) payoff is also lower at the
beginning of the test.

18Note that the OFT is not unique in this case since the principal can assign either of the two tasks (keep-
ing the verdicts the same) at histories {(q′� s)� (q′� s)} and {(q′� f )� (q′� f )}.
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Figure 1. An OFT for Example 4. The level of a node corresponds to the time period. In-
ner nodes indicate the task assigned at the corresponding history, while the leaves indicate
the verdicts. For instance, the rightmost node at level 3 corresponds to the period 3 history
h3 = {(q′� f )� (q′� f )} and the task assigned by the test at this history is T N(h3) = q′. The verdicts
following this history are 0 whether he succeeds or fails at this task.

Figure 2. An optimal deterministic test for Example 4.

If the principal commits to this test, then the full-effort strategy is optimal for the
agent: failure on the task assigned in any period has no effect on the tasks assigned in
the future, and merely decreases the probability of passing.

Is this test optimal when the agent is strategic? Consider instead the deterministic
test (T ′�V ′) described by the tree in Figure 2. This alternate test differs from the OFT in
several ways. The agent now faces task q instead of q′ both in period 1 and at the period
2 history following a success. In addition, the agent can pass only at two of the terminal
histories. We argue that this test yields a higher payoff to the principal despite σN being
an optimal strategy for the agent in test (T N�VN).

By definition, (T ′�V ′) can only yield a higher payoff for the principal than does
(T N�VN) if at least one type of the agent chooses to shirk at some history. This is indeed
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the case. Since type θ1 succeeds at task q for sure conditional on choosing full effort, he
will choose at = 1 in each period and pass with probability 1. However, types θ2 and θ3
both prefer at = 0 in periods t = 1�2. Following a success in period 1, two further suc-
cesses are required at task q to get a passing verdict. In contrast, by choosing the zero
effort in the first two periods, the history {(q� f )� (q′� f )} can be reached with probabil-
ity 1, after which the agent needs only a single success at task q′ to pass. Consequently,
this shirking strategy yields a higher payoff for types θ2 and θ3.

The difference in payoffs for the three types in (T ′�V ′) relative to (T N�VN) are

�v1 = v1
(
T ′�V ′) − v1

(
T N�VN

) = 1 − [0�5 ∗ 0�75 + 0�5 ∗ 0�25] = 0�5�

�v2 = v2
(
T ′�V ′) − v2

(
T N�VN

) = 0�5 − [0�5 ∗ 0�75 + 0�5 ∗ 0�25] = 0�

�v3 = v3
(
T ′�V ′) − v3

(
T N�VN

) = 0�4 − [0�4 ∗ 0�64 + 0�6 ∗ 0�16] = 0�048�

The change in the principal’s payoff is

2∑
i=1

πi�vi −π3�v3 = 0�06 ∗ 0�5 − 0�5 ∗ 0�048 > 0�

which implies that (T N�VN) is not the optimal test. In particular, the principal can
benefit from the fact that the agent can choose his actions strategically. ♦

The previous example has a flavor of the “ratchet effect.”19 In the optimal determin-
istic test, types θ2 and θ3 preferred to shirk in the first period, as success on the first task
was a signal that the agent might be the highest type θ1 which, in turn, led to a ratchet-
ing up of the test difficulty (requiring two successes at task q as opposed to one success
at q′). The next example shows that such ratcheting might also be a feature of the OFT;
specifically, that the full-effort strategy is not always optimal. As the example shows, in
response, the principal may be able to improve on the OFT with a different test, even
one that induces the same strategy for the agent.

Example 5. Suppose there are three types (I = 3) and three periods (T = 3), with i∗ = 2.
The principal has two different tasks, Q = {q�q′}, and the success probabilities are

q q′
θ1 1 0�2
θ2 0�2 0�15
θ3 0�1 0�01�

The principal’s prior belief is

(π1�π2�π3) = (0�5�0�1�0�4)�

19The ratchet effect arises in a variety of different dynamic environments: for instance, in organizations
Milgrom and Roberts (1992), in regulatory contexts Meyer and Vickers (1997), and in adverse selection
environments Laffont and Tirole (1988).
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Figure 3. An OFT for Example 5.

Figure 3 depicts an OFT (T N�VN) for this environment. The intuition for the opti-
mality of this test is as follows. The principal has a low prior probability that the agent’s
type is θ2. Task q is effective at distinguishing between types θ1 and θ3 as, loosely speak-
ing, their ability difference is larger on that task. If there is a success on q, it greatly
increases the belief that the type is θ1, and the principal will assign q again. Conversely,
if there is a failure on task q (in any period), then the belief assigns zero probability to
the agent having type θ1. The principal then instead switches to task q′, which is more
effective than q at distinguishing between types θ2 and θ3. Since θ3 has very low ability
on q′, a success on this task is a strong signal that the agent’s type is not θ3, in which case
the test issues a pass verdict.

Note that the full-effort strategy σN is not optimal for type θ2: he prefers to choose
action 0 in period 1 and action 1 thereafter. This is because his expected payoff at history
h2 = {(q� s)} is u2(h2;T N�VN�σN

2 ) = 0�2 ∗ 0�2 + 0�8 ∗ 0�15 = 0�16, which is lower than his
expected payoff u2(h

′
2;T N�VN�σN

2 ) = 1 − 0�85 ∗ 0�85 = 0�2775 at history h′
2 = {(q� f )}.

Therefore, this example demonstrates that the full-effort strategy is not always optimal
for the agent in an OFT.20 The ability of the agent to behave strategically benefits the
principal since θ2 is a good type.

An optimal deterministic test (T ′�V ′) is depicted in Figure 4. Note that this test is
identical to (T N�VN) except that the verdict at terminal history {(q� s)� (q� f )� (q′� s)} is
0 as opposed to 1. In this test, types θ1 and θ3 choose the full-effort strategy and type θ2

chooses action 0 in period 1 and action 1 subsequently. Note that the expected payoff of
type θ1 remains unchanged relative to the OFT, but that of type θ3 is strictly lower. The
payoff of type θ2 is identical to what he receives from optimal play in (T N�VN). Thus
the payoff for the principal from the test (T ′�V ′) is higher than that from (T N�VN). ♦

The examples in Appendix B illustrate a range of possibilities for both the optimal
test and the OFT. Group monotonicity implies that under the assumption that the agent
chooses the full-effort strategy, success on each task raises the principal’s belief that the

20Although the OFT is not unique, there is no OFT in this case for which σN is optimal.
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Figure 4. An optimal deterministic test for Example 5.

agent’s type is good. Nonetheless, because of the adaptive nature of the test, failure on
a task can make the remainder of the test easier for some types, as shown by Example 5.
Relative to choosing σN , strategic behavior by the agent can either help the principal (as
in Example 5) or hurt her (as in Example 7). Furthermore, in some cases the full-effort
strategy is optimal in the optimal deterministic test but not in the OFT.

Finally, unlike the OFT, for which it suffices to restrict to deterministic tests, there are
cases in which there is no deterministic optimal test for the principal when the agent is
strategic. Example 8 illustrates one case in which randomizing a verdict strictly benefits
the principal and another case in which a test that randomizes tasks is strictly better
than any that does not.

7. Discussion

In this section, we consider a number of generalizations of the results in Section 5. Each
subsection is separate and does not build on the preceding one.

7.1 Menus of tests

We have so far ignored the possibility that the principal can offer a menu of tests and
allow the agent to choose which test to take. While this is not typically observed in the
applications we mentioned in the Introduction, it may seem natural from a theoretical
perspective. Formally, in this case, the principal offers a menu of M tests {ρk}Mk=1 and
each type θi of the agent chooses a test ρk that maximizes his expected payoff vi(ρk).
Although a nontrivial menu could in principle help to screen the different types, our
main result still holds.

Theorem 5. Suppose there is a task q that is more informative than every other task
q′ ∈Q. Then for any OFT, there is an optimal menu consisting only of that test.

Proof. In the proof of Theorem 2, we show that any test can be replaced by one where
the most informative task q is assigned at all histories and appropriate verdicts can be
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chosen so that the payoffs of the good types (weakly) increase and those of the bad types
(weakly) decrease. Applying this change to every test in a menu must also increase the
good types’ payoffs while decreasing those of bad types. Thus we can restrict attention to
menus in which every test assigns task q at every history. But then the proof of Lemma 2
shows that replacing any test that is not an OFT with an OFT makes any good type that
chooses that test better off and any bad type worse off. Therefore, by the expression for
the principal’s payoff in (1), replacing every test in the menu with any given OFT cannot
make the principal worse off. �

If there is no most informative task, it can happen that offering a nontrivial menu is
strictly better for the principal than any single test, as Example 9 in Appendix B shows.

It appears to be very difficult to characterize the optimal menu in general since it
involves constructing tests that are themselves complex objects that are challenging to
compute. However, without identifying the optimal menu, the following result provides
an upper bound on the number of tests that are required: it is always sufficient to restrict
to menus containing only as many tests are there are good types. One implication is that
nontrivial menus are never beneficial when there is a single good type.

Theorem 6. There exists an optimal menu containing at most i∗ elements. In particular,
if there is a single good type (i∗ = 1), then there is an optimal menu that consists of a single
test.

Proof. Suppose the principal offers a menu M, and let M′ denote the subset of M con-
sisting of the elements chosen by the good types θ1� � � � � θi∗ (so that M′ contains at most
i∗ elements). If instead of M the principal offered the menu M′, each good type would
continue to choose the same test (or another giving the same payoff), and hence would
receive the same payoff as from the menu M. However, the payoff to all bad types must
be weakly lower since the set of tests is smaller. Therefore, the menu M′ is at least as
good for the principal as M since it does not affect the probability that any good type
passes and weakly decreases the probability that any bad type passes. �

7.2 Time-varying task sets

The main insight from Theorem 2 is that there are simple and intuitive conditions under
which the most informative task can generate the required incentives to ensure optimal
learning. This result provides the additional insight that the optimal verdict is simple
and easy to implement in practice: the agent passes the test whenever he succeeds on
sufficiently many tasks. As a consequence, the agent has no incentive to shirk in the
optimal test. We now extend the environment to allow for the set of available tasks to
vary over time and show that even if the optimal test assigns the most informative task
in each period, there may be strategic shirking by the agent.

We now suppose that, in each period t, the principal assigns a task from some
nonempty set Qt that may differ across periods; otherwise, the model is identical to our
main model. The next example shows that our main result does not hold in this setting
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without additional conditions. One can show, however, that the optimal test always as-
signs the most informative task if in each period that is also the easiest task for the good
types (in the sense that θi(qt) ≥ θi(q

′
t ) for each i ≤ i∗, where qt is the most informative

task at time t). The following example also shows that the agent may shirk in the optimal
test even when these conditions hold.

Example 6. Suppose there are three types (I = 3) and three periods (T = 3), with i∗ = 2.
In each period t, the principal has only a single task qt that can be assigned; that is,
Qt = {qt} for each t. The success probabilities are

q1 q2 q3

θ1 1 1 0�5
θ2 1 0�5 1
θ3 1 0�5 0�5�

The principal’s prior belief is

(π1�π2�π3) = (0�4�0�4�0�2)�

To describe the OFT (T N�VN), we only need to define the verdicts as the principal
has only one task to assign in each period. Observe that q1 is completely uninformative
(as all types succeed with the same probability) and so does not impact the verdict. It
is straightforward to show that the optimal verdict is to pass the agent if and only if he
succeeds on at least one of q2 or q3. Since types θ1 and θ2 can succeed on at least one of
q2 or q3 for sure, their expected payoff in the OFT is 1. Type θ3 passes with probability
1 − 0�5 × 0�5 = 0�75. Thus the principal’s payoff from the OFT is

2∑
i=1

πivi
(
T N�VN

) −π3v3
(
T N�VN

) = 0�4 + 0�4 − 0�2 × 0�75 = 0�65�

Is this test optimal? Consider instead the verdict function

V(hT+1)=

⎧⎪⎪⎨
⎪⎪⎩

1 if hT+1 = {
(q1� s)� (q2� s)� (q3� f )

}
or hT+1 = {

(q1� f )� (q2� f )� (q3� s)
}
�

0 otherwise.

(6)

In words, to pass the test, the agent must succeed on exactly one of q2 or q3; which of
these he must succeed on depends on whether he succeeds on q1.

How does the agent act in response to these verdicts? Type θ1 will choose full effort
and succeed in periods 1 and 2 for sure, and then shirk and fail in period 3 for sure. Thus,
he will pass for sure. Similarly, type θ2 will shirk and fail in periods 1 and 2 for sure, and
then choose full effort and succeed in period 3 for sure. Thus, he too will pass for sure.
Finally, type θ3 is indifferent in period 1, and will choose full effort either in period 2 or
period 3, depending on the outcome of q1. Thus, he passes with probability 0�5. The
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principal’s payoff from this test is, therefore,

2∑
i=1

πivi
(
T N�V

) −π3v3
(
T N�V

) = 0�4 + 0�4 − 0�2 × 0�5 = 0�7�

which is strictly greater than that from the OFT. It follows that the optimal test must
induce shirking by some type. This holds even though task assignment is the same as in
the OFT and, trivially, the most informative task is assigned in each period. Intuitively,
in the second test, the first task is employed as a screening device to allow the two good
types to sort into different continuation tests. While it is also possible to screen in this
way with time-invariant task sets, doing so is not profitable for the principal.

Finally, we note that if the most informative question is not the easiest one for the
good types, it is possible that it will not be used in the optimal test. To see this, suppose
we add another task q′

1 to Q1 so that the period-one task set now becomes Q′
1 = {q′

1� q1}.
The success probabilities are given by

q′
1 q1 q2 q3

θ1 3ε 1 1 0�5
θ2 2ε 1 0�5 1
θ3 ε 1 0�5 0�5�

Observe that q′
1 is more Blackwell informative than q1.21 Suppose the principal assigns

task q′
1 instead of q1. For small ε, successes almost never occur. Hence, the principal’s

payoff is close to that obtained from a two-period test using q2 and q3. However, without
using q1 as a screening device, it is no longer possible to achieve the payoff correspond-
ing to the verdict (6). Intuitively, an easier task can be a more effective screening device
since it allows good types to sort more fully. ♦

7.3 The role of commitment

Throughout the preceding analysis, we have assumed that the principal can commit in
advance to both the history-dependent sequence of tasks and the mapping from termi-
nal histories to verdicts. When the principal cannot commit, her choice of task at each
history is determined in equilibrium as a best response to the agent’s strategy given the
principal’s belief. Similarly, the verdicts are chosen optimally at each terminal history
depending on the principal’s belief (which is also shaped by the agent’s strategy). Com-
mitment power benefits the principal (at least weakly) since she can always commit to
any equilibrium strategy she employs in the game without commitment (in which case
it would be optimal for the agent to choose his equilibrium strategy in response).

If there is a most informative task and group monotonicity holds, then the opti-
mal test can be implemented even without commitment. More precisely, the principal
choosing any OFT together with the agent using the strategy σN constitutes a sequen-
tial equilibrium strategy profile of the game where the principal cannot commit to a test.

21Take αs = αf = 1.
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To understand why, note first that the verdicts in this case must correspond directly to
the principal’s posterior belief at each terminal node, with the agent passing precisely
when the principal believes it is more likely that his type is good. Given these verdicts,
full effort is optimal in the last period, regardless of what task is assigned, and, hence, by
Blackwell’s original result, assigning the most informative task is optimal at every history
in period T . Given that the same task is assigned at every history in period T , there is no
benefit to shirking in period T − 1, which implies that assigning the most informative
task is again optimal. Working backward in this way yields the result.

In general, optimal tests may not be implementable in the absence of commitment:
Example 10 shows how the optimal test may fail to be sequentially rational.

Appendix A: Proofs

We require some additional notation for the proofs. The length of a history ht at the
beginning of period t is |ht | = t − 1. We use S(hT+1) to denote the number of successes
in the terminal history hT+1 ∈ HT+1. Given a history h, the set of all histories of the form
(h�h′) ∈ H is denoted by 
(h) and is referred to as the subtree at h. Similarly, we write

A(h) for the set of all histories for the agent of the form (h�h′) ∈ HA. The set of all
terminal histories (h�h′) ∈ HT+1 that include h is denoted by �(h). The length of �(h) is
defined to be T − |h|.

For some of the proofs, it is useful to consider tests in which verdicts may be ran-
domized but task assignment is not. A deterministic test with random verdicts (T �V)

consists of functions T : H → Q and V : HT+1 → [0�1] (as opposed to the range of V

being {0�1}). Note that one can think of any test ρ as randomizing over deterministic
tests with random verdicts by combining any tests in the support of ρ that share the
same task assignment function T and defining the randomized verdict function to be
the expected verdict conditional on T . In the proofs that follow, we do not distinguish
between deterministic tests with or without random verdicts; the meaning is clear from
the context.

Given a test ρ and a history (ht� qt) for the agent, we write supp(ht� qt) to denote
the set of deterministic tests with random verdicts in the support of ρ that generate the
history (ht� qt) with positive probability if the agent chooses the full-effort strategy.

The following observation is useful for some of the proofs.

Observation 1. Given a test ρ, an optimal strategy σ∗ for the agent, and a history h,
consider an alternate test ρ̂ that differs only in the distribution of tasks assigned in the
subtree 
(h) and the distribution of verdicts at terminal histories in �(h). Let σ̂∗ be an
optimal strategy in the test ρ̂. Then, for each i, ui(h; ρ̂� σ̂∗

i ) ≥ ui(h;ρ�σ∗
i ) implies vi(ρ̂) ≥

vi(ρ) and, similarly, ui(h; ρ̂� σ̂∗
i )≤ ui(h;ρ�σ∗

i ) implies vi(ρ̂) ≤ vi(ρ).

In words, this observation states that if we alter a test at a history h or its subtree 
(h)

in a way that the expected payoff of a type increases at h, then the expected payoff also
increases at the beginning of the test. This observation is immediate. Consider first the
case where ui(h; ρ̂� σ̂∗

i ) ≥ ui(h;ρ�σ∗
i ). Suppose the agent plays the strategy σ ′

i such that
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σ ′
i (h

′) = σ∗
i (h

′) at all histories h′ /∈ 
A(h) and σ ′
i (h

′) = σ̂∗
i (h

′) at all histories h′ ∈ 
A(h)

on test ρ̂. If history h is reached with positive probability, this must yield a weakly higher
payoff than playing strategy σ∗

i on test ρ. If history h is reached with probability 0, the
payoff of the agent remains the same. Thus the agent can guarantee himself a payoff
ui(h1; ρ̂�σ ′

i ) ≥ ui(h1;ρ�σ∗
i ), which in turn implies that optimal strategy σ̂∗

i on ρ̂ must
yield a payoff at least as high.

The opposite inequality follows from a similar argument. In that case, the agent
could only raise his payoff by altering his actions at some histories h′ /∈
A(h). But if this
yielded him a higher payoff, it would contradict the optimality of the strategy σ∗

i .
This observation has a simple implication that we use in what follows: any alteration

in a subtree 
(h) that raises the payoffs of good types and lowers the payoffs of bad
types leads to a higher payoff for the principal. Formally, if ρ̂ differs from ρ only after
history h, and if ui(h; ρ̂� σ̂∗

i ) ≥ ui(h;ρ�σ∗
i ) for all i ≤ i∗ and uj(h; ρ̂� σ̂∗

j ) ≤ uj(h;ρ�σ∗
j ) for

all j > i∗, then ρ̂ yields the principal at least as high a payoff as does ρ (this follows from
Observation 1 together with the experession (1) for the principal’s payoff).

Proof of Lemma 1

We prove this lemma in two parts. First, we show that q is more informative than q′ if
and only if, for every π,

θG(q�π)

θB(q�π)
≥ θG

(
q′�π

)
θB

(
q′�π

) and
1 − θB(q�π)

1 − θG(q�π)
≥ 1 − θB

(
q′�π

)
1 − θG

(
q′�π

) � (7)

Then we show that the latter condition is equivalent to

θi(q)

θj(q)
≥ θi

(
q′)

θj
(
q′) and

1 − θj(q)

1 − θi(q)
≥ 1 − θj

(
q′)

1 − θi
(
q′)

for all i ≤ i∗ and j > i∗.
Recall that q is more informative than q′ if there is a solution to[

θG(q�π) 1 − θG(q�π)

θB(q�π) 1 − θB(q�π)

][
αs(π) 1 − αs(π)

αf (π) 1 − αf (π)

]
=

[
θG

(
q′�π

)
1 − θG

(
q′�π

)
θB

(
q′�π

)
1 − θB

(
q′�π

)
]

that satisfies αs(π)�αf (π) ∈ [0�1]. Note that group monotonicity implies that θG(q�π)≥
θB(q�π). If, for some π, θG(q�π) = θB(q�π), then such αs(π) and αf (π) exist if and
only if θG(q′�π)= θB(q

′�π). Similarly, (7) holds for the given π if and only if θG(q′�π)≤
θB(q

′�π). Since θG(q
′�π) ≥ θB(q

′�π) by group monotonicity, it follows that θG(q′�π) =
θB(q

′�π). Therefore, when θG(q�π) = θB(q�π), condition (7) is equivalent to q being
more informative than q′.

Now suppose θG(q�π) > θB(q�π). Solving for αs(π) and αf (π) gives

αs(π) = θG
(
q′�π

)(
1 − θB(q�π)

) − θB
(
q′�π

)(
1 − θG(q�π)

)
θG(q�π)− θB(q�π)

�

αf (π) = θB
(
q′�π

)
θG(q�π)− θG

(
q′�π

)
θB(q�π)

θG(q�π)− θB(q�π)
�
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Hence, the condition that αs(π) ≥ 0 is equivalent to

θG
(
q′�π

)
θB

(
q′�π

) ≥ 1 − θG(q�π)

1 − θB(q�π)
�

which holds because the left-hand side is at least 1 and the right-hand side is less than 1.
The condition that αf (π) ≤ 1 is equivalent to

θB(q�π)

θG(q�π)
≤ 1 − θB

(
q′�π

)
1 − θG

(
q′�π

) �
which holds because the left-hand side is less than 1 and the right-hand side is at least 1.
Finally, αs(π) ≤ 1 is equivalent to

1 − θB(q�π)

1 − θG(q�π)
≥ 1 − θB

(
q′�π

)
1 − θG

(
q′�π

)
and αf (π) ≥ 0 is equivalent to

θG(q�π)

θB(q�π)
≥ θG

(
q′�π

)
θB

(
q′�π

) �
which completes the first part of the proof.

We now show the second part. If (7) holds for every π, then given any i ≤ i∗ and
j > i∗, taking πi = πj = 1

2 in (7) gives

θi(q)

θj(q)
≥ θi

(
q′)

θj
(
q′) and

1 − θj(q)

1 − θi(q)
≥ 1 − θj

(
q′)

1 − θi
(
q′) �

For the converse, observe that

θG(q�π)

θB(q�π)
≥ θG

(
q′�π

)
θB

(
q′�π

) ⇐⇒
∑

i≤i∗�j>i∗
πiπjθi

(
q′)θj(q)

(
θi(q)

θj(q)

θj
(
q′)

θi
(
q′) − 1

)
≥ 0�

which holds if θi(q)
θj(q)

≥ θi(q
′)

θj(q′) whenever i ≤ i∗ < j. Similarly,

1 − θB(q�π)

1 − θG(q�π)
≥ 1 − θB

(
q′�π

)
1 − θG

(
q′�π

)
⇐⇒

∑
i≤i∗�j>i∗

πiπj

(
1 − θi(q)

)(
1 − θj

(
q′))(1 − θj(q)

1 − θi(q)

1 − θi
(
q′)

1 − θj
(
q′) − 1

)
≥ 0�

which holds if
1−θj(q)
1−θi(q)

≥ 1−θj(q
′)

1−θi(q′) whenever i ≤ i∗ < j. �
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Proof of Theorem 2

In what follows, we often refer to a property of verdicts that we term the cutoff property.
Formally, we say the verdicts in the subtree �(h) (for a given history h) satisfy the cut-
off property (with cutoff k∗) if there exists a number of successes k∗ ∈ {0� � � � �T } such
that for all terminal histories hT+1 ∈ �(h), the verdicts satisfy V(hT+1) = 1 whenever
S(hT+1) > k∗ and satisfy V(hT+1) = 0 whenever S(hT+1) < k∗.

The following lemma proves the result for the special case of one task and is useful
to prove the general case.

Lemma 2. Suppose that |Q| = 1 and group monotonicity holds. Then any OFT is an opti-
mal test, and the full-effort strategy σN is optimal for the agent.

Proof. Since there is only a single task q ∈Q, a test in this case is simply a deterministic
test with random verdicts, which we denote by (T �V). We begin by stating an observa-
tion that is useful for the proof.

Observation 2. Suppose that |Q| = 1. Suppose in addition that, at some history h, ver-
dicts satisfy the cutoff property with cutoff k∗. Then full effort is optimal for all types at all
histories in the subtree 
(h).

Proof. This result holds trivially if the length of �(h) is 1; accordingly, suppose the
length is at least 2. First, observe that if this property holds in 
(h), then it also holds
in all subtrees of 
(h). Now take any history h′ ∈ 
(h). Consider a terminal his-
tory {h′� (q� f )�h′′} ∈ �(h) following a failure at h′. The verdict at the terminal history
{h′� (q� s)�h′′} ∈ �(h) must be weakly higher, since this is a terminal history with one
greater success. Since this is true for all h′′, it implies that any strategy following a failure
at h′ must yield a weakly lower payoff than if the corresponding strategy was employed
after a success. This implies that full effort is optimal at h′. �

We now prove the lemma by induction. The induction hypothesis states that any
test (T �V) of length T − 1 that induces shirking (at some history) can be replaced by
another test (T �V ′) of the same length in which (i) the full-effort strategy is optimal for
every type, (ii) every good type passes with at least as high a probability as in (T �V),
and (iii) every bad type passes with probability no higher than in (T �V). Therefore, the
principal’s payoff from test (T �V ′) is at least as high as from (T �V).

As a base for the induction, consider T = 1. If shirking is optimal for some type, it
must be that V({(q� f )}) ≥ V({(q� s)}). But then shirking is an optimal action for every
type. Changing the verdict function to V ′({(q� s)}) = V ′({(q� f )}) = V({(q� f )}) makes full
effort optimal and does not affect the payoff of the agent or the principal.

The induction hypothesis implies that we only need to show that inducing shirking
is not strictly optimal for the tester in the first period of a T period test. This induction
step is now shown in two separate parts.

Step 1. Consider the two subtrees 
({(q� s)}), 
({(q� f )}) following success and fail-
ure in the first period. For each ω ∈ {s� f }, there exists a number of correct answers
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k∗
ω ∈ {0� � � � �T } such that there are optimal verdicts in the subtree 
({q�ω}) satisfying

V(h) = 1 whenever S(h) > k∗
ω and V(h) = 0 whenever S(h) < k∗

ω for all h ∈ �({(q�ω)}).
Recall that the induction hypothesis states that it is optimal for all types to choose full
effort in the subtrees 
({(q� s)}) and 
({(q� f )}). We prove the result for the subtree

({(q� s)}); an identical argument applies to 
({(q� f )}).

Suppose the statement does not hold. Consider a history h ∈
({(q� s)}) such that the
subtree 
(h) is minimal among those in which the statement does not hold (meaning
that the statement holds for every proper subtree of 
(h)).

Given any optimal verdict function V , let ks and ks denote, respectively, the smallest
and largest values of k∗

s for which the statement holds in 
({h� (q� s)}). We define kf and

kf analogously. If for some optimal V , ks ≤ kf and kf ≤ ks , then there exists k∗ for which
the statement holds in 
({h� (q� s)}) and in 
({h� (q� f )}), implying that it holds in 
(h).
Therefore, for each optimal V , either ks > kf or kf > ks .

Suppose ks > kf .22 Let the terminal history hs
T+1 ∈ �({h� (q� s)}) be such that

S(hs
T+1) = ks and V(hs

T+1) < 1, and let hf
T+1 ∈ �({h� (q� f )}) be such that S(hf

T+1) = kf

and V(h
f
T+1) > 0. Note that such terminal histories exist by the minimality and maxi-

mality of ks and kf , respectively. Let r = ks −kf . Let ĩ ∈ arg mini≤i∗ θi(q), and let �> 0 be
such that

V ′(hs
T+1

) := V
(
hs
T+1

) +� ≤ 1

and

V ′(hf
T+1

) := V
(
h
f
T+1

) − θĩ(q)
r(

1 − θĩ(q)
)r �≥ 0�

with one of these holding with equality. Letting V ′(h) = V(h) for every terminal history

h /∈ {hs
T+1�h

f
T+1}, changing the verdict function from V to V ′ does not affect the cutoff

property in either subtree 
({h� (q� s)}) or 
({h� (q� f )}). Therefore, by Observation 2,
full effort is optimal at all histories in each of these subtrees. In addition, full effort re-
mains optimal at h for all types after the change to V ′, because the payoffs of all types
have gone up in the subtree 
({h� (q� s)}) and down in the subtree 
({h� (q� f )}), and, by
the induction hypothesis, full effort was optimal at h before the change.

The difference between the expected payoffs for type i at history h (given that the
agent follows the full-effort strategy in the subtree 
(h)) due to the change in verdicts
has the same sign as

�

(
θi(q)

r − (
1 − θi(q)

)r θĩ(q)
r(

1 − θĩ(q)
)r

)
�

By group monotonicity, this last expression is nonnegative if i ≤ i∗ and nonpositive oth-
erwise. In other words, changing the verdict function to V ′ (weakly) raises the payoffs of
good types and lowers those of bad types at history h. Therefore, by Observation 1, the
principal’s payoff does not decrease as a result of this change. Iterating this process at

22Note that ks > kf +1 implies that it would be optimal for all types to shirk at h, contrary to the induction
hypothesis.
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other terminal histories hs
T+1 ∈ �({h� (q� s)}) such that S(hs

T+1) = ks and V ′(hs
T+1) < 1,

and h
f
T+1 ∈ �({h� (q� f )}) such that S(hf

T+1) = kf and V(h
f
T+1) > 0 eventually leads to an

optimal verdict function for which ks = kf , as needed.
If kf > ks , then all types strictly prefer action 1 at h. To see this, note that for all

{h� (q� f )�h′} ∈ �({h� (q� f )}), it must be that V({h� (q� s)�h′}) ≥ V({h� (q� f )�h′}), and this
inequality must be strict for all terminal histories where S({h� (q� f )�h′}) = kf −1. A sim-
ilar adjustment to that above can now be done. Let hs

T+1 ∈ �({h� (q� s)}) be such that

S(hs
T+1) = ks and V(hs

T+1) > 0, and let hf
T+1 ∈ �({h� (q� f )}) be such that S(hf

T+1) = kf

and V(h
f
T+1) < 1. Once again, such terminal histories exist by the maximality and mini-

mality of ks and kf respectively. Let r = kf − ks , and let �> 0 be such that

V ′(hf
T+1

) = V
(
h
f
T+1

) +�≤ 1

and

V ′(hs
T+1

) = V
(
hs
T+1

) − θĩ(q)
r(

1 − θĩ(q)
)r �≥ 0�

with one of these holding with equality. As before, this manipulation does not affect the
cutoff property at either subtree 
({h� (q� s)}) or 
({h� (q� f )}) and, therefore, by Obser-
vation 2, action 1 is optimal at all histories in each of these subtrees.

Once again, the difference between the expected payoffs for type i at history h (given
that the agent follows the full-effort strategy in the subtree 
(h)) due to this adjustment
has the same sign as

�

(
θi(q)

r − (
1 − θi(q)

)r θĩ(q)
r(

1 − θĩ(q)
)r

)
�

which is nonnegative if i ≤ i∗ and nonpositive if i > i∗. Therefore, the principal’s payoff
does not decrease from these changes, and iterating leads to optimal verdicts satisfying
kf = ks .

Step 2. Suppose the verdicts at terminal histories �({(q� s)}) and �({(q� f )}) sat-
isfy the above cutoff property, with cutoffs k∗

s and k∗
f , respectively. Then if one type

has an incentive to shirk in the first period, so do all other types. Consequently, if all
types choose a1 = 1, the proposition follows, or if all types want to shirk, the propo-
sition follows by replacing the test after {(q� s)} with the test after {(q� f )}. This step
is straightforward and can be shown by examining the three possible cases. Suppose
k∗
s ≤ k∗

f . Then the verdict at every terminal history {(q� s)�h} ∈ �({(q� s)}) is weakly
higher than {(q� f )�h} ∈ �({(q� f )}) and, hence, a1 = 1 must be optimal for all types.
When k∗

s > k∗
f + 1, a1 = 0 is optimal for all types. Finally, when k∗

s = k∗
f + 1, type i wants

to shirk if and only if the sum of the verdicts at terminal histories {(q� f )�h} ∈ �({(q� f )})
with S({(q� f )�h}) = k∗

f is higher than the sum of the verdicts at terminal histories
{(q� s)�h} ∈ �({(q� s)}) with S({(q� s)�h}) = k∗

s (since each such history occurs with equal
probability). This comparison does not depend on i. �

Proof of Theorem 2. In this proof, we proceed backward from period T , altering each
deterministic test with random verdicts in the support of ρ in a way that only task q
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is assigned without reducing the payoff of the principal. The result then follows from
Lemma 2.

Consider first a period T history hT together with an assigned task qT . Let

vω := E
[
V

({
hT � (qT �ω)

})|(T �V) ∈ supp(hT �qT )
]

be the expected verdict following the outcome ω ∈ {s� f } taken with the respect to the set
of possible deterministic tests with random verdicts that the agent could be facing.

Suppose first that vf ≥ vs. Then every type finds shirking optimal at (hT �qT )

and gets expected verdict vf . Replacing each deterministic test with random verdicts
(T �V) ∈ supp(hT �qT ) with another (T ′�V ′) that is identical except that T ′(hT ) = q and
V ′({hT � (q� s)}) = V ′({hT � (q� f )}) = vf does not alter the principal’s or the agent’s payoff,
and makes action 1 optimal at hT .

Now suppose that vs > vf , so that action 1 is optimal for all types of the agent. Let
β1 := maxi′≤i∗

θi′ (qT )
θi′ (q)

. If β1 ≤ 1, we replace each (T �V) ∈ supp(hT �qT ) with (T ′�V ′)
that is identical except that T ′(hT ) = q, V ′({hT � (q� s)}) = β1v

s + (1 − β1)v
f , and

V ′({hT � (q� f )}) = vf . The change in expected payoff at history hT is given by

θi(q)
(
β1v

s + (1 −β1)v
f
) + (

1 − θi(q)
)
vf − (

θi(qT )v
s + (

1 − θi(qT )
)
vf

)
= θi(qT )

(
vs − vf

)( θi(q)

θi(qT )
β1 − 1

)

= θi(qT )
(
vs − vf

)( θi(q)

θi(qT )
max
i′≤i∗

{
θi′(qT )

θi′(q)

}
− 1

)
�

Since vs − vf > 0, it follows from Lemma 1 that the above result is nonnegative for i ≤ i∗
and nonpositive for i > i∗.

Now suppose β1 > 1. Let β2 := 1 − maxi′≤i∗
θi′ (qT )−θi′ (q)

1−θi′ (q)
and observe that 0 ≤ β2 ≤ 1

(with the latter inequality following from the assumption that β1 > 1). In this case, we
replace each (T �V) ∈ supp(hT �qT ) with (T ′�V ′) that is identical except that T ′(hT ) = q,
V ′({hT � (q� s)}) = vs and V ′({hT � (q� f )}) = β2v

f + (1 − β2)v
s. The change in expected

payoff at history hT is given by

θi(q)v
s + (

1 − θi(q)
)(
β2v

f + (1 −β2)v
s
) − (

θi(qT )v
s + (

1 − θi(qT )
)
vf

)
= (

θi(qT )− θi(q)
)(
vs − vf

)( 1 − θi(q)

θi(qT )− θi(q)
max
i′≤i∗

θi′(qT )− θi′(q)

1 − θi′(q)
− 1

)
�

(8)

Note that for any i and i′, 1−θi(qT )
1−θi(q)

≥ 1−θi′ (qT )
1−θi′ (q)

implies that θi(qT )−θi(q)
1−θi(q)

≤ θi′ (qT )−θi′ (q)
1−θi′ (q)

, and
so it follows from Lemma 1 that the above result is nonnegative for i ≤ i∗ and nonpositive
for i > i∗.

Repeating the above construction at all period T histories hT ∈ HT yields a test such
that all deterministic tests with random verdicts in its support assign task q at period T

and full effort is optimal for all types of the agent at all period T histories. Moreover,
since this (weakly) raises the payoffs of good types and lowers those of bad types at all
period T histories, it does not lower the principal’s payoff.
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We now proceed inductively backward from period T − 1. For a given period 1 ≤ t ≤
T − 1, we assume as the induction hypothesis that it is optimal for all types of the agent
to choose full effort at all histories ht ′ ∈ Ht ′ for t < t ′ ≤ T in all deterministic tests with
random verdicts (T �V) that are in the support of ρ. Additionally, we assume as part of
the induction hypothesis that T (ht ′) = q at all ht ′ ∈ Ht ′ for t < t ′ ≤ T .

Now consider each period t history ht ∈ Ht and assigned task qt . A consequence
of the induction hypothesis is that it is without loss to assume that each (T �V) ∈
supp(ht� qt) (if nonempty) has the same verdict at each terminal history in �(ht). This
follows because, as per the induction hypothesis, only task q is assigned in periods t + 1
onward in the subtree 
(ht), and so the agent learns nothing further as the test pro-
gresses. In other words, it is equivalent to set the verdicts of each (T �V) ∈ supp(ht� qt)

to be V(hT+1) = E[V ′(hT+1)|(T ′�V ′) ∈ supp(ht� qt)] for all hT+1 ∈ �(ht).
We now alter each (T �V) ∈ supp(ht� qt) so that task q is assigned at ht and we change

the verdicts so that full effort is optimal for the agent at all histories in 
(ht). First, ob-
serve that following the argument of Step 1 of Lemma 2, we can assume that the verdicts
V at terminal histories �({ht� (qt� s)}) and �({ht� (qt� f )}) satisfy the cutoff property of
Observation 2.

Recall that a consequence of the above argument (Step 2 of Lemma 2) is that all types
have the same optimal action at ht , since the same task q is assigned at all histories
from t + 1 onward in the subtree 
(ht) and the verdicts satisfy the cutoff property. If the
agent finds it optimal to shirk at ht , then we can construct (T ′�V ′), which is identical
to (T �V) except that the verdicts at terminal histories {ht� (qt� s)�h

′} ∈ �({ht� (qt� s)}) are
reassigned to those in �({ht� (qt� f )}) by setting V ′({ht� (qt� s)�h

′}) = V({ht� (qt� f )�h
′}).

This would make all types indifferent among all actions and would not change their
payoffs or the payoff of the principal. Moreover, this replacement of verdicts makes the
task at ht irrelevant, so that we can replace qt with q at ht (and reassign the verdicts
accordingly).

Now consider the case in which action 1 is optimal for all types at ht . We now replace
each (T �V) ∈ supp(ht� qt) by another test (T ′�V ′). As in the argument for period T

above, we consider two separate cases.
Let β′

1 := maxi′≤i∗
θi′ (qt)
θi′ (q)

. First, suppose β′
1 ≤ 1. Then we take the test (T ′�V ′)

to be identical to (T �V) except that T ′(ht) = q and the verdicts at the terminal his-
tories {ht� (q� s)�h

′} ∈ �({ht� (q� s)}) are V ′({ht� (q� s)�h
′}) = β′

1V({ht� (qt� s)�h
′}) + (1 −

β′
1)V({ht� (qt� f )�h

′}). In words, we are replacing the verdicts following a success at ht

with a weighted average of the verdicts following a success and failure before the change.
For brevity, we define

usi := ui
({
ht� (qt� s)

};T �V�σ∗
i

)
and u

f
i := ui

({
ht� (qt� f )

};T �V�σ∗
i

)
to be the expected payoffs following success and failure, respectively, at ht in test (T �V).

We now show that this change (weakly) raises payoffs of good types and lowers those
of bad types. Since full effort is optimal in the modified test, the payoff of type i at ht from
(T ′�V ′) is

θi(q)
(
β′

1u
s
i + (

1 −β′
1
)
u
f
i

) + (
1 − θi(q)

)
u
f
i �
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Following the same argument as for (8) (with usi and u
f
i in place of vs and vf ), the change

in expected payoff at history ht is given by

θi(qt)
(
usi − u

f
i

)( θi(q)

θi(qt)
max
i′≤i∗

{
θi′(qt)

θi′(q)

}
− 1

)
�

which is nonnegative for i ≤ i∗ and nonpositive for i > i∗.
A similar construction can be used for the second case where β′

1 > 1. In this case,
we take the test (T ′�V ′) to be identical to (T �V) except that T ′(ht) = q and the ver-
dicts at the terminal histories {ht� (q� f )�h

′} ∈ �({ht� (q� f )}) are V ′({ht� (q� f )�h
′}) =

β′
2V({ht� (qt� f )�h

′})+ (1 −β′
2)V({ht� (qt� s)�h

′}), where β′
2 := 1 − maxi′≤i∗

θi′ (qt )−θi′ (q)
1−θi′ (q)

. In
words, we are replacing the verdicts following a failure at ht with a weighted average of
the verdicts following a success and failure before the change.

As before, the difference in payoffs is

(
θi(qt)− θi(q)

)(
usi − u

f
i

)( 1 − θi(q)

θi(qt)− θi(q)
max
i′≤i∗

θi′(qt)− θi′(q)

1 − θi′(q)
− 1

)
�

which is nonnegative for i ≤ i∗ and nonpositive for i > i∗.
Repeating this construction at all period t histories completes the induction step

and, therefore, also the proof. �

Proof of Theorem 3

Suppose that πi = πj = 0�5. Let ρ be a test for which T (h) ≡ q for every (T �V) in the

support of ρ. Since θj(q) > θi(q) for any strategy of type i, there exists a strategy of type j

that generates the same distribution over terminal histories. In particular, it must be that
vj(ρ) ≥ vi(ρ), which in turn implies that the principal’s expected payoff is nonpositive.

Let q′ be such that θi(q′) = 1−θi(q) for every i. Notice that q is more Blackwell infor-
mative than q′ since (3) is satisfied with αs = 0 and αf = 1.23 Consider the test (T ′�V ′)
such that T ′(h) ≡ q′ and V ′(h) = 1 if and only if h= ((q′� s)� � � � � (q′� s)); in words, the test
always assigns q′ and passes the agent if and only if he succeeds in every period. Given
this test, the full-effort strategy is optimal for the agent, and vi(T

′�V ′) > vj(T
′�V ′) since

θi(q
′) > θj(q

′). Therefore, the principal’s expected payoff,

0�5vi
(
T ′�V ′) − 0�5vj

(
T ′�V ′)�

is positive, which in turn implies that this test is strictly better than any test that assigns
q at every history. �

23The comparison between q and q′ is weak in the sense that q′ is also more Blackwell informative than q.
An identical argument applies if instead q′ solves (3) for some αs and αf satisfying 0 <αs < αf < 1, in which
case q is strictly more Blackwell informative than q′.
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Proof of Theorem 4

We first show that the full-effort strategy σN is optimal for the agent in some optimal
test. Then we show that σN is also optimal for the agent in the OFT.

We show the first part by contradiction. Suppose ρ is an optimal test where there is
at least one history where full effort is not optimal for the agent. We proceed backward
from period T , altering each deterministic test with random verdicts in the support of ρ
in a way that both types find it optimal to choose full effort without reducing the payoff
of the principal.

Consider first a period T history hT together with an assigned task qT . Let

vω := E
[
V

({
hT � (qT �ω)

})|(T �V) ∈ supp(hT �qT )
]

be the expected verdict following the outcome ω ∈ {s� f } taken with the respect to the set
of possible deterministic tests with random verdicts that the agent could be facing.

Suppose that shirking is optimal for some type θi. Then it must be that vf ≥ vs, which
in turn implies that both types find shirking optimal and thereby get expected verdict vf .
Replacing each deterministic test with random verdicts (T �V) ∈ supp(hT �qT ) with an-
other (T ′�V ′) that is identical except that V ′({hT � (qT � s)}) = vf does not alter the payoffs
of the principal or the agent and makes full effort optimal at hT .

We now proceed inductively backward from period T − 1. For a given period 1 ≤ t ≤
T − 1, we assume as the induction hypothesis that it is optimal for all types of the agent
to choose full effort at all histories ht ′ ∈ Ht ′ for t < t ′ ≤ T in all deterministic tests with
random verdicts (T �V) that are in the support of ρ.

Now consider each period t history ht ∈ Ht and a task qt such that full effort is not
optimal for at least one type of the agent. If no such period t history exists, the induction
step is complete. We now alter each (T �V) ∈ supp(ht� qt) so that at = 1 is optimal for
the agent at all histories in 
(ht). We consider two separate cases:

(i) Shirking is optimal for the good type, i.e., σ∗
1 (ht) = 0.

(ii) Shirking is optimal for the bad type and full effort is optimal for the good type, i.e.,
σ∗

2 (ht) = 0 and σ∗
1 (ht)= 1.

In case (i), we replace each (T �V) ∈ supp(ht� qt) by (T ′�V ′) where the continua-
tion test following the success is replaced by that following a failure. Formally, (T ′�V ′)
is identical to (T �V) except for the tasks and verdicts in the subtree 
({ht� (qt� s)}).
For each history {ht� (qt� s)�h

′} ∈ 
({ht� (qt� s)}) in this subtree, the task assigned be-
comes T ′({ht� (qt� s)�h

′}) = T ({ht� (qt� f )�h
′}), and the verdict at each terminal history

{ht� (qt� s)�h
′} ∈ �({ht� (qt� s)}) becomes V ′({ht� (qt� s)�h

′}) = V({ht� (qt� f )�h
′}). Note

that if we alter each (T �V) ∈ supp(ht� qt) in this way, the performance of the agent at
ht does not affect the expected verdict and so at = 1 is optimal for both types. By the
induction hypothesis, action 1 remains optimal for both types at all histories in the sub-
tree 
(ht). Finally, such an alteration does not affect the payoff of the good type and
weakly decreases the payoff of the bad type at ht , and, therefore, weakly increases the
principal’s payoff.
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In case (ii), we do the opposite and replace each (T �V) ∈ supp(ht� qt) by (T ′�V ′),
where the continuation test following the failure is replaced by that following a suc-
cess. Formally, (T ′�V ′) is identical to (T �V) except for the tasks and verdicts in the
subtree 
({ht� (qt� f )}). For each history {ht� (qt� f )�h

′} ∈ 
({ht� (qt� f )}) in this sub-
tree, the task assigned becomes T ′({ht� (qt� f )�h

′}) = T ({ht� (qt� s)�h
′}), and the verdict

at each terminal history {ht� (qt� f )�h
′} ∈ �({ht� (qt� f )}) becomes V ′({ht� (qt� f )�h

′}) =
V({ht� (qt� s)�h

′}). Once again, the performance of the agent at ht does not affect the
expected verdict and so at = 1 is optimal for both types. By the induction hypothesis,
action 1 remains optimal for both types at all histories in the subtree 
(ht). Finally, such
an alteration neither increases the payoff of the bad type nor decreases the payoff of the
good type at ht , and, therefore, weakly increases the principal’s payoff. This completes
the induction step.

Finally, we show that σN is optimal for the agent in the OFT (T N�VN). We prove
the result by induction on T . The base case is trivial since VN({hT � (T

N(hT )� s)}) ≥
VN({hT � (T

N(hT )� f )}) for any history hT ∈ HT , and so action 1 is optimal in the last
period of the OFT (which is the only period when T = 1).

As the induction hypothesis, we assume that full effort is always optimal for the
agent when faced with the OFT and when the length of the test is T − 1 or less. Thus, for
the induction step, we need to argue that full effort is optimal for the agent in period 1
when the length of the test is T .

Accordingly, suppose the agent has a strict preference to shirk in period 1. We con-
sider three separate cases:

(i) The good type strictly prefers to shirk while full effort is optimal for the bad type;
thus σ∗

1 (ht)= 0 and σ∗
2 (ht) = 1.

(ii) The bad type strictly prefers to shirk while full effort is optimal for the good type;
thus σ∗

2 (ht)= 0 and σ∗
1 (ht) = 1.

(iii) Both types strictly prefer to shirk; thus σ∗
1 (ht) = σ∗

2 (ht)= 0.

Cases (i) and (ii) can be handled in the same way as cases (i) and (ii) from the first
part of the proof. In case (i), the continuation test following a success is replaced by that
following a failure. Given the strategy σN , this change strictly increases the payoff of the
good type and weakly decreases the payoff of the bad type, contradicting the optimality
of the OFT. For case (ii), the continuation test following the failure can be replaced by
that following a success, providing the requisite contradiction.

Now consider case (iii). Let hs
2 = {(T N(h1)� s)} and h

f
2 = {(T N(h1)� f )}, and let

πN
i (h) denote the belief the principal assigns to the agent’s type being θi following his-

tory h under the assumption that the agent uses the full-effort strategy σN . Note that

group monotonicity implies that π1(h
s
2) ≥ π1(h

f
2) (and, equivalently, π2(h

s
2) ≤ π2(h

f
2)).

If π1(h
s
2) = π1(h

f
2), then it must be that there is no task q that satisfies θ1(q) �= θ2(q),

for otherwise the OFT would assign such a task in the first period and π1(h
s
2) would

differ from π1(h
f
2). In that case, the result holds trivially. Thus we may assume that

π1(h
s
2) > π1(h

f
2) and π2(h

s
2) < π2(h

f
2).
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By the optimality of the continuation test following a success, we have

πN
1

(
hs

2
)
u1

(
hs

2;
(
T N�VN

)
�σN

1
) −πN

2
(
hs

2
)
u2

(
hs

2;
(
T N�VN

)
�σN

2
)

≥ πN
1

(
hs

2
)
u1

(
h
f
2 ; (T N�VN

)
�σN

1
) −πN

2
(
hs

2
)
u2

(
h
f
2 ; (T N�VN

)
�σN

2
)
�

since otherwise the principal would be better off replacing the continuation test after a
success with that after a failure. Rearranging gives

πN
2

(
hs

2
)[
u2

(
h
f
2 ; (T N�VN

)
�σN

2
) − u2

(
hs

2;
(
T N�VN

)
�σN

2
)]

≥ πN
1

(
hs

2
)[
u1

(
h
f
2 ; (T N�VN

)
�σN

1
) − u1

(
hs

2;
(
T N�VN

)
�σN

1
)]
�

Similarly, by the optimality of the continuation test following a failure, we have

πN
1

(
h
f
2

)[
u1

(
h
f
2 ; (T N�VN

)
�σN

1
) − u1

(
hs

2;
(
T N�VN

)
�σN

1
)]

≥ πN
2

(
h
f
2

)[
u2

(
h
f
2 ; (T N�VN

)
�σN

2
) − u2

(
hs

2;
(
T N�VN

)
�σN

2
)]
�

Since πN
1 (hs

2) > πN
1 (h

f
2) and u1(h

f
2 ; (T N�VN)�σN

1 ) > u1(h
s
2; (T N�VN)�σN

1 ) (since
type θ1 strictly prefers to shirk), the above two inequalities imply that

πN
2

(
hs

2
)[
u2

(
h
f
2 ; (T N�VN

)
�σN

2
) − u2

(
hs

2;
(
T N�VN

)
�σN

2
)]

≥ πN
2

(
h
f
2

)[
u2

(
h
f
2 ; (T N�VN

)
�σN

2
) − u2

(
hs

2;
(
T N�VN

)
�σN

2
)]
�

Since u2(h
f
2 ; (T N�VN)�σN

2 ) > u2(h
s
2; (T N�VN)�σN

2 ) (since type θ2 also strictly prefers

to shirk), this inequality implies that πN
2 (hs

2) ≥ πN
2 (h

f
2), a contradiction. �

Appendix B: Additional examples

Example 7. This example demonstrates that (i) strategic behavior by the agent can be
harmful to the principal and yield her a lower payoff than when the agent chooses σN

in the OFT, and (ii) the optimal deterministic test may differ from the OFT even if σN is
optimal for the agent in the former (but not in the latter).

Suppose there are three types (I = 3) and three periods (T = 3), with i∗ = 1 (so that
type θ1 is the only good type). The principal has two different tasks, Q = {q�q′}, and the
success probabilities are

q q′
θ1 1 0�9
θ2 0�85 0�8
θ3 0�8 0�

The principal’s prior belief is

(π1�π2�π3) = (0�4�0�1�0�5)�
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Figure 5. An OFT for Example 7.

Figure 6. An optimal deterministic test for Example 7.

Figure 5 depicts an OFT (T N�VN). The intuition for this OFT is as follows. The prior
probability is such that type θ2 is unlikely, and task q′ is more effective at differentiating
between types θ1 and θ3. However, type θ3 never succeeds at task q′, so as soon as a
success is observed, the principal concludes that the agent’s type must be either θ1 or θ2
and switches to task q (which is better at differentiating between these types).

Note that full effort is not optimal for the agent in this test: type θ2 prefers to choose
effort 0 in period 1 because his expected payoff u2(h2;T N�VN�σN

2 ) = 0�85∗0�85 = 0�7225
at history h2 = {(q′� s)} is lower than u2(h

′
2;T N�VN�σN

2 ) = 0�8 ∗ 0�85 + 0�2 ∗ 0�8 = 0�84 at
the history h′

2 = {(q′� f )}. This shirking lowers the principal’s payoff since it increases the
payoff of a bad type.

An optimal deterministic test (T ′�V ′) is depicted in Figure 6. Observe that in this
test, σN is an optimal strategy for the agent. Here, the principal screens in period 1 by
assigning task q instead of q′, following which she assigns the two-period OFT (for the
corresponding posterior beliefs). Note that the posterior belief following a failure on
the period 1 task q assigns zero probability to the agent being type θ1, which implies
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Figure 7. Tests for Example 8. The test on the left is an OFT and that on the right is an optimal
test.

the agent will never pass the test. Following a success, the same intuition from above
applies: type θ2 is less likely than types θ1 and θ3, and so the principal assigns task q′ at
history h2 = {(q� s)} and switches to q only if the agent succeeds at this task (revealing
that he is not θ3). By definition, since the agent chooses the full-effort strategy, this test
must yield a lower payoff to the principal than she would obtain if the agent chose σN

in the OFT. ♦

Example 8. The main purpose of this example is to demonstrate that the optimal test
may employ a less informative task even if group monotonicity holds. In other words,
Theorem 1 cannot be strengthened to state that less informative tasks are not used in
the optimal test when there does not exist a single most informative task. This example
also shows that the principal can sometimes benefit from randomization: the optimal
deterministic test in this case gives the principal a lower payoff than does the optimal
test. This benefit arises from randomizing verdicts, but in a variant of this example, the
principal can do strictly better by randomizing tasks.

This example features three types (I = 3) and two periods (T = 2), with i∗ = 2 (so
that type θ3 is the only bad type). Suppose first that the principal has two different tasks,
Q = {q�q′}, with the success probabilities

q q′
θ1 0�9 0�5
θ2 0�4 0�35
θ3 0�3 0�21�

The principal’s prior belief is

(π1�π2�π3) = (0�02�0�4�0�58)�

Figure 7 depicts, on the left, an OFT (T N�VN) (which is also an optimal determin-
istic test), and, on the right, an optimal test (T ′�V ′). The test (T ′�V ′) differs from
(T N�VN) in two ways: task q′ at history {(q� s)} is replaced by task q, and the verdicts
at both terminal histories involving a success in period 2 are changed. Note that, in pe-
riod 1, types θ1 and θ2 strictly prefer actions a1 = 1 and a1 = 0, respectively, whereas type
θ3 is indifferent.
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The following simple calculations demonstrate why (T ′�V ′) yields the principal a
higher payoff than does (T N�VN). In (T ′�V ′), the payoff of all three types is higher than
in (T N�VN). The differences in payoffs are

�v1 = v1
(
T ′�V ′) − v1

(
T N�VN

) = 0�9 ∗ 0�9 ∗ 0�7 + 0�1 ∗ 0�5 − 0�9 ∗ 0�5 = 0�167

�v2 = v2
(
T ′�V ′) − v2

(
T N�VN

) = 0�35 − 0�4 ∗ 0�35 = 0�21

�v3 = v3
(
T ′�V ′) − v3

(
T N�VN

) = 0�21 − 0�3 ∗ 0�21 = 0�147�

The change in the principal’s payoff is

2∑
i=1

πi�vi −π3�u3 = 0�02 ∗ 0�167 + 0�4 ∗ 0�21 − 0�58 ∗ 0�147 > 0�

which implies that (T ′�V ′) is better than (T N�VN) for the principal.
Proving that (T ′�V ′) is optimal is more challenging; we provide a sketch of the argu-

ment here. Whenever there is a single bad type, there is an optimal test that satisfies at
least one of the following two properties: (i) there is no randomization of tasks in period
two or (ii) the bad type is indifferent among all actions in period 1. To see this, suppose,
to the contrary, that the bad type has a strictly optimal action in period 1, and that the
principal assigns probability β ∈ (0�1) to q and 1 − β to q′ at one of the histories in pe-
riod 2. Observe that for a fixed strategy of the agent, the principal’s payoff is linear in
this probability β. Hence the principal can adjust β without lowering her payoff until
either θ3 becomes indifferent in period 1 or β becomes 0 or 1; any change in the strate-
gies of types θ1 and θ2 resulting from this adjustment only benefits the principal more.
Establishing that the optimal test must satisfy (i) or (ii) makes it possible to show that
(T ′�V ′) is optimal by comparing the principal’s payoffs from tests having one of these
properties.

Now suppose the principal has at her disposal another task q′′ that satisfies

θi
(
q′′) = θi(q)+ α

(
1 − θi(q)

)
for all i ∈ {1�2�3} and some α ∈ (0�1]. Task q is more Blackwell informative than q′′ (one
can take αs = 1 and αf = α in (3)).

The principal can now increase her payoff relative to (T ′�V ′) by using the less in-
formative task q′′. To see this, suppose the principal assigns q′′ instead of q in the first
period, without changing tasks and verdicts in period 2. This change does not affect
the payoffs or optimal strategies of types θ2 and θ3; the former still chooses a1 = 0 and
the latter remains indifferent among all actions. However, this change does increase the
payoff of type θ1, since this type strictly prefers the subtree after a success in period 1 to
that after a failure, and task q′′ gives a higher probability of reaching this subtree than
does q. Therefore, this change increases the principal’s payoff and demonstrates that
any optimal test with the set of tasks {q�q′� q′′} must employ q′′.

Finally, to show that the principal can sometimes benefit from randomizing tasks,
suppose that the set of tasks is given by {q�q′� q′′′}, where θ1(q

′′′) = 0�5, θ2(q
′′′) = 0�16,
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Figure 8. The optimal test for Example 9.

and θ3 = 0�12. Consider the test that assigns task q in the first period, and in the second
period assigns q′ if the agent failed on the first task while randomizing equally between q

and q′′′ if the agent succeeded in the first period. The verdict passes the agent if and only
if he succeeds on the task in period 2. For this test, the probabilities of passing for types
θ2 and θ3 are identical to those in the test on the right-hand side of Figure 7; the only dif-
ference is that type θ1 is more likely to pass the test. By checking various cases, one can
show that the optimal test that does not randomize tasks never assigns q′′′. Therefore,
the principal strictly benefits from randomizing tasks. ♦

Example 9. This example extends Example 5 to show that the principal can benefit
from offering a menu of tests. Recall that the success probabilities are

q q′
θ1 1 0�2
θ2 0�2 0�15
θ3 0�1 0�01

and the prior is

(π1�π2�π3) = (0�5�0�1�0�4)�

Suppose that there are only two periods (T = 2).
The test depicted in Figure 8 is the optimal deterministic test (and also the OFT).

Observe that in this test, a failure in period 1 results in a harder task and that a success
in period 2 is required to pass. Types θ1, θ2, and θ3 pass with probabilities 1, 0�2 ∗ 0�2 +
0�8 ∗ 0�15 = 0�16, and 0�1 ∗ 0�1 + 0�9 ∗ 0�01 = 0�019, respectively.

Now suppose the principal instead offers the two-test menu {(T1�V1)� (T2�V2)} de-
picted in Figure 9. Note that the test (T1�V1) only assigns the easier task, q, and two suc-
cesses are required to pass. In contrast, test (T2�V2) assigns only the harder task, q′, but
a single success in either period is sufficient to pass. It is optimal for type θ1 to choose
(T1�V1) and then use the full-effort strategy, as doing so enables him to pass with prob-
ability 1. Types θ2 and θ3 prefer to choose (T2�V2) and then use the full-effort strategy.
For types θ2 and θ3, the passing probabilities are 0�2 ∗ 0�2 = 0�04 and 0�1 ∗ 0�1 = 0�01, re-
spectively, in test (T1�V1), which are lower than the corresponding passing probabilities
0�15 + 0�85 ∗ 0�15 = 0�2775 and 0�01 + 0�99 ∗ 0�01 = 0�0199 in test (T2�V2).
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Figure 9. Menu of tests for Example 9.

Note that in this menu, the payoffs of types θ2 and θ3 go up relative to what they
obtain in the optimal test. However, the gain for type θ2 is much larger than for θ3,
making the principal better off overall. In other words, the menu strictly increases the
principal’s payoff above that from the optimal test. ♦

Example 10. This example shows that if the principal cannot commit, she may not be
able to implement the optimal test. Consider the following minor modification of the
success probabilities from Example 4:

q q′
θ1 0�999 0�5
θ2 0�5 0�5
θ3 0�5 0�4�

Note that the only change is that we have replaced θ1(q) = 1 by θ1(q) = 0�999. The prior
remains unchanged. Since the payoffs are continuous in these probabilities, this minor
modification affects neither the OFT nor the optimal test.

Suppose the optimal test could be implemented without commitment. Recall
that type θ1 chooses the full-effort strategy, whereas types θ2 and θ3 choose at = 0
in periods 1 and 2. This implies that the terminal histories {(q� s)� (q� f )� (q′� s)} and
{(q� s)� (q� f )� (q′� f )} are never reached by θ2 and θ3 in equilibrium. However, there is
a positive (albeit small) probability that these terminal histories are reached by type θ1.
Therefore, a sequentially rational principal would assign verdicts 1 (instead of 0) at both
of these terminal histories, which would in turn make full effort optimal for types θ2 and
θ3 in the first period. ♦
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