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Abstract

Many sales, sports, and research contests are put in place to maximize contestants’

performance. We investigate and provide a complete characterization of the prize struc-

tures that achieve this objective in settings with many contestants. The contestants

may be ex-ante asymmetric in their abilities and prize valuations, and there may be

complete or incomplete information about these parameters. The prize valuations and

performance costs may be linear, concave, or convex. A main novel takeaway is that

awarding numerous different prizes whose values gradually decline with contestants’

ranking is optimal in the typical case of contestants with convex performance costs

and concave prize valuations. This suggests that many real-world contests can be im-

proved by increasing the number of prizes and making them more heterogeneous. The

techniques we develop can also be used to formulate and solve other contest design

questions that have so far proven intractable.
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1 Introduction

Contests are used in a variety of settings to motivate people and increase their performance.

Cisco Systems, one of the largest technology companies, regularly runs contests among its

thousands of partners to boost sales.1 HubSpot, a three-billion dollar software company,

and Clayton Homes, the largest builder of manufactured housing and modular homes in the

United States, are two other examples.2 In the context of entertainment, sporting contests

play an important role. In the context of academia, funding agencies administer large con-

tests that motivate researchers to generate high-quality research proposals. The widespread

use of contests makes contest design relevant and important for many real-world domains,

but at this time many aspects of contest design are not well understood.

This paper improves our understanding of contest design by characterizing the prize struc-

tures that maximize contestants’ aggregate performance in contests with many contestants.

More precisely, given a prize budget, we investigate how many prizes should be awarded

and how the budget should be allocated among the prizes to induce maximal performance.

Should a small number of high-value prizes be awarded, or a larger number of lower-value

prizes? Or perhaps awarding prizes of different values is optimal? And if so, how should the

prize values change with their rank order?

Our main qualitative finding characterizes the optimal prize structures in the most rel-

evant case of players with convex performance costs and concave prize valuations. In this

case, the performance-maximizing contest awards many prizes, all of them different, with

gradually decreasing values. This is because both convex costs and concave valuations push

toward gradual prize structures. But we also find that the qualitative effects of convex costs

and concave valuations on the optimal prize structure are not identical. In particular, the

optimal number of prizes depends more heavily on the curvature of the costs. With linear

costs, the optimal number of prizes, while still large, is only a fraction of the number of

1A recent example with multiple prizes is the 2017 “Cisco Commercial Champs

Sales Competition - Win a trip to Taipei, Taiwan.” See https://www.cisco-

commercialxcelerate.com/AppFiles/pdf/tnc/sc/CCX_SC_FY17Q3_TnC.pdf

2“The Right Way to Use Compensation,” Harvard Business Review, April 2015 and “The Sales Director

Who Turned Work into a Fantasy Sports Competition,” Harvard Business Review, March 2015.
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contestants, even if valuations are very concave. In contrast, if costs are convex and the

marginal cost at zero performance is zero, then even with linear valuations almost every

contestant is optimally awarded a prize.

We obtain our results in a relatively general environment with many contestants. Each

contestant chooses a performance and pays the associated cost, and the prizes are awarded

according to the rank order of the performances.3 The contestants may be ex-ante asym-

metric in their abilities and prize valuations, and there may be complete or incomplete

information about these parameters. Contestants’ prize valuations and performance costs

may be linear, concave, or convex. We consider all possible prize structures, including iden-

tical prizes, heterogeneous prizes, and a combination of identical and heterogeneous prizes.

This is important, because restricting the prize structures a priori may rule out the optimal

ones.

Solving for equilibrium in the contest environment we consider is an intractable problem.

We deal with this difficulty by using the approximation approach for large contests developed

by Olszewski and Siegel (2016). In that paper, we considered large contests with a fixed prize

structure, and showed that players’ equilibrium behavior is approximated by the unique

single-agent mechanism that assortatively allocates a continuum of prizes to a continuum of

agent types and gives the lowest type a utility of 0. This result allows us to formulate the

contest design problem in this paper as a tractable single-agent mechanism design problem,

which we then solve.

The rest of the paper is organized as follows. Section 2 describes the contest environment

and the contest design problem. Section 3 solves the problem when players have linear costs,

and Section 4 extends the analysis to more general costs. Section 5 presents a comparative

statics result and discusses how to endogenize the prize budget. Section 6 discusses several

related papers. Section 7 concludes. Appendix A.1 contains the approximation results.

Appendices A.2 and A.3 contain some material omitted from the main text. All proofs are

in Appendix A.4.

3This deterministic prize allocation given contestants’ choices is similar to the allocation in an all-pay

auction and different from the random allocation in a tournament (Lazear and Rosen (1981)) or a Tullock

(1980) contest.
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2 Model

A contest is a game in which players compete for prizes. Each player is characterized by

her privately-known type  ∈ [0 1], which is drawn from a player-specific distribution (in-

dependently across players), and each prize is characterized by its cost  ∈ [0 ̄], where
 = 0 corresponds to “no prize” and ̄ is the highest possible prize. For concreteness, we

will assume that prizes are monetary. Each player chooses her performance  ≥ 0, the player
with the highest performance obtains the highest prize, the player with the second-highest

performance obtains the second-highest prize, and so on. Ties are resolved by a fair lottery.

The utility of a player of type  from choosing performance  and obtaining prize  is

(  ) =  ()− (), (1)

where  (0) =  (0) = 0, and prize valuation  and performance cost  are continuously

differentiable and strictly increasing. Notice that functions  and  are common to all

players. Notice also that the game is strategically equivalent to one in which players have

private information about their performance cost, as in Spence’s (1973) signalling model,

by dividing the utility by  to obtain  () −  () . We assume that sufficiently high

performance levels are prohibitively costly, that is,  (̄)   () for large enough , so no

player chooses performance higher than −1 ( (̄)). The functional form (1) and special cases

thereof have been assumed in numerous existing papers on contests (see, for example, Clark

and Riis (1998), Moldovanu and Sela (2001), Bulow and Levin (2006), and Xiao (2016)).

Our focus is on contests with a large (but finite) number of players and prizes. Olszewski

and Siegel (2016) (henceforth: OS) showed that all the equilibria of such large contests with

a fixed prize structure are closely approximated by the unique single-agent mechanism in a

specific environment that implements the assortative allocation of prizes to agent types and

gives the lowest type a utility of 0. More precisely, let  be a distribution of types with

a continuous, strictly positive density  , and let  be some (not necessarily continuous)

distribution of prizes. We interpret  as the average distribution of players’ types in the

large contest and  as the empirical distribution of prizes. It is important that we do not

restrict , since we will optimize over prize distributions, and any exogenous restriction

on the optimal prize distribution would restrict the scope of our analysis. The assortative
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allocation assigns to each type  prize

 () = −1 ( ()) ,

where

−1() = inf{ :  () ≥ } for 0 ≤  ≤ 1.

That is, the quantile in the prize distribution of the prize assigned to type  is the same as

the quantile of type  in the type distribution. It is well known (see, for example, Myerson

(1981)) that the unique incentive-compatible mechanism that implements the assortative

allocation and gives type  = 0 utility 0 specifies for every type  performance

 () = −1
µ

¡
 ()

¢− Z 

0


¡
 (e)¢ e¶ . (2)

Roughly speaking, the approximation shows that in any equilibrium of a large contest a

player with type  with high probability chooses a performance close to  () and obtains

a prize close to  ().

The intuition for why this single-agent mechanism approximates the equilibria of large

(finite) contests is that, given players’ equilibrium strategies, with a large number of players

the law of large numbers implies that each bid leads to an almost deterministic rank-order

quantile (in the distribution of bids) and thus to an almost deterministic prize. In the limit

we obtain an “inverse tariff” that maps bids to prizes. Utility (1) implies that higher types

choose higher bids from any tariff, so the mechanism induced by the inverse tariff implements

the assortative allocation. Any player can bid 0 and obtain the lowest prize, so the utility of

type 0 is 0. Appendix A.1 formalizes the approximation result of OS (see OS for additional

details).

We point out that the single-agent setting is not a “limit contest” with a continuum of

players who compete against each other, but rather a single privately-informed agent who

faces a mechanism that implements the assortative allocation of a fixed distribution of prizes.

The aforementioned approximation results of OS allow us to avoid having to study a limit

contest, which would involve several conceptual and technical difficulties. In the rest of

paper we focus on the single-agent mechanism to investigate the performance-maximizing

prize distributions.
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The bound ̄ is the highest possible value of any single prize. We require this bound

because the approximation results of OS rely on the compactness of the spaces of types and

prizes.4 Such a bound is not an issue for the analysis of contests with a fixed prize structure.

It is also not an issue for the analysis of the optimal prize structures in settings in which

such a bound arises naturally, as the result of policy, fairness considerations, or technological

limitations. But in other settings the per-capita prize budget we impose in Section 2.1 does

not naturally imply any bound ̄ as the number of contestants grows large. To apply our

results to such settings, we will find the optimal prize distributions for all ̄, and then take

the limit of the optimal structures as ̄ diverges to infinity.

2.1 Performance maximization

We are interested in the prize distributions  that maximize the aggregate performance 

subject to a prize budget of  in the single-agent mechanism that implements the assortative

allocation and gives the lowest type utility 0. The formal statement of the problem is as

follows:
max∈G

R 1
0
 ()  () 

s.t.
R ̄
0
() ()  ≤  ,

(3)

where G is the set of all possible prize distributions. Appendix A.1 shows that the prize
distributions that solve (3) approximate the prize structures that maximize aggregate per-

formance in large (finite) contests, subject to a per-capita prize budget of  ,5 in a lower-

and upper-hemicontinuity sense. This result goes beyond the approximation results of OS,

which apply to contests with a fixed prize structure. We begin by solving (3) in the relatively

simple case of linear performance costs.

4A maximal prize value is also required when it is optimal to spend the entire budget on the highest

possible prizes, which we show is sometimes the case, otherwise an optimal prize structure would not exist.

5For example, a contest with 10,000 contestants and a budget of $1,000,000 would have a per-capita

prize budget of  = 100. As we consider larger and larger contests, we require the overall budget to scale

proportionally in order to maintain the per-capita prize budget.
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3 Linear cost functions

With linear costs  () =  we can use (2) and integration by parts to rewrite (3) as

max∈G
R 1
0

¡
 ()

¢ ³
− 1− ()

()

´


s.t.
R ̄
0
() ()  ≤  .

(4)

For some intuition for why the objective in (4) approximates the expected average per-

formance in large contests, observe that this function coincides with the expected revenue

from a bidder in a single-object independent private-value auction if we let 
¡
 ()

¢
be

the probability that the bidder wins the object when his type is  (Myerson (1981)). In

the auction setting, increasing the probability that type  obtains the object along with the

price the type is charged allows the auctioneer to capture the entire increase in surplus for

this type, but requires a decrease in the price that higher types are charged to maintain

incentive compatibility. This net increase in revenue, or “virtual value,” also coincides with

a monopolist’s marginal revenue (Bulow and Roberts (1989)). In a large contest, increasing

the prize that type  obtains also allows the designer to capture the entire surplus increase

for this type, because the higher prize increases this type’s competition with slightly lower

types until the surplus increase from the higher prize is exhausted. But the prize increase

also decreases the competition of higher types for their prizes, since the prize of type 

becomes more attractive to them.

To get a sense for the solution of (4), suppose that instead of solving for the optimal prize

distribution  we wanted to solve for the optimal assortative allocation  of prizes to types

(which determines  by  () = −1 ( ())). Then, if we assumed that the optimal 

was sufficiently smooth, we could put a Lagrange multiplier  in the constraint and obtain

that for any type  such that  () takes an interior value (i.e., in (0 1)), we would have

the first-order condition

0
¡
 ()

¢µ
− 1−  ()

 ()

¶
= .

To guarantee that the solution  is non-decreasing we make the following monotonicity

assumption, which we maintain throughout Section 3:

Assumption 1. − (1−  ())  () strictly increases in  ∈ [0 1].
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This monotonicity condition leads to the objective in (4) having increasing differences in

 () and , and corresponds to Myerson’s (1981) “regular case.”6

Since we are interested in conditions that more directly characterize the optimal prize

distribution , we rewrite the first-order condition by substituting  =  () to obtain

0
¡
−1()

¢
() = , (5)

where

 () = −1 ()− (1− ) 
¡
−1 ()

¢
.

It is helpful to think of −1 as mapping every quantile in the type distribution to its corre-

sponding prize in the assortative allocation.

The following lemma characterizes the optimal distributions . Despite the straight-

forward derivation of (5) above, the proof of the lemma is not completely straightforward

because we cannot assume that the optimal  is differentiable (or even continuous) or that

−1 takes interior values (i.e., in (0 1)). For the lemma, we note that for any prize distribu-

tion  (optimal or not), in the assortative allocation there are quantiles min ≤ max in [0 1]

such that types in quantiles lower than min are allocated prize 0 (no prize), types in quan-

tiles higher than max are allocated the highest possible prize ̄, and types in intermediate

quantiles are allocated positive, non-maximal prizes.

Lemma 1 Given a prize distribution , let min ≤ max in [0 1] be such that 
−1 () = 0

for  ≤ min, 
−1 () = ̄ for   max, and −1 () ∈ (0 ̄) for  ∈ (min max). If  is an

optimal prize distribution, then it satisfies the following conditions:

1. If min  max (Case 1): Then, there exists a  ≥ 0 such that 0 (−1 ()) () =  for

 ∈ (min max]; in addition, 0 (0) (min) ≤ , and 0(̄) (max) ≥  if max  1.

2. If min = max (Case 2): Then, 
0 (0) (min) ≤ 0 (̄) (max).

In the special case of 0 (0) =∞, it is understood that (min) = 0 and 0 (0) (min) = 0.
6Without Assumption 1 Myerson’s (1981) ironing technique can be used to show that the main qualitative

conclusions with linear costs still hold.
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The parameter  in Case 1 is the shadow price of the budget constraint, that is, by

how much the aggregate performance increases if the budget is increased slightly. This

shadow price can be used to determine the optimal budget when the budget is endogenous,

as discussed in Section 5.

3.1 Concave, linear, and convex prize valuations

When the budget is large enough, the curvature of the prize valuation  does not affect

the optimal prize distribution. To see this, observe that maximizing the objective in (4)

pointwise while ignoring the budget constraint leads to choosing the highest possible prize,

̄, for types   ∗ and the lowest possible prize, 0, for types   ∗, where ∗ ∈ (0 1) is
the unique type (by Assumption 1) that satisfies ∗ − (1−  (∗))  (∗) = 0. This gives

us the following result.

Proposition 1 If  ≥ ̄ (1−  (∗)), then for any function  the optimal prize distribution

consists of a mass 1 −  (∗) ∈ (0 1) of the highest possible prize, ̄, and a mass  (∗) of
prize 0.

Proposition 1 shows that with a sufficiently large budget it is optimal to award a set

of identical prizes, as in the all-pay auctions studied by Clark and Riis (1998), rather than

heterogeneous prizes, as in, for example, the all-pay auctions studied by Bulow and Levin

(2006), or a combination of identical and heterogeneous prizes. Notice that the optimal mass

of prizes, 1−  (∗), is independent of the value of the highest possible prize, ̄.

When the budget is lower than ̄ (1−  (∗)), the curvature of the prize valuation 

affects the optimal prize distribution. We first present the simpler result for linear or convex

functions .

Proposition 2 If   ̄ (1−  (∗)) and  is weakly convex, then the optimal prize distri-

bution consists of a mass ̄ of the highest possible prize, ̄, and a mass 1− ̄ of prize

0.

Proposition 2 shows that awarding identical maximal prizes remains optimal when the

budget is low, provided that agents’ marginal prize utility is nondecreasing. If the highest
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possible prize is increased, fewer of these prizes are optimally awarded. The limit as ̄ grows

arbitrarily large corresponds to a single grand prize.

Proposition 1 and Proposition 2 show that when the budget is large (regardless of the

curvature of ) and when the marginal prize utility is increasing (regardless of the size of the

budget), the optimal prize distribution does not depend on the precise functional form of

. With a small budget and decreasing marginal prize utility the optimal prize distribution

depends more heavily on . We first provide a qualitative characterization of the optimal

prize distribution in this case, and then a full characterization for strictly concave functions

.

Proposition 3 Suppose that   ̄ (1−  (∗)) 

1. If  is weakly concave (but not linear on [0 ̄]), then any optimal prize distribution

assigns positive probability to the set of intermediate prizes (0 ̄) and may have atoms

only at prize 0 and prize ̄.

2. If  is strictly concave, then any optimal prize distribution awards all prizes up to the

highest prize awarded. That is, the optimal  strictly increases on [0 −1 (1)].

Proposition 3 shows that decreasing marginal prize utility optimally leads to awarding

intermediate prizes, whose values gradually decrease with players’ performance ranking.

Among the (positive) prizes, only the highest possible prize, ̄, may optimally be awarded to

multiple players. The following proposition shows that this generally does not occur when ̄

is sufficiently large, so the constraint that no prize can exceed ̄ does not bind for sufficiently

large ̄.

Proposition 4 Suppose that   ̄ (1−  (∗)), and let ̄
max be an optimal prize distrib-

ution when ̄ is the highest possible prize. If  is weakly concave (but not linear on [0 ̄]),

and 0() → 0 as  →∞, then there exists a ̄ such that ̄0
max = ̄

max for any ̄
0 ≥ ̄, and

this ̄
max may have an atom only at prize 0.

We now provide a full characterization of the optimal prize distribution when  

̄ (1−  (∗)) and  is strictly concave. Since the optimal  is strictly increasing (part
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2 of Proposition 3), −1 is continuous, so we have 0 (0) (min) = . Thus,

min = −1(0 (0)). (6)

Since 0 (−1 (max)) (max) =  and 0 is decreasing, 0 (̄) (max) ≤ . If max  1,

then we also have 0(̄) (max) ≥  (because we are in Case 1 of Lemma 1), so we obtain

0 (̄) (max) = . Thus,

max = 1 or 
−1(0 (̄)). (7)

In addition,

−1 () = (0)
−1
( ()) for  ∈ (min max] (8)

and

−1 () =

⎧⎨⎩ 0  ≤ min

̄   max

.

Thus, −1 is pinned down by . The value of  is determined by the fact that the budget

constraint holds as an equality (because   ̄ (1−  (∗))).

3.1.1 An example

To demonstrate the usefulness of the above characterization, we now derive the optimal −1

for contests with prize valuations  () = 1 for   1 (and any type distribution  ). We

assume that the highest possible prize ̄ is large enough that max = 1 (see Proposition 4),

which also implies that   ̄ (1−  (∗)), so the entire budget is used. Since 0 (0) = ∞,
we have min = ∗, where ∗ =  (∗). Since (0)−1 () = ()(1−), by (8) we have

−1 () = (0)−1 ( ()) =
1

(−1)(−1)
 ()

(−1)
(9)

for  ∈ (∗ 1]. Thus,

 =

Z 1

∗
−1 ()  =

1

(−1)(−1)

Z 1

∗
 ()

(−1)
,

so

(−1) =
1

 (−1)

Z 1

∗
 (e)(−1) e.
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Substituting this expression for (−1) into (9) we obtain

−1 () = 
 ()

(−1)R 1
∗  (e)(−1) e for  ∈ (∗ 1] and −1 () = 0 for  ≤ ∗. (10)

4 More general cost functions

With non-linear costs  the analysis is substantially more complicated. Nevertheless, condi-

tions similar to the ones in Lemma 1 can be derived and used to characterize the optimal

prize distributions. We provide these conditions in Lemma 3 in Appendix A.2. To do so

we make the following assumption, which plays a similar role to that of Assumption 1 in

the case of linear costs and facilitates an analytical characterization of the solution.7 For

the assumption, recall that no player chooses performance higher than −1 ( (̄)), and let

 = min {0 () :  ∈ [0 −1 ( (̄))]} and  = max {0 () :  ∈ [0 −1 ( (̄))]}. We restrict at-
tention to continuously differentiable density functions  .

Assumption 2. For all  in [0 1],

2

(−1())
+

 0(−1())(1− )

3(−1())
 0, (11)

where if  = 0 the second fraction is equal to ∞, −∞, or 0 when its numerator is positive,
negative, or 0, respectively.

Assumption 2 generalizes Assumption 1, because when  =  = 1 the left-hand side of

(11) is equal to  0(). Assumption 2 is satisfied, for example, whenever  is nondecreasing

(for any cost function ). The assumption imposes no restrictions on the prize valuation

. In addition, the set of primitives for which Assumption 2 holds is generic in the sense

that if it holds for some pair of a continuous derivative of a cost function and a continuous

derivative of a density function, then it holds for all such pairs that are sufficiently close to

it in the sup norm.

7We strongly conjecture that, similarly to the case of linear costs, many of the results for general costs

also hold without Assumption 2.
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4.1 Concave and linear prize valuations with convex costs

We now characterize the optimal prize distribution when the prize valuation  is concave or

linear and the costs are convex. This will generalize Proposition 3 and highlight additional

features of the optimal prize distribution implied by convex costs. As we will see, the effects of

concave prize valuations and convex costs on the optimal prize distribution are qualitatively

similar, but not identical. It is also possible to generalize the results from Section 3.1 for

convex prize valuations to concave costs, but this case seems less relevant for economic

applications. Lemma 3 in Appendix A.2, which is the analogue of Lemma 1 for nonlinear

costs, can also be used to study the optimal prize distribution for convex prize valuations

and convex costs, but no general results exist in this case, because the effects of convex prize

valuations and convex costs go in opposite directions.

Proposition 5 Suppose that  is weakly concave but not linear on any interval with lower

bound 0.

1. Any optimal prize distribution assigns positive probability to the set of intermediate

prizes (0 ̄) and may have atoms only at prize 0 and prize ̄.

2. If  is strictly convex, then any optimal prize distribution awards all prizes up to the

highest prize awarded. That is,  strictly increases on [0 −1 (1)].

3. If the marginal cost of the first unit of performance is 0, that is, 0 (0) = 0, then every

type   0 is optimally awarded a positive prize.

Proposition 5 highlights some similarities and differences between the effects on the opti-

mal prize distribution of convex costs and concave prize valuations. When the budget is large

( ≥ ̄ (1−  (∗))), linear costs with strictly concave prize valuations lead to awarding only

a mass of the highest possible prize, but strictly convex costs with linear prize valuations lead

to awarding intermediate prizes whose values gradually decrease with players’ performance

ranking (since Proposition 5 holds for any budget). This is because with convex costs a slight

change in the prize a type is awarded induces a larger change in that type’s performance

when the prize is 0 than when the prize is ̄. It therefore cannot be optimal to award prize 0
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to some type and prize ̄ to a slightly higher type, since a slight increase in the former type’s

prize along with a corresponding decrease in the latter type’s prize increases these types’

aggregate performance without significantly affecting all higher types’ performance. When

the budget is not large (  ̄ (1−  (∗))), both concave prize valuations and convex costs

optimally lead to awarding intermediate prizes. But with concave valuations types lower

than ∗ do not obtain a prize, whereas with convex costs whose marginal at 0 is 0 every

positive type is optimally awarded a positive prize. This is because a marginal cost of 0

implies that the marginal of the inverse function, i.e., the marginal increase in performance

associated with a marginal increase in cost, is infinity. This in turn means that a slight

increase from 0 in the prize awarded to a positive type, which leads to an increase in the

performance cost this type incurs, generates an increase in that type’s performance that

infinitely outweighs the decrease in the performance of higher types. It is therefore optimal

to have almost every type participate in the contest and obtain a positive prize, unlike with

linear costs.

4.2 An example

With convex costs and concave valuations we cannot provide a full characterization of the

optimal prize distribution similar to the one following Proposition 4 for linear costs and

concave valuations. This is because that characterization uses Lemma 1, which relies on

the marginal prize valuation  being independent of the optimal prize distribution, whereas

the corresponding marginal prize valuation  for convex costs (defined in Appendix A.2)

depends on the optimal prize distribution. Nevertheless, Proposition 5 and Lemma 3 in

Appendix A.2 can be used to explicitly derive the optimal prize distribution once functional

forms are specified. We illustrate this with an example, which also highlights the two differ-

ences described above between the optimal prize distribution with linear costs and concave

valuations and the optimal prize distribution with convex costs.

Suppose that the prize valuation is linear ( () = ), the costs are quadratic ( () =

2), and the type distribution  is uniform. Proposition 5 shows that the optimal prize

distribution  assigns positive probability to the set of intermediate prizes (0 ̄) and may

have atoms only at 0 and ̄. In Appendix A.3 we use the conditions in Case 1 of Lemma
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3 to derive −1. Suppose first that ̄, the highest possible prize, is at least 4 . Then

−1 () = 43 for  in [0 1]. This distribution is independent of ̄, so the bound ̄ on the

highest possible prize is not binding, and the associated aggregate performance is
p
3.

Consistent with Proposition 5, every positive type obtains a positive prize, the prizes increase

gradually from 0 to 4 , and there are no atoms (see Figure 1 below). Now suppose that ̄

is less than 4 . Then, as long as ̄ ≥ 85, we have −1 () = 273̄4 ¡64 (̄ −  )
3
¢
for 

in [0 4(̄ −  ) (3̄)] and −1 () = ̄ for  in [4(̄ −  ) (3̄)  1]. The associated aggregate

performance is
√
̄ −  (1− 8 (̄ −  )  (9̄)). Every positive type still obtains a positive

prize, and the prizes increase gradually from 0 to ̄, but there is also a mass (4 − ̄)  (3̄)

of prize ̄ (see Figure 1 below). If ̄ falls below 85, then the budget in excess of 5̄8 is

optimally not used, so the optimal prize distribution coincides with the one for ̄ = 85.

Notice that unlike the case of linear costs, and consistent with Proposition 5, even when the

budget is large ( ≥ 5̄8) the optimal prize distribution still awards all prizes between 0
and ̄, and every positive type obtains a prize.

Figure 1: The optimal prize distribution for ̄ = 1 and  = 14 and  = 58
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5 Discussion

In addition to characterizing the optimal prize distribution, our methods can also be used to

derive comparative statics. We provide one result here, which shows that a first-order sto-

chastic dominance (FOSD) shift in the type distribution increases the aggregate performance

for any prize distribution.

Proposition 6 If e FOSD  , then for any prize distribution  the aggregate performance is

higher under e than under  . In particular, for the optimal prize distributions the aggregate
performance is higher under e than under  .

While it may seem intuitive that a more able pool of players will generate higher equi-

librium performance, this is not always the case in contests with a small number of players.

To see this, consider a two-player all-pay auction with complete information and one prize.

The prize is  = 1, the prize valuation function satisfies  (1) = 1, and the cost function is

 () = . Players’ publicly observed types satisfy 0  1  2  1. It is well known (Hillman

and Riley (1989)) that in the unique equilibrium player 2 chooses a bid by mixing uniformly

on the interval [0 1] and player 1 bids 0 with probability 1− 12 and with the remaining

probability mixes uniformly on the interval [0 1]. The resulting expected aggregate bids

are 12 + (1)
2
 (22), which monotonically increase in 1 and monotonically decrease in

2. Thus, an increase in player 2’s type, even when accompanied by a small increase in

player 1’s type, decreases the expected aggregate bids. The intuition is that the increased

asymmetry between the players, which discourages competition, outweighs the increase in

their types, which encourage higher bids. The intuition for Proposition 6 is that in a large

contest competition is “localized” in the sense that players compete against players with

similar types.8 Therefore, any decrease in local competition between some types resulting

from a FOSD shift in players’ type distribution is more than compensated for by an increase

in local competition between some higher types.

Our approach can also illustrate how to determine the optimal budget  (recall that

 was so far assumed exogenous). Suppose that there is a budget cost, which is strictly

8A discussion of this phenomenon appears in Bulow and Levin (2006).
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increasing, continuously differentiable, and takes high enough values for large  to make the

designer never choose such values. To compare the marginal budget cost to the marginal

budget benefit, consider the most relevant case of concave  and convex . Propositions 3

and 5 show that Case 1 of Lemmas 1 and 3 applies. The shadow cost  is then the marginal

budget benefit, so the optimal budget  can be identified by comparing the marginal budget

cost to .

As an example, consider the contest with ̄ = 1,  () =
√
,  () = , and  uniform for

 ≤ 12. The following figure depicts the optimal prize distributions for different budgets
 ≤ 12. The prize distributions were computed by using (10) for  ≤ 16 (which implies
that max = 1 and there is no mass of prize ̄ = 1) and by using the more general charac-

terization from Section 3.1 for   16 (which implies that max  1 and there is a mass of

prize ̄ = 1).9

9The optimal prize distributions are

 () =

⎧⎨⎩ 1
2
+
p


24

 ∈ [0 6 ]
1  ∈ [6 1]

and  () =

⎧⎨⎩ 1
2
+

q
(3−6 )2

16
 ∈ [0 1)

1  = 1

for 0   ≤ 16 and 16   ≤ 12, respectively.
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Figure 2: The optimal prize distributions as the budget varies from 0 to 12.

The characterization from Section 3.1 shows that  = 1
√
24 for  ≤ 16, and  =

(34 − 32) for   16.10 Consistent with Proposition 1,  = 0 for  = 12, so the

budget will never optimally exceed 12. With a linear budget cost of  , for example, the

optimal budget is  = 124, and with a quadratic cost of  2 the optimal budget is  = 314.

6 Existing work

Several previous papers consider maximizing the expected aggregate output (or effort) in

contests. The two closest to our work, Glazer and Hassin (1988) and Moldovanu and Sela

(2001) examine this maximization with respect to the prize structure subject to a budget

10The maximal average performance is
p
6 for  ≤ 16 and (12 (1−  ) + 1)16 for  ≥ 16. The

difference between the functional forms is due to the atom at the highest possible prize, 1, which appears

when the budget exceeds 16.
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constraint.11 Both papers study contests in which players’ utilities are special cases of (1).

Glazer and Hassin (1988) analyze contests in which contestants are randomly drawn from

a population, and use a somewhat specific concept of equilibrium,12 which facilitates their

analysis in a manner similar to that in which our limit approach facilitates the analysis of

large contests. They derive an optimal prize structure in two cases. First, when contestants’

ability is uniformly distributed in the population, the costs are linear, and prize valuations are

weakly concave, they obtain a result that corresponds to our Propositions 2 and 3. Second,

when all contestants have identical abilities, they show that the optimal prize structure has

− 1 equal prizes and one prize of 0.
Moldovanu and Sela (2001) restrict attention to the symmetric equilibria of discrete

contests with ex-ante symmetric contestants, incomplete information, and linear prize valu-

ations, but their results apply to any number of players. They show that for weakly concave

costs, it is optimal to award the entire budget as a single prize.13 Moldovanu and Sela (2001)

also show that with convex costs awarding the entire budget as a single prize may be inferior

to splitting the budget between two prizes.

Proposition 2 is an analogue of the result of Moldovanu and Sela (2001) for linear costs.

Although Proposition 2 was established under Assumption 1, it can be shown that this

result does not require Assumption 1. Note that Proposition 2 holds for weakly convex (not

necessarily linear) prize valuations. In addition, Proposition 2 can be generalized to weakly

concave costs by using the conditions in Case 2 of Lemma 3 instead of those in Case 2 of

Lemma 1.

Proposition 5 is related to the result of Moldovanu and Sela (2001) that shows that with

11Moldovanu, Sela, and Shi (2007) and Immorlica, Stoddard, and Syrgkanis (2015) study this maximization

in the context of social status. Xiao (2018) numerically computes the optimal division of a budget between

two prizes when contestants have linear costs and no private information.

12They disregard the consistency condition between the distribution of abilities in the population and the

equilibrium distribution of output of a randomly chosen contestant.

13Kaplan and Zamir (2016) notice that this result for linear costs is implied by a result from auction

theory, which says that if an auction with ex-ante symmetric bidders maximizes revenue, the object must

be allocated (if it is allocated at all) to the highest bidder. (The auction-theory result also holds when the

object must be allocated and cannot be kept by the auctioneer.)
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convex costs splitting the budget into two prizes is sometimes better than awarding the entire

budget as a single prize. Proposition 5 goes beyond this, and characterize the optimal prize

structure. In addition, our results apply to all equilibria of contests with a large, but finite,

number of players. The players may be ex-ante symmetric or asymmetric, may or may not

have private information, and their prize valuations need not be linear.

Several other papers consider the added value of running several simultaneous or sequen-

tial subcontests instead of a single grand contest. Moldovanu and Sela (2006) and Fu and

Lu (2012) study multiple rounds of competition in an environment with ex-ante identical

players. The former restrict attention to identical prizes, and the latter consider Tullock

(noisy) contests and focus on symmetric equilibria. Fu and Lu (2009) find conditions under

which a grand contest generates higher effort than multiple subcontests when contestants

are homogeneous.14 Xiao (2017) shows that with heterogeneous contestants performance

is maximized when contestants with the same ability are assigned to the same subcontest,

and characterizes the optimal prize structure in this case. More recently, Hinnosaar (2018)

studies effort-maximizing information disclosure policies in sequential Tullock contests. Das-

gupta and Nti (1998) and Polishchuk and Tonis (2013) consider the optimal choice of contest

success functions, and Nti (2004) compares optimal designs for different contest technologies.

More recently Fang, Noe, and Strack (2018) consider all-pay auctions with complete

information and any number of symmetric players with linear valuations, and find that when

players’ costs are convex, more unequal prize structures lead to lower effort. Similarly to the

findings of Glazer and Hassin (1988) the effort-maximizing prize structure has all but one of

the players obtaining a prize, and all prizes are identical. In contrast, our characterization of

the optimal prize structure when players have convex costs and linear valuations shows that

when players are asymmetric, captured by distribution  having full support, gradual prize

structures are optimal. However, as the asymmetry between players decreases, the optimal

prize structure becomes closer to that of Fang, Noe, and Strack (2018). This is easy to see

with linear costs and a distribution  “close” to uniform on [1−  1] for small   0. In this

case  is “almost constant,” so (5) implies that the prizes allocated to types  in [1−  1]

14Ful, Lu, and Pan (2015) identify contest environments in which the temporal and informational structure

does not affect the total expected effort or overall outcome.
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are nearly identical. Since  is required to have full support, our results for the linear case

show that some small measure of low or 0 prizes are also allocated, and this gives rise to the

competition by the high types.

The constrained maximization problem (3) is also related to the theory of optimal taxa-

tion when the social planner chooses the tax schedule to maximize the tax revenue (Salanié

(2003), page 84). To see the relationship, consider an optimal taxation setting with a con-

tinuum of agents, each of whom is characterized by his privately-known productivity . The

population productivity distribution is  . An agent with productivity  who chooses output

 incurs cost (). Before the agents make their output choices, the social planner commits

to a tax schedule, which specifies a tax amount for every level of output. Denote by ()

the output chosen by type  and by () the consumption of type , so the utility of an

agent of type  is ()− (()). Suppose that we impose the constraint that agents’ ag-

gregate consumption must equal some amount  . This constraint is not a natural one in an

optimal taxation setting. Under this constraint, maximizing the tax revenue is equivalent to

maximizing the aggregate output. In addition, instead of choosing the tax schedule the de-

signer can choose the output for each type (which by incentive compatibility pins down each

type’s consumption up to a constant) or the consumption for each type (which by incentive

compatibility pins down each type’s output up to a constant). This gives a maximization

problem similar to (3), in which the agents’ utility − () is somewhat different from the

utility  ()−  ()  in our setting.

7 Concluding remarks

This paper investigates the performance-maximizing prize structures in contests with many

contestants. Our key qualitative finding is that concave prize valuations and convex perfor-

mance costs call for numerous prizes of different values. This shows that many sales and

workplace competitions, as well as some research grant competitions, can be improved by in-

creasing the number of prizes and making them more heterogeneous. The analysis facilitates

comparative statics and enables deriving closed-form approximations of the performance-

maximizing prize distributions for concrete utility functions and distributions of player types.
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Our approach can also be used to investigate many other contest design questions. One

example is maximizing the expected aggregate performance when not all prize structures are

available (for instance, all prizes must be identical), or when the budget is also determined

optimally (as discussed in Section 5). Another example is maximizing a weighted sum of

contestants’ performance. For example, the designer may want to maximize the aggregate

performance of contestants whose type exceeds a certain cutoff, or the aggregate performance

of the highest-performing  percent of contestants. Our analysis can be extended to capture

both scenarios.15 As an example, consider mathematical olympiads, and suppose that the

goal is to identify and encourage the development of the most mathematically gifted indi-

viduals. This would correspond in our setting to maximizing the aggregate performance of

a top fraction of the contestants. In this case, a minor modification of our analysis implies

that it is optimal to spend the entire budget on prizes for this top fraction of contestants.

Conditional on this top fraction, the optimal prize distribution is the one that maximizes

the aggregate performance for a distribution of types that is the conditional distribution of

the types in the top fraction.

More generally, our techniques can be used to investigate various contest design objec-

tives. This can be done by identifying the corresponding objectives in the limit setting and

showing that they approximate the ones in large contests. An optimization problem would

then be formulated and solved, possibly using the methods we develop here.

A Appendix

A.1 Approximation results

Approximating the equilibria of large contests with a fixed prize structure by a

single-agent mechanism. Consider a sequence of contests parameterized by the number

 of players and prizes (since a prize  = 0 corresponds to “no prize” it is without loss of

generality to have the same number of players and prizes). In the -th contest, let player

15In the limit setting there is no distinction between the two scenarios, because higher types choose higher

performance.
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’s type  be distributed according to a cdf  that does not have an atom at 0, and let

1 ≤ 2 ≤ · · · ≤  be the set of prizes. Olszewski and Siegel (2019) show that every contest

has an equilibrium in distributional strategies (Milgrom andWeber (1985)). The equilibrium

approximation technique requires the contests in the sequence to become increasingly similar

in some sense as  increases. To formalize this requirement, let   = (
P

=1 

 ) , so

 () is the expected percentile ranking of type  in the -th contest given the random

vector of players’ types. Denote by  the empirical prize distribution of the  prizes, which

assigns a mass of 1 to each prize  (recall that there is no uncertainty about the prizes).

We require that  converge pointwise to a distribution  that has a continuous, strictly

positive density  , and that  converge pointwise to some (not necessarily continuous)

distribution  at all points of continuity of . OS provide several examples to illustrate the

convergence of  and . The following approximation result appears as Corollary 2 in

OS.16

Theorem 1 (OS) For any   0 there is an  such that for all  ≥  , in any equilibrium

of the -th contest each of a fraction of at least 1−  of the players  obtains with probability

at least 1−  a prize that differs by at most  from  ( ), and chooses performance that is

with probability at least 1−  within  of  ( ).

Approximating the optimal prize structures in large contests by the optimal

prize distributions in a single-agent setting. When  () is the performance of player

 of type  in the -th contest, the expected average performance is

1



X
=1

Z 1

0

 () 

 () . (12)

The budget per capita is  :

1



X
=1

 ≤  .

The reason that we work with averages is to avoid the quantities becoming infinitely large

as  tends to infinity.

16OS also provide a result on the rates of convergence, which roughly says that it suffices for 1 to be

smaller than an expression of order −2 ln . We refer the reader to their Section 6 for the precise statement
of the result.
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We first observe that given a converging sequence of contests, Theorem 1 implies that

the expected average performance for large  is approximated by the aggregate performance

in the mechanism that implements the assortative allocation in the limit setting:Z 1

0

 ()  () . (13)

Corollary 1 For any   0 there is an  such that for all  ≥  , in any equilibrium of

the -th contest the expected average performance (12) is within  of (13).

Corollary 1 applies to a given limit distribution . Consider a sequence of type dis-

tributions that converges to distribution  with a continuous, strictly positive density  ,

and denote by 
max the empirical distribution of prizes that maximizes the equilibrium

expected average performance in the -th contest over all equilibria and all sets of prizes

1 ≤ · · · ≤  whose average is no greater than  . We denote by

max the maximal expected

average performance attained by 
max. For the limit setting, we denote by M the set of

prize distributions that maximize (13) subject to the budget constraint
R ̄
0
 () ≤  . An

upper hemi-continuity argument shows that a maximizing distribution exists.

Lemma 2 The setM is not empty.

Denote by the corresponding maximal value of (13) subject to the budget constraint.

The next proposition formalizes the convergence using any metrization of the weak∗-topology

on the space of prize distributions.17

Proposition 7 Choose some metrization of the weak∗-topology on the space of prize distri-

butions.

1. For any   0, there is an  such that for every  ≥  , 
max is within  of some

distribution in M. In particular, if there is a unique prize distribution max that

maximizes (13) subject to the budget constraint, then 
max converges to max.

17Convergence in weak∗ topology is equivalent to the convergence of CDFs at the points in which the limit

is continuous. Roughly speaking, a prize distribution 0 is close to a prize distribution  if the graph of the

CDF of 0 lies in a small neighborhood of the graph of the CDF of .
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2. 
max converges to  .

3. For any   0, there are an  and a   0 such that for any  ≥  and any empirical

prize distribution  of  prizes that is within  of some  inM, the expected average

performance in any equilibrium of the -th contest with empirical prize distribution 

is within  of 
max.

Part 1 of Proposition 7 shows that the optimal prize distributions in large contests are

approximated by the prize distributions that maximize (13) subject to the budget constraint.

Part 2 shows that the maximal expected average performance is approximated by the maxi-

mal value of (13) subject to the budget constraint.18 Part 3 shows that any prize distribution

that is close to a prize distribution that maximizes (13) subject to the budget constraint gen-

erates an expected average performance (in any equilibrium) that is close to maximal. For

example, given a prize distribution  that maximizes (13) subject to the budget constraint,

the set of  prizes defined by  = −1 () for  = 1   generates, for large , an

expected average performance that is close to maximal; moreover, the average prize   for

the so defined distributions  converges to the average prize  for the distribution .

A.2 Optimality conditions for general costs

To develop the conditions satisfied by an optimal prize distribution for non-linear costs it

is useful to substitute  = −1() and (2) into the aggregate performance
R 1
0
()() to

obtain Z 1

0

−1
³e ()´ , (14)

where e () = −1 ()
¡
−1 ()

¢− Z −1()

0

 (e) e (15)

is the cost of the performance of type  in quantile  =  () and () = (()). Notice

that e () is well defined even when function −1 () is not monotone. We will consider such
functions in some of our proofs. It is also useful to rewrite the budget constraint as

18The rates of convergence result in OS also indicates that if the optimal prize distribution satisfies the

conditions in their Section 6, then the maximal expected average performance is within  of the maximal

value of (13) if 1 is smaller than an expression of order −2 ln .
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Similarly to Section 3, to derive the conditions for optimality it is useful to consider the

effect of a slight increase ∆ in the value of −1 at quantile  on the aggregate performance

(14). In the case of linear cost , the effect was to generate an increase of 0 (−1 ()) ()∆,

where  () was the marginal virtual performance. With non-linear costs, the marginal vir-

tual performance () (given by (17) below) in the corresponding expression for the increase

will involve −1 and the derivative of −1. The expression will be instrumental in formulating

conditions that characterize the optimal −1 and generalize the conditions in Lemma 1. But

because the expression involves −1, it cannot be used directly in formulating Assumption

2 below, which guarantees that any optimizer of the relaxed problem is nondecreasing and

generalizes Assumption 1, because such an assumption must refer only to the primitives of

the model, that is, only to functions , , and  .

To estimate the effect of a slight increase in −1 () on (14), consider a function −1

that takes values only in the set {0 12 22  (2 − 1)2 1}, and is constant on each
interval (0 12] (12 22]  ((2 − 1)2 1]. Suppose that we increase the value of

−1 on an interval (2 ( + 1)2] by ∆ = 12. Since  (−1 ()) =  (−1 ()), this

change increases the value of  on (−1(2) −1(( + 1)2)] by 0(−1(( + 1)2))∆,

to a first-order approximation. In Figure 3 this corresponds to shifting the graph of  on

(−1(2) −1(( + 1)2)] to the right by the width of the shaded square. This change

does not affect ̃, and thus the integrand in (14), on intervals (2 ( + 1)2] for   .

It increases the integrand for  ∈ (2 ( + 1)2], to a first-order approximation, by

(−1)0(e(( + 1)2))−1(( + 1)2)0(()−1(( + 1)2))∆
(the union of the shaded and darkened rectangles in Figure 3). For any   , it decreases

the integrand for  ∈ (2 ( + 1)2], to a second-order approximation, by

(−1)0(e(( + 1)2))0(()−1(( + 1)2))∆[−1(( + 1)2)− −1(2)]

(the shaded square in Figure 3).
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F-1((l+1)/2n)

L(F-1((l+1)/2n))
before the 
increase

F-1(l/2n)

L(F-1((l+1)/2n))
after the 
increase

Figure 3: Increasing −1

Since −1(( + 1)2)− −1(2) = ∆(−1(( + 1)2)), to a first-order approximation,

letting  = ( + 1)2, we express the total increase in (14) as

0
¡
−1 ()

¢⎛⎝−1 ()
¡
−1
¢0 ³e ()´− R 1 (−1)0

³e (e)´ e
 (−1 ())

⎞⎠∆2. (16)

Recalling that e () is the cost of the performance of type  in quantile  =  (), we

can interpret

 () =

⎛⎝−1 ()
¡
−1
¢0 ³e ()´− R 1 (−1)0

³e (e)´ e
 (−1 ())

⎞⎠ (17)

as the marginal virtual performance of the type in quantile : a marginal increase in the

prize allocated to this type intensifies competition for this prize and exhausts the corre-

sponding increase in allocation utility (the first term on the right-hand side of (17)), but
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reduces competition by all higher types (the second term on the right-hand side of (17)).

With non-linear costs these effects depend on the prizes allocated to lower types (throughe ()), because they determine the current performance, which affects the marginal cost of
performance. This dependency disappears with linear cost  () = , in which case  ()

coincides with  ().

With linear costs, Assumption 1 guarantees that the maximizer −1 of the relaxed prob-

lem is nondecreasing. Indeed, if −1 () were lower on an interval (2 ( + 1)2] than on

an interval (2 ( + 1)2] for some   , we could exchange the two values, generating

a higher increase on (2 ( + 1)2] than a decrease on (2 ( + 1)2]. The assump-

tion that  () is strictly increasing would be a natural counterpart of Assumption 1 in the

more general setting. Unfortunately,  () involves the endogenous variable −1 (throughe ()), which would make the assumption unattractive; moreover, it would no longer serve
its purpose, because exchanging the values of −1 on (2 (+1)2] and (2 (+1)2]

would affect the value of  (). Instead, Assumption 2 in Section 4, which is expressed only

in terms of the primitives of the model, guarantees directly that exchanging the values of

−1 on the two intervals is beneficial, and therefore guarantees that the maximizer of the

relaxed problem is nondecreasing.

Equipped with (17), we obtain the following analogue of Lemma 1.

Lemma 3 Given a prize distribution , let min ≤ max in [0 1] be such that 
−1 () = 0

for  ≤ min, 
−1 () = ̄ for   max, and −1 () ∈ (0 ̄) for  ∈ (min max). If  is an

optimal prize distribution, then it satisfies the following conditions:

1. If min  max (Case 1): Then, there exists a  ≥ 0 such that

0
¡
−1 ()

¢
 () =  (18)

for  ∈ (min max]; in addition,

0 (0) (min) ≤ , (19)

and

0(̄) (max) ≥  (20)

if max  1.
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2. If min = max (Case 2): Then,

0 (0) (min) ≤ lim
↓max

0 (̄) () . (21)

The difference between Case 2 in Lemma 3 and Case 2 in Lemma 1 arises because  () is

continuous at every , whereas () is left-continuous at every  but changes discontinuously

at quantiles  at which −1 () increases discontinuously. In particular, if min = max, thene (min) = 0 (type min obtains prize 0 and chooses performance 0) but e () =  (0) (̄) for

all   max (types above max obtain prize ̄ and choose the performance with cost (0) (̄),

which makes type min = max =  (0) indifferent between choosing this performance and

obtaining prize ̄ and choosing performance 0 and obtaining prize 0).

A more subtle difference from Lemma 1 relates to (19). The intuition for (19) is that if the

inequality were reversed, then in the relaxed problem increasing −1 () for  slightly below

min by decreasing −1 () for  in (min max) would increase the aggregate performance.

This relies on min  0, which is always the case with linear costs (because  (0)  0). More

generally, however, it can be that min = 0 (see part 3 of Proposition 5). But in this case (19)

follows from (18) directly, because −1 (), and therefore  (), are continuous at  = 0.

Otherwise min = lim↓0−1 ()  0, so −1 could be “shifted down” to reduce  (−1 ())

by  (min),
19 which would reduce the cost of providing the prizes without changing each

type’s performance. The prizes −1 () for  close to 1 could then be increased, which would

increase the aggregate performance.

A.3 The example from Section 4.2

Proposition 5 shows that min  max and  may have atoms only at 0 and ̄. We

now use the conditions in Case 1 of Lemma 3 to derive . Define an auxiliary function

 () = (−1)0(e()), plug  () into (17) and the resulting expression for  () into (18), and
differentiate with respect to  to obtain the differential equation 0()+2() = 0 for ().20

Solving this equation, and substituting back into (18), we obtain (−1)0(e ()) = 2. By the

19The new inverse prize distribution would assign prize −1 ()−−1
¡

¡
−1 ()

¢−  (min)
¢
to quantile

. This maintains the same value of (2) for every .

20The solution can be verified to be differentiable.
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definition (15) of e (), we obtain ((−1)0)−1 (2) = −1 ()− R 
0
−1 () . If −1 is dif-

ferentiable, differentiating the last equality gives (−1)0() = (−24)(((−1)0)−1)0(2).21

Since −1 () =
√
, we have (−1)0 () = 1 (2

√
),
¡
(−1)0

¢−1
() = 1 (42), and

³¡
(−1)0

¢−1´0
()

= −1 (23). Thus, −1 () = 3(32)+ min, where min is the “lowest prize” awarded. By

parts 2 and 3 of Proposition 5, min = 0 and min = 0.

Consider first ̄ ≥ 4 . Suppose that max = 1 and the entire budget is used. Substituting
the expression for −1() into the budget constraint with equality, we obtain  = 1

√
12 ,

which gives −1 () = 43 . Thus, −1 does not exceed ̄ ≥ 4 . Substituting −1 into

the objective, the aggregate performance is
p
3, which increase in the budget  , so it is

indeed optimal to use the entire budget. Moreover, we cannot have max  1, because the

budget constraint would be violated: on [max 1] the prize would be ̄, higher than with

max = 1, and in order to have 
−1 (max) = ̄, the value of  would have to be lower than

that with max = 1, which implies a pointwise higher value of −1 on [0 max] than with

max = 1.

Now suppose that ̄  4 and the entire budget is used. Then, we still have −1 () =

3
¡
32
¢
for  ≤ max, but this new  is different from that for ̄ = 4 . (Otherwise, since

−1 () = 4 at  = 1 for the old , the entire budget would not be used.) This implies

that max  1. Since the budget constraint is satisfied with equality,  = 2max(12( −
̄ (1− max)))

12. Substituting this  into ̄ = −1 (max) = 3max
¡
32
¢
gives that max =

4(̄− ) (3̄). Substituting the expression for max into the expression for , and substituting
the resulting expression for  into the expression for −1 for  ≤ max, gives 

−1 () =

273̄4
¡
64 (̄ −  )

3
¢
. Substituting this −1 into the objective, the aggregate performance

is
√
̄ −  (1− 8 (̄ −  )  (9̄)).

This expression increases for  in [̄4 5̄8], and decreases for  in [5̄8 ̄]. Therefore,

this expression is the maximal aggregate performance for  in [̄4 5̄8]. Any budget in

excess of 5̄8 will optimally not be used.

21We will show that an optimal prize distribution  with differentiable inverse −1 exists. No other prize

distribution will lead to higher average performance, since the average performance corresponding to any

prize distribution can be approximated arbitrarily closely by the average performance corresponding to a

prize distribution with a differentiable inverse.
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A.4 Proofs

Proof of Lemma 1. We first substitute  =  () to rewrite the problem as maximizingZ 1

0


¡
−1 ()

¢
 ()  (22)

subject to Z 1

0

−1 ()  ≤  . (23)

Let  be an optimal distribution, and suppose that min  max. We now show that

0 (−1 ()) () = 0 (−1 ()) () for all   ∈ (min max). The idea is that if this

were not the case, e.g., if we had  instead of =, then we could increase −1 around  and

decrease −1 around , thereby increasing the aggregate performance. We must be careful,

however, not to violate the budget constraint, and to maintain the monotonicity of −1.

These properties will be easier to control if we first approximate −1 by a piecewise constant

function.

To simplify notation, we assume that ̄ = 1. We approximate−1 by a sequence of inverse

distribution functions (()−1)∞=1. To define (
)
−1
, partition interval [0 1] into intervals

of size 12, and set the value of ()−1 on interval (2 ( + 1)2] to be constant and

equal to the highest number in the set {0 12 22  (2−1)2 1} that is no higher than
−1(2). By left-continuity of −1, ()−1 converges pointwise to −1. By definition of

()−1 and monotonicity of −1, ()−1 satisfies the budget constraint (23).

Suppose that 0 (−1 ()) ()  0 (−1 ()) () for some   ∈ (min max). By

left-continuity of −1, and continuity of 0 and  , the previous inequality also holds for

points slightly smaller than  and . Thus, there are   0,  , and intervals (2  ( +

1)2 ] and (2  ( + 1)2 ], such that for every  ≥  we have 0 (()−1 (0)) (0) −
0 (()−1(0)) (0)   for any 0 ∈ (2  ( + 1)2 ] and 0 ∈ (2  ( + 1)2 ].
Denote by  the infimum of the values 0 (()−1()) () for  ≥  and  in the former

interval, and by  the supremum of the values 0 (()−1()) () for  ≥  and  in the

latter interval. Thus, we have that − ≥ . Define functions ()−1 by increasing the value

of ()−1 on (2  (+1)2 ] by , and decreasing the value of ()−1 on (2  (+1)2 ]

by , so the budget constraint is maintained. For sufficiently small   0, the former change
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increases (22) at least by
¡
2

¢
( − 3), and the latter change decreases (22) at most by¡

2
¢
( + 3). This increases the value of (22) by at least 

¡
3 · 2¢ (for all  ≥ ),

since  −  ≥ .

If functions ()−1 are monotone, they are inverse distribution functions, and the value

of (22) with ()−1 instead of −1 exceeds, for large enough , the value of (22) for −1. If

functions ()−1 are not monotone, define
³ e

´−1
by setting its value on interval (0 12]

to the lowest value of ()−1 over intervals (0 12] (12 22]  ((2− 1)2 1], setting
its value on interval (12 22] to the second lowest value of ()−1 on these intervals, etc.

The value of (22) with ( e)−1 instead of −1 is higher than with ()−1 instead of −1,

because  is an increasing function.

The second condition in Case 1 and the condition in Case 2 are obtained by analogous

arguments, noticing that min  0 (since  (0)  0) and, since  is increasing and continuous,

the inequality 0 (̄) () ≥  for   max is equivalent to 
0(̄) (max) ≥ .

Proof of Proposition 2. Weak convexity implies that min = max, so only prizes 0 and

̄ are awarded. Otherwise, since 0 and−1 are weakly increasing and  is strictly increasing,

for any 0  00 in (min max) we would have 0 (−1 (0)) (0)  0 (−1 (00)) (00), which

would violate the condition 0 (−1 (0)) (0) = 0 (−1 (00)) (00) =  in Case 1 of Lemma

1.

Proof of Proposition 3. Observe that min  max. Indeed, since 0(0)  0(̄),

we cannot have that min = max and 0 (0)  (min) ≤ 0 (̄) (max), unless  (min) =

 (max) ≤ 0. But  (max) ≤ 0 implies that max ≤ ∗. Since −1 () = ̄ for   max,

we obtain that
R 1
0
−1 ()  ≥ ̄ (1−  (∗))   violates the budget constraint (23). This

yields the first part of 1. For the second part, notice that −1 () strictly increases in 

on interval (min max), so  does not have atoms there. This follows from the fact that

0 (−1 ()) () =  on (min max] and the fact that  () strictly increases in .

To see 2, note that 0 is strictly decreasing and, by assumption, continuous. Thus,

0 (−1 ()) () =  also implies that −1 is continuous on (min max]. If −1 were not
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right-continuous at min, then the fact that 
0 (0) (min) ≤  and the assumption that 0

is strictly decreasing would violate the condition 0 (−1 ()) () =  for  slightly higher

than min.
22 Thus, −1 is continuous on [min max], which means that  strictly increases on

[0 −1 (max)]. If −1 (max) = −1 (1), this completes the proof. If −1 (max)  −1 (1),

which can happen when max  1, then −1 (max)  −1 (1) = ̄, which also completes the

proof, as otherwise the fact that 0(̄) (max) ≥  and the assumption that 0 is strictly

decreasing would violate the condition 0 (−1 (max)) (max) = .

Proof of Proposition 4. Let 
̄
min, 

̄
max, and ̄ denote min, max, and  for a given

̄. The proof of Proposition 3 shows that 
̄
min  ̄max for all ̄. We claim that ̄ weakly

increases with ̄. Suppose to the contrary that ̄
0
 ̄

00
for some ̄0  ̄00.

Since 0
¡
(̄

max)
−1
()
¢
 () = ̄ for all  ∈ (̄min ̄max] and 0 is decreasing, 0 (0) () ≥

̄ for all  ∈ (̄min ̄max], and since  is continuous, we have 0 (0)
¡

̄
min

¢ ≥ ̄. Since

we also have 0 (0)
¡

̄
min

¢ ≤ ̄ (because we are in Case 1 of Lemma 1), we obtain

0 (0)
¡

̄
min

¢
= ̄. Since  is increasing, this implies that 

̄0
min  

̄00
min. In particular,

we have (a): (̄0
max)

−1 () = 0 ≤ (̄00
max)

−1 () for all  ≤ 
̄0
min, and the inequality is strict for

 ∈ (̄00min ̄
0
min). Since 

0 ¡(̄
max)

−1
()
¢
 () = ̄ for all  ∈ (̄min ̄max] and 0 is decreasing,

we have (b): (̄0
max)

−1 () ≤ (̄00
max)

−1 () for all  ∈ (̄0minmin{̄
0
max 

̄00
max}]. If ̄

0
max ≥ ̄

00
max,

then we have (c): (̄0
max)

−1 () ≤ ̄0  (̄00
max)

−1 () = ̄00 for   min{̄0max ̄00max}. If
̄

0
max  ̄

00
max ≤ 1, then 0(̄0)

¡
̄

0
max

¢ ≥ ̄
0
(because we are in Case 1 of Lemma 1).

But 0
³¡
̄00
max

¢−1 ¡
̄

0
max

¢´

¡
̄

0
max

¢
= ̄

00
, so ̄

0
 ̄

00
implies that

¡
̄00
max

¢−1 ¡
̄

0
max

¢ ≥ ̄0.

Thus, as the inverse of any cdf is increasing, we again obtain (c), except that this time

(̄00
max)

−1 () ≤ ̄00. Now, (a), (b), and (c) imply that the budget constraint cannot be

satisfied with equality by both ̄0
max and ̄00

max, which completes the proof that 
̄ weakly

increases with ̄.

22More precisely, the argument delivering the right-continuity at min applies only to cases in which

0(0) ∞. The case when 0(0) =∞ requires a somewhat special treatment.

If 0(0) =∞, then (min) = 0, so if −1 were not right-continuous at min the product 0
¡
−1 ()

¢
 ()

would be strictly positive for any  ∈ (min max], but would approach 0 as  ↓ min, so could not be constant
on (min max].
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By 0 (0)
¡

̄
min

¢
= ̄, we obtain that 

̄
min also weakly increases with ̄. If ̄

0
max  ̄

00
max

for ̄0  ̄00, then 0
³¡
̄0
max

¢−1 ¡
̄

00
max

¢´
(̄

00
max) = ̄

0
and 0(̄00)

¡
̄

00
max

¢ ≥ ̄
00 ≥ ̄

0
, which

would imply that
¡
̄0
max

¢−1 ¡
̄

00
max

¢ ≥ ̄00  ̄0. Thus, ̄max also weakly increases with ̄.

Moreover, ̄max converges to 1 as ̄ diverges, because otherwise the budget constraint would

be violated for large enough values of ̄. Because 0 ((̄
max)

−1 ()) () = ̄, we have that

(̄00
max)

−1 () ≤ (̄0
max)

−1 () for all  ≤ ̄
0
max.

23

Notice that ̄max = 1 for sufficiently large ̄. Otherwise, the condition 0(̄) (max) ≥ 

cannot be satisfied for large enough ̄, by the assumption that 0() → 0 as  → ∞. And
if ̄max = 1 for some ̄, then (̄0

max)
−1 ≡ (̄

max)
−1 for all ̄0 ≥ ̄, because (̄0

max)
−1 () ≤

(̄
max)

−1 () for all  ≤ ̄max and both ̄
max and ̄0

max satisfy the budget constraint with

equality. This completes the proof.

Proof of Proposition 5: The first claim in Part 1 of the proposition is true because

min  max. Indeed, if min = max, then e () =  (0) (̄) for all   max (as explained

immediately after Lemma 3), and since e (min) = 0 and (−1)0 (0)  (−1)0 ((0)(̄)), we

obtain that  (min)  lim↓max  (). Together with 0 (0) ≥ 0 (̄), (21) is violated.24 For

the second claim in Part 1, an atom at some intermediate prize would mean that −1 () =

−1 () for some min      max. We would then have 
0 (−1 ()) = 0 (−1 ()) ande () constant on [ ]. The derivative of  () on [ ] would then be

2

(−1 ())

¡
−1
¢0 ³e ()´+  0 (−1 ())

R 1

(−1)0

³e (e)´ e
3 (−1 ())

,

which is strictly positive if  0 (−1 ()) ≥ 0, and also if  0 (−1 ())  0 (by Assumption 2).
We could then not have (18) for both  =  and  = .

For Part 2, notice that e () increases discontinuously when −1 () increases discon-

tinuously. So, if (−1)0 is strictly decreasing, a discontinuity in −1 () would leads to a

discontinuous decrease in the left-hand side of (18). Thus, −1 is continuous on (min max].

If −1 were not right-continuous at min, then (18) and (19) could not both be satisfied,

23Therefore, (
max)

−1 converges pointwise to some −1 on [0 1), even when 0() 9 0 as  → ∞. We
cannot conclude, however, that this −1 is an inverse cdf. For example, −1 can be a constant function

equal to 0.

24If  were strictly convex, we would have 0 (0)  0 (̄), so we could be in Case 1 or Case 2 of Lemma 3.

34



because of the discontinuous decrease of (−1)0 at min (and, if  is strictly concave, also a

discontinuous decrease of 0). Thus,  strictly increases on [0 −1 (max)]. If max  1, then

−1 (max) = −1 (1) = ̄. Indeed, if −1 (max)  −1 (1), then (18) and (20) could not

both be satisfied, because of the discontinuous decrease in the left-hand side of (18) at max.

For Part 3, suppose that min  0. If 
−1 is discontinuous at min, then (19) cannot hold.

And if −1 is continuous at min  0, then (), and so the left-hand side of (18), diverge

to ∞ for  that tends to min from the right, so (18) is violated for ’s close to min.

Proof of Proposition 6. Choose some prize distribution . By looking at the areas

below the graphs of  and −1 (where () = (())) in the square [0 ]× [0 ()], we
obtain that the cost of the performance of type  in the mechanism that implements the

assortative allocation satisfies

 ()−
Z 

0

 (e) e = Z ()

0

−1 () .

Thus, the aggregate performance is equal toZ 1

0

Ã
−1

ÃZ ()

0

−1 () 

!!
 ()  =

Z 1

0

Ã
−1

ÃZ (−1())

0

−1 () 

!!
, (24)

where the equality follows from the change of variables  =  () and the identity  (−1 ()) =

 (−1 ()).25 Since a FOSD shift in  decreases  and therefore  pointwise, it increases

−1 pointwise, and therefore increases (24).

Proof of Corollary 1. Theorem 1 shows that for large , in any equilibrium of the -th

contest the expected average performance is within 2 ofP

=1

R 1
0
 () 

 ()


=

Z 1

0

 ()  () ,

where the equality follows from the definition of . In addition,Z 1

0

 ()   ()→

Z 1

0

 ()  () ,

25Even though −1 may be discontinuous, because −1 may be discontinuous, it is monotonic, so the

change of variables applies.
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which follows from the fact that  is monotonic and the assumption that  is continuous,

because

Z
  →

Z
 for any bounded and measurable function  for which distribu-

tion  assigns measure 0 to the set of points at which function  is discontinuous. (This fact

is established as the first claim of the proof of Theorem 25.8 in Billingsley (1995).) Thus,

for large ,
R 1
0
 ()   () is within 2 of

R 1
0
 ()  ().

Proof of Lemma 2. Let ()∞=1 be a sequence on which (13) converges to its supre-

mum, and which satisfies the budget constraint. By passing to a convergent subsequence (in

the weak∗-topology) if necessary, assume that  converges to some . We will show below

that ()−1 converges almost surely to −1. This will imply that ()() = ()−1( ())

converges almost surely to () = −1( ()), and since functions  and −1 are contin-

uous, also that ()() given by (2) with  replaced with  converges almost surely to

() given by (2). This will in turn imply that the value of (13) with ()−1 instead of

−1 converges to the value of (13). Finally, as  satisfies the budget constraint,  satisfies

the budget constraint as well. Indeed, the budget constraints are integrals of a continuous

function (mapping  to ) with respect to distributions  and , respectively, and weak∗-

topology may be alternatively defined as convergence of integrals of continuous functions.

Thus, it suffices to show that ()−1 converges to −1, except perhaps on the (at most)

countable set  = { ∈ [0 1] : there exist 0  00 such that () =  for  ∈ (0 00)}.
Suppose first that for some  ∈ [0 1] and   0 we have that ()−1() ≤ −1()−  for

arbitrarily large . Passing to a subsequence if necessary, assume that the inequality holds

for all , and that ()−1() converges to some  ≤ −1()− . Then, there exists a prize

 such that     −1() and  is continuous at . We cannot have that () = , since

this would imply that −1() ≤ . Thus, ()  . Since () converges to (), as 

is continuous at , we have that ()   for large enough . This yields  ≤ ()−1(),

contradicting the assumption that ()−1() converges to   .

Suppose now that for some  ∈ [0 1]− and   0 we have that ()−1() ≥ −1()+ 

for arbitrarily large . Passing to a subsequence if necessary, assume that the inequality

holds for all , and that ()−1() converges to some  ≥ −1() + . Then, there exists

a prize  such that −1()     and  is continuous at . We have that   (), as
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 ∈ . Since () converges to (), as  is continuous at , we have that  ≤ ()

for large enough . This yields ()−1() ≤ , contradicting the assumption that ()−1()

converges to   .

Proof of Proposition 7. Since every sequence of distributions has a converging sub-

sequence in weak∗-topology, suppose without loss of generality that 
max converges to some

distribution . Denote the value of (13) under distribution  by  . If Part 1 is false, then

 ∈M, so    . The distribution  satisfies the budget constraint, since distributions


max satisfy the budget constraint.

Consider a distribution max ∈M, and for every  consider an empirical distribution 

of a set of  prizes, such that  converges to max in weak
∗-topology. For example, such a

set of  prizes is defined by  = −1max () for  = 1  .

Corollary 1 shows that for large  the expected average performance in any equilibrium of

the -th contest with empirical prize distribution exceeds ( +) 2. On the other hand,

Corollary 1 also shows that for large  the expected average performance in any equilibrium

of the -th contest with empirical prize distribution 
max falls below ( +) 2. This

contradicts the definition of 
max for large .

For Part 2, Corollary 1 applied to the sequence defined above implies that lim inf
max ≥

 . If lim sup
max   , then there is a corresponding subsequence of 

max. A converging

subsequence of this subsequence has a limit . For this , the value of (13) is by Corollary

1 strictly larger than  , a contradiction.

For Part 3, notice that the proof of Lemma 2 also implies that the set  is closed in

weak∗-topology. Thus, if part 3 were false, there would exist a sequence of contests with

empirical prize distributions  converging to some  in , such that the expected average

performance in an equilibrium of the -th contest with empirical prize distribution  would

be lower than 
max − . This would contradict Part 2 and Corollary 1.

Proof of Lemma 3. The idea of the proof is analogous to that of the proof of Lemma

1. As in that proof, suppose that min  max, that is, we are in Case 1; the condition in
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Case 2 is obtained by analogous arguments. For an optimal distribution , approximate −1

by a sequence of inverse distribution functions (()−1)∞=1 that are constant on intervals

(2 ( + 1)2] and with values in the set {0 12 22  (2 − 1)2 1}. If (18) is
violated, we construct functions ()−1 (also constant on intervals (2 ( + 1)2] and

with values in the set {0 12 22  (2 − 1)2 1}) such that the value of the objective
(14) with ()−1 instead of −1 exceeds, for large enough , that of (14) for −1. This part

of the proof replicates the argument from the corresponding part of the proof of Lemma

1, and will be omitted. If for a large enough  function ()−1 is nondecreasing, it is an

inverse distribution function. We then obtain a contradiction to the optimality of −1,

which completes the proof. If function ()−1 is not monotone, we define another function³ e
´−1

whose value on interval (0 12] is equal to the lowest value of ()−1 over intervals

(0 12] (12 22]  ((2− 1)2 1], whose value on interval (12 22] is equal to the
second lowest value of ()−1 on these intervals, and so on. We will complete the proof by

showing that the value of (14) is no lower for ( e)−1 than for ()−1 for sufficiently large

’s.

To show this, we will consider only two adjacent intervals (2 (+1)2] and (2 (+

1)2] (that is, +1 = ) such that ()−1() =  on (2 (+1)2] and ()−1 () = 

on (2 ( + 1)2], where    , and estimate the effect on (14) of changing the value of

()−1 on (2 ( + 1)2] to  and changing the value of ()−1 on (2 ( + 1)2] to

 . We will use the same symbol ( e)−1 to denote the function obtained from ()−1 as a

result of this change, and we will sometimes use symbol ∆ to denote 12.

The exchange of  and  does not affect the integrand of (14) on the intervals lower

than (2 ( + 1)2]. It affects the value of e on interval (2 ( + 1)2], increasing it
by some e∆, as well as the value of e on interval (2 (+1)2], increasing it by some e∆.

As a result of the change in e on the two intervals, (14) increases by
∆
h
−1(e(( + 1)2) + e∆)− −1(e(( + 1)2))i

+∆
h
−1(e(( + 1)2) + e∆)− −1(e(( + 1)2))i

= ∆
h
−1(e(( + 1)2) + e∆)− −1(e(( + 1)2))i

+∆
h
−1(e(( + 1)2) + e∆)− −1(e(( + 1)2))i .

38



Observe thathe(( + 1)2) + e∆

i
−
he(( + 1)2)i = £−1(( + 1)2)− −1(2)

¤
[()− ()].

This is easiest to see by looking at Figure 4, in which the graph of  for ( e)−1 is obtained

from the graph of  for ()−1 by moving it to the right by the darkened rectangle, and

moving it to the left by the shaded rectangle. By definition, e for ()−1 on (2 (+1)2]

is equal to the area of the rectangle [0 ()] × [0 −1(2)] minus the area to the left
of the graph of  for ()−1 on the interval [0 −1(2)]. Similarly, e for ( e)−1 on

(2 ( + 1)2] is equal to the area of the rectangle [0 ()] × [0 −1(2)] minus the
area to the left of the graph of  for ( e)−1 on the interval [0 −1(2)]. So, the difference

between the latter and the former areas consists only of the shaded rectangle.

Similarly,he(( + 1)2) + e∆)
i
−
he(( + 1)2)i = £−1(( + 1)2)− −1(2)

¤
[()− ()].

Using the mean value theorem, the increase in (14) caused by changing the value of e on
intervals (2 ( + 1)2] and (2 ( + 1)2] can be expressed as

∆(−1)0
³e

´ £
−1(( + 1)2)− −1(2)

¤
[()− ()]

+∆(−1)0
³e

´ £
−1(( + 1)2)− −1(2)

¤
[()− ()]

for some e between e(( + 1)2) + e∆ and e(( + 1)2), and some e between e(( +
1)2) + e∆ and e(( + 1)2).
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Figure 4: Making −1 monotonic

The exchange of  and  also affects the integrand of (14) on the intervals higher than

(2 ( + 1)2]. We can estimate this change in the integrand, as we did for the intervals

(2 ( + 1)2] and (2 (+ 1)2], by using the mean value theorem. On each interval

(̄2 (̄ + 1)2], where ̄  , the integrand increases by

(−1)0(ē){
£
−1(( + 1)2)− −1(2)

¤
[()− ()]

− £−1(( + 1)2)− −1(2)
¤
[()− ()]}

for some ē.

Setting  = ( + 1)2 and dividing the aggregate increase in (14) by [() − ()]

(which appears in all expressions), we obtain

∆[(−1)0
³e

´
+ (−1)0

³e

´
]
£
−1()− −1( −∆)

¤
(25)
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−{£−1( +∆)− −1()]− [−1()− −1( −∆)
¤} 2−1X

̄=+1

∆(−1)0(ē).

By using the mean value theorem twice on (25), once in the first line and once in the second

line (for function () = −1( +∆)− −1() on interval [ −∆ ]), we obtain

∆2[(−1)0
³e

´
+ (−1)0

³e

´
]

∙
1

(−1( − ))

¸
− (26)

∆

∙
1

(−1( + ))
− 1

(−1( −∆+ ))

¸ 2−1X
̄=+1

∆(−1)0(ē),

where 0 ≤   ≤ ∆.

Applying the mean value theorem again, (26) is equal to

∆2[(−1)0
³e

´
+ (−1)0

³e

´
]

∙
1

(−1( − ))

¸
+∆2

∙
 0(−1(0))
3(−1(0))

¸ 2−1X
̄=+1

∆(−1)0(ē) (27)

for some 0 ∈ [ −∆+   + ]. By continuity of  and  0, (27) is equal to

∆2[(−1)0
³e

´
+ (−1)0

³e

´
]

∙
1

(−1())

¸
+∆2

∙
 0(−1())
3(−1())

¸ 2−1X
̄=+1

∆(−1)0(ē) + (∆2),

(28)

where (∆2) is an expression that tends to zero faster than ∆2.

To determine the sign of (28), consider two cases: (1) If  0(−1()) ≥ 0, then (28) is
positive for sufficiently small∆’s, since its first component is strictly positive, and the second

component is nonnegative; (2) If  0(−1())  0, then the first component is no smaller than

2∆2

(−1())
,

and the second component is no smaller than

∆2

∙
 0(−1())
3(−1())

¸ 2−1X
̄=+1

∆


= ∆2

∙
 0(−1())
3(−1())

¸
(1− )


+ (∆2)

So, (28) is positive for sufficiently small ∆’s by Assumption 2. This completes the proof of

(18).
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