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We study dynamic signaling in a game of stochastic stakes. Each period, a pri-
vately informed agent of binary type chooses whether to continue receiving a re-
turn that is an increasing function of both her reputation and an exogenous public
stakes variable or to irreversibly exit the game. A strong type has a dominant strat-
egy to continue. In the unique perfect Bayesian equilibrium, the weak type plays
a mixed strategy that depends only on current stakes and her historical minimum
and she builds a reputation by continuing when the stakes reach a new minimum.
We discuss applications to corporate reputation management, online vendor rep-
utation, and limit pricing with stochastic demand.

Keywords. Dynamic signaling, reputation building, history dependence, exit dy-
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1. Introduction

Economic agents frequently take costly actions to signal hidden attributes to others, but
the costs of signaling and the benefits of maintaining a reputation are often subject to
evolving, external factors. For instance, firms signal to investors or customers by reduc-
ing environmentally harmful practices, by buying from local suppliers, through philan-
thropy, and through other forms of corporate social responsibility (CSR).1 However, in
challenging economic conditions or times of crisis, a firm might be tempted to cut costs
and abandon these activities. It is in such conditions that a firm’s reputation is most
responsive to its behavior.

The theme of reputational incentives changing over time is present in many other
settings. For example, the incentive for an incumbent firm to maintain low prices to sig-
nal low marginal costs to a potential entrant may disappear when market demand is no
longer conducive to entry. Similarly, the incentive for a supplier to deliver a high-quality
good depends on its estimate of its future profits should it maintain a good reputation,
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1Empirical evidence suggests that CSR activities give firms a competitive advantage, reflected in in-
creased access to capital (Cheng et al., 2014) and higher profitability, growth, and sales per employee (Lins
et al., 2017); see also Porter and Kramer (2006).
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where these estimates fluctuate over time in response to changing market conditions. In
all these settings, the agent’s incentive to engage in costly signaling depends on chang-
ing conditions (“stakes”) that determine the value of maintaining a reputation: when
stakes are sufficiently low, the agent is tempted to cease signaling and give up its repu-
tation.

In this paper, we present a model of dynamic signaling that isolates the effect of
evolving stakes on reputation building and can be easily adapted to study various appli-
cations, including those above. In the baseline model, a privately informed agent with
binary type, strong or weak, faces an (unmodeled) market. Each period, the agent can
irreversibly exit the game or can continue and receive a return that is an increasing func-
tion of (i) the market’s belief that the agent is the strong type and (ii) the realization of a
public stakes process, which is independent of the agent’s type. A strong type is assumed
to have a dominant strategy to continue at all times.

We show that there exists a unique perfect Bayesian equilibrium of this game, and
it exhibits a simple structure: the weak agent plays a mixed strategy that depends only
on the current stakes and her historical minimum. First, we show that the agent’s strat-
egy is Markovian with respect to the current stakes and the agent’s reputation. When
stakes are above a threshold that is a decreasing function of her reputation, she con-
tinues with certainty, and when stakes are sufficiently low, she exits with certainty. For
intermediate levels of stakes m relative to the reputation, the weak agent mixes between
continuing and exiting such that the reputational benefit of continuing makes her in-
different. When the agent continues in this situation, her improved reputation ensures
that thereafter she prefers to continue as long as stakes remain above m. In other words,
the agent might strictly prefer to continue at a particular stakes level precisely because
she has continued at lower stakes in the past; hence, to a naive (non-Bayesian) observer,
the agent may appear to suffer from the sunk cost fallacy. In this equilibrium, the agent’s
current reputation is fully determined by (her initial reputation and) the historical min-
imum of stakes. Thus, the agent’s strategy is also Markovian with respect to the current
stakes and her historical minimum.

Returning to our applications, our results offer predictions for firm behavior in
stochastic environments. Consider, for instance, oil companies engaging in green ini-
tiatives to signal their commitment to environmental responsibility. The model predicts
that they (probabilistically) cut green investments when oil demand and prices are his-
torically low. The shape of the threshold function (depending on the cost of signaling,
the benefits of maintaining reputation, and the cost of lost reputation) will determine
how many oil firms will cut green initiatives in response to falling oil demand and prices.

Our model is most closely related to that of Bar-Isaac (2003), who studies signaling
by a monopolist seller whose sales generate incremental information about the seller’s
quality. With a privately informed seller, the author finds that at reputations below a
constant threshold, the low-type seller randomizes over revealing itself such that, con-
ditional on not revealing, its reputation immediately returns to the threshold. The low
type eventually reveals itself since this threshold is breached repeatedly, and the high
type is asymptotically revealed through the exogenous information.
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In addition to Bar-Isaac (2003), several other dynamic signaling models feature ob-
servable stopping decisions and altered reputation dynamics at particular states due to
full or partial separation of types. In models with exogenous information flows, play-
ers often follow randomized stopping rules calibrated so that by continuing at critical
states, there is an immediate upward revision of beliefs that fully or partially offsets ex-
ogenous shocks; in Daley and Green (2012) and Gul and Pesendorfer (2012), types are
fixed and exogenous, while in Kolb (2019), types are endogenous to hidden investment
choices. In the dynamic lemons model of Janssen and Roy (2002) with a continuum of
sellers, there are no exogenous shocks, but in equilibrium, beliefs and prices increase
over time as low-quality sellers trade and exit the game. In contrast to those papers,
our equilibrium features a two-dimensional state variable, as the agent’s incentive to
continue depends on both her current reputation and the stakes; in continuous time,
similar features can be found in Gryglewicz and Kolb (2019). Learning in bad times also
takes place in Acharya and Ortner (2017), who study dynamic screening through short-
term contracts in the presence of productivity shocks. In contrast to their model, ours
admits a unique perfect Bayesian equilibrium due to our strong type having a dominant
strategy to wait; further, history dependence in our equilibrium is fully captured by the
minimum of past stakes.

The historical minimum also plays a role in the model of McClellan (2019), where
a regulator faces an agent of unknown type who incurs the costs of experimentation;
there, it is the historical minimum of the belief about the agent’s type that is relevant, as
opposed to that of an exogenous state variable like in our model. The author shows that
the regulator optimally motivates the agent by using an approval threshold that moves
according to the historical minimum belief.

The evolution of the agent’s reputation as a function of the stakes is similar to the
evolution of wages as a function of past output in Harris and Holmstrom (1982), but
it is driven by a different mechanism. In that paper, downward rigidity in wages pro-
tects risk-averse workers from adverse shocks to output, but wages occasionally adjust
upward to deter workers from taking outside offers. Similarly in Thomas and Worrall
(1988), wages in optimal self-enforcing contracts respond to changes in spot market
wages in either direction, with minimal sensitivity subject to deterring risk-averse work-
ers from reneging.

Finally, our paper relates to others on reputation building and dynamic signaling.
While the reputation building in our model is driven by costly signaling in a stochastic
environment, other models of reputation building allow direct investments in quality;
Board and Meyer-ter-Vehn (2013), Dilmé (2019b), and Kolb (2019) feature binary quality,
while in Cisternas (2018) and Bohren (2018) quality is a continuous variable. Heinsalu
(2018) and Dilmé (2019a) study dynamic signaling where effort is observed with noise;
in contrast, both actions and the stochastic stakes are perfectly observed in our model.

The rest of this paper is arranged as follows. We introduce the model in Section 2.
In Section 3, we characterize the unique perfect Bayesian equilibrium. We discuss serial
correlation in stakes in Section 4 and applications in Section 5. We conclude with a
discussion of two extensions in Section 6.
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2. Model

The game is played in discrete time over an infinite horizon, t = 1, 2, � � � , between an
agent and an unmodeled market. The game is driven by an underlying publicly observed
stakes process X , where, for simplicity, we assume that Xt is drawn independently and
identically distributed (i.i.d.) across periods from a cumulative distribution F with full
support on R+.2 Each period after Xt is realized, the agent publicly chooses whether to
play In or Out, the latter ending the game. The agent has a type θ ∈ {s, w}, strong or weak,
which is her private information; the market starts with a belief P0 = Pr(θ = s) ∈ (0, 1),
which is common knowledge. If the agent plays In in period t, the market updates its
belief from Pt−1 to Pt , the weak agent earns a flow payoff u(Xt , Pt ), and the game moves
to the next period. The strong agent is assumed to have a dominant strategy to play In
in all periods, so her payoffs are not modeled further. When the weak agent plays Out,
she obtains a termination payoff of 0 and the game ends. Hence, her payoff for the game
from playing Out in period T is

T−1∑
t=1

δt−1u(Xt , Pt ), (1)

where δ ∈ (0, 1) is the discount factor. We assume that u and δ are common knowledge,
the function u : R+ × [0, 1] → R is continuous and strictly increasing in each argument,
and E[u(X , p)] is finite for all fixed p ∈ [0, 1]. To avoid trivial cases, we assume that (i)
for sufficiently large x, u(x, 1) > 0 and (ii) u(0, 0) + (1 − δ)−1δEu(X , 0) < 0.3

A pure strategy for the (weak) agent is a stopping time τ with respect to the his-
tory of stakes at which she plays Out. As randomization is critical in equilibrium, it is
useful to work with behavioral strategies. A behavioral strategy R specifies, for each pe-
riod t, a probability Rt of playing Out given the history. A perfect Bayesian equilibrium
(PBE) consists of a behavioral strategy R and a process P , representing the market’s be-
lief conditional on the game continuing, such that (i) R maximizes the agent’s expected
continuation payoff after all histories and (ii) P is derived from R using Bayes’ rule.4

3. Equilibrium

In this section, we discuss the (essentially) unique perfect Bayesian equilibrium of the
game. We present the main results, intuitions, and a heuristic derivation in Section 3.1,
and we provide an overview of the formal analysis in Section 3.2.

2When there is no risk of confusion, we also use X to denote the random stakes in an arbitrary period,
and x particular realizations.

3The assumption (i) ensures that there are some states at which the agent plays In and (ii) ensures that
there are some states at which the agent plays Out with positive probability.

4It is unnecessary to specify any off-path beliefs, since P0 > 0, the strong agent always plays In, and Out
is a game-ending action. Hence, our uniqueness result requires no refinements.
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3.1 Main results

Suppose there is an equilibrium in which the agent’s strategy is Markovian in the state
(x, p), where x is the current stakes and p is the beginning-of-period reputation. As we
will show, the unique PBE of the game indeed has this property.

We begin by characterizing belief updating. With some abuse of notation, let R(x, p)
be the weak agent’s probability of exit in state (x, p). Based on its conjecture about
R(x, p), the market uses Bayes’ rule to update its belief about the agent each period
after observing the stakes and the agent’s decision, In or Out. Since In is a dominant
strategy for the strong agent, playing Out reveals the agent to be weak: her reputation
drops to zero (and the game ends). But playing In is inconclusive evidence that she is
strong, and using Bayes’ rule, the market revises its belief to

p+(x, p) := p

p+ (1 −p)
(
1 −R(x, p)

) .

The greater is the probability with which the weak agent is expected to play Out, the
greater is the reputational benefit she receives by playing In.

The agent’s behavior in equilibrium differs across three regions of the (x, p) state
space. The regions can be defined in terms of a stakes threshold L : [0, 1] → R+ ∪
{+∞, −∞} that is a strictly decreasing function of her reputation.5 Since the agent’s flow
payoff is increasing in the stakes, when stakes are sufficiently high (i.e., Xt ≥ L(Pt−1 )),
the weak agent plays In with certainty and pools with the strong type. The market fully
anticipates this in equilibrium and, thus, In is uninformative in the high stakes region.
Although this implies that the agent’s reputation does not increase by playing In, the
weak agent’s flow payoff is sufficiently high here that she is willing to do so. Since flow
payoffs are increasing in both stakes and reputation, the threshold L is strictly decreas-
ing in p.

Alternatively, for sufficiently low stakes (Xt < L(1)), the flow payoff from playing In
is very low, and the weak agent plays Out with probability 1. Playing In is thus very
informative at low stakes, and, in fact, by deviating to In, the weak agent could convince
the market she is a strong type, but this reputational benefit is still not enough to offset
the low payoff in the current period.

For moderate levels of stakes, i.e., Xt ∈ (L(1), L(Pt−1 )), the agent must mix in equi-
librium. If the market conjectured that she were to play Out with certainty, then after
observing In, it would conclude she is a strong type, and, therefore, she would strictly
prefer to play In. Likewise, if the market conjectured she were to play In with certainty,
she would strictly prefer to play Out. Hence, the agent must be indifferent, and her rep-
utation Pt after In must jump to a level that precisely induces this indifference. This
indifference occurs when the resulting state after In lies on the boundary of the high
stakes region; that is, Pt must satisfy Xt = L(Pt ).

5Technically, L is a nonincreasing function that is strictly decreasing when it is real-valued; henceforth,
we say it is strictly decreasing without qualification.
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As stated in Proposition 1, there is an essentially unique perfect Bayesian equilib-
rium of the game, and, thus, the stakes threshold function L is unique.6

Proposition 1. There is an essentially unique perfect Bayesian equilibrium of the game.
The agent’s strategy is Markovian in the state (Xt , Pt−1 ). This equilibrium is characterized
by a strictly decreasing function L : [0, 1] →R+ ∪ {+∞, −∞} as follows:

• High Stakes: When Xt ≥ L(Pt−1 ), the weak agent plays In with certainty, and Pt =
Pt−1.

• Moderate Stakes: When Xt ∈ (L(1), L(Pt−1 )), the weak agent mixes between In and
Out such that after playing In, her reputation jumps to Pt satisfying L(Pt ) =Xt .

• Low Stakes: When (i) Xt ≤ L(1) and Pt−1 < 1 or (ii) Xt < L(1), the weak agent plays
Out with certainty, and Pt = 1.

Moreover, the high stakes and moderate stakes regions are nonempty.

We now provide a simple characterization of the equilibrium threshold. Suppose
the agent is indifferent to continuing at stakes level m when the posterior belief is
p∗(m). Since the agent must also be indifferent when starting from the updated state
(m, p∗(m)), and since flow payoffs are increasing in stakes, the agent weakly prefers to
play In from state (x, p∗(m)) if x≥m, and she weakly prefers to play Out if x <m. Hence,
the agent’s value V −(p∗(m)) when her reputation is p∗(m) and before stakes are realized
is

V −(
p∗(m)

) =
∫ ∞

m
u
(
x, p∗(m)

)
dF(x) + δV −(

p∗(m)
)(

1 − F(m−)
)

=⇒ V −(
p∗(m)

) =

∫ ∞

m
u
(
x, p∗(m)

)
dF(x)

1 − δ
(
1 − F(m−)

) ,

where we have used that the agent’s reputation remains p∗(m) after she continues with
stakes x ≥ m, where we define F(0−) = 0 and where F(m−) := limx↑mF(x) for m > 0.7

Now the agent’s indifference at (m, p∗(m)) implies that 0 = u(m, p∗(m)) + δV −(p∗(m)).
Combining these equations yields

0 = u
(
m, p∗(m)

) +
δ

∫ ∞

m
u
(
x, p∗(m)

)
dF(x)

1 − δ
(
1 − F(m−)

) , (2)

in which p∗(m) is the only unknown. Equation (2) resembles the equation characteriz-
ing optimal search in McCall and Joseph (1970); the right hand side is the flow payoff of

6The qualifier “essentially” is due to multiplicity that can arise when the agent’s reputation is 1 and the
stakes are such that a weak agent is indifferent between exiting and continuing. However, there is at most
one such stakes level, and the weak agent’s reputation necessarily reaches 1 with probability 0 in equilib-
rium.

7In Section 3.2, we use V (x, p) for the continuation value immediately after stakes x are realized.
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playing In plus the discounted benefit of obtaining u(x, p∗(m)) in future periods until
the stakes fall below m and the agent becomes willing to exit again. When it is real-
valued, L is the inverse of p∗; that is, L(p∗(m)) = m.

The probability of In is increasing in the agent’s reputation, both conditional on the
weak type and when averaging over types. First, when the starting belief that the type
is strong is higher, a smaller reputational jump is required to reach the target posterior
p∗(m), so the weak agent’s probability of In is higher. Second, by definition, when the
agent’s reputation is higher, she is more likely to be a strong type, and the strong type
always plays In. These facts imply that the probability of In when averaging over types
is increasing in the agent’s reputation. Since the agent’s reputation is nondecreasing
prior to playing Out, it follows that the probability of In is increasing over time, both
conditional on the current stakes and averaging over the current stakes.

The characterization of L described above allows us to analyze comparative stat-
ics. The agent is more willing to continue, and L is lower when the agent’s flow payoffs
are higher, the agent is more patient, or high stakes are more likely to occur. These re-
sults are formalized in Proposition 2. When the agent’s payoffs are linear in x and p,
one can further show that L flattens when flow payoffs are more sensitive to stakes or
less sensitive to reputation, when the agent is less patient, or when high stakes are less
likely to occur. In each case, a larger jump in reputation is required to offset a low stakes
realization and preserve the agent’s indifference to continuing.

Proposition 2. The function L is decreasing in u, δ, and (in the sense of first order
stochastic dominance) F . Furthermore, when u(x, p) has the form Ax + Bp + C, the
slope of L is increasing in A; decreasing in B, δ, and (in the sense of first order stochastic
dominance) F ; and independent of C.

As a corollary to Proposition 1, we show that the essentially unique perfect Bayesian
equilibrium is also Markovian in the current stakes and their historical minimum
Mt−1 := min1≤s≤t−1 Xs , where we specify M0 = +∞ for completeness. The reason is that
the historical minimum of stakes (together with the prior) pins down the agent’s repu-
tation conditional on In. To see this, first note that as long as the historical minimum
remains above L(P0 ), then there is no separation of types and, therefore, the agent’s
reputation remains at P0. Now suppose the stakes reach a new historical minimum
Mt ∈ (L(1), L(P0 )).8 If the agent continues, her reputation must jump to a level Pt sat-
isfying L(Pt ) = Mt , which makes her indifferent to continuing at stakes Mt . Since this
increase in her reputation is persistent, in any future period t ′ with stakes Xt ′ ≥ Mt , the
agent is in a more favorable position than in period t, and she plays In with certainty. It
follows that her reputation cannot increase beyond Pt until stakes fall below Mt , at which
time her reputation will jump to a level determined by the new historical minimum. In
other words, the agent’s reputation only depends on the history of the game through the
historical minimum of stakes. Since the equilibrium is Markovian in (Xt , Pt−1 ), it is also
Markovian in (Xt , Mt−1 ).

8If Mt ≤ L(1), then the agent’s reputation remains 1 as long as she plays In, so clearly no other aspect of
the history is relevant.
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Figure 1. Sample equilibrium dynamics through four periods for the same stakes realiza-
tions, u(x, p) = 5x + p − c, X ∼ Exp(1), δ = 0.95, and c ∈ {5.5, 5.8}; L is the inverse of
p∗(x) = c − 5(x+ δe−x ). Unfilled (filled) circles represent the state before (after) the agent acts.

Corollary 1. In the essentially unique perfect Bayesian equilibrium, the agent’s strategy
is Markovian in the state (Xt , Mt−1 ). For all t ≥ 1, the agent’s reputation conditional on
In is determined by the historical minimum of stakes and the prior as follows. If Mt ≥
L(P0 ), then Pt = P0; if Mt ≤ L(1), then Pt = 1; and if Mt ∈ (L(1), L(P0 )), then Pt satisfies
L(Pt ) =Mt .

Figure 1 illustrates sample equilibrium dynamics in (x, p) space for two parameter-
izations of the model. In the left panel, the first stakes realization X1 is sufficiently high
that the weak agent strictly prefers In. After a low X2 realization, the agent becomes in-
different, and upon playing In, the market revises its belief upward. After a higher X3

realization, the agent now strictly prefers In, even though she would have mixed had
this realization occurred at a sufficiently low reputation such as the prior. Finally, the
X4 realization is sufficiently low that the weak agent strictly prefers Out. For the param-
eterization used in the left panel of Figure 1, the weak agent eventually plays Out with
probability 1 and the market eventually learns the agent’s type.

In the right panel, the stakes realizations are identical to those in the left panel, but
the agent’s cost of continuing c is reduced. Hence, the threshold for playing In drops,
and the jump in the agent’s reputation when stakes first reach X2 is smaller than in the
left panel. Moreover, the agent is willing to play In when stakes reach X4. There is a
critical belief p above which the agent strictly prefers to continue at any stakes level.
When this is the case, there is a positive probability that the weak agent plays In forever,
and starting from a reputation below p, her reputation remains below this level; that is,
the strong type is not asymptotically revealed. Note that in this specification, the low
stakes region is empty.

Proposition 3 characterizes when learning is incomplete in equilibrium. Define
p := inf{p ∈ [0, 1] : u(0, p) + (1 − δ)−1δEu(X , p) ≥ 0} with the convention p = 1 if this
set is empty. When p < 1, we have p = p∗(0), and a weak agent with reputation above
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p continues at any stakes level; thus, learning is incomplete with positive probability.
Proposition 3 further identifies an asymmetry in learning when P0 < p: the weak type
is revealed with positive probability, but the strong type is not revealed. The condition
p< 1 holds when the weak agent’s flow payoffs are high, the agent is sufficiently patient,
and high stakes occur with sufficiently high probability. In particular, the condition is
satisfied for the right panel of Figure 1. When p = 1, as in the left panel of Figure 1,
learning is complete almost surely.

Proposition 3. If p < 1, then in equilibrium, there is a positive probability the weak
agent plays In forever. Fixing P0 <p, the belief conditional on In converges almost surely
to p. When the agent is the weak type, learning is complete with positive probability and
incomplete with positive probability, and when the agent is the strong type, learning is
incomplete almost surely. If p = 1, each type of agent is (asymptotically) revealed almost
surely.

To understand Proposition 3, first consider the case p< 1. In equilibrium, the weak
type pools with the strong type on In whenever p > p. Hence, fixing P0 > p, the agent’s
reputation never increases as long as she plays In, and fixing P0 <p, it never goes above
p. It follows that when p < 1, there is positive probability the weak agent plays In for-
ever. To obtain the convergence result for P0 < p, note that the agent’s reputation can-
not remain bounded away from p conditional on In because for any p′ ∈ (P0, p), there
is probability F(L(p′ )−) > 0 that stakes fall below L(p′ ), leading to a posterior reputa-
tion above p′ after playing In. In other words, the agent’s limiting reputation conditional
on In is p when P0 < p and P0 otherwise; in particular, the starting belief P0 affects the
agent’s limiting reputation conditional on In if and only if P0 > p. By Bayes’ rule, the
weak agent eventually exits with probability (p−P0 )/[p(1 −P0 )] if P0 <p and probabil-
ity 0 otherwise.

When p = 1, however, the weak type almost surely plays Out eventually. Thus, the
weak type is revealed almost surely, and the strong type is asymptotically revealed in
that her reputation converges to 1 almost surely.

3.2 Equilibrium analysis

We now sketch the formal arguments for existence and uniqueness. We use V (x, p) to
denote the agent’s continuation value in a Markov perfect equilibrium (MPE) in state
(x, p), after the current-period stakes are realized but before the agent acts. Note that V
together with the belief-updating rule p+ must solve the Bellman equation

V (x, p) = max
{

0, u
(
x, p+(x, p)

) + δEV
(
X , p+(x, p)

)}
, (3)

and optimality of the agent’s strategy requires that R(x, p) = 1 if 0 > u(x, p+(x, p)) +
δEV (X , p+(x, p)) and R(x, p) = 0 if 0 < u(x, p+(x, p)) + δEV (X , p+(x, p)). If the max-
imum in (3) is not 0, then it must be that R(x, p) = 0, in which case p+(x, p) = p. There-
fore, we can reduce (3) to

V (x, p) = max
{

0, u(x, p) + δEV (X , p)
}

. (4)
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We can then apply the contraction mapping theorem to solve the reduced Bellman
equation (4). Lemma 1 in the Appendix establishes that (4) has a unique solution, which
we denote V ∗, and it is continuous and (when strictly positive) increasing in both argu-
ments.

While V ∗ must be the value function in any MPE, the analysis thus far does not iden-
tify an equilibrium strategy or belief-updating rule; neither does it say anything about
the value function in the broader class of perfect Bayesian equilibria. From V ∗, we define
an equilibrium candidate, denoted �∗, as follows:

• If V ∗(x, p) > 0, set R∗(x, p) = 0 and p+(x, p) = p.

• If V ∗(x, p) = 0, set p+(x, p) = inf{p′ ∈ (p, 1] : V ∗(x, p′ ) > 0}.9 If p ∈ (0, 1), set
R∗(x, p) = (p+(x, p)−p)/[p+(x, p)(1−p)]. For p= 1, set R∗(x, 1) = 1 if there exists
ε > 0 such that V ∗(x+ ε, 1) = 0 and R∗(x, 1) = 0 otherwise.

The key part above is in the second bullet point: when the agent mixes, the reputational
benefit via Bayes’ rule makes her just willing to continue.

The proof of Proposition 1 verifies that �∗ is an equilibrium, and it is the (essentially)
unique equilibrium given the value function V ∗. But the core of the proof of Proposi-
tion 1 lies in establishing that V ∗ is, in fact, the value function in any perfect Bayesian
equilibrium (PBE), and, thus, �∗ is the unique PBE of the game. The fact that the strong
agent has a dominant strategy to play In rules out the existence of (less reasonable) equi-
libria involving “belief threats,” which often arise in signaling games. In our setting, the
market is unable to enforce pooling on Out through an off-path belief that the agent is
weak if she plays In.

To see why V ∗ is a lower bound on the agent’s value function in any equilibrium
(not necessarily Markovian), observe that in the equilibrium �∗, from any state (x, p)
the agent can obtain V ∗(x, p) by playing Out the first time V ∗(Xt , P∗

t−1 ) = 0. Under this
strategy, the agent’s reputation is constant at p until she plays Out. But the agent could
play Out at the same time in any equilibrium. By doing so, her reputation would remain
at least p until she plays Out. Since flow payoffs are increasing in p, the agent would
obtain at least as high a payoff as she would in the equilibrium �∗, path-by-path of the
stakes process. A symmetric argument shows that the agent cannot obtain a higher pay-
off than V ∗(x, p) in any equilibrium; otherwise, the agent could profitably deviate in �∗.
Putting these facts together, the agent’s value function must be precisely V ∗.

4. Serial correlation in stakes

We have assumed for simplicity that stakes are i.i.d. across periods, but our model can
be easily extended so that the stakes follow a Markov process. In this section, we intro-
duce serial correlation in stakes and show that this exaggerates the effect of low stakes
realizations since low stakes now predict low stakes in the next period.

9Here we define the infimum of the empty set to be 1, since the belief space is [0, 1].
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To illustrate the effect of persistence, suppose that in each period, stakes are un-
changed with probability ρ ∈ [0, 1], and with probability 1 − ρ, stakes are drawn inde-
pendently from the original distribution F . Under this specification, the ex ante dis-
tribution of Xt is F for all t ≥ 1, independent of ρ. Setting ρ = 0 recovers the baseline
model, and when ρ= 1, the stakes are constant after their first realization.

As stated formally in Proposition 4, for each ρ ∈ (0, 1], there exists a unique perfect
Bayesian equilibrium, and it has the same qualitative features as the one in Proposi-
tion 1.

Proposition 4. For each ρ ∈ (0, 1], there exists a perfect Bayesian equilibrium of the
game in which the agent’s strategy is Markovian in (Xt , Pt−1 ). The agent’s behavior and
reputation dynamics for high, moderate, and low stakes are characterized by a strictly
decreasing function L : [0, 1] →R+ ∪ {+∞, −∞} as in Proposition 1.

The function L in Proposition 4, when it is real-valued, is again the inverse of the crit-
ical posterior belief p∗(m) at which the agent is indifferent between In and Out. More-
over, by an extension of the derivation of (2), we obtain the following characterization of
p∗(m):10

0 = u
(
m, p∗(m)

) +
δ(1 − ρ)

∫ ∞

m
u
(
x, p∗(m)

)
dF(x)

1 − δ
[
1 − (1 − ρ)F(m−)

] . (5)

The right hand side of (5) crosses zero from below when both sides are plotted as func-
tions of p. The right hand side is decreasing in ρ and, thus, p∗(m) is increasing in ρ;
equivalently, the L(p) curve increases when ρ increases. By inspection of (5), the effect
of higher persistence is similar to that of a lower discount factor; in either case, current
stakes weigh more heavily in the agent’s discounted expected payoff. In the extreme case
ρ= 1, the agent’s critical reputation for a given level of stakes is the one at which her flow
payoff is 0. It can be shown more generally that whenever u is linear, an increase in per-
sistence also has a flattening effect on the L(p) curve since a larger jump in reputation
is needed to offset a downward shock to stakes. Figure 2 illustrates L(p) for the same
functional forms as in Figure 1.

5. Applications

In this section, we discuss applications of the model to corporate social responsibility,
online seller reputation, and entry deterrence.

Corporate social responsibility (CSR). Our model can be used to study dynamic sig-
naling and reputation building, as in the CSR example provided in the Introduction.
More specifically, consider the incentives of oil companies to invest in green initiatives
to signal their commitment to environmental responsibility. Energy producers benefit

10The derivation is shown in the proof of Proposition 4.
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Figure 2. L(p) for u(x, p) = 5x+p− c, X ∼ Exp(1), δ= 0.95, c = 5, and ρ ∈ {0, 0.5, 0.75, 0.9, 1}.

from being perceived as environmentally responsible, for instance, by receiving financ-
ing from environmentally responsible investors. However, the relative benefits of rep-
utation are lower in difficult market conditions, i.e., when oil demand and prices are
low.11

To model this application, suppose that firms come in two types: benevolent (i.e.,
“green”) or opportunistic. Let p be the market’s belief that the firm is benevolent, and
let x be the price of oil. Suppose that benevolent firms always engage in CSR activities,
but opportunistic firms weigh their costs and benefits. Specifically, let w(x, p) denote
the gross flow payoff for an opportunistic firm, increasing in both arguments. Oppor-
tunistic firms must choose whether to engage in CSR activities at flow cost c. An op-
portunistic firm reveals its type as soon as it stops CSR activities, and so this stopping
decision is effectively irreversible, as is Out in our model, and it yields a termination
payoff of 	 := ∑∞

t=1 δ
t−1

E[w(Xt , 0)]. This setting can be captured by our model through
the specification u(x, p) := w(x, p)−c−(1−δ)	, leaving the payoff of playing Out equal
to zero.

Our analysis yields predictions for firm behavior in response to a change in con-
sumer preferences. Suppose there is an influx of customers who highly value green ini-
tiatives, so that for each x, w(x, ·) rotates counterclockwise to w′(x, ·), with w′(x, 0) =
w(x, 0) for all x and with w′

p(x, p) > wp(x, p) for all (x, p). Under these conditions, 	
is unchanged and u increases. Then Proposition 2 implies that the opportunistic firm
will be willing to continue their initiatives amid lower oil prices, but they will receive

11This characterization is consistent with events surrounding reductions in spending on green initia-
tives by several Canadian oil companies amid low oil demand and prices in 2020 (see Reuters, June 14,
2020, “Canada’s oil patch cuts back climate efforts under pandemic,” https://www.reuters.com/article/
us-global-oil-canada-environment-focus-idUSKBN23L06G). After an announcement of nearly C$2 billion
cuts in environmental projects, a major investment fund declared that the move vindicated its divestment
from the companies.

https://www.reuters.com/article/us-global-oil-canada-environment-focus-idUSKBN23L06G
https://www.reuters.com/article/us-global-oil-canada-environment-focus-idUSKBN23L06G
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a smaller reputational boost from doing so. In the long run, the market will consist of
more opportunistic firms as a result of this change in consumer preferences.

Seller reputation and evolving transaction size. In online markets, multiproduct sell-
ers face heterogeneous buyers who arrive over time with demands for goods of different
values. Buyers are able to access reviews and observe a seller’s transaction history, and
they use this information when deciding whether to transact with a particular seller.
Our model can shed light on how opportunistic sellers build and lose their reputation in
such settings. On the one hand, it is difficult to sell a high-value good for a seller with a
low reputation. On the other hand, fulfilling transactions with high values helps to build
reputation.

To adapt this setting to our framework, suppose a seller offers goods of exogenous
values Xt to a sequence of buyers.12 Non-opportunistic sellers will always deliver pur-
chased goods. Opportunistic sellers may not deliver the good upon payment (or deliver
a subpar substitute) and benefit from this act in proportion to Xt , but lose their rep-
utation. Reputation is valuable as it increases rents from transactions that accrue to
sellers. This setting differs from our baseline model as the stochastic process affects the
value of the outside option rather than the value of maintaining reputation. However,
the economic mechanism and the structure of equilibrium strategies remain the same.
Let p denote the seller’s reputation for being non-opportunistic, and let u(p) denote the
seller’s transaction rents, increasing in p; for simplicity, we assume that u is independent
of x. Then the opportunistic seller’s payoff of reneging on a transaction in period T is∑T

t=1 δ
t−1u(Pt ) +XT . The seller will be tempted to renege when Pt is low and Xt is high.

Thus delivering a good when Xt exceeds previous levels improves the reputation for be-
ing non-opportunistic. Consequently, the perfect Bayesian equilibrium can be charac-
terized as Markovian in the current transaction value Xt and the historical maximum of
transaction values max1≤s≤t−1 Xs . Similarly to the baseline model, the equilibrium will
partition the state space into three regions with randomization and reputation building
when Xt reaches new historical maxima. This application of the model predicts that (i)
reputation rents (measured, for example, by markups) increase with the historical max-
imum value of fulfilled transactions, and (ii) transaction fraud by opportunistic sellers
occurs (with mixed strategies) at historically most valuable transactions.

Entry deterrence through limit pricing. Our model can be applied to study the dy-
namics of entry deterrence in oligopolistic markets. Consider an incumbent firm that
can use low prices as signals to deter entry, as in Milgrom and Roberts (1982). Suppose
that market demand is subject to persistent shocks, which are represented by a serially
correlated stakes process in our model. Each period, the stakes x are publicly observed,
and then an incumbent, who is privately informed about its marginal costs (high or low),
chooses a pricing strategy k. Suppose that a low-cost incumbent, unthreatened by the
entrant, selects its unconstrained price to maximize its profits. In contrast, the high-
cost incumbent obtains no profit after entry. It can either choose a limit pricing strategy
k = kL, imitating the low price of the low-cost incumbent to deter entry, or choose a

12In reality, buyers’ arrivals and demands can be partially endogenous. We leave an extension along
these lines for future research.



552 Gryglewicz and Kolb Theoretical Economics 17 (2022)

monopoly pricing strategy k = kM , which maximizes its short-term profits conditional
on no entry, but reveals its weakness and increases the probability of entry.13

A short-lived entrant observes k, updates its belief that the incumbent is strong to
p, and enters exogenously with probability e(x, p), decreasing in p and increasing in
x. Let πM (x, k) denote the high-cost incumbent’s flow profits in monopoly. Then the
high-cost incumbent’s expected flow payoff is v(x, p, k) := (1 − e(x, p))πM (x, k). The
high-cost incumbent reveals itself the first time it plays kM , and it obtains a terminal
payoff 	 := v(x, 0, kM ) + ∑∞

t=2 δ
t−1

E[v(Xt , 0, kM )]. This model can be mapped to our
baseline model by setting u(x, p) := v(x, p, kL ) − (1 − δ)	 (provided that our baseline
model assumptions are satisfied) and by interpreting kM as Out.

Our results establish that when demand is high, and entry is a severe threat, a high-
cost incumbent in equilibrium should set a low price to mimic a low-cost type in order to
deter entry. When demand is low, however, a high-cost incumbent’s position is relatively
secure, and in equilibrium it should randomize between raising its price or continuing to
mimic the low-cost type. The high-cost type’s price is, thus, history dependent, beyond
current demand.14

6. Discussion

Signaling often takes place in dynamic settings where conditions change over time, and
in such settings, reputations depend on past behavior and past conditions. To study
these environments, we have presented a model of dynamic signaling with stochastic
stakes. The model admits a unique equilibrium in which all history dependence is sum-
marized by the historical minimum of stakes, which determines the agent’s reputation
at all times. Due to its simplicity, the model can easily be adapted to address a wide
range of applications and generate testable predictions.

We conclude with a brief discussion of two extensions of the model.
Multiple agent types. Suppose there are more than two types of agents, and the

agent’s flow payoff is strictly increasing in the stakes, the type, and in the mean of the
market’s belief about the agent’s type. Then in equilibrium, at most one type can be in-
different at any time, with all higher types strictly preferring In and lower types strictly
preferring Out. Hence, equilibria should exhibit skimming, with the agent types being
weeded out from the bottom up. We conjecture there exists a perfect Bayesian equilib-
rium in which each type’s strategy is Markovian in the current stakes and the historical
minimum of stakes, and the cutoff type is a function of the historical minimum.

Evolving agent types. Suppose that the agent’s type evolves privately at the end of
each period as a binary Markov process that is independent of the stakes process and has
constant transition probabilities that are common knowledge. This extension changes
the reputation dynamics in two ways. First, the agent’s reputation is no longer monotone

13Depending on the demand function, kL and kM can vary with x.
14These predictions are supported by recent empirical work by Jaske and Watkins (2020), who use data

from the Airline Origin and Destination Survey (DB1B) to study limit pricing and entry behavior with re-
spect to market volatility. The authors find that, controlling for current demand and prior to entry, a lower
running minimum of market demand is correlated with higher prices by incumbents.
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while she plays In; if the agent’s reputation is above its long-run average, it drifts down
in between periods. Second, and due to this drift, the historical minimum of stakes is
no longer a sufficient statistic for the agent’s reputation. The weak type’s problem now
depends on the flow payoffs for the strong type, and the possibility of becoming a strong
type in the future increases her incentive to play In. We conjecture that if the strong
type’s flow payoffs are Markovian in (x, p), there exists a perfect Bayesian equilibrium
that is also Markovian in (x, p).

Appendix

Lemma 1. There exists a unique solution V ∗ to (4). It is nondecreasing and continuous
in both arguments, and if (x, p) ∈ R+ × [0, 1] is such that V ∗(x, p) > 0, then V ∗(x′, p) >
V ∗(x, p) for all x′ > x and V ∗(x, p′ ) > V ∗(x, p) for all p′ ∈ (p, 1].

Proof. Define u := E[u(X , 1)+], and note that the finiteness assumption on u implies
u < ∞. Since Out ends the game, the agent’s expected continuation value is bounded
above by ū/(1−δ). Let V be the space of functions V : R+×[0, 1] →R such that V (x, p) ∈
[0, max{0, u(x, p) + (1 − δ)−1δu}] for all (x, p) ∈ R+ × [0, 1]; clearly, any solution to (4)
must lie in V and, moreover, V is nonempty as it contains the zero function. Define
the metric d : V2 → R+ by d(V , W ) = sup(x,p)∈R+×[0,1] |V (x, p) − W (x, p)|. By standard
arguments, (V , d) is a complete metric space.

Define an operator T on V by

TV (x, p) = max
{

0, u(x, p) + δEV (X , p)
}

.

Now T is a self-map on V since 0 ≤ TV (x, p) ≤ max{0, u(x, p) + (1 − δ)−1δu}. Equation
(4) is, thus, equivalent to the fixed point equation TV = V .

For all (x, p) ∈R+ × [0, 1] and V , W ∈ V ,

∣∣TV (x, p) − TW (x, p)
∣∣ ≤ ∣∣u(x, p) + δEV (X , p) − (

u(x, p) + δEW (X , p)
)∣∣

= δ
∣∣E[

V (X , p) −W (X , p)
]∣∣

≤ δd(V , W ).

Taking a supremum yields d(TV , TW ) ≤ δd(V , W ) and, thus, T is a contraction on V
with modulus δ. Hence, by the contraction mapping theorem, there exists a unique
function V ∗ ∈ V such that TV ∗ = V ∗, which is the unique solution to (4).

Turning to the properties of V ∗, observe that the right-hand side of (4) is nonde-
creasing and continuous in x, and, hence, V ∗ is nondecreasing and continuous in x.
Moreover, if V ∗(x, p) > 0 and x′ > x, then V ∗(x, p) = u(x, p) + δEV ∗(X , p) < u(x′, p) +
δEV ∗(X , p) ≤ V ∗(x′, p).

Now consider the second component. We first show that T has the following prop-
erties: (i) if V ∈ V is nondecreasing in p, then so is TV and (ii) if V ∈ V is continuous in
p, then so is TV . For (i), note that if V is nondecreasing in p, then so is EV (X , p), and
since u is nondecreasing in p, TV is nondecreasing in p.
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For (ii), we invoke the dominated convergence theorem. Suppose V is continuous in
p. Consider any [0, 1]-valued sequence (pn )n∈N with pn → p. Then V (x, pn ) → V (x, p)
for all x ∈ R+. And letting g(x) := max{0, |u(x, 1) + (1 − δ)−1δu|}, we have |V (x, pn )| ≤
g(x) for all x ∈ R+ and n ∈ N, and the finiteness assumption on u implies Eg(X ) < ∞.
Hence, the dominated convergence theorem implies that EV (X , pn ) → EV (X , p); i.e.,
p → EV (X , p) is continuous. Since u is continuous in p, TV shares this property by
addition.

We now leverage (i) and (ii) to prove the results with respect to p. Define V0 := 0 ∈ V ;
in particular, V0 is continuous and nondecreasing in its second argument. Define a
sequence (Vn )n∈N by Vn = TVn−1. By claims (i) and (ii) above, for all n ∈ N, Vn is con-
tinuous and nondecreasing in its second argument. As Vn converges uniformly to V ∗,
by standard results, V ∗ is continuous and nondecreasing in its second argument. Fi-
nally, if V ∗(x, p) > 0 and p′ ∈ (p, 1], using that u is strictly increasing in p, we have
V ∗(x, p) = u(x, p) + δEV ∗(X , p) < u(x, p′ ) + δEV ∗(X , p′ ) = V ∗(x, p′ ), as desired.

Proof of Proposition 1. Formally, we show that the equilibrium candidate �∗ de-
fined in Section 3.2 is a PBE and is the unique PBE of the game. We then show that �∗
can be characterized via a threshold L, and that the high and moderate stakes regions
are nonempty.

Existence. To show that �∗ is an equilibrium, we first show that V ∗ and the be-
lief updating rule p+(x, p) satisfy the original Bellman equation (3). When V ∗(x, p) >
0, this result is trivial. When V ∗(x, p) = 0, we must show that 0 ≥ u(x, p+(x, p)) +
δEV ∗(X , p+(x, p)). We claim that V ∗(x, p+(x, p)) = 0; if not, then p+(x, p) > p and
by Lemma 1, there exists p′ ∈ (p, p+(x, p)) such that V ∗(x, p′ ) > 0, contradicting the
definition of p+(x, p). By construction, we have p+(x, p+(x, p)) = p+(x, p), and since
V ∗ solves (4) at p+(x, p), we have 0 ≥ u(x, p+(x, p)) +δEV ∗(X , p+(x, p)), and, thus, V ∗
and p+ solve (3).

To show that the policy R∗ is optimal, we show that (i) 0 < u(x, p+(x, p)) +
δEV ∗(X , p+(x, p)) implies R∗(x, p) = 0 and (ii) 0 > u(x, p+(x, p)) +δEV ∗(X , p+(x, p))
implies R∗(x, p) = 1. For (i), (3) implies V ∗(x, p) > 0, so by construction, R∗(x, p) = 0.
Toward (ii), note that via (3), this inequality implies V ∗(x, p) = 0. For p = 1, by
continuity, there exists ε > 0 such that u(x + ε, 1) + δEV ∗(X , 1) < 0 = V ∗(x + ε, 1),
so R∗(x, p) = 1 by construction. Next, consider p ∈ (0, 1). If p+(x, p) = 1, then
R∗(x, p) = 1 by construction. We now show that p+(x, p) < 1 is impossible. Suppose
by way of contradiction that p ∈ (0, 1) and 0 > u(x, p+(x, p)) + δEV ∗(X , p+(x, p)),
but p+(x, p) < 1. By the definition of p+(x, p), for all p′ > p+(x, p), 0 < V ∗(x, p′ ) =
u(x, p′ ) + δEV ∗(X , p′ ). Recall that u is continuous in its second argument, as is
EV ∗(X , ·) from the proof of Lemma 1. Taking the limit as p′ ↓ p+(x, p) yields 0 ≤
u(x, p+(x, p)) + δEV ∗(X , p+(x, p)), a contradiction. Given (i), (ii), and (3), standard
verification then shows that R∗ is an optimal policy.

The last step toward existence is simply to verify that belief updating follows Bayes’
rule (which always applies since P0 > 0). From the construction of �∗, if V ∗(x, p) > 0,
we have R∗(x, p) = 0 so Bayes’ rule yields p+(x, p) = p. Consider now V ∗(x, p) = 0. If
p = 1, then p+(x, p) = 1 by construction, and Bayes’ rule yields a posterior of 1 for any
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R(x, p). If p ∈ (0, 1), then p+(x, p) > 0 and R∗(x, p) is well defined and satisfies Bayes’
rule by construction.

Uniqueness. We first establish uniqueness of the value function, and then we es-
tablish uniqueness of the equilibrium given the value function. Let �̃ be an arbitrary
(not necessarily Markovian) perfect Bayesian equilibrium, and let Ṽ denote the agent’s
continuation value process, conditional on having played In in all prior periods. Let
P∗ and P̃ denote the belief processes in equilibria �∗ and �̃, respectively, conditional
on In. For any t ≥ 1, consider any arbitrary stakes history h̃t = (x̃1, � � � , x̃t ) in equilib-
rium �̃ and let (x, p) = (x̃t , P̃t−1 ). For any stopping rule τ ≥ t, let Ũ(τ; h̃t ) denote the
agent’s expected continuation payoff from playing τ in the equilibrium �̃ starting from
history h̃t . Similarly, consider the history h∗

1 = x̃t with current state (X1, P∗
0 ) = (x, p) in

the equilibrium �∗, and for any τ ≥ 1, let U∗(τ; h∗
1 ) denote the agent’s expected contin-

uation payoff from τ. We show that Ṽt = V ∗(x, p). First, we establish that Ṽt ≥ V ∗(x, p).
Define a continuation policy τ∗ := inf{t ′ ≥ 1 : V ∗(Xt ′ , P∗

t ′−1 ) = 0}, which is optimal in the
equilibrium �∗. Define a policy τ̃(τ∗ ) such that (i) τ̃(τ∗ ) = t if and only if τ∗ = 1, and (ii)
for s > t, τ̃(τ∗ ) = s given the history (h̃t , x̃t+1, � � � , x̃s ) = (h̃t , x2, � � � , xs−(t−1) ) if and only if
τ∗ = s− (t − 1) after the corresponding history (h∗

1, x2, � � � , xs−(t−1) ). Now Ũ(τ̃(τ∗ ); h̃t ) =
E[

∑τ̃(τ∗ )−1
s=t δs−tu(Xs , P̃s )] and V ∗(x, p) = U∗(τ∗; h∗

1 ) = E[
∑τ∗−1

s=1 δs−1u(Xs , P∗
s )], as τ∗ is

an optimal policy in �∗. By construction, for all s ∈ {1, � � � , τ∗ − 1} (possibly empty), the
weak agent’s equilibrium strategy under �∗ must specify In, so P∗

s = p = P̃t−1 for such
s. But since P̃ is nondecreasing, we have P̃s ≥ P̃t−1 for all s ∈ {t, � � � , τ̃(τ∗ ) − 1}. Since u

is increasing in its second argument, and the stakes have the same distribution in both
sums, it follows that Ũ(τ̃(τ∗ ); h̃t ) ≥ U∗(τ∗; h∗

1 ) = V ∗(x, p). Since τ̃(τ∗ ) is feasible in �̃,
Ṽt ≥ Ũ(τ̃(τ∗ ); h̃t ) and, thus, Ṽt ≥ V ∗(x, p). An analogous argument establishes the other
direction.

Having pinned down the value function process, to conclude the proof of unique-
ness, we show that the policy R∗ and updating rule p+ defined for �∗ are essentially
unique. Consider any time t and history up to t. If V ∗(Xt , Pt−1 ) > 0, optimality re-
quires that the agent play In with probability 1; i.e., the strategy must specify Rt =
R∗(Xt , Pt−1 ) = 0, and belief updating must satisfy Pt = Pt−1 = p+(Xt , Pt−1 ), as specified
under �∗.

Now suppose V ∗(Xt , Pt−1 ) = 0. We consider two cases: (a) V ∗(Xt , p′ ) = 0 for all
p′ ∈ (Pt−1, 1) (which trivially holds when Pt−1 = 1), and (b) V ∗(Xt , p′ ) > 0 for some p′ ∈
(Pt−1, 1). In case (a), we argue that Pt = 1. First consider Pt−1 = 1. In this case, Pt = 1 =
p+(Xt , Pt−1 ) is immediate. Further, we have V ∗(Xt , 1) = 0 ≥ u(Xt , 1) + δEtV

∗(Xt+1, 1)
by supposition, as V ∗ satisfies (4). In the case of strict inequality, Rt = 1 = R∗(Xt , Pt−1 )
is uniquely determined by optimality, and in the case of equality (which arises for at
most one realization of Xt ), the agent is indifferent between In and Out, so Rt can take
any value in [0, 1], and, hence, the “essentially” qualifier in the statement. Next, con-
tinuing under case (a), consider Pt−1 < 1. By supposition and the construction of �∗,
R∗(Xt , Pt−1 ) = p+(Xt , Pt−1 ) = 1. From the fact that u and EV ∗ are strictly increasing
and weakly increasing, respectively, in p, (3) yields u(Xt , Pt ) + δEtV

∗(Xt+1, Pt ) < 0 for
all Pt < 1, which implies Rt = 1. Bayes’ rule then implies Pt = 1. Hence, the agent’s
strategy and belief process are essentially equivalent to those under �∗ for case (a).
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In case (b), which implies Pt−1 < 1, we argue that Pt = p† := inf{p′ ∈ (Pt−1, 1] :
V ∗(Xt , p′ ) > 0} = p+(Xt , Pt−1 ) < 1. By assumption, p† ∈ [Pt−1, 1), and by continuity,
V ∗(Xt , p† ) = 0. If Pt < p†, then Rt < 1 and by arguments similar to those above, 0 =
V ∗(Xt , Pt−1 ) = u(Xt , Pt )+δEtV

∗(Xt+1, Pt ) < u(Xt , p† )+δEtV
∗(Xt+1, p† ) ≤ V ∗(Xt , p† ),

a contradiction. And if Pt > p†, 0 < V ∗(Xt , Pt ) = u∗(Xt , Pt ) + δEtV
∗(Xt+1, Pt ) ≤

V ∗(Xt , Pt−1 ), a contradiction. Hence, Pt = p† = p+(Xt , Pt−1 ) < 1. Now Pt−1 ≥ P0 > 0,
so Bayes’ rule applies for all Rt and yields Pt = Pt−1/[Pt−1 + (1 − Pt−1 )(1 − Rt )], which
uniquely determines Rt = (Pt − Pt−1 )/[Pt(1 − Pt−1 )] =R∗(Xt , Pt−1 ).

To summarize, any PBE must involve Rt = R∗(Xt , Pt−1 ) and Pt = p+(Xt , Pt−1 ) at all
times with probability 1 (w.p.1), except for multiplicity when Pt−1 = 1 and u(Xt , 1) +
δEtV

∗(Xt+1, 1) = 0.
Characterization via threshold L(p). Define L : [0, 1] →R+ ∪ {+∞, −∞} by L(p) :=

sup{x ∈R+ : 0 ≥ u(x, p) + δEV ∗(X , p)} (possibly +∞), with L(p) := −∞ when this set is
empty. As u(x, p) + δEV ∗(X , p) is strictly increasing in x and p, L is strictly decreasing.
If Xt ≥ L(Pt−1 ), then u(Xt , Pt−1 ) + δEtV

∗(Xt+1, Pt−1 ) ≥ 0 and V ∗(Xt , p′ ) > 0 for all p′ >
Pt−1; hence, Pt = p+(Xt , Pt−1 ) = Pt−1, and if Pt−1 < 1, this implies the agent plays In
w.p.1. If Xt ≤L(1) and Pt−1 < 1, then u(Xt , p′ ) + δEtV

∗(Xt+1, p′ ) < 0 = V ∗(Xt+1, p′ ) for
all p′ < 1, so Pt = p+(Xt , Pt−1 ) = 1 and the agent plays Out w.p.1. Similarly, if Xt < L(1),
then u(Xt , p′ ) + δEtV

∗(Xt+1, p′ ) < 0 for all p′ ≤ 1, so the agent plays Out and Pt = 1.
Last, if Xt ∈ (L(1), L(Pt−1 )), then there is a unique p′ ∈ (Pt−1, 1) solving 0 = u(Xt , p′ ) +
δEtV

∗(Xt+1, p′ ) = V ∗(Xt , p′ ), and L(p′ ) = Xt . Since V ∗(Xt , p′′ ) > 0 for all p′′ > p′, we
have p′ = p+(Xt , Pt−1 ), which coincides with p∗(Xt ) defined by (2).

Nonemptiness of high and moderate stakes regions. By assumption, for sufficiently
large x, 0 < u(x, 1) ≤ u(x, 1) +δEV ∗(X , 1) = V ∗(x, 1), so L(1) <+∞ and the high stakes
region is nonempty. For the moderate stakes region, we claim that L(p) > 0 for suffi-
ciently small p > 0. If not, for all p > 0 and all x ≥ 0, we have x ≥ L(p), so p+(x, p) = p

and, thus, 0 ≤ V ∗(0, p) = u(0, p) + (1 − δ)−1δEu(X , p) < 0, a contradiction. Since L is
strictly decreasing, there exists p ∈ (0, 1) such that L(p) >L(1), and, thus, the moderate
stakes region is nonempty.

Proof of Proposition 2. Multiply (2) through by 1 − δ[1 − F(m−)] > 0 and write the
resulting right-hand side as Q1(m, p∗(m)) +Q2(m, p∗(m)). Since Q1 and Q2 are increas-
ing in p, p → Q1(m, p) + Q2(m, p) crosses 0 from below at p∗(m); hence, the compar-
ative statics of p∗ (and thus L) have the opposite sign as those of Q1(m, p) + Q2(m, p).
Since u is increasing in its first argument, Q1(m, p∗(m)) < 0 < Q2(m, p∗(m)); it is easy
to see that Q1(m, p∗(m)) and Q2(m, p∗(m)) are increasing in δ, so p∗(m) is decreas-
ing in δ. Next, after a uniform increase in u, Q1 + Q2 increases uniformly. Finally,
turning to the stakes distribution, note that Q1(m, p) + Q2(m, p) can be written as
g(m, p, F ) := (1 − δ)u(m, p) + δ

∫ ∞
0 u(max{m, x}, p)dF(x); since x → u(max{m, x}, p) is

weakly increasing, F2 �FOSD F1 implies g(m, p, F2 ) ≥ g(m, p, F1 ).
Next, suppose u(x, p) has the form Ax+ Bp+ C, where A> 0 and B > 0. From (2),

we obtain that the (left) derivative of p∗(m) is −(A/B)[1 − δ+ δF(m−)]. Since L and p∗
are inverses, the desired comparative statics follow.
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Proof of Corollary 1. We show that the agent’s reputation Pt is a function of the
historical minimum level of stakes, Mt := min1≤s≤t Xs ; since the equilibrium is Marko-
vian in (Xt , Pt−1 ), this proves it is Markovian in (Xt , Mt−1 ). Specifically, we show that
if Mt < L(P0 ), then Pt = p+(Mt , P0 ) and L(Pt ) = Mt , and otherwise Pt = P0. The argu-
ment is by induction. In the base case t = 1, we have M1 = X1, and M1 < L(P0 ) im-
plies P1 = p+(X1, P0 ) = p+(M1, P0 ) satisfying M1 = L(P1 ); moreover, M1 ≥ L(P0 ) im-
plies P1 = P0. Now suppose the claim holds for all t up to some T ≥ 1. If MT+1 ≥ L(P0 ),
then MT ≥ L(P0 ), so by the induction hypothesis, PT = P0, and XT+1 ≥ L(P0 ) = L(PT ),
which implies PT+1 = PT = P0. Next, suppose MT+1 < L(P0 ), and consider two cases:
(i) MT+1 = MT and (ii) MT+1 < MT . In case (i), by the induction hypothesis, PT =
p+(MT , P0 ), and we have XT+1 ≥ MT = L(PT ), which implies PT+1 = PT . Hence,
PT+1 = p+(MT , P0 ) = p+(MT+1, P0 ) and MT+1 = L(PT+1 ), as desired. In case (ii), ei-
ther (a) MT < L(P0 ) or (b) MT ≥ L(P0 ). If (a), then by the induction hypothesis, MT =
L(PT ), so XT+1 = MT+1 <L(PT ), which implies PT+1 = p+(MT+1, PT ) = p+(MT+1, P0 )
and MT+1 = L(PT+1 ). If (b), then by the induction hypothesis, PT = P0, and by as-
sumption XT+1 =MT+1 <L(P0 ) =L(PT ), so PT+1 = p+(XT+1, P0 ) = p+(MT+1, P0 ) and
L(PT+1 ) = MT+1, completing the induction.

Proof of Proposition 3. First suppose p < 1. Since u is increasing in its first ar-
gument, we have u(x, p) + (1 − δ)−1δEu(X , p) > 0 for all x > 0, and by Lemma 1,
V ∗(x, p) > 0 for all (x, p) ∈ R+ × [p, 1] \ {(0, p)}. For P0 ≥ p, the weak agent plays In
w.p.1 in each period regardless of the stakes, and, thus, she plays In forever w.p.1. Now
fix P0 < p < 1. Whenever p ≤ p, p+(x, p) ≤ p; thus, starting from P0 < p, the agent’s
reputation conditional on In is bounded above by p< 1 along any path of X . As for con-
vergence, note that for any p′ ∈ (P0, p), we have L(p′ ) > 0, so for all t ≥ 1, the probability
that Xt < L(p′ ) (which implies Pt > p′) is F(L(p′ )−) > 0 by the full support assumption.
Thus, conditional on In, the reputation eventually exceeds p′ w.p.1, and since p′ is arbi-
trary, Pt ↑ p almost surely conditional on In. It follows that when the agent is the strong
type, learning is incomplete almost surely. When the agent is the weak type, Bayes’ rule
yields that with probability (p − P0 )/[p(1 − P0 )] ∈ (0, 1), the agent eventually exits and
learning is complete, and with complementary probability, the agent plays In forever
and learning is incomplete.

Next, consider p = 1. It must be that 0 ≥ u(0, 1) + δEV ∗(0, 1); otherwise the weak
agent would strictly prefer to play In for all Xt ≥ 0 when Pt−1 = 1, and we would have 0 <

u(0, 1) +δEV ∗(0, 1) = u(0, 1) + (1 −δ)−1δEu(Xt , 1), contradicting p = 1. Consequently,
for each p′ ∈ (P0, 1), we have 0 > u(0, p′ ) + δEV ∗(0, p′ ), which implies that L(p′ ) > 0.
By a similar argument to the one above for p < 1, the agent’s reputation converges to
1 almost surely conditional on In, so the strong type is asymptotically revealed almost
surely. By Bayes’ rule, the weak type is eventually revealed by Out almost surely.

Proof of Proposition 4. Since the arguments for existence are very similar to those
for Proposition 1, we provide an outline of the main steps. The Bellman equation is now

V (x, p) = max
{

0, u
(
x, p+(x, p)

) + δρV
(
x, p+(x, p)

) + δ(1 − ρ)EV
(
X , p+(x, p)

)}
, (6)
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where R(x, p) = 1 if 0 > u(x, p+(x, p)) + δρV (x, p+(x, p)) + δ(1 − ρ)EV (X , p+(x, p))
and R(x, p) = 0 if 0 < u(x, p+(x, p)) + δρV (x, p+(x, p)) + δ(1 − ρ)EV (X , p+(x, p)). As
in Section 3.2, we can reduce (6) to

V (x, p) = max
{

0, u(x, p) + δρV (x, p) + δ(1 − ρ)EV (X , p)
}

. (7)

By similar arguments to those in the proof of Lemma 1, (7) has a unique solution
V ∗(x, p). We define an equilibrium candidate �∗ from V ∗(x, p) exactly as in Section 3.2;
by construction, (6) is satisfied and, by a standard verification argument, �∗ is an equi-
librium. The proof of uniqueness is analogous to that in the proof of Proposition 4.

We define L(p) := sup{x ∈ R+ : 0 ≥ u(x, p) + δρV ∗(x, p) + δ(1 − ρ)EV ∗(X , p)}. To
derive (5) characterizing p∗ and, thus, L, first note the agent’s indifference condition at
(m, p∗(m)):

0 = u
(
m, p∗(m)

) + δρV ∗(m, p∗(m)
)

︸ ︷︷ ︸
=0

+δ(1 − ρ)EV ∗(X , p∗(m)
)
. (8)

Since the agent weakly prefers In (Out) at (y, p∗(m)) if y ≥ (≤)m, we have

EV ∗(X , p∗(m)
) =

∫ ∞

m

{
u
(
x, p∗(m)

) + δρV ∗(x, p∗(m)
)}

dF(x)

+ δ
(
1 − F(m−)

)
(1 − ρ)EV ∗(X , p∗(m)

)
. (9)

Now
∫ ∞
m V ∗(x, p∗(m))dF(x) = EV ∗(X , p∗(m)), so (9) implies

EV ∗(X , p∗(m)
) =

∫ ∞

m
u
(
x, p∗(m)

)
dF(x)

1 − δ
[
1 − (1 − ρ)F(m−)

] . (10)

Substituting this into (8) yields (5).
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