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January 3, 2020

Abstract

We characterise optimal contracts in a dynamic principal-agent model of joint pro-
duction in which project opportunities are heterogenous, utility from these projects is
non-transferable and the agent has the option to quit the relationship at any time. In or-
der to demand the production of projects that benefit her but not the agent, the principal
must commit to produce projects that benefit the agent in the future. Production at all
stages of the relationship is ordered by projects’ cost-effectiveness, which is their efficiency
in transferring utility between the principal and the agent: cost-effective demands impose
relatively low costs on the agent, and cost-effective compensation imposes relatively low
costs on the principal. Over time, optimal contracts become more generous towards the
agent by adding commitments to less cost-effective compensation. In turn, because this
new compensation cannot be profitably exchanged against less cost-effective demands, the
principal narrows the scope of her demands.
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1 Introduction

Productive relationships generate a variety of joint project opportunities over their lifetimes.

This raises two related questions: what criteria guide decisions to produce some opportuni-

ties and pass up others, and how does project selection evolve over time? In this paper, we

address these questions in a dynamic principal-agent model in which (a) heterogenous project

opportunities arrive according to an arbitrary stochastic process, (b) utility from these projects

is non-transferable (although transferable utility is a special case of our model), and (c) the

principal is contractually committed to production decisions but the agent can walk away from

the relationship at any time. We characterise optimal contracts in this setting and detail the

dynamics of the principal’s demand and supply of projects (i.e., the production of projects that

benefit the principal but are costly for the agent, and vice-versa).

Although we model a canonical principal-agent relationship, for the remainder of the Intro-

duction we fix ideas by focusing on a manager-worker pair within a larger firm. The simplest

model of their interaction features two project opportunities: at each stage, the manager de-

mands effort from the worker and supplies a wage (Mirrlees, 1976). We allow for a rich set of

productive activities that arise randomly over the course of this relationship. The manager can

make demands on the worker that differ in their benefits for the manager and their costs to

the worker. For example, the manager may need the worker to deal with an emergency, like

a failure in the firm’s server, or she may ask the worker to complete a routine project that is

less time-sensitive, like writing a plan for the firm’s IT infrastructure. Similarly, the manager

can supply a number of projects to the worker in the form of both financial and non-monetary

compensation. For example, the manager can recommend the worker for a bonus, offer perks

like travel opportunities, accommodations for family issues and better office space, or tilt task

allocations towards those that benefit the worker’s career (e.g., involving training programs).

More broadly the (stochastic) dynamics of project opportunities within the relationship can

be driven by the business cycle, industry trends, or human capital accumulation by both the

manager and the worker.

In the case in which the manager demands effort and supplies money, it is well known (Lazear,

1981) that she benefits from delaying the worker’s compensation: whereas current payments are

sunk when the manager makes future demands for effort, committing to pay the worker in the

future motivates both current and future effort. Not surprisingly, the optimal contracts in our

model will also feature backloaded compensation, but our central task is to determine how

the manager selects the projects she uses to reward the worker. If, for example, the worker

prefers increased flexibility in his schedule to access to a job training program, will the manager

prioritise the former type of compensation over the latter? The answer, in general, is no, because
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focusing only on the workers’ preferences neglects the manager’s costs from supplying projects.

If job training increases the worker’s productivity, then its net cost for the firm can be small

relative to the cost of scheduling flexibility, which offers less countervailing benefits to the firm.

If the worker does not value the two types of compensation too differently, then the manager

always benefits from substituting job training for schedule flexibility. Therefore, she will commit

to sending the worker to all available job training programs before making any promises about

future scheduling flexibility.

This intuition underlies our main result characterising optimal contracts: we show that

the manager always prioritises her supply of projects according to their cost-effectiveness: their

benefit for the worker relative to their cost for the manager. At any point in the relationship, the

optimal contract identifies a threshold supply project and projects that are more cost-effective

than this threshold are supplied whenever they arrive. Projects that are less cost-effective

than the threshold are not supplied unless (a) the manager makes a new demand and (b) the

worker’s participation constraint requires fresh commitments to future compensation. Because

the manager adds new supply commitments through cost-effectiveness, the threshold project

transitions to less cost-effective projects over time. How does the growth in the scope of the

worker’s compensation affect the manager’s demand for projects? We show that the manager

only demands those projects that are more cost-effective than the threshold supply project

(where cost-effectiveness for demand projects measures the benefit for the manager relative

to the cost for the worker). Therefore, the manager’s accumulation of increasingly less cost-

effective supply commitments is tied to rationing of her demands on the worker, which become

concentrated on the most cost-effective projects.

To further illustrate our results, suppose that the manager can demand emergency or routine

projects, with the effort cost being the same for both types of projects but emergency projects

being more important for the manager. Therefore, emergency projects are more cost-effective.

Suppose also that all demands are more cost-effective than supplying the worker with job

training but that only emergency projects are more cost-effective than supplying the worker

with schedule flexibility. Early in the relationship, the manager demands both emergency and

routine projects and only commits to supply job training:1 because the manager benefits from

trading both emergency and routine projects against promises of job training, she will not

pass up any demand until all future training opportunities have been promised. Later in the

relationship, the manager demands only emergency projects and supplies both job training and

schedule flexibility: because the manager prefers to scale back her demands for routine projects

1This illustrates typical dynamics of optimal contracts, the details of which will depend on, among other
things, the process driving project opportunities. We revisit this example in Section 4.

2



to avoid promising schedule flexibility, she will pass over the former once she must supply the

latter to incentivise the worker to take up emergency projects. The inefficiency generated by

the worker’s inability to commit to remain in her job is captured by the fact that production

decisions for the same project can differ over time: both parties could be made better off ex ante

if the manager could use training opportunities that are passed over early in the relationship to

incentivise demands for routine projects that are passed over later on. In fact, we show that ex

ante Pareto-efficient contracts involve a time-invariant threshold project.

Cost-effectiveness pins down project priorities, but not the exact dynamics of production.

For example, for how long can the manager keep demanding routine projects? Answering such

questions requires determining the worker’s value from the relationship at any point in time,

which sets the level of his participation constraint. This value, which is endogenous, incorporates

the worker’s utility from producing projects, his time preferences and the availability of projects

in the future: when the process driving project opportunities is arbitrary, the value has little

structure. In Section 5, we specialise the model to the case of Markov project processes and

construct optimal contracts directly. In doing so, we rank the manager’s demands by how

expensive they are for her: more expensive demands require that a broader scope of projects be

supplied to the worker.

Because we study how future opportunities provide incentives for current production, our

work has connections to the literature on informal risk-sharing in the presence of stochastic

endowment shocks (Thomas and Worrall, 1988; Kocherlakota, 1996; Dixit, Grossman, and Gul,

2000). Important generalisations of this work incorporate hidden information, about endowment

shocks or utility from production, as well as sequential actions. The former literature analyses

chips mechanisms (Möbius, 2001; Hauser and Hopenhayn, 2008) and dynamic contracts with

and without commitment (Guo and Hörner, 2015; Lipnowski and Ramos, 2016; Li, Matouschek,

and Powell, 2017). The latter literature studies hold-up situations (Thomas and Worrall, 1994,

2018; Board, 2011) and has close links to the relational contracts literature (Levin, 2003). Fur-

thermore, our work is related to the literature on dynamic principal-agent interactions (Lazear,

1981; Rogerson, 1985; Spear and Srivastava, 1987; Sannikov, 2008). Our focus on selection from

heterogenous project opportunities is the key difference between these contributions and ours.

Furthermore, we assume that players are risk-neutral, so that risk-sharing plays no role in our

results; we do not rely on transfers; we place no restrictions on the process driving project

opportunities, as opposed to the standard iid or Markov assumptions;2 and we abstract from

information asymmetries and hold-up problems.

2From a technical point of view, this rules out standard recursive approaches to characterising optimal
dynamic contracts (Spear and Srivastava, 1987; Thomas and Worrall, 1988; Abreu, Pearce, and Stacchetti,
1990). In contrast, our proofs rely on direct arguments.
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Three papers are most closely related to ours. First, Ray (2002) shows that any optimal

principal-agent relationship backloads the agent’s compensation: by increasing the agent’s con-

tinuation value the principal relaxes the agent’s no-deviation constraint, so that she can make

the agent work harder and improve efficiency. In our model this logic is one of the forces that

drive the backloading of the agent’s utility: by promising to supply the threshold project in

the future, the principal gains the ability to demand projects that are more cost-effective than

this threshold. The other reason is the rationing in the principal’s demands stemming from

her accumulation of increasingly less cost-effective supply commitments. This latter reason has

no analog in Ray (2002), which features a repeated stage game and hence no heterogeneity in

future production opportunities.3

Second, Bird and Frug (2019a) study project production in a closely related dynamic

principal-agent model, in which project arrivals follow independent Poisson processes and are

privately observed by the agent. Like us, they highlight the criterion of cost-effectiveness for

prioritising project production. Unlike us, they show that the principal frontloads the agent’s

compensation, in that she might make less cost-effective supply commitments before exhausting

all more cost-effective supply commitments. Informational asymmetries are the key to under-

standing why our results differ from theirs. In their environment, the principal’s only tool to

incentivise the agent to disclose the arrival of a demand project is the growth in the agent’s con-

tinuation value. Therefore, frontloading the agent’s compensation allows the principal to free up

incentives for future disclosures, and the principal trades off prioritising cost-effective projects

against future flexibility.4 In our model with commonly observed project opportunities, it is the

level of the principal’s future commitments that underpin the agent’s incentives. Consequently,

the agent’s compensation is backloaded because the principal always follows cost-effectiveness

when making supply commitments, and the (inefficient) variability in the set of projects that

the principal demands and supplies vanishes in the long run.

Third, in a contemporaneous paper, Samuelson and Stacchetti (2017) study the role of

transfers in a version of our model with two-sided lack of commitment and an iid process driving

project opportunities. They show that the principal uses variation in either continuation values

or transfers to generate incentives when transfers are either absent or present, respectively.

Their model, however, does not admit a simple description of the relationship’s dynamics. In

our model, we can capture transfers to the agent or to the principal through suitably defined

supply and demand projects. Because the principal follows cost-effectiveness when committing

3See also Bird and Frug (2019b) who study conditions under which principal-agent relationships increasingly
favour the agent over time.

4See also Hopenhayn, Llobet, and Mitchell (2006), in which a planner rations a fixed (expected discounted)
stock of rights to future monopoly power to retain the ability to reward a sequence of competing innovators.
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to supply projects, our results imply that the principal will not start paying the agent until she

has exhausted more cost-effective means to reward him. Moreover, the relationship dynamics

in our model initially favour the principal and eventually favour the agent. This implies that,

when available, transfers flow towards the principal early in the relationship and towards the

agent later in the relationship.

2 Model

A principal and an agent participate in a long-lived relationship in which a joint project op-

portunity arises in each period t = 1, 2, . . .. Specifically, let U ⊂ R2 be a finite set and let

u = {ut}t≥1 be a U ∪ {(0, 0)}-valued stochastic process that describes the arrival of projects

over time, where ut = (0, 0) denotes the absence of a project at t. Let ut = (u1, . . . , ut) denote

a project history at t, and let H denote the set of all such histories for all times t. Because

optimal contracts are indeterminate at histories that occur with zero probability, we assume

that P0(u
t) > 0 for all project histories ut. This is the only assumption that we impose on the

project process u for our main results, and we do so mainly to ease the exposition.5

Given a project ut at time t, the principal and the agent simultaneously decide whether or

not to participate in the production of the project, and project ut is produced if and only if both

players agree to produce it. We let ut = (uP,t, uA,t) denoted the payoffs to the principal and the

agent if project ut is produced, and we normalise each player’s payoff from no production to 0.

For simplicity, we assume that the players’ stage preferences over the production of projects are

strict, that is, that uA,t 6= 0 and uP,t 6= 0 for all projects ut ∈ U . Therefore, player i (myopically)

prefers to participate in the production of project ut if ui,t > 0 and prefers not to participate

if ui,t < 0. Finally, the players discount future payoffs with common factor δ ∈ (0, 1). We

model projects parsimoniously, but we can accommodate projects which are more complicated

ventures with uncertain outcomes: in this case, ut is interpreted as the expected utilities to the

principal and the agent from these richer lotteries. Similarly, production of project ut might

generate payoffs in periods beyond t: in this case, ut is the present value to the principal and

the agent of that payoff flow.

Project histories and production decisions, and hence all players’ payoffs, are publicly ob-

served and verifiable. A contract κ : H → [0, 1] maps project histories into production prob-

abilities. Given a project history ut at time t, κ(ut), henceforth κt for short with history ut

understood, is the probability with which contract κ specifies that the project at t is produced.

5Any process with zero-probability events can be expressed as the limit of a sequence of processes without
such events, and the limit of the corresponding sequence of optimal contracts is an optimal contract for the
limiting process.
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Let K denote the set of all contracts. We make the strong assumption that production deci-

sions can be verifiably conditioned on a public randomisation device. However, our model also

admits an interpretation in which all production decisions are deterministic. Specifically, we

can reinterpret κt as specifying the intensity with which project ut is produced. In this view,

interior production probabilities represent reducing the scale of a project’s implementation.6

Given a contract κ and a history ut at time t, let

Ui,t = Et
∞∑
t′=t

δt
′−tκt′ui,t′ ,

denote the associated expected discounted sum of payoffs to player i starting from t. The

expectation is taken conditional on the information contained in project history ut, but, as for

contracts, we leave the history-dependence of payoffs implicit to lighten notation. Notice that

the linearity of stage utilities in production probabilities implies that intertemporal smoothing

of production decisions due to risk-aversion plays no role in our results.

We assume that the principal commits to contracts. Meanwhile, the agent has the option to

irreversibly quit the relationship at the beginning of every period t, after the arrival of project

ut but before the realisation of the contract’s production decision (determined by κt). If the

agent remains in the relationship, then he is committed to following the outcome of the public

randomisation device for that period. Quitting yields a payoff of 0 to both players, which is the

payoff they receive when no project is ever produced. It follows that an optimal contract κ∗ is

a solution to the problem

max
κ∈K

E0UP,1

subject to UA,t ≥ 0 for all project histories ut. (IRA,t)

In words, an optimal contract maximises principal’s ex ante utility from the relationship subject

to being individually rational for the agent following all project histories.7 As we show below,

production probabilities in optimal contracts are often bang-bang, in which case our restriction

to ex ante individual rationality constraints for the agent (i.e., prior to the realisation of the

production decision) is not constraining. However, following some histories the agent’s ex post

individual rationality constraint could fail if the public randomisation device calls for some

6Allowing the contract to depend on a richer notion of histories, which record past outcomes of the randomi-
sation in production, would not change any of our results. By using this randomisation the principal can offer
the agent random continuation utility, but this randomisation can only (weakly) hurt the principal due to the
convexity of the underlying utility possibility set.

7Standard arguments establish the existence of an optimal contract (e.g., Dixit et al., 2000).
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project to be produced. In such cases, our results will exploit the fact that the principal

can provide adequate incentives to the agent ex ante by committing to interior production

probabilities.

In any period and given any project over which the preferences of the principal and the

agent are aligned, optimal contracts must specify jointly optimal production decisions.8

Lemma 1. If contract κ∗ is optimal, then

1. if uP,t, uA,t > 0, then κ∗t = 1, and

2. if uP,t, uA,t < 0, then κ∗t = 0.

Common interest projects contribute to the value of the relationship, but Lemma 1 confirms

that optimal contracts can be identified with the production decisions they prescribe for those

projects on which the principal and the agent disagree. To this end, define the sets D = {u ∈
U : uP > 0 > uA} and S = {u ∈ U : uA > 0 > uP} and assume, to avoid trivialities, that D and

S are both non-empty. Given a contract κ, we say that the principal demands a project with

probability κt at t whenever ut ∈ D, and conversely that the principal supplies a project with

probability κt at t whenever ut ∈ S. The decomposition of an optimal contract into the demand

and supply of projects turns out to be useful for describing project selection and its dynamics.

To simplify notation, we denote a typical element of D by v and a typical element of S by w,

and any statement referring to demand project v (respectively, supply project w) should be read

as being restricted to projects u ∈ D (respectively, u ∈ S).

3 Benchmark: Ex Ante Pareto-Efficiency

A useful benchmark is that of ex ante Pareto-efficient contracts, in which the agent can commit

to production decisions. These contracts maximise the principal’s ex ante utility subject to a

lower bound u on the agent’s ex ante utility. An efficient contract κe is a solution to

max
κ∈K

E0UP,1 subject to E0UA,1 ≥ u.

Efficient contracts resolve many of the same tradeoffs as optimal contracts. Therefore, we

introduce and discuss these key properties in this simpler setting, and in Section 4 we detail

how they are affected when the agent must be continually incentivised to support production.

Define an ordering of projects inD∪S such that u � u′ if and only |uP/uA| > |u′P/u′A|. In words,

if v � v, then project v is more cost-effective to demand than project v for the principal: in this

8The proofs of all results are in the Appendix.
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case the ratio vP/|vA|, the principal’s benefit per util cost to the agent, measures the productivity

of project v as a tool for extracting utility from the agent. Conversely, if w � w, then project

w is more cost-effective to supply than project w for the principal: in this case the ratio |wP |/wA,

the principal’s cost per util benefit to the agent, measures the productivity of project w as a tool

for providing utility to the agent. Notice that more cost-effective demands are ranked higher

by � while more cost-effective supplies are ranked lower by �. This is illustrated in Figure

1, where points in the plane represent projects, projects in the northwestern quadrant can be

demanded by the principal, projects in the southeastern quadrant can be supplied, and more

cost-effective projects are represented by larger dots. For simplicity, we assume that the ordering

� is complete on D ∪ S, i.e., that all project pairs are ranked strictly by cost-effectiveness.

Our first result shows that the principal’s demand and supply of projects in efficient contracts

are determined by cost-effectiveness.

Proposition 1. Fix any ex ante Pareto-efficient contract κe and any time t. The principal

demands and supplies projects that are more cost-effective than some threshold: there exists a

project U e such that

κet =

1 if vt � U e,

0 if U e � vt,
and κet =

1 if U e � wt,

0 if wt � U e.9
(1)

Efficient production decisions can be represented by a history-independent threshold project:

at any point in the relationship, those projects that are more cost-effective than U e (these lie

above the thick solid line in Figure 1, which is drawn for the case when U e is a supply project) are

produced and those that are less cost-effective than U e (these lie below the thick solid line) are

not. What drives this result is that the principal can always profitably reallocate production

decisions that do not follow cost-effectiveness. If the principal supplied a less cost-effective

project w following some project history but declined to supply a more cost-effective project

w following another history, then she could gain by shifting some production probability from

w to w while keeping the agent’s ex ante utility fixed. The same logic applies if the principal

demanded a less cost-effective project v while some opportunities to demand a more cost-

effective project v following some histories were still available: she would gain by exhausting all

opportunities to demand project v before making any demands for v.10 This implies that the

9Recall that, by our notational convention, statements like vt � Ue should be read as applying only to
histories with ut ∈ D, and statements like Ue � wt should be read as applying only to histories ut with ut ∈ S.

10Two features of our model are critical for these intertemporal reallocation arguments: the players’ common
discount factor and the ability to commit to follow the outcomes of the public randomisation device, which
allows for the production of projects with interior probability.
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w
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v

v

Figure 1: Ex ante Pareto-efficient contracts. Here, the threshold U e is a supply project. The
more cost-effective projects v and w are always produced, and the less cost effective v and w
are never produced.

principal only demands projects more cost-effective than some threshold demand project and

only supplies projects more cost-effective than some threshold supply project.

These threshold demand and supply projects are connected by a straightforward cost-benefit

calculation. Returning to Figure 1, suppose that project U e is supplied with interior probability

following some history so that, by our arguments above, w is always supplied and w is never

supplied. The threshold supply U e identifies both the principal’s incentive cost of additional

demands and her potential savings from reduced demands. Therefore, the principal cannot pass

over any opportunity to demand project v, which is more cost-effective than U e: she could

gain by increasing production of both v and U e while keeping the agent’s ex ante utility fixed.

Also, the principal can never demand project v, which is less cost-effective than U e: in this

case she could gain by decreasing production of both v and U e. Therefore, if the principal

ever supplies U e with interior probability, then she always demands the more cost-effective v

and never demands the less cost effective v.11 If instead the threshold U e is a demand project,

then it identifies both the principal’s return from supplying more projects to the agent and her

opportunity cost to scaling back the agent’s compensation. Therefore, for the same reason as

above, the principal must supply all projects more cost-effective that U e with probability 1, and

no less cost-effective project is ever supplied.

Our description of ex ante Pareto-efficient contracts appears to ignore important factors

like the scale of project opportunities (i.e., the absolute values of uP and uA), the players’

11The proof of Proposition 1 deals with the corner case when no production probability is ever interior.
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time preferences (i.e., the common discount factor δ) and the dynamics of project opportunities

(i.e., the properties of the project process u). On the one hand, Proposition 1 states that the

principal establishes production priorities among heterogenous projects by relying only on the

cost-effectiveness criterion. On the other hand, any factor that hinders the principal’s ability to

reward the agent by supplying projects throughout the relationship will restrict her ability to

make demands, and hence affect the level of the threshold U e. Put differently, if, for example, all

demands that can be made of the agent impose a high stage cost on him, if players are impatient

or if supplied projects only arrive late in the relationship, then ex ante Pareto-efficient contracts

will be more generous towards the agent: the threshold project U e will be ranked higher by �
which, in turn, means that the principal’s demands will be restricted to a smaller set of more

cost-effective projects, while her supplies will include a larger set of less cost-effective projects.

Proposition 1 does not specify production decisions at the threshold project U e. This is

due to payoff-irrelevant multiplicity in efficient contracts: the agent’s ex ante utility constraint

identifies the total (expected discounted) quantity of production at the threshold project (and

hence also the principal’s ex ante payoff), but the linearity of the players’ payoffs in production

probabilities allows that production to be distributed arbitrarily across project histories. Be-

cause efficient production is organised by cost-effectiveness, this indeterminacy is restricted to

the threshold project: given two ex ante Pareto-efficient contracts κe and κ′e with the same ex

ante utility to the agent, we have U e = U ′e.

4 Optimal Contracts

In an optimal contract, the agent must have incentives to participate in all production decisions.

However, because the agent benefits from projects that are supplied, his individual rationality

constraint can only bind when a project is demanded. Correspondingly, our paper’s main

result below shows that the supply of projects in optimal contracts follows a threshold rule

analogous to the one from efficient contracts. In contrast, the demand for projects does not

follow a simple threshold rule. This is because the principal can be prevented from reallocating

production from less cost-effective to more cost-effective demands by the agent’s individual

rationality constraints. Instead, mirroring the cost-benefit calculation from efficient contracts,

we describe the set of demanded projects from the threshold supply project. Finally, because

the principal overcomes binding individual rationality constraints by committing to supply more

projects in the future, the threshold supply project can change over time.

Proposition 2. Fix any optimal contract κ∗ and any project history ut−1.

10



(i) The principal supplies projects that are more cost-effective than some threshold: there exists

a supply project W ∗
t−1 such that

κ∗t =

1 if W ∗
t−1 � wt,

0 if wt � W ∗
t−1.

(2)

(ii) The principal demands projects that are more cost-effective than those that are supplied:

κ∗t

> 0 if vt � min�{w � W ∗
t−1},

= 0 if max�{W ∗
t−1 � w} � vt.

(3)

(iii) Over time, the principal increases her supply of projects and decreases her demands: if

ut−1 is a subhistory of ut
′−1, then either W ∗

t′−1 = W ∗
t−1 or W ∗

t′−1 � W ∗
t−1.12

The principal makes different sequences of demands along different project histories ut−1,

and she provides incentives for these demands by adjusting her commitments to supply projects

in the future. Part (i) says that the supply commitments inherited from ut−1 can be captured

by a threshold supply project W ∗
t−1, which in turn determines current supply decisions: at t,

projects more cost-effective than W ∗
t−1 are supplied and projects less cost-effective than W ∗

t−1 are

not. The supply of the threshold project (i.e., when wt = W ∗
t−1) may involve interior production

probabilities, which we discuss below.

Part (ii) says that the threshold supply project also describes the principal’s demand for

projects: loosely speaking, following history ut−1 the principal only demands projects that are

more cost-effective than W ∗
t−1. More precisely, let the supply project W t−1 = min�{w � W ∗

t−1}
be the most cost-effective project among those that, from part (i), we know that the principal

has not yet committed to supply. It follows that if the principal were to make additional

demands on the agent at t, project W t−1 is an upper bound on the incentive costs of these

demands. Therefore, the principal cannot pass over an opportunity to demand some project

vt more cost-effective than W t−1: the principal could gain by increasing production of both vt

and W t−1 while keeping the agent’s ex ante utility fixed. We discuss this further below, but

notice for now that (3) requires only that vt is demanded with positive probability. In Figure

2, we illustrate the threshold supply project W ∗
t−1 = w following history ut−1. Parts (i) and (ii)

then imply that the set of produced projects at t is contained in the shaded area. To complete

the description of part (ii), let the supply project W t−1 = max�{W ∗
t−1 � w} be the least cost-

effective project among those that, from part (i), the principal is committed to always supply.

12History ut−1 is a subhistory of ut
′−1 if ut

′−1 = (ut−1, ut, . . . , ut′−1).
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The project W t−1 is a lower bound on the savings that the principal could achieve by curtailing

her demands, so that any demand vt that is less cost-effective than W t−1 is surplus-destroying

for the principal: the principal could gain by decreasing production of both vt and W t−1 while

keeping the agent’s ex ante utility fixed. Finally, the demand for projects W t−1 � vt � W t−1

depends in part on production decisions at the threshold supply project, as we discuss below.

uP

uA

D

S
w

w

v

v

W ∗t−1

W ∗t′−1

Figure 2: Optimal contracts. Between times t and t′ > t, the threshold supply project
transitions from w to the less cost-effective w.

Not only does the optimal supply threshold W ∗
t−1 vary across project histories at any given

time, but part (iii) says that, along any given history, it becomes more generous towards

the agent over time by transitioning to less cost-effective projects. Combined with part (ii),

it follows that the principal’s demands become concentrated on successively smaller sets of

more cost-effective projects. This is illustrated in Figure 2 in which, given t′ > t, a shift

in the threshold from W ∗
t−1 = w to the less cost-effective W ∗

t′−1 = w leads to a clockwise

shift in the region containing produced projects, which is now the dotted area. Why can

the threshold supply project never become more cost-effective? Because, as in the case of

efficient contracts, the principal never supplies any less cost-effective project before all her

future opportunities to supply more cost-effective projects have been exhausted: otherwise, the

principal could commit to substitute the future supply of more cost-effective projects against

the current supply of less cost-effective projects while maintaining the agent’s incentives.13 Why

can the threshold supply project become less cost-effective? Because new demands may violate

the agent’s individual rationality constraint if his rewards remain determined by the current

13Contrary to the case of efficient contracts, such intertemporal reallocations of production must be constructed
within-histories and in such a way that no intervening individual rationality constraints are violated.

12



supply threshold. In this case, the principal must commit to supply more projects in the future,

and these additional commitments are typically less cost-effective than the current threshold

because of the limited (expected discounted) production possibilities of the threshold project.

In particular, the threshold moves in the direction of the agent only if a binding individual

rationality has been met: if any history ut is such that W ∗
t � W ∗

t−1, then we have that the

principal made a demand at t and that U∗A,t = 0.

The production dynamics from Proposition 2 have close connections to the seminal results

of Thomas and Worrall (1988), who study the wages paid by a risk-neutral firm to a risk-averse

worker who receives iid outside offers each period. There, optimal wages are increased when

some individual rationality constraint for the worker binds, while between updates the optimal

contract tracks some efficient contract. In Thomas and Worrall (1988), wage updates are driven

by the exogenous arrival of outside offers and efficiency requires constant wages between updates

due to risk-aversion. In our model, contract updates take the form of decreasing the cost-

effectiveness of the threshold supply project, they are driven endogenously by the principal’s

decision to demand a project, and efficiency requires that the threshold project be constant

between updates. Our results are not driven by risk aversion, so that production decisions and

the agent’s utility need not be constant between updates.

Outside of special cases, the threshold project W ∗
t−1 will not be constant (either within or

across histories), and optimal contracts will not be efficient. In efficient contracts, the principal’s

total (expected discounted) supply of projects provides incentives for the agent to respect the

principal’s total (expected discounted) demands, irrespective of the timing of the supplies and

demands. When the agent can quit the relationship at any time, past rewards are sunk and pro-

vide no incentives for his current production decisions. Therefore, relative to efficient contracts,

the principal undersupplies projects early in the relationship and underdemands projects late

in the relationship. This is illustrated in Figure 2: the revision of W ∗
t−1 to W ∗

t′−1 means that

the principal may demand v early but would never demand it late, while she does not supply

w early but may supply it late. Nevertheless, the inefficiencies associated with any optimal

contract eventually vanish. Because the threshold project W ∗
t−1 is monotone along any project

history and there is a finite number of projects, W ∗
t−1 converges to the threshold associated to

some ex ante Pareto-efficient contract.14

Proposition 2 does not specify supply decisions at the threshold project W ∗
t−1. As in the

case of efficient contracts, there is scope for payoff-irrelevant multiplicity in production decisions

at the threshold project: in particular, given two optimal contracts κ∗ and κ′∗, W ∗
t−1 = W ′∗

t−1

14Note that any supply project w is the threshold project of an ex ante Pareto-efficient contract with appro-
priately chosen ū in the optimisation problem defining ex ante Pareto-efficient contracts.
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for all histories ut−1. It would be possible to resolve this multiplicity through an appropriate

selection from the set of optimal contracts. The cost of this approach is that it requires a

characterisation that is substantially more intricate than that of Proposition 2 while yielding

few additional insights.15 Its benefit is that we could more thoroughly describe the principal’s

demand for those projects that have a cost-effectiveness near the threshold. To be more concrete,

return to Figure 2. Fix history ut−1 and suppose that, as illustrated, the threshold project is the

most cost-effective supply project (i.e., W ∗
t−1 = w). Suppose further that the principal has an

opportunity to demand a project at t (i.e., vt ∈ {v, v}). Part (i) of Proposition 2 subsumes two

possibilities: either (a) the principal is committed to supply the threshold project w whenever it

occurs following ut, or (b) some future production opportunities for project w have not yet been

promised. In case (a), the principal can provide incentives for demands at t only by committing

to produce the less cost-effective project w. Therefore, because v � w � v, the principal can

profitably demand v but not v. In case (b), the principal can still provide additional incentives

by committing to supply the threshold project w. Therefore, because v � v � w, the principal

can demand both v and v. Only project v is demanded in both cases (a) and (b), and this

demand is financed, at worst, by committing to project w. This is captured by part (ii) of

Proposition 2 because W t−1 = w, but by construction this neglects the possibility of a demand

for vt = v in case (b). Clearly, when the set of projects is rich, the substantive impact of our

simplified characterisation is small.

Proposition 2 shows that, in contrast to efficient contracts, optimal contracts treat the de-

mand and supply of projects asymmetrically. In particular, part (i) says that supply projects

above the threshold are produced with probability 1, whereas part (ii) says only that demand

projects above the (adjusted) threshold must be produced with positive probability. To un-

derstand this better, return to Figure 2. Fix history ut−1 and suppose that, as illustrated, the

threshold project is the most cost-effective supply project (i.e., W ∗
t−1 = w). Suppose further

that the principal is committed to producing the threshold project if it is available at t (as

in case (a) from the previous paragraph). What if w is very costly for the principal? This

does not matter because in this case its high rank in cost-effectiveness means that w is very

valuable to the agent. The principal would benefit from scaling back her supply of w at t, but

she committed to producing it in exchange for some demand at some time prior to t because

that promise was the most profitable way to reward the agent at that time. Now suppose that

15In contrast to the case of efficient contracts, multiplicity in optimal contracts cannot be trivially resolved
because arbitrary distributions of production decisions at the threshold may violate some of the agent’s individual
rationality constraints. In our working paper (Forand and Zápal, 2017), we show that it is without loss of
generality for optimal payoffs to consider contracts represented by time thresholds that frontload demands and
backload supplies.
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the most cost-effective demand v is available at t. Because v � w = W t−1, part (ii) says that v

cannot be passed over. Because the agent cannot commit, the scale of the principal’s demand

for v will depend on the stringency of the agent’s individual rationality constraint. Therefore,

if v is very costly for the agent, if w is not very beneficial to the agent, or if the relationship

following (ut−1, v) offers sufficiently few opportunities for the principal to reward the agent, then

the agent cannot be provided with incentives to produce v with probability 1.16

Example. We return to the manager-worker application from the Introduction, in which poten-

tial projects are U = {v, v, w, w} and v � w � v � w: the manager can demand emergency and

routine projects (v and v respectively); supply job training or schedule flexibility (w and w re-

spectively); emergency projects are more cost-effective than routine projects; and because some

of the firm’s costs of providing job training are offset by the benefits of having higher-skilled

workers, training is more cost-effective than job flexibility, which delivers more targeted benefits

to the worker. These projects are illustrated in Figure 2. Consider two scenarios in which job

training opportunities are either growing or declining over time. Suppose, for example, that

the firm employing the manager and the worker operates in an industry which is young and

innovative. In this case, expansion in the industry’s technological frontier would increase the

benefits of continued investments in human capital both for the worker’s career prospects and

for the firm’s productivity. These opportunities would be fewer and less valuable in a maturing

industry with a stable production process. We will show that there are stark differences in

production dynamics and efficiency across these two scenarios.

To make the example as simple as possible, suppose that the two project processes are

identical except for the availability of job training opportunities, and that furthermore the arrival

of non-training projects is history-independent: given any time t > 1, any project history ut−1

and any project u ∈ {v, v, w}, we assume that ut = u with probability pu in both the growth

and decline scenarios. We also assume that the arrival of job training opportunities depends

on histories only through time index t. Specifically, if training opportunities are growing, then

given any time t > 1 and any project history ut−1, we assume that ut = w with probability

γt, where γt+1 > γt. On the other hand, if training opportunities are declining, then given any

time t > 1 and any history ut−1, we assume that ut = w with probability βt, where βt+1 < βt.
17

In this case, we also assume that training opportunities become exceedingly rare over time:

limt→∞ βt = 0. To isolate the effect of how job training opportunities are distributed over time,

16For similar reasons, a property similar to (2) fails for demand projects: it is possible that the optimal
contract prescribes κ∗t ∈ (0, 1) for two histories (ut−1, vt) and (ut−1, v′t) with vt � v′t.

17Recall that project processes take values in U ∪ {(0, 0)}, so that the growth and decline scenarios will have
different probabilities of having no project arrive at any given time. For simplicity we leave these and other
feasibility constraints on the two processes implicit.
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we fix their (expected discounted) quantity across both scenarios:
∑∞

t=2 δ
t−1γt =

∑∞
t=2 δ

t−1βt.

This means that when training opportunities are growing the manager has few of these to offer

the worker initially relative to the case of decline, but that the opposite is true later in the

relationship.

We make further assumptions to tighten the link between optimal and efficient contracts in

this example. First, because optimal contracts are conditioned on the arrival of a first demand by

the manager and ex ante Pareto-efficient contracts depend on the workers’ individual rationality

constraint evaluated prior to the realisation of an initial project, we assume that the project at

time t = 1 is v. Second, because optimal contracts deliver all ex ante surplus to the manager,

we focus on those efficient contracts yielding expected utility u = 0 to the worker. Notice

that given our assumption that the ex ante quantities of all projects are fixed whether training

opportunities are growing or declining, efficient contracts are identical in both scenarios. Finally,

suppose that the efficient contract is such that the manager always demands both emergency

and routine projects and always supplies job training but never supplies schedule flexibility.

If training opportunities are growing, the manager’s ability to reward the worker increases

over time and her potential demands are time-invariant: for any time t > 2,
∑∞

t′=t δ
t′−1γt′ >∑∞

t′=2 δ
t′−1γt′ and

∑∞
t′=t δ

t′−1pu =
∑∞

t′=2 δ
t′−1pu for all u ∈ {v, v, w}. Therefore, in this case

the efficient contract satisfies the worker’s individual rationality constraint at all times t ≥ 1

and is optimal. In contrast, optimal contracts in the declining scenario cannot be efficient.

First, because v � w, the manager must eventually supply schedule flexibility in exchange for

continued demands for emergency projects when her commitments to job training no longer

provide meaningful incentives to the worker. Second, because w � v, the manager must stop

demanding routine projects when she starts rewarding the worker through commitments to

schedule flexibility. In the long run, production in the declining scenario is essentially reduced to

exchanging emergency projects against scheduling flexibility (although job training is provided

in the rare cases when it is available).

After observing a manager extend both job training and schedule flexibility to a worker, it

would be natural to interpret this as a sign that the firm has a plentiful supply of rewards to

offer its workforce. Our results suggest the opposite interpretation: an increase in the scope

of the worker’s non-monetary compensation points to scarcity in those rewards that are most

effective from the firm’s perspective. Because the manager benefits from substituting job train-

ing for schedule flexibility, observing the latter means that the bound on the availability of

training opportunities is binding. Similarly, it would be natural to conjecture that a worker

receiving non-monetary compensation from a variety of sources would produce more for the

firm. Again, our results predict the opposite: diversified rewards are tied to rationing in the
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worker’s tasks. Because the manager benefits from substituting decreased schedule flexibility

for routine projects, a worker that is rewarded by job flexibility cannot be profitably asked to

work on routine projects.

5 Markov Project Processes

From Section 4, we know that the optimal supply threshold can only transition to less cost-

effective supply projects if the principal makes additional demands. However, in general, we

cannot identify which project histories, and in particular which demands, lead to changes in the

threshold supply project. In this section, we sharpen our results by assuming that the project

process u is Markov.

Proposition 3. Suppose that the project process is Markov, and fix any optimal contract κ∗.

For all demands v, there exists a supply project W v such that, given any history ut with ut = v,

the optimal threshold project W ∗
t is the least cost-effective of projects W ∗

t−1 and W v:

W ∗
t = max

�
{W ∗

t−1,W
v}.

In the Markov case, the updating rule for the optimal supply threshold has a simple form:

following any history (ut−1, v), the supply threshold is updated to W v if this project is less cost-

effective than W ∗
t−1, while it remains at W ∗

t−1 otherwise. We provide more details about the

relationship between the threshold W v and its associated demand v below: here we note that W v

captures the minimal level of future supply commitments (and, correspondingly, the maximal

level of future demands) that provide incentives for a demand for v. Therefore, if W ∗
t−1 is more

cost-effective than W v, then the agent’s individual rationality constraint at t binds as a result

of principal’s demand for v and the optimal contract must become more generous towards the

agent by adding commitments to less cost-effective projects (and, correspondingly, dropping less

cost-effective demands). Furthermore, because the project process is Markov and the threshold

W v is history-independent, the continuation contracts following all histories at which a binding

individual rationality constraint is met at demand v are identical. This stationary updating

rule and corresponding “amnesia property” for optimal contracts are analogous to well-known

results in related models, notably those of Thomas and Worrall (1988) and Kocherlakota (1996)

for the iid case and Ligon, Thomas, and Worrall (2002) for the Markov case.

We can use Proposition 3 to order demands by the scale of the incentives that must be

supplied to the agent in order to produce them. If demand projects v and v are such that W v is

less cost-effective than W v, then we say that demand v is more expensive for the principal than

17



demand v: in return for v, the principal must commit to supply more projects to (and demand

less from) the agent in the future. An important note is that the expensiveness of a demand v is

different from its cost-effectiveness: the latter is the ratio of the principal’s benefit from v to the

agents’ cost, while the former is a measure of the stringency of the agent’s individual rationality

constraint following v. Intuitively, expensiveness depends on two potentially countervailing

factors: the agent’s stage cost from producing v (given by |vA|); and the value to the agent of

future project opportunities conditional on having reached project v, which depends on both

the discount factor δ and the project process. However, if the project process is iid, then the

relationship’s future production opportunities are history-independent. In that case, a demand’s

expensiveness is determined solely by its cost to the agent.

Corollary 1. Suppose that the project process is iid. If demands v and v are such that |vA| ≥
|vA|, then v cannot be more expensive for the principal than v.

This is analogous to a result from Thomas and Worrall (1988). In their model, the agent’s

opportunity cost from outside offers (which are iid) stands for the cost of the principal’s demand

in that state, and the level of the corresponding optimal wage stands for the expensiveness of

this demand for the principal. In line with Corollary 1, their Proposition 3 shows that optimal

wages are non-decreasing in outside market wages. For the general Markov case, we derive the

ranking of demands by expensiveness through our construction of optimal contracts in the proof

of Proposition 3, and it tracks the solutions to a recursive sequence of reduced problems: v1,

the most expensive demand for the principal, has the least cost-effective threshold W v1 , over

all v ∈ D, associated to the problem of finding an optimal contract subject only to (a) the

initial project being v (i.e., u1 = v) and (b) the individual rationality constraint for the agent

at time 1 (i.e., UA,1 ≥ 0); then v2, the second most expensive demand for the principal, has the

least cost-effective threshold W v2 , over all v ∈ D \ {v1}, to the problem of finding an optimal

contract for the principal subject only to (a) u1 = v, (b) UA,1 ≥ 0 and (c) the fact that the

threshold transitions to W v1 whenever v1 arrives; and so on. As opposed to the iid case, the

ranking of demands by expensiveness depends on the project process. For example, the most

expensive demand v1 might impose a low cost on the agent if the continuation process following

v1 provides few opportunities to reward him.

Our final goal in this section is to derive sufficient conditions for ranking demands by their

expensiveness in the non-iid case. To this end, fix two demands v and v. First, Condition 1 for v

to be more expensive than v is that it is more costly for the agent: |vA| ≥ |vA|. Second, note that

the thresholds associated to both demands v and v must take into account future transitions to

thresholds associated to demands that are more expensive than both of them (as in constraint

(c) of the reduced problem defining v2 in the previous paragraph). Correspondingly, Condition
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2 is that the distributions over these future transitions are identical following v and v: for all

t > 1, Pv[ut = u] = Pv[ut = u] for all u /∈ S, where Pv stands for the distribution of process u

conditional on u1 = v.18 Third, the expensiveness of demand v should capture the idea that the

principal has worse opportunities to supply projects following v. Because production decisions

are ordered by cost-effectiveness, this requires that the project process puts less weight on more

cost-effective supply projects following v. However, such a condition would not be sufficient on

its own, as less cost-effective supplies may yield high stage benefits to the agent, so that the

effect on the agent’s utility following v would be ambiguous. Correspondingly, Condition 3 is a

joint restriction on the cost-effectiveness and the stage benefit of supply opportunities following

v and v: for all t > 1 and all c ≥ 0,

Pv [|wP,t|/wA,t ≤ c]Ev
[
wA,t

∣∣|wP,t|/wA,t ≤ c
]
≤ Pv [|wP,t|/wA,t ≤ c]Ev

[
wA,t

∣∣|wP,t|/wA,t ≤ c
]
. (4)

Condition 3 says that, given any fixed supply threshold, the agent’s expected rewards are higher

following v than following v.

Corollary 2. Suppose that the project process is Markov. If demands v and v satisfy Conditions

1-3, then v cannot be more expensive for the principal than v.

Conditions 1-3 are clearly stringent, but our preceding remarks highlight that this is to some

degree by necessity. Notice that Conditions 2 and 3 are satisfied if the project process is iid.

Returning to our Example, what would be needed to conclude that routine projects cannot be

more expensive for the manager than emergency projects? We have assumed that the agent is

indifferent between producing both types of projects, so that Condition 1 is satisfied. Ignoring

Condition 2, Condition 3 can be satisfied if job training programs are more likely to arrive

following a routine project, so that the worker can expect to be compensated more often with

the manager’s preferred supply project. But because the agent prefers schedule flexibility to job

training, the former cannot arrive too rarely following a routine project. Otherwise, the agent’s

expected compensation could be lower following routine projects when the principal rewards

the agent with both job training and schedule flexibility.

6 Conclusion

We recap our main results by discussing their relationship to two key assumptions of our model:

that no transfers are available to support production and that the principal can commit pro-

18For related reasons, Condition 2 also requires that the distribution of projects that are neither supply nor
demand projects (i.e., projects in (U ∪ {(0, 0)}) \ (D ∪ S)) are also identical following v and v.
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duction decisions.

Transfers. While we have not explicitly allowed for monetary payments between the principal

and the agent, models with transfers are special cases of our model. Indeed, a transfer of k

dollars to the agent can be represented by a supply project mS = (−k, k) ∈ S, while a transfer

of k dollars to the principal can be represented by a demand project mD = (k,−k) ∈ D, where

mS and mD are equally cost-effective. The flexibility of the project process allows for different

specifications of transfer opportunities. On the one hand, if all non-monetary projects are

followed by transitions to both mS and mD and k is large, then transfers are always available

and essentially unrestricted in size. On the other hand, if mS arrives at fixed intervals, then

the principal has infrequent but regular opportunities to pay a bonus to the agent. While

our results apply to all models with transfers, they provide specific implications for the use

of money in the dynamic relationships captured by our environment. First, the principal’s

ability to use transfers to reward the agent does not crowd out supply through production:

the principal will not start paying the agent until she has committed to supply projects that

are more cost-effective than money in all their future occurrences. Furthermore, in an optimal

contract the principal may even supply projects that are less cost-effective than money, if the

availability of future transfer opportunities is sufficiently constrained. However, if k is large and

transfer opportunities are frequent, then the principal would always use money instead of less

cost-effective projects. Second, the direction of the flow of money between the principal and

the agent varies over the relationship’s lifetime: the principal demands transfers from the agent

early in the relationship, and supplies transfers to the agent later in the relationship.

No commitment for the principal. If the principal cannot commit to production decisions, then

the model must be augmented with history-dependent individual rationality constraints for the

principal which cap her supply of projects. Cost-effectiveness still drives project selection deci-

sions, but with an important qualification: if the principal supplies a less cost-effective project,

then she must also supply more cost-effective projects in all succeeding histories in which none

of her individual rationality constraints have been binding. This implies that some characterisa-

tion of the optimal contract in terms of threshold supply projects would still be possible without

commitment by the principal, but that pinning down general properties of optimal contracts’

dynamics would be difficult. Recall that if both sides can commit to production decisions, then

the threshold supply project is fixed over time, and if only the principal has commitment power,

then the threshold becomes more favourable to the agent over time to incentivise demands. If the

principal cannot commit either, then she must have incentives to supply projects, which would

imply a threshold that becomes less favourable to the agent following some histories. Therefore,

in contrast with our results, the optimal contract will typically not stabilise in the long-run.
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Absence of commitment power for the principal would generate an inefficiency closely related

to the one we discussed in Section 4: the principal and the agent would be better off if past

demands could incentivise the principal’s current supply of projects, but without commitment

these can only be supported by future demands.

A Appendix

Proof of Lemma 1. Suppose, towards a contradiction, that κ∗ is optimal and that, for some

project history ut such that uP,t, uA,t > 0, we have that κ∗t < 1. Fix a contract κ̃ that is

identical to κ∗ except that κ̃t = 1 at ut. It follows that κ̃ is individually rational because κ∗ is

individually rational. Furthermore, ŨP,t > U∗P,t, yielding the desired contradiction. The proof

for the case of ut such that uP,t, uA,t < 0 is similar, and is omitted.

We prove Proposition 2 before proving Proposition 1 in order to avoid repeating several

arguments that simplify in the context of Proposition 1.

Proof of Proposition 2. We proceed in a number of steps.

Step 1. Fix an optimal contract κ∗, project history ut, its superhistories ut
′
and ut

′′
, and projects

w � w. Suppose that (i) ut′ = w and (ii) ut′′ = w and
∑t′′−1

s=t+1 κ
∗
sIus∈DIU∗A,s=0 = 0.19 We show

that

if κ∗t′ < 1, then κ∗t′′ = 0.

To see this suppose, towards a contradiction, that κ∗t′ < 1 at ut
′

and that κ∗t′′ > 0 at ut
′′
. Now

consider an alternative contract κ̃, identical to κ∗ except that (i) κ∗t′ < κ̃t′ ≤ 1 at ut
′
, (ii)

0 ≤ κ̃t′′ < κ∗t′′ at ut
′′
, (iii)

ŨA,t − U∗A,t = δt
′−tPt(ut

′
)[κ̃t′ − κ∗t′ ]wA − δt

′′−tPt(ut
′′
)[κ∗t′′ − κ̃t′′ ]wA = 0, (5)

and (iv) U∗A,r + δt
′′−rPr(ut

′′
)[κ̃t′′ − κ∗t′′ ]wA ≥ 0 for any history ur that is a proper superhistory of

ut and a proper subhistory of ut
′′

(i.e., with t+1 ≤ r ≤ t′′−1) and such that κ∗r > 0 and ur ∈ D.

Because U∗A,r > 0 for any history ur in (iv), such a contract always exists. Furthermore, κ̃ is

individually rational for the agent. To see this, first note that, because ŨA,t = U∗A,t ≥ 0, we have

that κ̃ satisfies (IRA,r) for all times r ≤ t. Second, because ŨA,t′ > U∗A,t′ ≥ 0, it follows that

19Throughout,
∑t′′−1

s=t+1 κ
∗
sIus∈DIU∗A,s=0 = 0 denotes that, given history ut and its superhistory ut

′′
, for any

history us that is a proper superhistory of ut and a proper subhistory of ut
′′

(i.e., with t+ 1 ≤ s ≤ t′′−1), either
κ∗s = 0, or us /∈ D, or U∗A,s > 0.
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given any time r > t and history ur that is not a subhistory of ut
′′
, we have that ŨA,r ≥ U∗A,r ≥ 0.

Third, even though we have that ŨA,t′′ < U∗A,t′′ , because κ̃t′′uA,t′′ = κ̃t′′wA ≥ 0 it also follows

that

ŨA,t′′ ≥ δEt′′U∗A,t′′+1

≥ 0.

Finally, consider history ur that is a proper superhistory of ut and a proper subhistory of ut
′′

(i.e., with t+ 1 ≤ r ≤ t′′− 1). Suppose κ̃ satisfies (IRA,r+1) for ur+1 that is a subhistory of ut
′′
.

If κ̃ruA,r ≥ 0, then it follows that

ŨA,r ≥ δErŨA,r+1

≥ 0.

If κ̃ruA,r < 0, then κ̃r = κ∗r > 0 and ur ∈ D and from (iv) it follows that

ŨA,r = U∗A,r + δt
′′−rPr(ut

′′
)[κ̃t′′ − κ∗t′′ ]wA ≥ 0.

It thus follows recursively that κ̃ satisfies (IRA,r) for all times t + 1 ≤ r ≤ t′′ − 1. It remains

only to note that, by (5), we have

ŨP,t − U∗P,t = −δt′−tPt(ut
′
)[κ̃t′ − κ∗t′ ]|wP |+ δt

′′−tPt(ut
′′
)[κ∗t′′ − κ̃t′′ ]|wP |

= δt
′′−tPt(ut

′′
)[κ∗t′′ − κ̃t′′ ]|wP |

[
1−

|wP |/wA

|wP |/wA

]
> 0,

where the inequality follows because w � w, contradicting the optimality of κ∗.

Step 2. Step 1 implies that to any optimal contract κ∗ corresponds a history-dependent threshold

project mapping W ∗ : H → S such that, for all times t and histories ut,

κ∗t =

1 if W ∗
t � wt,

0 if wt � W ∗
t ,

where for simplicity we denote W ∗(ut) by W ∗
t , with the project history understood. For any
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history ut = (ut−1, ut), the threshold is given by

W ∗(ut) = max
�

{{
W ∗(ut−1)

}
∪
{
w : Pt(κ∗t′ > 0, ut′ = w,

∑t′−1

s=t+1
κ∗sIus∈DIU∗A,s=0 = 0) > 0

}}
,

where we set W ∗(u0) = min� S.20 By construction, W ∗
t is non-decreasing with respect to �, and

is such that, given any history ut and its superhistory ut
′
, W ∗

t′ = W ∗
t if
∑t′

s=t+1 κ
∗
sIus∈DIU∗A,s=0 = 0.

This proves Parts (i) and (iii) of Proposition 2.

Step 3. Fix an optimal contract κ∗ and project history ut = (ut−1, vt) where vt � min�{w �
W ∗
t−1}. We show that κ∗t > 0. To see this suppose, towards a contradiction, that κ∗t = 0.

Because κ∗t = 0, we have W ∗
t−1 = W ∗

t . Hence, because vt � min�{w � W ∗
t−1}, there exists

ut+1 = (ut−1, vt, wt+1) such that vt � wt+1 � W ∗
t , where wt+1 � W ∗

t and Part (i) of Proposition

2 imply κ∗t+1 = 0. Now consider an alternative contract κ̃, identical to κ∗ except that (i)

κ∗t < κ̃t ≤ 1 at ut, (ii) κ∗t+1 < κ̃t+1 ≤ 1 at ut+1, and (iii)

ŨA,t − U∗A,t = [κ̃t − κ∗t ]vA,t + δPt(ut+1)[κ̃t+1 − κ∗t+1]wA,t+1 = 0. (6)

Such a contract always exists. Furthermore, κ̃ is individually rational for the agent: because

ŨA,t = U∗A,t ≥ 0, κ̃ satisfies (IRA,r) for all times r ≤ t, and because ŨA,t+1 ≥ U∗A,t+1 ≥ 0, κ̃

satisfies (IRA,r) for all times r ≥ t+ 1. It remains only to note that, by (6), we have

ŨP,t − U∗P,t = [κ̃t − κ∗t ]vP,t + δPt(ut+1)[κ̃t+1 − κ∗t+1]wP,t+1

= [κ̃t − κ∗t ]vP,t
[
1−

|wP,t+1|/wA,t+1

vP,t/|vA,t|

]
> 0,

where the inequality follows because vt � wt+1, contradicting the optimality of κ∗.

Step 4. Fix an optimal contract κ∗ and project history ut = (ut−1, vt) where max�{W ∗
t−1 �

w} � vt. We show that κ∗t = 0. To see this suppose, towards a contradiction, that κ∗t > 0.

We have either W ∗
t = W ∗

t−1 or W ∗
t � W ∗

t−1. Hence, because max�{W ∗
t−1 � w} � vt, there

exists ut+1 = (ut−1, vt, wt+1) such that W ∗
t � wt+1 � vt, where W ∗

t � wt+1 and Part (i) of

Proposition 2 imply κ∗t+1 = 1. Now consider an alternative contract κ̃, identical to κ∗ except

that (i) 0 ≤ κ̃t < κ∗t at ut, (ii) 0 ≤ κ̃t+1 < κ∗t+1 at ut+1, and (iii)

U∗A,t − ŨA,t = [κ∗t − κ̃t]vA,t + δPt(ut+1)[κ∗t+1 − κ̃t+1]wA,t+1 = 0. (7)

20Throughout, Pt(κ
∗
t′ > 0, ut′ = w,

∑t′−1
s=t+1 κ

∗
sIus∈DIU∗A,s=0 = 0) denotes Pt(u

t′) of a superhistory ut
′

of ut

with κ∗t′ > 0, ut′ = w and
∑t′−1

s=t+1 κ
∗
sIus∈DIU∗A,s=0 = 0.
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Such a contract always exists. Furthermore, κ̃ is individually rational for the agent. To see this,

first note that, because ŨA,t = U∗A,t ≥ 0, κ̃ satisfies (IRA,r) for all times r ≤ t. Second, even

though we have that ŨA,t+1 < U∗A,t+1, because κ̃t+1wA,t+1 ≥ 0 it also follows that

ŨA,t+1 ≥ δEt+1U
∗
A,t+2

≥ 0,

and hence κ̃ satisfies (IRA,r) for all times r ≥ t + 1. It remains only to note that, by (7), we

have

U∗P,t − ŨP,t = [κ∗t − κ̃t]vP,t + δPt(ut+1)[κ∗t+1 − κ̃t+1]wP,t+1

= [κ∗t − κ̃t]vP,t
[
1−

|wP,t+1|/wA,t+1

vP,t/|vA,t|

]
< 0,

where the inequality follows because wt+1 � vt, contradicting the optimality of κ∗. Steps 3 and

4 jointly imply Part (ii) of Proposition 2.

Proof of Proposition 1. We specialise the results of Proposition 2 for optimal contracts to es-

tablish our results for efficient contracts. Recall that efficient contracts are solutions to

max
κ∈K

E0UP,1 subject to E0UA,1 ≥ u.

Fix any efficient contract κe and consider histories ut and ut
′
. First, arguments closely mirroring

those of Step 1 in the proof of Proposition 2 show that

if κet < 1, then κet′ = 0 if either wt′ � wt or vt � vt′ .

Second, arguments mirroring those of Steps 3 and 4 show that

if κet < 1, then κet′ = 1 if vt′ � wt, and

if κet > 0, then κet′ = 0 if wt � vt′ .

In fact, all the arguments from the previous steps are simplified because the only individual
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rationality constraint for the agent is the ex ante one. Third, define the following sets of projects:

Se1 = {w : κet = 1 for any ut with ut = w}, De1 = {v : κet = 1 for any ut with ut = v},

Se0 = {w : κet = 0 for any ut with ut = w}, De0 = {v : κet = 0 for any ut with ut = v},

Sei = S \ (Se1 ∪ Se0), Dei = D \ (De1 ∪ De0).

Note that from our preceding results we have that

given any u ∈ De0 ∪ Dei ∪ Se1 ∪ Sei : u � v implies v ∈ De0 and u � w implies w ∈ Se1 ,

given any u ∈ Dei ∪ De1 ∪ Sei ∪ Se0 : v � u implies v ∈ De1 and w � u implies w ∈ Se0 .
(8)

Therefore, Dei and Sei each include at most one project and at most one of these sets is non-empty

so that even Dei ∪ Sei includes at most one project. Therefore, we can set

U e


∈ Dei ∪ Sei if Dei ∪ Sei 6= ∅,

= max�De0 ∪ Se1 if Dei ∪ Sei = ∅ and De0 ∪ Se1 6= ∅,

= min�D ∪ S if Dei ∪ Sei = ∅ and De0 ∪ Se1 = ∅.

Proposition 1 then follows from (8).

Notice that our results above do not pin down production probabilities at projects in Dei ∪Sei .
However, a simple selection from the set of efficient contracts allows a complete characterisation

of κe. Specifically, given the linearity of payoffs in production probabilities, it is immediate

that it is without of loss of generality for optimal payoffs to assume that κe prescribes equal

production probability at all histories ut with ut ∈ Dei ∪Sei : we can restrict attention to contracts

such that κet = k∗D ∈ [0, 1] for any history ut with ut ∈ Dei and κet = k∗S ∈ [0, 1] for any history ut

with ut ∈ Sei . Now define threshold project u∗ = U e ∈ D ∪ S along with threshold production

probability k∗ ∈ [0, 1] as follows:

k∗ =



1− k∗D if u∗ ∈ Dei ,

k∗S if u∗ ∈ Sei ,

1 if Dei ∪ Sei = ∅ and De0 ∪ Se1 6= ∅,

0 if Dei ∪ Sei = ∅ and De0 ∪ Se1 = ∅.

The reason for expressing k∗ = 1−k∗D when u∗ ∈ Dei will become clear in the proof of Proposition

3 below, where we apply our results on efficient contracts to characterise optimal contracts when

the project process is Markov. There, we order demands v ∈ D by their expensiveness to the
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principal, so that whether the threshold u∗ is a demand or a supply project, our formulation

of the threshold production probability k∗ always identifies the scale of the principal’s costs.

Finally, by (8), it follows that, given any history ut, we have that

κet =


1 if vt � u∗,

1− k∗ if vt = u∗,

0 if u∗ � vt,

(9)

and that

κet =


1 if u∗ � wt,

k∗ if wt = u∗,

0 if wt � u∗.

(10)

Proof of Proposition 3. Our characterisation of optimal contracts with Markov project processes

in Proposition 3 shows how to define the cutoff supply project from Proposition 2 through a

recursive rule involving fixed threshold {W v}v∈D associated to all demand projects. Our proof

of this result will follow from the construction of an optimal contract. We proceed in a number

of steps.

Step 1. Fix project v′ ∈ D and suppose that u1 = v′. We define the reduced problem

max
κ∈K

UP,1 subject to UA,1 ≥ 0. (11)

Notice that problem (11) is a special case of the problem solved by efficient contracts. Therefore,

as in the proof of Proposition 1 we can conclude that the solution κ∗ to (11) can be characterised

by threshold project u∗ and production probability k∗, as described in (9) and (10).

Step 2. We can rank the solutions to (11) for various v′ ∈ D for which u1 = v′ in terms of

how expensive they are to the principal. Specifically, fix v, v ∈ D and consider the associated

solutions κ∗ and κ∗ to the problem (11) with u1 = v and u1 = v, respectively. If either u∗ � u∗ or

if u∗ = u∗ and k
∗
> k∗, then we say that the contract κ∗ is more expensive for the principal than

contract κ∗. In words, when these conditions are met, then κ∗ demands less of every project

v ∈ D, and supplies more of every project w ∈ S, than κ∗. Formally, this is a different definition

of expensiveness for demand projects as that in the text, and all references to expensiveness

in the remainder of the proof refer to this definition. The notion of expensiveness in the text,
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which is based on the thresholds W v defined in this proof, is easily seen to be a consequence

of the notion defined here. Fix any project u and some history ut such that ut = u, and let

U i denote the payoff to i from contract κ∗ starting from ut, and U i denote the payoff to i from

contract κ∗ starting from ut: these payoffs are history-independent because u is Markov and

both contracts κ∗ and κ∗ are stationary. Furthermore, it follows that if κ∗ is more expensive for

the principal than κ∗, then we have that UA ≥ UA. An implication is that, for any t, contract

κ∗ must still satisfy (IRA,t) if ut = v, but that contract κ∗ does not in general satisfy (IRA,t) if

ut = v.

Step 3. Let v1 ∈ D be the project for which the solution κ1∗ to problem (11) with u1 = v1 is

the most expensive for the principal among all solutions to (11) with u1 = v′ for some v′ ∈ D.

Suppose that κ1∗1 = 0. We show that, for all demand projects v′ ∈ D, the solution κv
′∗ to (11)

given u1 = v′ has κv
′∗
t = 0 at all histories ut. First, if κ1∗1 = 0, then (i) there is no project

u ∈ U such that uP , uA > 0 and (ii) κ1∗t = 0 for all histories (ut−1, wt). Suppose, towards a

contradiction, that uP , uA > 0 for some u ∈ U or that κ1∗t > 0 for some history (ut−1, wt). Then

there exists history ut such that κ1∗t uA,t > 0, and, because contract κ1∗ is stationary, there exists

history u2 such that κ1∗2 uA,2 > 0. Because κ1∗ is the most expensive for the principal among

all solutions to (11) with u1 = v′ for some v′ ∈ D, U1∗
A,t ≥ 0 at any ut. Hence, κ1∗1 = 0 and

κ1∗2 uA,2 > 0 imply U1∗
A,1 > 0, a contradiction because then there exists an alternative contract κ̃

identical to κ1∗ except that κ̃1 > 0, ŨA,1 ≥ 0 and ŨP,1 > U1∗
P,1. Second, because κ1∗t = 0 for all

histories (ut−1, wt) and because κ1∗ is the most expensive for the principal among all solutions

to (11) with u1 = v′ for some v′ ∈ D, we have, for all v′ ∈ D, κv
′∗
t = 0 for all histories (ut−1, wt)

and hence, because there are no projects u ∈ U with uP , uA > 0, κv
′∗
t = 0 also for all histories

(ut−1, vt). In this case, which arises if and only if uP , uA > 0 for no project u ∈ U and w � v

for all w ∈ S and v ∈ D, our construction of the optimal contract is completed and the optimal

contract calls for no production for all projects u ∈ D ∪ S. Therefore, to proceed to the next

step we can assume that κ1∗1 > 0.

From Step 2, we know that following any history ut with t ≥ 2, contract κ1∗ satisfies (IRA,t).

Also, note that by the construction of problem (11), no individually rational contract delivers

a higher payoff to the principal than κ1∗ at any history ut with ut = v1.

Step 4. Define the set of projects V 1 = {v1} with associated set of contracts K1 = {κ1∗}.
Now, inductively, fix a set of projects V n−1 = {v1, . . . , vn−1} and associated set of contract

Kn−1 = {κ1∗, . . . , κn−1∗}. Assume that (i) each κj∗ is individually rational following all histories,

and that (ii) no individually rational contract delivers a higher payoff to the principal than κj∗

following any history ut with ut = vj. Further assume that (iii) the contracts in Kn−1 are

ordered by their expensiveness for the principal (with κ1∗ the most expensive and κn−1∗ the
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least expensive). Fix any project v′ ∈ D \ V n−1 and suppose that u1 = v′. We define the

reduced problem

max
κ∈K

UP,1 subject to UA,1 ≥ 0, and

κ = κj∗ following all histories with vt = vj ∈ V t−1 and ut′ /∈ V n−1 for all t′ < t.
(12)

This problem corresponds closely to the problem (11), with the additional requirement that the

contract κj∗ be adopted following the first arrival of an opportunity to demand project vj ∈ V n−1

(knowing that, following that history, the agent’s individual rationality constraint binds). As in

Step 1 for problem (11), it is clear that the arguments from the proof of Proposition 1 can be

adapted to show that there exists a solution κ∗ to (12) which, for all histories ut with ut′ /∈ V n−1

for all t′ ≤ t, is characterised by threshold project u∗ and production probability k∗. In words,

these thresholds are valid until the contract transitions to κj∗ for some j ∈ {1, . . . , n − 1}.
Furthermore, given simple adaptations of the arguments in Step 2 for problem (11), it can be

shown that solutions to (12) for projects v′ ∈ D\V n−1 can be ranked according to how expensive

they are for the principal.

Step 5. Let vn ∈ D \ V n−1 be the project for which the solution κn∗ to problem (12) with

u1 = vn is the most expensive for the principal among all solutions to (12) with u1 = v′ for

some v′ ∈ D \ V n−1. By an argument along the lines of Step 3, it can be shown that if κn∗1 = 0,

then for all demand projects v′ ∈ D\V n−1, the solution κv
′∗ to (12) has κv

′∗
t = 0 for any history

(ut−1, wt) and (ut−1, vt) prior to the transition to some contract in Kn−1. In this case, which

arises if and only if uP , uA > 0 for no project u ∈ U and w � v for all w ∈ S and v ∈ D \ V n−1,

our construction of the optimal contract is completed and this contract calls for no production

for all projects u ∈ (D\V n−1)∪S until a transition to some contract in Kn−1 occurs. Therefore,

to proceed to the next step we can assume that κn∗1 > 0.

Arguments as in Step 3 for problem (11) establish that contract κn∗ is such that (i) it satisfies

(IRA,t) following any history ut and (ii) no individually rational contract delivers a higher payoff

to the principal than κn∗ at any history ut with ut = vn.

Step 6. It remains to be verified that the contracts κn−1∗ and κn∗ are ranked by their expen-

siveness for the principal (with κn−1∗ being more expensive). Let v = vn and v = vn−1. First,

note that, by construction, the contract κn−1∗ which solved the version of problem (12) at stage

n − 1 (given sets V n−2 and Kn−2) with u1 = v was less expensive than κn−1∗. Second, given

u1 = v, problem (12) at stage n differs from the version of this problem at stage n − 1 only

through the additional constraint the contract transitions to κn−1∗ following all histories with

ut = v. Because following all such histories the agent’s payoff is higher under κn−1∗ than under
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κn−1∗, it follows that κn∗ is less expensive for the principal than κn−1∗, which in turn is less

expensive than κn−1∗, yielding the desired result.

The previous step concludes the inductive construction of the optimal contract. The final

issue is to relate this contract to its characterisation in Proposition 3. Given any v ∈ D for

which the construction above assigns some stage j at which v is the most expensive demand

for the principal, let uj∗ denote the threshold project characterising κj∗. In this case, define

W v = uj
∗

if uj∗ ∈ S and W v = max� {max� {uj∗ � w} ,min� S} if uj∗ ∈ D. Given any other

demand project v, define W v = min� S.

Proof of Corollary 1. Suppose that the project process u is iid, fix some history ut along with

a contract κ, consider the agent’s payoff

UA,t = κtuA,t + δEtUA,t+1,

and note that EtUA,t+1 is independent of ut. It follows that if |vA| ≥ |vA| then the solution

to problem (11) with u1 = v cannot be more expensive for the principal than the solution to

problem (11) with u1 = v. The same property holds for solutions to problem (12). The threshold

projects u∗ and u∗ associated to projects v and v thus satisfy either u∗ = u∗ or u∗ � v∗ and

hence either W v = W v or W v � W v.

Proof of Corollary 2. The result follows by showing that if Conditions 1-3 are satisfied, then

given any stage n of the construction of the optimal contract in Proposition 3, the solution

to problem (12) with u1 = v cannot be more expensive for the principal than the solution

to problem (12) with u1 = v (we omit the simpler argument showing the same property for

solutions to problem (11)). To this end, fix a set of projects V n−1 with v, v /∈ V n−1 and consider

the solution from problem (12) given u1 = v, which specifies production probability κ∗1 at t = 1

along with threshold u∗ and production probability k
∗

at all times t > 1 (prior to reaching some

project v ∈ V n−1). Let U
∗
A,1 denote the agent’s utility from this contract conditional on u1 = v,

with UA,1 the corresponding expression for the same contract conditional on u1 = v. Given any

time t > 1, let H t
S be the set of histories of length t in which only supply projects have occurred

between times 2 and t: that is, H t
S = {ut : ut′ ∈ S for all 2 ≤ t′ ≤ t}. By Condition 2 and the

fact that the project process is Markov, it follows that the difference between UA,1 and U
∗
A,1
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depends only on histories in H t
S :

UA,1 − U
∗
A,1 = κ∗1 [|vA| − |vA|] +

∑
t>1

δt
[
Pv
[
u∗ � wt, H

t
S
]
Ev
[
wA,t

∣∣u∗ � wt, H
t
S
]

− Pv
[
u∗ � wt, H

t
S
]
Ev
[
wA,t

∣∣u∗ � wt, H
t
S
]

+
[
Pv
[
wt = u∗, H t

S
]
− Pv

[
wt = u∗, H t

S
]]
k
∗
u∗A

]
≥ k

∗Iu∗∈S
∑
t>1

δt
[
Pv
[
|wP,t|/wA,t ≤ |u∗P/u∗A| , H t

S
]
Ev
[
wA,t

∣∣|wP,t|/wA,t ≤ |u∗P/u∗A| , H t
S
]

− Pv
[
|wP,t|/wA,t ≤ |u∗P/u∗A| , H t

S
]
Ev
[
wA,t

∣∣|wP,t|/wA,t ≤ |u∗P/u∗A| , H t
S
] ]

+ (1− k∗Iu∗∈S)
∑
t>1

δt
[
Pv
[
|wP,t|/wA,t < |u∗P/u∗A| , H t

S
]
Ev
[
wA,t

∣∣|wP,t|/wA,t < |u∗P/u∗A| , H t
S
]

− Pv
[
|wP,t|/wA,t < |u∗P/u∗A| , H t

S
]
Ev
[
wA,t

∣∣|wP,t|/wA,t < |u∗P/u∗A| , H t
S
] ]
,

where the inequality follows from Condition 1. To show that UA,1 − U
∗
A,1 ≥ 0, and hence that

the contract associated to project v in problem (12) cannot be more expensive for the principal

than the one associated to project v, we show that for all c ≥ 0 inequality (4) in Condition 3

implies the inequality

Pv
[
|wP,t|/wA,t ≤ c,H t

S
]
Ev
[
wA,t

∣∣|wP,t|/wA,t ≤ c,H t
S
]

≤ Pv
[
|wP,t|/wA,t ≤ c,H t

S
]
Ev
[
wA,t

∣∣|wP,t|/wA,t ≤ c,H t
S
]
. (13)

Note that the versions of (4) and (13) with the strict inequality |wP,t|/wA,t < c must hold if

(4) and (13), respectively, hold because U is finite. It is straightforward to compute that (13)

follows from (4) if, for any time t > 1 and any w ∈ S,

Pv
[
(ut−1, w) /∈ H t

S
]

= Pv
[
(ut−1, w) /∈ H t

S
]
,

and this latter property can be shown by induction. If t = 2, then the claim follows because

Pv [(v, w) /∈ H2
S ] = Pv [(v, w) /∈ H2

S ] = 0 for all w ∈ S. If the claim holds for all t− 1 with t > 2,
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then note that, for any w ∈ S and any v ∈ {v, v},

Pv
[
(ut−1, w) /∈ H t

S
]

=
∑
u∈U\S

Pv [ut−1 = u]Pv
[
ut = w

∣∣ut−1 = u
]

+
∑
w′∈S

Pv
[
(ut−2, w′) /∈ H t−1

S
]
Pv
[
ut = w

∣∣ut−1 = w′
]
.

The conclusion follows from the facts that Pv [ut−1 = u] = Pv [ut−1 = u] for all u /∈ S by Condi-

tion 2, that Pv
[
ut = w

∣∣ut−1 = u
]

and Pv
[
ut = w

∣∣ut−1 = w′
]

are independent of v because the

project process is Markov, and that Pv
[
(ut−2, w′) /∈ H t−1

S
]

is independent of v by the induction

hypothesis.

References

Abreu, D., D. Pearce, and E. Stacchetti (1990). Toward a theory of discounted repeated games

with imperfect monitoring. Econometrica 58 (5), 1041–1063.

Bird, D. and A. Frug (2019a). Dynamic nonmonetary incentives. forthcoming in American

Economic Journal: Microeconomics 11 (4), 111–150.

Bird, D. and A. Frug (2019b). Monotone contracts. Barcelona GSE Working Paper Series No.

1085.

Board, S. (2011). Relational contracts and the value of loyalty. American Economic Re-

view 101 (7), 3349–3367.

Dixit, A., G. M. Grossman, and F. Gul (2000). The dynamics of political compromise. Journal

of Political Economy 108 (3), 531–568.
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