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Trade clustering and power laws in financial markets
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This study provides an explanation for the emergence of power laws in asset trad-
ing volume and returns. We consider a two-state model with binary actions, where
traders infer other traders’ private signals regarding the value of an asset from their
actions and adjust their own behavior accordingly. We prove that this leads to
power laws for equilibrium volume and returns whenever the number of traders
is large and the signals for asset value are sufficiently noisy. We also provide nu-
merical results showing that the model reproduces observed distributions of daily
stock volume and returns.
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1. Introduction

Recently, the literature on empirical finance has converged on a broad consensus: Daily
returns on equities, foreign exchange, and commodities obey a power law. This striking
property of high-frequency returns has been found across both space and time through
a variety of statistical procedures, from conditional likelihood methods and nonpara-
metric tail decay estimation to straightforward log-log regression.1 A power law has also
been found for trading volume by Gopikrishnan et al. (2000) and Plerou et al. (2001).
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These power-law findings are highly consequential, mainly because extreme out-
comes are by definition rare, so attempts to estimate prices or quantities with tail risk
sensitivity through nonparametric methods are deeply problematic (Salhi et al. 2016).
Thus, information on the specific functional form of the tails of these distributions has
great value for econometricians and practitioners. In addition, even elementary con-
cepts from financial and economic theory—such as the benefits of diversification in the
presence of risk—are sensitive to the precise nature of the tail properties of returns (see,
e.g., Ibragimov 2009).

In this paper, we respond to the developing empirical consensus by building a model
of asset markets that generates a power law in both volume and price. The underly-
ing driver of this power law is private asymmetric information on the value of assets,
dispersed among many traders. Suppose that traders choose between buying and not
buying. The action of buying suggests a positive private signal. As a result, a single
trader’s action can cause clustering of similar actions by other traders. This trade clus-
tering leads to power laws in volume and returns. In particular, we consider a series
of markets in which the number of traders increases and the informativeness of signals
diminishes, and we show that the equilibrium size of trade clustering asymptotically
exhibits power-law fluctuations.

To further understand our power-law result, suppose that, for each realization of pri-
vate signals, informed traders are sorted in descending order according to their signals
and then classified as follows: The first group of traders buys regardless of the actions
of other traders. The second group buys if there is at least one trader buying. The third
group buys if there are at least two other traders buying, and so forth. Now consider a
fictitious best response dynamic where traders choose whether to buy after viewing the
decisions of previous traders. We show that under reasonable assumptions on the infor-
mativeness of the private signal, the decision to buy on the part of one trader induces
on average one new trader to buy. An analogy can be made with Keynes’ beauty contest,
where a voter’s decision is affected by the average actions of n other voters. As a con-
sequence, one vote has an impact of size 1/n on the decisions of others. In our model,
when an investor has an incentive to imitate the average behavior of n traders, the act of
buying by one trader has an impact of size 1/n on the other traders’ behavior.

To understand the implications of this property, we view excess demand as a
stochastic process, indexed by the number of buyers (rather than time) and generated
by the fictitious best response dynamic discussed above. The first passage to zero for this
process produces an equilibrium number of buying traders. Because the decision to buy
by one trader induces on average one new trader to buy, this excess demand process is
a martingale. As is well known, the first passage time to zero for a martingale follows a
power-law distribution.2 In this way, we derive a power-law distribution for the number
of buying traders, which translates to the equilibrium trading volume.

The market environment of our model draws on Minehart and Scotchmer (1999),
where a large number of informed traders receive private signals on a binary state of the

2For example, the first passage time of a Brownian motion with no drift follows a particular inverse Gaus-
sian distribution, which has an asymptotic power-law tail with exponent 0�5. Further examples can be
found in Redner (2001).
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world, and simultaneously choose between buying one unit of an asset or not buying
at all. Informed traders submit demand schedules conditional on all possible prices,
rather than choosing an action unconditionally. This type of market competition was
formulated as Nash equilibria in supply functions by Grossman (1981) and Klemperer
and Meyer (1989), and has been introduced to the analysis of asset markets with pri-
vate signals by Kyle (1989), Vives (2011), and Attar et al. (2014). However, none of these
models leads to a power law.

Herd behavior models, which connect asymmetric information to excess fluctua-
tions in asset pricing, have also served as inspiration for our research. The models
of herding and information cascades proposed by Banerjee (1992) and Bikhchandani
et al. (1992) have been employed to examine financial market fluctuations.3  Gul and
Lundholm (1995) demonstrated the emergence of stochastic clustering by endogenizing
traders’ choice of waiting time. Signal properties leading to herding behavior in sequen-
tial trading were identified by Smith and Sørensen (2000) and Park and Sabourian (2011).
While none of these models generates a power law of financial fluctuations specifically,
we inherit the spirit of these models, in which asymmetric information among traders
results in trade clustering.

There are other models that generate a power law of returns. For example, models
of critical phenomena in statistical physics have been applied to herding behavior in fi-
nancial markets,4 in which a power law emerges if traders’ connectivity parameter falls
at criticality. Unlike the present study, these papers do not address why trader connec-
tivity should exhibit criticality.5

In another strand of the literature, Lux and Sornette (2002) show that a stochastic
rational bubble can produce a power law. Gabaix et al. (2006) generate power laws for
trading volume and price changes when the amount of funds managed by traders fol-
lows a power law. In contrast to these explanations, we focus on the role of asymmetric
information that results in clustering behavior by investors. This is in line with many
previous studies that have linked asymmetric information in financial markets to phe-
nomena such as crises, cascades, and herding. These studies range from a historical
account of crises by Mishkin (1991) to the estimation of information content of trad-
ing volume on prices by Hasbrouck (1991). The latter noted, “Central to the analysis
of market microstructure is the notion that, in a market with asymmetrically informed
agents, trades convey information and therefore cause a persistent impact on the se-
curity price.” The present study seeks to link this impact to the ubiquitously observed
power-law fluctuations.

3See also Caplin and Leahy (1994), Lee (1998), Chari and Kehoe (2004), and Cipriani and Guarino (2005).
For extensive surveys, see Brunnermeier (2001), Chamley (2004), and Vives (2008).

4Studies in this literature include Bak et al. (1997), Cont and Bouchaud (2000), Stauffer and Sornette
(1999).

5In a similar vein, Nirei (2008) sketched out the basic idea that herd behavior can generate power–law-
sized cascades in an environment similar to Orléan (1995), but fell short of substantiating his claim with
rigorous analysis. This paper generates a power law in a standard market microstructure model, which
allows us to relate the conditions necessary for generating power laws to a broad range of studies in financial
economics.
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The remainder of the study is organized as follows. Section 2 presents the model.
Section 3.1 analytically shows that a power-law distribution emerges for trading volume
when the number of traders tends to infinity and provides intuition for the mechanism
behind it. Section 3.2 elaborates on the power-law exponent for volume. Section 3.3
shows that a power law holds for returns. Section 3.4 numerically confirms that the
equilibrium volumes follow a power law with a finite number of traders and that the
equilibrium return distribution matches its empirical counterpart. Section 3.5 discusses
some extensions of the model and Section 4 concludes. Long proofs are deferred to the
Appendix.

2. Model

In this section, we describe the basic features of the model, including the nature of the
asset market and the definition of equilibrium.

2.1 Market

The asset market consists of n informed traders, a continuum of uninformed traders,
and an auctioneer. Uninformed traders supply a single asset and informed traders de-
mand it.6 Informed traders are risk neutral and indexed by i ∈ {1� � � � � n}. There is an un-
derlying state s that affects the value of the asset and takes values in {H�L}. We assume in
particular that the asset has common intrinsic value 1 in stateH and 0 in state L. While
the true state is not known to any market participant, all agents hold a common prior for
s given by Pr(H) = Pr(L) = 1/2. Moreover, informed traders receive a private signal Xi
drawn independently from a common distribution Fs with finite support [xa�xb]. This
signal is used to make inferences about the value of s, as described below.

Let S(p) denote aggregate supply by uninformed traders at price p. We assume that
S is continuously differentiable and strictly increasing with S(1/2)= 0, so that aggregate
supply is zero at the price level that reflects the common prior. We also assume that
p̄ := S−1(1) < 1, implying an upper bound on equilibrium price below the maximum
value of the asset.

Each informed trader chooses whether to buy a single trading unit, set to 1/n so as
to normalize maximum total demand to unity. Hence aggregate demand takes values in
the discrete set {0�1/n� � � � �1}. The equilibrium price p∗ takes values in {p0�p1� � � � �pn},
where each pm is determined by the market-clearing condition S(pm) = m/n. Since
S(1/2)= 0, we have p0 = 1/2.

The demand function di of an informed trader describes his action for each realiza-
tion of price, given his private signal. In particular, trader i buys at p when di(p | xi)= 1
and refrains when di(p | xi) = 0. Let D be the set of all such (binary) functions on

6We later discuss the case where both uninformed and informed traders can buy and sell. The informa-
tional asymmetry between informed and uninformed traders in this model is similar to event uncertainty,
as introduced by Avery and Zemsky (1998) as a condition for herding to occur in financial markets.
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[xa�xb] × {p1�p2� � � � �pn}.7 Aggregate demand expressed in terms of trade volume is

D
(
p | X

) :=
n∑
i=1

di(p |Xi)�

where X = (Xi)ni=1 denotes a profile of private signals.
Outcomes evolve as follows.

Step 1. Nature selects the state s ∈ {H�L}.

Step 2. A signal profile X is drawn from the joint distribution
∏n
i=1 F

s .

Step 3. Informed traders submit their demand functions to the auctioneer.

Step 4. The auctioneer determines the equilibrium price p∗.

Step 5. Transactions take place, with a unit of the asset delivered to each trader i with
di(p

∗ |Xi)= 1.

Step 6. Equilibrium trading volume is realized asm∗ :=D(
p∗ | X

)
.

In Step 4, the auctioneer obeys the following protocol: If D(p1 | X) = 0, then the
auctioneer sets p∗ = p0, since no informed trader is willing to buy given that all other
traders do not buy. IfD

(
p1 | X

)
> 0, then the auctioneer determines p∗ >p0 such that

S
(
p∗) = D

(
p∗ | X

)
n

�

Since the asset has common value 1{s = H} and its purchase cost is p, a trader who
buys obtains payoff 1{s =H}−p. Therefore, the expected payoff of a trader who buys at
signal Xi is ri(p�Xi)− p, where ri(p�Xi) denotes the probability of s =H, conditional
on signal Xi and equilibrium price p. A trader who refrains from buying obtains zero in
either state.

GivenXi and di(pm |Xi)= 1, pm is an equilibrium price if and only if there arem− 1
other traders buying at pm. Let �m�i denote such an event. Since Xi is independent of
other traders’ decisions dj givenm, we have

ri(pm�Xi)= Pr(�m�i�Xi�H)
Pr(�m�i�Xi)

= Pr(�m�i |H)
Pr(�m�i�Xi)

Pr(Xi |H)Pr(H)� (1)

Our equilibrium concept is defined as follows.

Definition 1 (Equilibrium). A Bayesian Nash equilibrium consists of a profile of in-
formed traders’ demand functions di ∈ D, a profile of conditional probabilities ri obey-
ing (1), and an equilibrium price correspondence p∗ such that (i) for any i = 1�2� � � � � n
and at each information set (p�xi), di maximizes expected payoff given dj for j �= i, (ii)

7Here p0 is excluded because p0 cannot be realized in equilibrium if any trader, including i, chooses
buying at p0.
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for any i= 1�2� � � � � n, ri is consistent with demand functions {dj} and equilibrium price
correspondence p∗, and (iii) p∗ clears the market. That is, nS(p∗) = D(p∗ | x) for all
x ∈ [xa�xb]n.

2.2 The signal

To consider outcomes when the number of traders becomes large, we consider a se-
quence of markets indexed by the number of informed traders n. The supply function
S is held constant as n changes, but the distribution of the private signal varies. At fixed
n and state s, the private signal distribution is denoted by Fsn, with density function f sn .
Each f sn is continuously differentiable and strictly positive on [xa�xb]. We also define the
functions

�n := fHn

fLn
� �n := 1 − FHn

1 − FLn
and λn := FHn

FLn
� (2)

The likelihood ratio �n is taken to be strictly increasing on [xa�xb] for each n. This mono-
tone likelihood ratio property (MLRP) means that larger xi is evidence in favor of s =H.
The value �n(x) expresses the likelihood when the signal is greater than x. Thus, a
trader’s bidding action reveals the information �n(x) to observers of the action under
a decision rule that a trader buys only if the signal is greater than x. Similarly, λn(x) is
the likelihood when the signal is smaller than x, and it is the information revealed by
inaction of the trader.

Purchases by informed traders reveal signals in favor of H, further encouraging in-
formed traders to buy. The resulting aggregate demand curve is upward sloping if the
signal effect dominates the scarcity effect of price. To implement this scenario, we as-
sume the following property on the sequence of likelihood ratio functions, which guar-
antees that aggregate information for the informed traders increases without bound as
n→ ∞.

Assumption 1. There is an n1 ∈N, a ξ ∈ (0�1), and a δ > 0 such that

nξ log
(
�n(x)

λn(x)

)
> δ

for all x ∈ [xa�xb] whenever n > n1.

As we are concerned with high-frequency fluctuations in volume and price, we work
in an environment where the informativeness of the signal is vanishingly small. We for-
malize this idea by requiring that the signal tends to pure noise.

Assumption 2. The likelihood ratio �n converges to 1 uniformly on [xa�xb] as n→ ∞.

Assumption 2 holds in short time intervals when the signal received by traders tends
to be noisy. Along with Assumption 1, this produces an asymptotic setting where the
signal contains vanishingly small information on the fundamental value of an asset and
yet the informativeness is larger than the impact of increasing purchasing costs.
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Assumption 3. There is an xc < xb such that, for each n ∈ N, the signal satisfies
λ′′
n(x)λn(x)≤ λ′

n(x)
2 whenever x ∈ [xc�xb].

Assumption 3 is a regularity condition on behavior of the signal around the bound-
ary of its domain. It is also possible to obtain heavy-tailed outcomes that replicate power
laws in finite samples without this assumption, as discussed in the Appendix.8

Assumptions 1–3 are satisfied by a variety of signals. Examples include the linear
distribution pair

fHn (x)= 1
2

+ εnx and fL(x)= 1
2
� −1 ≤ x≤ 1�

where εn = n−ξ/3 and 0< ξ < 1, as well as the exponential distribution pair

fH(x)= μe−μx

1 − e−μ and fLn (x)= (μ+ εn)e−(μ+εn)x

1 − e−(μ+εn) � 0 ≤ x≤ 1�

where εn = δεn
−ξ, δε > 0, μ > 2, and 0 < ξ < 1. The Technical Appendix in the Sup-

plemental Material (available in a supplementary file on the journal website, http:
//econtheory.org/supp/3523/supplement.pdf) verifies these claims.

2.3 Strategies and equilibria

We saw in Section 2.1 that trader i chooses di(p�Xi)= 1 if and only if ri(p�Xi)≥ p. This
condition is equivalent to

ρi(p�Xi)≥ p

1 −p� (3)

where ρi(p�Xi) := ri(p�Xi)/(1 − ri(p�Xi)) is a conditional likelihood ratio for iwith pri-
vate signalXi and decision di(p�Xi)= 1. Using (1) and Pr(H)= Pr(L)= 1/2, we obtain

ρi(p�Xi)= Pr(�m�i |H)
Pr(�m�i |L) �n(Xi)� (4)

Since �n(x) is continuous and strictly increasing, ρi(pm�x) is continuous and strictly in-
creasing in x for any pm. Therefore, for each pm ∈ {p1�p2� � � � �pn}, there exists threshold
σ ∈ [xa�xb] such that it is optimal for trader i to buy if and only if Xi ≥ σ . The threshold
σ = σ(m) indicates either an indifference level of signal ρi(pm�σ) = pm/(1 − pm) or a
corner solution. With this notation, trader i’s demand function follows the rule

di(pm�xi)= 1{Xi ≥ σ(m)}�
A trader who buys at price pm can infer that there are m− 1 other buying traders at pm
under the stipulated rule for the auctioneer. Moreover, the threshold function σ(m) is

8See, in particular, the discussion after the proof of Proposition 3.

http://econtheory.org/supp/3523/supplement.pdf
http://econtheory.org/supp/3523/supplement.pdf
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common for all informed traders. Thus, a buying trader can infer that, for pm to oc-
cur, there must be m− 1 other traders who receive signals greater than σ(m) and n−m
traders who receive signals less than σ(m). Such an event occurs with probability

Pr(�m�i | s)=
(
n− 1
m− 1

)(
1 − Fsn

(
σ(m)

))m−1
Fsn

(
σ(m)

)n−m
�

Combining this expression with the definitions in (2), the likelihood ratio forpm to occur
can be expressed as

Pr(�m�i |H)
Pr(�m�i |L) =�n

(
σ(m)

)m−1
λn

(
σ(m)

)n−m
�

Substituting into (4) and using equality in the decision rule (3), we find that the thresh-
old σ(m) at which a trader is indifferent between buying and not buying given pm is
implicitly determined by

pm

1 −pm = λn(σ)n−m�n(σ)m−1�n(σ) (5)

if an interior solution σ exists.
Equation (5) is the key to the subsequent analysis. The right-hand side shows the

likelihood ratio of the posterior belief of a trader who receives signal xi = σ(m) and
buys at pm. Aggregate demand D(pm | x) can be obtained by counting the number of
informed traders with xi ≥ σ(m).

Proposition 1 (Properties of demand). Under Assumption 1, there exists an no ∈N such
that, for any n≥ no and any x ∈ [xa�xb]n, the threshold signal level σ(m) is decreasing in
m and aggregate demandD(pm | x) is increasing inm.

Figure 1 depicts aggregate demand D(p | x) as a function of m. Upward-sloping
aggregate demand indicates the presence of strategic complementarity in informed
traders’ buying decisions through the information revealed by price: a higher price in-
dicates that there are more informed traders who receive high signals.9 The increment
in price pm+1/pm along the supply curve is of order 1/n because each informed trader
demands quantity 1/n of the asset.

Proposition 2 (Existence of equilibrium). Under Assumption 1, for any n > no, there
exists an equilibrium (p∗�m∗) for each realization of x.

The proof of Proposition 2 involves a straightforward application of Tarski’s fixed
point theorem. While multiple equilibria may exist for each realization of x, we focus on
the case where the auctioneer selects the minimum number of buying traders among

9The mechanism in which demand feeds on itself is reminiscent of Bulow and Klemperer’s (1994) “ratio-
nal frenzies.”
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Figure 1. An equilibrium outcome for signal profile realization x.

possible equilibria, m†, for each x.10 This equilibrium selection uniquely maps each re-
alization of x to m†, rendering m† a realization of a well defined random variable. This
random variable, denoted henceforth by M†

n , represents equilibrium volume, the prob-
ability distribution of which is determined by the distribution of X and the equilibrium
selection mapping.

3. Power law results

Next we turn to our main analytical results, including a power law for volume and re-
turns. In addition to these results, which are asymptotic, we provide quantitative analy-
sis investigating the case of finite n.

3.1 Power law for volume

The right tail of a random variable Y is said to obey a power law with exponent α if
Pr(Y ≥ y)∝ y−α for sufficiently large y. Our first step is to show that equilibrium aggre-
gate trading volumeM†

n follows a power law asymptotically in n.

Proposition 3 (Power law for volume). If Assumptions 1–3 hold, then M†
n converges in

distribution as n→ ∞, with

lim
n→∞ Pr

(
M†
n =m) = e−m(m− 1)m−1

m!
10An interpretation of the selection rule is that the auctioneer is mandated by the exchange to mini-

mize the impact of transaction on prices (Hasbrouck 1991). By assuming that the auctioneer selects the
minimum number of buying traders, we exclude fluctuations that arise purely from informational coordi-
nation such as in sunspot equilibria. Even with this rule of selecting minimum volume, we show that the
equilibrium volume and price in the model exhibit large fluctuations.
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for each integer m ≥ 1 and limn→∞ Pr(M†
n = 0) = e−1. In particular, the right tail of the

asymptotic distribution obeys a power law with exponent 1/2.

That the second claim in Proposition 3 follows from the first can be shown via Stir-
ling’s formulam! ∼ (2πm)1/2(m/e)m, which yields

Pr
(
M†
n ≥m) ∝m−1/2 for largem�

Note that, under the stated assumptions, the power-law exponent does not depend on
the parametric specifications of signals.

The key to the proof of Proposition 3 is that Em := D
(
pm�X

) − nS(pm) is a martin-
gale when considered as a stochastic process indexed by m. The reason this matters is
twofold. First, recall that equilibrium trade volume M†

n is, by definition, the smallest m
such thatD

(
pm�X

) = nS(pm). In other words,M†
n is the first passage time to zero for the

excess demand process {Em}. Second, it is well known that, for at least some kinds of
martingales, the first passage time to zero follows a power law. We show that this result
extends to the martingale {Em} under the stated assumptions.11

But why is {Em} a martingale in our model? The underlying reason is that the mean
number of traders induced to buy by a trader who buys is 1. This one-for-one response
is analogous to actions in Keynes’ beauty contest, in which the average action of a single
trader responds one-to-one to the average actions of traders. The beauty contest leads
to indeterminate equilibria if there is a continuum of traders or if the traders’ actions
are continuous. This type of local indeterminacy is avoided in our model with finitely
many traders and binary actions. However, the indeterminacy described above provides
intuition as to why our model can generate equilibrium trading volumes at any order of
magnitude, as demonstrated by the power law.12

The one-for-one response causes excess demand to obey the martingale property.
To see this, suppose that Em > 0. The auctioneer then bids up by 1 and thereby finds
one more supplier. By observing this bidding up process, traders act so that aggregate

11Feller (1966) treats the cases of Brownian motion and random walks. Our proof extends this power-law
finding to a class of Poisson processes. To give some intuition as to when first passage times follow power
laws, suppose that {Ym} is a stochastic process indexed bym and starting at Y0 = 1, say. If {Ym} drifts down,
then first passage times to zero will typically be small, with large values having very low probability. If {Ym}
drifts up, then the first passage times to zero are typically be infinite. If {Ym} is a martingale, however, we
observe both small first passage times, which occur by chance, and also very long first passage times, as
paths that initially deviated upward eventually return. This is the source of the heavy right tail.

12A deeper understanding of the one-for-one response by traders can be gained from examining the
optimal threshold condition (5), which reduces to the simple form (1 −μ) logλn(σ)+μ log�n(σ)= 0 when
μ :=m/n, if we take the limit n→ ∞ while fixing μ. The condition indicates that the geometric average of
λ and � evaluated at σ , which can be regarded as revealed likelihood on the true state revealed by traders’
actions, does not change with μ. If a trader switches to buying, this increases μ, which leads to an increase
in the revealed likelihood that traders observe, and lowers the optimal threshold. This in turn decreases the
revealed likelihood, because traders learn that the signals received by nonbuying traders must have been
below the decreased level of threshold. As a result, the impact of an increase in μ on the geometric average
of λ and � is counteracted by a decrease in σ . These effects cancel each other out when the signal is small
(i.e., log�n ≈ logλn) andm is finite (μ≈ 0). An increase in m by 1 lowers σ so thatD is increased by 1.
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demand increases. Since the mean increase is 1, the increased supply is equal to the
mean increased demand. Hence {Em} is a martingale.

A power law implies nontrivial aggregate fluctuations even for large n. In general, a
power law with exponent α implies that any kth moment for k≥ α is infinite. Thus, with
exponent 0�5, M†

n does not have a finite asymptotic mean or variance as n→ ∞. This
implies that the variance of the fraction of buying traders,M†

n/n, can be quite large even
when n is large. By integrating (M†

n/n)
2 up to M†

n = n with a power-law tail exponent
0�5, we find that the variance of M†/n decreases as n−0�5 when n becomes large. This
contrasts with the case when the traders act independently. If traders’ choices (dn�i)ni=1
were independent with probability δn−ξ of dn�i = 1, the central limit theorem predicts
that M†

n/n would asymptotically follow a normal distribution, where the tail is thin and
variance declines as fast as n−1−ξ. Thus, the variance of M†

n/n differs by factor n0�5+ξ
between our model and the model with independent choices. This signifies the effect of
stochastic clustering that amplifies the small fluctuations in the received signals Xi.13

Even if traders’ actions are correlated, it requires a particular structure in this corre-
lation for the amplification effect to cause the variance to decline more slowly than n−1,
i.e., the speed that the central limit theorem predicts. Mathematically, the amplification
effect in our model is analogous to a long memory process in which a large deviation
from the long-run mean is caused by long-range autocorrelation. In our static model,
the long-range correlation of traders’ actions is captured by the martingale property of
excess demandD

(
pm�X

) − nS(pm).
Proposition 3 has an implication relevant to the information aggregation literature

(see, e.g., Vives 2008). Our model depicts the situation where a large number of informed
traders try to learn the true state of the world by gleaning information from other traders’
actions under noisy signals. Traders as a group have likelihood

∏n
i=1 �n(xi). Since the

values of |�n(xi)− 1| near bounds {xa�xb} are bounded from below by δn−ξ, the collec-
tive likelihood diverges at the bounds. Hence, if all traders reveal their private signals,
they can learn the true state asymptotically. In our model, traders learn the state only
partially due to information asymmetry. Moreover, the extent of partial learning is de-
termined by the number of buying traders, which follows a power law. To see the im-
plication of the power law, we can extend our model to a dynamic setting where traders
draw private signals repeatedly and eventually learn the true state.14 A power law in
this setup implies that collective learning does not occur smoothly over time. The noisy
signal generates few transactions and is hoarded privately most of the time. However,
once in a while, a large cluster of trades occurs and accumulated private information is
revealed. Thus, the power law for volume implies that the revelation happens at once in
the collective learning of traders in our setup.

3.2 Comments on the power-law exponent

At 0�5, the power-law exponent obtained in Proposition 3 is smaller than most empirical
estimates for volume, which are summarized by Gabaix et al. (2006) as the half-cubic

13On the implications of a tail distribution on aggregate fluctuations, see, for example, Acemoglu et al.
(2017) and Nirei (2015).

14See the working paper version (Nirei 2011) for the extension.
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law (i.e., a power-law exponent of 1�5). However, our model can be modified to generate
the half-cubic law, as we now describe.

The exponent 0�5 from Proposition 3 is obtained asymptotically when the number of
traders n tends to infinity and the informativeness of the signal vanishes. In an economy
with finite n, however, Em may deviate from a martingale. Let φ denote the mean num-
ber of traders induced to buy by a trader who buys. The analysis in the Appendix shows
that Pr

(
M† =m | D(

p1�X
))

for φ < 1 is proportional to e−(φ−1−logφ)mm−1�5 for large m.
Withω :=φ− 1 − logφ, we observe that Pr

(
M† =m |D(

p1�X
))

is approximately a power
law with exponent 0�5 form< 1/ω and exponentially truncated form> 1/ω. This distri-
bution includes the pure power-law result as the limiting caseω= 0, which corresponds
to φ= 1.

Now consider an extended model in whichω exhibits uniform variation within (0� ε)
for some ε > 0. Then the asymptotic tail distribution is an integral of the above proba-
bility distributions across ω,

∫ ε

0

Pr
(
M† =m |D(

p1�X
)
�ω

)
ε

dω∝
∫ ε

0

e−ωmm−1�5

ε
dω= 1 − e−εm

ε
m−2�5 (6)

for large m. Note that the power-law exponent is now 1�5 (in the cumulative distribu-
tion), exactly matching the half-cubic law.

The property that the power-law exponent increases when the underlying param-
eter fluctuates around the critical value (φ = 1 in our case) is known as sweeping of a
control parameter toward an instability (see, e.g., Sornette 2004). Although the uniform
variation argument used in (6) to obtain the half-cubic law was ad hoc, we return to this
idea in Section 3.4, where we use Monte Carlo methods to show that the same property
can explain the empirical power-law exponent for volume when n takes a finite value.

3.3 Power law for returns

Having established the power law for volume, we now turn to the power law for returns.
An important facet of the model to be specified is the supply function S(p), which deter-
mines how fluctuation of volume is translated into fluctuation of returns. In our model,
informed traders’ demands are absorbed by uninformed traders’ supply. Thus, the sup-
ply function of uninformed traders m∗/n= S(p∗) determines the impact of volume m∗
on the return q := logp∗ − logp0.15

The relation between an exogenous shift in trading volume and the resulting shift in
asset price, i.e., S−1, is called the price impact function. Empirical studies suggest that
the price impact function is concave (see, e.g., Hasbrouck 1991 and Lillo et al. 2003).

15We define q as the logarithmic return of the asset under the interpretation that p0 is the price that
prevailed in the previous period −1. In this setup, p0 reflects the prior belief Pr(H) under an extended
model where informed traders can both buy and sell. In the extended model, there are uninformed traders
on both supply and demand sides. An informed trader submits a demand function d that can take values
1, 0, or −1. The auctioneer stipulates that the informed traders are matched with uninformed traders only
when either of the informed traders buying at p1 or selling at p−1 is zero and the other is strictly positive.
In this way, informed traders always transact with uninformed traders, as in the original model.
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Keim and Madhavan (1996) proposed a model for concave price impact functions in
which market makers incur search costs to find counterparty traders. In the model, an
increase in volume does not lead to a linear increase in price impact, because the market
maker reaches out to more traders who absorb the demand. In line with this research,
we specify the price impact function as q = β(m/n)γ for m = 1�2� � � � � n, where β is a
positive constant and 0< γ < 1.

The following proposition establishes that our model generates a power law for the
returns distribution when the price impact is specified as above.

Proposition 4 (Power law for returns). If volume m/n follows a power law of the form
Pr(m/n)∝ (m/n)−α−1 and the supply function S satisfies

log
(
S−1(m/n)

) − log
(
S−1(0)

) = β(m/n)γ (7)

for β�γ > 0, then returns q follow a power law with exponent α/γ.

Proof. By applying the change of variable for m/n and using the specified monotone
supply function, we obtain

Pr(q)= Pr(m/n)
∣∣d(m/n)/dq∣∣ ∝ (

(q/β)1/γ
)−α−1

(1/γ)q1/γ−1 ∝ q−α/γ−1�

Hence, q follows a power law with exponent α/γ.

There is a growing consensus among empiricists that stock returns generally obey
a cubic law, in which the return distribution follows a power law with exponent 3 (see,
e.g., Gabaix et al. 2006, Lux and Alfarano 2016, and Gu and Ibragimov 2018). The cubic
law corresponds to α/γ = 3 in the above equation. The analysis in the previous section
established that α = 0�5 asymptotically. Hence, the cubic law holds in our asymptotic
case if γ = 1/6. This value is consistent with empirical estimates for γ, which range
between 0�1 and 0�5 (see, e.g., Lillo et al. 2003).

3.4 Quantitative analysis with finite agents

In this section, we conduct numerical analysis of the model with a finite number of in-
formed traders n. One aim of this exercise is to confirm that, even with finite n, the
number of buying traders M†

n exhibits a power law, complementing the asymptotic re-
sult from Proposition 3. A second aim is to show that the model is in fact capable of
generating a more empirically relevant power law exponent when n is taken to be fi-
nite. Finally, we show that the fluctuation of equilibrium asset returns q= logp∗

n− logp0

exhibits a power law that matches the returns distribution observed in the data.
The model is specified as follows. The signal distribution Fs for s ∈ {H�L} is normal

with common standard deviation ς and different means μH = 1 and μL = 0. We set ς at
between 30 and 50. This large standard deviation relative to the difference in mean cap-
tures the situation where the informativeness of signalXi is small. We set the number of
informed traders n at a finite but large value between 500 and 2000. The supply function



1378 Nirei, Stachurski, and Watanabe Theoretical Economics 15 (2020)

Figure 2. Histograms of volume normalized by its time-series average. Top: Histograms of
equilibrium volume M†

n for various parameter values, where n is the number of traders and ς
is the standard deviation of private information. Bottom: Daily volume histograms for indi-
vidual stocks and a pooled sample, plus simulated histograms. Data for individual firms cover
1988–2018. Data for the pooled sample are for 2016. Individual firms are selected at the quintiles
of market capitalization size in the TSE. The circle-line shows the histogram of pooled data for all
listed firms. The cross-line shows a simulated histogram with n= 800 and ς = 50. The plus-line
shows the case with a higher β.

of uninformed traders is specified as in (7), and its parameters are set at our estimates
γ = 0�4642 and β= 0�768, as explained below. With these parameter values, the optimal
threshold function σ(·) is computed. Using the threshold function, we conduct Monte
Carlo simulations by randomly drawing a profile of private signals (xi)ni=1 106 times and

computingm†
n and p∗

n for each draw.
The top panel of Figure 2 plots the histograms ofM†

n for various parameter values of
n and ς. Since the histogram is plotted in log-log scale, a linear line indicates a power law
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Pr(M†
n =m)∝m−α−1, where the slope of the linear line reflects −α− 1. As can be seen,

the simulated log-log histograms appear linear for a wide range ofM†
n . This conforms to

the model prediction that M†
n follows a power law distribution. Note that the simulated

histogram decays exponentially whenM†
n/n is close to 1, due to the finiteness of n.

The asymptotic results in Proposition 3 predicted the exponent of the power law α to
be 0�5. The top panel of Figure 2 confirms this pattern for finite n, when (n� ς)= (800�30)
or (2000�50). We also observe that the power law exponent can take larger values when
the parameter alignment differs, as observed in the case when n is decreased (the circle-
line compared to the cross-line) or when ς is increased (the cross-line compared to the
triangle-line). This deviation of the exponent from the asymptotic case α= 0�5 can result
from finite n, as we discussed previously. In this way, our model has flexibility in fitting
various empirically observed exponents for trading volume.

Using this flexibility, we fit our model to the empirical distributions of daily volume
and returns. We intend this exercise to be a proof of concept for the capacity of our
model as an explanation of the observed power laws. Our direct target for comparison
is the time-series fluctuations of a single stock volume and returns in daily frequency.
We use the Nikkei Financial Quest data set, which includes daily volume and prices for
the firms listed in the first section of the Tokyo Stock Exchange (TSE) from March 1988
to March 2018.

The bottom panel of Figure 2 shows histograms of daily trading volumes for four
single stocks. The volume is divided by the daily average volume for each stock. The four
firms are selected at the quintiles of market capitalization size among all manufacturing
firms listed in the first section of the TSE. The plotted histogram exhibits a fat tail for
each stock. However, the number of observations (7401) for each stock is not sufficiently
large to investigate the tail in detail, and the sample period (30 years) is too long to assure
invariance of the daily volume distribution. To deal with these limitations, we prepare
a pooled data set of a large number of stocks for a shorter sample period. We collect
daily trading volume for all (2250) listed firms for the year 2016, and divide volume by
average volume for each firm during that year. The circle-line in the plot shows the
histogram of the normalized volume for the pooled sample. We now observe a longer
tail, whose exponent is similar to the tails for individual stocks. The pooled data show
that the exponent for volume is about 2 (the slope of the histogram in log-log scale is 3).
We then superimpose the volume histogram generated by our model for the case (n� ς)=
(800�50), shown as the cross-line. As can be seen, the simulated histogram effectively
matches the empirical histogram.

The power-law exponent can be estimated using the Hill estimator. Since the power
law applies only to the tail distribution, we augment the Hill estimator with an estimated
lower threshold for the tail region, following the methodology proposed by Clauset et al.
(2009). The estimated power-law exponents for volume for the first to fourth quintile
stocks and for the pooled data are 1�73 (0�04), 1�31 (0�04), 2�50 (0�08), 3�68 (0�25), and 1�89
(0�02), respectively (standard errors in parentheses). The Hill estimate of the power-law
exponent for simulated volume is within the above range at 2�03.

The top panel of Figure 3 shows the histograms of daily returns for the same sam-
ples. We define the daily return as the logarithmic difference from the opening to clos-
ing price. The open–close difference is used rather than a business day return so that the
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Figure 3. Top: Histograms of the absolute values of daily returns. The horizontal axis shows the
daily return, which is the difference in logarithm of opening and closing prices for each business
day. The samples are the same as in Figure 2. Bottom: A scatter plot of daily volume and absolute
returns for all listed firms in 2016. The line shows the price-impact function fitted by nonlinear
least squares.

time horizon of each observed return is homogenized. We subtract time-series average
returns and divide by standard error of the returns for each stock, and take an absolute
value for returns, pooling both positive and negative returns across stocks. The empir-
ical histograms for the individual stocks and the pooled sample show a power law with
exponent about 3, which is consistent with the literature (Lux and Alfarano 2016). The
model-generated histogram also shows a fat tail, which is slightly thinner than the data,
but clearly exhibits a power law. The Hill estimates of the power-law exponent for re-
turns for the quintile stocks and the pooled data are 4�52 (0�72), 2�49 (0�11), 3�26 (0�16),
2�83 (0�13), and 3�62 (0�03), whereas that for the simulated returns is 4�38.

The bottom panel of Figure 3 shows a scatter plot of daily volume and absolute re-
turns for all listed firms, along with the price-impact function specified in the simulated
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model. The parameter values (γ = 0�4642, β = 0�768) are estimated by fitting (7) to the
pooled sample by nonlinear least squares.16 In sum, Figures 2 and 3 indicate that our
model is capable of generating power laws for volume and absolute returns while using
a price-impact function consistently estimated via the high-frequency sample observed
in the TSE.

3.5 An extension

In this section, we consider two extensions to the baseline model.

3.5.1 Learning by uninformed traders Our benchmark model assumes uninformed
traders are unaware of the fact that price movements are driven by informed traders.
This assumption can be relaxed. Suppose, for instance, that the uninformed traders
know that some price movements contain information on the value of assets but cannot
distinguish such movements from purely random ones. Thus, uninformed traders per-
ceive that the price movements reflect revealed information of informed traders with
some probability π. Let plm denote the price the uninformed traders accept for sup-
plying m in this environment, while they are willing to accept the price pm (defined in
our benchmark model) so as to fill their liquidity need for supplying m even if there
is no information contained in the transaction. The price then satisfies plm − p0 =
(plm −p0 +pm −p0)π + (pm −p0)(1 −π), implying (plm −p0)= (pm −p0)/(1 −π).

This result implies that the supply function S(p) becomes steeper by 1/(1−π)when
uninformed traders can learn with probability π. Since supply elasticity does not affect
our asymptotic results, the power laws obtained from Section 3.1 continue to hold in
this environment.

Numerical results under a finite number of traders may be affected by the possibility
of learning. In fact, Figures 2 and 3 show this to be the case. The steeper supply function
corresponds to the higher β in the price-impact function (7). We specify that π = 1/3,
which means that β is increased by 50%. The power laws for volume and returns under
the high β are shown in the bottom panel of Figure 2 and the top panel of Figure 3. We
observe that exponents for both cases become greater than the benchmark case.

3.5.2 Variable transaction size In actual markets, trading is not a binary choice. It is
possible to extend our model to more general settings for trading size. For example,
the fixed trading size can be heterogeneous across informed traders. Suppose that the
distribution of heterogeneous trading size has a tail thinner than the power law with
exponent 0�5. Also suppose that informed traders can observe the number of buying
informed traders. In this case, the information inferred by informed traders through
price will be the same as in the benchmark model. Since the size heterogeneity has a
thinner tail than the number of buying traders, the same power law of aggregate volume
as in the benchmark model continues to hold.17

16The plotted sample is truncated at the volume divided by mean being 50 to enhance visibility, while all
the data are used for the parameter estimation.

17For a mathematical reference, see Jessen and Mikosch (2006).
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We can also consider the case where traders can choose trading size depending on
the signal they receive. Suppose that informed traders are risk averse. Then the trader
has an incentive to buy a large amount when receiving a favorable signal. Thus, the
optimal trading strategy is to buy when the belief surpasses a threshold and the pur-
chasing amount is increasing in the belief. If the purchasing amount is chosen from a
continuous set, the exact private signal �n(x) is revealed by the amount if a trader buys
at all, in contrast to the benchmark model where only �n(x)/λn(x) is revealed by a buy-
ing action. Nonetheless, these two revealed bits of informations are asymptotically the
same, and our power-law result still holds. However, we need to note that the revealed
information is shared by all traders in a rational expectations equilibrium. This implies
that the beliefs of all the buying traders will be equalized, while the beliefs of nonbuying
traders remain heterogeneous. Thus, equilibrium trading size is constant across buying
traders. To extend the rational expectations model to heterogeneous trading size corre-
lated to signals, one would need to incorporate some noise, which prevents the signal
from being exactly revealed. This would be the case if, say, the choice set is discrete with
more than binary choices. While analytical characterization in this setup is complex,
numerical investigation should be feasible.

4. Conclusion

This study analyzes aggregate fluctuations of trading volume and prices that arise from
asymmetric information among traders in financial markets. In an asset market model
in which each trader infers the private information of other traders only by observing
their actions, we find that the number of traders taking the same action in equilibrium
exhibits large volatility with a particular statistical regularity: a power-law distribution.
We also show that the model is capable of generating a power-law distribution of as-
set returns. The simulated distributions of equilibrium returns and volume are demon-
strated to match the distributions of observed stock returns and volume. In this way, we
explicitly link the large and growing literature on asymmetric information and clustering
with a well documented statistical regularity for volume and return distributions.

This study suggests several directions for future work. One would be to develop a
dynamic model that accounts for time-series properties as pursued by, for example,
Alfarano et al. (2008). Another direction would be to extend the model by incorporat-
ing more realistic market structure. Some extensions, such as learning by uninformed
traders or variable transaction size, would seem to be easily incorporated. Other ex-
tensions, such as the case where the signal and trading size are correlated, where both
public and private signals exist, and where informed traders can take both buying and
selling sides, appear to be more involved. While some steps have been taken in these di-
rections (see, e.g., Kamada and Miura 2014), we leave such explorations for future work.

Appendix

Properties of λn and �n

We note for future reference that the likelihood ratios satisfy �n(xa) = λn(xb) = 1,
limx→xa λn(x) = �n(xa), and limx→xb �n(x) = �n(xb) (obtained using l’Hôpital’s rule).
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Also, the MLRP implies that 0 < λn(x) < �n(x) < �n(x) for any x interior to [xa�xb], as
in Smith and Sørensen (2000), as well as strictly increasing likelihood ratios as shown
below.

Taking derivatives of λn and �n, we have

dλn(x)

dx
= fHn (x)

FLn (x)
− FHn (x)f

L
n (x)(

FLn (x)
)2 = fLn (x)

FLn (x)

(
�n(x)− λn(x)

)
(8)

d�n(x)

dx
= − fHn (x)

1 − FLn (x)
+

(
1 − FHn (x)

)
fLn (x)(

1 − FLn (x)
)2 = fLn (x)

1 − FLn (x)
(
�n(x)− �n(x)

)
� (9)

Thus, inequality λn(x) < �n(x) < �n(x) implies that λ′
n(x) > 0 for x ∈ (xa�xb] and

�′
n(x) > 0 for x ∈ [xa�xb). At x = xa, we obtain λ′

n(xa) = �′n(xa)/2 > 0 by applying
l’Hôpital’s rule for (8) and rearranging terms. Similarly, we obtain �′

n(xb)= �′n(xb)/2> 0
by evaluating (9) at x= xb. Hence, we obtain λ′

n(x) > 0 and�′
n(x) > 0 for any x ∈ [xa�xb].

Proof of Proposition 1

The market-clearing condition, S(pm)=m/n, implicitly determines pm not only for in-
tegers, but also for any real number m. Thus, (5) implicitly determines σ(m) for real m.
In this proof, we extend pm and σ(m) to real numbers. To be precise, we define real vari-
ables t ∈ [1� n], pt , and σ(t), such thatpt is determined by the market-clearing condition
S(pt)= t/n and σ(t) is implicitly determined by

0 =�(σ� t) := (n− t) logλn(σ)+ (t − 1) log�n(σ)+ log�n(σ)− log
pt

1 −pt � (10)

which is a logarithmic transformation of (5) withm being replaced by t.
We first show that an interior solution σ of �(σ� t)= 0 exists at the boundaries t = 1

and t = n. The function �(σ� t) is increasing in σ , since λn, �n, and �n are increasing
functions. It achieves minimum at σ = xa, and the minimum value is�(xa� t)= (n− t+
1) logλn(xa)− log(pt/(1 − pt)), where we used �n(xa) = 1 and λn(xa)= �n(xa). Noting
that λn(xa) < 1 and log(pt/(1 −pt)) > 0, we obtain �(xa� t) < 0 for any t ∈ [1� n].

The function �(σ� t) achieves maximum at xb, and the maximum value is obtained
as�(xb� t)= t log�n(xb)− log(pt/(1 −pt)), using λn(xb)= 1 and�n(xb)= �n(xb). When
t = 1, the maximum is �(xb�1) = log�n(xb) − log(p1/(1 − p1)). Since λn(xb) = 1, As-
sumption 1 implies log�n(xb) > δ/nξ for sufficiently large n. In contrast, log(p1/(1 −
p1)) declines to 0 as fast as 1/n, as shown below. The market-clearing condition implies
that S′(pt)dpt = dt/n. Using this, we obtain

d log
(
pt/(1 −pt)

)
dpt

dpt

dt
= 1
pt(1 −pt)

1
nS′(pt)

�

Then there exists some c1 > 0 such that log(p1/(1 −p1)) < c1/n, because

log
p1

1 −p1
= log

p0

1 −p0
+

∫ 1

0

1
pt(1 −pt)

1
nS′(pt)

dt�
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where 1/S′ is bounded since S(·) is strictly increasing. Thus, we obtain�(xb�1) > δ/nξ−
c1/n, which is strictly positive for sufficiently large n since ξ < 1.

When t = n, the maximum of �(σ�n) is n log�n(xb)− log(pn/(1 − pn)). The second
term is bounded, because pn/(1 − pn) < p̄/(1 − p̄). The first term tends to positive in-
finity as n→ ∞, since n log�n(xb) > δn1−ξ. Thus, �(xb�n) > 0 for sufficiently large n.
Since�(xa� t) < 0 and�(xb� t) > 0 for t = 1 and t = n, and since� is continuous in σ , an
interior solution σ exists for both t ∈ {1� n} when n is sufficiently large.

Next, we show that the interior solution σ is decreasing in t. The total derivative of
�(σ� t)= 0 is

1
pt(1 −pt)

1
nS′(pt)

dt

= log
�n(σ)

λn(σ)
dt +

(
(n− t)λ

′
n(σ)

λn(σ)
+ (t − 1)

�′
n(σ)

�n(σ)
+ �′n(σ)
�n(σ)

)
dσ�

This determines the derivative of σ with respect to t as

dσ

dt
= − log

(
�n(x)/λn(x)

) + {
pt(1 −pt)S′(pt)n

}−1

(n− t)λ′
n(x)/λn(x)+ (t − 1)�′

n(x)/�n(x)+ �′n(x)/�n(x)
∣∣∣∣
x=σ(t)

� (11)

The denominator is strictly positive, since λn, �n, and �n are strictly positive
and strictly increasing. In the numerator, the first term is strictly negative, and
− log(�n(x)/λn(x)) < −δ/nξ by Assumption 1. The second term in the numerator is
positive and of order 1/n, as shown above. Thus, the numerator is negative for large n.
Hence, there exists some no such that for any n > no, inequality dσ/dt ≤ 0 holds.

Since an interior solution σ for �(σ� t) exists for both t ∈ {1� n} and since an interior
solution σ is decreasing in t, an interior solution of (5) exists for anym ∈ {1�2� � � � � n}.

Finally, since D(pm�x) is the number of traders with xi ≥ σ(m) for m = 1�2� � � � � n,
the decreasing function σ(m) implies thatD(pm�x) is increasing inm for any realization
of x.

Proof of Proposition 2

We define an aggregate reaction function as a mapping from the number of buying
traders m to the number of buying traders determined by traders’ choices given pm
and their private signals. Specifically, the aggregate reaction function is given by �x :
{0�1� � � � � n} → {0�1� � � � � n} for each realization of x. It coincides with D for m > 0, i.e.,
�x(m) := D(pm�x) for m ∈ {1�2� � � � � n}. For m = 0, we let �x(0) = D(p1�x). Then �x is
an increasing mapping of {0�1� � � � � n} onto itself for n > no. Moreover, {0�1� � � � � n} is a
finite totally ordered set and, hence, a complete lattice. Therefore, by Tarski’s fixed point
theorem, there exists a nonempty closed set of fixed points of �x.

The auctioneer chooses m∗ = 0 if D(p1�x) = 0 and chooses m∗ > 0 such that
D(pm∗�x)/n= S(pm∗)=m∗/n ifD(p1�x) > 0. Hence, the fixed points of �x coincide with
a set of equilibrium outcomes m∗. This establishes the existence of m∗ and equilibrium
price p∗ = pm∗ .
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Preparation for the Proof of Proposition 3

So as to characterize M†
n , we introduce a stochastic process that counts the number of

traders who receive signal greater than x. Such a process is expressed as
∑n
i=1 1{Xi ≥ x}.

As x travels from maximum xb to minimum xa, this process generates an increas-
ing number of buying traders. Now we replace x with the threshold level of signal,
σ(m). Then

∑n
i=1 1{Xi ≥ σ(m)} indicates the number of traders with private information

greater than threshold σ(m). For each realization of x,
∑n
i=1 1{xi ≥ σ(m)} is increasing

in m because σ(m) is decreasing in m by Proposition 1. Equilibrium m† is determined
as the point where this counting process achievesm† for the level of signal σ(m†) for the
first time. Namely, by appropriately defining the counting process, M†

n can be formu-
lated as a first passage time for the process to cut through the diagonal where time and
counts coincide.

We construct such a counting process below. Equation (5) implicitly determines
threshold σ continuously when m is a real variable. By using the continuous thresh-
old function, we define a change of variable as t = σ−1(x). Note that t = m for m ∈
{1�2� � � � � n}. Using t = σ−1(x) and f θn (x), where θ denotes the true state, the proba-
bility density function defined over t is obtained as f θn (σ(t))|σ ′(t)| for sufficiently large
n > no, because σ(t) is monotone in t for such n. Then we construct a counting process
�(t) := ∑n

i=1 1{σ−1(Xi)≥ t}.18 Since our model is static, the “time” t is fictitiously intro-
duced here so as to define a stochastic process �(t). The fictitious notion of time turns
out to be useful, as we employ analysis of first passage times below.

When t increases from t to t + dt, the threshold σ(t) decreases. Thus, a trader
who chooses to buy before t continues to buy at t + dt, whereas a trader who chooses
not to buy before t might switch to buying at t + dt. The conditional probability of
a nonbuying trader switching to buying between t and t + dt for small dt is equal to
πn(t)dt := f θn (σ(t))|σ ′(t)|dt/Fθn (σ(t)). Thus, the number of traders who buy between
t and t + dt for the first time, conditional on �(t), follows a binomial distribution with
population parameter n − �(t) and probability parameter πn(t)dt; �(1) indicates the
number of traders with xi ≥ σ(1). Thus, the distribution of �(1) follows a binomial dis-
tribution with population n and probability 1 − Fθn (σ(1)). This completes the definition
of the stochastic process �(t) for t ∈ [1� n].

Letφn(t)dt denote the mean of �(t+dt)−�(t) for small dt. Thus,φn(t) := πn(t)(n−
�(t)). For a finite �(t), the binomial distribution of �(t+dt)−�(t) converges to a Poisson
distribution with mean φn(t)dt as n→ ∞. Hence, for sufficiently large n, �(t) asymp-
totically follows a Poisson process with time-dependent intensity φn(t).

Under Assumption 2, it turns out that the intensity function φn converges to 1 as
n→ ∞:

Lemma 1. If Assumptions 1 and 2 hold, then �(t) asymptotically follows a Poisson process
with intensity 1 as n→ ∞.

18The term �(t) differs from �x(m) defined in the previous section (Proof of Proposition 2) in two regards.
First, �(t) is not conditional on x. Thus, �(t) is a random variable. Second, �(t) is defined over a trans-
formed variable of signal, t = σ−1(x). Despite these differences, both �(t) and �x(m) share the property
that they count the number of traders with private signal greater than some threshold.
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The proof is shown in the next section. The intensity φn = 1 implies that the mean
number of informed traders who switch to buying from nonbuying after observing an
informed trader buying is equal to 1.

Since �(1)= 0 indicates that no trader receives private signal greater than σ(1), the
equilibrium volume in this case is m† = 0. When �(1)= 1, one trader is willing to buy at
p1. Thus, the equilibrium volume is m† = 1. When �(1) > 1, the minimum equilibrium
volume m† is the minimum integer that satisfies �(m†) =m†. Thus, when �(1) > 1, m†

can be interpreted as the first passage time t at which �(t) achieves the level t.
We focus on the first passage time conditional on �(1) > 1. It is convenient to shift

the time variable so that it starts from 0. We defineG(t) := �(t+1) andϕn(t) :=φn(t+1)
for t ∈ [0� n − 1]. Note that when �(m†) = m† is achieved, m† − �(1) = �(m†) − �(1) =
G(m† − 1) − G(0) holds. Thus, m† − 1 corresponds to the first passage time of G(t)
reaching t with initial conditionG(0)= �(1)− 1> 0. Let a positive integer co > 0 denote
the initial valueG(0).

The process G(t) asymptotically follows a Poisson process with intensity ϕn(t) and
G(0)= co as n becomes large. Let τϕn(·) denote the first passage time of G(t) reaching t.
Then τϕn(·) is also the first passage time ofG(t)−G(0) reaching t− co. Let us defineN(t)
as the Poisson process with constant intensity 1 and N(0)= 0. Then τ1 denotes the first
passage time of N(t) reaching t − co. An inhomogeneous Poisson process with inten-
sity ϕn(t) for t ≥ 0 can be transformed by a change of time to a homogeneous Poisson
process asN(

∫ t
0 ϕn(u)du). Thus, the first passage time we consider is

τϕn(·) := inf
{
t ≥ 0

∣∣∣N(∫ t

0
ϕn(u)du

)
≤ t − co

}
�

where inf∅ := ∞ by convention.
We consider the case where �n converges uniformly to 1 as n→ ∞ (Assumption 2).

With this setup, the following lemma establishes that the first passage time of the inho-
mogeneous Poisson process G(t) converges in distribution to the first passage time of
the standard Poisson processN(t).

Lemma 2. If Assumptions 1 and 2 hold, τϕn(·) converges in distribution to τ1 as n→ ∞.

The proof is shown in the subsequent section. We have shown that M†
n conditional

on M†
n > 1 has the same distribution as the first passage time: inf{t > 1 | �(t) = t}. The

variable M†
n corresponds to τϕn + 1, reflecting that G is shifted from � in time by 1.

Lemma 2 then shows that τϕn converges in distribution to τ1 for large n. Hence, we
have shown that the minimum equilibrium number of buying traders, M†

n , conditional
onM†

n > 1 has the same asymptotic distribution as τ1 + 1.
We show that τ1 follows the same distribution as the sum of a branching process∑U

u=0 bu, where the initial value for the branching process isG(0)= �(1)−1. To do so, we
consider a general Poisson process N(t) with intensity parameter φ > 0, where N(0)=
b0 is a positive integer. The first passage time ofN(t) reaching t−b0 must be greater than
or equal to b0. Now we introduce a process bu for u= 0�1� � � � . During the time interval
b0, the incrementN(b0)−N(0), denoted as b1, follows a Poisson distribution with mean
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φb0. Since a Poisson random variable is infinitely divisible, a Poisson random variable
with mean φb0 is equivalent to b0-fold convolution of the Poisson with mean φ. Thus,
we can regard b1 as the number of traders induced to buy by b0 traders, where each
trader in b0 brings about a number of induced traders following the Poisson with mean
φ. If b1 = 0, the process bu stops, and the first passage time is b0. If b1 > 0, the first
passage time is greater than or equal to b0 + b1. During the time interval (b0� b0 + b1],
new increment b2 :=N(b0 +b1)−N(b0) follows the Poisson distribution with meanφb1,
which is equivalent to b1-fold convolution of the Poisson with mean φ and is regarded
as the number of traders induced by b1 traders (note that the increment b1 of a Poisson
process is always an integer). This process bu continues for u = 1�2� � � � �U , where U
denotes the stopping time at which bU is equal to 0 for the first time. Thus, the first
passage time is equal to

∑U
u=0 bu, i.e., the total number of population generated in the

so-called Poisson branching process bu in which each trader bears a number of induced
traders according to the Poisson distribution with mean φ.

It is known that the sum of the Poisson branching process, cumulated over time un-
til the process stops, follows a Borel–Tanner distribution (Kingman 1993; see also Nirei
2006). When the Poisson mean of the branching process bu is φ > 0, the Borel–Tanner
distribution is written as

Pr

(
U∑
u=0

bu =m | b0

)
= b0

m

e−φm(φm)m−b0

(m− b0)! (12)

form= b0� b0 + 1� � � � . Applying Stirling’s formula to the factorial term, we obtain the tail
characterization

Pr

(
U∑
u=0

bu =m | b0

)
∝ e−(φ−1−logφ)mm−1�5 for sufficiently largem� (13)

Using φ= 1 in our asymptotic characterization of M†
n , we obtain the distribution of M†

n

conditional on �(1)= c > 1 for sufficiently large n as follows.

Lemma 3. If Assumptions 1 and 2 hold, then, as n→ ∞,

Pr
(
M†
n =m |D(

p1�X
) = c) → (c− 1)(m− 1)m−c−1e−m+1

(m− c)! (14)

for m = c� c + 1� � � � . In particular, the right tail of the asymptotic distribution obeys a
power law with exponent 1/2:

(c− 1)(m− 1)m−c−1e−m+1

(m− c)! ∼ c− 1√
2π
m−1�5 for largem�

Proof. As shown above, τ1 follows (12) with φ = 1. We change variables in (12) using
τ1 =M†

n − 1 and b0 =G(0)= �(1)− 1. Withm′ :=m+ 1, (12) is rewritten as

Pr
(
M†
n =m′ | �(1)) = �(1)− 1

m′ − 1
e−φ(m′−1)(φ(

m′ − 1
))m′−�(1)(

m′ − �(1))! �
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Using φ= 1, we obtain (14). Applying Stirling’s formula to the factorial term, we obtain,

(c− 1)(m− 1)m−c−1e−m+1√
2π(m− c)((m− c)/e)m−c = c− 1√

2π
e1−c

(
m− 1
m

)m−c−1( m

m− c
)m−c+0�5

m−1�5

∼ c− 1√
2π
m−1�5

for (14) for largem.

Proof of Lemma 1

We transform φn using a change of variable for the density of t = σ−1(x):

φn = πn(t)
(
n− �(t)) =

(
1 − �(t)

n

)
n
∣∣σ ′(t)

∣∣ f θn (x)
Fθn (x)

∣∣∣∣
x=σ(t)

� (15)

Using (8) and (11) for σ ′(t), we obtain

n
∣∣σ ′(t)

∣∣ fHn (x)
FHn (x)

=

∣∣∣∣∣∣∣∣∣
log

(
�n(x)/λn(x)

) − {
pt(1 −pt)S′(pt)n

}−1

(
1 − t

n

)(
1 − λn(x)

�n(x)

)
+ 1
n

FHn (x)

fHn (x)

(
(t − 1)�′

n(x)

�n(x)
+ �′n(x)
�n(x)

)
∣∣∣∣∣∣∣∣∣

(16)

n
∣∣σ ′(t)

∣∣ fLn (x)
FLn (x)

=

∣∣∣∣∣∣∣∣∣
log

(
�n(x)/λn(x)

) − {
pt(1 −pt)S′(pt)n

}−1

(
1 − t

n

)(
�n(x)

λn(x)
− 1

)
+ 1
n

FLn (x)

fLn (x)

(
(t − 1)�′

n(x)

�n(x)
+ �′n(x)
�n(x)

)
∣∣∣∣∣∣∣∣∣
� (17)

We examine the right-hand side of (16) and (17) evaluated at x = σ(t) as n → ∞.
Since {pt(1 −pt)S′(pt)}−1 is bounded, the second term in the numerator is of order 1/n.
The second term in the denominator is also of order 1/n, as can be seen below. First, �n,
�n, and f θn for θ ∈ {H�L} are strictly positive. Second, Fθn ≤ 1, and �′n is bounded because
f sn is assumed to have a bounded derivative. Finally, �′

n(x) is bounded for x ∈ [xa�xb], as
shown in (9).

We next examine �n(x)/λn(x) and λn(x)/�n(x) in the right-hand side of (16). To do
so, we show that σ(t)→ xb as n→ ∞ for finite t. We note that

log�n(σ)= log
1 − FHn (σ)
1 − FLn (σ)

= log
1/FLn (σ)− λn(σ)

1/FLn (σ)− 1
= log

(
1 + 1 − λn(σ)

1/FLn (σ)− 1

)
�

Since log(1 + y)≤ y and 1 + log y ≤ y for any y ≥ 0, we have, for σ < xb,

log�n(σ)≤ 1 − λn(σ)
1/FLn (σ)− 1

≤ − logλn(σ)

1/FLn (σ)− 1
�

Hence, we obtain

log�n(σ)− logλn(σ)≤ − logλn(σ)

1 − FLn (σ)
�
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Assumption 1 implies log�n − logλn > δn−ξ. Thus, for sufficiently large n,

− logλn(σ)≥ (
1 − FLn (σ)

)
δn−ξ� (18)

Now (10) can be modified to

n logλn(σ)= log
pt

1 −pt + t log
λn(σ)

�n(σ)
+ log

�n(σ)

�n(σ)
� (19)

The right-hand side of (19) is finite for any finite t. The left-hand side of (19) would
diverge toward negative infinity as n→ ∞ if FLn (σ) were bounded by a value strictly be-
low 1, as implied by inequality (18) and ξ < 1. Hence, (19) holds only if FLn (σ) tends
to 1, which is equivalent to σ(t) → xb as n → ∞ for any finite t. This implies that
�n(σ(t))/λn(σ(t)) tends to �n(σ(t))/λn(σ(t)) as n→ ∞, since �(xb)= �(xb).

Thus, using zn := log(�n(σ(t))/λn(σ(t))), the limit of the right-hand side of (16) as
n→ ∞ is expressed as

lim
n→∞

zn −O(1/n)
(1 − t/n)(1 − e−zn) +O(1/n) = lim

n→∞
zn −O(1/n)

(1 − t/n)(zn +O(
z2
n

)) +O(1/n)�

where we used limn→∞ zn = 0 and a Taylor expansion of ezn − 1 around zn = 0, as well as
notation yn =O(xn) if there exist c2 and n2 such that |yn| ≤ c2xn for any n≥ n2. Dividing
both the denominator and the numerator by zn, and applying nzn > δn1−ξ with ξ < 1
(Assumption 1), we obtain

lim
n→∞

1 −O(
1/(nzn)

)
(1 − t/n)(1 +O(zn)

) +O(
1/(nzn)

) = 1�

Similarly, the limit of the right-hand side of (17) as n→ ∞ is

lim
n→∞

zn −O(1/n)
(1 − t/n)(ezn − 1

) +O(1/n) = 1�

Substituting this into (15), we obtain plimn→∞φn(t)= plimn→∞ 1 − �(t)/n. This im-
plies that plimn→∞φn(t) is bounded. Hence the asymptotic variance of �(t + dt)− �(t)
is also bounded. Thus, as n→ ∞, �(t)/n converges to zero in L2-norm and, therefore,
in probability. In this way, we obtain plimn→∞φn(t)= 1 for finite t.

Proof of Lemma 2

We show that the random variable τϕn(·) defined over [0�∞] converges in distribution
to τ1 as n tends to ∞. We prove this by showing that the Laplace transform of τϕn(·)
converges to that of τ1 as n→ ∞. In other words, we show that, for any η> 0,

lim
n→∞E

[
exp(−ητϕn(·))

] = E
[
exp(−ητ1)

]
� (20)

Note that e−ητ is set at 0 for the events where τ = ∞ by convention.
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In (15), we observe that φn(t)= ϕn(t − 1) is a product of (16) or (17) and a stochastic
term 1−�(t)/n. The former term converges to 1 uniformly over any finite interval [0�T ],
and the latter term converges in probability to 1 as n → ∞. Thus, the probability of
events in which �(t)/n exceeds n−ν0 for some t ∈ [0�T ] for a fixed ν0 ∈ (0�1) declines to 0
as n→ ∞.19 Since e−ητ is bounded, such events have vanishingly small contribution to
the expectation in the left-hand side of (20). Combining this with the fact that (16) and
(17) are uniformly convergent to 1, there exists a sequence εn such that 1 − εn < ϕn(t) <
1 + εn for finite t excluding those events where �(t)/n exceeds n−ν0 .

Since an inhomogeneous Poisson process can be transformed to a homogeneous
Poisson process with a change of time, inequalities τ1−εn ≤ τϕn(·) ≤ τ1+εn hold for each
realization of x. Thus, to establish (20), it is sufficient to show that E[exp(−ητχ)] is con-
tinuous with respect to χ > 0. We also note that τχ = inf{t ≥ 0 |N(χt) ≤ t − co} is equal
to

inf
{
t ≥ 0 | t −N(χt)≥ co

} = 1
χ

inf
{
t ≥ 0

∣∣∣ t
χ

−N(t)≥ co
}
�

Thus, τχ = τ̃χ/χ, where τ̃χ := inf{t ≥ 0 |N(t)≤ t/χ− co}.
Let ζ be a constant in (0�1). Consider a stochastic differential equation

dZ(t)= −ζZ(t-){dN(t)− dt}� Z(0)= 1�

where Z(t-) denotes the value of Z(t) before a jump occurs at t if any. The solution of
the stochastic differential equation is a martingale and satisfies

Z(t)= eζt(1 − ζ)N(t) =
(

1
1 − ζ

) t
χ−N(t)

exp
{(
ζ + log(1 − ζ)

χ

)
t

}
�

where the second equation is obtained by multiplying and dividing by (1 − ζ)t/χ.
Now, for fixed η and χ, there exists a unique ζ that satisfies an equation

ζχ+ log(1 − ζ)= −η�
Let ζ(η�χ) denote the unique solution. Note that ζ(η�χ) is continuous and monotoni-
cally increasing with respect to both η and χ. Then Z is written as

Z(t)=
(

1
1 − ζ(η�χ)

) t
χ−N(t)

exp
(

−η
χ
t

)
�

Note that t/χ−N(t) = co at the stopping time t = τ̃χ. Thus, Z(t) is positive and takes
a value less than or equal to {1 − ζ(η�χ)}−co at and before the stopping time τ̃χ. Hence
Z(t) is bounded. Therefore, E[Z(τ̃χ)] = 1 holds by the optional sampling theorem. (Note
that Z = 0 for the events where τ̃χ = ∞.) Moreover, noting that N(t) does not jump at
the point of time τ̃χ, we obtain that

Z(τ̃χ)=
(

1
1 − ζ(η�χ)

)co
exp

(
−η
χ
τ̃χ

)

19See the Technical Appendix for the construction of ν0.
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for both cases τ̃χ <∞ and τ̃χ = ∞. Thus,

E
[
exp(−ητχ)

] = E

[
exp

(
−η
χ
τ̃χ

)]
= {

1 − ζ(η�χ)}co �
Since ζ(η�χ) is continuous with respect to χ, this completes the proof.

Proof of Proposition 3

Let θ ∈ {H�L} denote the true state and let ψθ := limn→∞ n(1 − Fθn (σ(1))) denotes the

asymptotic mean number of traders with xi > σ(1). Under finite ψθ, �(1) asymptoti-

cally follows a Poisson distribution with mean ψθ. Hence, for m = {0�1}, Pr(M†
n = m)

asymptotically follows Pr(�(1)=m)=ψmθ e−ψθ/m!.
For m> 1, the unconditional distribution of M†

n is derived by combining the distri-

bution (14) and the Poisson distribution with mean ψθ for �(1) as

m∑
c=2

Pr
(
M† =m | �(1)= c)Pr

(
�(1)= c)

=
m∑
c=2

(c− 1)(m− 1)m−c−1e−m+1

(m− c)!
ψcθe

−ψθ
c!

=
m∑
c=1

(c− 1)(m− 1)m−c−1e−m+1

(m− c)!
ψcθe

−ψθ
c!

= e−ψθ−m+1(m− 1)m−1

m!

[
m∑
c=1

(
ψθ/(m− 1)

)c
m!

(m− c)!(c− 1)! −
m∑
c=1

(
ψθ/(m− 1)

)c
m!

(m− c)!c!

]
� (21)

Using the binomial theorem, we obtain

m∑
c=1

(
ψθ/(m− 1)

)c
m!

(m− c)!(c− 1)! = ψθm

m− 1

m∑
c=1

(
ψθ/(m− 1)

)c−1
(m− 1)!

(m− c)!(c− 1)!

= ψθm

m− 1

m−1∑
c′=0

(
ψθ/(m− 1)

)c′
(m− 1)!(

m− 1 − c′)!c′!
= ψθm

m− 1

(
1 + ψθ

m− 1

)m−1

and

m∑
c=1

(
ψθ/(m− 1)

)c
m!

(m− c)!c! =
m∑
c=0

(
ψθ/(m− 1)

)c
m!

(m− c)!c! − 1 =
(

1 + ψθ

m− 1

)m
− 1�
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Substituting back to (21) yields

e−ψθ−m+1(m− 1)m−1

m!
[
ψθm

m− 1

(
1 + ψθ

m− 1

)m−1
−

(
1 + ψθ

m− 1

)m
+ 1

]

= e−ψθ−m+1(m− 1)m−1

m!
[
(ψθ − 1)

(
1 + ψθ

m− 1

)m−1
+ 1

]
� (22)

Applying Stirling’s formula for m! and using (1 + ψθ/(m− 1))m−1 → eψθ as m→ ∞, we
obtain the power-law result in the cumulative distribution:

Pr
(
M†
n ≥m) ≈

√
2
π

(
e−ψθ +ψθ − 1

)
m−1/2 for largem� (23)

Finally, we show that ψθ = 1 under Assumption 3 for any θ. By substituting ψθ = 1
into (22) and (23), and substituting ψmθ e

−ψθ/m! for m = {0�1}, we obtain Proposition 3.
Recall ψθ = limn→∞ n(1 − Fθn (σ1)), where σ1 := σ(1) is determined by (5) as

1
1/p1 − 1

= λn−1
n (σ1)�n(σ1) (24)

and p1 is determined by S(p1)= 1/n. Since S is continuously differentiable, strictly in-
creasing, and satisfies S(0�5)= 0, we have p1 = 0�5 +O(1/n). Therefore, log(1/p1 − 1) is
a negative term of order 1/n. Moreover, we have shown that σ1 → xb as n→ ∞ in the
proof of Lemma 1. Defining εn := xb − σ1, we have εn ↘ 0 as n→ ∞. By using Taylor’s
theorem for log�n(σ1) and logλn(σ1) around σ1 = xb, as well as using λn(xb) = 1, we
have a1n�a2n ∈ [σ1�xb] such that

log�n(σ1)= log�n(xb)− �′n(a1n)

�n(a1n)
εn

logλn(σ1)= −λ′
n(xb)εn +ηn(a2n)ε

2
n�

where

ηn(x) := λ′′
n(x)λn(x)− λ′

n(x)
2

2λn(x)2
�

Applying these results to (24), we have

(n− 1)
(−λ′

n(xb)εn +ηn(a2n)ε
2
n

) + log�n(xb)− �′n(a1n)

�n(a1n)
εn =O(1/n)�

Rearranging terms, we obtain(
n− 1 + �′n(a1n)

λ′
n(xb)�n(a1n)

)
εn = log�n(xb)

λ′
n(xb)

+ (n− 1)ηn(a2n)ε
2
n −O(1/n)

λ′
n(xb)

� (25)

By using �n = fHn /fLn , we have

log�n(xb)
λ′
n(xb)

= log
(
fHn (xb)/f

L
n (xb)

)
fHn (xb)− fLn (xb)

�
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where λ′
n(xb)= fHn (xb)−fLn (xb) obtains from λ′

n = (fHn FLn −FHn fLn )/(FLn )2 and FHn (xb)=
FLn (xb) = 1. By Assumption 2, limn→∞ fHn (xb)/fLn (xb) = limn→∞ �n(xb) = 1. Thus,
l’Hôpital’s rule implies that

lim
n→∞

log�n(xb)
λ′
n(xb)

= lim
n→∞

log
(
fHn (xb)/f

L
n (xb)

)
fHn (xb)/f

L
n (xb)− 1

1

fLn (xb)
= lim
n→∞

1

fLn (xb)
�

which is a finite positive constant.
Note that �n(xb)= �n(xb) and λn(xb)= 1. Hence, Assumption 1 implies that

fHn (xb)

fLn (xb)
= �n(xb)= �n(xb)

λn(xb)
> eδn

−ξ
�

Therefore,

1
λ′
n(xb)

= 1/fLn (xb)

fHn (xb)/f
L
n (xb)− 1

<
1/fLn (xb)

eδn
−ξ − 1

=O(
nξ

)
�

We apply this result to terms in (25). First, O(1/n)/λ′
n(xb) < O(n

ξ−1). Thus, this term
is dominated by log(�n(xb)/λ′

n(xb)), which is an O(1) term. Second, since |�′n/�n| <∞,
we have

�′n(a1n)

λ′
n(xb)�n(a1n)

< O
(
nξ

)
�

Since ξ < 1, this term is dominated by n− 1 for large n. Third, ηn(a2n) > −∞, since f sn
is continuously differentiable. Also, a2n → xb as n→ ∞, since a2n ∈ [σ1�xb] and σ1 → xb
as n→ ∞. Hence, ηn(a2n)≤ 0 for sufficiently large n by Assumption 3.

Collecting these results, (25) implies an asymptotic relation

O(n)εn = log�n(xb)
λ′
n(xb)

+ O(n)ηn(a2n)ε
2
n

λ′
n(xb)

� (26)

On the one hand, if εn is dominated by O(n−1), then −O(n)ηn(a2n)ε
2
n/λ

′
n(xb) is dom-

inated by O(nξ−1). Hence, both O(n)εn and −O(n)ηn(a2n)ε
2
n/λ

′
n(xb) converge to 0 as

n→ ∞, which contradicts that (log�n(xb))/λ′
n(xb) converges to a positive constant in

(26). On the other hand, if εn dominates O(n−1), then O(n)εn − O(1) becomes posi-
tive for sufficiently large n. This contradicts ηn(a2n) ≤ 0 in (26). Hence, εn = O(n−1).
Substituting into (25), we obtain

lim
n→∞(n− 1)(xb − σ1)= lim

n→∞
1

fLn (xb)
�

Applying this to

n
(
1 − Fθn (σ1)

) = n(f θn (xb)(xb − σ1)−O(xb − σ1)
2)�

we obtain, for any θ ∈ {H�L},

lim
n→∞n

(
1 − Fθn (σ1)

) = lim
n→∞

f θn (xb)

fLn (xb)
= 1�

This completes the proof.
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Finally, we note that Assumption 3 is not essential for heavy-tailed outcomes that
replicate power laws in finite samples. Lemma 3 established a power-law tail for vol-
ume conditional on initial buying traders D

(
p1�X

)
. The proof of Lemma 3 showed that

D
(
p1�X

)
follows the binomial distribution with probability πθn := 1 − Fθn (σ1) and popu-

lation n. The analysis in the previous paragraph implies that if Assumption 3 fails, the
mean of the binomial, nπθn , may diverge as n→ ∞. However, for finite n, the binomial
distribution for D

(
p1�X

)
is well defined. Combining it with (14), we obtain the uncon-

ditional probability ofM†
n =m form= 2�3� � � � as

∞∑
c=2

(
n

c

)(
πθn

)c(1 −πθn
)n−c (c− 1)(m− 1)m−c−1e−m+1

(m− c)! �

Note that πθn is determined independently of m. Hence, applying Stirling’s formula for
(m− c)! as in Lemma 3, we obtain an approximate power law with exponent 1/2 forM†

n .
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