
Theoretical Economics 16 (2021), 1221–1248 1555-7561/20211221

Subgame-perfect equilibrium in games with almost perfect
information: Dispensing with public randomization
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Harris, Reny, and Robson (1995) added a public randomization device to dynamic
games with almost perfect information to ensure existence of subgame perfect
equilibria (SPE). We show that when Nature’s moves are atomless in the origi-
nal game, public randomization does not enlarge the set of SPE payoffs: any SPE
obtained using public randomization can be “decorrelated” to produce a payoff-
equivalent SPE of the original game. As a corollary, we provide an alternative route
to a result of He and Sun (2020) on existence of SPE without public randomiza-
tion, which in turn yields equilibrium existence for stochastic games with weakly
continuous state transitions.
Keywords. Existence, subgame-perfect equilibrium, infinite-action games,
stochastic games, public randomization.
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1. Introduction

A seminal result of Harris, Reny, and Robson (1995) (henceforth, HRR) ensures existence
of subgame perfect equilibrium (SPE) in dynamic games with almost perfect informa-
tion by augmenting such games with a public randomization device. That is, they as-
sume that in addition to Nature’s moves in the original game, players observe a uni-
formly distributed, payoff-irrelevant public signal in every stage. This convexifies equi-
librium probabilities over continuation paths in the extended game and allows them to
use limiting arguments to deduce existence of a SPE; in the original game, their con-
struction corresponds to a generalized strategy profile in which players’ actions are
marked by a form of correlation. We focus on the subclass of games with atomless moves
by Nature, and our main contribution is that in such games, one can dispense with pub-
lic signals in HRR’s result: each SPE obtained by augmenting the original game to allow
public signals can be “decorrelated” to produce a payoff-equivalent SPE of the original
game involving no correlation or public signals. Therefore, for a large class of dynamic
games, public randomization is without loss of generality; or put differently, in a world
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with atomless moves by Nature, introducing “sunspots” does not enlarge the set of sub-
game perfect equilibrium payoffs. In particular, it cannot enlarge the empty set to a
nonempty set, so a direct corollary is existence of SPE in games with atomless moves by
Nature, providing an alternative route to existence of SPE to that recently taken by He
and Sun (2020).

The class of games with atomless moves by Nature is general enough to capture
many applications of interest; in particular, it subsumes stochastic games with weakly
continuous, atomless state transitions—in some respects, going well beyond the analy-
sis in the classical literature. More formally, a stochastic game is played among n play-
ers; in each period, a state variable z is publicly observed; players then simultaneously
choose actions yi; and given the state z and action profile y = (y1, � � � , yn ), next period’s
state is drawn from a transition probability μ(·|y, z). This process is repeated in discrete
time over an infinite horizon. In their classic analysis, Mertens and Parthasarathy (2003)
did not assume that states are atomlessly distributed, but their conditions for existence
of SPE impose the strong condition of norm-continuity on the state transition. Letting
Z denote the set of states and �(Z ) the set of probability measures over states, the as-
sumption of Mertens and Parthasarathy (which is standard in the literature) is that the
mapping (y, z) �→ μ(·|y, z) is jointly measurable and continuous in y with the total vari-
ation norm on �(Z ). This norm-continuity assumption precludes the possibility that
states have a component that depends in a deterministic way on a continuous action.

In contrast, our decorrelation approach does not impose norm-continuity; rather,
adding atomless transitions to HRR’s framework, we require only that state transitions
are weakly continuous, i.e., the mapping (y, z) �→ μ(·|y, z) is continuous with the weak*
topology on �(Z ). Thus, a component of the state is permitted to vary in a determinis-
tic, continuous way with respect to states and actions. Our analysis is also more general
than that of Mertens and Parthasarathy in that it permits the players’ payoffs and Na-
ture’s moves to depend on the entire history of play, but our payoff structure is less gen-
eral in one respect: this dependence has to be jointly continuous, whereas Mertens and
Parthasarathy allow for payoffs and moves by Nature that are continuous in the current
action profile but merely measurable in the current state.1

Our analytical approach proceeds as follows. Given a game with atomless moves by
Nature, HRR show that there is a SPE in the extended game, which adds payoff-irrelevant
public signals in each period. For any such SPE strategy profile, we exploit nonatomic-
ity to “decorrelate” the SPE in each period via repeated application of Mertens’ (2003)
“measurable ‘measurable choice’ theorem.” In the first period, there is no previous pub-
lic signal, so the players’ actions in the SPE are trivially uncorrelated. In the second and
later periods of the extended game, however, players can condition on the public sig-
nal in the first period. We use Mertens’ theorem to replace conditioning of moves on
the first-period public signal (which is payoff-irrelevant) in the extended game with con-
ditioning on Nature’s move (which is nonatomically distributed and payoff-relevant) in
the first period of the original game, in which public signals are unavailable. The key

1We also derive a result on existence of a correlated SPE that allows the transition probability to have
atoms and assumes only weakly continuous transitions.
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is to do so in a way that is measurable and preserves the expected discounted payoff of
each profile of the players’ actions in the first period, thereby maintaining equilibrium
conditions on the players’ first-period choices.

This step renders the first-period public signal moot, but in the third and later peri-
ods of the extended game, SPE strategies can still condition on the public signal in the
second period. We then use Mertens’ theorem to replace conditioning on the second-
period public signal with conditioning on Nature’s moves in the original game, again
preserving expected payoffs from profiles of the players’ actions in the first two peri-
ods and thereby maintaining equilibrium conditions. By repeating this procedure, we
inductively construct a new profile of strategies such that players’ actions after any his-
tory do not depend on the previous public signals, and such that expected payoffs in
the first period are preserved from the original SPE. As a consequence, the new profile
of strategies is a SPE of the original game that is payoff-equivalent to the SPE of the ex-
tended game. Thus, we dispense with HRR’s public randomization for a large class of
games of interest, and we conclude that for the purpose of characterizing SPE payoffs of
such games, the inclusion of an external public randomization device is without loss of
generality.

We emphasize that public randomization is payoff-irrelevant, whereas moves by Na-
ture are payoff relevant, so that the substitution of conditioning on Nature’s moves in
place of correlation requires delicate arguments. When removing correlation via the pe-
riod t public signal, we must specify new equilibrium strategies in all future periods;
moreover, this “cleansing” of correlation must be iterated an infinite number of times,
once for each period t.2

Our existence corollary is consistent with an example of Luttmer and Mariotti (2003),
in which there is no SPE in a game of perfect information with moves by Nature that are
not always atomless. It is also obtained in Proposition 1 of He and Sun (2020), who es-
tablish existence of SPE without resorting to public signals under the assumption that
Nature’s moves are atomless; their focus is on existence, and they do not provide re-
sults on “decorrelation” of equilibria. Our route to existence is comparatively short,
but theirs is more direct, in that they do not rely on the results of HRR, but instead fol-
low a backward-then-forward induction argument similar to that of HRR. Their use of
Mertens’ (2003) theorem is in ensuring the existence of a suitable jointly measurable se-
lection from next period’s equilibrium payoff correspondence in the forward induction
argument, whereas we use Mertens’ (2003) theorem to replace conditioning on public
signals with conditioning on moves by Nature.3 Methodologically, this decorrelation ap-
proach based on nonatomicity is related to our previous work on dynamic games, where

2Observe that although one can work with payoffs or distributions over infinite histories in the extended
game Mariotti (2000), the process of decorrelation involves a substitution of equilibrium play after the first
period: we maintain the players’ moves in the first period, and we preserve payoffs of the original SPE
evaluated at the beginning of the game, but players’ moves in subsequent periods are otherwise unrelated
to the original profile. Thus, decorrelation generally produces a distinct distribution over paths of play. Of
course, this is unavoidable, because correlation is removed by adding extra conditioning on the realizations
of Nature’s moves.

3He and Sun (2020) covered games of perfect information, and they give results for a class of dynamic
games that drops continuity of Nature’s moves in exchange for absolute continuity with respect to a fixed,
atomless measure.
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payoff correspondences with convex values are often needed on technical grounds, but
where correlation can be difficult to justify on economic grounds. Similar methods
are used in Duggan (2012) to prove existence of stationary Markov perfect equilibria in
noisy stochastic games: a correlated equilibrium is deduced from Nowak and Raghavan
(1992), and a version of Mertens’ theorem is used to construct a payoff-equivalent equi-
librium in which correlation is replaced by conditioning on the noise component of the
state.4  Barelli and Duggan (2014) used this approach to prove that for every stationary
correlated equilibrium in the Nowak–Raghavan sense, there is a payoff-equivalent sta-
tionary semi-Markov equilibrium obtained by replacing correlation with conditioning
on the state and actions in the previous period.5

The remainder of the paper is organized as follows. In Section 2, we set forth the
framework of games of almost perfect information used by HRR, and we specialize this
to games with atomless moves by Nature. In Section 3, we present our main result,
which shows that we can dispense with public randomization in any game with atom-
less moves by Nature. In Section 4, we apply our result to stochastic games, and in
Section 5, we prove the decorrelation theorem. Section 6 concludes, and the Appendix
shows the equivalence of geometric discounting (which we use) and the payoff formu-
lation of HRR.

2. Games with atomless moves by nature

We adopt the framework of HRR but for two modifications, both inconsequential. First,
we omit the set Y0 of starting points of the game, which was used by HRR to establish
upper hemicontinuity of equilibria, whereas our focus is on de-correlation of equilib-
ria. Second, we use a representation of payoff functions in terms of stage payoffs and
geometric discounting, whereas HRR use continuous payoff functions defined on infi-
nite histories. This formulation is convenient for our analysis, and we show in Propo-
sition A.1, in the Appendix, that the discounting approach is without loss of generality;
given the widespread use of geometric discounting in applied work, this result may be
of independent interest.

Data. The data of the HRR framework (with our two modifications) are as follows.

• There is a finite, nonempty set N = {1, � � � , n} of active players, indexed by i or j, and
a passive player, “Nature,” denoted 0. Let N0 = N ∪ {0}.

• There is a countably infinite set T = {1, 2, � � �} of time periods, indexed by s or t. Let
T0 = T ∪ {0}.

4See also He and Sun (2017) for an alternative approach: instead of decomposing states into two com-
ponents as in Duggan (2012), He and Sun (2017) focused on two sigma-algebras on states, and, assuming
that transitions are measurable with respect to the (much) coarser of the two, apply ideas from Dynkin and
Evstigneev (1976) to obtain the required convexity.

5Similar techniques are also applied in Barelli and Duggan (2015a) to show that stationary Markov perfect
equilibria in noisy stochastic games are payoff-equivalent to equilibria that select only extreme points of
equilibrium payoffs in induced games, and they are applied to purification of Bayes Nash equilibria in
Barelli and Duggan (2015b).
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• For each t ∈ T0 and each i ∈ N , there is a nonempty, complete, separable metric
space Yt,i of actions denoted yt,i. Set Yt = ×i∈NYt,i, with elements yt = (yt,i )i∈N ,
and set Y = (Yt )t∈T0 .

• For each t ∈ T0, there is a nonempty, complete, separable metric space Zt of Nature’s
actions denoted zt . Set Z = (Zt )t∈T0 .

• For each t ∈ T , there is a nonempty, closed subset Xt ⊆ ×t
s=1(Ys × Zs ) of possible

t-period histories with typical element of Xt denoted xt (the structure of Xt is elab-
orated below). Designate a fixed x0 ∈ Y0 ×Z0 as the initial history at which the game
begins, and set X0 = {x0}. Finally, set X = (Xt )t∈T0 .

• For each t ∈ T and each i ∈N , there is continuous correspondence At,i : Xt−1 ⇒ Yt,i

of feasible actions with nonempty, compact values. In addition, there is a con-
tinuous correspondence At,0 : Xt−1 ⇒ Zt with nonempty, closed values. Set At =
×i∈N0At,i and A = (At )t∈T . Consistent with the interpretation of Xt as the set of
possible t-period histories, we assume that for each t ∈ T , Xt = graph(At ). In par-
ticular, the projection of Xt on Yt ×Zt is a product of sets for each player and Nature.

• For each t ∈ T , there is a continuous mapping ϕt : Xt−1 → �(Zt ), where �(·) repre-
sents the set of Borel probability measures endowed with the weak* topology. As-
sume that for each xt−1 ∈ Xt−1, the support of ϕt(xt−1 ) is contained in At,0(xt−1 ).
Set ϕ = (ϕt )t∈T .

• For each t ∈ T and each i ∈N , there is a bounded, continuous stage payoff function
ut,i : Xt →R. Set ut = (ut,i )i∈N and u= (ut )t∈T .

• For each i ∈N , there is a discount factor δi ∈ [0, 1). Let δ = (δi )i∈N .

These elements describe a game of almost perfect information (or simply, a game), de-
noted G = (N0, Y , Z, X , x0, A, ϕ, u, δ), in which players and Nature move simultane-
ously in each period. Given any history xt , we define the subgame at xt , denoted G(xt ),
in the obvious way.

Infinite histories. For a sequence x ∈ ×t∈T0 (Yt ×Zt ) of action profiles in each period,
given any t ∈ T0, we denote by xt the truncation of x, which projects x onto its first
t + 1 coordinates. An infinite history is a sequence x ∈ ×t∈T0 (Yt ×Zt ) such that for each
t ∈ T0, we have xt ∈ Xt . Let X∞ denote the set of infinite histories, which we endow
with relative topology inherited from the product topology on ×t∈T0 (Yt ×Zt ), along with
the measurable structure generated by finite cylinder sets. Then �(X∞ ) is the set of
probability measures ξ on infinite histories. Given any t ∈ T and history xt ∈ Xt , let
Ht(xt ) = {x′ ∈ X∞ | x′

t = xt } denote the set of continuation histories at xt . Since At is
continuous for each t ∈ T , it follows that Ht : Xt ⇒X∞ is a continuous correspondence.
Since Yt and Zt are metric spaces for each t ∈ T , it follows that the product topology on
X∞ is metrizable (Theorem 3.36, Aliprantis and Border (2006)).

Stage payoffs. Assume that for all players i ∈ N , the discounted sum of stage payoffs,∑
t∈T δt−1

i ut,i(xt ), is bounded and continuous on X∞.6 An alternative formulation of

6Continuity of discounted streams of payoffs would follow from continuity of each ut,i if stage payoffs
were uniformly bounded across t, but we do not impose the latter assumption.
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payoffs, used by HRR, is to assume a bounded, continuous payoff function ui : X∞ → R

over infinite histories for each player. In the Appendix, we exploit history dependence
of stage payoffs to show that the two formulations are equivalent; in fact, we show that
it is without loss of generality to assume a common, positive discount factor in games of
almost perfect information.7

Strategies. A strategy for player i ∈ N is a sequence fi = (ft,i )t∈T of Borel measurable
mappings ft,i : Xt−1 → �(Yt,i ) such that ft,i(At,i(xt−1 )|xt−1 ) = 1 for each t ∈ T and each
xt−1 ∈ Xt−1. Define ft = (ft,i )i∈N : Xt−1 → ×i∈N�(Yt,i ) as the profile of mappings for
each player in period t. A strategy profile is an ordered n-tuple f = (fi )i∈N . Let Fi denote
the set of strategies for player i, and let F = ×i∈NFi denote the set of strategy profiles.

Continuation payoffs. Given f ∈ F , t ∈ T , i ∈ N , and xt−1 ∈ Xt−1, player i’s continu-
ation payoff is the expected discounted payoff in the remainder of the game, following
history xt−1, defined recursively by

Ut,i(xt−1, f ) =
∫
y

[∫
z

[
ut,i(xt−1, y, z)

+ δiUt+1,i
(
(xt−1, y, z), f

)]
ϕt(xt−1 )(dz)

](⊗
i∈N

ft,i(xt−1 )

)
(dy ),

where we integrate over players’ and Nature’s actions in period t. This is a standard con-
struction using dynamic programming techniques to establish the existence of map-
pings Ut : Xt−1 × F → R

n for each t such that, for each f , the continuation payoff
Ut(xt−1, f ) is Borel measurable as a function of xt−1.8

Equilibrium. A subgame perfect equilibrium (SPE) is a strategy profile f such that for
each t ∈ T , each i ∈ N , each xt−1 ∈ Xt−1, and each f̃i ∈ Fi,

Ut,i(xt−1, f ) ≥Ut,i
(
xt−1, (f̃i, f−i )

)
.

Clearly, a strategy profile f is a SPE of G if and only if for every history xt , the strategies
restricted to this subgame form a SPE of the subgame G(xt ).

Auxiliary games. Given a game G, any t ∈ T , any xt−1 ∈ Xt−1, and any bounded,
Borel measurable function V : Yt ×Zt →R

n, the auxiliary game induced by V at t given
xt−1 is the strategic form game Gt(xt−1, V ) = (N , (At,i(xt−1 ))i∈N , (πi )i∈N ) with player
set N , strategy sets At,i(xt−1 ) with mixed strategies σi ∈ �(At,i(xt−1 )), and payoff func-
tions

πi(y ) =
∫
z

[
ut,i(xt−1, y, z) + δiVi(y, z)

]
ϕt(xt−1 )(dz).

7This is not true in a stationary stochastic game, because stage payoffs are history-independent in that
setting.

8Specifically, given xt−1, f , and ϕ, a standard argument (see, e.g., Bertsekas and Shreve (1996)) yields
a unique probability measure Pf ,ϕ(·|xt−1 ) over the Borel sets of ×s≥tXs such that the mapping xt−1 �→
Pf ,ϕ(·|xt−1 ) is Borel measurable and with the appropriate marginals over the factors; in particular, the
marginal over Zt × Yt is

⊗
i∈N0

ft,i(xt−1 ). Then i’s continuation payoff at t given f is Ut,i(xt−1, f ) =
E[

∑
s≥t δ

s−1
i us,i], where E denotes expectation with respect to Pf ,ϕ(·|xt−1 ). Observe that Ut,i is Borel mea-

surable on xt−1, and the recursive definition above follows immediately.
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Here, the values V (y, z) stand in for the players’ expected future payoffs given action
profile (y, z); note that Ut+1((xt−1, ·), f ) in the definition of SPE plays the same role as
V (·) in the definition of auxiliary game.

One-shot deviation principle. Let Nt(xt−1, V ) denote the set of mixed strategy Nash
equilibria of the auxiliary game Gt(xt−1, V ), i.e., σ = (σi )i∈N ∈ Nt(xt−1, V ) if and only if
for each i ∈N and each y ′

i ∈At,i(xt−1 ), we have

∫
y
πi(y )

(⊗
j∈N

σj

)
(dy ) ≥

∫
y−i

πi

(
y ′
i , y−i

)(⊗
j 
=i

σj

)
(dy−i ).

By the one-shot deviation principle, a strategy profile f is a SPE of G if and only if for all
t ∈ T and all xt−1 ∈Xt−1, the profile ft(xt−1 ) = (ft,i(xt−1 ))i∈N is a mixed strategy equilib-
rium of the auxiliary game Gt(xt−1, Ut+1((xt−1, ·), f )).9

Extended games. Given a game G = (N0, Y , Z, X , x0, A, f0, u, δ), the extension of G
is the game Ĝ such that N̂ = N , and for each t ∈ T , (i) for each i ∈ N , Ŷt,i = Yt,i, (ii) Ẑt =
Zt × [0, 1], (iii) possible t-period histories are as in the original game with the addition
of a signal ωs ∈ [0, 1] in each period t ∈ T , i.e.,

X̂t = {(
(y0, z0 ), (y1, z1, ω1 ), � � � , (yt , zt , ωt )

) | xt ∈Xt , (ωs )ts=1 ∈ [0, 1]t
}

,

writing elements as x̂t = (xt , ω1, � � � , ωt ), (iv) for each x̂t ∈ X̂t−1, the marginal of
f̂t,0(x̂t−1 ) on Zt is ϕt(xt−1 ), and ωt is drawn independently from the uniform distri-
bution on [0, 1], that is, ϕ̂t(x̂t−1 ) = ϕt(xt−1 ) ⊗ λ, where λ is the uniform measure on
[0, 1], (v) for each i ∈ N0 and each x̂t−1 ∈ X̂t−1, we have Ât,i(x̂t−1 ) = At,i(xt−1 ), and (vi)
for each i ∈ N and each t ∈ T , we have ût,i(x̂t ) = ut,i(xt ). Thus, ωt is a payoff-irrelevant
public signal. Without risk of confusion, given V̂ : Ŷt × Ẑt →R

n, we shall use Ĝt(x̂t−1, V̂ )
to denote the corresponding auxiliary game at period t ∈ T , and Ût(x̂t−1, f̂ ) to denote
continuation payoffs at t ∈ T .

We now present the definition of games with atomless moves by Nature. The natural
definition would be to have ϕt(xt−1 ) atomless for all t ∈ T and all xt−1 ∈ Xt−1, but we
will use a weaker definition that allows for the possibility that the distribution of Nature’s
actions has an atom, as long as the active players have only trivial moves and Nature’s
moves are atomless in the next period.10 This definition admits games in which the

9The one-shot deviation principle applies because the game is “continuous at infinity” (Blackwell
(1965)).

10He and Sun (2020) assumed the stronger version that ϕt (xt−1 ) is atomless for all t ∈ T to obtain their
Theorem 1, and then give their Assumption 2, which allows atoms in periods with a single active player,
to obtain their Proposition 1. Their class of games satisfying Assumption 2 is closely related to our games
with atomless moves by Nature. Any game with atomless moves by Nature can be reformulated as one that
satisfies He and Sun’s Assumption 2: if Nature’s move has an atom in period t in our setting, then period t+1
could be collapsed into period t to satisfy Assumption 2 in their framework; this transformation relies on the
possibility that Nature’s move in a given period depends on the actions of players in that period, which He
and Sun allow. Conversely, any game in which Nature’s moves are atomless and depend on players’ actions
within a period can be transformed into a game with atomless moves by Nature by staggering Nature’s
moves into a subsequent period. However, we do not allow for sequences of perfect information moves, as
described in part (i) of their Assumption 2.
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active players and Nature move in alternate periods, a fact that allows us to apply our
results to the class of stochastic games, in Section 4.

Games with atomless moves by Nature. A game G is a game with atomless moves by
Nature if for all t ≥ 2, and all xt ∈Xt , the following holds:

ϕt(xt−1 ) has
an atom

⇒ for all i ∈N ,
∣∣At+1,i(xt )

∣∣ = 1
and ϕt+1,0(xt ) is atomless.

Clearly, G is a game with atomless moves by Nature if ϕt(xt−1 ) is atomless for all t and
all histories xt−1, but our condition is strictly weaker than this requirement.

3. Dispensing with public randomization

Theorem 4 of HRR establishes the following equilibrium existence result.

Theorem 1 (Harris, Reny, and Robson). For each game G, the extension Ĝ admits a
subgame perfect equilibrium.

HRR consider several approaches to establishing existence of SPE in the original
game G, without public randomization. They note that their theorem implies existence
of SPE in games with finite action sets and in zero-sum games, where Nature’s role in
the extended game is not crucial.11 We use the HRR theorem to analyze games without
public randomization by imposing nonatomicity structure on Nature’s moves. The main
result of this paper is the following theorem: for a game with atomless moves by Nature,
every SPE f̂ of the extended game can be “decorrelated” to produce a SPE f of the origi-
nal game that preserves the players’ expected discounted payoffs from all action profiles
at the initial history. Formally, we say f is payoff-equivalent to f̂ if for all i ∈ N and all
y ∈ ×i∈NA1,i(x0 ), we have

∫
z

[
u1,i(x0, y, z) + δiU2,i

(
(x0, y, z), f

)]
ϕ1(x0 )(dz)

=
∫
z

[
u1,i(x0, y, z) + δi

∫
ω
Û2,i

(
(x0, y, z), ω, f̂

)
λ(dω)

]
ϕ1(x0 )(dz),

where U2,i is the continuation payoff after period 1 in the original game and Û2,i is the
continuation payoff after period 1 in the extended game.12

Theorem 2. In a game G with atomless moves by Nature, every subgame perfect equi-
librium of the extended game Ĝ is payoff equivalent to a subgame perfect equilibrium of
G.

11HRR also claimed that existence of SPE in games of perfect information is a consequence of their main
result, but Luttmer and Mariotti (2003) provide a counterexample to this claim.

12In the proof of Theorem 2, we define a notion of payoff equivalence at an arbitrary history. Note,
however, that the equivalence established in the theorem holds for payoffs calculated at the beginning
of the game; in general, the process of de-correlation can change equilibrium play and payoffs in later
subgames.
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Thus, when Nature’s moves are already atomless, the addition of uniformly dis-
tributed payoff-irrelevant signals is without loss of generality, and can be interpreted
simply as a technical device in HRR. From Theorems 1 and 2, we obtain the obvious
existence result, which is also obtained in Proposition 1 of He and Sun (2020).

Corollary 1. Every game with atomless moves by Nature admits a subgame perfect
equilibrium.

Here, we present the main ideas of the proof of Theorem 2, which is located in Sec-
tion 5. By the theorem of HHR, the extended game Ĝ has a SPE f̂ . The proof of Theo-
rem 2 consists of transforming f̂ to a SPE of G via a “triangular” sequence (f t−1 )t∈T of
SPE profiles in the extended game of the following form:

f 0 = (f̂1, f̂2, f̂3, f̂4, f̂5, � � �),

f 1 = (
f 0

1 , f1
2 , f 1

3 , f 1
4 , f 1

5 , � � �
)
,

f 2 = (
f 0

1 , f 1
2 , f2

3 , f 2
4 , f 2

5 , � � �
)
, (1)

f 3 = (
f 0

1 , f 1
2 , f 2

3 , f3
4 , f 3

5 , � � �
)
,

...

That is, the first profile f 0 is just f̂ . To define f 1, we leave period 1 strategies un-
changed, i.e., f 0

1 = f̂1, and we update strategies in all periods t = 2, 3, � � � . To define f 2,
we leave strategies in the first two periods unchanged, and we update strategies in all
periods t = 3, 4, � � �, and so on. At the end of the construction, we select the “diagonal”
moves to arrive at a SPE f∞ = (f t−1

t )t∈T , indicated in boldface above, of the extended
game. Each component f t−1

t is constructed so as to be independent of the public signals
ω1, � � � , ωt−1 and to preserve expected payoffs from action profiles in period t − 1 (and
thus all previous periods). With the profile f∞ in hand, since players’ actions do not de-
pend on the payoff-irrelevant public signals, we then define the SPE f of the game with
atomless moves by Nature in the obvious way: for each period t, we project f∞ onto the
set Xt−1 of histories of the original game. The formal proof is complicated by the fact
that a game with atomless moves by Nature allows for atomic moves by Nature, under
specific circumstances. Here, we convey the approach of the proof for the simpler case
in which for each period t and each history xt ∈ Xt , Nature’s move ϕt(xt ) is atomless.

The idea of the construction of f 1 is to select, in a measurable way, a SPE of the sub-
game Ĝ(x1, ω1 ) for each (x1, ω1 ) ∈X1 × [0, 1], and to do so in a way that is independent
of ω1, yet preserves the active players’ expected discounted payoffs from every feasible
action profile y1 ∈ ×i∈NA1,i(x0 ) in period 1. More precisely, letting Û2 denote the con-
tinuation payoffs in the extended game, the selection we construct must preserve the
expected payoff

∫
z

∫
ω
Û2

(
(x0, y1, z, ω), f̂

)
λ(dω)ϕ1(x0 )(dz)
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for each feasible action profile y1. This is possible for two reasons. First, the public
signal ω1 is payoff irrelevant, so that the set of subgame perfect equilibria in subgame
Ĝ(x1, ω1 ) is in fact independent of ω1. Thus, we can write E2(x1 ) for the set of SPE
payoffs in the subgame Ĝ(x1, ω1 ). By Lyapunov’s theorem, it follows that the integral∫
ωE2(x1 )λ(dω) is just the convex hull of E2(x1 ). Second, the assumption (for the present

discussion) that Nature’s move ϕ1(x0 ) is atomless allows us to apply the “measurable
‘measurable choice’ theorem” of Mertens (2003) to measurably select SPE payoffs from
E2(·), while preserving expected discounted payoffs following action profiles in the first
period.13

To elaborate on this, we use the first observation above to write:14

∫
z

∫
ω
Û2

(
(x0, y1, z, ω), f̂

)
λ(dω)ϕ1(x0 )(dz) ∈

∫
z

coE2(y1, z)ϕ1(x0 )(dz). (2)

Moreover, because Nature’s moves ϕ1(x0 ) are atomless, any payoff obtained by integrat-
ing Nature’s moves over the convex hull coE2(x1 ) can be obtained by integrating Nature’s
moves over E2(x1 ), i.e.,

∫
z

coE2(y1, z)ϕ1(x0 )(dz) =
∫
z
E2(y1, z)ϕ1(x0 )(dz). (3)

Mertens’ theorem establishes the existence of a measurable mapping g(y1, p, z1 ) de-
fined on (graph

∫
z E2(·, z)ϕ1(x0 )(dz)) × Z1 and such that both g(y1, p, z1 ) ∈ E2(y1, z1 )

and

p =
∫
z
g(y1, p, z)ϕ1(x0 )(dz). (4)

That is, g(y1, p, ·) measurably selects from SPE payoffs of the subgames Ĝ(x1, ω1 ) in way
that generates payoffs p, while conditioning only on z1, and not on ω1. Combining (2)
and (3), we have

(
y1,

∫
z

∫
ω
Û2

(
(x0, y1, z, ω), f̂

)
λ(dω)ϕ1(x0 )(dz)

)
∈ graph

∫
z
E2(·, z)ϕ1(x0 )(dz)

and, therefore, we can define the composite mapping � by

�(x1 ) = g

(
y1,

∫
z

∫
ω
Û2

(
(x0, y1, z, ω), f̂

)
λ(dω)ϕ1(x0 )(dz), z1

)

to obtain a selection of SPE payoffs from E2(·) that by (4) preserves the players’ expected
payoffs from each action profile y1 in the first period.

Once this is done, we must translate the selection � of SPE payoffs in each sub-
game Ĝ(x1, ω1 ) into a SPE of the subgame that is measurable as a function of x1 and

13In general, using the full strength of Mertens’ theorem, purification can be performed as long as players
do not correlate their choices following any atoms.

14Here, “co” denotes the convex hull, and the integral of a correspondence refers to the set consisting of
integrals of all Borel measurable selections of the correspondence.
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independent of ω1. For this, we rely on Proposition 10 of HRR, which yields the de-
sired strategies f 1

2 , f 1
3 , � � � in periods following period 1. Note that the originally speci-

fied moves f̂1(x0 ) = f 0
1 (x0 ) still form a mixed strategy equilibrium of the induced game

Ĝ1(x0, Û2((x0, ·), f 1 )) in the first period, and thus we can specify that the players use f̂1

in the first period to obtain a SPE f 1 of the extended game in which payoffs in the first
period are maintained, and actions in future periods are not conditioned on the public
signal ω1.

At this point in the argument, continuation payoffs from action profiles in the first
period are preserved by f 1, but payoffs after histories xt with t ≥ 2 need have no re-
lation to continuation payoffs induced by f̂ ; indeed, Proposition 10 of HRR specifies
new SPE strategies that are a measurable function of x1 and preserve continuation
payoffs for each action profile in the first period, but the play of the game in peri-
ods t ≥ 2 is otherwise independent of the original equilibrium. In the second iteration
of the argument, we repeat the process to specify new subgame perfect equilibria in
subgames Ĝ(x2, ω1, ω2 ) in a way that is measurable as a function of x2, independent
of ω2 (in addition to ω1), and for each feasible action profile y2 ∈ ×i∈NA2,i(x1 ), pre-
serves the expected payoff from (x1, y2 ) in period 2. Importantly, we do not preserve
continuation payoffs of the original equilibrium f̂ , but rather we preserve the payoffs∫
z

∫
ω Û3((x1, y2, z, ω), f 1, ω)λ(dω)f2,0(x1 )(dz) for the equilibrium f 1 produced in the

first application of Proposition 10 of HRR.
Delving further into the second iteration, we construct f 2 by selecting, in a measur-

able way, SPE payoffs of the subgames Ĝ(x2, ω1, ω2 ) for each (x2, ω1, ω2 ) ∈X2 × [0, 1]2,
substituting conditioning on z2 for conditioning on ω2 in later periods t ≥ 3 and pre-
serving the expected payoff from each (x1, y2 ) in period 2. We leave moves in the first
two periods unchanged, so that f 2

1 = f 1
1 = f̂1 and f 2

2 = f 1
2 , and we use Proposition 10 of

HRR to obtain desired SPE strategies f 2
3 , f 2

4 , � � � in later periods. The construction con-
tinues in this way, iteratively generating a sequence f 0, f 1, f 2, � � �, and we construct a
SPE f∞ = (f t−1

t )t∈T of the extended game by selecting moves along the “diagonal” of
this sequence. Since f t−1

t is independent of public signals prior to period t, we project
each f t−1

t onto Xt−1 to produce a SPE f of the original game with atomless moves by
Nature that is payoff-equivalent to f̂ .

The heart of the proof of Theorem 2 is a recursive construction in which each iter-
ation consists of three steps, taking as given a SPE f t−1 of the extended game Ĝ that
is independent of public signals in the first t − 1 periods and preserves the expected
payoff of each action profile in period t − 1. In Step 1, using Mertens’ theorem, we con-
struct a measurable selection �t+1(xt ) of SPE payoffs in period t + 1 from subgames
Ĝ(x̂t ) that does not depend on public signals in period t or earlier, and that preserves
the expected payoff from each (xt−1, yt ) in period t, where the expectation is taken with
respect to Nature’s move in period t. Hence, the “correlation” induced by dependence
on the period t public signal is substituted for conditioning on Nature’s move in that pe-
riod.15 In Step 2, we use Proposition 10 of HRR to construct a SPE f t of Ĝ that maintains

15In the formal proof, Step 1 is broken into two parts to address the possibility that Nature’s move in
period t − 1 has an atom, in which case the active players’ moves in period t are exogenously fixed in a
game with atomless moves by Nature.
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(f t−1
1 , � � � , f t−1

t ) in the first t periods, and that generates the payoffs �t+1(xt ) from Step
1. In Step 3, we verify that in period t, f t is independent of public signals and preserves
the expected payoff of each (xt−1, yt ). Steps 1, 2, and 3 are repeated inductively to arrive
at the sequence f 0, f 1, f 2, � � � of SPE profiles in (1). The final Step 4 is constructing the
SPE f∞ = (f t−1

t )t∈T of the extended game, and then projecting each f t−1
t onto Xt−1 to

produce the desired SPE f of G. Note that the final Step 4, unlike Steps 1, 2, and 3, is
carried out only once.

4. Application to stochastic games

A classical (discounted) stochastic game is a dynamic game played in discrete time
among n players such that: in each period, a state z ∈ Z is publicly observed; each player
i chooses an action yi from a feasible set Ai(z) ⊆ Yi; payoffs ui(y, z) are realized; a new
state is drawn from the transition probability μ(·|y, z) ∈ �(Z ); and the process is re-
peated. The standard assumptions are that each Yi is a compact metric space with its
Borel structure, Z is a measurable space, the feasible action correspondences Ai are
lower measurable,16 with nonempty, compact values, and each ui(y, z) is jointly mea-
surable and continuous in y. Typically, the transition probability μ : Y × Z → �(Z ) is
assumed to be measurable and, with an appropriate topology on �(Z ), continuous in
y; general existence results for stochastic games have imposed the total-variation norm
topology on �(Z ), which makes the continuity assumption quite restrictive. We refer
to this condition as norm continuity of transitions. Note that feasible action correspon-
dences depend only on the current state, and payoff functions depend only on the cur-
rent state and profile of actions. Finally, payoffs are computed using the discounted sum
of stage payoffs using discount factors δi ∈ [0, 1) for each player i.

We subsume the classical stochastic game framework within the class of games of
almost perfect information as follows. First, we specify that for all t ∈ T , we have Zt =
Z and Yt,i = Yi. Second, to capture the timing of a stochastic game, we have active
players move in odd periods and Nature in even periods by adding dummy moves: in
even periods, active players’ moves are fixed at some given ȳ ∈ Y = ×i∈NYi, and in odd
periods, Nature’s move is fixed at some given z̄ ∈ Z. Formally, we specify that for each
odd period t and each history xt−1, player i’s feasible set At,i(xt−1 ) =Ai(zt−1 ) is given by
the action correspondence from the stochastic game; and in even periods, the action set
is the singleton At,i(zt−1 ) = {ȳi}. For Nature’s moves, for each even period t ≥ 2 and each
history xt−1, we set ϕt(xt−1 ) = μ(·|yt−1, zt−2 ), consistent with the transition probability
μ using the players’ actions and state in the previous period; and in odd periods, we set
ϕt(xt−1 ) to be equal to the point-mass at z̄. Thus, Nature’s move zt in an even period
determines the state for the following period, in which players move. Finally, we define
stage payoffs so that for each odd period t and each history xt , ut,i(xt ) = ui(yt , zt−1 ), so
that player i’s payoff is determined by the current action profile and state; and in each
even period t, we set ut,i = 0. This alternation of moves implies that stage payoffs from
odd periods are subject to double discounting, so to preserve dynamic preferences in the

16Given a measurable space S with sigma-algebra �, and given a topological space X , a correspondence
ϕ : S⇒X is lower measurable if for each open set G ⊆ X , we have ϕ(G) = {s ∈ S : ϕ(s) ∩G 
= ∅} ∈ �.



Theoretical Economics 16 (2021) Dispensing with public randomization 1233

stochastic game, we specify that player i’s discount factor is
√
δi in the game of almost

perfect information.
By the above argument, any stochastic game can be represented as a game G of al-

most perfect information as long as: (i) Z is a complete, separable metric space, (ii)
each Ai is continuous, (iii) each ui is continuous, and (iv) the transition probability
μ : Y × Z → �(Z ) is weak* continuous. It should now be apparent why we formulated
games with atomless moves by Nature as we have. Our definition allows for atoms in
moves of Nature in periods preceding a “no play” period; this accommodates stochastic
games, which have atoms in odd periods (in fact, Nature’s move is completely atomic)
and no atoms in even periods. Thus, a stochastic game can be viewed as a game with
atomless moves by Nature if, in addition to (i)–(iv), we have: (v) the distribution over
states, μ(·|y, z), is atomless for all (y, z) ∈ Y ×Z. In this case, we refer to G as a stochastic
game with atomless moves by Nature.

Our results for games with atomless moves by Nature have immediate application to
stochastic games. Clearly, Theorem 1 implies that given any stochastic game G satisfy-
ing (i)–(iv), the extension Ĝ admits a SPE. In turn, Theorem 2 shows that if the transition
probability is atomless, then every SPE of the extended game corresponds to a SPE of
the original stochastic game.

Corollary 2. In a stochastic game G with atomless moves by Nature, every subgame
perfect equilibrium of the extended game Ĝ is payoff equivalent to a subgame perfect
equilibrium of G. In particular, every stochastic game satisfying (i)–(v) admits a subgame
perfect equilibrium.

The existence of SPE in stochastic games satisfying (i)–(v) is also obtained in Proposi-
tion 2 of He and Sun (2020).17 This existence result is not logically nested with Theorem 1
of Mertens and Parthasarathy (2003), as the latter authors allow feasible action sets,
payoffs, and the state transition to depend on the state in a measurable way, whereas
we assume continuous dependence.18 However, as we mentioned above, Mertens and
Parthasarathy require norm continuity of transitions, precluding the possibility that the
state has a component that varies deterministically as a function of players’ continu-
ous actions. Such deterministic dependence is natural in many applications, such as
the strategic growth model in Example 1 below, and thus Corollary 2 has comparatively
broad applicability.

Example 1 (Strategic growth and autocorrelated shocks). In an infinite-horizon,
discrete-time model of growth with two agents, let ki represent the capital stock for
agent i = 1, 2, and let ci be the level of consumption of agent i. Given capital stock

17Whereas we capture stochastic games by effectively having players and Nature alternate moves, He and
Sun (2020) assumed players and Nature move simultaneously, but they let players’ actions at t influence
Nature’s move at t, which stands in for the state in t + 1.

18See also Theorems 3 and 4 of He and Sun (2020), which allow measurable dependence on the state
and weak continuity with respect to actions. On the other hand, their results assumes that Nature’s moves
are absolutely continuous with respect to a fixed, atomless measure, precluding deterministic transition
probabilities.
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levels k1 and k2 at the end of the previous period and realized depreciation rates
r1, r2 ∈ (0, 1), the agents simultaneously choose consumption levels ci subject to 0 ≤
ci ≤ Fi(k1, k2 ) + (1 − ri )ki, reflecting externalities in production given by Fi and a reduc-
tion in capital stocks due to depreciation. Consumption choices in the current period,
in turn, leave capital stock levels at k′

i = Fi(k1, k2 ) + (1 − ri )ki − ci. Assume that: the
production functions Fi are bounded and jointly continuous; utility from consumption
is bounded, continuous, and discounted over time; and that depreciation rates between
periods are subject to random shocks, r′i = ri + εi, where the shocks (ε1, ε2 ) have den-
sity f (ε1, ε2|c1, c2, k1, k2, r1, r2 ) that is jointly continuous in consumption levels, cap-
ital stocks, and shocks, thereby permitting general correlation across time.19 This is
an example of a stochastic game in which the state variable (k1, k2, r1, r2 ), has a deter-
ministic component, namely (k1, k2 ), that depends on continuous actions, namely the
consumption levels of the agents. As such, existence of SPE in this strategic version of
the standard growth model does not follow from Mertens and Parthasarathy (2003).20 It
does, however, follow directly from Corollary 2 above. ♦

An advantage of our approach is that we can also deduce existence of a correlated
SPE in stochastic games with weakly continuous transitions, even if the transition prob-
ability has atoms. The decorrelation result of the preceding corollary relies on the ap-
plication of Theorem 1 to a stochastic game G satisfying (i)–(v), and in particular, the
extended game Ĝ is defined by adding public signals in every period, including even
periods in which Nature moves, but also odd periods in which the active players move.
Thus, Ĝ requires that the active players in an odd period observe two public signals,
ωt−2 and ωt−1, between moves—in effect, duplicating the public signal. The standard
interpretation of a correlated equilibrium (e.g., Nowak and Raghavan (1992)) has players
observing only one signal for a given play of the stage game, complicating the interpre-
tation of equilibria in Ĝ as correlated equilibria of the original game. It is possible to
recover the standard interpretation by having both public signals be drawn in the same
period, so that players in effect observe only one, albeit two-dimensional, public sig-
nal between moves; then the signal can be reduced to one dimension via a measure-
preserving bijection between the unit square and the unit interval. Instead, we follow
a more direct approach using Theorem 2 to establish existence of a SPE in correlated
strategies, a result recently alluded to by Jaśkiewicz and Nowak (2017).

Given a stochastic game G satisfying (i)–(iv), we define the associated game with
public randomization, denoted G̃, by adding a payoff-irrelevant public signal, drawn
from the uniform distribution λ on [0, 1], in every even period t. Denoting histories
in the associated game by x̃t , Nature’s move in every even period t is then ϕ̃t(x̃t−1 ) =
ϕt(xt−1 ) ⊗ λ. Regardless of the structure of the original game, ϕ̃t is atomless, and thus
the associated game G̃ with public randomization is a game with atomless moves by
Nature. Thus, we have the following additional corollary of Theorem 2.

19To bound action sets of the agents, we assume there is r > 0 such that ri ∈ [r, 1).
20Dutta and Sundaram (1992) studied a version of a strategic growth model allowing for weakly contin-

uous transitions as well. They establish existence of a stationary Markov perfect equilibrium under strong
concavity/differentiability assumptions.
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Corollary 3. For every stochastic game G satisfying (i)–(iv), the associated game G̃ with
public randomization admits a subgame perfect equilibrium.

By Corollary 3, any stochastic game satisfying (i)–(iv) admits a form of correlated
SPE, complementing the well-known result of Nowak and Raghavan (1992), which es-
tablishes existence of a stationary correlated equilibrium under norm continuity of tran-
sitions.21 Importantly, by allowing for subgame perfect equilibria in which strategies are
history-dependent, we extend this existence result to stochastic games G in which the
transition probability may have atoms and is merely weak* continuous. For example,
it may be that the transition probability in G is a deterministic, continuous function of
the previous state and actions. Returning to Example 1, we can remove noise from the
depreciation rates, simply fixing them at r̄1 and r̄2, so that in any period, the capital stock
levels, k1 and k2, and consumption levels, c1 and c2, determine new capital stock levels
k′
i = Fi(k1, k2 ) + (1 − ri )ki − ci in a deterministic way. Such deterministic transitions vi-

olate norm continuity, but Corollary 3 delivers a SPE in the associated game, where the
agents observe a single, one-dimensional public signal between periods.

5. Proof of Theorem 2

Let G be any game with atomless moves by Nature. Before proceeding to the proof, we
extend the concept of payoff equivalence to any period t ∈ T and history x̂t−1 ∈ X̂t−1

as follows. Given strategy profiles f̂ and f̂ ′ in the extended game Ĝ, we say that f̂ ′ is
payoff-equivalent to f̂ at x̂t−1 if for all i ∈N and all y ∈ ×i∈NAt,i(xt−1 ), we have

∫
z

[
ut,i(xt−1, y, z) + δi

∫
ω
Ût+1,i

(
(xt−1, y, z, ω), f̂ ′)λ(dω)

]
ϕt(xt−1 )(dz)

=
∫
z

[
ut,i(xt−1, y, z) + δi

∫
ω
Ût+1,i

(
(xt−1, y, z, ω), f̂

)
λ(dω)

]
ϕt(xt−1 )(dz),

so that the expected discounted payoffs from f̂ ′ and f̂ , calculated at x̂t−1, from every
action profile are the same for every active player.22 In addition, as in HRR, let Et+1(xt )
be the set of SPE payoffs in any subgame Ĝ(x̂t ) of Ĝ such that the history of actions in x̂t
is xt . Because the signals ω1, � � � , ωt are payoff irrelevant, this set is well-defined, and by
Theorem 5 of HRR, the correspondence Et+1 : Xt ⇒ R

n so-defined has a closed graph,
and thus is lower measurable (Theorem 18.20, Aliprantis and Border (2006)).

To prove Theorem 2, fix a SPE f̂ of Ĝ and set f 0 = f̂ . In general, for a recursive
construction, for each t ∈ T , we take f t−1 as a given SPE of Ĝ satisfying the following
conditions:23

21They also assume that the transitions are absolutely continuous with respect to a fixed measure. See
also Jaśkiewicz and Nowak (2017) for an overview of the literature on existence of stationary equilibria in
discounted stochastic games.

22Note that the initial definition of payoff equivalence compares a strategy profile f in G with a profile f̂

in Ĝ, whereas payoff equivalence at a history compares to profiles in Ĝ.
23These conditions are vacuously satisfied by f 0 when t = 1, and (C1t ) is vacuously satisfied when t = 2.
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(C1t) for all s ∈ T and all x̂s−1 ∈ X̂s−1, f t−1
s (x̂s−1 ) is independent of ω1, � � � , ωt−2,

(C2t) for all s ≥ t and all x̂s−1 ∈ X̂s−1 such that ϕt−1(xt−2 ) is atomless, f t−1
s (x̂s−1 ) is

independent of ω1, � � � , ωt−1,

(C3t) for all x̂t−2 ∈ X̂t−2, f t−1 is payoff-equivalent to f t−2 at x̂t−2.

That is, the strategy profile f t−1 does not depend on public signals in periods up to and
including t − 1, unless Nature’s move ϕt−1(xt−2 ) has an atom at history xt−2, in which
case strategies are still independent of public signals in the first t − 2 periods. Moreover,
expected discounted payoffs from action profiles calculated in period t − 1 are the same
for f t−1 and f t−2.

We will construct a strategy profile f t in Ĝ satisfying (C1t+1)–(C3t+1) such that f t

shares the first t moves with f t−1, i.e.,

(
f t1, � � � , f tt

) = (
f t−1

1 , � � � , f t−1
t

)
.

Later moves (f tt+1, f tt+2, � � �) will be independent of ω1, � � � , ωt−1; and if ϕt(xt−1 ) is atom-
less, they will be independent of ωt as well. The later moves will also preserve ex-
pected payoffs at each history x̂t−1 from each action profile yt ∈ ×i∈NAt,i(xt−1 ). In
fact, if Nature’s move ϕt(xt−1 ) has an atom at any history x̂t−1, then we simply spec-
ify that (f tt+1, f tt+2, � � �) restricted to Ĝ(x̂t−1 ) is identical to f t−1, i.e., for all s ≥ t + 1 and

all x̂′
s−1 ∈ X̂s−1 with x̂′

t−1 = x̂t−1, f ts (x̂′
s−1 ) = f t−1

s (x̂′
s−1 ). Importantly, if Nature’s move

ϕt(xt−1 ) is atomless at history x̂t−1, then (f tt+1, f tt+2, � � �) is chosen so that it forms a

SPE in the subgame Ĝ(x̂t−1 ), and these later moves will generally differ from those in
f t−1. Then strategies restricted to earlier subgames remain subgame perfect by payoff
equivalence. Because f t−1 does not depend on public signals prior to t − 1, by (C1t ),
we suppress the realizations of public signals prior to period t − 1 and write f t−1

t (x̂t−1 )
as f t−1

t (xt−1, ωt−1 ). When ϕt−1(xt−2 ) is atomless, (C2t ) allows us to write this simply as
f t−1
t (xt−1 ).

The proof consists of a recursive construction in Steps 1–3, and a final Step 4 that
produces the desired SPE of the original game G: Steps 1 and 2 perform the inductive
construction, and Step 3 verifies that the inductively constructed profile of strategies sat-
isfies (C1t+1)–(C3t+1); Step 4 is an independent verification step, taking place after Steps
1–3 have been repeated countably many times, and establishing that the construction
in fact yields an SPE. For each t ∈ T , let X◦

t consist of histories xt ∈ Xt of the original
game G such that ft+1,0(xt ) is atomless. Note that the set of atomless probability mea-
sures is Borel measurable, and since ft+1,0 is Borel measurable, the set X◦

t is itself Borel
measurable. In case xt−1 /∈ X◦

t−1, as mentioned in the preceding paragraph, we specify
f t so that at all subsequent histories, play proceeds according to f t−1. To confirm that
our conditions are satisfied in this case, note that since ft(xt−1 ) has an atom, the def-
inition of game with atomless moves by Nature implies that Nature’s move ft−1(xt−2 )
prior to that is atomless, and then (C2t) implies for all s ≥ t, f t−1

s (x̂t−1 ) is independent of
ω1, � � � , ωt−1, so that our specification of f t = f t−1 in later subgames satisfies (C1t+1).24

24The specification vacuously satisfies (C2t+1) and (C3t+1), since ϕt−1(xt−2 ) has an atom.
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Thus, our arguments focus on histories x̂t−1 ∈ X◦
t−1 × [0, 1]t−1 at which Nature’s moves

are atomless.
Step 1 in the construction, next, is broken into two parts. The task is to disconnect

continuation payoffs in period t + 1 from public signals in preceding periods. In the first
part, we consider a history x̂t−1 ∈X◦

t−1 ×[0, 1]t−1 such that Nature’s move in the previous
period was also atomless, in which case, by (C2t ), we need address only dependence on
public signals ωt , in period t. In the second part, we consider a history such that Nature’s
move ϕt−1(xt−2 ) in period t − 2 has an atom. In this case, (C1t ) delivers independence
from Nature’s moves in the first t−2 periods, but dependence on both ωt−1 and ωt must
be addressed.

Step 1.1: Disconnecting continuation payoffs after atomless moves in period t − 1.
Let X1.1

t−1 = {xt−1 ∈ X◦
t−1 | xt−2 ∈ X◦

t−2} consist of (t − 1)-period histories in the orig-
inal game such that Nature’s moves, ϕt(xt−1 ) and ϕt−1(xt−2 ), in periods t and t − 1
are atomless. Consider a history x̂t−1 ∈ X1.1

t−1 × [0, 1]t−1. Since f t−1 is a SPE of the ex-

tended game Ĝ, the profile (f t−1
t,i (x̂t−1 ))i∈N is a Nash equilibrium of the auxiliary game

Ĝt(x̂t−1, Ût+1((x̂t−1, ·), f t−1 )). By (C2t ), the strategies f t−1
s in periods s ≥ t + 1 are inde-

pendent of public signals ω1, � � � , ωt−1, so we can write player i’s continuation payoff at
x̂t , namely Ût+1,i(x̂t , f t−1 ), as Ût+1,i((xt , ωt ), f t−1 ). Then player i’s expected payoff at
x̂t−1 from an action profile y ∈ ×i∈NAt,i(xt−1 ) simplifies to

∫
z

[
ut,i(xt−1, y, z) + δi

∫
ω
Ût+1,i

(
(xt−1, y, z, ω), f t−1)λ(dω)

]
ϕt(xt−1 )(dz). (5)

For all histories xt−1 ∈X1.1
t−1 and all (y, z) ∈At(xt−1 ), the continuation payoff Ût+1((xt−1,

y, z, ω), f t−1 ) belongs to Et+1(xt−1, y, z) and, therefore,
∫
ω
Ût+1

(
(xt−1, y, z, ω), f t−1)λ(dω) ∈

∫
ω
Et+1(xt−1, y, z)λ(dω)

= coEt+1(xt−1, y, z),

where the equality follows from Lyapunov’s theorem (cf. part 2 of the theorem of
Mertens (2003)). Integrating over z, we have

∫
z

∫
ω
Ût+1

(
(xt−1, y, z, ω), f t−1)λ(dω) ∈

∫
z

coEt+1(xt−1, y, z)ϕt(xt−1 )(dz)

=
∫
z
Et+1(xt−1, y, z)ϕt(xt−1 )(dz),

where the equality follows from Lyapunov’s theorem, since ϕt(xt−1 ) is atomless and
Et+1(xt−1, y, z) is closed.

By part 3 of the theorem of Mertens (2003), there is a Borel measurable mapping
�t+1 : {xt ∈Xt | xt−1 ∈X1.1

t−1} → R
n such that for all (xt−1, y ) ∈X◦

t−1 ×Yt with xt−2 ∈X◦
t−2

and y ∈ ×i∈NAt,i(xt−1 ), the mapping �t+1(xt−1, y, ·) is a selection from Et+1(xt−1, y, ·),
and ∫

z
�t+1(xt−1, y, z)ϕt(xt−1 )(dz) =

∫
z

∫
ω
Ût+1

(
(xt−1, y, z, ω), f t−1)λ(dω).
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This gives us a selection of SPE payoffs that is independent of ω1, � � � , ωt and such that
after each history x̂t−1 ∈ X1.1

t−1 × [0, 1]t−1, player i’s expected payoff from each action
profile y ∈ ×i∈NAt,i(xt−1 ) is

∫
z
[ut,i(xt−1, y, z) + δi�t+1,i(xt−1, y, z)ϕt(xt−1 )(dz)

=
∫
z

[
ut,i(xt−1, y, z) + δi

∫
ω
Ût+1,i

(
(xt−1, y, z, ω), f t−1)λ(dω)

]
ϕt(xt−1 )(dz), (6)

which is just (5). Thus, the selection �t+1 preserves the expected payoff from f t−1 for
each action profile y in period t following histories x̂t−1 with xt−1 ∈X1.1

t−1.
Step 1.2: Disconnecting continuation payoffs after moves with atoms in period t − 1.

Let X1.2
t−1 = {xt−1 ∈ X◦

t−1 | xt−2 /∈ X◦
t−2} consist of (t − 1)-period histories in the original

game such that Nature’s move ϕt(xt−1 ) in period t is atomless, but its move ϕt−1(xt−2 ) in
period t − 1 is not atomless. Consider a history x̂t−1 ∈ X1.2

t−1 × [0, 1]t−1, so that ϕt−1(xt−2 )
has an atom. By definition of a game with atomless moves by Nature, it follows that
the active players’ moves are trivial in period t at history x̂t−1, in the sense that their
actions are predetermined at this history. By (C1t ), for all s ≥ t − 1 and all histories x̂′

s

with x̂′
t−2 = x̂t−2, f t−1

s (x̂′
s ) is independent of ω1, � � � , ωt−2, but future actions may depend

on the public signal ωt−1 in period t − 1. Since ϕt−1(xt−2 ) has an atom, the arguments
from Step 1.1 cannot be used to eliminate dependence of f t−1

s on ωt−1, but we can use
a similar argument to replace dependence on (ωt−1, ωt ) with an appropriate selection
of equilibrium payoffs as a function of zt , the distribution of which, namely ϕt(xt−1 ), is
atomless. Because action sets are singleton at x̂t−1, this selection may be constructed
without concern for equilibrium incentives in period t, but we must preserve expected
payoffs from action profiles in period t − 1. Player i’s continuation payoff at x̂t−2 from
action profile y ∈ ×i∈NAt−1,i(xt−2 ) is

∫
z

[
ut−1,i(xt−2, y, z) + δi

∫
z′

[
ut,i

(
xt−2, y, z, y ′, z′)

+ δi

∫
(ω,ω′ )

Ût+1,i
((
xt−2, y, z, ω, y ′, z′, ω′), f t−1)λ2(d(

ω, ω′))]ϕt(xt−2, y, z)
(
dz′)]

×ϕt−1(xt−2 )(dz), (7)

where y ′ is the unique feasible action profile at (xt−2, y, z), and λ2 is Lebesgue mea-
sure on the unit square [0, 1]2. We can write y ′ explicitly as a function αt(xt−1 ) of his-
tory; and because the feasible action correspondences At,i are continuous, the mapping
αt : X1.2

t−1 → Yt is continuous.
Since the public signal is payoff irrelevant, it follows that for all (ω, ω′ ), we have

Ût+1,i
((
xt−2, y, z, ω, y ′, z′, ω′), f t−1) ∈Et+1

(
xt−1, y, z, y ′, z′),

where again y ′ = αt(xt−2, y, z), and thus
∫

(ω,ω′ )
Ût+1,i

((
xt−2, y, z, ω, y ′, z′, ω′), f t−1)λ2(d(

ω, ω′)) ∈ coEt+1
(
xt−2, y, z, y ′, z′),
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by Lyapunov’s theorem. Then the integral
∫
z′

∫
(ω,ω′ )

Ût+1,i
((
xt−2, y, z, ω, y ′, z′, ω′), f t−1)λ2(d(

ω, ω′))ϕt(xt−2, y, z)
(
dz′)

belongs to
∫
z

coEt+1
(
xt−2, y, z, y ′, z′)ϕt(xt−2, y, z)

(
dz′)

=
∫
z
Et+1

(
xt−2, y, z, y ′, z′)ϕt(xt−2, y, z)

(
dz′),

where the equality follows by Lyapunov’s theorem from the assumption that ϕt(xt−2,
y, z) is atomless.

By Mertens (2003), there is a Borel measurable mapping �t+1 : {xt ∈ Xt | xt−1 ∈
X1.2

t−1} → R
n such that for all (xt−1, y ′ ) ∈ X◦

t−1 × Yt with xt−2 /∈ X◦
t−2 and y ′ = αt(xt−1 ),

the mapping �t+1(xt−1, y ′, ·) is a selection from Et+1(xt−1, y ′, ·) and
∫
z
�t+1(xt−1, y, z)ϕt(xt−1 )(dz)

=
∫
z′

∫
(ω,ω′ )

Ût+1,i
((
xt−2, y, z, ω, y ′, z′, ω′), f t−1)λ2(d(

ω, ω′))ϕt(xt−2, y, z)
(
dz′).

This gives us a selection of SPE payoffs that is independent of ω1, � � � , ωt and such that
after each history x̂t−2 /∈ X◦

t−2 × [0, 1]t−2, player i’s expected payoff from each action
profile y ∈ ×i∈NAt−1(xt−2 ) is

∫
z

[
ut−1,i(xt−2, y, z) + δi

∫
z′
ut,i

(
xt−2, y, z, y ′, z′)ϕt(xt−2, y, z)

(
dz′)]ϕt−1(xt−2 )(dz)

+ δ2
i

∫
z
�t+1(xt−1, y, z)ϕt(xt−1 )(dz), (8)

where y ′ = αt(xt−1 ), which is equivalent to (7). Thus, the selection �t+1 preserves pay-
offs from f t−1 for each action profile y in period t − 1 following histories x̂t−2 with
xt−2 /∈X◦

t−2, as required.
Having removed dependence of continuation payoffs in period t+1 on Nature’s pre-

vious moves, we next describe equilibrium behavior that supports those payoffs. To this
end, we assign a SPE of every subgame Ĝ(x̂t ) with xt ∈ X◦

t to generate payoffs �t+1(xt ),
and we must do so in a way that is measurable and independent of the history of public
signals. We apply Proposition 10 of HRR, reproduced below for the reader’s convenience,
to construct the desired equilibrium selection, say f̃ t .25 Since actions are pinned down
at any history x̂t with xt /∈ X◦

t , we then splice these together with f̃ t to arrive at the de-
sired strategy profile f t .

25Most of the notation in the proposition will be clear from its statement and from our explanations be-
low, but Ct+1 is an arbitrary upper hemicontinuous correspondence from Xt to R

n with nonempty, closed
values contained in Un, where U is a compact set that contains the range of each player’s discounted pay-
offs. Then �Ct+1 is the set of payoff vectors for the period t stage game when continuation payoffs are
chosen from Ct+1.
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Theorem 3 (Proposition 10 of HRR). Suppose that ct : X̂t → R
n is a Borel measurable

selection from �Ct+1. Then there exist Borel measurable mappings f̃t,i : X̂t−1 → �(Yt,i )
for all i ∈ N and a Borel measurable random selection ct+1 : X̂t → R

n from Ct+1, such
that, for all x̂ ∈ X̂t−1:

(i) (f̃t,i(x̂)(·))i∈N is a Nash equilibrium of the stage game when continuation payoff
vectors are given by ct+1(x̂, ·) : Ât(x̂) → R

n; and

(ii) ct(x̂) is the payoff vector of this Nash equilibrium.

Step 2: From continuation payoffs to actions. To apply Proposition 10 of HRR, we set
t = 1 in their result, and we consider a game of almost perfect information with set of
starting points equal to our X◦

t , and with subgames determined by each starting point
xt ∈ X◦ identical to the subgame G(xt ) in our original game, G. We identify their cor-
respondence �C2 with our Et+1, their mapping c1 with our �t+1, and their 1-period
histories with our set {xt+1 ∈ Xt+1 | xt ∈ X◦

t } × [0, 1] of (t + 1)-period histories such that
Nature’s move is atomless in period t, together with a public signal in period t. Hence,
c1 = �t+1 maps each xt ∈ X◦

t to SPE payoff vectors in (�C2 )(xt ) = Et+1(xt ). By HRR’s
Proposition 10, there exist Borel measurable mappings f̃ tt+1 : X◦

t → �(Yt+1,i ) for each
i ∈ N and a Borel measurable selection c2 : {xt+1 ∈ Xt+1 | xt ∈ X◦

t } × [0, 1] → R
n from

Et+2 such that for all xt ∈ X◦
t , (i) f̃ tt+1(xt ) = (f̃ tt+1,i(xt ))i∈N is a mixed strategy equilib-

rium of the auxiliary game Ĝ1(xt , c2 ), and (ii) equilibrium payoffs from f̃ tt+1 in the aux-

iliary game are c1(xt ) = �t+1(xt ). Note that the domain of the mapping f̃ tt+1 is the set of
starting points xt ∈ X◦

t , and so it is manifestly independent of public signals ω1, � � � , ωt .
However, we want to use f̃ tt+1 to describe moves in the extended game Ĝ, and so we ex-

tend it to the domain X◦
t × [0, 1]t in the obvious way: for all x̂t ∈ X̂t with xt ∈ X◦

t , we set
the value of f̃ tt+1 at x̂t to be equal to f̃ tt+1(xt ). This introduces nominal dependence on
public signals that will be removed in Step 4.

Applying HRR’s Proposition 10 recursively (as in the proof of Lemma 18 of HRR),
we obtain a sequence f̃ tt+1, f̃ tt+2, � � � such that for all s ∈ T with s > t, the mapping f̃ ts
is defined on histories x̂s−1 ∈ X̂s−1 such that Nature’s move is atomless in period t, i.e.,
xt−1 ∈X◦

t−1. Moreover, f̃ ts (x̂s−1 ) is independent of public signals ω1, � � � , ωt , and the pro-

file f̃ ts (x̂s−1 ) is a mixed strategy equilibrium of the auxiliary game with continuation pay-
offs generated by f̃ ts+1, f̃ ts+2, � � � . We then define the strategy profile f t = (f ts )s∈T so that

in any period s > t, given any history x̂s−1 ∈ X̂s−1 such that Nature’s move is atomless
in period t, players use the strategies obtained via HRR’s Proposition 10; and otherwise,
the players follow their strategies in f t−1. Formally, for all s ∈ T and all x̂s−1 ∈ X̂s−1,
(i) if s > t and xt−1 ∈ X◦

t−1, then f ts (x̂s−1 ) = f̃ ts (x̂s−1 ); (ii) if s > t and xt−1 /∈ X◦
t−1, then

f ts (x̂s−1 ) = f t−1
s (x̂s−1 ); and (iii) if s ≤ t, then f ts (x̂s−1 ) = f t−1

s (x̂s−1 ). Because X◦
t−1 is Borel

measurable, the mappings f ts so-defined are Borel measurable for all s ∈ T . Later, we will
use the fact that for all x̂t ∈ X̂t such that xt−1 ∈X◦

t−1,

Ût+1
(
x̂t , f t

) = �t+1(xt ), (9)

which follows from (ii), above.
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We claim that for all s ∈ T and all x̂s−1 ∈ X̂s−1, the players’ moves f ts (x̂s−1 ) are inde-
pendent of public signals ω1, � � � , ωt−1 in the first t−1 periods. Indeed, in case (i), above,
this is implied by the HRR construction. In cases (ii) and (iii), f ts specifies the same ac-
tions as f t−1

s , and (C1t) implies that actions are independent of ω1, � � � , ωt−2. Clearly,
the claim also holds for ωt−1 if s < t, so consider s ≥ t. If Nature’s move ϕt−1(xt−2 ) is
atomless in period t − 1, then the claim follows from (C2t ); and otherwise, the definition
of game with atomless moves by Nature implies that Nature’s move is atomless in period
t, and thus case (i) applies. This establishes the claim, and for the remainder of Step 2,
we omit dependence of strategies and subgames on public signals in the first t − 1 periods
for notational simplicity.

To verify that f t is a SPE, note that the construction of HRR implies that (f tt+1,

f tt+2, � � �) forms a SPE in each subgame Ĝ(xt−1 ) such that Nature’s move is atomless in

period t, i.e., xt−1 ∈ X◦
t−1. As well, for all xt−1 /∈ X◦

t−1, play in the subgame Ĝ(xt−1 ) pro-
ceeds according to f t−1, which is a SPE. For subgames starting at histories xt−2 ∈ Xt−2,
we consider two cases. First, if Nature’s move ϕt−1(xt−2 ) in period t − 1 is atomless, then
in Step 1.1, equation (6) implies that for all i ∈ N and all y ∈ ×i∈NAt,i(xt−1 ),

∫
z
[ut,i(xt−1, y, z) + δiÛt+1,i

(
(xt−1, y, z), f t

)
ϕt(xt−1 )(dz)

=
∫
z

[
ut,i(xt−1, y, z) + δi

∫
ω
Ût+1,i

(
(xt−1, y, z, ω), f t−1)λ(dω)

]
ϕt(xt−1 )(dz).

Using f tt (xt−1 ) = f t−1
t (xt−1 ), we can integrate both sides over action profiles y to obtain

Ût,i(xt−1, f t ) = Ût,i(xt−1, f t−1 ). This, in turn, implies that the players’ payoff functions
in the auxiliary games Ĝt−1(xt−2, Ût((xt−2, ·), f t )) and Ĝt−1(xt−2, Ût((xt−2, ·), f t−1 )) are
identical. Because f t specifies the same mixtures over action as f t−1 at xt−2, and f t−1 is
a SPE, it follows that f tt−1(xt−2 ) = f t−1

t−1 (xt−2 ) is a mixed strategy equilibrium of the auxil-
iary game. Second, if Nature’s move ϕt−1(xt−2 ) in period t − 1 has an atom, then in Step
1.2, equality of (6) and (7), together with the fact that the players’ moves are pinned down
in period t, again implies that Ût,i(xt−1, f t ) = Ût,i(xt−1, f t−1 ), which implies that the
auxiliary games are identical. Since f t−1 is a SPE, it follows that f tt−1(xt−2 ) = f t−1

t−1 (xt−2 )
is a mixed strategy equilibrium of the auxiliary game.

In general, for any period s < t, suppose that for all xs ∈ Xs , we have Ûs+1,i(xs , f t ) =
Ûs+1,i(xs , f t−1 ). This implies that for all xs−1 ∈Xs−1 and all y ∈ ×i∈NAs,i(xs−1 ), we have

∫
z
[us,i(xs−1, y, z) + δiÛs+1,i

(
(xs−1, y, z), f t

)
ϕs(xs−1 )(dz)

=
∫
z

[
us,i(xs−1, y, z) + δi

∫
ω
Ûs+1,i

(
(xs−1, y, z, ω), f t−1)λ(dω)

]
ϕs(xs−1 )(dz).

Using f ts (xs−1 ) = f t−1
s (xs−1 ), we then integrate both sides over action profiles y to obtain

Ûs,i(xs−1, f t ) = Ûs,i(xs−1, f t−1 ). By induction, it follows that for all s = 0, 1, � � � , t − 1 and
all xs−1 ∈ Xs−1, we have Ûs,i(xs−1, f t ) = Ûs,i(xs−1, f t−1 ), implying coincidence of the
auxiliary games Ĝs(xs−1, Ûs((xs−1, ·), f t )) and Ĝs(xs−1, Ûs((xs−1, ·), f t−1 )), and since
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f t−1 is a SPE, f ts (xs−1 ) = f t−1
s (xs−1 ) is a mixed strategy equilibrium of the auxiliary game.

We conclude that f t is a SPE, as required.
Next, we verify that the strategy profile f t specified in Step 2 satisfies conditions

(C1t+1)–(C3t+1).
Step 3: Completing the induction. In Step 2, we have already shown that for all

s ∈ T and all x̂s−1 ∈ X̂s−1, the players’ moves f ts (x̂s−1 ) are independent of public sig-
nals ω1, � � � , ωt−1, verifying (C1t+1). Now consider any period s ≥ t + 1 and history
x̂s−1 ∈ X̂s−1 such that xt−1 ∈ X◦

t−1, so that Nature’s move in period t, namely ϕt(xt−1 ),

is atomless. Then f ts (x̂s−1 ) = f̃ ts (x̂s−1 ), and the latter is independent of ω1, � � � , ωt , by
the HRR construction, fulfilling (C2t+1). To verify payoff equivalence, consider any
x̂t−1 ∈ X̂t−2 and any y ∈ ×i∈NAt,i(xt−1 ). If Nature’s move has an atom in period t, i.e.,
xt−1 /∈ X◦

t−1, then f t coincides with f t−1 in the subgame Ĝ(x̂t ), and thus f t is payoff
equivalent to f t−1 at x̂t−1. If Nature’s move is atomless, i.e., xt−1 ∈X◦

t−1, then
∫
z

[
ut,i(xt−1, y, z) + δi

∫
ω
Ût+1,i

(
(xt−1, y, z, ω), f t

)
λ(dω)

]
ϕt(xt−1 )(dz)

=
∫
z

[
ut,i(xt−1, y, z) + δi�t+1,i(xt−1, y, z)

]
ϕt(xt−1 )(dz)

=
∫
z

[
ut,i(xt−1, y, z) + δi

∫
ω
Ût+1,i

(
(xt−1, y, z, ω), f t−1)λ(dω)

]
ϕt(xt−1 )(dz),

where the first equality follows from (9) and the second equality from (6). This yields
(C3t+1), as required.

Finally, after Steps 1–3 have been performed countably many times, we construct a
SPE of the original game with atomless moves by Nature, G, that is payoff-equivalent to
f̂ .

Step 4: Construction of f . Let f∞ = (f t−1
t )t∈T be the strategy profile in Ĝ such that

play in each period t is determined by f t−1. For each t ∈ T , consider any x̂t−1 ∈ X̂t−1.
If Nature’s move is atomless in period t − 1, i.e., xt−2 ∈ X◦

t−2, then (C2t ) implies that
f∞
t (x̂t−1 ) = f t−1

t (x̂t−1 ) is independent of ω1, � � � , ωt−1. Otherwise, if Nature’s move has
an atom in period t − 1, then (C1t ) implies that f∞

t (x̂t−1 ) = f t−1
t (x̂t−1 ) is independent

of ω1, � � � , ωt−2, and the definition of game with atomless moves by Nature implies
that the players’ actions are pinned down by the history xt−1, so that they are inde-
pendent of ωt−1, as well. Thus, we remove the nominal dependence of strategies on
public signals by simply projecting each f t−1

t onto Xt−1. Formally, for all i ∈ N , we de-
fine ft,i : Xt−1 → �(Yt,i ) as follows: for all xt−1 ∈ Xt−1, choose an arbitrary x̂t−1 ∈ X̂t−1

such that the history of actions is xt−1, and set ft,i(xt−1 ) = f∞
t,i (x̂t−1 ). Finally, we define

ft = (ft,i )i∈N and f = (ft )t∈T .
To see that f is a SPE of G, recall that for each t ∈ T , f t−1

t is a SPE of Ĝ. Thus, for each
x̂t−1 ∈ X̂t−1, the profile f t−1

t (x̂t−1 ) is a mixed strategy equilibrium of the auxiliary game
Ĝt(x̂t−1, Ût+1((x̂t−1, ·), f t−1 )). For each s > t, (Cs+1) implies that f s is payoff equivalent
to f s−1 at all x̂s−1 ∈ X̂s−1. This means that for all i ∈ N and all y ∈ ×i∈NAs,i(xs−1 ), we
have ∫

z

[
us,i(xs−1, y, z) + δi

∫
ω
Ûs+1,i

(
(xs−1, y, z, ω), f s

)
λ(dω)

]
ϕs(xs−1 )(dz)
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=
∫
z

[
us,i(xs−1, y, z) + δi

∫
ω
Ûs+1,i

(
(xs−1, y, z, ω), f s−1)λ(dω)

]
ϕs(xs−1 )(dz).

Arguing as in Step 2, we can integrate both sides by f ss (xs−1 ) = f s−1
s (xs−1 ) to obtain

Ûs(xs−1, f s ) = Ûs(xs−1, f s−1 ). This, in turn, implies that f s is payoff equivalent to f s−1 at
each x̂s−2 ∈ X̂s−2. By (C3s), f s−1 is payoff equivalent to f s−2 at x̂s−2, and thus we similarly
obtain

Ûs−1
(
xs−2, f s

) = Ûs−1
(
xs−2, f s−1) = Ûs−1

(
xs−2, f s−2).

Continuing in this way, we conclude that Ût(xt−1, f s ) = Ût(xt−1, f t ). Taking the limit as
s → ∞, continuity of payoffs implies that for all xt−1 ∈ Xt−1, we have Ût(xt−1, f∞ ) =
Ût(xt−1, f t ), which implies that f∞ is payoff equivalent to f t−1 at x̂t−1. Therefore,
f t−1
t (x̂t−1 ) is, in fact, a mixed strategy equilibrium of the auxiliary game Ĝt(x̂t−1,
Ût+1((x̂t−1, ·), f∞ )). By the one-shot deviation principle, we conclude that f∞ is a SPE
of Ĝ. Since the strategy profile f∞ is independent of the payoff-irrelevant public signals,
we conclude that f is a SPE of G. Finally, setting t = 2 in the above discussion, we obtain
Û2(x1, f∞ ) = Û2(x1, f 1 ), and then (C22) implies that f∞ is payoff-equivalent to f̂ at x̂0

and, therefore, f is payoff equivalent to f̂ .

6. Conclusions and variations

For the class of dynamic games with atomless moves by Nature, we have shown that any
SPE obtained in the extended game with public randomization is payoff-equivalent to a
SPE of the original game. This has several implications. First, HRR’s public randomiza-
tion device can be invoked without any loss of generality, as SPE payoffs are unaffected
when we allow players to correlate their choices. Second, HRR’s public randomization
can be viewed as a step in a proof scheme to ensure existence of an SPE of the original
game. Third, although we fix the initial history x0 in the analysis, our decorrelation re-
sult allows us to invoke HRR’s closed graph result for the extended game (Proposition 34,
p. 537) to deduce a closed graph of SPE payoffs of the original game: if we vary the initial
action so that xm0 → x0, and if we select a corresponding convergent sequence of SPE
payoffs, then HRR show that the limit of those payoffs is a SPE payoff of the extended
game at x0, and our de-correlation result implies that it is, in fact, a SPE payoff of the
game at x0.

In turn, this has implications for continuity of SPE payoffs when action sets vary in
a continuous way, or when we approximate an infinite-horizon game by a sequence of
finite-horizon games. It is known that SPE payoffs are not generally upper hemicon-
tinuous in action sets, as correlation may be required in the limiting game to support
the limit of SPE payoffs (Börgers (1991)), but this concession is unneeded in games with
atomless moves by Nature. For example, in Remark 1 below we illustrate that if we im-
pose a finite “grid” on the action sets of the players (possibly including Nature) and com-
pute SPE payoffs of the game as the grid becomes fine, then the sequence of payoffs will
approach a SPE payoff of the original game with continuous actions.
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Remark 1. Let G = (N0, Y , Z, X , x0, A, ϕ, u, δ) be a game with atomless moves by Na-
ture, and let {Gm} be a sequence with Gm = (N0, Y , Z, X , x0, Am, ϕ, u, δ) such that for
all t ∈ T , all i ∈ N0, and all xt−1 ∈Xt−1, the sequence {Am

t,i(xt−1 )} converges to At,i(xt−1 )
in the Hausdorff metric. For each m, let pm be a SPE payoff of Gm(x0 ), and assume
pm → p. Then p is a SPE payoff of G at x0.

The result follows from HRR’s Proposition 34 by formulating a game of almost perfect
information, G, in their framework with the same primitives as G, but specifying their
set of initial histories as a subset of the real line X0 = { 1

m | m = 1, 2, � � �} ∪ {0} with the
relative topology, and specifying their feasible action correspondences as follows: for all
t ∈ T , all i ∈N0, and all (t − 1)-period histories xt−1,

At,i(xt−1 ) =
⎧⎨
⎩
Am

t,i(xt−1 ) if x0 = 1
m

,

At,i(xt−1 ) if x0 = 0,

where xt−1 is the history of our game that coincides with xt−1 in periods 1, 2, � � � , t − 1.
By the assumption that feasible action sets converge in the Hausdorff metric, the fea-
sible action correspondences in G satisfy the continuity assumption of HRR, and their
proposition applies. Beyond merely technical interest, our remark can facilitate compu-
tation of SPE payoffs via finite approximation of games with atomless moves by Nature,
without the need to invoke public randomization to support the limiting payoff.

Appendix: Comparison of payoff formulations

This Appendix compares the payoff formulation of HRR, which assumes payoffs de-
fined directly on infinite histories, to the payoff formulation with geometric discount-
ing, which we use in this paper. Given the prevalence of geometric discounting in ap-
plications, the next proposition, which establishes that the two payoff formulations are
equivalent, may be of independent interest. The first part of the proposition, which
states that discounting is a special case of the HRR formulation, is immediate; the con-
tribution of the result is the converse.

Of note, the proof of the converse direction relies on the nontrivial step that for a
given player i and any period t, we can choose a path of play starting from each his-
tory xt such that player i’s expected payoff is a continuous function of the starting point.
This step could be replaced by a theorem of the maximum argument if moves by Nature
were restricted to compact sets, but we do not assume the sets At,0(xt−1 ) are compact.26

Since Nature’s moves are exogenously given, however, this noncompactness is not criti-
cal. The problem essentially boils down to continuity of the optimal value in a general,
nonstationary Markov decision process (viewing the history xt as a parameter of the
problem). For this, we in fact formulate the decision problem as a two-player, zero-sum

26It would actually suffice if there were a compact Kt ⊂ Zt for each t such that Kt ∩ intAt,0(xt−1 ) 
= ∅ for
all xt−1. This assumption is quite weak, but we do not impose it.
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game, and we invoke Proposition 39 of HRR on continuity of the equilibrium payoffs in
this class, which packages the needed technical machinery in a simple way.27

Proposition A.1. Let G by any game. Given any δi ∈ [0, 1) and any bounded, continu-
ous mappings ut,i : Xt → R, t ∈ T , if

sup
x∈X∞

∣∣∣∣
∑
t∈T

δt−1
i ut,i(xt )

∣∣∣∣ <∞, (10)

and
∑

t∈T δt−1
i ut,i(xt ) is continuous on X∞ with the product topology, then there are

bounded, continuous mappings ui : X∞ →R and u0,i : X0 → R such that

ui(x) = u0,i(x0 ) +
∑
t∈T

δt−1
i ut,i(xt ). (11)

Conversely, for every bounded, continuous mapping ui : X∞ → R and every δi ∈ (0, 1),
there are bounded, continuous mappings u0,i : X0 →R and ut,i : Xt → R, t ∈ T , satisfying
(10) such that

∑
t∈T δt−1

i ut,i(xt ) is continuous in X∞ and (11) holds.

An implication of the proposition is that the two payoff formulations are equivalent,
as (11) implies that we have

∫
x
ui(x)dξ >

∫
x
ui(x)dξ′ ⇔

∫
x

∑
t∈T

δt−1
i ut,i(xt )dξ >

∫
x

∑
t∈T

δt−1
i ut,i(xt )dξ′,

for all ξ, ξ′ ∈ �(X∞ ). Another implication is that our formulation of the HRR framework,
which allows for heterogeneous discount factors, can be further simplified to assume a
common discount factor.28

The first part of the proposition is immediate, as we simply set ui(x) =∑
t∈T δt−1

i ut,i(xt ) and u0,i(x0 ) ≡ 0. To prove the converse, consider any bounded, con-
tinuous function ui : X∞ → R and discount factor δi ∈ (0, 1). For this direction, we
define an associated two-player, zero-sum game G̃ in the HRR framework. We as-
sume two players, Ñ = {1, 2}, in addition to Nature, where player 1’s choices determine
payoffs for the two players, and player 2 is passive. Intuitively, the environment is as
in the original game G, but player 1 chooses an entire action profile in G after ev-
ery history. Formally, player 1’s feasible actions in G̃ in period t after history xt−1 are
Ãt,1(xt−1 ) = ×i∈NAt,i(xt−1 ), so that an action ỹ1 = (y1, � � � , yn ) in G̃ specifies actions for
all players in the original game G. Nature’s moves are defined as in the original game.

27Note that Proposition 39 of HRR makes reference to Proposition 36 of HRR, which is known to contain
a false claim, namely, that of convexity of the values of the continuation payoff correspondences—this is
established by the counterexample of Luttmer and Mariotti (2003). But the reference to Proposition 36 used
in Proposition 39 is only related to the forward step, which does not require such convexity, and thus the
proof of Proposition 39 in HRR is unaffected by the counterexample.

28Note that (10) is strictly weaker than the requirement that
∑

t∈T δt−1
i supxt∈Xt

|ut,i(xt )| < ∞, which is

sufficient, but not necessary, for the infinite sum
∑

t∈T δt−1
i ut,i(xt ) to be well-defined, a condition we as-

sume in our framework.
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Finally, we specify payoffs as a function of infinite histories in G̃ as follows: ũ1(x) = ui(x)
and ũ2(x) = −ui(x). This game is obviously zero-sum, with player 2 playing a trivial ac-
counting role; the purpose is to permit the application of Proposition 39 of HRR, which
neatly packages the needed continuity arguments. The latter establishes continuity of
the value in zero-sum games: the function Ẽ1 : X0 → R giving the unique SPE payoff
Ẽ1(x0 ) of player 1 in G̃ is continuous in x0. In the original game G, given any history xt ,
note that Ẽ1(xt ) has the interpretation of being the highest possible payoff for player 1
following xt , with the maximization being over the strategies f = (f1, � � � , fn ) used by the
n players, with Nature’s moves determined by ϕ.

Next, for all t ∈ T , define ut,i : Xt → R by ut,i(xt ) = Ẽ1(xt ). We first claim that for all
x ∈ X∞, we have limt→∞ ut,i(xt ) = ui(x). Indeed, for each t, there are infinite histories
xt , xt ∈Ht(xt ) such that

ui
(
xt

) ≤ ut,i(xt ) ≤ ui
(
xt

)
, (12)

and continuity of ui yields

lim
t→∞ui

(
xt

) = lim
t→∞ui

(
xt

) = ui(x).

Taking limits in (12), we obtain ut,i(xt ) → ui(x), as claimed.
Now, define stage payoffs ut,i : Xt →R so that ut,i(xt ) = δ1−t

i (ut,i(xt ) − ut−1,i(xt−1 )).
Obviously, ut,i inherits boundedness of ui, and continuity of ut,i follows from Propo-
sition 39 of HRR. For (10), we next observe that for every infinite history x ∈ X∞, we
have

∑
t∈T

δt−1
i ut,i(xt ) = lim

t→∞

t∑
s=1

δs−1
i us,i(xs )

= lim
t→∞

t∑
s=1

δs−1
i δ1−s

i

(
us,i(xs ) − us−1,i(xs−1 )

)

= lim
t→∞

(
ut,i(xt ) − u0,i(x0 )

)

= ui(x) − u0,i(x0 ),

where the second equality follows from specification of ut,i, and the fourth follows from
the above claim. Then (10) follows from boundedness of ui. To verify continuity of the
discounted sum, consider any sequence {xm} of infinite histories converging to x ∈ X∞,
and note that

lim
m→∞

∑
t∈T

δt−1
i ut,i

(
xmt

) = lim
m→∞

(
ui

(
xm

) − u0,i(x0 )
)

= ui(x) − u0,i(x0 )

=
∑
t∈T

δt−1
i ut,i(xt ),
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where the first and third equalities follow from the observation above, and the second
follows from continuity of ui. We conclude that the mappings (ut,i )t∈T and u0,i satisfy
the conditions of the proposition.
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