
Theoretical Economics 16 (2021), 639–675 1555-7561/20210639

Sequential persuasion
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This paper studies sequential Bayesian persuasion games with multiple senders.
We provide a tractable characterization of equilibrium outcomes. We apply the
model to study how the structure of consultations affects information revelation.
Adding a sender who moves first cannot reduce informativeness in equilibrium
and results in a more informative equilibrium in the case of two states. More-
over, with the exception of the first sender, it is without loss of generality to let
each sender move only once. Sequential persuasion cannot generate a more infor-
mative equilibrium than simultaneous persuasion and is always less informative
when there are only two states.
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1. Introduction

This paper studies a canonical model of Bayesian persuasion with multiple senders in
which senders disclose information sequentially. An uninformed decision maker seeks
to maximize her state-dependent payoff. Also, many senders move in sequence, each
constructing an experiment with a precision ranging from no information to full reve-
lation of the state. Each sender observes the experiments designed by previous players
when moving.

Decision makers often must rely on outside experts to take informed actions. Some-
times multiple experts are consulted and then consultations are often sequential. For
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example, in a recent lawsuit, Students for Fair Admissions claims that Harvard intention-
ally discriminates against Asian–American applicants.1 Each party used an economist
expert witness to analyze Harvard’s admissions data and testify in court. Despite using
the same data, the conclusions reached by the expert witnesses on each side were vastly
different due to different statistical models. This example fits the Bayesian persuasion
model well because experts were symmetrically informed and designed their own ex-
periments. Furthermore, the consultations were truly sequential. Throughout the pro-
cess, the expert on each side sequentially released rebuttals to reports made by the other
side. Our model aims to understand how strategic considerations among experts shape
information revelation in such settings.

Instead of relying on the concavification approach popularized by Aumann and
Maschler (1995) and Kamenica and Gentzkow (2011), we characterize equilibrium out-
comes using linear algebra techniques. Equilibrium conditions are expressed as incen-
tive compatibility constraints and share a similar flavor as in Bergemann and Morris
(2016).

The first step in the equilibrium construction is to show that every subgame perfect
equilibrium outcome can be supported using one-step equilibrium strategies. In a one-
step equilibrium, the only player who provides information is the first sender to move.
The preferences of the other senders matter, but instead of actually refining the informa-
tion on the path, their preferences restrict what the first sender does through incentive
compatibility constraints. This works also off the equilibrium path, so any equilibrium
can be replicated by strategies that are one-step on and off the equilibrium path.

Our second simplifying step is to show that only a finite set of vertex beliefs matter
for the analysis. We assume a finite set of states and actions, so, in belief space, the
optimal choice rule of the decision maker can be characterized as intersections of upper
half spaces, or convex polytopes. Each polytope defines a set of beliefs for which an
action is optimal and is spanned by a finite set of vertices. We demonstrate that it is
without loss of generality for every sender to provide only information that generate
beliefs on these vertices.

Focusing on one-step strategies with support on a finite set of vertices, we use back-
ward induction to construct equilibria, which are Markov. We also use the fact that
one-step equilibria on a finite set of vertices fully characterize the set of equilibrium
outcomes so as to demonstrate that for a set of preferences of full measure, there is a
unique equilibrium distribution over states and outcomes.

Equilibrium distributions are recursively defined as stable vertex beliefs. In concrete
terms, for the truncated game starting with the last sender, a stable belief is a probability
distribution over the state space that the last sender has no incentive to further refine.
Moreover, it is without loss of generality to consider only the vertices of the polytopes
that define optimal actions for the decision maker, which we denote by X . For a per-
suasion game with n senders, let Xn ⊆ X be the stable vertex beliefs in the single-sender
persuasion game with sender n only. The penultimate sender, n − 1, understands that

1Students for Fair Admissions, Inc. v. President & Fellows of Harvard Coll. (Harvard Corp.), Civil Action
14-cv-14176-ADB, 2019 U.S. Dist. LEXIS 170309 (D. Mass. Sep. 30, 2019).
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any belief not in Xn will be split onto Xn, so he may as well consider only beliefs in this
set. However, for some beliefs in Xn, he may be better off by creating a mean-preserving
spread over other beliefs in Xn, so the set of stable beliefs in the sequential-persuasion
game starting with sender n− 1, Xn−1, is a subset of Xn. The set of stable beliefs for the
full game is constructed recursively from this idea, and it shrinks for each step of the
backward induction process.

By studying these stable beliefs, we find that adding a sender who moves first cannot
reduce the informativeness. In contrast, strategic considerations may reduce informa-
tion disclosure if a sender is added later in the game.

Next, we ask whether multiple counterarguments can make equilibria more infor-
mative in our model. The answer is mainly negative. We prove that the set of stable
beliefs is unchanged if a sender is given an additional chance to provide information
that precedes the last time that the sender moves. Hence, there is no loss of generality in
considering an extensive form in which each sender moves only once when character-
izing the set of stable beliefs. However, the first sender can choose the distribution over
stable beliefs, and different senders may prefer different distributions. Hence, having
all senders except possibly the first moving only once is without loss of generality. This
may seem counterintuitive in the context of debates or legal proceedings, but our model
lacks natural constraints such as limitations on the amount of information that can be
transmitted using a single argument.

We also compare sequential and simultaneous persuasion. We find that sequential
persuasion can never generate a more informative equilibrium than simultaneous per-
suasion. Finally, we provide a simple and easy to interpret sufficient condition for when
full revelation is the unique equilibrium, which is invariant on the order of moves.

Literature. Our paper relates to a large body of work on information disclosure, but
is most directly connected to the literature on Bayesian persuasion started by Kamenica
and Gentzkow (2011) and Rayo and Segal (2010). This literature has recently been ex-
tended to incorporate multiple senders by Gentzkow and Kamenica (2017a, 2017b),
Boleslavsky and Cotton (2015, 2018), Au and Kawai (2019, 2020), Hwang et al. (2019), and
others. However, none of these papers deals with sequential moves by the senders. In
a companion paper, Li and Norman (2018) provide some examples to show that adding
new senders may reduce information revelation in multi-sender persuasion settings.

Wu (2018) considers a sequential Bayesian persuasion model similar to ours. He de-
velops a recursive concavification approach based on Harris (1985) and Kamenica and
Gentzkow (2011) to establish equilibrium existence, and he independently constructs
a one-step equilibrium (referred to as a silent equilibrium). Our paper differs from Wu
(2018) in the following aspects. First, our methodologies are different. Thanks to the
assumption of finite action space, we can apply primitive tools such as backward induc-
tion, convex polytope analysis, and linear programming to transparently characterize
the equilibrium. Second, our model clarifies how senders’ experiments are combined.
This enables us to transparently compare equilibria for different extensive forms.

A growing body of work embeds persuasion into dynamic models (see Ely et al. 2015
and Ely 2017), but the paper closest in spirit to ours is Board and Lu (2018), which incor-
porates Bayesian persuasion into a search model. However, Board and Lu (2018) con-
sider payoff functions that are more restrictive than ours, and the decision maker in their
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paper faces an optimal stopping problem. In contrast, the decision maker has no influ-
ence on the precision of her information in our model. Our formal analysis has some
similarities with that of Lipnowski and Mathevet (2017, 2018), which focus on single-
sender persuasion games.

Multi-sender information provision has been studied in other frameworks. Glazer
and Rubinstein (2001) study a finite horizon sequential-persuasion model with limita-
tions on the amount of information that can be revealed in each stage. There are also
papers in the cheap talk and disclosure literature that ask what the implications of mul-
tiple senders are. See Ambrus and Takahashi (2008), Battaglini (2002), Kawai (2015), Kr-
ishna and Morgan (2001), Kartik et al. (2019, 2017), Bhattacharya and Mukherjee (2013),
and Milgrom and Roberts (1986). Hu and Sobel (2019) compare simultaneous and se-
quential information disclosure in a setting where senders decide which set of facts to
disclose and where the focus is on equilibria surviving iterated elimination of weakly
dominated strategies.

With different applications in mind, these papers introduce frictions on informa-
tion transmission such as asymmetric information, limited information process ability,
restricted forms of signals, etc. Instead, our framework eliminates all such frictions and
focuses solely on the strategic interaction among senders. It thus serves as a natural
benchmark for identifying sources of communication inefficiency.

Organization. The remainder of this paper is organized as follows. Section 2 de-
scribes the model. Section 3 characterizes the set of equilibria, shows that every equilib-
rium outcome is supported as a one-step equilibrium with finite support, that equilibria
exist, and that the equilibrium outcome is generically unique. In Section 4, we apply the
equilibrium characterization to discuss effects of changes in the extensive form. Ap-
pendix A collects omitted proofs and some examples are collected in Appendix B.

2. The model

Players. Consider an environment with senders i = 1� � � � � n and a decision maker d.
Player i = 1� � � � � n�d has a utility function ui : A × � → R, where A is a finite set of ac-
tions and � is a finite state space. Payoff functions are common knowledge and players
evaluate lotteries using expected utilities. Players hold a common prior belief μ0 ∈ �(�).
Fixing a belief μ and an action a, we define player i’s expected payoff as

vi(a�μ) ≡
∑
ω∈�

ui(a�ω)μ(ω) for i = 1� � � � � n�d�

Experiments. Players are uninformed about the state of the world, but a sender may
provide information to the decision maker by creating an experiment. We use the par-
tition representation of experiments from Green and Stokey (1978) because combining
multiple experiments becomes very intuitive under this representation.2

Under the partition representation, an experiment is given by a partition of [0�1]×�,
where, for each state ω, {π(s|ω)}s∈S are disjoint sets such that

⋃
s∈S π(s|ω) = [0�1] and S

2This also allows us to easily compare our sequential framework with the simultaneous move model in
Gentzkow and Kamenica (2017b).
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Figure 1. There are two states ω0 and ω1, and two senders i = 1�2. Sender 1’s signal space
contains two signals: s1 and s′1. Sender 2’s experiment has two possible signals {s2� s

′
2}. The

combination of two experiments π̂2 = π1 ∨π2 has three possible signals {ŝ2� ŝ
′
2� ŝ

′′
2}, and it is finer

than π1 and π2.

indexes the sets in partitions. Given experiment π, one can interpret each s as a signal
by assigning state-contingent probabilities to each s according to the Lebesgue measure
of each π(s|ω). In doing so, experiment π induces a state-contingent distribution over
signals pπ : � → �(S). Letting λ(·) denote the Lebesgue measure, the probability of
signal s ∈ S being realized conditional on state ω is

pπ(s|ω)= λ
(
π(s|ω)

)
� (1)

where
∑

s pπ(s|ω) = 1 for each ω ∈ � because {π(s|ω)}s∈S is a partition of the unit in-
terval. With a slight abuse of notation, we use s both as a generic indexing set and the
corresponding subset of [0�1] ×� in the discussion below and in Figure 1.

Given two experiments π, π′, players combine the information into a joint experi-
ment that we denote by π ∨ π′, which consists of the set of all intersections of the sets
in π and π′. Since each set in the joint experiment is an intersection of a set in the par-
tition π with a set in the partition π′, it is immediate that π ∨π ′ is finer than both π and
π ′. This, in turn, implies that the combined experiment π ∨ π′ is more informative in
Blackwell’s sense than either of the two underlying experiments.3

Extensive form. Let 	 denote the set of all experiments. Senders 1� � � � � n move se-
quentially to post experiments π1�����πn in order of their index, where πi ∈ 	 for ev-
ery i and where each sender observes all previous senders’ experiments. Then nature
draws ω. Finally, the decision maker observes (π1� � � � �πn) and a joint realization s =
(s1� � � � � sn) according to the corresponding state-contingent probability p∨

i πi
(s|ω) =

λ(
∨

i πi(s|ω)) for i = 1� � � � � n, and takes an action a ∈ A.
As illustrated in Figure 1, combining sender 2’s experiment with the experiment of

sender 1 generates a finer joint experiment than either underlying experiment. Each

3Assume that π is finer than π′, and let pπ and pπ′ denote the corresponding state-contingent distribu-
tions over signals they generate. Then pπ is more informative in the sense of Blackwell (1953) than pπ′ . See
Green and Stokey (1978) for a proof.
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signal in π1 may be further partitioned and provides an example in which s1, but not s′1,
is refined when combined with the experiment played by player 2. A sender, therefore,
acts as if he observes and responds to the signal realizations of previous senders’ exper-
iments, despite the fact that the formal model assumes that the joint signal realization
is drawn at the end. Generating joint experiments by taking intersections is, therefore,
without loss of generality in our model because senders move sequentially.

Strategies and equilibrium. A pure strategy for sender i is a map σi : 	i−1 →	, where
	0 is the trivial null history. That is, given a history {π1� � � � �πi−1}, sender i chooses πi

that results in a finer experiment
∨i

k=1 πk. A history for the decision maker is a vector
(π1� � � � �πn� s1� � � � � sn). Let Hd be the set of all histories for the decision maker and let
σd : Hd → A denote her strategy. There is uncertainty about the state, but information
is symmetric and there is, therefore, never any point in the game in which any player
needs to update the beliefs about the type of other players. Hence, subgame perfection
is applicable.

3. Equilibrium characterization

In this section, we first prove a result similar to the revelation principle. Without loss of
generality, we may focus on one-step equilibria, which are equilibria where only the first
sender discloses nontrivial information on the equilibrium path. Preferences of other
senders enter much like incentive compatibility constraints in such equilibria. Then we
construct an equilibrium, and show that the game has a unique equilibrium distribution
over states and actions for a set of payoff functions with full Lebesgue measure.

3.1 Simplifying the problem

Players ultimately care only about the distribution over actions and states, which moti-
vates the following definition.

Definition 1. Two strategy profiles are outcome equivalent if they generate identical
joint distributions over �×A.

There are often multiple outcome-equivalent equilibrium information structures,
but all players are indifferent across all such equilibria. We, therefore, consider them
equivalent even if they are Blackwell comparable, because ultimately players care only
about probability distributions over �×A.

Next, we define strategy profiles in which only the first sender provides any informa-
tion.

Definition 2. Consider a strategy profile σ ′ and let h′
i denote the implied outcome

path before the move by sender i. We say that σ ′ is one-step if
∨n

i=1 σ
′
i (h

′
i) = σ ′

1.

We are now ready to present the first result.
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Proposition 1. For any subgame perfect equilibrium, there exists an outcome-
equivalent subgame perfect equilibrium in which senders play a one-step continuation
strategy profile after any history of play.

The idea behind Proposition 1 is similar to the revelation principle. Consider an
arbitrary subgame perfect equilibrium σ∗ and let {π∗

1 � � � � �π
∗
n} be the individual experi-

ments on the equilibrium path that generate a joint experiment π∗ = ∨n
i=1 π

∗
i . To con-

struct a one-step equilibrium, let sender 1 play π∗ and assume that on the equilibrium
path players i = 2� � � � � n provide only redundant information. It then follows that the
decision maker may as well generate the same distribution over A × � as in the initial
equilibrium after observing the one-step path history. Moreover, because π∗ is finer
than π∗

i for each i < n, any deviation that is feasible from the one-step outcome path is
feasible also in the original equilibrium, so it is possible to replicate continuation play
following deviations from the one-step equilibrium from the original equilibrium just
like in the proof of the revelation principle. Off the equilibrium path, we can follow the
original equilibrium strategies.4

For the one-step equilibrium characterization to be a significant simplification, it is
important that it applies not only on the equilibrium path, but also off the path. The
same logic as on the equilibrium path generalizes to any continuation equilibrium fol-
lowing an arbitrary history of play.

Proposition 1 implies that solving for an equilibrium of a sequential-persuasion
game is equivalent to solving a static single-sender persuasion game disciplined by ad-
ditional recursively defined incentive compatible constraints. After stage 1, no sender
has an incentive to provide further information given the threat of subsequent senders’
best responses.

3.2 Equilibrium construction

Now we explicitly construct a one-step equilibrium. The construction is essential for
the rest of our analysis because several concepts critical to understanding the equilib-
rium structure and the effect of competition in persuasion are introduced through the
process.

An equilibrium is constructed by backward induction. We begin with the decision
maker’s problem. As in standard persuasion models, what matters for the decision
maker is her posterior belief about the state. Moreover, a key simplification is that we
without loss may restrict attention to a finite set of vertex beliefs. Combined with the
one-step equilibrium characterization, this allows us to construct equilibria recursively
by checking which stable vertex beliefs in the continuation game are weakly better for
the current sender than every mean-preserving spread over the stable vertex beliefs in
the continuation game.

4The proof of Proposition 1 is drastically simplified by two slightly unconventional modelling decisions.
First, the partition representation makes it very easy to describe how individual experiments combine into
a joint experiment. Second, having the uncertainty being resolved after all senders have moved implies that
a history is a sequence of successively finer partitions. Hence, we can avoid senders having to condition on
realized signals, which is a big simplification of the proof.
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Decision maker’s problem. Suppose that the decision maker observes a history of
experiments {πj}nj=1, which induces a joint experiment

∨n
j=1 πj , as well as a signal real-

ization s. Using
∨n

j=1 πj and s, the decision maker updates her belief about the state that
summarizes all payof-relevant aspects of the history. The posterior probability of state
ω ∈� is

μ(ω|s) = p(s|ω)μ0(ω)∑
ω′∈�

p
(
s|ω′)μ0

(
ω′) � (2)

where we have dropped the subscript of p(s|ω) defined in (1). Denoting the uncon-
ditional probability of s by p(s) = ∑

ω′∈� p(s|ω′)μ0(ω
′), we note that an experiment π

induces a distribution of posterior beliefs that satisfies the Bayes plausibility constraint∑
s∈π

μ(ω|s)p(s) = μ0(ω)�

To characterize the optimal actions for the decision maker, we note that for any dis-
tinct pair a�a′ ∈ A, the set

H
(
a 	 a′) ≡

{
μ ∈ �(�)

∣∣∣ ∑
ω∈�

μ(ω)
[
ud(a�ω)− ud

(
a′�ω

)] ≥ 0
}

defines the posterior beliefs such that the decision maker weakly prefers a to a′. It fol-
lows that the set of beliefs such that a ∈A is optimal is given by

M(a) =
⋂
a′∈A

H
(
a 	 a′)�

which is a finite convex polytope. See Figure 2 for a simple illustration.

Figure 2. � = {ω1�ω2�ω3} and A= {a1� a2� a3� a4}.
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Interim beliefs. A history hi = {πj}i−1
j=1 induces a joint experiment πi−1 = ∨i−1

j=1 πj .

For each signal s of πi−1, the corresponding belief μ(ω|s) is given by (2). This is the
decision maker’s posterior belief if senders i + 1� � � � � n do not add any information in
the continuation game and s is realized. We call such a belief an interim belief. Each
joint experiment πi−1 ∈ 	 generates a distribution of interim posterior beliefs τi−1, and
we let �(�(�)) denote the set of distributions of (interim or posterior) beliefs.

Given a joint experiment πi−1 that induces a joint belief distribution τi−1, sender i

can refine the information into any partition that is finer than πi−1. Using Theorem 1 in
Green and Stokey (1978) together with the characterization in Gentzkow and Kamenica
(2017a), we know that any mean-preserving spread of τi−1 can be induced by some re-
fined partitioning of πi−1. Every feasible experiment for sender i therefore corresponds
to a mean-preserving spread of each interim belief in the support of τi−1. Hence, sender
i’s problem separates into finding an optimal mean-preserving spread belief by belief
from the distribution induced by previous senders.

Sender n’s problem. Next, we consider the last sender’s problem. The construction
of {M(a)} implies that we may consider optimal strategies for the decision maker that
map posterior beliefs to actions. We abuse notation and denote such a map by σd(μ) ∈
{a : μ ∈ M(a)}. To guarantee that sender n’s problem is well defined, we assume that the
decision maker always breaks ties in favor of sender n. If there are multiple such rules,
we arbitrarily pick one of them. Given an interim belief μ and decision rule σd , sender
n’s program can be written as

Vn(μ) = max
τ∈�(�(�))

∑
μ′

vn
(
σd

(
μ′)�μ′)τ(μ′)

s.t.
∑
μ′

μ′τ
(
μ′) = μ�

(3)

and a solution is a mean-preserving spread of μ, denoted by τn(·|μ).
By construction, the beliefs for which a is optimal for the decision maker, M(a), is

a finite convex polytope for each a ∈ A. Such a convex polytope has a finite set of J(a)
vertices {μa

j }J(a)j=1 and these vertices span M(a) so that every μ ∈M(a) can be represented

as a convex combination of the vectors {μa
j }J(a)j=1 .5 Denote

X =
⋃
a∈A

{
μa
j

}J(a)
j=1 (4)

as the set of all vertices that defines the optimal actions for the decision maker, which is
finite because both � and A are finite.

Lemma 1. Program (3) has a solution τ ∈ �(X).

Hence, while there may be optimal solutions to (3) with support on a larger (even
infinite) set, we can always find a solution in �(X). The idea is that each M(a) is spanned

5See Grünbaum et al. (1967).
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by its vertices. Hence the sender can replace any belief μ that is not one of the vertices
with a convex combination over the vertices. There are then two possibilities. The first
is that the action σd(μ) is taken on all the vertices in the convex combination. In this
case, the sender is indifferent between μ and the convex combination over the vertices
of M(a). The second possibility is that a different action is taken on one or more of the
vertices. Because the tie-breaking favors the sender, he is either indifferent or strictly
better off by using the convex combination. Hence, restricting to �(X) generates a utility
at least as great as (3). But �(X) is a subset of the feasible set in (3), so the two problems
must have the same value.

Figure 2 provides an illustration. It depicts a feasible solution in which belief μ in
the interior of M(A2) is played with positive probability. Replacing μ with the mean-
preserving spread onto {μa2

j }j=1�2�3 can be no worse for n because the decision maker

breaks ties in favor of n at {μa2
1 } and {μa2

2 }.
Lemma 1 suggests that we may characterize the optimal mean-preserving spread of

every sender in terms of a finite optimization problem. The general idea is that if the last
sender always uses a best response with support on the vertex beliefs X , then previous
senders may as well use strategies limited to the same set of vertices, since the final
sender will undo any attempt to generate any other beliefs by splitting them onto X .

Stable beliefs. To proceed further, we recursively define a set of stable (vertex) beliefs.
Let Xn denote the set of vertex beliefs where sender n has no incentive to provide further
information, i.e.,

Xn ≡ {
μ ∈X : vn

(
σd(μ)�μ

) = Vn(μ)
}
� (5)

Then we recursively define {Xi}ni=1 such that

Xi ≡
{
μ ∈ Xi+1 : vi

(
σd(μ)�μ

) = Ṽi(μ)
}
� (6)

where

Ṽi(μ) = max
τ∈�(Xi+1)

∑
vi

(
σd

(
μ′)�μ′)τ(μ′|μ)

s.t.
∑

μ′∈Xi+1

μ′τ
(
μ′|μ) = μ�

(7)

Notice that (i) a solution to the auxiliary program (7) exists, (ii) Xi ⊆ Xi+1, and (iii) X1 �=
∅. In the auxiliary problem (7), sender i is restricted to use experiments that induce
vertex beliefs only in Xi+1, and he believes that senders i + 1� � � � � n will not add any
information. Because Xi ⊆Xj ∀j > i, sender i’s belief is indeed justified.6

Definition 3. A belief is stable if μ ∈ Xi which is recursively defined by (5) and (6) for
i = 1� � � � � n.

6It would be natural to define stable beliefs not just on the vertices. However, it is without loss of gener-
ality to consider equilibria with support on the vertices, and we avoid tedious repetitions of “stable vertex
beliefs” by having the definition apply to vertices only.
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By construction, no sender has an incentive to refine a stable belief. Therefore, one
can recursively construct a one-step equilibrium where the resulting posterior belief is
distributed only on the set of stable beliefs. On the path of play, if μ0 ∈ X1, no sender
sends a nontrivial signal; if μ0 /∈ X1, only sender 1 posts an informative experiment and
the other senders provide no information. Off the equilibrium path, if one of sender i’s
interim beliefs is μi−1 /∈ Xi, he posts an experiment that “splits” the beliefs only in Xi

and the subsequent senders do not add further information.
A key step in the construction is to make sure that best responses on the vertices

exist for each sender. This is done by using strategies that split any nonvertex belief onto
vertices and, which is crucial, never refine a stable vertex belief.7 Together, these two
restrictions on continuation play imply that each player effectively has a finite choice
set. This does not rely on making value functions continuous (or upper semicontinuous)
in beliefs. For further details the reader may consult Appendix A.

Proposition 2. There exists a one-step equilibrium.

Notice that the equilibrium is Markov in the following sense. The decision maker’s
equilibrium strategy σd depends on the history only through the posterior belief, and for
each i = 1�2� � � � � n, for every experiment profile π1� � � � �πi−1 and possible signal profile
(s1� � � � � si−1) that induce the same interim belief, the mean-preserving spread τi induced
by sender i’s equilibrium strategy is identical.

3.3 Outcome uniqueness

Our third result regards the uniqueness of the equilibrium outcome, formally stated as
follows.

Proposition 3. All subgame perfect equilibria are outcome equivalent for a set of payoff
function profiles with full Lebesgue measure.

Proposition 3 says that for generic preferences, there is an essentially unique equi-
librium. Together with the fact that we can always construct a Markov equilibrium, this
implies that restricting attention to Markov strategies is almost always without loss of
generality. The case that may create multiple equilibrium outcomes is if one sender
is indifferent between some vertex μ ∈ Xi and some mean-preserving spread over Xi

while some other players are not indifferent. However, such preferences are knife edge
and have probability 0.

The proof is relegated to Appendix A. For intuition, first notice that the one-step
equilibrium we construct in Section 3.2 induces vertex beliefs only. A key intermediate
result, Lemma 2 below, establishes that this is without loss of generality

7Players may be indifferent between refining and not refining a stable vertex belief, and using a best
response in which a stable belief is refined could make the best response problem of a previous mover
ill-defined
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Lemma 2. For every subgame perfect equilibrium, there exists an outcome-equivalent
subgame perfect equilibrium in which senders play one-step strategies with implied be-
liefs with support on X after every history of play.

The basic idea is much like Proposition 1, but the proof has to deal with on and off
equilibrium path histories, and is, therefore, notationally more cumbersome. Lemma 2
is crucial because not only can we restrict attention to an equilibrium experiment that
is restricted to vertex beliefs, but, additionally, it is without loss of generality to check
one-step deviations to vertices. Therefore, if two continuation equilibria that are not
outcome equivalent exist, some sender must be indifferent between some μ ∈ X and a
mean-preserving spread with support on X .

There are two cases in which a sender is indifferent to splitting a belief to X . The first
case is when a mean-preserving spread always induces the same action as the original
belief. Such indeterminacy is irrelevant, as the distribution over A × � is unchanged.
Any failure of essential uniqueness therefore corresponds to indifferences over mean-
preserving spreads that induce distinct actions. However, this requires nongeneric pref-
erences. Since X is a finite set, there exists a finite number of affinely independent sets
of belief vectors and indifference between any two such sets can hold for a measure zero
set of preferences. There is a finite set of pairs to consider, and it follows that essential
uniqueness can fail for at most a measure zero set of preferences.

4. Applications

This section discusses some applications. The aim is to shed light on some issues rele-
vant for the design of a communication protocol. Specifically, to maximize the amount
of information disclosure, the decision maker can structure the communication by se-
lecting experts, organizing the order of consultations, deciding what information to
share with experts, etc. As a first step, we examine some key aspects that affect the in-
centives for information revelation, including the number of senders, the order of the
senders’ moves, and the information shared among senders. Thanks to the stable be-
lief characterization of equilibrium outcomes, this becomes relatively straightforward,
as we can focus on how changes in the extensive form affect the set of stable beliefs.

Our goal is to derive some principles guiding the design of how to structure consul-
tations. We focus on results that hold for arbitrary preferences. The justification for this
is that results that do not depend on specific assumptions about preferences are more
robust and may also be of value for real-world applications when preferences are not
observable.

4.1 Information criteria

We begin with defining the criteria to evaluate information revelation. A unique equi-
librium outcome makes comparisons more straightforward and transparent. Unfortu-
nately, when senders move simultaneously, the only possibility to have such uniqueness
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is when full revelation is the unique equilibrium. In general, one must use setwise com-
parisons. In contrast, the sequential model has a unique outcome for generic prefer-
ences. In the rest of the paper, we focus on the generic case with an essentially unique
equilibrium distribution over states and outcomes in the sequential model.

It is easy to construct examples with multiple equilibrium belief systems that can be
ranked according to the Blackwell order, but where the differences in informativeness
are irrelevant because all equilibria induce the same joint distribution over A × �. We,
therefore, treat π and π′ as equivalent in terms of the information content provided that
they are outcome equivalent.

Definition 4 (Essential Blackwell order). For any given decision correspondence, we
say that π is essentially less informative than π ′ if there exists an experiment that is
outcome equivalent to π ′ and more informative than any experiment that is outcome
equivalent to π in the Blackwell order.

First, note that this is a well defined partial order. If π′′ is outcome equivalent to π ′
and more informative than any experiment that is outcome equivalent to π, there exists
no experiment outcome equivalent to π that is strictly more informative than π ′′, so
antisymmetry holds. Transitivity is equally obvious.

Next, note that it is sufficient to compare experiments with support on vertex be-
liefs, as there exists an outcome-equivalent mean-preserving spread onto the vertices
for any experiment involving at least one signal that is not on a vertex. Hence, consider
an experiment in which belief μ in Figure 2 has a positive probability. When comparing
the informativeness of this experiment to another experiment, we first replace μ with
the mean-preserving spread onto {μa2

1 �μ
a2
2 �μ

a2
3 }. In this example, the relevant mean-

preserving spread is unique, which is not always true. However, by Proposition 3, for
generic preferences, there is a unique mean-preserving spread on the vertices of M(a)

for every μ ∈ M(a) and then the order compares the finest experiment outcome equiva-
lent with π to the finest experiment outcome equivalent with π′.

Finally, note that outcome equivalence can only be defined given the decision
maker’s preference. Hence, our essential Blackwell order is not purely based on informa-
tiveness, which is different from individual sufficiency in Bergemann and Morris (2016)
and other conventional information criteria applying to all preferences. The advantage
of our order is to allow us to focus on the comparison of outcome-relevant information
of two information structures.

4.2 Adding senders in sequential persuasion

In this section, we examine the effect of adding senders in a sequential move Bayesian
persuasion game and derive some general results. Intuition suggests that the added
competition from an increase in the number of experts should increase the amount of
information revealed in the market. This view may even be seen as an intellectual foun-
dation for freedom of speech, a free press, the English common law system, and many
other institutions. While the literature provides a somewhat mixed support for this view,
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Figure 3. Continuation payoffs and the order of moves. The solid lines are the senders’ payoffs
as a function of decision maker beliefs, while the dashed line represents the concavified payoff
when 1 (2) is the only sender. In (a), sender 1 splits μ < 1/3 onto {0�1/3}, μ ∈ [1/3�1/2] onto
{1/3�1/2}, and μ> 1/2 onto {1/2�1}. In (b), sender 2 splits μ< 2/3 onto {0�2/3} and μ> 2/3 onto
{2/3�1}.

Gentzkow and Kamenica (2017a, 2017b) provide sufficient conditions under which addi-
tional senders do not reduce the amount of information revealed in simultaneous move
games. Sequential moves further weakens the argument for additional experts generat-
ing more information, because the order of moves matters.

Consider an example with two states and two senders. Figure 3 depicts the pref-
erences over the beliefs of the decision maker for sender 1 and 2 (in their single-sender
persuasion games), respectively.8 Notice in particular that in a single-sender persuasion
problem with μ> 2/3, beliefs are split onto {1/2�1} when the experiment is constructed
by sender 1.

When the two senders move in sequence, full revelation is the unique equilibrium if
sender 1 is the last mover. In contrast, full revelation is not an equilibrium when sender
2 is the last mover, and for priors exceeding 2/3, the equilibrium is less informative than
the experiment constructed when sender 1 is the single sender. The difference between
the two cases is that sender 1 is unable to commit to not splitting μ = 2/3. Anticipating
this, sender 2 provides full information. When the order is reversed, the commitment
issue is gone.

To understand this, suppose that sender 1 is the last mover. Note that the tie is bro-
ken in favor of the action corresponding to [1/3�1/2] at μ = 1/3 and the action corre-
sponding to [1/2�2/3] at μ = 1/2. Any belief in (0�1) is thus split by sender 1 in such a
way that sender 2 gets the lowest possible payoff except when μ is 0 or 1. The unique
best response for sender 2 is, therefore, to fully reveal the state.

In contrast, if sender 2 is the last mover, any μ in [0�2/3] is split onto {0�2/3}. It
follows that if the prior exceeds 2/3, the (finest) best response for sender 1 is to split the
beliefs onto {2/3�1}, which results in no further refinement by sender 2. Hence, the order
of moves matters for the equilibrium outcome. Moreover, for a prior larger than 2/3, the
equilibrium is less informative than the single-sender equilibrium with sender 1, which
is to split the prior onto {1/2�1}.

8We can generate such preferences if the decision maker has four actions available.
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In the example above, the equilibrium is more informative when the new sender is
added as a first mover. This is not quite general due to the incompleteness of the Black-
well ordering, but we can establish an analogue of the result for simultaneous move
games.

Proposition 4. For generic preferences, if a sender is added who moves before all other
senders, there is no equilibrium with n+ 1 senders that is essentially less informative than
the equilibrium in the original game.

Proof. Let Xn
1 be the set of stable beliefs in the game with n senders and let Xn+1

1 be
the set of stable beliefs in the game with n+ 1 senders. Because sender n+ 1 is added to
move before senders 1� � � � � n and the set of stable beliefs is defined backwardly, we have
that

Xn+1
1 ⊆ Xn

1 � (8)

Fix the prior belief μ0, let Xn
1 (μ0) be the support of the equilibrium in the game with

n senders and let Xn+1
1 (μ0) be the support of the equilibrium in the game with n + 1

senders. As discussed in Section 4.1, when introducing the essential Blackwell ordering,
it is without loss to assume that these beliefs are vertices and stable, i.e., Xj

1(μ0)⊆ X
j
1 for

j = n�n+ 1.
For contradiction, suppose that the game with n+ 1 senders has an equilibrium that

is essentially less informative than the equilibrium in the original game with n senders.
Then there exists at least one belief μ′ ∈ Xn+1

1 (μ0) such that μ′ is in the convex hull
of Xn

1 (μ0), but μ′ /∈ Xn
1 (μ0). Because preferences are generic, in the original n-sender

game, some sender has a strict incentive to split μ′ onto Xn
1 . Hence, μ′ /∈ Xn

1 , which
contradicts (8).

The proposition says that when a new sender is added to move before all previous
senders, the equilibrium cannot sustain more uncertainty regardless of the preference
profile of the senders. The idea is simple. If a belief is induced by an equilibrium, it
must be stable. Recall that the set of stable beliefs is constructed backwardly. Adding a
new sender who moves first can only reduce the set of stable beliefs. As a result, such a
change cannot make the outcome essentially less informative unless there are multiple
equilibrium outcomes, which is ruled out by the restriction to generic preferences. In
contrast, the counterexample in Figure 3 with sender 2 added at the end is robust in the
sense that the qualitative features of the example are robust to perturbations in sender
and decision maker payoff functions.

In the special case where there are only two states, the incompleteness of the essen-
tial Blackwell order no longer matters and we obtain a stronger result.

Proposition 5. Suppose that � = {ω0�ω1}. If a sender is added who moves before all
other senders, every equilibrium with n+ 1 senders is weakly essentially more informative
in the Blackwell ordering.
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Proof. Without loss of generality, consider a one-step equilibrium with support on X ,
which contains beliefs where the decision maker is indifferent between two actions to-
gether with 0 and 1. Let Xj

1(μ0) be the support of the equilibrium in the game with j

senders where j = n�n + 1. For contradiction, assume that there are {μL�μM�μH} such
that μM ∈ Xn+1

1 (μ0), {μL�μH} ∈ Xn
1 (μ0), and μM ∈ (μL�μH). Without loss we can as-

sume that there are at least two distinct actions that are taken at beliefs {μL�μM�μH}, as
otherwise μM would not be on the set of vertices X . But for μM to be stable with n + 1
players, every sender i ∈ {1� � � � � n+1} must be weakly better off at μM than at the unique
mean-preserving spread onto {μL�μH}. This implies that transferring probability from
{μL�μH} to μM is consistent with equilibrium in the model with n senders, contradicting
uniqueness with n senders.

The difference between Propositions 4 and 5 can be illustrated in Figure 4. The left
panel of Figure 4 visualizes a case with three states. The support of the finest equi-
librium is X1

n(μ0) = {μ1�μ2�μ3} in the original n-sender game. When a new sender is
added to speak before other senders, the support of the finest equilibrium becomes
X1

n+1(μ0)= {μ1�μ2�μ4}. Proposition 4 leaves the possibility that two equilibria are non-
comparable in the sense of Blackwell. To the contrary, when there are only two states,
the support of the finest equilibrium contains at most two stable beliefs for generic pref-
erences. Proposition 4 implies that μn+1

L ≤ μn
L ≤ μn

H ≤ μn+1
H , which is visualized on the

right panel of Figure 4.
When senders are added at any place except as a first mover, there is nothing that

can be said in general about how the informativeness is affected. We know from Li and
Norman (2018) that adding a sender at the end may strictly reduce the information re-
vealed, and the example in Figure 3 is another example of that. To see that the same
possibility exists when senders are added in the middle, assume that there is a sender 3
who has a preference such that splitting any vertex beliefs makes him worse off. Adding
this sender (or multiple versions of him) at the end of any game with one or two senders
leaves the equilibrium unchanged. Hence, we can use any example in which adding a
sender at the end reduces information relative the single-sender problem to create an
example where adding a sender in the middle reduces the information relative to a per-
suasion game with two (or multiple) senders. To construct examples where adding a

Figure 4. The left panel represents an example with |�| = 3, while the right panel represents an
example with |�| = 2.
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sender in the middle adds information is even easier. For example, one can just add a
sender who prefers full revelation at any position in a game that does not fully reveal the
state before the addition of the sender.

4.3 Multiple moves by the same sender

Our second application considers the communication protocol for a given set of
senders. Up to this point, we have allowed each player to move only once. This is with-
out loss of generality for results having to do with the characterization, existence, and
uniqueness of equilibria, because we can always add multiple players with identical
preferences. However, we now ask whether it is useful for the decision maker to allow
multiple counterarguments or whether a sender is better off by moving more than once.

This exercise is relevant because senders who speak at late stages can respond to
early movers’ arguments, i.e., disclosing information conditional on the signals sent by
previous senders. Then it is natural to ask if there is any value in letting senders respond
to counterarguments from other senders? If so, what is the source of the value?

Our model offers a frictionless benchmark to identify the conditions needed to ra-
tionalize multiple rounds of rebuttals and counterarguments. Preferences are common
knowledge and a sender can provide as much information as he wants in a single round
of disclosure. Hence, the only constraints on communication are strategic consider-
ations. Our results imply that these strategic considerations are per se insufficient to
justify multiple rounds of communication, except that moving twice may be useful for
the first sender who moves.

Formally, we let i ∈ {1� � � � � n} denote the set of senders and we let the stage when
senders move be denoted by t = 1� � � � �T with n ≤ T .

Proposition 6. Consider any sequential-persuasion game with n senders and finite
horizon n ≤ T . Then the set of stable beliefs is the same as in the sequential game with
n senders and n periods in which, for each sender i, every move except the last one is elim-
inated.

Proposition 6 says that for any sequential-persuasion game where senders move
multiple times, to pin down its stable beliefs, it is sufficient to examine a reduced form
game where each sender moves only once. For example, consider a game with three
senders i = 1�2�3 and five stages. Exactly one sender moves at each stage and the or-
der of moves is 1 → 2 → 3 → 3 → 2. In words, sender 1 moves at the first stage, sender
2 moves at the second stage, sender 3 moves at the third and fourth stages, and then
sender 2 moves again at the fifth stage. By Proposition 6, the game has the same set of
stable beliefs as the game with three stages and the order of moves is 1 → 3 → 2. The in-
tuition is very simple. Consider the incentive of a sender who can speak at stages t1 and
t2, where t2 > t1. He may prefer to gradually disclose at multiple stages for two reasons.
First, he may want to withhold information at t1 but release it at t2 to avoid triggering
undesirable disclosure of his opponents who move in between. Second, he may want
to respond to the experiments of some senders, which are only observed at t2. How-
ever, neither of these concerns is sufficient to rationalize gradual information disclosure
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in our model. The first concern is inconsistent with the concept of Nash equilibrium.
When it comes to the second one, whatever the sender can disclose at early stages can
also be disclosed at the last stage, making it redundant to speak multiple times. This is
due to the fact that a sender can deliver as much information to the decision maker as
he wants.

Proposition 6 implies that if we begin with a game with n rounds of persuasion and
n senders moving in the order 1� � � � � n and add a move for sender i that precedes his
move in the initial game, then the set of stable beliefs is unaffected. In contrast, if the
additional move comes after player i+ 1, then the stable beliefs could change. However,
in this case we can remove the move in the initial game, so the number of moves is
irrelevant for the set of stable beliefs, whereas the order of moves matters.

However, there is one case in which multiple moves can be useful. Suppose that we
start with a game in which 1 → 2 → 3, so that each player moves only once. Change the
game to 2 → 1 → 2 → 3, so that player 2 now moves first and third. By Proposition 6,
the two games have the same set of stable beliefs. However, the two games may gen-
erate different equilibrium outcomes because the first mover in the game can choose a
Bayes plausible distribution of stable beliefs. Hence, in a spirit similar to the literature
on agenda-setting in political economy (Romer and Rosenthal (1978), McKelvey (1976),
Chen and Eraslan (2017), and others), having the right sender speak first can be useful
for the decision maker.

If the prior belief is stable, this choice does not matter, as any first mover is happy
to not provide any information. If there are only two states, it is also irrelevant. This is
because for any distribution of beliefs τ that is not finer than τ′, there is some μ in the
convex hull of the support to τ′, a property that fails with more than two states. However,
in general, it can be strictly better to be the first mover.

Notice that the claim is that adding a first move without giving up the existing turn
is what is advantageous, whereas swapping a move from later in the game to position 1
may be disadvantageous, because then the relevant order of play changes, which may
affect the set of stable beliefs. A simple example illustrating this first-mover advantage
is provided in Appendix B.2.

Proposition 6 may seem at odds with some real-world institutions that allow for mul-
tiple rounds of counterarguments. However, information transmission is frictionless in
our model, whereas constraints on the complexity of what can be communicated in a
single argument seem likely to matter in many real-world settings. We believe that to
justify multiple rounds of counterarguments, which are ubiquitous in legal settings and
debates, one has to look beyond purely strategic considerations and consider informa-
tion asymmetries or constraints on the complexity of what can be communicated in a
single argument.

4.4 Simultaneous versus sequential persuasion

Now we fix the set of senders and the order of consultation. When the decision maker
receives disclosures from senders sequentially, she can decide to what extent (if any)
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to share the received information with subsequent senders. On the one hand, reveal-
ing this information disciplines subsequent senders’ strategic information manipula-
tion in a certain manner. On the other hand, as long as the decision maker’s informa-
tion remains imperfect, revealing this information allows subsequent senders to make
targeted opportunistic disclosures. A natural starting point to study this question is
to compare two extreme cases: the one in which each sender observes all suggestions
made by previous senders and the one where a sender observes no suggestions by other
senders. The Bayesian persuasion game of the first policy corresponds to our base-
line model, whereas the second policy corresponds to Gentzkow and Kamenica (2017a),
where senders choose their experiments simultaneously, and where each sender may
make their experiment arbitrarily correlated with any other experiment. We conclude
that information revealed in the simultaneous game cannot be essentially less informa-
tive than in the sequential game.

Suppose that τ ∈ �(�(�)) is an equilibrium distribution of beliefs in a simultaneous
move persuasion game. By Proposition 2 in Gentzkow and Kamenica (2017a), we know
that this is true if and only if for each μ in the support of τ and for each player i, the payoff
from μ is weakly higher than for any mean-preserving spread τ′ of μ. Additionally, we
use the same reasoning as in the sequential setup to prove that we may restrict attention
to distributions with support on X .

Proposition 7. Suppose that τ ∈ �(�(�)) is an equilibrium distribution of beliefs in a
simultaneous-persuasion game. Then there exists an outcome-equivalent equilibrium in
which τ′ ∈ �(X).

Hence, the difference between the sequential model and the simultaneous model
boils down to a comparison that can be done vertex belief by vertex belief. A vertex
belief in the support of an equilibrium of the sequential model must be unimprovable
with respect to Bayes plausible deviations over the set of stable beliefs, that is, vertex
beliefs that no sender would like to further refine. In contrast, a belief in the support of
an equilibrium in the simultaneous move game must be unimprovable with respect to
any Bayes plausible deviation.

It thus follows that for both the simultaneous game and the sequential game, we
need to make sure that there is no vertex belief such that an admissible mean-preserving
spread is preferred to a sender. The difference is thus that we have to check stability
against arbitrary mean-preserving spreads in the simultaneous model, whereas some
mean-preserving spreads can be ruled out in the sequential model because they would
be undone by future senders. The following proposition therefore follows.9

Proposition 8. For generic preferences, there exists no pure-strategy equilibrium in the
simultaneous game that is essentially less informative than the equilibrium in the sequen-
tial game.

9A similar comparison is made in the multi-sender cheap talk literature. The conditions under which
a fully revealing equilibrium exists is weaker in a simultaneous move cheap talk model than a sequential
move one. See Ambrus and Takahashi (2008), Battaglini (2002), Kawai (2015), and Krishna and Morgan
(2001).
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Proof. Suppose that the simultaneous game has an equilibrium essentially less infor-
mative than the finest equilibrium in the sequential game. Then there exists an μ such
that (i) it is in the support of the equilibrium of the simultaneous move game and (ii) it
is in the interior of the convex hull of the beliefs in the support of the finest equilibrium
in the sequential move game. Since preferences are generic, μ cannot be stable belief in
the sequential move game. Hence, some sender in the simultaneous move game has a
profitable deviation, a contradiction.

There are two important caveats to Proposition 8. Arbitrarily correlated experiments
must be allowed and it applies only to pure-strategy equilibria in the simultaneous
game. For the sequential game, generic preferences rule out mixed strategies and ar-
bitrarily correlated experiments are without loss of generality, but this is not so in the
simultaneous game.

The needs for pure strategies and arbitrary correlation are related. Together these as-
sumptions imply that a simultaneous move equilibrium must be immune to profitable
deviations at any realized signal in support of the joint equilibrium experiment. When
experiments are independent or mixed strategies are used, it is impossible to fine tune
deviations in this way.

When arbitrary correlation is violated, Li and Norman (2018) show that adding a
sender may result in a strict loss of information. From Proposition 4, we know that we
cannot lose information in the sequential setting by adding the second player at the top,
so the example combined with Proposition 4 generates an explicit example where the
sequential game is more informative when signals are independent. Similarly, Li and
Norman (2018) provide an example in which a strictly less informative mixed-strategy
equilibrium emerges when a sender is added. Again combining with Proposition 4, we
obtain an example with an equilibrium in the sequential model being more informa-
tive than an equilibrium in the simultaneous model while still allowing for arbitrarily
correlated signals.

In each counterexample above, a fully revealing equilibrium also exists in the simul-
taneous game. In a related setting, Hu and Sobel (2019) argue that when multiple equi-
libria exist, this is not the most plausible equilibrium, because agents use strategies that
are eliminated by iterations on weak dominance. However, this problem does not apply
to Proposition 4 as it is for any equilibrium in the simultaneous model.

Just as in the case of adding senders, the incompleteness of Blackwell’s ordering im-
plies that experiments may be noncomparable. However, we can again obtain a sharp
characterization for the case with two states.

Proposition 9. Suppose that � = {ω0�ω1} and that there is an essentially unique equi-
librium in the sequential game. Then any pure-strategy equilibrium in the simultaneous
move game is weakly essentially more informative.

The proof is similar to that of Proposition 5 and is relegated to the Appendix. While
non-Blackwell comparable distributions also exist in the case of two states, it is imme-
diate to see that if the result fails, there is some belief μ in the support of an equilibrium



Theoretical Economics 16 (2021) Sequential persuasion 659

with simultaneous moves that lies strictly between the smallest and the largest beliefs in
the support of the equilibrium with sequential moves. But then at least one sender must
have an incentive to split the beliefs onto the smallest and the largest sequential move
beliefs. Otherwise there must be an indifference, which is ruled out in the generic case.
Again, Figure 4 illustrates how the two state case is different from the general case.

We can also compare payoffs between simultaneous and sequential games. An im-
plication of Proposition 9 is that the last sender prefers the sequential move game to the
simultaneous move game. The same is true for the general model whenever equilibria
can be ranked using the Blackwell order. Hence, the persuasion framework generates
the opposite result compared to duopolistic quantity competition. An intuition for this
is that the reason why the Stackelberg leader is better off and the follower is worse off
than under Cournot competition is that there is commitment value to overproduction,
which allows the leader to grab a larger share of the pie. In contrast, in the persuasion
model, the follower can always refine whatever the leader does. It is for this reason that
the follower is made better off than in the simultaneous move game. Whether senders
moving earlier are made better or worse off than in the simultaneous game is ambigu-
ous.

4.5 Fully-revealing equilibria

A shortcut to the optimal design of the consultation structure problem is to look for
conditions under which full revelation is an equilibrium. Then the decision maker can
select senders and organize the order of moves to satisfy the conditions and achieve the
complete information payoff.

Thanks to the one-step vertex characterization of the equilibrium outcome, we can
identify an easy-to-check sufficient condition for when the unique equilibrium is fully
revealing. One can rule out non-fully-revealing equilibria as long as at each nondegener-
ate vertex belief, there exists at least one sender who prefers full revelation to the current
belief being observed by the decision maker.

Proposition 10. All equilibria are fully revealing if for each nondegenerate μ ∈ X , there
exists a sender i such that

vi
(
σd(μ)�μ

)
<

∑
ω∈�

ui
(
σd(δω�ω)

)
μ(ω)� (9)

where δω is the degenerate belief about state ω.

Given the characterization of equilibrium outcomes in terms of stable vertex beliefs,
the proof is obvious, so it is omitted. It is easy to check condition (9) as it depends only
on the decision maker’s strategy and the current sender’s payoff at a small number of
vertices. Although persuasion is sequential, the one-step characterization makes it un-
necessary to take the subsequent senders’ actions into account, which explains why the
condition is order invariant (it also applies to the simultaneous model, and the case of
both sequential and simultaneous moves).
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Proposition 10 suggests a simple method to achieve full revelation. The decision
maker selects senders in a such a way that the corresponding sequential-persuasion
game does not have nondegenerate stable beliefs. To do so, it must be the case that
every particular nondegenerate vertex belief is “disliked” by at least one sender.

It is worth mentioning that condition (9) applies regardless of the extensive form
of the game. As discussed in Sobel (2013), in most multi-sender strategic communica-
tion models, a fully-revealing equilibrium exists under very weak conditions. The key
reason is that when others fully reveal the state, a sender has no way to further affect
the outcome. However, this means that full revelation can be supported as an equi-
librium outcome even if it is Pareto dominated in a simultaneous move game, making
the prediction less convincing. Some natural questions are prompted by this. In a multi-
sender Bayesian persuasion game where senders move simultaneously, when should we
expect full revelation as an equilibrium outcome if senders are coordinating on a plau-
sible equilibrium, and under what conditions is full revelation the unique equilibrium
outcome? Proposition 10 offers some insight into these questions.

5. Concluding remarks

We consider a sequential Bayesian persuasion model with multiple senders. Because it
is without loss of generality to focus on equilibria corresponding to a finite set of beliefs,
we establish that subgame perfect equilibria exist and generate a unique joint distri-
bution over states and outcomes for generic preferences. Having a finite set of stable
beliefs characterizing the equilibrium makes it easy to identify the unique equilibrium
outcome and to apply the model to study changes in the extensive form. In particular, (i)
adding a sender who moves first cannot reduce informativeness in equilibrium, and will
result in a more informative equilibrium in the case of two states, (ii) it is without loss
to let each sender speak only once, with the exception that the first mover may benefit
from having a second move, and (iii) sequential persuasion cannot generate a more in-
formative equilibrium than simultaneous persuasion and is less informative in the case
of two states.

Appendix A: Omitted proofs

A.1 Proofs: One-step equilibrium and equilibrium construction

Proof of Proposition 1. To proceed, we extend the definition of one-step equilib-
rium to off the path of play.

Definition 5. Consider a strategy σ ′ and let hi be an arbitrary history when sender
i ∈ {1� � � � � n − 1} moves. Also, for j ≥ i, let h′

j|hi be the implied continuation outcome
path induced if each player j ≥ i follows σ ′

j after history hi and let σ ′|hi denote the con-

tinuation strategy profile.10 We say that σ ′|hi is one-step if
∨n

j=i σ
′
j(h

′
j|hi)= σ ′

i (hi).

10That is, h′
i|hi = hi, h′

i+1|hi = (hi�σ
′
i (hi)), h′

i+2|hi = (hi�σ
′
i (hi)�σ

′
i+1(hi�σ

′
i (hi))), and so on.
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Now we are ready to proceed. Fix a subgame perfect equilibrium σ∗ and let hi =
(π1� � � � �πi−1) be an arbitrary history when i moves. Let (π∗

i |hi � � � � �π∗
n|hi) be the contin-

uation equilibrium path following hi. Let

π∗|hi =
(i−1∨
i=i

πi

)
∨

( n∨
i=i

π∗
i

∣∣∣∣
hi

)

be the joint experiment generated by the continuation equilibrium path. Replace the

continuation equilibrium strategies following hi by (σ ′
i � � � � �σ

′
n�σ

′
d) where, on the con-

tinuation outcome path,

σ ′
i (hi) = π∗|hi

σ ′
j

(
hi�π

∗|hi � � � � �π∗|hi
) = π∗|hi for j ∈ {i+ 1� � � � � n}

σ ′
d

(
hi�π

∗|hi � � � � �π∗|hi � s
) = σd

(
hi�

(
π∗
i |hi � � � � �π∗

n|hi
)
� s

)
�

(A.1)

For a history in which i plays π∗|hi but some j ∈ {i+ 1� � � � � n} deviates, let

σ ′
k

(
hi�π

∗|hi � � � � �π∗|hi �πj� � � � �πk

) = σ∗
k

(
hi�π

∗
i |hi � � � � �π∗

j−1|hi �πj� � � � �πk

)
σ ′
d

(
hi�π

∗|hi � � � � �π∗|hi �πj� � � � �πn
) = σ∗

d

(
hi�π

∗
i |hi � � � � �π∗

j−1|hi �πj� � � � �πn
)
�

(A.2)

and for any other history, let

σ ′
j(hi�πi� � � � �πj−1) = σ∗

j (hi�πi� � � � �πj−1) for j ∈ {i+ 2� � � � � n}
σ ′
d(hi�πi� � � � �πn� s) = σ∗

d(hi�πi� � � � �πn� s)�
(A.3)

The decision maker plays an optimal response following any path of play after hi, as after

each continuation path, the response is selected as some response for an identical joint

experiment. Moreover, if each j ≥ i plays in accordance with σ ′
j , it follows from (A.1) that

the implied distribution over � × A is identical if each j ≥ i plays in accordance with

the original equilibrium σ∗. Also, the strategies in (A.3) imply that the continuation play

after a deviation by i is the same under σ ′ as under σ∗, so i has no incentive to deviate. As

σ∗ is subgame perfect, the continuation play in (A.3) is trivially subgame perfect. Finally,

(A.2) implies that if j is the first player after i to deviate from π∗|hi, then continuation

play replicates that after the same deviation from the σ∗ equilibrium following history

(hi�π
∗
i |hi � � � � �π∗

j−1|hi) in the original equilibrium, so j ∈ {i+ 1� � � � � n} have no incentives

to deviate. Clearly, σ ′ is not one-step after any history, but i and hi were arbitrary, so

adjusting σ∗ in accordance with (A.1), (A.2), and (A.3) following any history i and hi, we

obtain a subgame perfect strategy profile that is one-step after every history h with the

same equilibrium outcome.
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Proof of Lemma 1. For each program on form (3), we consider a restricted finite linear
program

Ṽn(μ) = max
τ∈�(X)

∑
μ′∈X

vn
(
σd

(
μ′)�μ′)τ(μ′)

s.t.
∑
μ′

μ′τ
(
μ′) = μ�

(A.4)

where X is defined in (4). Hence, (A.4) is well defined as it is a finite-dimensional
bounded linear program.

Pick any feasible solution τ to program (3). For each a ∈ A, define M̂(a) ⊂ M(a) as
the beliefs under which the decision maker takes action a: M̂(a) = {μ ∈ �|σd(μ) = a}.
Since M̂(a) ⊂ M(a), it follows that for each μ′ ∈ M̂(a), there exists λ′ ∈ �({μa

j }J(α)j=1 ) such

that μ′ = ∑J(a)
j=1 λ′

jμ
a
j . Hence, all beliefs that generate action a under τ may be split onto

the vertices of M(a) and aggregated into

J(a)∑
j=1

τ̂
(
μa
j

) =
∑

μ′∈M̂(a)

τ
(
μ′) J(a)∑

j=1

λ′
j =

∑
μ′∈M̂(a)

τ
(
μ′)�

Since it is possible that vn(a�μa
j ) < vn(a

′�μa
j ) for some μa

j ∈ M(a) (and μa
j /∈ M̂(a), be-

cause breaking the tie in favor of a′ may be better than a), it follows that the solution to
(A.4) satisfies

Ṽn(μ) ≥
∑
a∈A

J(a)∑
j=1

vn
(
a�μa

j

)̂
τ
(
μa
j

) =
∑
a∈A

J(a)∑
j=1

∑
ω∈�

un(a�ω)μa
j (ω)̂τ

(
μa
j

)

=
∑
a∈A

∑
ω∈�

un(a�ω)

J(a)∑
j=1

[
μa
j (ω)λ′

j

][ ∑
μ′∈M̂(a)

τ
(
μ′)]

=
∑
a∈A

∑
ω∈�

un(a�ω)μ′
[ ∑
μ′∈M̂(a)

τ
(
μ′)]

=
∑
μ′

vn
(
σd

(
μ′)�μ′)τ(μ′)� (A.5)

This holds for any feasible solution to (3). Hence, Ṽn(μ) ≥ Vn(μ). Moreover, any
optimal solution to (A.4) is a feasible solution to (3), so Ṽn(μ) ≤ Vn(μ). This establishes
that solutions to (3) exist, and that Ṽn(μ) = Vn(μ) and that every τ ∈ �(X) that solves
(A.4) also solves (3). Finally, if τ solves (3) and μ′ is such that τ(μ′) > 0, there can be no
μa
k ∈ M(a) such that vn(a�μa

k) < vn(a
′�μa

k) and λ′
k > 0 for the weight on vector μa

k in the

convex combination such that μ′ = ∑J(a)
j=1 λ′

jμ
a
j . This is seen from noting that this would

generate a strict inequality in the first inequality of (A.5).

Proof of Lemma 2. Proposition 1 implies that for every subgame perfect equilibrium,
there is an outcome-equivalent equilibrium in which strategies are one-step for every
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history, so we assume that σ∗ is such a strategy profile. Suppose that there is a sender i
and history hi with associated continuation experiment π∗|hi such that there exists some
realization s′ of experiment π∗|hi that induces a decision maker posterior belief μ′ /∈
X with positive probability. Let a′ = σd(hi�π

∗|hi � � � � �π∗|hi) be the equilibrium action
induced by s′. Furthermore, let M(a′) be the belief polytope where a′ is optimal and let
X(a′) = {μa′

j }mj=1 be the set of vertices of M(a′). Since M(a′) is the convex hull spanned by

X(a′), there exists λ ∈ �(X(a′)) such that μ′ = ∑m
j=1 λjμ

a′
j . Consider an alternative one-

step strategy with π∗|hi replaced by some π ′ in which the realization s′ is replaced by the
set {s1� � � � � sm}, where each sj generates posterior μa′

j and has unconditional probability

p(s′)λj , and everything else in π ′ is like the original equilibrium. 11 We also assume that
the decision maker follows a strategy in which

σ ′
d(h� s)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a′ if h= (
hi�π

′� � � � �π′) and s ∈ {s1� � � � � sm}
σ∗
d

(
π∗|hi � � � � �π∗|hi � s

)
if h= (

hi�π
′� � � � �π′)�and s �= s′

is a realization of π∗

σ∗
d

(
π∗|hi � � � � �π∗|hi �πj� � � � �πn� s

)
if h= (

hi�π
′� � � � �π′�πj� � � � �πn

)
where

j ≥ i is the first player playing πj �= π′

σ∗
d(h� s) for any other h,

where σ∗
d is the strategy of the decision maker in the original equilibrium. For each

μa′
j ∈ M(a′), σ ′

d is a best response if σ∗
d is a best response. Also assume that all senders

with j < i follow the original equilibrium strategy σ∗
i and that sender j = {i� � � � � n} plays

σ ′
j(hj) =

⎧⎪⎪⎨⎪⎪⎩
π′ if hj = (

hi�π
′� � � � �π′)

σ∗
i

(
hi�π

∗� � � � �π∗�πk� � � � �πj−1
)

if hj = (
hi�π

′� � � � �π′�πk� � � � �πj−1
)

σ∗
i (hj) if hj = (hi�πi� � � � �πj−1) is such that πi �= π′�

and leaves everything as in the original equilibrium if hi is not played by {1� � � � � i − 1}.
The continuation outcome path following hi is then (π ′� � � � �π′) and

vi(a�μ) =
m∑
j=1

λjvn
(
a�μa

j

) =
m∑
j=1

λjvn
(
σd

(
π ′� � � � �π′� sj

)
�μa

j

)
�

while nothing is changed for signal realizations that are kept as in π∗, so the distribution
over states and outcomes is the same as in the original equilibrium if no player deviates
after hi. Moreover, if j ≥ i is the first sender deviating from playing π ′ to πj , the path
of play replicates what happens if j is the first sender to deviate from π∗ to πj in the
original continuation equilibrium. Hence, there is no profitable deviation on the path.
Finally, off-path play replicates off-path continuation play in the original equilibrium,
so there is no profitable deviation off the path. Repeating the same argument for each

11It is possible that λj = 0 for some j. Instead of eliminating these beliefs, we may simply generate a
probability zero signal so as not to treat this case separately.
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history hi, every continuation experiment π∗|hi and every realization s′ of π∗|hi with
corresponding belief μ′ /∈X completes the proof.

Proof of Proposition 2. In what follows, we construct a subgame perfect equilib-
rium where sender i’s equilibrium strategy coincides with the solution to program (7).
That is, every sender i adds no information as long as μ ∈ Xi and posts an experiment
that induces beliefs on Xi after any history.

Fix a pair (σd� τn) such that the following statements hold:

• The variable σd is optimal for the decision maker and breaks the ties in favor of
sender n.

• We have τn : �(�) → �(Xn), so that only vertex beliefs are induced following any
history, which is without loss by Lemma 1. Additionally, τn leaves any belief in Xn

unchanged, so that τn(μ|μ) = 1 ∀μ ∈ �(Xn).

Sender n− 1’s problem can then be formulated as

Vn−1(μ) = max
τ

[ ∑
μ′∈�(�)

( ∑
μ′′∈�(Xn)

vn−1
(
σd

(
μ′′)�μ′′)τn(μ′′|μ′))τ(μ′|μ)]

s.t.
∑

μ′∈�(�)

μ′τ
(
μ′|μ) = μ�

(A.6)

That is, sender n − 1 chooses a mean-preserving spread that splits an interim belief μ
into some updated interim beliefs τ, and for each induced interim belief μ′ in τ, sender
n further splits it into �(Xn) according to the selected τn.

Fix an arbitrary interim belief μ and a feasible strategy τ for program (A.6). Addition-
ally, let τn be an any best response by player n that induces vertex beliefs only following
any history and also satisfies τn(μ|μ) = 1 for any μ ∈ Xn. Together, τn and τ induce a
compound mean-preserving spread τn−1 : �(�) → �(Xn) from τ and τn defined as

τn−1
(
μ′′|μ) =

∑
μ′∈�(�)

τn
(
μ′′|μ′)τ(μ′|μ)

�

Since sender n always splits beliefs onto vertices, every compound mean-preserving
spread τn−1 has support on vertex beliefs only. Hence, every feasible solution to program
(A.6) is feasible also in the restricted program (7) for i = n− 1, so

Ṽn−1(μ) ≥ Vn−1(μ)

for every μ. In program (A.6), it is feasible to choose any mean-preserving spread τ ∈
�(Xn). Since sender n does not add information when μ ∈Xn,

Ṽn−1(μ) ≤ Vn−1(μ)�

holds for every μ. Notice that this inequality crucially relies on our restriction on be-
havior on Xn. If sender n adds information at some interim belief μ ∈Xn, some feasible
mean-preserving spreads in program (7) may no longer be feasible in program (A.6).
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Consequently, Vn−1(·) = Ṽn−1(·).12 Since Ṽn−1(μ) is well defined, an optimal mean-
preserving spread τn−1 exists for n − 1 and has support on Xn−1. Whenever there exist
multiple τn−1, we select ones such that sender n − 1 adds no information at every μ ∈
Xn−1, ensuring that the best response of sender n − 2 is well defined. By induction,
continuation strategies exist such that best responses for senders 1� � � � � n − 3 are also
defined.

A.2 Proofs: Outcome uniqueness

The proof of Proposition 3 has two parts. First, we state and prove a few intermediate
results. Then we use these intermediate results to prove the uniqueness of equilibrium
outcome.

A.2.1 Preliminaries The following corollary is more or less a direct consequence of
Proposition 1.

Corollary 1. Fix an equilibrium σ∗ and a history hi. For any deviation σ ′
i by sender i,

there exists a one-step continuation strategy profile σ† of senders i + 1� � � � � n after history
hi such that the following statements hold:

(i) Strategy profiles (σ†
i � � � � �σ

†
n�σ

∗
d) and (σ ′

i �σ
∗
i+1� � � � �σ

∗
d) are outcome equivalent.

(ii) Strategy profile (σ†
i+1� � � ��σ

†
n�σ

∗
d) is a subgame perfect equilibrium of the continu-

ation game after history (hi�σ
†
i (hi)).

(iii) The resulting posterior beliefs are vertices.

Proof. If i = n, then there is nothing to prove, so assume that i < n. A history hi and a
deviation strategy σ ′

i by sender i yields a history h′
i+1 = (hi�σ

′
i (hi)). By Lemma 2, there

exists an outcome-equivalent subgame perfect equilibrium in which senders i+1� � � � � n
play one-step strategies σ∗∗ with implied posterior beliefs with support on X after h′

i+1.
Then by the same logic of the proof of Proposition 2, there is a one-step strategy profile
(σ†

i � � � � �σ
†
n�σ

∗
d) that yields the same outcome as (σ ′

i �σ
∗∗
i+1� � � � �σ

∗∗
n �σ∗

d).

We begin by ruling out non-Markov strategies for the decision maker. There are two
pathological cases to address. First, it may be that there is some state ω ∈� in which the
decision maker is indifferent between two actions. In that case, payoff-irrelevant aspects
of the history can be used to construct non-Markov mixed strategies for the decision
maker.13 The second case is that there is some interior vertex associated with some
decision area M(a) where both sender n and the decision maker are indifferent. Both
these cases are rare in the sense that the associated payoff functions are measure zero
subsets of all conceivable payoff functions.

12The argument does not use continuity of the objective function in (A.6). Best responses by n making
the maximand for n− 1 discontinuous are admissible, as every choice by n− 1 ultimately results in a finite
set.

13In a numerical example, we construct a non-Markov equilibrium where the decision maker’s tie-
breaking rule is determined by payoff-irrelevant endogenous choice senders. See Appendix B.1 for details.
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Lemma 3. Pick any utility functions for the decision maker and sender n that belong to
a set of full Lebesgue measure. Take any pair of histories h∗, h∗∗ that generates the same
posterior belief μ ∈X . Then the decision maker’s equilibrium choice must be identical.

Proof. Consider an action a that is taken in equilibrium and some vertex μa
j ∈

M(a)∩X . Assume that there exist equilibria σ∗ and σ∗∗, and histories h∗, h∗∗ that
generate joint experiments π∗, π∗∗ with realizations s∗ ∈ π∗ and s∗∗ ∈ π∗∗ such that
μ(s∗) = μ(s∗∗)= μa

j , but that

σ∗
d

(
h∗� s∗

) = a �= a′ = σ∗∗
d

(
h∗∗� s∗∗)� (A.7)

Suppose first that μa
j is a degenerate belief, i.e., a vertex of the simplex �(�). Then there

is some ω such that

vd(a�ω) = vd
(
a′�ω

)
� (A.8)

A decision maker’s payoff function may be viewed as an element in |�×A|-dimensional
Euclidean space and the payoff functions that satisfy (A.8) defines a |� × A| − 1-
dimensional subspace. As there is a finite number of triples (a�a′�ω) ∈ A2 × �, the set
of bounded Bernoulli payoff functions in which (A.8) holds for some triple (a�a′�ω) is of
Lebesgue measure zero. Next consider the case with (A.7) holding at some μa

j that is not
a vertex of the simplex �(�). Then sender n can deviate in a way so that either a or a′ is
chosen with probability arbitrarily close to 1, implying that∑

ω∈�
vn(a�ω)μa

j =
∑
ω∈�

vn
(
a′�ω

)
μa
j � (A.9)

which again defines a |�×A| − 1-dimensional subspace of an |�×A|-dimensional Eu-
clidean space given any a, a′, and μa

j . There is a finite set of triples (a�a′�μa
j ) to consider

and for each triple, (A.9) is satisfied for a set of payoff functions of Lebesgue measure
zero, implying that the set of payoff functions for sender n that allows for multiple tie-
breaking rules at an interior vertex is of measure zero.

By Lemma 3, for generic preferences, the decision maker must follow a Markov strat-
egy of the form σd : �(�) →A. It is then useful to define v̂i : �(�) →R, where

v̂i(μ) ≡ vi
(
σd(μ)�μ

)
�

which is the implied payoff function directly over decision maker beliefs for each
sender i.

Next we show that for full measure of stable beliefs, no sender has a weak incentive
to add information. To state this result, recall that Xi is the set of stable vertex beliefs in
the truncated game starting with sender i.

Lemma 4. Suppose that the decision maker plays a Markov strategy σd : �(�) →A. Then,
for any sender i ∈ {1� � � � � n} and for any μ ∈ Xi, Y ⊆ Xi, and τ such that

∑
μ′∈Xi

μ′τ(μ′) =
μ, exactly one of the following two cases holds:
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(i) We have σd(μ
′)= σd(μ) for every (μ�μ′) ∈ Y .

(ii) There exists (μ�μ′) ∈ Y such that σd(μ) �= σd(μ
′). In this case,

v̂i(μ) >
∑
μ′∈Y

v̂i
(
μ′)τ(μ′) (A.10)

for a set of sender i Bernoulli utility functions over A × � with full Lebesgue mea-
sure.

Proof. If σd(μ
′)= σd(μ) for each μ ∈Xi and every i, there is nothing to prove. Suppose

instead that there exist μ ∈ Xi, Y ⊂ Xi, and τ ∈ �(Y) such that μ = ∑
μ′∈Y μ′τ(μ′) and

that (A.10) is violated for sender i. Denote {μ1� � � � �μm+1} = Y and τ = (τ1� � � � � τm+1),
and write the failure of (A.10) as

v̂i(μ) =
m+1∑
j=1

v̂i(μj)τj�

If Y is an affinely independent set, there is a unique mean-preserving spread of μ

onto Y . In this case, the next step in which we find an affinely independent set that spans
μ can be skipped. The case that requires more work is when Y is an affinely dependent
set of vectors. This is true if and only if {μ2 −μ1� � � � �μm+1 −μ1} are linearly dependent.
Then there are scalars (α2� � � � �αm+1) �= (0� � � � �0) such that

∑m+1
j=2 αj(μj −μ1) = 0. So(

−
m+1∑
j=2

αj

)
μ1 +

m+1∑
j=2

αjμj =
m+1∑
j=1

αjμj = 0

by defining α1 = −∑m+1
j=2 αj , which also implies that

∑m+1
j=1 αj = 0. For every β, we have

μ =
m+1∑
j=1

μjτj =
m+1∑
j=1

μjτj −β

m+1∑
j=1

αjμj =
m+1∑
j=1

(τj −βαj)μj�

Let I+ = (j ∈ {1� � � � �m + 1}|τj > 0) and let j∗ be chosen so that 0 <
τj∗
α∗
j

≤ τj
aj

for all j such

that αj > 0. Such j∗ exists as there is at least one j such that αj > 0. Let β∗ = τj∗
α∗
j

and

τ∗
j = τj − τj∗

α∗
j

αj�

It follows that τ∗
j ≥ 0 for all j, that

∑m+1
j=1 τ∗

j = 1 and τ∗
j∗ = 0. Hence, we can remove μj∗

from {μ1� � � � �μm+1} and still find a convex combination that generates μ. By induction,
there exists an affinely independent set of vectors {μ̂1� � � � � μ̂k} ⊆ Y such that μ is in its
convex hull, implying that there exists a unique solution τ̂ such that μ = ∑k

j=1 μ̂jτ̂j .14

14If τ̂ �= τ̂ are distinct mean-preserving spreads of μ onto {μ̂1� � � � � μ̂k}, then 0 = ∑k
i=1 μ̂i(̂τi − τ̂i) or 0 =∑k

i=2(μ̂i − μ̂1)(̂τk − τ̂k), which implies {μ̂1� � � � � μ̂k} is affinely dependent, as τ̂i − τ̂i �= 0 for at least one
i ∈ {2� � � � �k}.
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If σd(μ̂j) = σd(μ̂j′) for every pair of beliefs in {μ̂1� � � � � μ̂k}, then μ and τ̂ are outcome
equivalent. If σd(μ̂j) �= σd(μ̂j′) for some beliefs in {μ̂1� � � � � μ̂k},

v̂i(μ) =
k∑

j=1

v̂i(μ̂j )̂τj�

then v̂i : �(�) → R belongs to a Lebesgue measure zero set of utility functions.15 We
conclude that for every affinely independent subset of Xi, there is a Lebesgue mea-
sure zero of utility functions for i that can generate indifference that are not outcome
equivalent. There is a finite number of affinely independent subsets and every mean-
preserving spread of μ with support on Xi can be written in the form

μ =
L∑
l=1

βl

k(j)∑
j=1

μ̂j(l)τj(l)�

where βl ≥ 0 for each l,
∑L

l=1 βj = 1 and every set {μ̂1(j)� � � � � μ̂k(j)} is affinely indepen-
dent. Hence, if (A.10) holds for every affinely independent subset of Xi, it holds for all
subsets of Xi. The result follows.

The first case of Lemma 4 simply points out that it is possible that the decision maker
action is constant on a subset of stable beliefs. This is relevant because it is possible that
there may exist a nontrivial mean-preserving spread τ ∈ �(Xi) of μ ∈ Xi and if σd(μ

′) =
σd(μ) for each μ′ in the support of τ, the sender is indifferent. However, this multiplicity
is not essential because staying on μ or splitting beliefs in accordance with τ generates
identical joint distribution over actions and states.

In the second case of Lemma 4, Xi, the set of stable beliefs of a sequential game
played by senders i� i + 1� � � � � n, contains beliefs that result in at least two distinct ac-
tions according to σd . Suppose that τ ∈ �(Y) is a vector such that (A.10) does not hold,
implying that

v̂i(μ) =
∑
μ′∈Y

v̂i
(
μ′)τ(μ′)� (A.11)

as otherwise μ could not be a stable belief. If Y is an affinely independent set of vectors,
there is a unique mean-preserving spread of μ onto Y and it should be clear that (A.11)
can only hold for a nongeneric set of functions v̂i : �(�) → R.16 If, instead, Y is an
affinely dependent set, then there must be an affinely independent subset of Y such that
(A.11) holds for some mean-preserving spread with support on the affinely independent
subset. For each affinely independent subset of Y , this requires nongeneric preferences,
and since there is a finite number of senders and affinely independent subsets, the result
follows by induction.

15By repeating the steps in (A.12), (A.13), and (A.14) below, the measure zero condition in belief space
implies measure zero in terms of maps ui :A×�.→R.

16This also implies that a nongeneric set of Bernoulli utility functions ui : A × � → R can satisfy the
equality.
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In a similar spirit, we establish that indifferences over distinct distributions over sta-
ble continuation beliefs are rare.

Lemma 5. Fix any i ∈ {1� � � � � n}. Then∑
μ′∈Y

v̂i
(
μ′)τ(μ′) �=

∑
μ′∈Ỹ

v̂i
(
μ′)̃τ(μ′)

for every μ ∈X ∪ {μ0} and every distinct pair (τ�Y), (̃τ� Ỹ ) with Y ⊆ Xi and Ỹ ⊆ Xi being
affinely independent sets, and τ (̃τ) being a the unique mean-preserving spread of μ onto
Y (Ỹ ) holds for a set of sender i Bernoulli utility functions over A × � with full Lebesgue
measure.

Proof. Let X(μ0) be the support for the unique equilibrium given prior μ0 and let τ be
the associated equilibrium distribution. We note that τ and λ are unique vectors so that

μ0 =
∑

μ∈X(μ0)

μτ(μ)

μ̃0 =
∑

μ∈X(μ0)

μλ(μ)�

Hence, for any β,

μ0 =
∑

μ∈X(μ0)

μ
(
τ(μ)−βλ(μ)

) +βμ̃0�

and all coefficients are positive if β is small enough. Also, we assume that τ̃ has support
on X(μ̃0) �= X(μ0) so that

μ̃0 =
∑

μ∈X(μ̃0)

μτ̃(μ)�

This implies that when the prior is μ0, it is feasible to split beliefs over X(μ0)∪X(μ̃0) in
accordance with {

τ(μ)−βλ(μ)+βτ̃(μ)
}
μ∈X(μ0)∪X(μ̃0)

�

provided that β is small enough. But since τ is the generically unique equilibrium given
μ0, this is suboptimal, so∑

μ∈X(μ0)

v̂1(μ)τ(μ) >
∑

μ∈X(μ0)∪X(μ̃0)

v̂1(μ)
[
τ(μ)−βλ(μ)+βτ̃(μ)

]
=

∑
μ∈X(μ0)

v̂1(μ)τ(μ)+β

[ ∑
μ∈X(μ̃0)

v̂1(μ)̃τ(μ)−
∑

μ∈X(μ0)

v̂1(μ)λ(μ)

]
�

Hence, ∑
μ∈X(μ̃0)

v̂1(μ)̃τ(μ) <
∑

μ∈X(μ0)

v̂1(μ)λ(μ)�

which contradicts that τ̃ is better than λ for prior belief μ̃0.
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A.2.2 Proof of Proposition 3 Lemma 2 and Corollary 1 imply that for sender i =
2� � � � � n, we need only to consider responses at X onto �(Xi). Lemma 4 implies that,
generically, each sender has a strict incentive not to refine any μ ∈ Xi. By linearity, an
optimal mean-preserving spread with support on an affinely independent set must ex-
ist, so Lemma 5 implies that for generic preferences, each deviation onto �(X) gener-
ates an essentially unique response for generic preferences and, since every deviation is
equivalent to a deviation onto �(X), we conclude that the off-equilibrium path is gener-
ically unique. Finally, Lemma 5 applied to sender 1 also implies that sender 1 generi-
cally has a unique optimal mean-preserving spread of the prior onto the set of stable
beliefs.

Assume that there exist two distinct affinely independent sets of vectors Y ⊆ Xi and
Ỹ ⊂Xi such that ∑

μ′∈Y
v̂i

(
μ′)τ(μ′) =

∑
μ′∈Ỹ

v̂i
(
μ′)̃τ(μ′)� (A.12)

where τ is the unique mean-preserving spread of μ onto Y and τ̃ is the unique mean-
preserving of μ onto Ỹ . Also assume there are at least two distinct actions chosen by the
decision maker. In terms of the primitive preferences over A×�, (A.12) can be rewritten
as ∑

μ′∈Y

∑
ω∈�

[
ui

(
σd

(
μ′)�ω)

μ′(ω)
]
τ
(
μ′) =

∑
μ′∈Ỹ

∑
ω∈�

[
ui

(
σd

(
μ′)�ω)

μ′(ω)
]̃
τ
(
μ′)� (A.13)

Notice that if for each a ∈ A, we let Y(a) = {μ′ ∈ Y s.t σd(μ
′) = a} and symmetrically for

Ỹ (a), we may rewrite (A.13) further as

∑
a∈A

{∑
ω∈�

ui(a�ω)

[ ∑
μ′∈X(μ�a)

μ′(ω)τ
(
μ′) −

∑
μ′∈X̃(μ�a)

μ′(ω)̃τ
(
μ′)]}

= 0� (A.14)

Since τ and τ̃ are unique, this defines a lower dimensional subspace of |A × �|-
dimensional Euclidean space, so the set of sender i payoff functions such that (A.12)
holds is measure zero. Since Xi is finite, there is a finite set of pairs of affinely indepen-
dent sets spanning μ and we consider only μ from the finite set X ∪ {μ0}. The result
follows.

A.3 Proofs: Applications

Proof of Proposition 6. Since the stage and the player identity no longer coincide,
let Xt

i denote the stable beliefs in the truncated game starting with player i moving at
stage t. Suppose that t is the final move of player i and that i also moves at t ′, with
t ′ < t. If t ′ and t are consecutive stages, it is immediate at Xt

i =Xt ′
i , so assume that there

exists a player j moving in between t ′ and t. Without loss of generality, let j move at
time t ′ + 1 and let Xt ′+1

j ⊆ Xt
i be the set of stable beliefs in the truncated game starting
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with player j at time t ′ + 1. We claim that Xt ′
i = Xt ′+1

j , that is, that player i moving at t ′
does not affect the set of stable beliefs in the truncated game starting at the next stage,
so the move by i at t ′ is redundant. For contradiction, assume that the move by i at
t ′ refines the set of stable beliefs, so that there exists μ ∈ Xt ′+1

j such that μ /∈ Xt ′
i . But

if μ ∈ Xt ′+1
j , then μ ∈ Xt

i , which implies that i has no incentive to create a mean- pre-

serving spread of μ with support in Xt
i ⊆ Xt ′

i . Since any mean-preserving spread that is
feasible at time t ′ is feasible also at t, this contradicts Xt

i being the set of stable beliefs
in the truncated game starting a time t. Since t ′ < t and i were arbitrary, the proposition
follows.

Proof of Proposition 7. Consider some μ in the support of τ that is not in �(X).
Assume that σd(μ) = a is the action taken by the decision maker following μ and let
M(a) be the set of beliefs for which a is optimal. Replace μ with any mean-preserving
spread τ′ of onto beliefs in M(a), suppose that σd(μ

′) = a for each μ′ in the support
of τ′, and let the probability of any other belief in τ be unchanged. Clearly, this belief
distribution is outcome equivalent with τ. To see that it must also be an equilibrium,
assume that it is not. Then there exists some player i and belief μ′ in the support of
τ′ and a mean-preserving spread τ′′ of μ′ such that i strictly prefers τ′′ to μ′. But then
i strictly prefers the compound mean-preserving spread constructed by first splitting
μ into τ and then further splitting μ′ into τ′′. Since this compound mean-preserving
spread is a feasible deviation for i given belief μ, this contradicts μ being in the support
of an equilibrium distribution. Since τ′ is any mean-preserving spread with support in
M(a), we may choose one with support on the vertices of M(a), which is always possi-
ble. The proof is completed by noting that the argument can be repeated for any μ not
in �(X).

Proof of Proposition 9. Fix the prior μ0 and begin by noting that for the result to
fail some information must be provided in the sequential model. Hence, without loss
there must be a pair μL�μH ∈ X such that μL < μ0 < μH , where μL and μH are in
the support of the equilibrium in the sequential model. Suppose that there is some μ

with μL < μ < μH that is in the support of an equilibrium in the simultaneous move
model. As in the proof of Proposition 8, there are two cases. First, suppose first that
the action is the same at μL and μH . Then putting positive probability on μ or the
unique mean-preserving spread onto {μL�μH} has no effect on the distribution over
actions and states, so putting positive probability on μ does not affect the essential
informativeness. Second, suppose that μL and μH generate distinct actions. Then
for μ to be part of an equilibrium in the simultaneous game, all senders must weakly
prefer μ to the unique mean-preserving spread to {μL�μH}. But then μ must be an
equilibrium (not necessarily on a vertex) in the sequential game, which since μ and
the mean-preserving spread to {μL�μH} generate different distribution over states and
action contradicts essential uniqueness. Hence, an equilibrium in the simultaneous
game is either more or equally informative as the finest equilibrium of the sequential
game.
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Appendix B: Examples

B.1 Non-Markov equilibrium

In this section, we consider an example that has a non-Markov equilibrium that is qual-
itatively different from the Markov equilibrium. Suppose that � = {ω0�ω1} and the op-
timal choice correspondence for the decision maker is

σ(μ) =

⎧⎪⎪⎨⎪⎪⎩
{a1� a2} if μ≤ 1/10

a3 if 0�1 ≤ μ≤ 9/10

{a4� a5} if μ≥ 9/10�

Also suppose that two senders have state-independent preferences

u1(a�ω) =

⎧⎪⎪⎨⎪⎪⎩
3 if a ∈ {a1� a4}
1 if a= a3

0 if a ∈ {a2� a5}�
u2(a�ω) =

⎧⎪⎪⎨⎪⎪⎩
3 if a ∈ {a2� a5}
1 if a= a3

0 if a ∈ {a1� a4}�
Consider a Markov equilibrium. Allowing for mixed strategies, let σ1(0) be the proba-
bility for a1 given belief μ = 0 and let σ4(1) be the probability of a4 given belief μ = 1.
Suppose that the decision maker has full information. Then the payoffs of sender 1 and
sender 2 are 3[σ1(0) + σ4(1)]/2 and 3[2 − σ1(0) − σ4(1)]/2, respectively, so the payoff is
greater than or equal to 3/2 for at least one sender. Hence, beliefs in [1/10�9/10] can be
ruled out in any Markov equilibrium. In contrast, if the decision maker always breaks the
tie against the sender who first splits the belief into [0�1/10] or [9/10�1], each sender may
as well not provide any information, and qualitatively different equilibria with action a3
can be supported by such non-Markov strategies.

B.2 First-mover advantage

To illustrate the first-mover advantage, assume that there are three states, i.e., � =
{ω1�ω2�ω3}, and that the prior is (1/3�1/3�1/3). For simplicity, take the set of sta-
ble beliefs as a primitive. We assume that the stable vertex beliefs are e1 = (1�0�0),
e2 = (0�1�0), e3 = (0�0�1), μ1 = (1/2�1/2�0), and μ2 = (0�1/2�1/2). There can be an
arbitrary number of senders, but we consider just two of them, labeled 1 and 2. Let their
expected utilities evaluated at the stable beliefs be(̂

v1(e1)� v̂1(e2)� v̂1(e3)� v̂1(μ1)� v̂1(μ2)
) = (0�−1�−1�0�1)(̂

v2(e1)� v̂2(e2)� v̂2(e3)� v̂2(μ1)� v̂2(μ2)
) = (−1�−1�0�1�0)�

While e1, e2, and e3 are trivially stable, we need to check the stability of μ1 and μ2. We
have that μ1 is stable because

v̂1(μ1) = 0 >
1
2
v̂1(e1)+ 1

2
v̂1(e2) = −1

2

v̂2(μ1) = 1 >
1
2
v̂2(e1)+ 1

2
v̂2(e2) = −1�
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and μ2 is stable by a symmetric computation. It follows that in the game in which sender
1 moves first, the equilibrium will be that sender 1 puts probability 1/3 on e1 and 2/3 on
μ2, giving player 1 an expected utility of 2/3 and player 2 an expected utility of −1/3. In
contrast, when sender 2 moves first, μ1 is played with probability 2/3 and e3 is played
with probability 1/3, resulting in the opposite expected utilities.
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