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Learning with minimal information in continuous games
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While payoff-based learning models are almost exclusively devised for finite ac-

tion games, where players can test every action, it is harder to design such learning

processes for continuous games. We construct a stochastic learning rule, designed

for games with continuous action sets, which requires no sophistication from the

players and is simple to implement: players update their actions according to vari-

ations in own payoff between current and previous action. We then analyze its

behavior in several classes of continuous games and show that convergence to a

stable Nash equilibrium is guaranteed in all games with strategic complements

as well as in concave games, while convergence to Nash equilibrium occurs in all

locally ordinal potential games as soon as Nash equilibria are isolated.

Keywords. Payoff-based learning, continuous games, stochastic approximation.

JEL classification. C6, C72, D83.

1. Introduction

In this paper we construct a stochastic learning rule that is designed for games with

continuous action sets, requires no sophistication from the players, and is simple to im-

plement. We analyze its behavior in several classes of continuous games, in particular,

to establish whether it converges to Nash equilibria.
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The question of convergence to Nash equilibria by agents repeatedly playing a game
has given rise to a large body of literature on learning. One branch of this literature ex-
plores whether there are learning rules—deterministic or stochastic—that would con-
verge to Nash equilibria in any game (see, e.g., Hart and Mas-Colell 2003, Hart and Mas-
Colell 2006, Foster and Young 2006, Germano and Lugosi 2007, Babichenko 2012). An-
other branch, to which this paper contributes, focuses on specific learning rules and on
the understanding of their asymptotic behavior.

Both branches have almost exclusively addressed the issue of learning in discrete
games (i.e., games where the set of strategies is finite). However, many economic vari-
ables, such as price, effort, and time allocation, are nonnegative real numbers and, thus,
are continuous. Being designed for finite games, classical learning models cannot be
adapted without serious complications, because they usually rely on assigning a posi-
tive probability to each choice of action. It is actually not easy to construct learning rules
for continuous games that do not require players to have access to substantial amounts
of information. This is what we do in this paper, by introducing a learning rule that we
call the dampened gradient approximation process (DGAP). We also analyze its behavior
in several well known classes of games.

Learning rules can be more or less demanding in terms of players’ sophistication
and of the amount of information required to implement them. The DGAP belongs to
the category of so-called payoff-based or completely uncoupled learning rules, meaning
that players know nothing about the payoff functions (neither theirs nor those of their
opponents). They also know nothing about the other players’ actions or about their
payoffs. They may not even be aware that they are playing a game. They only observe
their own realized payoffs after each iteration of the game and make decisions based on
these observations.

Agents aim to maximize their payoffs by choosing an action. If players know the
gradient of their utility function at every point, a natural learning process in continuous
games would be for agents to follow a gradient method (see, for instance, Arrow and
Hurwicz 1960). However, because players neither know the payoff functions nor observe
the others’ actions, they are unable to compute these gradients.

In DGAP, agents construct an approximation of the gradient at the current action
profile by randomly exploring the effects of increasing or decreasing their actions by
small increments. The agents use the information collected from this exploration to
choose a new action: if the effect revealed is an increase (resp. decrease) in payoff, then
players move in the same (resp. opposite) direction, with an amplitude proportional to
the approximated gradient. So as to ensure that they remain in the state space, these
movements are dampened as the actions get close to the boundary; hence, the name of
our learning rule.

The direction chosen at the exploration stage being random, the DGAP is a stochas-
tic process. We analyze its (random) set of accumulation points, called the limit set,
by resorting to stochastic approximation theory. This theory tells us that the long-run
behavior of the stochastic process is related to some underlying deterministic dynam-
ical system. We thus start by showing that our process is well defined (i.e., players’
actions always remain nonnegative) and that the deterministic system underlying our
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specific stochastic learning process is a dampened gradient system (Proposition 1). We
also show that all the Nash equilibria of a game are stationary points—otherwise called
zeroes—of this dynamical system, although other points, on the boundary of the state
space, may also be stationary. However, we prove (Proposition 2) that non-Nash sta-
tionary points are necessarily unstable.1 This is done in Section 2, where we present the
DGAP and provide the necessary definitions.

Our objective is to design an analytically tractable payoff-based process for continu-
ous games. This paper should thus be seen as a contribution to learning theory for cases
so far unexplored. Therefore, we wish to analyze its asymptotic behavior in several con-
tinuous games. The major difficulty is that stochastic approximation theory tells us that
the stationary points of the underlying dynamical system are plausible candidates for
the limit set of the random process, yet it does not provide general criteria for excluding
some of these candidates so as to obtain more precise predictions. This is actually one
of the major difficulties in the field (see, for instance, Benaïm and Faure 2012). While
the conceptual contribution of this paper lies in providing a natural learning process for
games with continuous action sets, our technical contribution lies in providing precise
statements on the structure of the limit set of the DGAP.

We first prove a general result (Theorem 1) that says that if the process converges,
it necessarily converges to a Nash equilibrium; additionally, under the condition that
the interactions between players do not form a bipartite graph, this Nash equilibrium
cannot be unstable.

Next, in Section 3, we analyze games with strategic complements and show (Theo-
rem 2) that the DGAP almost surely converges to a Nash equilibrium, and that this Nash
equilibrium is stable. To the best of our knowledge, this is the first paper to prove con-
vergence of a payoff-based learning procedure in this class of games.

In Section 4, we analyze a class of games that we call locally ordinal potential games
that contains all the potential games. We establish two results (Theorems 3 and 4). First,
the limit set of the DGAP is almost surely contained in the set of stationary points of
the dynamics. When equilibria are isolated, this implies that the process converges to
a Nash equilibrium with probability 1. Second, we characterize the set of stable sets
(attractors) by proving that they are stable sets for another, unrelated dynamical system:
the best-response dynamics.

In Section 5, we focus on concave games, as defined by Rosen (1965). In that paper,
it is shown that these games have a unique Nash equilibrium and that a gradient system
converges to the unique Nash equilibrium. We obtain the same results for our process,
with convergence to the unique equilibrium with probability 1.

Finally, in Section 6 we discuss which properties of the learning process are critical
for our results to hold and how it can be generalized in several directions.

Related Literature. As mentioned earlier, the learning literature has essentially fo-
cused on finite action games. Many rules have been proposed and studied, but they
cannot be adapted to the context of continuous games without major complications
(see, for instance, Perkins and Leslie 2014, who adapt stochastic fictitious play and show
that it converges in two-player zero-sum games).

1Throughout the paper, several notions of stability are used. They are all defined in Section 2.
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The literature on continuous games is sparse. In the context of non-payoff-based
procedures, Arrow and Hurwicz (1960) prove that when all players’ payoff functions are
strictly concave, the gradient method converges to the unique Nash equilibrium in gen-
eralized zero-sum games. Rosen (1965) studies a gradient method in concave n-person
games with a unique equilibrium and shows that this unique equilibrium is globally
asymptotically stable for some weighted gradient system with suitably chosen weights.
Vives (1990) proves that the best-response dynamics converges to a Nash equilibrium in
games with strategic complements for almost all initial conditions, while Benaim et al.
(2005) prove that it converges to a connected set of Nash equilibria in continuous po-
tential games.

In the context of limited information, the literature is both sparse and very recent. To
the best of our knowledge, our paper is the first to consider a payoff-based learning pro-
cess in games with strategic complements. In potential games, Tatarenko (2018) consid-
ers a learning process in which agents pick an action according to a Gaussian probability
distribution, the mean parameter of which is updated as payoffs are realized. She proves
convergence of the mean parameter of the distribution to a Nash equilibrium of the
game. In contrast, in our process, it is the actions of players that are updated and we get
convergence results for the actual sequence of actions. Mertikopoulos and Zhou (2019)
analyze procedures in a situation where agents receive some noisy information about
their payoffs’ gradients, mainly in games that enjoy a property called variational stabil-
ity. Among other results, the authors establish almost sure convergence to the (convex)
set of equilibria. Recently, using a similar approach, Bravo et al. (2018) study a subclass
of those games in the payoff-based setting, obtaining almost sure convergence to the
(in this case unique) Nash equilibrium. It is worth noting that their procedure and the
DGAP share the convergence result for the games described in Section 5.

Two papers also address payoff-based procedures in specific games. Dindos and
Mezzetti (2006) consider a stochastic adjustment process called the better reply, in a
specific class of games called aggregative games. At each step, agents are sequentially
picked to play a strategy chosen at random, while the other players do not move. The
agent then observes the hypothetical payoff that this action would yield, and decides
whether to stick to this new strategy or to go back to the previous one. The authors show
that this process converges to Nash equilibrium when actions are either substitutes or
complements around the equilibrium. Huck et al. (2004) consider a learning process
called trial and error, and analyze it in the Cournot oligopoly game. Players choose a
direction of change and stick to this direction as long as their payoff increases, changing
as soon as it decreases. The authors show that the process converges, but it converges
to the joint-profit-maximizing profile and not to the (unique) Nash equilibrium of the
game.

2. The model

2.1 Definitions and assumption

Let N = {1� � � � �N} be a set of players, each of whom repeatedly chooses an action from
Xi = [0�+∞[. An action xi ∈Xi can be thought of as an effort level chosen by individuals,
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a price set by a firm, a monetary contribution to a public good, etc. Let X = ×i=1�����NXi.
We denote by ∂X the boundary of X , i.e., ∂X := {x ∈ X;xi = 0 for some i ∈ N }, and we
let Int(X) := X \ ∂X denote the interior of X .

At each period of time, players observe a payoff that is generated by an underlying
repeated game G = (N �X�u), where u = (ui)i=1�����N is the vector of payoff functions.
Players know nothing about the payoff functions or about the set of opponents. In this
paper, we examine several classes of underlying games, each class being defined by dif-
ferent properties on the functions ui. However, we always make the two following stand-
ing assumptions.

Assumption 1. For any i, the payoff map ui is assumed to be C1 on R
N+ and with

the property that, for any x−i ∈ X−i, there exists M(x−i) ∈ Xi such that the map xi �→
∂ui
∂xi

(xi�x−i) is strictly positive for xi <M(x−i) and strictly negative for xi >M(x−i).

Assumption 1 implies that best responses (BR) are unique and BRi(x−i) = M(x−i).
This assumption is verified, for instance, if xi �→ ui(xi�x−i) is strictly concave, ∂ui

∂xi
(0�

x−i) > 0, and limxi→+∞ ∂ui
∂xi

(xi�x−i) < 0.
In the games we consider, interactions between players can be very general. They

can be heterogeneous across players and they can be of any sign. However we assume
that externalities are symmetric in sign.

Assumption 2. Games are assumed to have symmetric externalities, i.e., ∀i �= j and ∀x,

sgn
(
∂ui
∂xj

(x)

)
= sgn

(
∂uj

∂xi
(x)

)
�

where sgn(a) = 0 if a = 0.

Most of the continuous games in the economics literature fall into this class. Note
that a game with symmetric externalities does not require them to be of equal inten-
sity. Also, symmetric externalities allow for patterns where i exerts a positive externality
on individual j and a negative externality on individual k. Note finally that symmetric
externalities do not imply that sgn( ∂ui∂xj

(x)) = sgn( ∂ui∂xj
(x′)) for x �= x′.

Some of our results depend on the pattern of interactions in the game G. We capture
this pattern by an interaction graph, defined as follows. Let x= (x1� � � � � xN) be an action
profile. The interaction graph at profile x is given by the matrix G(x), where gii(x) = 0,
and, for i �= j, gij(x) = 1 if ∂ui

∂xj
(x) �= 0 and gij(x) = 0 otherwise. Note that the interaction

graph is local in the sense that it depends on the vector of actions. Thus, G(x) can either
be constant on X or change as x changes. Note also that the interaction graph of a game
satisfying Assumption 2 is symmetric.

In what follows, some of our results hold for every interaction graph except for bi-
partite graphs. For the sake of completeness we recall the definition.

Definition 1. The interaction graph G(x) is said to be bipartite at x ∈ X if the set N of
players can be partitioned into N1 and N2 such that for any pair of players i and j, we
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have

gij(x) = 1 =⇒ (i ∈N1 and j ∈ N2) or (i ∈N2 and j ∈N1)�

An interaction graph is non-bipartite on a set A if for all x ∈ A, G(x) is said to be non-
bipartite.

Finally, we deal with games where Nash equilibria (henceforth, NE) are not neces-
sarily isolated. We, therefore, consider connected components of NE.

Definition 2. Let � be a compact connected subset of NE and let Nδ(�) := {y ∈ X :
d(y��) < δ}. We say that � is a connected component of NE if there exists δ > 0 such that
Nδ(�)∩ NE = �.

Obviously, an isolated equilibrium is a (trivial) connected component. In subse-
quent text, we refer to connected components only when dealing with nontrivial con-
nected components.

2.2 The learning process

We consider a payoff-based learning process in which agents construct a partial approx-
imation of the gradient of their own payoff functions by exploring the effects of deviat-
ing in one direction that they choose at random at every period. This information allows
agents to choose a new action depending on what they just learned from the exploration
stage. Here we present the simplest version of the DGAP, while, in fact, our results hold
for a family of learning rules. In Section 6, we discuss what features are essential, why
they are essential, and what can be generalized.

The Dampened Gradient Approximation Process.

• At the beginning of round n, agent i is playing action xin := ei2n and is enjoying the
associated payoff ui(ei2n� e

−i
2n). Player i then selects his actions ei2n+1 and ei2n+2(=

xin+1) as follows.

• Exploration stage. Player i plays a new action ei2n+1, chosen at random around his
current action ei2n. Formally, let (εin)n be a sequence of independent asnd identi-
cally distributed (i.i.d.) random variables such that P(εin = 1)= P(εin = −1)= 1/2. At
period n, εin is drawn and player i plays

ei2n+1 := ei2n + 1
n+ 1

εin�

• Updating stage. Player i observes his new payoff and computes

�uin+1 := ui
(
ei2n+1� e

−i
2n+1

) − ui
(
ei2n� e

−i
2n

)
�

This quantity provides i with an approximation of his payoff function’s gradient.
Using this information, player i updates his action by playing

ei2n+2 := ei2n + εin�u
i
n+1e

i
2n�
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Thus, when �uin+1 is positive, player i follows the direction that he just explored,
while he goes in the opposite direction when �uin+1 is negative.2

• Period n ends. We set xin+1 := ei2n+2 and agent i gets the payoff ui(e
i
2n+2� e

−i
2n+2).

Round n+ 1 starts.

Let xn = e2n and let Fn be the history generated by {e1� � � � � e2n+1}. Studying the
asymptotic behavior of the random sequence (en)n amounts to studying the sequence
(xn)n. Hence, the focus of this paper is on the convergence of the random process (xn)n.

The next proposition shows that the process is well defined, in the sense that it al-
ways remains within the admissible region (i.e., actions stay positive). It also proves that
the DGAP is a discrete time stochastic approximation process.

Proposition 1. Assume xi0 > 1 for all i. Then the iterative process is such that xin > 0 for
all i.3 It can be written as

xn+1 = xn + 1
n+ 1

(
F(xn)+Un+1 + ξn+1

)
� (1)

where

(i) F(x) = (Fi(x))i with Fi(x) = xi
∂ui
∂xi

(xi�x−i)

(ii) Un+1 is a bounded martingale difference (i.e., E(Un+1 | Fn)= 0)

(iii) ξn = O(1/n).

All our proofs are provided in the Appendix.
The iterative process (1) is a discrete time stochastic process with step 1

n+1 . If there
were no stochastic term, the process (1) would be written

xn+1 = xn + 1
n+ 1

F(xn)�

which corresponds to the well known Euler method, a numerical procedure for approx-
imating the solutions of the deterministic ordinary differential equation (ODE)

ẋ= F(x) (2)

2Note that the payoff difference is multiplied by ei2n. This is how actions are dampened close to the
boundary, where variations can only be small. This specific dampening method is just one example out
of many possibilities, which we discuss in Section 6. Note also that if one wishes to extend our analysis to
compact subsets of R+ instead of R+, it would be necessary to dampen movements when approaching the
upper boundary. For simplicity, in this paper we consider only the lower boundary.

3The assumption that xi0 > 1 is made just for convenience. We could, in fact, assume xi0 to be arbitrary,
in which case we must make sure that players stay in the positive orthant after the first exploration stage.
Actions could be negative after the first step (e1 < 0), only because the first step is large (n = 1, so 1/n = 1).
To avoid that, we can either assume that xi0 > 1 (i.e., players start far enough from the boundary) or that the
process begins with a step small enough, for instance, n≥ mini{E(1/xi0)} + 1, where E(a) is the integer part
of a. In any case, this is innocuous for what we do and guarantees that e1 > 0.
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or, in our case,

ẋi = xi
∂ui
∂xi

(x)�

Although the (stochastic) process (1) differs from the (deterministic) process (2) be-
cause of the random noise, the asymptotic behavior of (2) informs us on the asymptotic
behavior of (1).4

2.3 Limit sets

The focus of this paper is on the asymptotic behavior of the random process (xn)n.
Hence, we are interested in its limit set.5

Definition 3 (Limit set of (xn)n). Given a realization of the random process, we denote
the limit set of (xn)n by

L
(
(xn)n

) := {x ∈X; ∃ a subsequence xnk such that xnk → x}�

Note that the limit set of the learning process is a random object, because the asymp-
totic behavior of the sequence (xn)n depends on the realization of the random sequence
(εn)n, drawn at every exploration stage.

Proposition 1 allows us to make use of stochastic approximation theory, which pro-
vides a characterization of the set of candidates for L((xn)n) (see Benaïm 1996 and 1999
for an exact characterization). This set notably includes the zeroes of F and the ω-limit
set of any point x.

Definition 4 (ω-limit set of ẋ = F(x)). Let x ∈ X . Let ϕ(x� t) denote the flow of F(·),
i.e., the position of the solution of (2) with initial condition x, at time t.6 Then the ω-limit
set of x is given by

ω(x) :=
{
z ∈ X; lim

k→∞
ϕ(x� tk) = z for some tk → ∞

}
�

However, several difficulties remain: first, there might be other candidates that are
not ω-limit sets of the underlying ODE; for instance, any continuum of equilibria is a
candidate. Moreover, this theory does not provide general criteria to exclude any of
these candidates or to confirm that they are indeed equal to L((xn)n). For a given game,
making precise statements thus requires determining the entire set of candidates and
the ability to exclude those that are not relevant.

4Stochastic approximation theory (see Benaïm 1996 or 1999, for instance) states that as periods unfold,
the random process gets arbitrarily close to the solution curve of its underlying dynamical system. In other
words, given a time horizon T > 0 (however large it might be), the process shadows the trajectory of some
solution curve between times t and t + T with arbitrary accuracy, provided t is large enough.

5In the remainder of the paper, we always place ourselves on the event {lim supn ‖xn‖ < +∞}, i.e., we
abstract from the possible realizations that take the process to infinity.

6Notice that by the regularity assumption on u(·), F satisfies the Cauchy–Lipschitz condition that guar-
antees that, for all x ∈ X , ϕ is well defined and unique. We consider the restriction of ϕ on X(= R

N+ ), since
X = R

N+ is invariant for its flow, and our random process (1) always remains in the positive orthant.
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The stationary points of the dynamical system (2) are particular ω-limit sets that are
of interest to us, as they contain all the Nash equilibria of the underlying game. The set
of stationary points, denoted Z(F), is called the zeros of F : Z(F) := {x ∈ X;F(x) = 0}.
For convenience, we drop the reference to F and simply write Z.

Observe that Fi(x) = xi
∂ui
∂xi

(x). Thus,

x ∈Z ⇐⇒ ∀i ∈ N �

(
xi = 0 or

∂ui
∂xi

(xi�x−i) = 0
)

while x ∈ NE ⇐⇒ ∀i ∈ N (∂ui∂xi
(xi�x−i) = 0� or xi = 0 and ∂ui

∂xi
(xi�x−i) ≤ 0). This implies

that all the Nash equilibria of the game are included in the set of zeros of F . Unfortu-
nately, Z contains more than the set of Nash equilibria. We call x ∈ Z \ NE an other zero
(OZ) of the dynamical system: OZ = {x : F(x) = 0 and ∃i such thatxi = 0� ∂ui

∂xi
(x) > 0}.

We have the following partition of F :

Z = NE ∪ OZ�

Note that ∂X might contain some points in NE; however, OZ ⊂ ∂X .
Convergence or non-convergence of our random process to a given point or set

sometimes depends on the stability of the latter with respect to the deterministic dy-
namical system ẋ= F(x). We now recall the definitions of some stability notions that we
use.

Let x̂ ∈Z. The point x̂ is asymptotically stable (denoted by x̂ ∈ZAS) if it uniformly at-
tracts an open neighborhood W of itself: limt→+∞ supx∈W ‖ϕ(x� t)− x̂‖ = 0, where ϕ(x� t)

denotes the flow of F(·). The point x̂ is linearly stable (denoted by x̂ ∈ ZLS) if for any
λ ∈ Sp(DF(x̂)), where DF(x̂) is the Jacobian matrix of F evaluated at x̂ and Sp(M) is the
spectrum of matrix M , we have Re(λ) < 0, where Re(a) is the real part of number a; the
point x̂ is linearly unstable (denoted by x̂ ∈ ZLU) if there exists λ ∈ Sp(DF(x̂)) such that
Re(λ) > 0. Note that if x̂ is hyperbolic (that is, Re(λ) �= 0 for any λ ∈ Sp(DF(x̂))), then it
is either linearly stable or linearly unstable. Note also that linear stability and instability
are defined on Int(X) only; that is, ZLS�ZLU ⊂ Zint := Int(X) ∩ Z. In our terminology a
zero is stable if either it is asymptotically stable or it is interior and not linearly unstable:
let ZS := (Zint \ZLU)∪ZAS be the set of stable zeroes.

We have the inclusions:

ZLS ⊂ ZAS ⊂ ZS�

Proposition 2. Stable stationary points are necessarily Nash equilibria: ZS ⊂ NE.

The direct consequence of Proposition 2 is that if the limit set L((xn)n) contains sta-
ble stationary points, they must be stable Nash equilibria. Other zeroes are, therefore,
discarded as stable stationary points. In the remainder, we denote linearly unstable
Nash equilibria by NELU, and in view of Proposition 2, we use the notations

NELS := ZLS� NEAS :=ZAS� NES := ZS�
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As mentioned earlier, we sometimes are dealing with connected components of NE
instead of isolated points. We, thus, use the concept of attractor (see Ruelle 1981). Let
S be a compact subset of RN . Then S is invariant for the flow ϕ if it remains in S forever
from initial conditions in S, and every point in S is attainable at any given time from
another point in S. Formally, (i) ∀x ∈ S, ∀t ∈ R, ϕ(x� t) ∈ S and (ii) ∀y ∈ S�∀t ∈ R, there
exists x ∈ S such that ϕ(x� t) = y.

Definition 5. Let S ⊂ X be invariant for the flow ϕ. Then a set A⊂ S is an attractor for
ẋ = F(x) if the following statements hold:

(i) The set A is compact and invariant;
(ii) There exists an open neighborhood U of A with the property

∀ε > 0�∃T > 0 such that ∀x ∈U�∀t ≥ T� d
(
ϕ(x� t)�A

)
< ε�

An attractor for a dynamical system is a set with strong properties: it uniformly at-
tracts a neighborhood of itself.

Remark 1. Let x̂ ∈ Z be an isolated stationary point of ẋ = F(x). Then x̂ is asymptoti-
cally stable if and only if {x̂} is an attractor for ẋ = F(x).

In the next sections, we establish results on the behavior of the limit set of (xn)n
for large classes of games. However, we can always discard convergence to undesirable
zeroes of the dynamics.

Theorem 1. Let G be a game satisfying Assumption 1 and 2. Then

(i) P(limn xn = x̂) > 0 implies x̂ ∈ NE

(ii) if x̂ ∈ NELU and G(x̂) is non-bipartite, then P(limn xn = x̂) = 0.

If the process converges to a point, then only stationary points (i.e., points in Z)
are candidates. Therefore, the proof of point (i) consists in showing that if x̂ ∈ OZ, then
P(limn xn = x̂) = 0. We use a probabilistic argument. We show that in OZ, the players
who are playing 0 although they have a strictly positive gradient, in expectation, increase
their action level as they approach the boundary. This is, of course, a contradiction.

Notice that (i) does not imply that if x̂ ∈ OZ, then x̂ /∈ L((xn)n), since L((xn)n) may
include connected components of zeroes that contain x̂. Indeed, in games with a con-
tinuum of equilibria, we cannot exclude the possibility of our learning process getting
arbitrarily close to elements of the set of other zeros. More precisely, there is no a priori
reason to believe that the learning process converges (to a point) when zeros of the dy-
namical system are connected components. If it does not, then the process could come
arbitrarily close to a continuum of NE that is connected to a continuum of OZ, and os-
cillate between the two. However, Theorem 1 says that when it does converge to a point,
it is necessarily to a Nash equilibrium.

The proof of point (ii) uses dynamical systems arguments. It involves several ideas
that we describe here, since they are useful in the next sections. First, we discuss how
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we can discard convergence to unstable Nash equilibria; second, we discuss the non-
bipartiteness condition. The point x̂ is a linearly unstable Nash equilibrium if there is
some direction (associated with the positive eigenvalue) in which the dynamical system
(2), if pushed that way, “escapes.” Yet, although it is linearly unstable, x̂ is still a station-
ary point. This is where the noise component Un+1 of the random process (1) plays an
important role. While the deterministic system could get stuck at x̂, the random noise
pushes the system in random directions around x̂ and eventually in the unstable direc-
tion, allowing the system to escape. The details are provided in the Appendix with the
proof of Theorem 1.

However, for this to happen, a sufficient condition is that the random noise is able
to push the system in every direction around x̂. This is where the non-bipartiteness
condition, together with Assumption 2 (symmetric externalities), comes into play. As
we detail in the proof, the random noise can always push the system in any direction,
say v, except if every pair of connected agents moves in opposite directions from each
other (i.e., sgn(vi) = − sgn(vj)). When that happens, the noise vanishes and the system
might get stuck. However, this can only occur when the interaction graph G, evaluated
at x̂, has no odd cycles (i.e., bipartite graphs). It cannot happen as long as the graph has
one odd cycle. To see this, take the case of three agents linked together in a triangle. It is
not possible to construct a vector v such that for every pair of players i and j, sgn(vi) =
− sgn(vj).

Note that Theorem 1 does not say that the process converges to an unstable Nash
equilibrium if the graph is bipartite. However, we provide an example in the Appendix
(Example 1) in which we show that the noise vanishes on a bipartite network (a pair) in
a game with symmetric externalities.

We now turn to the analysis of several classes of games.

3. Strategic complements

In this section, to avoid unnecessary complexity, we assume that the interaction graph
is constant (i.e., ∀x�gij(x) = 1 or ∀x�gij(x) = 0) and connected.

Definition 6. A game G is a game with strategic complements if payoff functions are

such that for all i� j ∈ N , gij = 1 ⇐⇒ ∂2ui
∂xi∂xj

(x) > 0.

Games with strategic complements have nice structured sets of Nash equilibria
(Vives 1990), and offer nice convergence properties for specific dynamical systems.
However, it can be difficult to obtain convergence to Nash equilibrium for general learn-
ing procedures. There are several reasons for this that we illustrate here through two
examples.

First, consider the best-response dynamics. Under Assumption 1, best-response
functions are differentiable and strictly increasing. In that case, Vives (1990) proves in
Theorem 5.1 and Remark 5.2 that, except for a specific set of initial conditions, the best-
response dynamics, whether in discrete or in continuous time, monotonically converges
to an equilibrium point. Unfortunately, in our case, this set of problematic initial con-
ditions cannot be excluded, in particular because the process is stochastic. It could be
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that the stochastic process often passes through these points, in which case it is known
to possibly converge to very complicated sets. To study convergence of the DGAP, we
need to consider all possible trajectories and, to the best of our knowledge, we cannot
rely on existing results.

Second, consider the standard reinforcement learning stochastic process, whose
mean dynamics are the replicator dynamics. As shown in Posch (1997), the process
can converge with positive probability to stationary points that are not only unstable,
but also non-Nash. Examples can be constructed with two players, each having two
strategies—supermodular payoff matrices with a unique strict Nash equilibrium, which
is, moreover, found by elimination of dominated strategies. Yet even then, the learn-
ing process converges with positive probability to any other combination of strategies.
This happens because there are some stationary points of the dynamics where the noise
generated by the random process is null.

These two examples illustrate how, despite the games’ appealing properties, conver-
gence to Nash equilibrium is neither guaranteed nor easy to show when it occurs.

Because we are interested in the behavior of the DGAP, in particular, whether it al-
lows for convergence to Nash equilibrium, we distinguish two cases. Either the game has
some Nash equilibrium on the boundary or all equilibria are interior. In the first case,
Theorem 1 already guarantees that if the process converges to a point on the boundary,
that point is a Nash equilibrium. However, when it does not converge to a point but to
a set, there is not much we can predict, except that convergence to Nash equilibrium is
not a priori excluded.

The second case is trickier. If all equilibria are interior, and since the boundary al-
ways contains other zeroes that are stationary points (and, thus, natural candidates for
the limit set of the process), it could be the case that the process goes to the boundary
and, therefore, never goes to the set of Nash equilibria. In fact, we prove that this is not
the case, and even more, we prove that convergence to Nash equilibrium occurs with
probability 1.

This result is difficult to obtain because of the following scenario: assume players
start close to the boundary. Then, at the exploration stage, some decrease their efforts
while others increase theirs. Although complementarities imply that the players who
decreased their efforts would have been better off if they had instead increased them,
they could still end up with a better payoff than before the exploration, and, thus, con-
tinue decreasing at the updating stage, getting closer to ∂X . We show that this cannot
happen.

So as to place ourselves in this second case, we make the mild assumption that the
origin is repulsive.

Assumption 3. For any agent i,

∂ui
∂xi

(0�0) > 0�

Because of strategic complementarities, a direct consequence of Assumption 3 is
that all Nash equilibria are interior, since ∂ui

∂xi
(0�x−i) >

∂ui
∂xi

(0�0).
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The following proposition proves that the process stays away from the boundary in
the long run.

Proposition 3. Under Assumption 3, there exists a > 0 such that L((xn)n) ⊂ [a�+∞[N
almost surely.

From the mathematical point of view, the major problem to obtain Proposition 3 is
to show that a stochastic approximation algorithm like that given by (1) is pushed away
from an invariant set for F , where the noise term vanishes. In fact, there is no general
result along these lines in the literature.

The proof of Proposition 3 is technical, but the idea goes as follows: among the play-
ers close to the boundary, the player exerting the least effort increases his effort on av-
erage. Unfortunately, this does not imply that the smallest effort also increases, since
another player may have decreased his. We thus construct a stochastic process that is
a suitable approximation of the smallest effort over time. We then show that this new
process cannot get close to the boundary, and because it is close asymptotically to our
process, we are able to conclude.

We are now ready to state the main result of this section.

Theorem 2. Consider a game of strategic complements satisfying Assumptions 1, 2, and
3, and assume the interaction graph is non-bipartite on Int(X). Then the learning process
(xn) almost surely converges to a stable Nash equilibrium:

P

(
∃x∗ ∈ NES : lim

n
xn = x∗) = 1�

This theorem guarantees that the learning process not only converges to Nash equi-
librium in most cases, it additionally converges to a stable equilibrium. This result is
very tight. It is also positive, since the hypotheses of the theorem are verified for most
common economic models we can think of. In cases where the interaction graph is
bipartite, we cannot guarantee that the process does not converge to general unstable
sets.7

Note that the graph being bipartite does not imply that the process does not con-
verge to an element of NES. However, we provide (Examples 2 and 3) in which we show
that the noise can vanish on bipartite networks in games that have either no strategic
complements or no symmetric externalities. In our examples, the noise vanishes at un-
stable equilibria.

However, we can still exclude convergence to linearly unstable equilibria. If the in-
teraction graph is non-bipartite, then Theorem 1 applies. With strategic complements,
we show that the non-bipartiteness condition is not necessary.

Proposition 4. Consider a game of strategic complements satisfying Assumptions 1, 2,
and 3. The learning process (xn) cannot converge to an unstable Nash equilibrium:

∀x̃ ∈ NELU� P

(
lim
n

xn = x̃
)

= 0�

7Linearly unstable equilibria are unstable sets, but unstable sets also include much more complex struc-
tures.
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4. Locally ordinal potential games

We introduce a class of games that we call the locally ordinal potential games. Recall
that a game G is a potential game (PG) if there is a function P : X → R such that for all
x−i ∈ X−i, for all xi�x′

i ∈ Xi, we have ui(xi�x−i) − ui(x
′
i� x−i) = P(xi�x−i) − P(x′

i� x−i),
and is an ordinal potential game (OPG) if ui(xi�x−i) − ui(x

′
i� x−i) > 0 ⇐⇒ P(xi�x−i) −

P(x′
i� x−i) > 0.

Definition 7. A game G is a locally ordinal potential game (LOPG) if there is a differen-
tiable function P : X → R such that

sgn
(
∂ui
∂xi

(x)

)
= sgn

(
∂P

∂xi
(x)

)
�

The class of LOPG is large, in the sense that PG ⊂ OPG ⊂ LOPG when P is differen-
tiable, and it contains many games of economic interest.

The generality of our results depends on the structure of the set of stationary points
of the game under consideration and, in particular, on whether it consists of isolated
points.

Theorem 3. Let G be an LOPG satisfying Assumption 1 and 2, and assume P is suffi-
ciently regular.8 Then

(i) P(L(xn)n ⊂Z) = 1

(ii) if G has isolated zeros, then

P

(
∃x∗ ∈ NE : lim

n
xn = x∗) = 1�

If, in addition, the interaction graph is non-bipartite on NE, then

P

(
∃x∗ ∈ NES : lim

n
xn = x∗) = 1�

For any LOPG, the only set to which the stochastic learning process can converge is
the set of zeros of F . Complex ω-limit sets of the dynamical system, which are nonzeros,
can be discarded (point (i)). We cannot, however, be sure that the process does not reach
a set containing other zeros; thus, we cannot guarantee convergence to the set of Nash
equilibria. When zeros are isolated (point (ii)), however, convergence to Nash equilib-
rium is proved by the conjunction of the first point and point (i) of Theorem 1. The
addition to Theorem 1 here is that we can guarantee that the process converges, while
in Theorem 1, it was an assumption. The last statement is then a direct consequence of
point (ii) of Theorem 1.

When zeros are non-isolated, we cannot guarantee that the DGAP converges to a
stable set. We can use Benaïm (1999) to show that P(L(xn)n ⊂ A) > 0 on the event {x0 ∈

8We use Sard’s theorem in the proof. This theorem requires, in our setting, that P is CN , where N is the
number of agents. Usually, potential functions in economics are C∞.
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B(A)} for any attractor A of the ODE (2), where B(A) is the basin of attraction of A.
Combining this observation with point (i) of Theorem 3, we get the following important
implication: if a connected set � is an attractor for ẋ = F(x), then � is a connected
component of Z.

However, when focusing on LOPGs, more can be said, since we are able to relate
attractors of the dynamics to the potential function P ,and to another dynamical system,
extensively used in economics: best-response dynamics.

Definition 8. Let BR : X → X�x �→ BR(x) := (BR1(x−1)� � � � �BRn(x−n)). The
continuous-time best-response dynamics (hereafter, BRD) is defined as

ẋ= −x+ BR(x)�

Definition 9. Let P be a smooth map and let � be a connected component of Z. We
say that � is a local maximum of P if

(i) P is constant on �: P(x) = v ∀x ∈�

(ii) there exists an open neighborhood U of � such that P(y) ≤ v ∀y ∈U .

We then have the following theorem.

Theorem 4. Assume G is an LOPG and let � be a connected set. Then the following state-
ments are equivalent:

(i) The set � is an attractor for ẋ= F(x).

(ii) The set � is a local maximum of P .

(iii) The set � ⊂ NE and � is an attractor for the best-response dynamics ẋ = −x +
BR(x).

This result is positive and informative. First, it tells us that attractors are necessarily
included in the set of Nash equilibria. Thus, although the process might converge to
other zeros when stationary points are non-isolated, these points are unstable.

Second, Theorem 4 provides two methods for finding the attractors: one way is to
look for local maxima of the potential function, which is very convenient when the func-
tion P is known; the other is to look for attractors for another dynamical system, possi-
bly simpler to analyze—the BRD. Note that this second method establishes a relation
between two dynamics that are conceptually unrelated. Indeed, the BRD assumes that
agents are very sophisticated, as they know their exact payoff function, they observe
their opponents’ play, and they perform potentially complex computations. Solution
curves may be very different, but surprisingly, both dynamics share the same set of at-
tractors.
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5. Concave games

Arrow and Hurwicz (1960) and Rosen (1965) have analyzed similar dynamical systems in
concave games. The first paper investigates a subclass of all games with payoff functions
that are concave in players’ own actions and convex in other players’ actions. These
games include the well known class of zero-sum games. The authors then prove global
convergence of a continuous-time gradient system.

Rosen (1965) deals with concave games, and provides sufficient conditions for the
game to have a unique Nash equilibrium when the strategy space is compact and con-
vex: if there are some positive weights such that the weighted sum of the payoff func-
tions is diagonally strictly concave, then the equilibrium of the game is unique. Under
that assumption, the author proves that a weighted gradient system globally converges
to this unique equilibrium.

We are interested in determining whether the DGAP also converges in these games,
but this raises several problems. First, we need to show that our deterministic system
(2) has the same good convergence properties as theirs. But this is not enough, since
our process is stochastic, unlike theirs. Second therefore, we need to show that the limit
set of the stochastic process (1) is included in the set of stationary points of the dynami-
cal system (2) for these games. Last, the games considered in Arrow and Hurwicz (1960)
sometimes have continua of equilibria. For instance, in zero-sum games, the set of equi-
libria is known to be convex. To avoid this issue, we maintain the concavity condition on
the payoff functions, but we require that at least one player’s payoff function is strictly
concave in own action.

Suppose that ui is concave in xi for every i. Following Rosen (1965), given r ∈ (R∗+)N
and x ∈ X , let g(x� r) ∈ R

N be given by9 gi(x� r) = ri
∂ui
∂xi

. A game is diagonally strictly
concave if

∃r ∈ (
R

∗+
)N | ∀x0 �= x1 ∈X we have

〈
x1 − x0� g

(
x0� r

)〉+ 〈
x0 − x1� g

(
x1� r

)〉
> 0� (3)

Games that have this property are denoted by GRos. It is proved (Theorem 2 of Rosen
1965) that games in GRos have a unique Nash equilibrium when the state space is com-
pact. In our context, where the state space is unbounded, they may have none.

Games considered by Arrow and Hurwicz (1960) (which we call concave–convex
games and denote by GArr) are as follows. Let S be a subset of N , the set of players,
and define f S = ∑

i∈S ui − ∑
i∈N\S ui. A game is concave–convex if (a) for each S ⊆ N ,

the function f S(xS�xN\S) is concave in xS for each xN\S and convex in xN\S for each
xS, and (b) for some S0 ⊆ N , f S0

(xS0
�xN\S0

) is strictly concave in xS0
for each xN\S0

. If, in
addition, ui is strictly concave in xi, then we say that the game is strictly concave–convex.

Remark 2. Strictly concave–convex games are diagonally strictly concave, i.e., GArr ⊂
GRos. Thus, all properties of the later apply to the former. A proof is provided in the
Appendix.

9The dynamical system ẋ = g(x� r) is a weighted gradient system and is significantly different from the
system (2)
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When the strategy space X is unbounded as in this paper, there might be a unique
Nash equilibrium or none. In the next result, we show that in the latter case, the process
would go to infinity, while when the Nash equilibrium is unique, we show that the set
of other zeroes is finite and, therefore, isolated. By Theorem 1, this guarantees that our
process converges to the Nash equilibrium with probability 1.

Theorem 5. Let G ∈ GRos. Then the following statements hold:

(i) The variable Z is a finite set.

(ii) If G has a Nash equilibrium x̄, it is unique and

P

(
lim
n

xn = x
)

= 1�

(iii) If G has no Nash equilibrium, then

P

(
lim sup

n
‖xn‖ = +∞

)
= 1�

The proof of the first point is as follows: we prove that games in GRos are such that
after removing a subset of players playing 0, the remaining subgame is also in GRos. Thus,
there is at most one Nash equilibrium for any combination of agents playing 0. The
number of such potential combinations is finite, so the result follows.

To prove the second point of Theorem 5, we show that the zeros of (2) are the only
candidates for limit points of our process. We cannot do this in general games with
isolated zeros, but in diagonally strictly concave games we can, by decomposing the
state space into several subspaces (respectively, the interior of the space and every face)
and constructing appropriate Lyapunov functions for each subspace. As a consequence,
we prove that every solution of (2) converges to one of the zeros. Since zeros are the only
candidates, we get the desired conclusion by using Theorem 1.

6. Generalization of the process

We discuss how the DGAP can be extended or generalized in several directions. The
DGAP described in Section 2.2 has the following characteristics.

C1. Agents all move simultaneously at every period.

C2. At the exploration stage, players explore upward and downward with equal prob-
ability.

C3. The step size at period n is 1
n+1 .

C4. At the updating stage, the payoff difference �un+1
i is multiplied by eni .

For our proofs to work, C1 can be totally relaxed, and C3 and C4 can be modified and
generalized, but not relaxed, while C2 is necessary.
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6.1 C1

Simultaneous exploration is not necessary. We can instead assume that at each period,
any arbitrary subgroup of players experiments and updates. Formally, let (I(n))n be a
sequence of random variables taking values in P(N), the power set of N . Consider the
following modified learning process.

• At the beginning of round n, I(n), a given subset of players is drawn.
• Exploration stage:

ei2n+1 =
⎧⎨
⎩ein + 1

n+ 1
εin if i ∈ I(n)�

ei2n if i /∈ I(n)�

• Updating stage:

ei2n+2 =
{
ei2n + εin�u

i
n+1e

i
2n if i ∈ I(n)�

ei2n if i /∈ I(n)�

A sufficient condition for our results to hold is that (I(n))n is an i.i.d. sequence, such
that the events {i ∈ I(n)}i∈N are mutually independent and

P
(
i ∈ I(n)

) = pi > 0�

The case presented in the paper satisfies these conditions, with P(i ∈ I(n)) = 1 for all i.
Now we show that all the processes with players’ selection device satisfying these

conditions share the same features as the DGAP. Pick i ∈ N and let χi
n = 1 if i ∈ I(n) and

0 otherwise. We have

xin+1 − xin = xinε̃
i
n

[
ui

(
xin + 1

n+ 1
ε̃in� x

−i
n + 1

n+ 1
ε̃−i
n

)
− ui

(
xin�x

−i
n

)]
�

where ε̃in := χi
nε

i
n. The first order development now gives

xin+1 − xin = ε̃inx
i
n

(
1

n+ 1
ε̃in

∂ui

∂xi
(xn)+

∑
j �=i

1
n+ 1

ε̃
j
n
∂ui

∂xj
(xn)+O

(
1/n2))�

We have (taking the right filtration (Fn)n)

E
[
ε̃inε̃

j
n | Fn

] = 0; E
[(
ε̃in

)2 |Fn
] = P

(
i ∈ I(n) | Fn

)
�

As a consequence,

E
[
xin+1 − xin | Fn

] = P
(
i ∈ I(n) | Fn

)
n+ 1

xin
∂ui

∂xi
(xn)�

We get the continuous-time dynamical system as the mean dynamics of our new
system,

ẋ= F(x)� where Fi(x) = pix
i ∂ui
∂xi

(xn)�

which shares the same asymptotic behavior as the system analyzed in the paper.
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6.2 C2

At the exploration stage we assume that players increase their actions by 1
n+1 with prob-

ability 1
2 and decrease them by 1

n+1 with probability 1
2 . What matters, in fact, is that

E(Un+1|Fn)= 0 and supnE(U
2
n+1|Fn) <+∞ so as to write the stochastic difference equa-

tion as the sum of a deterministic term and a random component whose first order term
is null on average with bounded variance, which is critical to using stochastic approxi-
mation methods. As can be seen from the proof of Proposition 1, any probability distri-
bution that satisfies E(εin)= 0 and supnE((ε

i
n)

2) <+∞ for all i would work.

6.3 C3

The amplitude with which explorations are made by players is given by the sequence
( 1
n)n. In fact, it could be any sequence (αn)n such that∑

k

αk = ∞ and lim
n→∞αn = 0�

which ( 1
n)n naturally satisfies.

It is important that the sum diverges so as to guarantee that the process does not
get “stuck” anywhere, unless agents want to stay where they are. Further, it is important
that the terms go to zero, so that the process can “settle” when agents want to.

We could also consider a family of sequences, differing for each individual, as long
as they go to zero “at the same rate”; i.e., for all pair of players (i� j), limn→∞ αi

n/α
j
n = kij ,

where kij > 0 is a constant.

6.4 C4

The variation in payoffs after an exploration stage (�uin+1) is multiplied by e2n
i = xni at

the updating stage. This results in the updating stage being written

xn+1
i − xni = εni �u

i
n+1x

n
i � (4)

leading to the dynamical system ẋi = xi
∂ui
∂xi

, where the xi term comes from this multipli-
cation by xni . Multiplying by xi prevents the players from playing 0 by dampening the
variations in their actions as they get closer to 0.

It is not necessary that every agent smooths his/her behaviors in that way. What we
need is that the variation in actions between two steps are multiplied by some fi(xi),
potentially different for every agent, where fi is a weakly decreasing Lipschitz function,
strictly decreasing around 0 and such that fi(0) = 0. This is to prevent players from play-
ing 0 in a smooth way.

Choosing fi(xi) = xi for any i is one possibility, but there are many others. For in-
stance, fi(xi)= min{s�xi}, where s > 0, is one where the increments’ amplitudes depend
on the current action only when close to 0, but does not depend on the current action
otherwise.
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Regardless of the choice for fi(·), this term implies that other zeroes are stationary
points of the dynamical system, which in turn implies that we need to take care of the
set OZ in every section of the paper.

If we did not dampen actions around 0, the discrete-time system would be instead

xn+1
i − xni = εni �u

i
n+1

and actions could become negative at the updating stage. Thus, one needs to make pre-
cise what the algorithm does when this happens. With gradient-type algorithms, there
are essentially two ways to deal with this. The first one is to set actions to 0 when they
should have become negative (i.e., actions are defined as max{xi�0}). The second way
is to define the algorithm in such a way that actions remain positive. We followed this
second option.

There are two reasons for choosing this second option. First, so as to use stochastic
approximation theory, it is necessary that the first order term of the noise is mean zero.
If players played 0, they could not explore downward and exploration would no longer
be mean zero. The following example illustrates why this might cause serious problems.

Consider the two players game with payoffs:⎧⎪⎨
⎪⎩
u1(x1�x2) = x1 − 1

2
x2

1 − 2x2�

u2(x1�x2) = x2 − 1
2
x2

2 − 2x1�

The unique Nash equilibrium is (x1�x2) = (1�1). Assume that players get to (0�0) at
period n, where they can only explore upward. At the exploration stage, they play e2n+1

1 =
e2n+1

2 = 1
n+1 and get u1(

1
n+1 �

1
n+1) = u2(

1
n+1 �

1
n+1) < 0. Thus, xn+1

i is set to 0 and players
are trapped at (0�0).

The multiplication by f (xi) guarantees that players do not play 0 and, although
this does not artificially prevent them from converging to (0�0), it helps avoid such
situations. Indeed, in this example, our process converges to the unique Nash equi-
librium (1�1) with probability 1 instead of remaining trapped at (0�0). To see why
players converge to (1�1), observe that this game is a potential game, with P(x1�x2) =
x1 − x2

1/2 + x2 − x2
2/2. There are exactly four zeroes with (0�0), (1�0), and (0�1) being

other zeroes; Theorem 3(ii) proves convergence to (1�1).
The second for this choice is that projecting nonadmissible actions onto the feasible

set by setting actions to max{xi�0} models a somewhat discontinuous behavior. There
are smoother ways to prevent actions from leaving the feasible set, one of which is to
multiply actions by xi, as we do in (4). Interestingly, we can point out a parallel be-
tween our choice of multiplying by xi and some well known methods from the convex
optimization literature,10 as we explain now.

The standard (projected) gradient method is defined as{
yn+1 = xn + αt∇f (xn)�

xn+1 = �K(yn+1)�

10For modern applications of these procedures, see, for instance, Hazan (2016).
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where f is the concave function that has to be maximized and xn is the vector of actions
at step n, constrained to belong to some closed convex set K (R+ in our case). Here
yn can be interpreted as the vector of unconstrained actions (the actions that players
would choose if they had no constraints), αn is the step size, and �K(·) is the projection
operator onto K. Another idea is to consider the dual averaging algorithm based on the
well known mirror descent algorithm,11 where a primal-dual procedure is considered,{

yn+1 = yn + αn∇f (xn)�

xn+1 =QK(yn+1)�

with QK(y) = argmax{〈y�x〉 − h(x);x ∈ K}, where h is a strongly convex regularizing
function on K. The map QK is called a mirror map, since it mirrors dual variables (gra-
dients) onto primal variables.

Although our learning process is not related to these optimization procedures, the
parallel is the following: our discrete learning algorithm induces an algorithm that is
asymptotically equivalent to a (multi-agent) dual averaging procedure, associated to an
entropic-like regularizing function h on K = R

N+ . So multiplying by xi is “as if” we were
pseudo-projecting actions in a specific way.

Appendix A: Proof of results of Section 2

A.1 Proof of Proposition 1

We first prove that the process can be written as in (1). Second, we prove that the process
is well defined, i.e., xin > 0 for all i and all n.

We have, for any i ∈ N ,

ei2n+2 − ei2n = ei2nε
i
n�u

i
n+1�

A first order development gives

εin�u
i
n+1 = εin

(
ui

(
ei2n + 1

n+ 1
εin� e

−i
2n + 1

n+ 1
ε−i
n

)
− ui

(
ei2n� e

−i
2n

))

= 1
n+ 1

(
εin

)2 ∂ui

∂xi
(e2n)+ 1

n+ 1
εin

∑
j �=i

ε
j
n
∂ui

∂xj
(e2n)+O

(
1

n2

)
�

Because (εin)
2 = 1 and xn = e2n, we have

xin+1 − xin = 1
n+ 1

xin
∂ui

∂xi
(xn)+ 1

n+ 1
εinx

i
n

∑
j �=i

ε
j
n
∂ui

∂xj
(xn)+O

(
1

n2

)
�

By setting Ui
n+1 = εinx

i
n

∑
j �=i ε

j
n
∂ui
∂xj

(xn), we get (1). Finally, note that E(εjn) = 0 for all j,

and that εin and ε
j
n are independent, so that

E(Un+1 | Fn) = 0�

11See Nesterov (2009) and Mertikopoulos and Zhou (2019) for recent applications in game theory.
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Let us now show that the process is well defined. Notice that Assumption 1 implies
that Dui is bounded everywhere. For simplicity and without loss of generality, we as-
sume that |ui(x)− ui(x

′)| < ‖x− x′‖∞. This is just for simplicity; the proof can easily be
accommodated otherwise. Thus, for n ≥ 0,

xin+1

xin
≥ (

1 − ‖e2n+1 − xn‖∞
)

and |ei2n+1 − xin| ≤ 1
n+1 for all i. As a consequence,

xin+1

xin
≥

(
1 − 1

n+ 1

)
�

Thus, xi1 ≥ 0 and

xin ≥ xi1

n−1∏
k=1

(
1 − 1

k+ 1

)
= 1

n+ 1
xi1 ≥ 0�

A.2 Proof of Proposition 2

Pick x̂ ∈ OZ and assume without loss of generality that x̂1 = 0 with ∂u1
∂x1

(x̂)= 2α> 0. Then

there exists ε > 0 such that, for any x ∈ B(x̂� ε), we have ∂u1
∂x1

(x) ≥ α. This implies that

ẋ1 ≥ αx1 ∀x ∈ B(x̂� ε)�

By standard arguments, this implies that x̂ is not asymptotically stable.

A.3 Proof of Theorem 1

Proof of Theorem 1 Part (i). Pick an x̂ ∈ OZ and let us fix i ∈ {1� � � � �N} such that x̂i = 0
and ∂ui

∂xi
(x̂) > 0. Observe first that we can work on the event {supn→+∞ ‖xn‖<+∞} since,

otherwise, there is nothing to prove.
Let us assume by contradiction that P(limn xn = x̂) > 0. By continuity and from the

fact that x̂ is an isolated point in OZ, there exists a neighborhood V of x̂ such that ∂ui

∂xi
≥

η> 0 for all x ∈ V and we can choose k∗ ∈ N such that

P

({
lim
n

xn = x̂
}

∩ {xn ∈ V� for all n≥ k∗}
)
> 0�

Let Ũi
n+1 = εin

∑
j ε

j
n
∂ui
∂xj

(xn), so that

xin+1 = xin

(
1 + 1

n+ 1

(
∂ui
∂xi

(xn)+ Ũi
n+1 + ξin+1

xin

))
�

Using a Taylor expansion and the fact that ξin = O( 1
n) and xin ≥ 1/(n + 1) for n suffi-

ciently large, we obtain that

1

xin+1

= 1

xin

(
1 − 1

n+ 1

(
∂ui
∂xi

(xn)+ Ũi
n+1

)
+ o

(
1
n

))
�
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Using that, for n ≥ k∗, ∂ui
∂xi

(xn) ≥ η and E(Ũi
n+1 | Fn) = 0, we obtain

E

(
1

xin+1

− 1

xin

∣∣∣∣Fn

)
≤ − 1

xin
· 1
n+ 1

· η
2

≤ 0�

Therefore, the random sequence (1/xin)n is a positive supermartingale. It then converges
almost surely to some random variable Y . However, on the event {limn xn = x̂}, we have
that xin tends to zero almost surely. These two convergence properties are contradictory
and the conclusion follows.

Part (ii). Let us first recall some results on non-convergence. Let x̃ be a linearly
unstable equilibrium. Assume without loss of generality that the unstable space at x̃ is
one dimensional, that is, DF(x̃) has only one eigenvalue μ with positive real part, and
call w the associated normalized eigenvector. We use a result of Pemantle (1990) for the
case of isolated stationary points, adapted by Brandiere and Duflo (1996) to the case of
connected components of stationary points. This result states that a sufficient condition
for non-convergence to x̃ is that the noise is exciting in the unstable direction, i.e.,

lim inf
n→+∞E

(〈Un+1�w〉2 | Fn
)
> 0� (5)

on the event {limn xn = x̃}. A sufficient condition for (5) to hold is

E
(〈Un+1� v〉2 | xn = x̃

) = 0 if and only if v = 0�

Consider any xn and any vector v. Then

〈Un+1� v〉2 =
(∑

i<j

εinε
j
n

(
vix

i
n

∂ui

∂xj
(xn)+ vjx

j
n
∂uj

∂xi
(xn)

))2
�

Using E(εinε
j
n) = 0 if i �= j and (εin)

2 = 1, we get

E
(〈Un+1� v〉2 | xn

) =
∑
i<j

(
vix

i
n

∂ui

∂xj
(xn)+ vjx

j
n
∂uj

∂xi
(xn)

)2
� (6)

By (6), we see that E(〈Un+1� v〉2 | xn = x̃) = 0 if and only if

∀i < j� vix̃
i ∂ui

∂xj
(x̃)+ vjx̃

j ∂uj

∂xi
(x̃) = 0�

We now prove that under the assumption of symmetric externalities and non-
bipartiteness of the graph, this quantity is positive. Since the interaction graph is non-
bipartite in x̃, there is at least one odd cycle. Let us assume, for simplicity but with-
out loss of generality, that this cycle is of length 3: there exist i, j, and k such that
gij = gik = gjk = 1 and

∂ui
∂xj

(x̃)
∂uj

∂xi
(x̃) > 0�

∂uj

∂xk
(x̃)

∂uk
∂xj

(x̃) > 0�
∂ui
∂xk

(x̃)
∂uk
∂xi

(x̃) > 0�
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We thus have sgn(vi) = − sgn(vj) = sgn(vk) = − sgn(vi), which implies that vi = vj = vk =
0. As a consequence, for every agent l linked to i, j, or k, we must have vl = 0. Recursively,
we must have v = 0, which concludes the proof.

The next example illustrates the fact that things can go wrong (meaning that the
noise condition might not hold) in games with symmetric externalities, when the graph
is bipartite.

Example 1. Consider the two-player game

u1(x) = −1
2
x2

1 − 2x1x2 + 3x1

u2(x) = −1
2
x2

2 − 2x1x2 + 3x2�

This game has symmetric externalities and its interaction graph is a pair, which is a bi-
partite graph.

One can check that the profile x̂= (1�1) is a Nash equilibrium. Recalling that Fi(x) =
xi

∂ui
∂xi

, the Jacobian matrix associated to x̂ is

DF(x̂) =
(

−1 −2
−2 −1

)
�

the eigenvalues of which are −3 and 1. Thus, this Nash equilibrium is linearly un-
stable. However, the eigenspace associated to the positive eigenvalue is generated by
v = (1�−1) so that, on the event {limn xn = x̂}, we have

lim
n→+∞E

(〈Un+1� v〉2 | Fn
) =

(
∂u1

∂x2
(x̂)− ∂u2

∂x1
(x̂)

)2
= 0

and the noise condition (5) does not hold. ♦

Appendix B: Proof of results of Section 3

B.1 Proof of Proposition 3

Under Assumption 3, for any i, there exists xi > 0 such that

∂ui
∂xi

(xi�0) > αi > 0 ∀xi ≤ xi�

Since the game has strategic complements,

∂ui
∂xi

(xi�x−i) > αi > 0 ∀xi < xi�∀x−i ∈X−i� (7)

As a consequence, any solution trajectory with initial condition in the set {x ∈ X : xi ∈
]0�xi[} is in the set {x ∈X : xi > xi} after some finite time t > 0. Let a = mini xi. Therefore,
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any invariant set is contained either in [a�∞[N or in ∂X . Thus, by the aforementioned
result of Benaïm (1999), we can conclude that

P
(
L
(
(xn)n

) ⊂ [a�∞[N)+ P
(
L
(
(xn)n

) ⊂ ∂X
) = 1�

In what follows we show that P(L((xn)n) ⊂ ∂X) = 0. The main idea is to exploit the
fact that the strategic complementarity condition implies that if x ∈ ∂X and for some
coordinate xi = 0, then ∂ui

∂xi
(x) must be strictly positive (there is no Nash equilibrium on

∂X).

Remark 3. Three simple observations are in order.

(i) Condition (7) implies that if ∂ui
∂xi

(x) ≤ 0, then xi ≥ a.

(ii) If x ∈ X \ [a�+∞[N , the set of coordinates for which ∂ui
∂xi

(x) > 0, Ix, is always

nonempty. This is because if, for all i ∈ {1� � � � �N}, ∂ui
∂xi

(x) ≤ 0, then x ∈ [a�+∞[N .

(iii) Moreover, also from (7), that the coordinate k achieves the minimum value of a
vector x ∈X \ [a�+∞[N verifies that ∂uk

∂xk
(x) > α, where α = mini αi > 0. Therefore,

this particular k belongs to the set Ix.

Let d(x�∂X) be distance for the infinity norm of x to ∂X , i.e., d(x�∂X) = mini xi. Let
us take R> a and consider the sets

UR =
{
x ∈X; ∂ui

∂xi
(x) < 0 ⇒ −xi

∂ui

∂xi
(x) ≤R

}
�

Observe that ∂X can be written as an increasing union of the form

∂X =
∞⋃
R=1

(∂X ∩ UR)�

So as to show that P(L((xn)n) ⊂ ∂X) = 0, it is sufficient to prove that P(L((xn)n) ⊂
∂X ∩ UR) = 0 for all R > a. By contradiction, assume that there exists R > a such that
P(L((xn)n) ⊂ ∂X ∩ UR) > 0 and let 0 < ε < a. On the event {L((xn)n) ⊂ ∂X ∩ UR}, there
exists a (random) n∗ ∈N such that

P
({
L
(
(xn)n

) ⊂ ∂X
} ∩ {xn ∈ Vε ∩ UR� for all n ≥ n∗}

)
> 0� (8)

where

Vε = {
x ∈X;d(x�∂X) ≤ ε

}
�

In what follows, we work on the event E defined by (8) and we assume that n ≥ n∗.
For β> 0, let the function

�β(x) = − 1
β

ln

(
N∑
i=1

exp
(−βxi

))
�
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which is concave if extended as −∞ to R
N . The function � verifies the well known rela-

tion

min
i=1�����N

xi − ln(N)

β
≤�β(x) ≤ min

i=1�����N
xi� (9)

From a straightforward calculation, we have that, for all i ∈ {1� � � � �N},

∂�β

∂xi
(x) = πi(x)� where πi(x) = exp

(−βxi
)

N∑
j=1

exp
(−βxj

) �

Also, for all i� j ∈ {1� � � � �N},

∂2�β

∂xj∂xi
(x) = −βπi(x)

(
δij −πj(x)

)
�

where δij = 1 if i = j and 0 otherwise. This implies that ∇�β is L-Lipschitz. In fact,
L≤ 2β for the infinity norm.

Observe that if x ∈ Vε ∩ UR and if ∂ui
∂xi

(x) ≤ 0 for some coordinate i, we have that

πi(x) ≤ exp
(−β(a− ε)

)
�

using the fact that there exists some k such that xk ≤ ε and that xi ≥ a (cf. Remark 3).
Alternatively, for k ∈ Ix such that xk = mini x

i,

πk(x) = 1

1 +
∑
j �=k

exp
(
βxk −βxj

) ≥ 1
N

�

Recall that the variable xn follows the recursion

xin+1 = xin + 1
n+ 1

(
xin

∂ui
∂xi

(xn)+Ui
n+1 + ξin+1

)
�

where E(Un+1 | Fn) = 0 and |ξin| ≤ C/n for a deterministic constant C.
Let us define zn =�β(xn). Note first that, from (9),

− ln(N)

β
≤ min

i=1�����N
xin − ln(N)

β
≤ zn ≤ min

i=1�����N
xin ≤ ε�

Consequently, L((zn)n) ⊂ [− ln(N)/β�0] almost surely on E.
Alternatively, since the function −�β is convex with L-Lipschitz gradient, we have

that

−�β(xn+1)≤ −�β(xn)+ 〈−∇�β(xn)�xn+1 − xn
〉+ L

2
‖xn+1 − xn‖2�

Equivalently,

zn+1 ≥ zn +
N∑
j=1

πj(xn)
(
x
j
n+1 − x

j
n

) − L

2
‖xn+1 − xn‖2
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= zn + 1
n+ 1

N∑
j=1

πj(xn)

(
x
j
n
∂ui
∂xj

(xn)+U
j
n+1 + ξ

j
n+1

)
− L

2
‖xn+1 − xn‖2

≥ zn + 1
n+ 1

N∑
j=1

πj(xn)x
j
n
∂ui
∂xj

(xn)+ 1
n+ 1

N∑
j=1

πj(xn)U
j
n+1 − c

(n+ 1)2

for some deterministic constant c ≥ 0. Therefore, taking conditional expectation and
omitting the quadratic term,

E(zn+1 | Fn) ≥ zn + 1
n+ 1

N∑
j=1

πj(xn)x
j
n
∂ui
∂xj

(xn)�

Recall that Ixn is the set of indices such that ∂ui
∂xi

(xn) > 0, and that kn, the coordinate

giving the minimum of xn, is in Ixn and verifies, moreover, that ∂ui
∂xi

(xn) > α. Let Jxn be

the set of indices such that ∂ui
∂xi

(xn)≤ 0.
For all n ≥ n∗, we have

E(zn+1 | Fn) ≥ zn + 1
n+ 1

∑
j∈Ixn

πj(xn)x
j
n
∂ui
∂xj

(xn)+ 1
n+ 1

∑
j∈Jxn

πj(xn)x
j
n
∂ui
∂xj

(xn)

≥ zn + zn

n+ 1
α

N
+ 1

n+ 1

∑
j∈Jxn

πj(xn)x
j
n
∂ui
∂xj

(xn)�

using that xknn ≥ zn and that πkn(xn) ≥ 1/N . Alternatively, using the definition of UR, we
obtain

∑
j∈Jxn

πj(xn)x
j
n
∂ui
∂xj

(xn)≥ −|Jxn |Rexp
(−β(a− ε)

) ≥ −NRexp
(−β(a− ε)

)
�

Thus,

E(zn+1 | Fn) ≥ zn + 1
n+ 1

(
α

N
zn −NRexp

(−β(a− ε)
))

�

Let us consider the change of variables

θn =
(
zn + ln(N)

β

)
≥ min

i
xin ≥ 0�

Then

E(θn+1) ≥ E(θn)+ α

N

1
n+ 1

(
E(θn)−

{
N2

α
Rexp

(−β(a− ε)
)+ ln(N)

β

}
︸ ︷︷ ︸

c(β)

)
�
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Let us note that E(θn∗) > 0 since mini x
i
n∗ ≥ 1/(n∗ + 1) almost surely. Now we can fix

β> 0 sufficiently large such that 0 < c(β) < E(θn∗), so that

E(θn+1) ≥ E(θn)+ α

N

1
n+ 1

(
E(θn)− c(β)

)
�

Let us call ρn = E(θn) − c(β). Then we want to analyze the recursion ρn+1 ≥ ρn(1 +
1

n+1α/N), with ρn∗ > 0. Hence, for n ≥ n∗,

ρn+1 ≥ ρn∗

n∏
i=n∗

(
1 + α

N

1
i+ 1

)
�

where the right-hand side goes to infinity. Finally, we can conclude that E(zn) goes to
infinity, which is a contradiction to the fact that zn ∈ [− ln(N)/β�ε] almost surely on the
event E.

B.2 Proof of Theorem 2 and Proposition 4

The proof of Theorem 2 involves several arguments. We use Proposition 3, i.e., the fact
that the limit set of the process cannot include points on the boundary of the state space,
and we use a result from Benaïm and Faure (2012), conveniently adapted to our setting.

Theorem 6 (Benaïm and Faure 2012). Let (xn)n ∈ X be a random process that can be
written as

xn+1 = xn + 1
n+ 1

(
F(xn)+Un+1 + ξn+1

)
�

where the following statements hold:

(i) The relation F : X → R
N is a smooth map that is cooperative and irreducible in

Int(X).

(ii) The variable Un+1 is a bounded martingale difference and is uniformly exciting,
i.e., the matrix

E
(
Un+1U

T
n+1 | xn = x

)
is positive definite for any x ∈ Int(X).

(iii) We have ξn = O(1/n).

(iv) There exists a > 0 such that L(xn)n ⊂ [a�+∞[ almost surely.

Then

P

(
∃x∗ ∈ZS : lim

n
xn = x∗) = 1

on the event {lim supn ‖xn‖<+∞}.
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Proof of Theorem 2 We want to apply Theorem 6. When the game has strategic comple-
ments, our dynamics ẋ = F(x) is cooperative because all non-diagonal entries of DF(x)

are nonnegative. In addition, the interaction graph is connected and Assumption 2 guar-
antees that the interaction graph is strongly connected. Thus the matrix DF(x) is irre-
ducible for any x in the interior of X . These two facts provide point (i). Points (iii) and
(iv) follow from Propositions 1 and 3, respectively. To prove point (ii), we prove that if a
network is non-bipartite and the game exhibits symmetric externalities, then (ii) holds.

Since for any v ∈ R
N , we have that vTUn+1U

T
n+1v = 〈Un+1� v〉2 ≥ 0, proving (ii)

amounts to showing that, for any x ∈ Int(X), we have

E
(〈Un+1� v〉2 | xn = x

) = 0

if and only if v = 0. We proved this in the proof of point (ii) of Theorem 1. This concludes
the proof.

Proof of Proposition 4 Let x̃ be a linearly unstable equilibrium. We want to show that

∑
i<j

(
vix̃

i ∂ui

∂xj
(x̃)+ vjx̃

j ∂uj

∂xi
(x̃)

)2
�= 0�

where v is the normalized eigenvector associated to the unstable direction of x̃ for the
strictly positive eigenvalue μ.

Note that x̃ /∈ ∂X by Proposition 3, and that when x̃ ∈ Int(X) and the interaction
graph is non-bipartite, then the result is a direct implication of point (ii) of Theorem 1.
Thus, here we assume that the interaction graph is connected and bipartite, and that
x̃ ∈ Int(X). This implies that there exists a partition (A�B) of N such that if a ∈ A and
∂ua
∂xb

(x̃) ∂ub∂xa
(x̃) > 0, then b ∈ B.

Using the computations just developed, we need to show that

∑
a<b

(
vax

a ∂ua

∂xb
(x̃)+ vbx

b ∂ub
∂xa

(x̃)

)2
�= 0� (10)

Assume the contrary. Then we must have vax
a ∂ua
∂xb

(x̃) + vbx
b ∂ub
∂xa (x̃) = 0 for all a ∈ A and

all b ∈ B. Because xi > 0 for all i, by Assumption 2 (symmetric externalities), it must
be that sgn(va) = − sgn(vb) for any a ∈ A and any b ∈ B. Since the interaction graph is
connected, we may assume without loss of generality that va > 0 ∀a ∈ A and vb < 0 ∀b ∈
B.

Because μ is strictly positive and v is the corresponding normalized eigenvector, we
should have 〈vDF(x̃)� v〉 = μ

∑
i v

2
i > 0, since v �= 0. However, we show that this can only

be true if (10) holds. By a simple rearrangement of the indices, the Jacobian matrix at x̃
can be written as

DF(x̃) =
(
DA M

N DB

)
�
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where DA is diagonal and the diagonal terms are equal to xa∂2ua/∂(x
a)2(x̃) ≤ 0 with

a ∈ A, and similarly for DB. The variables M and N are nonnegative matrices, as
xi∂2ui/∂x

i∂xj ≥ 0 ∀i �= j.
Thus,

〈
vDF(x̃)� v

〉 = ∑
i

v2
i x

i∂2ui/∂
(
xi
)2 +

∑
a∈A�b∈B

vavb

(
xa

∂2ua

∂xa∂xb
+ xb

∂2ub

∂xa∂xb

)
≤ 0�

a contradiction. To see why this inequality holds, remember that the terms in the first
sum are all negative by Assumption 1 and the fact that x̃ is a Nash equilibrium. The terms
in the second sum are also all negative since va�vb < 0 and by strategic complements.

The following example illustrates that the symmetric externalities assumption can-
not be removed in Proposition 4.

Example 2. Consider the two-player game with strategic complements:

u1(x1�x2) = −x2
1

2
+ 2x1 − x1(2 − x2)

2; u2(x1�x2)= −x2
2

2
− x2

1(2 − x2)�

This game has antisymmetric externalities, since ∂u2
∂x1

(x) = − ∂u1
∂x2

(x). Now the profile
(1�1) is a Nash equilibrium and

∂2ui
∂xi∂xj

(x̂)= 2� i = 1�2�

As a consequence, the Jacobian matrix associated to the dynamics F is simply

DF(x̂) =
(

−1 2
2 −1

)
�

the eigenvalues of which are −3 and 1. Thus, this Nash equilibrium is linearly unstable.
The eigenspace associated to the positive eigenvalue is generated by v = (1�1). Thus, on
the event {limn xn = x̂}, we have

lim
n→+∞E

(〈Un+1� v〉2 | Fn
) =

(
∂u1

∂x2
(x̂)+ ∂u2

∂x1
(x̂)

)2
= 0

and the noise condition does not hold. ♦

The following example illustrates that strategic complements are essential in our
proof.

Example 3. Consider the four-player example with strategic substitutes,

u1(x) = −cx1 + b(x1 + x2 + x4)� u2(x) = −cx2 + b(x2 + x1 + x3)�

u3(x) = −cx3 + b(x3 + x2 + x4)� u4(x) = −cx4 + b(x4 + x1 + x3)�
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1 2

34

Figure 1. Interaction graph between four players. This graph is bipartite.

with b strictly concave and such that b′(1) = c. This is a game of strategic substitutes,
with an interaction graph represented by the square in Figure 1.

One can check that the profile x̂ = (1/3�1/3�1/3�1/3) is a Nash equilibrium. Choos-
ing b such that b′′(1) = −3 for simplicity, the Jacobian matrix associated to x̂ is

DF(x̂)=

⎛
⎜⎜⎜⎝

−1 −1 0 −1
−1 −1 −1 0
0 −1 −1 −1

−1 0 −1 −1

⎞
⎟⎟⎟⎠ �

the eigenvalues of which are −3, −1, −1, and 1. Thus this Nash equilibrium is linearly
unstable. However, the eigenspace associated to the positive eigenvalue is generated by
v = (1�−1�1�−1) so that on the event {limn xn = x̂}, we have

lim
n→+∞E

(〈Un+1� v〉2 |Fn
)

=
(
∂u1

∂x2
(x̂)− ∂u2

∂x1
(x̂)

)2

+
(

−∂u2

∂x3
(x̂)+ ∂u3

∂x2
(x̂)

)2
+

(
∂u3

∂x4
(x̂)− ∂u4

∂x3
(x̂)

)2
= 0

and the noise condition (5) does not hold. ♦

Appendix C: Proof of results of Section 4

C.1 Proof of Theorem 3

Before proving Theorem 3, let us define the following dynamical concept.

Definition 10. Let P : X → R be continuously differentiable. We say that P is a strict12

Lyapunov function for ẋ= F(x) if

• for x ∈Z, the map t �→ P(ϕ(x� t)) is constant

12Generally, P is a Lyapunov function for ẋ = F(x) with respect to � if t �→ P(ϕ(x� t)) is constant on �

and strictly increasing for x /∈ �; when the component � coincides with the set of stationary points of the
flow, then we say that P is strict.
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• for x /∈Z, the map t �→ P(ϕ(x� t)) is strictly increasing.

Lemma 1. Assume that G is an LOPG with continuously differentiable potential P . Then

(i) P is a strict Lyapunov function for ẋ = −x+ BR(x)

(ii) P is a strict Lyapunov function for ẋ = F(x) (where Fi(x) = xi
∂ui
∂xi

(x)).

Proof. By assumption,

∀x�∀i� ∂ui
∂xi

(x) > 0 ⇒ ∂P

∂xi
(x) > 0 and

∂ui
∂xi

(x) < 0 ⇒ ∂P

∂xi
(x) < 0�

(i) We have 〈
DP(x)�−x+ BR(x)

〉 = ∑
i

∂P

∂xi
(x)

(−xi + BRi(x)
)
�

We need to check that if x /∈ NE, then this quantity is positive. Let i be such that xi �=
BRi(x), say xi < BRi(x−i). Then by strict concavity of ui, we have ∂ui

∂xi
(x) > 0. Thus,

∂P
∂xi

(x) > 0 and 〈DP(x)�−x+ BR(x)〉 > 0.
(ii) We have 〈

DP(x)�F(x)
〉 = ∑

i

xi
∂ui
∂xi

(x)
∂P

∂xi
(x)�

We need to check that if x /∈Z, then this quantity is positive. Let i be such that Fi(x) �= 0.
Then xi > 0 and ∂ui

∂xi
(x) �= 0, which implies that

xi
∂ui
∂xi

(x)
∂P

∂xi
(x) > 0�

and the proof is complete.

Lemma 2. Assume G is an LOPG. If P is Cm for sufficiently large m, then P(Z) has an
empty interior.

Proof. We decompose the set of zeroes of F as a finite union of sets on which we can
use Sard’s theorem.

Let A be any subset of agents and let ZA be the set{
x ∈Z : xi = 0 ∀i /∈A�

∂ui
∂xi

= 0 ∀i ∈A

}
�

It is not hard to see that ZA is closed. Moreover, Z = ⋃
A∈P({1�����N}) ZA.

We now prove that P is constant on ZA. Let PA : [0�1]A →R be defined as

PA(z) := P(z�0)�

For x ∈ZA, denote xA = (xi)i∈A. We then have PA(xA) = P(x). Moreover, for i ∈A,

∂PA

∂xi
= 0
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by definition of ZA and the additional assumption we made on P . Hence,{
xA : x ∈ZA

} ⊂ {
z ∈ [0�1]A : ∇zP

A = 0
}
�

Now P is sufficiently differentiable, as is PA, and by Sard’s theorem, PA({xA : x ∈ ZA})
has an empty interior in R

A. As an immediate consequence, PA is constant on {xA : x ∈
ZA}, which directly implies that P(ZA) has an empty interior. Since Z is a finite union
of such sets, P(Z) has an empty interior.

Part (i). For this part, we use the general result given by Proposition 6.4 in Benaïm
(1999), which asserts that if P is a strict Lyapunov function with respect to Z and if P(Z)

has an empty interior, then L(xn)⊂ Z almost surely.
Part (ii). By Lemma 1 and Corollary 6.6 in Benaïm (1999), we have

P

(
∃x̂ ∈Z such that lim

n
xn = x̂

)
= 1�

Because convergence to the zeroes occurs almost surely, Theorem 1 gives us the result.

C.2 Proof of Theorem 4

First we prove that (i) implies (ii). Since G is an LOPG, P(Z) has empty interior (see
Lemma 2 above). Moreover, we have � ⊂ Z. Thus, P is constant on �. Let v := P(�). If
� is not a local maximum of P , then there exists a sequence xn such that d(xn��) →n 0
and P(xn) > v. Since � is isolated, we have xn ∈ X \ Z and P(ϕ(xn� t)) > P(xn) > v for
any t > 0; hence, d(ϕ(xn� t)��)� 0 and � is not an attractor.

Let us now prove that (ii) implies (iii). First we show that � is contained in NE. Sup-
pose that there exists x̂ ∈� \ NE. Without loss of generality, we suppose that

x̂1 = 0�
∂u1

∂x1
(x̂) > 0�

Since ∂u1
∂x1

(x̂) > 0, we also have ∂P
∂x1

(x̂) > 0, by definition of an LOPG. As a consequence, x̂
is not a local maximum of P .

We now prove that � is an attractor for the best-response dynamics, P is a strict
Lyapunov function for the best-response dynamics,13 and � ⊂ NE. The statement we
want to prove is then a consequence of Proposition 3.25 in Benaim et al. (2005). We
adapt the proof in our context for convenience. First of all, observe that � is actually
a strict local maximum of P : there exists an open (isolating) neighborhood U of � such
that P(x) < v = P(�) ∀x ∈U \�. This is a simple consequence of the fact that P is strictly
increasing along any solution curve with initial conditions in U \ �. Now let Vr := {x ∈
U : P(x) > v − r}. Clearly

⋂
r Vr = �. Also ϕ(Vr� t) ⊂ Vr , for t > 0, r small enough.14 This

implies that � = ⋂
r>0 Vr contains an attractor A. The potential being constant on �, A

cannot be strictly contained in � and, therefore, � is an attractor.
Now clearly (iii) implies (i): � = ωBR(U) for some open neighborhood U of �. Since

U ∩Z ⊂ NE, ωF(U) =ωBR(U) and the proof is complete.

13Keep in mind that this means that it is a Lyapunov function with respect to NE.
14We need to make sure that r is small enough so that Vr = P−1([v − r� v]) ⊂ U .
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Appendix D: Proof of results of Section 5

Proof of Remark 2. Following Rosen (1965), we define G(x� r) as the Jacobian matrix
of g(x� r), with ri ≥ 0. A sufficient condition for a game to belong to GRos is that G(x� r)+
G′(x� r) is negative definite, where G′ is the transpose of G. For simplicity, we set r = 1,

so that gi(x�1) = ∂ui
∂xi

and Gij(x�1) = ∂2ui
∂xi∂xj

, and we show that games in GArr are such that

G(x�1)+G′(x�1) is negative definite. Define the matrices A, Bk, and C as

Aii = ∂2ui
∂x2

i

and Aij = 0 if i �= j

Bk
ij = 0 if i = k or j = k and Bk

ij = ∂2uk
∂xi∂xj

if i �= k and j �= k

Cij = ∑
k

∂2uk�Z
∂xi∂xj

.

Then G(x�1)+G′(x�1) = A(x)−∑
k B

k(x)+C(x). By concavity of ui in xi, A is negative
semi-definite and is negative definite as soon as one ui is strictly concave in xi. Every
Bk is positive semi-definite by convexity of ui in x−i. Finally, strictly concave–convex
games are such that

∑
k uk(x) is concave in x, by taking S = N in the definition of strictly

concave–convex games. Thus, C is negative semi-definite. This proves that G(x�1) +
G′(x�1) is negative definite.

Proof of Theorem 5. Suppose first that there is a unique Nash equilibrium. Then
note that under (3), we have, for any x �= x,〈

x− x�g(x� r)
〉
> 0�

because 〈
x− x | g(x� r)〉 = ∑

i:xi=0

rixi
∂ui
∂xi

(x)≤ 0�

Given an element x ∈ X , let I(x) := {i ∈ N : xi = 0 and ∂ui
∂xi

(x) > 0}. Given J ⊂ N , we call

GJ the N − |J|-player game, where the set of players is N \ J and, for any strategy profile
z ∈ [0�+∞[N−|J|, the payoff function of player i ∈ N \ J is uJi (z) := ui(z�0|J|).

Lemma 3. Let J ⊂N . There exists a unique profile x̃J with the properties

(i) J ⊂ I(x̃J)

(ii) z̃ := (x̃Ji )i/∈J is a Nash equilibrium of GJ

and x̃J ∈Z(F). Moreover, if J ⊂ I(x), then x̃J = x. If not, then x̃J belongs to OZ.

Proof. Fix J ⊂ N . The associated game GJ is also strictly diagonally concave. Thus,
it admits a unique Nash equilibrium z̃ ∈ [0�+∞[N−|J|. Note that J ⊂ I(z̃), but is not
necessarily equal. Now let x̃J := (z̃�0J). Clearly x̃J is the only element of X satisfying
both (i) and (ii). Let i /∈ J. We have x̃Ji = z̃i = BRJ

i (z̃−i) = BRi(z̃−i�0J) = BRi(x̃
J
−i). This

proves that x̃J belongs to Z(F).
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Now suppose that J ⊂ I(x). Then x satisfies (i). Moreover, for all i /∈ J,

xi = BRi(x−i)= argmaxxi ui(xi�x−i)= argmaxzi u
J(zi� z−i)

by definition of uJ and the fact that xj = 0 for any j ∈ J. Thus, (xi)i/∈J is a Nash equilib-
rium of GJ and x̃J = x. Finally if J is not contained in I(x̂), then x̃J �= x because x does
not satisfy (i).

As a consequence, {x̃J� J ⊂ I} can be written as {x� x̃1� � � � � x̃K}, where all elements
are distinct, and there is a natural partition of X :

X =
(

K⋃
k=1

X̃k

)
∪X� where X̃k := {

x ∈X : x̂I(x) = x̂k
}

and X := {
x ∈X : x̂I(x) = x

}
�

Note that X = {x ∈ X : I(x) ⊂ I(x)} and the sets X�X̃k, k = 1� � � � �K, are convex. More
accurately, every X�X̃k is a union of faces of X : there exist J and a family (Jk)k=1�����K
of subsets of N such that

X =
⋃
J∈J

{
x ∈X : I(x) = J

}
X̃k =

⋃
J∈J k

{
x ∈X : I(x) = J

}
�

Now we are ready to prove the theorem, i.e., when a game is diagonally strictly con-
cave with unique Nash equilibrium x, necessarily

P

(
lim
n

xn = x
)

= 1�

First let x ∈X , which amounts to having I(x) ⊂ I(x), and define, for x ∈ X,

�(x) =
∑

i∈I(x)
rixi +

∑
i /∈I(x)

ri
(
xi − xi log(xi)

)
�

Then � is concave on X and achieves its minimum in x. Let φ(t) = �(x(t)), where x(t)
is a solution of ẋ = F(x), with x(0) ∈X . We have

d

dt
φ(t) =

∑
i∈N

ri
(
xi(t)− xi

)∂ui
∂xi

(
x(t)

) ≤ 0�

with equality if and only if x = x and x is a global attractor for the flow �|X .

Now suppose that x ∈ X̃k for a given k ∈ {1� � � � �K}. Note that I(x) ⊂ I(x̃k). We can
then define �k : X̃k →R as

�k(x) =
∑

i∈I(x̃k)
rixi +

∑
i /∈I(x̃k)

ri
(
xi − x̃ki log(xi)

)
�

Then �k is again concave, with unique maximum in x = x̃k on X̃k. Let φ(t) = �(x(t)),
where x(t) is a solution of ẋ= F(x), with x(0) ∈ X̃k. We have

d

dt
φ(t) =

∑
i∈N

ri
(
xi(t)− xi

)∂ui
∂xi

(
x(t)

) ≤ 0�

with equality if and only if x = x̃k. Thus, x̃k is a global attractor for the flow �|X̃k .
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As a consequence, every solution curve converges to a zero of F , i.e., either x or
one of the x̃k.15 More precisely, X and X̃k are invariant, and {x} (resp. x̃k) is a global
attractor for the flow φ|X (resp. φ|X̃k ); in particular, for any x0 ∈ X (resp. x0 ∈ X̃k), then

limt→+∞φt(x0) = x (resp. limt→+∞φt(x0) = x̃k).
A set L is internally chain transitive (ICT) for the flow φt if it is compact, invariant,

and the restriction of the flow φ|L admits no proper attractor. Of course Lk := {x̃k} as
well as L := {x} are ICT.

Theorem 7 (Benaïm (1999)). On the event {lim supn ‖xn‖ < +∞}, the limit set of (xn)n is
almost surely internally chain transitive. Moreover, let L be an internally chain transitive
set for a flow (φt)t and letA be an attractor with basin of attraction B(A). If L∩B(A) �= ∅,
then L⊂A.

We now prove that the sets Lk and L are the only internally chain transitive sets. This
concludes the proof because, as we mentioned above, (xn)n is almost surely bounded.
Note that X is an open set in X . To do so, we first claim that it is always possible to
relabel the family (x̃k)k=1�����K such that X̃k is an open set of

⋃k
l=1 X

l for k= 2� � � � �K.
Let L be internally chain transitive. By previous results, if L intersects X, then L ⊂

{x} because X is the basin of attraction of x. Suppose that this is not the case; then
L ⊂ ⋃K

k=1 X
k. Since XK is open in

⋃K
k=1 X

k, x̃K is an attractor of the flow restricted to⋃K
k=1 X

k, with basin of attraction X̃k. Hence, if L∩X̃k �= ∅, then L= {x̃k}. By a recursive
argument, either L= {x} or L= {x̃k} for some k.

Suppose now that there is no Nash equilibrium and assume by contradiction that
P(lim supn ‖xn‖<+∞) > 0. By the same reasoning as above, the only ICT sets are zeroes
of the dynamics. Since there is no Nash equilibrium, on the event {lim supn ‖xn‖ < +∞},
we necessarily have limn xn = x̂, where x̂ is some other zero (Theorem D.1 (Benaïm
1999)). This is a contradiction to Theorem 1.
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