
Learning with minimal information in continuous

games∗

Sebastian Bervoets† Mario Bravo‡ and Mathieu Faure§

April 18, 2020

Abstract

While payoff-based learning models are almost exclusively devised for finite

action games, where players can test every action, it is harder to design such

learning processes for continuous games. We construct a stochastic learning

rule, designed for games with continuous action sets, which requires no so-

phistication from the players and is simple to implement: players update their

actions according to variations in own payoff between current and previous ac-

tion. We then analyze its behavior in several classes of continuous games and

show that convergence to a stable Nash equilibrium is guaranteed in all games

with strategic complements as well as in concave games, while convergence to

Nash occurs in all locally ordinal potential games as soon as Nash equilibria

are isolated.
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1 Introduction

In this paper we construct a stochastic learning rule which is designed for games

with continuous action sets, requires no sophistication from the players and is simple

to implement. We analyze its behavior in several classes of continuous games, in

particular to establish whether it converges to Nash equilibria or not.

The question of convergence to Nash equilibria by agents repeatedly playing a

game has given rise to a large body of literature on learning. One branch of this

literature explores whether there are learning rules - deterministic or stochastic -

which would converge to Nash equilibria in any game (see e.g. Hart and Mas-Colell

[2003], Hart and Mas-Colell [2006], Foster and Young [2006], Germano and Lugosi

[2007], Babichenko [2012]). Another branch, to which this paper contributes, focuses

on specific learning rules and on the understanding of their asymptotic behavior.

Both branches have almost exclusively addressed the issue of learning in discrete

games (i.e. games where the set of strategies is finite). However, many economic

variables such as price, effort, time allocation are non-negative real numbers, and

thus are continuous. Being designed for finite games, classical learning models cannot

be adapted without serious complications, because they usually rely on assigning a

positive probability to each choice of action. It is actually not easy to construct

learning rules for continuous games which do not require players to have access to

substantial amounts of information. This is what we do in this paper, by introducing

a learning rule which we call the dampened gradient approximation process (DGAP).

We also analyze its behavior in several well-known classes of games.

Learning rules can be more or less demanding in terms of players’ sophistication

and of the amount of information required to implement them. The DGAP belongs to

the category of so-called payoff-based or completely uncoupled learning rules, meaning

that players know nothing about the payoff functions (neither theirs nor those of their

opponents). They also know nothing about the other players’ actions, nor about their

payoffs. They may not even be aware that they are playing a game. They only observe

their own realized payoffs after each iteration of the game and make decisions based
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on these observations.

Agents aim at maximizing their payoffs by choosing an action. If players knew the

gradient of their utility function at every point, a natural learning process in contin-

uous games would be for agents to follow a gradient method (see for instance Arrow

and Hurwicz [1960]). However, because players neither know the payoff functions nor

observe the others’ actions, they are unable to compute these gradients.

In DGAP, agents construct an approximation of the gradient at the current action

profile, by randomly exploring the effects of increasing or decreasing their actions by

small increments. The agents use the information collected from this exploration

to choose a new action: if the effect revealed is an increase (resp. decrease) in

payoff, then players move in the same (resp. opposite) direction, with an amplitude

proportional to the approximated gradient. In order to make sure that they remain

in the state space, these movements are dampened as the actions get close to the

boundary; hence the name of our learning rule.

The direction chosen at the exploration stage being random, the DGAP is a

stochastic process. We analyze its (random) set of accumulation points, called the

limit set, by resorting to stochastic approximation theory. This theory tells us that

the long-run behavior of the stochastic process is related to some underlying deter-

ministic dynamical system. We thus start by showing that our process is well-defined

- i.e. players’ actions always remain non-negative - and that the deterministic system

underlying our specific stochastic learning process is a dampened gradient system

(Proposition 1). We also show that all the Nash equilibria of a game are stationary

points - otherwise called zeroes - of this dynamical system, although other points, on

the boundary of the state space, may also be stationary. However, we prove (Propo-

sition 2) that non-Nash stationary points are necessarily unstable.1 This is done in

Section 2, where we present the DGAP and provide the necessary definitions.

Our objective is to design an analytically tractable payoff-based process for con-

tinuous games. This paper should thus be seen as a contribution to learning theory

for cases so far unexplored. Therefore, we wish to analyze its asymptotic behavior

in several continuous games. The major difficulty is that stochastic approximation

theory tells us that the stationary points of the underlying dynamical system are

plausible candidates for the limit set of the random process, yet it does not provide

general criteria for excluding some of these candidates so as to obtain more precise

1Throughout the paper, several notions of stability will be used. They are all defined in Section

2.
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predictions. This is actually one of the major difficulties in the field (see for instance

Benäım and Faure [2012]). While the conceptual contribution of this paper lies in

providing a natural learning process for games with continuous action sets, our tech-

nical contribution lies in providing precise statements on the structure of the limit

set of the DGAP.

We first prove a general result (Theorem 1) which says that if the process con-

verges, it necessarily converges to a Nash equilibrium; additionally, under the condi-

tion that the interactions between players do not form a bipartite graph, this Nash

equilibrium cannot be unstable.

Next, in Section 3 we analyze games with strategic complements and show (Theo-

rem 2) that the DGAP almost surely converges to a Nash equilibrium, and that this

Nash equilibrium is stable. To the best of our knowledge, this is the first paper to

prove convergence of a payoff-based learning procedure in this class of games.

In Section 4, we analyze a class of games that we call locally ordinal potential

games which contains all the potential games. We establish two results (Theorems

3 and 4). First, the limit set of the DGAP is almost surely contained in the set of

stationary points of the dynamics. When equilibria are isolated, this implies that the

process converges to a Nash equilibrium with probability one. Second, we characterize

the set of stable sets (attractors) by proving that they are stable sets for another,

unrelated dynamical system: the Best-Response dynamics.

In Section 5, we focus on concave games, as defined by Rosen [1965]. In that paper

it is shown that these games have a unique Nash equilibrium and that a gradient

system converges to the unique Nash equilibrium. We obtain the same results for our

process, with convergence to the unique equilibrium with probability one.

Finally, in Section 6 we discuss which properties of the learning process are critical

for our results to hold and how it can be generalized in several directions.

Related Literature

As mentioned earlier, the learning literature has essentially focused on finite ac-

tion games. Many rules have been proposed and studied, but they cannot be adapted

to the context of continuous games without major complications (see for instance

Perkins and Leslie [2014], who adapt stochastic fictitious play and show that it con-

verges in 2-player zero-sum games).

The literature on continuous games is sparse. In the context of non payoff-based

procedures, Arrow and Hurwicz [1960] prove that when all players’ payoff functions

are strictly concave, the gradient method converges to the unique Nash equilibrium
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in generalized zero-sum games. Rosen [1965] studies a gradient method in concave

n-person games with a unique equilibrium, and shows that this unique equilibrium

is globally asymptotically stable for some weighted gradient system, with suitably

chosen weights. Vives [1990] proves that the Best-Response dynamics converges to

a Nash equilibrium in games with strategic complements for almost all initial condi-

tions, while Benäım et al. [2005] prove that it converges to a connected set of Nash

equilibria in continuous potential games.

In the context of limited information, the literature is both sparse and very recent.

To the best of our knowledge, our paper is the first to consider a payoff-based learning

process in games with strategic complements. In potential games, Tatarenko [2018]

considers a learning process in which agents pick an action according to a Gaussian

probability distribution, the mean parameter of which is updated as payoffs are re-

alized. She proves convergence of the mean parameter of the distribution to a Nash

equilibrium of the game. In contrast, in our process it is the actions of players that

are updated and we get convergence results for the actual sequence of actions. Mer-

tikopoulos and Zhou [2019] analyze procedures in a situation where agents receive

some noisy information about their payoffs’ gradients, mainly in games that enjoy

a property called variational stability. Among other results, the authors establish

almost sure convergence to the (convex) set of equilibria. Recently, using a similar

approach, Bravo et al. [2018] study a subclass of those games in the payoff-based

setting, obtaining almost sure convergence to the (in this case unique) Nash equilib-

rium. It is worth noting that their procedure and the DGAP share the convergence

result for the games described in Section 5.

Two papers also address payoff-based procedures in specific games. Dindos and

Mezzetti [2006] consider a stochastic adjustment process called the better-reply, in a

specific class of games called aggregative games. At each step, agents are sequentially

picked to play a strategy chosen at random, while the other players do not move.

The agent then observes the hypothetical payoff that this action would yield, and

decides whether to stick to this new strategy or to go back to the previous one. The

authors show that this process converges to Nash when actions are either substitutes

or complements around the equilibrium. Huck et al. [2004] consider a learning process

- called trial and error - and analyze it in the Cournot oligopoly game. Players choose

a direction of change and stick to this direction as long as their payoff increases,

changing as soon as it decreases. The authors show that the process converges,

but it converges to the joint-profit maximizing profile and not to the (unique) Nash
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equilibrium of the game.

2 The model

2.1 Definitions and Assumption

Let N = {1, . . . , N} be a set of players, each of whom repeatedly chooses an action

from Xi = [0,+∞[. An action xi ∈ Xi can be thought of as an effort level chosen by

individuals, a price set by a firm, a monetary contribution to a public good, etc. Let

X = ×i=1,...,NXi. We denote by ∂X the boundary of X, i.e. ∂X := {x ∈ X;xi =

0 for some i ∈ N}. And we let Int(X) := X \ ∂X denote the interior of X.

At each period of time, players observe a payoff that is generated by an underlying

repeated game G = (N , X, u), where u = (ui)i=1,...,N is the vector of payoff functions.

Players know nothing about the payoff functions, nor about the set of opponents.

In this paper we will examine several classes of underlying games, each class being

defined by different properties on the functions ui. However, we will always make the

two following standing assumptions:

Assumption 1 For any i, the payoff map ui is assumed to be C 1 on RN
+ and with

the property that, for any x−i ∈ X−i, there exists M(x−i) ∈ Xi such that the map

xi 7→ ∂ui
∂xi

(xi, x−i) is strictly positive for xi < M(x−i) and strictly negative for xi >

M(x−i).

Assumption 1 implies that best responses are unique and BRi(x−i) = M(x−i). This

assumption is verified for instance if xi 7→ ui(xi, x−i) is strictly concave, ∂ui
∂xi

(0, x−i) >

0 and limxi→+∞
∂ui
∂xi

(xi, x−i) < 0.

In the games we consider, interactions between players can be very general. They

can be heterogeneous across players and they can be of any sign. However we assume

that externalities are symmetric in sign:

Assumption 2 Games are assumed to have symmetric externalities, i.e. ∀i 6= j and

∀x,

sgn

(
∂ui
∂xj

(x)

)
= sgn

(
∂uj
∂xi

(x)

)
where sgn(a) = 0 if a = 0.
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Most of the continuous games in the economics literature fall into this class.

Note that a game with symmetric externalities does not require them to be of equal

intensity. Also, symmetric externalities allow for patterns where i exerts a positive

externality on individual j and a negative externality on individual k. Note finally

that symmetric externalities do not imply that sgn
(
∂ui
∂xj

(x)
)

= sgn
(
∂ui
∂xj

(x′)
)

for

x 6= x′.

Some of our results will depend on the pattern of interactions in the game G. We

capture this pattern by an interaction graph, defined as follows. Let x = (x1, . . . , xN)

be an action profile. The interaction graph at profile x is given by the matrix G(x)

where gii(x) = 0 and, for i 6= j, gij(x) = 1 if ∂ui
∂xj

(x) 6= 0 and gij(x) = 0 otherwise.

Note that the interaction graph is local, in the sense that it depends on the vector of

actions. Thus G(x) can either be constant on X or change as x changes. Note also

that the interaction graph of a game satisfying Assumption 2 is symmetric.

In what follows, some of our results will hold for every interaction graph, except

for bipartite graphs. For the sake of completeness we recall the definition:

Definition 1 The interaction graph G(x) is said to be bipartite at x ∈ X if the set

N of players can be partitioned into N1 and N2 such that for any pair of players i

and j we have

gij(x) = 1 =⇒ (i ∈ N1 and j ∈ N2) or (i ∈ N2 and j ∈ N1) .

An interaction graph is non-bipartite on a set A if for all x ∈ A, G(x) is said to be

non bipartite.

Finally, we will deal with games where Nash equilibria (henceforth, NE) are not

necessarily isolated. We will therefore consider connected components of NE:

Definition 2 Let Λ be a compact connected subset of NE and let N δ(Λ) := {y ∈ X :

d(y,Λ) < δ}. We say that Λ is a connected component of NE if there exists δ > 0

such that N δ(Λ) ∩NE = Λ.

Obviously, an isolated equilibrium is a (trivial) connected component. In what

follows we will refer to connected components only when dealing with non-trivial

connected components.

2.2 The Learning Process

We consider a payoff-based learning process in which agents construct a partial ap-

proximation of the gradient of their own payoff functions by exploring the effects of
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deviating in one direction that they chose at random at every period. This infor-

mation allows agents to choose a new action depending on what they just learned

from the exploration stage. Here we present the simplest version of the DGAP, while

in fact our results hold for a family of learning rules. We discuss what features are

essential, why they are essential, and what can be generalized in Section 6.

The Dampened Gradient Approximation Process (DGAP)

• At the beginning of round n, agent i is playing action xin := ei2n and is enjoying

the associated payoff ui(e
i
2n, e

−i
2n). Player i then selects his actions ei2n+1 and

ei2n+2(= xin+1) as follows.

• Exploration stage - Player i plays a new action ei2n+1, chosen at random around

his current action ei2n. Formally, let (εin)n be a sequence of i.i.d random variables

such that P(εin = 1) = P(εin = −1) = 1/2. At period n, εin is drawn and player

i plays

ei2n+1 := ei2n +
1

n+ 1
εin

• Updating stage - Player i observes his new payoff, and computes

∆uin+1 := ui(e
i
2n+1, e

−i
2n+1)− ui(ei2n, e−i2n)

. This quantity provides i with an approximation of his payoff function’s gra-

dient. Using this information, player i updates his action by playing

ei2n+2 := ei2n + εin∆uin+1e
i
2n

Thus, when ∆uin+1 is positive, player i follows the direction that he just ex-

plored, while he goes in the opposite direction when ∆uin+1 is negative.2

• Period n ends. We set xin+1 := ei2n+2 and agent i gets the payoff ui(e
i
2n+2, e

−i
2n+2).

Round n+ 1 starts.

2Note that the payoff difference is multiplied by ei2n. This is how actions are dampened close

to the boundary, where variations can only be small. This specific dampening method is just one

example out of many possibilities, which we discuss in Section 6. Note also that if one wishes to

extend our analysis to compact subsets of R+ instead of R+, it would be necessary to dampen

movements when approaching the upper boundary. For simplicity, in this paper we only consider

the lower boundary.
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Let xn = e2n and Fn be the history generated by {e1, ..., e2n+1}. Studying the

asymptotic behavior of the random sequence (en)n amounts to studying the sequence

(xn)n. Hence the focus of this paper is on the convergence of the random process

(xn)n.

The next proposition shows that the process is well-defined, in the sense that it

always remains within the admissible region (i.e. actions stay positive). It also proves

that the DGAP is a discrete time stochastic approximation process.

Proposition 1 Assume xi0 > 1 for all i. Then the iterative process is such that

xin > 0 for all i.3 It can be written as

xn+1 = xn +
1

n+ 1
(F (xn) + Un+1 + ξn+1) , (1)

where

(i) F (x) = (Fi(x))i with Fi(x) = xi
∂ui
∂xi

(xi, x−i),

(ii) Un+1 is a bounded martingale difference (i.e E (Un+1 | Fn) = 0),

(iii) ξn = O(1/n).

All our proofs are in the appendix.

The iterative process (1) is a discrete time stochastic process with step 1
n+1

. If

there were no stochastic term, the process (1) would write

xn+1 = xn +
1

n+ 1
F (xn),

which corresponds to the well-known Euler method, a numerical procedure for ap-

proximating the solutions of the deterministic ordinary differential equation (ODE)

ẋ = F (x) (2)

3The assumption that xi
0 > 1 is made just for convenience. We could in fact assume xi

0 to be

arbitrary, in which case we must make sure that players stay in the positive orthant after the first

exploration stage. Actions could be negative after the first step (e1 < 0), only because the first

step is large (n = 1, so 1/n = 1). In order to avoid that, we can either assume that xi
0 > 1 (i.e.

players start far enough from the boundary), or that the process begins with a step small enough, for

instance n ≥ mini{E(1/xi
0)}+ 1, where E(a) is the integer part of a. In any case, this is innocuous

for what we do and guarantees that e1 > 0.
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or, in our case:

ẋi = xi
∂ui
∂xi

(x)

Although the (stochastic) process (1) differs from the (deterministic) process (2)

because of the random noise, the asymptotic behavior of (2) will inform us on the

asymptotic behavior of (1).4

2.3 Limit sets

The focus of this paper is on the asymptotic behavior of the random process (xn)n.

Hence we are interested in its limit set.5

Definition 3 (Limit set of (xn)n) Given a realization of the random process, we

denote the limit set of (xn)n by

L ((xn)n) := {x ∈ X; ∃ a subsequence xnk
such that; xnk

→ x}. (3)

Note that the limit set of the learning process is a random object, because the

asymptotic behavior of the sequence (xn)n depends on the realization of the random

sequence (εn)n, drawn at every exploration stage.

Proposition 1 allows us to make use of stochastic approximation theory, which

provides a characterization of the set of candidates for L ((xn)n) (see Benäım [1996]

and Benäım [1999] for an exact characterization). This set notably includes the zeroes

of F and the ω-limit set of any point x:

Definition 4 (ω-limit set of ẋ = F (x)) Let x ∈ X. Let ϕ(x, t) denote the flow of

F (.), i.e. the position of the solution of (2) with initial condition x, at time t.6 Then,

the ω-limit set of x is given by

ω(x) := {z ∈ X; lim
k→∞

ϕ(x, tk) = z for some tk →∞}
4Stochastic approximation theory (see Benäım [1996] or Benäım [1999] for instance) states that,

as periods unfold, the random process gets arbitrarily close to the solution curve of its underlying

dynamical system. In other words, given a time horizon T > 0 - however large it might be - the

process shadows the trajectory of some solution curve between times t and t + T with arbitrary

accuracy, provided t is large enough.
5In the remainder of the paper, we will always place ourselves on the event {lim supn ‖xn‖ <

+∞}, i.e. we will abstract from the possible realizations which take the process to infinity.
6Notice that by the regularity assumption on u(.), F satisfies the Cauchy-Lipschitz condition

that guarantees that, for all x ∈ X, ϕ is well-defined and unique. We consider the restriction of ϕ

on X(= RN
+ ), since X = RN

+ is invariant for its flow, and our random process (1) always remains in

the positive orthant.
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However, several difficulties remain: first, there might be other candidates that

are not ω-limit sets of the underlying ODE. For instance, any continuum of equilibria

is a candidate. Moreover, this theory does not provide general criteria to exclude any

of these candidates, nor to confirm that they are indeed equal to L ((xn)n). For a

given game, making precise statements thus requires to determine the entire set of

candidates, and to be able to exclude those which are not relevant.

The stationary points of the dynamical system (2) are particular ω-limit sets that

will be of interest to us, as they contain all the Nash equilibria of the underlying

game. The set of stationary points, denoted Z(F ), will be called the zeros of F :

Z(F ) := {x ∈ X;F (x) = 0}. For convenience, we drop the reference to F and simply

write Z.

Observe that Fi(x) = xi
∂ui
∂xi

(x). Thus,

x ∈ Z ⇐⇒ ∀i ∈ N ,
(
xi = 0 or

∂ui
∂xi

(xi, x−i) = 0

)
while x ∈ NE ⇐⇒ ∀i ∈ N ,

(
∂ui
∂xi

(xi, x−i) = 0, or xi = 0 and ∂ui
∂xi

(xi, x−i) ≤ 0
)

.

This implies that all the Nash equilibria of the game are included in the set of zeros

of F . Unfortunately, Z contains more than the set of Nash equilibria. We call

x ∈ Z \ NE an other zero (OZ) of the dynamical system: OZ = {x : F (x) =

0 and ∃i s.t. xi = 0, ∂ui
∂xi

(x) > 0}.
We have the following partition of F:

Z = NE ∪OZ. (4)

Note that ∂X might contain some points in NE, however OZ ⊂ ∂X.

Convergence or non-convergence of our random process to a given point or set

will sometimes depend on the stability of the latter with respect to the deterministic

dynamical system ẋ = F (x). We now recall the definitions of some stability notions

that we will use.

Let x̂ ∈ Z. The point x̂ is asymptotically stable (denoted by x̂ ∈ ZAS) if it

uniformly attracts an open neighborhood W of itself: limt→+∞ supx∈W ‖ϕ(x, t)−x̂‖ =

0, where ϕ(x, t) denotes the flow of F (·). The point x̂ is linearly stable (denoted by

x̂ ∈ ZLS) if for any λ ∈ Sp(DF (x̂)) - where DF (x̂) is the Jacobian matrix of F

evaluated at x̂ and Sp(M) is the spectrum of matrix M - we have Re(λ) < 0, where
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Re(a) is the real-part of number a; and x̂ is linearly unstable (denoted by x̂ ∈ ZLU)

if there exists λ ∈ Sp(DF (x̂)) such that Re(λ) > 0. Note that if x̂ is hyperbolic

(that is Re(λ) 6= 0 for any λ ∈ Sp(DF (x̂))) then it is either linearly stable or linearly

unstable. Note also that linear stability and instability are defined on Int(X) only,

that is ZLS, ZLU ⊂ Zint := Int(X) ∩ Z. In our terminology a zero is stable if

either it is asymptotically stable or if it is interior and not linearly unstable: let

ZS := (Zint \ ZLU) ∪ ZAS be the set of stable zeroes.

We have the following inclusions:

ZLS ⊂ ZAS ⊂ ZS.

Proposition 2 Stable stationary points are necessarily Nash equilibria: ZS ⊂ NE.

The direct consequence of Proposition 2 is that if the limit set L ((xn)n) contains

stable stationary points, they must be stable Nash equilibria. Other zeroes are there-

fore discarded as stable stationary points. In the remainder, we will denote linearly

unstable Nash equilibria by NELU , and in view of Proposition 2, we will use the

following notations:

NELS := ZLS, NEAS := ZAS and NES := ZS

As mentioned earlier, we will sometimes be dealing with connected components of

NE instead of isolated points. We will thus use the concept of attractor (see Ruelle

[1981]). Let S be a compact subset of RN . Then S is invariant for the flow ϕ if it

remains in S forever from initial conditions in S, and every point in S is attainable

at any given time from another point in S. Formally, i) ∀x ∈ S, ∀t ∈ R, ϕ(x, t) ∈ S
and ii) ∀y ∈ S,∀t ∈ R, there exists x ∈ S such that ϕ(x, t) = y.

Definition 5 Let S ⊂ X be invariant for the flow ϕ. Then a set A ⊂ S is an

attractor for ẋ = F (x) if

(i) A is compact and invariant;

(ii) there exists an open neighborhood U of A with the following property:

∀ε > 0, ∃T > 0 such that ∀x ∈ U, ∀ t ≥ T, d(ϕ(x, t), A) < ε.

An attractor for a dynamical system is a set with strong properties: it uniformly

attracts a neighborhood of itself.

Remark 1 Let x̂ ∈ Z be an isolated stationary point of ẋ = F (x). Then x̂ is

asymptotically stable if and only if {x̂} is an attractor for ẋ = F (x).
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In the next sections we will establish results on the behavior of the limit set of

(xn)n for large classes of games. However, we can always discard convergence to

undesirable zeroes of the dynamics:

Theorem 1 Let G be a game satisfying Assumption 1 and 2. Then:

(i) P (limn xn = x̂) > 0 implies x̂ ∈ NE

(ii) If x̂ ∈ NELU , and G(x̂) is non-bipartite, then P (limn xn = x̂) = 0

If the process converges to a point, then only stationary points (i.e. points in Z)

are candidates. Therefore, the proof of point i) consists in showing that if x̂ ∈ OZ,

then P (limn xn = x̂) = 0. We use a probabilistic argument. We show that in OZ,

the players who are playing 0 although they have a strictly positive gradient will,

in expectation, increase their action level as they approach the boundary. This is of

course a contradiction.

Notice that (i) does not imply that if x̂ ∈ OZ, then x̂ /∈ L ((xn)n), since L((xn)n)

may include connected components of zeroes which contain x̂. Indeed, in games with

continuum of equilibria, we cannot exclude the possibility of our learning process

getting arbitrarily close to elements of the set of other zeros. More precisely, there

is no a priori reason to believe that the learning process will converge (to a point)

when zeros of the dynamical system are connected components. If it does not, then

the process could come arbitrarily close to a continuum of NE that is connected to

a continuum of OZ, and oscillate between the two. However, theorem 1 says that

when it does converge to a point, it is necessarily to a Nash equilibrium.

The proof of point (ii) uses dynamical systems arguments. It involves several

ideas which we describe here, since they will be useful in the next sections. First

we discuss how we can discard convergence to unstable Nash equilibria; second we

discuss the non-bipartiteness condition. The point x̂ is a linearly unstable Nash

equilibrium if there is some direction (associated with the positive eigenvalue) in

which the dynamical system (2), if pushed that way, will ”escape”. Yet, although

linearly unstable, x̂ is still a stationary point. This is where the noise component Un+1

of the random process (1) plays an important role. While the deterministic system

could get stuck at x̂, the random noise will push the system in random directions

around x̂ and eventually in the unstable direction, allowing the system to escape.

The details are provided in the appendix with the proof of theorem 1.

However, for this to happen, a sufficient condition is that the random noise is able

to push the system in every direction around x̂. This is where the non-bipartiteness
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condition, together with Assumption 2 (symmetric externalities), comes into play. As

we detail in the proof, the random noise can always push the system in any direction,

say v, except if every pair of connected agents moves in opposite directions from each

other (i.e. sgn(vi) = −sgn(vj)). When that happens, the noise vanishes and the

system might get stuck. However, this can only occur when the interaction graph

G, evaluated at x̂, has no odd cycles (i.e. bipartite graphs). It cannot happen as

long as the graph has one odd cycle. To see this, take the case of three agents linked

together in a triangle. It is not possible to construct a vector v such that for every

pair of players i and j, sgn(vi) = −sgn(vj).

Note that theorem 1 does not say that the process will converge to an unstable

Nash equilibrium if the graph is bipartite. However, we provide an example in the

appendix (Example A.1) in which we show that the noise vanishes on a bipartite

network (a pair) in a game with symmetric externalities.

We now turn to the analysis of several classes of games.

3 Strategic complements

In this section, to avoid unnecessary complexity we assume that the interaction graph

is constant (i.e. ∀x, gij(x) = 1 or ∀x, gij(x) = 0) and connected.

Definition 6 A game G is a game with strategic complements if payoff functions are

such that for all i, j ∈ N , gij = 1⇐⇒ ∂2ui
∂xi∂xj

(x) > 0.

Games with strategic complements have nice structured sets of Nash equilibria

(Vives [1990]), and offer nice convergence properties for specific dynamical systems.

However, it can be difficult to obtain convergence to Nash for general learning proce-

dures. There are several reasons for this that we illustrate here through two examples.

First, consider the Best-Response dynamics. Under Assumption 1, best-response

functions are differentiable and strictly increasing. In that case, Vives [1990] proves

in Theorem 5.1 and Remark 5.2 that, except for a specific set of initial conditions, the

Best-Response dynamics, whether in discrete or in continuous time, monotonically

converges to an equilibrium point. Unfortunately, in our case this set of problematic

initial conditions cannot be excluded, in particular because the process is stochastic.

It could be that the stochastic process often passes through these points, in which

case it is known to possibly converge to very complicated sets. In order to study
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convergence of the DGAP, we need to consider all possible trajectories and, to the

best of our knowledge, cannot rely on existing results.

Second, consider the standard reinforcement learning stochastic process, whose

mean dynamics are the replicator dynamics. As shown in Posch [1997], the process

can converge with positive probability to stationary points that are not only unsta-

ble, but also non-Nash. Examples can be constructed with 2 players, each having

2 strategies, supermodular payoff matrices with a unique strict Nash equilibrium,

which is, moreover, found by elimination of dominated strategies. Yet even then,

the learning process converges with positive probability to any other combination of

strategies. This happens because there are some stationary points of the dynamics

where the noise generated by the random process is null.

These two examples illustrate how, despite the games’ appealing properties, con-

vergence to Nash is neither guaranteed nor easy to show when it occurs.

Because we are interested in the behavior of the DGAP, in particular if it allows

for convergence to Nash, we distinguish two cases. Either the game has some Nash

equilibrium on the boundary, or all equilibria are interior. In the first case, theorem

1 already guarantees that if the process converges to a point on the boundary, that

point is a Nash equilibrium. However, when it does not converge to a point but to a

set, there is not much we can predict, except that convergence to Nash is not à priori

excluded.

The second case is trickier. If all equilibria are interior, and since the boundary

always contains other zeroes which are stationary points (and thus natural candidates

for the limit set of the process), it could be the case that the process goes to the

boundary and therefore never goes to the set of Nash equilibria. In fact, we prove

that this is not the case, and even more, we prove that convergence to Nash occurs

with probability 1.

This result is difficult to obtain, because of the following: assume players start

close to the boundary. Then, at the exploration stage, some decrease their efforts

while others increase theirs. Although complementarities imply that the players who

decreased their efforts would have been better-off if they had instead increased them,

they could still end up with a better payoff than before the exploration, and thus

continue decreasing at the updating stage, getting closer to ∂X. We show that this

cannot happen.

In order to place ourselves in this second case, we make the mild assumption that

the origin is repulsive.
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Assumption 3 For any agent i,

∂ui
∂xi

(0, 0) > 0.

Because of strategic complementarities, a direct consequence of assumption 3 is

that all Nash equilibria are interior, since ∂ui
∂xi

(0, x−i) >
∂ui
∂xi

(0, 0).

The following proposition proves that the process will stay away from the bound-

ary in the long run.

Proposition 3 Under Assumption 3, there exists a > 0 such that L((xn)n) ⊂
[a,+∞[N almost surely.

From the mathematical point of view, the major problem to obtain Proposition 3 is

to show that a stochastic approximation algorithm like the one given by (1) is pushed

away from an invariant set for F where the noise term vanishes. In fact, there is no

general result along these lines in the literature.

The proof of Proposition 3 is technical, but the idea goes as follows: among

the players close to the boundary, the player exerting the least effort will increase

his effort on average. Unfortunately, this does not imply that the smallest effort

also increases, since another player may have decreased his. We thus construct a

stochastic process which is a suitable approximation of the smallest effort over time.

We then show that this new process cannot get close to the boundary, and because

it is close asymptotically to our process, we are able to conclude.

We are now ready to state the main result of this section.

Theorem 2 Consider a game of strategic complements satisfying assumptions 1, 2

and 3, and assume the interaction graph is non-bipartite on Int(X). Then the learning

process (xn) almost surely converges to a stable Nash equilibrium:

P
(
∃x∗ ∈ NES : lim

n
xn = x∗

)
= 1.

This theorem guarantees that the learning process will not only converge to Nash

in most cases, it will additionally converge to a stable equilibrium. This result is very

tight. It is also positive, since the hypotheses of the theorem are verified for most

common economic models we can think of. In cases where the interaction graph is

bipartite, we cannot guarantee that the process will not converge to general unstable

sets.7

7Linearly unstable equilibria are unstable sets, but unstable sets also include much more complex

structures.
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Note that the graph being bipartite does not imply that the process will not

converge to an element of NES. However, we provide (Examples B.1 and B.2) in

which we show that the noise can vanish on bipartite networks in games that have

either no strategic complements or no symmetric externalities. In our examples the

noise vanishes at unstable equilibria.

However, we can still exclude convergence to linearly unstable equilibria. If the in-

teraction graph is non-bipartite, then theorem 1 applies. With strategic complements

we show that the non-bipartiteness condition is not necessary.

Proposition 4 Consider a game of strategic complements satisfying assumptions 1,

2 and 3. The learning process (xn) cannot converge to an unstable Nash equilibrium:

∀ x̃ ∈ NELU , P
(

lim
n
xn = x̃

)
= 0.

4 Locally ordinal potential games

We introduce a class of games that we call the locally ordinal potential games. Recall

that a game G is a potential game (PG) if there is a function P : X → R such that

for all x−i ∈ X−i, for all xi, x
′
i ∈ Xi, we have ui(xi, x−i) − ui(x′i, x−i) = P (xi, x−i) −

P (x′i, x−i), and an ordinal potential game (OPG) if ui(xi, x−i)− ui(x′i, x−i) > 0 ⇐⇒
P (xi, x−i)− P (x′i, x−i) > 0.

Definition 7 A game G is a locally ordinal potential game (LOPG) if there is a

differentiable function P : X → R such that

sgn

(
∂ui
∂xi

(x)

)
= sgn

(
∂P

∂xi
(x)

)
The class of LOPG is large, in the sense that PG ⊂ OPG ⊂ LOPG when P is

differentiable, and it contains many games of economic interest.

The generality of our results depends on the structure of the set of stationary

points of the game under consideration, and in particular on whether it consists of

isolated points or not.

Theorem 3 Let G be an LOPG satisfying Assumption 1 and 2, and assume P is

sufficiently regular.8 Then

8We will use Sard’s theorem in the proof. This theorem requires, in our setting, that P is CN

where N is the number of agents. Usually, potential functions in economics are C∞.
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(i) P (L(xn)n ⊂ Z) = 1.

(ii) If G has isolated zeros, then

P
(
∃ x∗ ∈ NE : lim

n
xn = x∗

)
= 1.

If, in addition, the interaction graph is non-bipartite on NE, then

P
(
∃ x∗ ∈ NES : lim

n
xn = x∗

)
= 1.

For any LOPG, the only set to which the stochastic learning process can converge

is the set of zeros of F . Complex ω-limit sets of the dynamical system, which are

non-zeros, can be discarded (point (i)). We cannot, however, be sure that the process

will not reach a set containing other zeros, thus we cannot guarantee convergence to

the set of Nash equilibria. When zeros are isolated (point (ii)), however, convergence

to Nash is proved by the conjunction of the first point and point (i) of Theorem

1. The addition to Theorem 1 here is that we can guarantee that the process will

converge, while in Theorem 1 it was an assumption. The last statement is then a

direct consequence of point (ii) of Theorem 1.

When zeros are non-isolated, we cannot guarantee that the DGAP will converge

to a stable set. We can use Benäım [1999] to show that P (L(xn)n ⊂ A) > 0 on the

event {x0 ∈ B(A)}, for any attractor A of the ODE (2), where B(A) is the basin of

attraction of A. Combining this observation with point (i) of Theorem 3, we get the

following important implication: if a connected set Λ is an attractor for ẋ = F (x),

then Λ is a connected component of Z.

However, when focusing on LOPGs, more can be said, since we are able to relate

attractors of the dynamics to the potential function P , and to another dynamical

system, extensively used in economics: Best-Response Dynamics (BRD).

Definition 8 Let BR : X → X, x 7→ BR(x) := (BR1(x−1), ...,BRn(x−n)). The

continuous-time Best-Response dynamics (thereafter, BRD) is defined as:

ẋ = −x+ BR(x) (5)

Definition 9 Let P be a smooth map and Λ be a connected component of Z, we say

that Λ is a local maximum of P if

(i) P is constant on Λ: P (x) = v, ∀x ∈ Λ;
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(ii) there exists an open neighborhood U of Λ such that P (y) ≤ v ∀y ∈ U

We then have

Theorem 4 Assume G is an LOPG and let Λ be a connected set. Then the following

statements are equivalent

(i) Λ is an attractor for ẋ = F (x)

(ii) Λ is a local maximum of P

(iii) Λ ⊂ NE and Λ is an attractor for the Best-Response dynamics ẋ = −x+BR(x).

This result is positive and informative. First, it tells us that attractors are nec-

essarily included in the set of Nash equilibria. Thus, although the process might

converge to other zeros when stationary points are non-isolated, these points are

unstable.

Second, Theorem 4 provides two methods of finding the attractors: one way is to

look for local maxima of the potential function, which is very convenient when the

function P is known; and the other is to look for attractors for another dynamical

system, possibly simpler to analyze, the BRD. Note that this second method estab-

lishes a relation between two dynamics that are conceptually unrelated. Indeed, the

BRD assumes that agents are very sophisticated, as they know their exact payoff

function, they observe their opponents’ play and perform potentially complex com-

putations. Solution curves may be very different, but surprisingly, both dynamics

share the same set of attractors.

5 Concave games

Arrow and Hurwicz [1960] and Rosen [1965] have analyzed similar dynamical systems

in concave games. The first paper investigates a subclass of all games with payoff

functions that are concave in players’ own actions and convex in other players’ actions.

These games include the well-known class of zero-sum games. The authors then prove

global convergence of a continuous-time gradient system.

Rosen [1965] deals with concave games, and provides sufficient conditions for the

game to have a unique Nash equilibrium when the strategy space is compact and

convex: if there are some positive weights such that the weighted sum of the payoff
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functions is diagonally strictly concave, then the equilibrium of the game is unique.

Under that assumption, the author proves that a weighted gradient system globally

converges to this unique equilibrium.

We are interested in determining whether the DGAP also converges in these

games, but this raises several problems. First, we need to show that our deterministic

system (2) has the same good convergence properties as theirs. But this is not enough,

since our process is stochastic, unlike theirs. Second therefore, we need to show that

the limit set of the stochastic process (1) is included in the set of stationary points

of the dynamical system (2) for these games. Last, the games considered in Arrow

and Hurwicz [1960] sometimes have continua of equilibria. For instance, in zero-sum

games, the set of equilibria is known to be convex. To avoid this issue, we maintain

the concavity condition on the payoff functions but we require that at least one

player’s payoff function is strictly concave in own action.

Suppose that ui is concave in xi for every i. Following Rosen (1965), given r ∈
(R∗+)N and x ∈ X, let g(x, r) ∈ RN be given by9 gi(x, r) = ri

∂ui
∂xi

. A game is diagonally

strictly concave if

∃r ∈ (R∗+)N | ∀x0 6= x1 ∈ X we have
〈
x1 − x0, g(x0, r)

〉
+
〈
x0 − x1, g(x1, r)

〉
> 0

(6)

Games having this property are denoted by GRos. It is proved (Theorem 2 of Rosen

[1965]) that games in GRos have a unique Nash equilibrium when the state space is

compact. In our context, where the state space is unbounded, they may have none.

Games considered by Arrow and Hurwicz [1960] (which we call concave-convex

games, and denote by GArr) are as follow. Let S be a subset of N , the set of players,

and define fS =
∑

i∈S ui −
∑

i∈N\S ui. A game is concave-convex if a) for each

S ⊆ N , the function fS(xS, xN\S) is concave in xS for each xN\S and convex in xN\S

for each xS, and b) for some S0 ⊆ N , fS
0
(xS

0
, xN\S

0
) is strictly concave in xS

0
for

each xN\S
0
. If in addition ui is strictly concave in xi, then we say that the game is

strictly concave-convex.

Remark 2 Stricly concave-convex games are diagonally strictly concave, i.e. GArr ⊂
GRos. Thus all properties of the later apply to the former. A proof is provided in the

appendix.

9The dynamical system ẋ = g(x, r) is a weighted gradient system, and is significantly different

from the system (2)
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When the strategy space X is unbounded as in this paper, there might be a unique

Nash equilibrium, or none. In the next result, we show that in the later case, the

process would go to infinity, while when the Nash equilibrium is unique, we show that

the set of other zeroes is finite, and therefore isolated. By Theorem 1, this guarantees

that our process converges to the Nash equilibrium with probability 1.

Theorem 5 Let G ∈ GRos. Then,

(i) Z is a finite set

(ii) If G has a Nash equilibrium x̄, it is unique and

P(lim
n
xn = x) = 1.

(iii) If G has no Nash equilibrium, then

P(lim sup
n
||xn|| = +∞) = 1.

The proof of the first point goes as follows: we prove that games in GRos are such

that, after removing a subset of players playing 0, the remaining subgame is also

in GRos. Thus there is at most one Nash equilibrium for any combination of agents

playing 0. The number of such potential combinations is finite, so the result follows.

In order to prove the second point of Theorem 5, we show that the zeros of

(2) are the only candidates for limit points of our process. We cannot do this in

general games with isolated zeros, but in diagonally strictly concave games we can,

by decomposing the state space into several subspaces (respectively, the interior of

the space and every face) and constructing appropriate Lyapunov functions for each

subspace. As a consequence, we prove that every solution of (2) converges to one of

the zeros. Since zeros are the only candidates, we get the desired conclusion by using

Theorem 1.

6 Generalization of the process

We discuss how the DGAP can be extended or generalized along several directions.

The DGAP described in section 2.2 has the following characteristics:

C1- Agents all move simultaneously at every period
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C2- At the exploration stage players explore upwards and downwards with equal

probability

C3- The step size at period n is 1
n+1

C4- At the updating stage the payoff difference ∆un+1
i is multiplied by eni

For our proofs to work, C1 can be totally relaxed, C3 and C4 can be modified

and generalized, but not relaxed, while C2 is necessary.

6.1 C1

Simultaneous exploration is not necessary. We can instead assume that at each period

any arbitrary subgroup of players experiments and updates. Formally, let (I(n))n be

a sequence of random variables taking values in P(N), the power set of N . Consider

the following modified learning process:

• At the beginning of round n, I(n), a given subset of players is drawn.

• Exploration stage

ei2n+1 =

{
ein + 1

n+1
εin if i ∈ I(n)

ei2n if i /∈ I(n)

• Updating stage

ei2n+2 =

{
ei2n + εin∆uin+1e

i
2n if i ∈ I(n)

ei2n if i /∈ I(n)

A sufficient condition for our results to hold is that (I(n))n is an i.i.d. sequence, such

that the events {i ∈ I(n)}i∈N are mutually independent, and

P(i ∈ I(n)) = pi > 0.

The case presented in the paper satisfies these conditions, with P(i ∈ I(n)) = 1 for

all i.

Now we show that all the processes with players’ selection device satisfying these

conditions share the same features as the DGAP. Pick i ∈ N and let χin = 1 if

i ∈ I(n), and 0 otherwise. We have

xin+1 − xin = xinε̃
i
n

[
ui

(
xin +

1

n+ 1
ε̃in, x

−i
n +

1

n+ 1
ε̃−in

)
− ui(xin, x−in )

]
,
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where ε̃in := χinε
i
n. The first order development now gives

xin+1 − xin = ε̃inx
i
n

(
1

n+ 1
ε̃in
∂ui
∂xi

(xn) +
∑
j 6=i

1

n+ 1
ε̃jn
∂ui
∂xj

(xn) +O(1/n2)

)
.

We have (taking the right filtration (Fn)n):

E
[
ε̃inε̃

j
n | Fn

]
= 0; E

[
(ε̃in)2 | Fn

]
= P (i ∈ I(n) | Fn)

As a consequence

E
[
xin+1 − xin | Fn

]
=

P(i ∈ I(n) | Fn)

n+ 1
xin
∂ui
∂xi

(xn)

We get the following continuous-time dynamical system as the mean dynamics of

our new system:

ẋ = F (x) where Fi(x) = pix
i∂ui
∂xi

(xn)

which shares the same asymptotic behavior as the system analyzed in the paper.

6.2 C2

At the exploration stage we assume that players increase their actions by 1
n+1

with

probability 1
2

and decrease them by 1
n+1

with probability 1
2
. What matters in fact

is that E(Un+1|Fn) = 0 and supn E(U2
n+1|Fn) < +∞ in order to write the stochastic

difference equation as the sum of a deterministic term and a random component

whose first order term is null in average with bounded variance, which is critical to

use stochastic approximation methods. As can be seen from the proof of Proposition

1, any probability distribution satisfying E(εin) = 0 and supn E((εin)2) < +∞ for all i

would work.

6.3 C3

The amplitude with which explorations are made by players is given by the sequence

( 1
n
)n. In fact, it could be any sequence (αn)n such that∑

k

αk =∞ and lim
n→∞

αn = 0

which ( 1
n
)n naturally satisfies.
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It is important that the sum diverges, to guarantee that the process does not get

”stuck” anywhere, unless agents want to stay where they are. Further, it is important

that the terms go to zero, so that the process can ”settle” when agents want to.

We could also consider a family of sequences, differing for each individual, as long

as they go to zero ”at the same rate”; i.e. for all pair of players (i, j), limn→∞ α
i
n/α

j
n =

kij where kij > 0 is a constant.

6.4 C4

The variation in payoffs after an exploration stage (∆uin+1) is multiplied by e2ni = xni

at the updating stage. This results in the updating stage being written

xn+1
i − xni = εni ∆uin+1x

n
i (7)

leading to the dynamical system ẋi = xi
∂ui
∂xi

, where the xi term comes from this

multiplication by xni . Multiplying by xi prevents the players from playing 0, by

dampening the variations in their actions as they get closer to 0.

It is not necessary that every agent smooths their behaviors in that way. What

we need is that the variation in actions between two steps are multiplied by some

fi(xi), potentially different for every agent, with fi is a weakly decreasing Lipschitz

function, strictly decreasing around 0 and such that fi(0) = 0. This is to prevent

players from playing 0, in a smooth way.

Choosing fi(xi) = xi for any i is one possibility, but there are many others. For

instance, fi(xi) = min{s, xi} where s > 0 is one, where the increments’ amplitudes

depend on the current action only when close to 0 but does not depend on the current

action otherwise.

Regardless of the choice for fi(.), this term implies that other zeroes are stationary

points of the dynamical system, which in turn implies that we need to take care of

the set OZ in every section of the paper.

If we did not dampen actions around 0, the discrete-time system would be instead

xn+1
i − xni = εni ∆uin+1

and actions could become negative at the updating stage. Thus one needs to make

precise what the algorithm does when this happens. With gradient-type algorithms,

there are essentially two ways to deal with this. The first one is to set actions to 0

when they should have become negative (i.e. actions are defined as max{xi, 0}). The
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second way is to define the algorithm in such a way that actions remain positive. We

followed this second option.

There are two reasons for choosing this second option. First, in order to use

stochastic approximation theory, it is necessary that the first order term of the noise

is mean zero. If players played 0, they could not explore downwards and exploration

would no longer be mean zero. The following example illustrates why this might

cause serious problems.

Consider the two players game with payoffs{
u1(x1, x2) = x1 − 1

2
x21 − 2x2

u2(x1, x2) = x2 − 1
2
x22 − 2x1

The unique Nash equilibrium is (x1, x2) = (1, 1). Assume that players get to (0, 0) at

period n, where they can only explore upwards. At the exploration stage they play

e2n+1
1 = e2n+1

2 = 1
n+1

, and get u1(
1

n+1
, 1
n+1

) = u2(
1

n+1
, 1
n+1

) < 0. Thus xn+1
i is set to 0,

and players are trapped at (0, 0).

The multiplication by f(xi) guarantees that players will not play 0 and, although

this does not artificially prevent them from converging to (0, 0), it will help avoid

such situations. Indeed, in this example our process will converge to the unique Nash

equilibrium (1, 1) with probability one, instead of remaining trapped at (0, 0). To see

why players will converge to (1, 1), observe that this game is a potential game, with

P (x1, x2) = x1 − x21/2 + x2 − x22/2. There are exactly 4 zeroes with (0, 0), (1, 0) and

(0, 1) being other zeroes. Theorem 3 (ii) proves convergence to (1, 1).

The second for this choice is that projecting non admissible actions onto the fea-

sible set by setting actions to max{xi, 0} models a somewhat discontinuous behavior.

There are smoother ways of preventing actions from leaving the feasible set, one of

which is to multiply actions by xi as we do in equation (7). Interestingly, we can

point out a parallel between our choice of multiplying by xi and some well-known

methods from the convex optimization literature10, as we explain now.

The standard (projected) gradient method is defined as:{
yn+1 = xn + αt∇f(xn)

xn+1 = ΠK(yn+1)

where f is the concave function which has to be maximized, xn is the vector of

actions at step n, constrained to belong to some closed convex set K (R+ in our

10For modern applications of these procedures, see for instance Hazan [2016].
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case). Here yn can be interpreted as the vector of unconstrained actions (the actions

that players would choose if they had no constraints), αn is the step size, and ΠK(·)
is the projection operator onto K. Another idea is to consider the dual averaging

algorithm based on the well-known Mirror Descent algorithm,11 where a primal-dual

procedure is considered: {
yn+1 = yn + αn∇f(xn)

xn+1 = QK(yn+1),

with QK(y) = argmax{〈y, x〉 − h(x) ; x ∈ K}, where h is a strongly convex regu-

larizing function on K. The map QK is called a mirror map, since it mirrors dual

variables (gradients) onto primal variables.

Although our learning process is not related to these optimization procedures, the

parallel is the following: our discrete learning algorithm induces an algorithm which

is asymptotically equivalent to a (multi-agent) dual averaging procedure, associated

to an entropic-like regularizing function h on K = RN
+ . So multiplying by xi is “as

if” we were pseudo-projecting actions in a specific way.

11See Nesterov [2009] and Mertikopoulos and Zhou [2019] for recent applications in game theory.
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Appendix

A Proof of results of Section 2

A.1 Proof of Proposition 1

We first prove that the process can be written as in equation (1). Second we prove

that the process is well-defined, i.e. xin > 0 for all i and all n.

We have, for any i ∈ N ,

ei2n+2 − ei2n = ei2nε
i
n∆uin+1

A first order development gives

εin∆uin+1 = εin

(
ui

(
ei2n +

1

n+ 1
εin, e

−i
2n +

1

n+ 1
ε−in

)
− ui(ei2n, e−i2n)

)
=

1

n+ 1
(εin)2

∂ui
∂xi

(e2n) +
1

n+ 1
εin
∑
j 6=i

εjn
∂ui
∂xj

(e2n) +O(
1

n2
)

Because (εin)2 = 1 and xn = e2n, we have

xin+1 − xin =
1

n+ 1
xin
∂ui
∂xi

(xn) +
1

n+ 1
εinx

i
n

∑
j 6=i

εjn
∂ui
∂xj

(xn) +O(
1

n2
)

By setting U i
n+1 = εinx

i
n

∑
j 6=i ε

j
n
∂ui
∂xj

(xn), we get equation (1). Finally, note that

E (εjn) = 0 for all j, and that εin and εjn are independent, so that

E (Un+1 | Fn) = 0. �

Let us now show that the process is well-defined. Notice that Assumption 1 implies

that Dui is bounded everywhere. For simplicity and without loss of generality, we

will assume that |ui(x) − ui(x′)| < ‖x − x′‖∞. This is just for simplicity, the proof

can easily be accommodated otherwise. Thus, for n ≥ 0,

xin+1

xin
≥ (1− ‖e2n+1 − xn‖∞),

and |ei2n+1 − xin| ≤ 1
n+1

for all i. As a consequence,

xin+1

xin
≥ (1− 1

n+ 1
).
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Thus, xi1 ≥ 0 and

xin ≥ xi1

n−1∏
k=1

(
1− 1

k + 1

)
=

1

n+ 1
xi1 ≥ 0.

�

A.2 Proof of Proposition 2

Pick x̂ ∈ OZ and assume without loss of generality that x̂1 = 0 with ∂u1
∂x1

(x̂) = 2α > 0.

Then there exists ε > 0 such that, for any x ∈ B(x̂, ε) we have ∂u1
∂x1

(x) ≥ α. This

implies that

ẋ1 ≥ αx1, ∀x ∈ B(x̂, ε).

By standard arguments, this implies that x̂ is not asymptotically stable. �

A.3 Proof of Theorem 1

Proof of Theorem 1 (i). Pick an x̂ ∈ OZ and let us fix i ∈ {1, . . . , N} such that

x̂i = 0 and ∂ui

∂xi
(x̂) > 0. Observe first that we can work on the event {supn→+∞ ‖xn‖ <

+∞} since, otherwise, there is nothing to prove.

Let us assume by contradiction that P (limn xn = x̂) > 0. By continuity and from

the fact that x̂ is an isolated point in OZ, there exists a neighborhood V of x̂ such

that ∂ui

∂xi
≥ η > 0 for all x ∈ V and we can choose k∗ ∈ N such that

P
(
{lim

n
xn = x̂} ∩ {xn ∈ V , for all n ≥ k∗}

)
> 0.

Let Ũ i
n+1 = εin

∑
j ε

j
n
∂ui
∂xj

(xn), so that

xin+1 = xin

(
1 +

1

n+ 1

(
∂ui
∂xi

(xn) + Ũ i
n+1 +

ξin+1

xin

))
.

Using a Taylor expansion and the fact that ξin = O( 1
n
) and xin ≥ 1/(n + 1) for n

sufficiently large, we obtain that

1

xin+1

=
1

xin

(
1− 1

n+ 1

(
∂ui
∂xi

(xn) + Ũ i
n+1

)
+ o

(
1

n

))
.

Using that, for n ≥ k∗,
∂ui
∂xi

(xn) ≥ η and E(Ũ i
n+1 | Fn) = 0, we obtain

E
(

1

xin+1

− 1

xin
| Fn

)
≤ − 1

xin
· 1

n+ 1
· η

2
≤ 0.
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Therefore, the random sequence (1/xin)n is a positive supermartingale. It then con-

verges almost surely to some random variable Y . However, on the event {limn xn =

x̂}, we have that xin tends to zero almost surely. These two convergence properties

are in contradiction and the conclusion follows. �

Proof of Theorem 1 (ii). Let us first recall some results on non convergence. Let

x̃ be a linearly unstable equilibrium. Assume without loss of generality that the

unstable space at x̃ is one-dimensional, that is DF (x̃) has only one eigenvalue µ with

positive real part, and call w the associated normalized eigenvector. We use a result

of Pemantle [1990] for the case of isolated stationary points, adapted by Brandiere

and Duflo [1996] to the case of connected components of stationary points. This

result states that a sufficient condition for non convergence to x̃ is that the noise is

exciting in the unstable direction, i.e.:

lim inf
n→+∞

E
(
〈Un+1, w〉2 | Fn

)
> 0 (8)

on the event {limn xn = x̃}. A sufficient condition for (8) to hold is

E
(
〈Un+1, v〉2 | xn = x̃

)
= 0 if and only if v = 0 (9)

Consider any xn and any vector v. Then

〈Un+1, v〉2 =

(∑
i<j

εinε
j
n

(
vix

i
n

∂ui
∂xj

(xn) + vjx
j
n

∂uj
∂xi

(xn)

))2

Using E (εinε
j
n) = 0 if i 6= j and (εin)2 = 1, we get

E
(
〈Un+1, v〉2 | xn

)
=

∑
i<j

(
vix

i
n

∂ui
∂xj

(xn) + vjx
j
n

∂uj
∂xi

(xn)

)2

(10)

By equation (10), we see that E (〈Un+1, v〉2 | xn = x̃) = 0 if and only if

∀i < j, vix̃
i ∂ui
∂xj

(x̃) + vjx̃
j ∂uj
∂xi

(x̃) = 0.

We now prove that under the assumption of symmetric externalities and non-bipartiteness

of the graph, this quantity is positive. Since the interaction graph is non bipartite in

x̃, there is at least one odd cycle. Let us assume, for simplicity but without loss of

generality, that this cycle is of length 3: there exist i, j, k such that gij = gik = gjk = 1

and
∂ui
∂xj

(x̃)
∂uj
∂xi

(x̃) > 0,
∂uj
∂xk

(x̃)
∂uk
∂xj

(x̃) > 0,
∂ui
∂xk

(x̃)
∂uk
∂xi

(x̃) > 0.
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We thus have sgn(vi) = − sgn(vj) = sgn(vk) = − sgn(vi) which implies that vi = vj =

vk = 0. As a consequence, for every agent l linked to i, j or k, we must have vl = 0.

Recursively, we must have v = 0, which concludes the proof. �

The next examples illustrates the fact that things can go wrong (meaning that

the noise condition might not hold) in games with symmetric externalities, when the

graph is bipartite.

Example A.1 Consider the following 2-player game

u1(x) = −1

2
x21 − 2x1x2 + 3x1

u2(x) = −1

2
x22 − 2x1x2 + 3x2

This game has symmetric externalities and its interaction graph is a pair, which is a

bipartite graph.

One can check that the profile x̂ = (1, 1) is a Nash equilibrium. Recalling that

Fi(x) = xi
∂ui
∂xi

, the Jacobian matrix associated to x̂ is

DF (x̂) =

(
−1 −2

−2 −1

)
,

which eigenvalues are −3 and 1. Thus this Nash equilibrium is linearly unstable.

However, the eigenspace associated to the positive eigenvalue is generated by v =

(1,−1) so that, on the event {limn xn = x̂}, we have

lim
n→+∞

E
(
〈Un+1, v〉2 | Fn

)
=

(
∂u1
∂x2

(x̂)− ∂u2
∂x1

(x̂)

)2

= 0

and the noise condition (8) does not hold.

B Proof of results of Section 3

B.1 Proof of Proposition 3

Under Assumption 3, for any i, there exists xi > 0 such that

∂ui
∂xi

(xi, 0) > αi > 0, ∀xi ≤ xi.
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Since the game has strategic complements,

∂ui
∂xi

(xi, x−i) > αi > 0, ∀xi < xi, ∀x−i ∈ X−i. (11)

As a consequence, any solution trajectory with initial condition in the set {x ∈ X :

xi ∈]0, xi[} is in the set {x ∈ X : xi > xi} after some finite time t > 0. Let

a = mini xi. Therefore any invariant set is contained either in [a,∞[N or in ∂X.

Thus, by the aforementioned result of Benäım (1999), we can conclude that

P
(
L((xn)n) ⊂ [a,∞[N

)
+ P (L((xn)n) ⊂ ∂X) = 1.

In what follows we will show that P (L((xn)n) ⊂ ∂X) = 0. The main idea is to

exploit the fact that the strategic complementarity condition implies that, if x ∈ ∂X
and for some coordinate xi = 0 then ∂ui

∂xi
(x) must be strictly positive (there is no Nash

equilibria on ∂X).

Remark 3 Three simple observations are in order.

(i) Condition (11) implies that if ∂ui
∂xi

(x) ≤ 0, then xi ≥ a.

(ii) If x ∈ X \ [a,+∞[N , the set of coordinates for which ∂ui
∂xi

(x) > 0, Ix, is always

nonempty. This is because if for all i ∈ {1, . . . , N}, ∂ui
∂xi

(x) ≤ 0 then x ∈
[a,+∞[N .

(iii) Moreover, also from (11), the coordinate k achieving the minimum value of a

vector x ∈ X \ [a,+∞[N verifies that ∂uk
∂xk

(x) > α, where α = mini αi > 0.

Therefore this particular k belongs to the set Ix.

Let d(x, ∂X) be distance for the infinity norm of x to ∂X, i.e. d(x, ∂X) = mini xi.

Let us take R > a and consider the sets UR:

and UR =

{
x ∈ X ;

∂ui
∂xi

(x) < 0⇒ −xi
∂ui
∂xi

(x) ≤ R

}
.

Observe that ∂X can be written as an increasing union of the form:

∂X =
∞⋃
R=1

(∂X ∩ UR) , (12)

In order to show that P (L((xn)n) ⊂ ∂X) = 0, it is sufficient to prove that P (L((xn)n) ⊂ ∂X ∩ UR) =

0, for all R > a. By contradiction, assume that there exists R > a such that
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P (L((xn)n) ⊂ ∂X ∩ UR) > 0 and let 0 < ε < a. On the event {L((xn)n) ⊂ ∂X∩UR},
there exists a (random) n∗ ∈ N such that

P ({L((xn)n) ⊂ ∂X} ∩ {xn ∈ Vε ∩ UR, for all n ≥ n∗}) > 0, (13)

where

Vε = {x ∈ X ; d(x, ∂X) ≤ ε} .

In what follows, we work on the event E defined by (13) and we assume that

n ≥ n∗.

For β > 0, let the function

Φβ(x) = − 1

β
ln

(
N∑
i=1

exp(−βxi)

)
,

which is concave if extended as −∞ to RN . The function Φ verifies the well-known

relation

min
i=1,...,N

xi − ln(N)

β
≤ Φβ(x) ≤ min

i=1,...,N
xi. (14)

From a straightforward calculation we have that, for all i ∈ {1, . . . , N},

∂Φβ

∂xi
(x) = πi(x), where πi(x) =

exp(−βxi)∑N
j=1 exp(−βxj)

.

Also, for all i, j ∈ {1, . . . , N}

∂2Φβ

∂xj∂xi
(x) = −βπi(x)(δij − πj(x)),

where δij = 1 if i = j, and 0 otherwise. This implies that ∇Φβ is L-Lipschitz. In

fact, L ≤ 2β for the infinity norm.

Observe that if x ∈ Vε ∩UR and if ∂ui
∂xi

(x) ≤ 0 for some coordinate i, we have that

πi(x) ≤ exp (−β(a− ε)) ,

using the fact that there exist some k such that xk ≤ ε and that xi ≥ a (c.f. Remark

3).

On the other hand, for k ∈ Ix such that xk = mini x
i,

πk(x) =
1

1 +
∑

j 6=k exp (βxk − βxj)
≥ 1

N
.

Recall that the variable xn follows the recursion

xin+1 = xin +
1

n+ 1

(
xin
∂ui
∂xi

(xn) + U i
n+1 + ξin+1

)
,
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where E (Un+1 | Fn) = 0 and |ξin| ≤ C/n, for a deterministic constant C.

Let us define zn = Φβ(xn). Note first that, from equation (14),

− ln(N)

β
≤ min

i=1,...,N
xin −

ln(N)

β
≤ zn ≤ min

i=1,...,N
xin ≤ ε. (15)

Consequently, L((zn)n) ⊂ [− ln(N)/β, 0] almost surely on E.

On the other hand, since the function −Φβ is convex with L-Lipschitz gradient,

we have that

−Φβ(xn+1) ≤ −Φβ(xn) + 〈−∇Φβ(xn) , xn+1 − xn〉+
L

2
‖xn+1 − xn‖2 .

Equivalently,

zn+1 ≥ zn +
N∑
j=1

πj(xn)(xjn+1 − xjn)− L

2
‖xn+1 − xn‖2 ,

= zn +
1

n+ 1

N∑
j=1

πj(xn)

(
xjn
∂ui
∂xj

(xn) + U j
n+1 + ξjn+1

)
− L

2
‖xn+1 − xn‖2 ,

≥ zn +
1

n+ 1

N∑
j=1

πj(xn)xjn
∂ui
∂xj

(xn) +
1

n+ 1

N∑
j=1

πj(xn)U j
n+1 −

c

(n+ 1)2
,

for some deterministic constant c ≥ 0. Therefore, taking conditional expectation and

omitting the quadratic term,

E (zn+1 | Fn) ≥ zn +
1

n+ 1

N∑
j=1

πj(xn)xjn
∂ui
∂xj

(xn).

Recall that Ixn is the set of indices such that ∂ui
∂xi

(xn) > 0 and that kn, the coordinate

giving the minimum of xn, is in Ixn and verifies moreover that ∂ui
∂xi

(xn) > α. Let Jxn

the set of indices such that ∂ui
∂xi

(xn) ≤ 0.

For all n ≥ n∗ we have

E (zn+1 | Fn) ≥ zn +
1

n+ 1

∑
j∈Ixn

πj(xn)xjn
∂ui
∂xj

(xn) +
1

n+ 1

∑
j∈Jxn

πj(xn)xjn
∂ui
∂xj

(xn),

≥ zn +
zn

n+ 1

α

N
+

1

n+ 1

∑
j∈Jxn

πj(xn)xjn
∂ui
∂xj

(xn),

using that xknn ≥ zn and that πkn(xn) ≥ 1/N . On the other hand, using the definition

of UR, we obtain∑
j∈Jxn

πj(xn)xjn
∂ui
∂xj

(xn) ≥ −|Jxn|R exp (−β(a− ε)) ≥ −NR exp (−β(a− ε)) .
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Thus

E (zn+1 | Fn) ≥ zn +
1

n+ 1

( α
N
zn −NR exp (−β(a− ε))

)
.

Let us consider the change of variables

θn =

(
zn +

ln(N)

β

)
≥ min

i
xin ≥ 0.

Then,

E(θn+1) ≥ E(θn) +
α

N

1

n+ 1

E(θn)−
{
N2

α
R exp (−β(a− ε)) +

ln(N)

β

}
︸ ︷︷ ︸

c(β)

 .

Let us note that E(θn∗) > 0 since mini x
i
n∗ ≥ 1/(n∗ + 1) almost surely. Now, we

can fix β > 0 sufficiently large such that 0 < c(β) < E(θn∗). So that

E(θn+1) ≥ E(θn) +
α

N

1

n+ 1
(E(θn)− c(β)) .

Let us call ρn = E(θn) − c(β). Then, we want to analyse the recursion ρn+1 ≥
ρn(1 + 1

n+1
α/N), with ρn∗ > 0. Hence, for n ≥ n∗,

ρn+1 ≥ ρn∗

n∏
i=n∗

(
1 +

α

N

1

i+ 1

)
,

where the right-hand-side goes to infinity. Finally, we can conclude that E(zn) goes

to infinity, which is a contradiction with the fact that zn ∈ [− ln(N)/β, ε] almost

surely on the event E. �

B.2 Proofs of Theorem 2 and Proposition 4

The proof of Theorem 2 involves several arguments. We use Proposition 3, i.e the

fact that the limit set of the process cannot include points on the boundary of the

state space, and we use a result from Benäım and Faure [2012], conveniently adapted

to our setting:

Theorem B.1 (Benäım and Faure, 2012) Let (xn)n ∈ X be a random process

that can be written as

xn+1 = xn +
1

n+ 1
(F (xn) + Un+1 + ξn+1)

where
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(i) F : X → RN is a smooth map, that is cooperative and irreducible in Int(X),

(ii) Un+1 is a bounded martingale difference and is uniformly exciting, i.e. the

matrix

E
(
Un+1U

T
n+1 | xn = x

)
is positive definite for any x ∈ Int(X),

(iii) ξn = O(1/n), and

(iv) there exists a > 0 such that L(xn)n ⊂ [a,+∞[ almost surely.

Then

P
(
∃x∗ ∈ ZS : lim

n
xn = x∗

)
= 1

on the event {lim supn ‖xn‖ < +∞}.

Proof of Theorem 2. We want to apply Theorem B.1. When the game has strate-

gic complements, our dynamics ẋ = F (x) is cooperative because all non-diagonal en-

tries of DF (x) are nonnegative. In addition, the interaction graph is connected, and

assumption 2 guarantees that the interaction graph is strongly connected. Thus the

matrix DF (x) is irreducible for any x in the interior of X. These two facts provide

point (i). Points (iii) and (iv) follow from Propositions 1 and 3, respectively. To

prove point (ii), we prove that if a network is non-bipartite and the game exhibits

symmetric externalities, then (ii) holds.

Since for any v ∈ RN we have that vTUn+1U
T
n+1v = 〈Un+1, v〉2 ≥ 0, proving (ii)

amounts to showing that, for any x ∈ Int(X), we have

E
(
〈Un+1, v〉2 | xn = x

)
= 0

if and only if v = 0. We proved this in the proof of point (ii) of Theorem 1. This

concludes the proof. �

Proof of Proposition 4. Let x̃ be a linearly unstable equilibrium. We want to

show that ∑
i<j

(
vix̃

i ∂ui
∂xj

(x̃) + vjx̃
j ∂uj
∂xi

(x̃)

)2

6= 0.

where v is the normalized eigenvector associated to the unstable direction of x̃, for

the strictly positive eigenvalue µ.
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Note that x̃ /∈ ∂X by Proposition 3, and that when x̃ ∈ Int(X) and the interaction

graph is non-bipartite, then the result is a direct implication of point (ii) of Theorem

1. Thus, here we assume that the interaction graph is connected and bipartite, and

that x̃ ∈ Int(X). This implies that there exists a partition (A,B) of N such that if

a ∈ A and ∂ua
∂xb

(x̃) ∂ub
∂xa

(x̃) > 0 then b ∈ B.

Using the computations just developed, we need to show that

∑
a<b

(
vax

a∂ua
∂xb

(x̃) + vbx
b ∂ub
∂xa

(x̃)

)2

6= 0. (16)

Assume the contrary. Then we must have vax
a ∂ua
∂xb

(x̃) + vbx
b ∂ub
∂xa

(x̃) = 0 for all a ∈ A
and all b ∈ B. Because xi > 0 for all i, and by Assumption 2 (symmetric exter-

nalities), it must be that sgn(va) = − sgn(vb) for any a ∈ A and any b ∈ B. Since

the interaction graph is connected, we may assume without loss of generality that

va > 0 ∀ a ∈ A and vb < 0 ∀ b ∈ B.

Because µ is strictly positive and v is the corresponding normalized eigenvector,

we should have 〈vDF (x̃), v〉 = µ
∑

i v
2
i > 0, since v 6= 0. However, we will show

that this can only be true if equation (16) holds. By a simple rearrangement of the

indexes, the Jacobian matrix at x̃ can be written as follows:

DF (x̃) =

(
DA M

N DB

)
,

where DA is diagonal and the diagonal terms are equal to xa∂2ua/∂(xa)2(x̃) ≤ 0 with

a ∈ A; and similarly for DB. M and N are non-negative matrices, as xi∂2ui/∂x
i∂xj ≥

0 ∀i 6= j.

Thus,

〈vDF (x̃), v〉 =
∑
i

v2i x
i∂2ui/∂(xi)2 +

∑
a∈A,b∈B

vavb

(
xa

∂2ua
∂xa∂xb

+ xb
∂2ub
∂xa∂xb

)
≤ 0,

a contradiction. To see why this inequality holds, remember that the terms in the

first sum are all negative by Assumption 1 and the fact that x̃ is a Nash equilibrium.

The terms in the second sum are also all negative since va.vb < 0 and by strategic

complements. �

The following example illustrates that the symmetric externalities assumption

cannot be removed in Proposition 4.
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Example B.1 Consider the following 2-player game with strategic complements.

u1(x1, x2) = −x
2
1

2
+ 2x1 − x1(2− x2)2; u2(x1, x2) = −x

2
2

2
− x21(2− x2).

This game has anti-symmetric externalities, since ∂u2
∂x1

(x) = −∂u1
∂x2

(x). Now, the profile

(1, 1) is a Nash equilibrium, and

∂2ui
∂xi∂xj

(x̂) = 2, i = 1, 2.

As a consequence the Jacobian matrix associated to the dynamics F is simply

DF (x̂) =

(
−1 2

2 −1

)
,

which eigenvalues are −3 and 1. Thus this Nash equilibrium is linearly unstable. The

eigenspace associated to the positive eigenvalue is generated by v = (1, 1). Thus, on

the event {limn xn = x̂}, we have

lim
n→+∞

E
(
〈Un+1, v〉2 | Fn

)
=

(
∂u1
∂x2

(x̂) +
∂u2
∂x1

(x̂)

)2

= 0

and the noise condition does not hold.

The following example illustrates that strategic complements are essential in our

proof.

Example B.2 Consider the following 4-player example with strategic substitutes.

u1(x) = −cx1 + b(x1 + x2 + x4), u2(x) = −cx2 + b(x2 + x1 + x3),

u3(x) = −cx3 + b(x3 + x2 + x4), u4(x) = −cx4 + b(x4 + x1 + x3),

with b strictly concave and such that b′(1) = c. This is a game of strategic substitutes,

with an interaction graph represented by the square in Figure 1.

One can check that the profile x̂ = (1/3, 1/3, 1/3, 1/3) is a Nash equilibrium.

Choosing b such that b′′(1) = −3 for simplicity, the Jacobian matrix associated to x̂

is

DF (x̂) =


−1 −1 0 −1

−1 −1 −1 0

0 −1 −1 −1

−1 0 −1 −1

 ,
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1 2

34

Figure 1: Interaction graph between 4 players. This graph is bipartite.

which eigenvalues are −3,−1,−1, 1. Thus this Nash equilibrium is linearly unstable.

However, the eigenspace associated to the positive eigenvalue is generated by v =

(1,−1, 1,−1) so that, on the event {limn xn = x̂}, we have

lim
n→+∞

E
(
〈Un+1, v〉2 | Fn

)
=

(
∂u1
∂x2

(x̂)− ∂u2
∂x1

(x̂)

)2

+

(
−∂u2
∂x3

(x̂) +
∂u3
∂x2

(x̂)

)2

+

(
∂u3
∂x4

(x̂)− ∂u4
∂x3

(x̂)

)2

= 0

and the noise condition (8) does not hold.

C Proof of results of Section 4.

C.1 Proof of Theorem 3

Before proving Theorem 3, let us define the following dynamical concept:

Definition C.1 Let P : X → R be continuously differentiable. We say that P is a

strict12 Lyapunov function for ẋ = F (x) if

• for x ∈ Z the map t 7→ P (ϕ(x, t)) is constant;

• for x /∈ Z the map t 7→ P (ϕ(x, t)) is strictly increasing.

Lemma C.1 Assume that G is an LOPG with continuously differentiable potential

P . Then

(i) P is a strict Lyapunov function for ẋ = −x+ BR(x).

12Generally, P is a Lyapunov function for ẋ = F (x) with respect to Λ if t 7→ P (ϕ(x, t)) is constant

on Λ and strictly increasing for x /∈ Λ; when the component Λ coincides with the set of stationary

points of the flow, then we say that P is strict.
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(ii) P is a strict Lyapunov function for ẋ = F (x) (where Fi(x) = xi
∂ui
∂xi

(x)).

Proof. By assumption,

∀x, ∀i, ∂ui
∂xi

(x) > 0⇒ ∂P

∂xi
(x) > 0 and

∂ui
∂xi

(x) < 0⇒ ∂P

∂xi
(x) < 0.

(i) We have

〈DP (x),−x+ BR(x)〉 =
∑
i

∂P

∂xi
(x)(−xi + BRi(x)).

We need to check that, if x /∈ NE, then this quantity is positive. Let i be such that

xi 6= BRi(x), say xi < BRi(x−i). Then by strict concavity of ui we have ∂ui
∂xi

(x) > 0.

Thus ∂P
∂xi

(x) > 0 and 〈DP (x),−x+ BR(x)〉 > 0.

(ii) We have

〈DP (x), F (x)〉 =
∑
i

xi
∂ui
∂xi

(x)
∂P

∂xi
(x).

We need to check that, if x /∈ Z, then this quantity is positive. Let i be such that

Fi(x) 6= 0. Then xi > 0 and ∂ui
∂xi

(x) 6= 0, which implies that

xi
∂ui
∂xi

(x)
∂P

∂xi
(x) > 0.

and the proof is complete. �

Lemma C.2 Assume G is an LOPG. Then, if P is Cm for sufficiently large m then

P (Z) has an empty interior.

Proof. We decompose the set of zeroes of F as a finite union of sets on which we

can use Sard’s Theorem.

Let A be any subset of agents and ZA be the set{
x ∈ Z : xi = 0 ∀i /∈ A, ∂ui

∂xi
= 0 ∀i ∈ A

}
.

It is not hard to see that ZA is closed. Moreover Z = ∪A∈P({1,...,N})ZA.

We now prove that P is constant on ZA. Let PA : [0, 1]A → R be defined as

PA(z) := P (z, 0).
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For x ∈ ZA, denote by xA = (xi)i∈A. We then have PA(xA) = P (x). Moreover, for

i ∈ A,
∂PA

∂xi
= 0

by definition of ZA and the additional assumption we made on P . Hence

{xA : x ∈ ZA} ⊂ {z ∈ [0, 1]A : ∇zP
A = 0}.

Now P is sufficiently differenciable, so is PA, and by Sard’s Theorem, PA({xA : x ∈
ZA}) has empty interior in RA. As an immediate consequence, PA is constant on

{xA : x ∈ ZA} , which directly implies that P (ZA) has empty interior. Since Z is a

finite union of such sets, P (Z) has empty interior. �

Proof of Theorem 3 (i). For this part, we use the general result given by Propo-

sition 6.4 in Benäım [1999], which asserts that if P is a strict Lyapunov function with

respect to Z and P (Z) has empty interior, then L(xn) ⊂ Z almost surely. �

Proof of Theorem 3 (ii). By Lemma C.1 and Corollary 6.6 in Benäım [1999], we

have

P
(
∃x̂ ∈ Z such that lim

n
xn = x̂

)
= 1.

Because convergence to the zeroes occurs almost surely, Theorem 1 gives us the result.

�

C.2 Proof of Theorem 4

First we prove that (i) implies (ii). Since G is an LOPG, P (Z) has empty interior

(see Lemma C.2 above). Moreover, we have Λ ⊂ Z. Thus P is constant on Λ. Let

v := P (Λ). If Λ is not a local maximum of P then there exists a sequence xn such

that d(xn,Λ) →n 0 and P (xn) > v. Since Λ is isolated we have xn ∈ X \ Z and

P (ϕ(xn, t)) > P (xn) > v for any t > 0 hence d(ϕ(xn, t),Λ) 9 0 and Λ is not an

attractor.

Let us now prove that (ii) implies (iii). First we show that Λ is contained in NE.

Suppose that there exists x̂ ∈ Λ \NE. Without loss of generality, we suppose that

x̂1 = 0,
∂u1
∂x1

(x̂) > 0.
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Since ∂u1
∂x1

(x̂) > 0, we also have ∂P
∂x1

(x̂) > 0, by definition of an LOPG. As a conse-

quence, x̂ is not a local maximum of P .

We now prove that Λ is an attractor for the Best-Response dynamics. P is a strict

Lyapunov function for the best-response dynamics13 and Λ ⊂ NE. The statement

we want to prove is then a consequence of Proposition 3.25 in Benäım et al. [2005].

We adapt the proof in our context for convenience. First of all observe that Λ is

actually a strict local maximum of P : there exists an open (isolating) neighborhood

U of Λ such that P (x) < v = P (Λ), ∀x ∈ U \Λ. This is a simple consequence of the

fact that P is strictly increasing along any solution curve with initial conditions in

U \ Λ. Now let Vr := {x ∈ U : P (x) > v − r}. Clearly ∩rVr = Λ. Also ϕ(Vr, t) ⊂ Vr,

for t > 0, r small enough14. This implies that Λ = ∩r>0Vr contains an attractor A.

The potential being constant on Λ, A cannot be strictly contained in Λ and therefore

Λ is an attractor.

Now clearly (iii) implies (i): Λ = ωBR(U) for some open neighborhood U of Λ.

Since U ∩ Z ⊂ NE, ωF (U) = ωBR(U) and the proof is complete. �

D Proof of results of Section 5

Proof of Remark 2: Following Rosen [1965], we define G(x, r) as the Jacobian

matrix of g(x, r), with ri ≥ 0. A sufficient condition for a game to belong to GRos

is that G(x, r) + G′(x, r) is negative definite, where G′ is the transpose of G. For

simplicity, we set r = 1, so that gi(x,1) = ∂ui
∂xi

and Gij(x,1) = ∂2ui
∂xi∂xj

, and show

that games in GArr are such that G(x,1) + G′(x,1) is negative definite. Define the

matrices A,Bk and C as follows:

Aii = ∂2ui
∂x2i

and Aij = 0 if i 6= j

Bk
ij = 0 if i = k or j = k and Bk

ij = ∂2uk
∂xi∂xj

if i 6= k and j 6= k

Cij =
∑

k
∂2uk
∂xi∂xj

Then G(x,1) + G′(x,1) = A(x) −
∑

k B
k(x) + C(x). By concavity of ui in xi, A is

negative semi-definite and is negative definite as soon as one ui is strictly concave

in xi. Every Bk is positive semi-definite by convexity of ui in x−i. Finally, strictly

concave-convex games are such that
∑

k uk(x) is concave in x, by taking S = N in the

definition of strictly concave-convex games. Thus C is negative semi-definite. This

proves that G(x,1) +G′(x,1) is negative definite. �

13Keep in mind that this means that it is a lyapunov function with respect to NE.
14We need to make sure that r is small enough so that Vr = P−1([v − r, v]) ⊂ U
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Proof of Theorem 5: Suppose first that there is a unique Nash equilibrium. Then

note that under (6) we have, for any x 6= x,

〈x− x, g(x, r)〉 > 0,

because

〈x− x | g(x, r)〉 =
∑
i:xi=0

rixi
∂ui
∂xi

(x) ≤ 0.

Given an element x ∈ X, let I(x) :=
{
i ∈ N : xi = 0 and ∂ui

∂xi
(x) > 0

}
. Given J ⊂

N , we call GJ the N − |J |-player game where the set of players is N \ J and, for

any strategy profile z ∈ [0,+∞[N−|J |, the payoff function of player i ∈ N \ J is

uJi (z) := ui(z, 0
|J |).

Lemma D.1 Let J ⊂ N . There exists a unique profile x̃J with the following prop-

erties:

(i) J ⊂ I(x̃J),

(ii) z̃ := (x̃Ji )i/∈J is a Nash equilibrium of GJ .

and x̃J ∈ Z(F ). Moreover, if J ⊂ I(x) then x̃J = x. If not then x̃J belongs to OZ.

Proof. Fix J ⊂ N . The associated game GJ is also strictly diagonally concave.

Thus it admits a unique Nash equilibrium z̃ ∈ [0,+∞[N−|J |. Note that J ⊂ I(z̃)

but is not necessarily equal. Now let x̃J := (z̃, 0J). Clearly x̃J is the only element

of X satisfying both (i) and (ii). Let i /∈ J . We have x̃Ji = z̃i = BRJ
i (z̃−i) =

BRi(z̃−i, 0
J) = BRi(x̃

J
−i). This proves that x̃J belongs to Z(F ).

Now suppose that J ⊂ I(x). Then x satisfies (i). Moreover for all i /∈ J ,

xi = BRi(x−i) = argmaxxi ui(xi, x−i) = argmaxzi u
J(zi, z−i),

by definition of uJ and the fact that xj = 0 for any j ∈ J . Thus (xi)i/∈J is a Nash

equilibrium of GJ and x̃J = x. Finally if J is not contained in I(x̂) then x̃J 6= x

because x does not satisfy (i). �

As a consequence, {x̃J , J ⊂ I} can be written as {x, x̃1, ..., x̃K} where all elements

are distinct, and there is a natural partition of X:

X =
(
∪Kk=1X̃

k
)
∪X, where X̃k := {x ∈ X : x̂I(x) = x̂k} and X :=

{
x ∈ X : x̂I(x) = x

}
.
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Note that X = {x ∈ X : I(x) ⊂ I(x)} and the sets X, X̃k, k = 1, ..., K are convex.

More accurately every X, X̃k is a union of faces of X: there exist J and a family

(Jk)k=1,...,K of subsets of N such that:

X = ∪J∈J {x ∈ X : I(x) = J}X̃k = ∪J∈J k{x ∈ X : I(x) = J}.

Now we are ready to prove the theorem, i.e. when a game is diagonally strictly

concave with unique Nash equilibrium x, necessarily

P(lim
n
xn = x) = 1

First let x ∈ X, which amounts to having I(x) ⊂ I(x) and define, for x ∈ X,

Φ(x) =
∑
i∈I(x)

rixi +
∑
i/∈I(x)

ri(xi − xi log(xi)).

Then Φ is concave on X and achieves its minimum in x. Let φ(t) = Φ(x(t)), where

x(t) is a solution of ẋ = F (x), with x(0) ∈ X. We have

d

dt
φ(t) =

∑
i∈N

ri(xi(t)− xi)
∂ui
∂xi

(x(t)) ≤ 0,

with equality if and only if x = x and x is a global attractor the flow Φ|X .

Now suppose that x ∈ X̃k for a given k ∈ {1, ..., K}. Note that I(x) ⊂ I(x̃k). We

can then define Φk : X̃k → R as the following:

Φk(x) =
∑

i∈I(x̃k)

rixi +
∑

i/∈I(x̃k)

ri(xi − x̃ki log(xi)).

Then Φk is again concave, with unique maximum in x = x̃k on X̃k. Let φ(t) =

Φ(x(t)), where x(t) is a solution of ẋ = F (x), with x(0) ∈ X̃k. We have

d

dt
φ(t) =

∑
i∈N

ri(xi(t)− xi)
∂ui
∂xi

(x(t)) ≤ 0,

with equality if and only if x = x̃k. Thus x̃k is a global attractor the flow Φ|X̃k .

As a consequence every solution curve converges to a zero of F , i.e either x or

one of the x̃k15 More precisely, X and X̃k are invariant and {x} (resp. x̃k) is a global

15This guarantees that the deterministic system is dissipative, i.e. admits a global attractor,

which in turns shows that (xn)n is almost surely bounded. However, it is not enough to guarantee

that our random process converges with probability one to one of the zeroes of the dynamics.
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attractor for the flow φ|X (resp. φ|X̃k); in particular, for any x0 ∈ X (resp. x0 ∈ X̃k)

then limt→+∞ φt(x0) = x (resp. limt→+∞ φt(x0) = x̃k).

A set L is internally chain transitive (ICT) for the flow φt if it is compact, invariant

and the restriction of the flow φ|L admits no proper attractor. Of course Lk := {x̃k},
as well as L := {x} are ICT.

Theorem D.1 (Benaim, 1999) On the event {lim supn ‖xn‖ < +∞}, the limit set

of (xn)n is almost surely internally chain transitive. Moreover let L be an internally

chain transitive set for a flow (φt)t and A be an attractor with basin of attraction

B(A). If L ∩ B(A) 6= ∅ then L ⊂ A.

We now prove that the sets Lk and L are the only internally chain transitive sets.

This will conclude the proof because as we mentionned above (xn)n is almost surely

bounded. Note that X is an open set in X. To do so we first claim that it is always

possible to relabel the family (x̃k)k=1,...,K such that X̃k is an open set of ∪kl=1X
l for

k = 2, ..., K.

Let L be internally chain transitive. By previous result, if L intersects X then

L ⊂ {x} because X is the basin of attraction of x. Suppose that it is not the

case. then L ⊂ ∪Kk=1X
k. Since XK is open in ∪Kk=1X

k, x̃K is an attractor of the

flow restricted to ∪Kk=1X
k, with basin of attraction X̃k. Hence if L ∩ X̃k 6= ∅ then

L = {x̃k}. By a recursive argument, either L = {x} or L = {x̃k} for some k.

Suppose now that there is no Nash equilibrium and assume by contradiction

that P (lim supn ‖xn‖ < +∞) > 0. By the same reasoning as above the only ICT

sets are zeroes of the dynamics. Since there is no Nash equilibrium, on the event

{lim supn ‖xn‖ < +∞}, we necessarily have limn xn = x̂, where x̂ is some other zero

(Theorem D.1 (Benaim, 1999)). This is a contradiction with Theorem 1. �
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