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Abstract

Two firms produce substitute goods of unknown quality. At each stage the firms

set prices and a consumer with private information and unit demand buys from one

of the firms. Both firms and consumers see the entire history of prices and pur-

chases. Will such markets aggregate information? Will the firm with the superior

product necessarily prevail? We adapt the classic social-learning model by intro-

ducing strategic dynamic pricing. We provide necessary and sufficient conditions

for asymptotic learning. In contrast to previous results, we show that asymptotic

learning can occur when signals are bounded, namely, happens when the density of

the consumers at the boundaries of the posterior belief distribution goes to zero. We

refer to this property of the signal structure as the “vanishing margins” property.

JEL classification: D43, D83, L13.

1 Introduction

In many markets of substitute products, the value of the various alternatives may

depend on some unknown variables. These may take the form of a future change

in regulation, a technological shock, an environmental development, or prices in

related upstream markets, etc. Although this information is unknown, individual

consumers may receive some private information about these fundamentals. We ask

whether markets aggregate information correctly and the ex-post superior product

eventually dominates the market in such an environment.
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For example, consider two competing pharmaceutical companies that produce

alternative treatments (i.e., drugs) for a particular medical condition. One firm’s

product is established while the other’s treatment is new. The clinical trials per-

formed during the new drug’s FDA approval process induce a common prior over

whichever product is superior. Before the new product is commercially launched,

doctors receive a sample to be used within their patient community. Therefore, the

doctors obtain some private information. Note that these signals are likely to be

bounded as the number of free samples given to each doctor is often small. Ad-

ditionally, as communities differ (e.g., in genetics and demography), the realized

success rates of each treatment may differ from one doctor to another. As a result,

doctors observe different signals. We ask whether society will correctly aggregate

these signals and whether the better drug will necessarily prevail.

Whenever prices are fixed, classic results from the social learning theory tell

us that doctors will herd on one of the drugs (possibly the inferior one). Our

results, however, argue that when the drug firms adjust their prices dynamically,

the aggregation of information depends only on the distribution of the idiosyncratic

communities, i.e., those are the communities that drive the significant results. We

capture the exact condition by the newly introduced notion of “vanishing margins”.1

We study whether the learning process mentioned above guarantees an efficient

outcome. We isolate the role of learning by introducing a simple duopoly model

of common value. In our model, consumers, with a unit demand, choose between

two substitute products, each with zero marginal cost of production. The timing

of the interaction is as follows. Nature randomly chooses one of two states and

thus determines the identity of the firm with the superior product. At each stage,

both firms observe the entire history of the market – past prices and consumption

decisions – and simultaneously set prices. After that, a single consumer arrives and

receives a private signal regarding the state of nature. The consumer, based on his

signal, the pair of product prices, and the market’s history, decides which product

to buy (if any). Our main goal is to identify conditions under which the information

in the market fully aggregates asymptotically, i.e., asymptotic learning holds.

When prices are set exogenously and are fixed throughout, the above model is

precisely the standard herding model (Banerjee, 1992; Bikhchandani et al., 1992).

In that model, as shown by Smith and Sørensen (2000), the characterization of

asymptotic learning crucially depends upon the quality of agents’ private signals.

In particular, one must distinguish between two families of signals: bounded versus

unbounded. In the unbounded case, the agent’s private beliefs can, with positive

probability, be arbitrarily close to zero and one. Therefore, no matter how many

people herd on one alternative, the probability that the next agent will choose the

other alternative is always positive. This property entails asymptotic learning.

The learning results in our model diverge from those of the canonical model when

1For a recent example, consider the pricing of treatments for spinal muscular atrophy (SMA). Until

recently, the only treatment for SMA was Biogen’s Spinraza treatment. In April 2019, Novartis received

FDA approval for a competing treatment called Zolgensma. The research that led to the FDA approval

was performed on 150 patients and thus contained little information about the treatment’s effect on

the general population. Biogen responded to the threat by offering discounts to several large healthcare

providers (see Gatlin (2019); Reuters (2019)).
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signals are bounded.2 In the herding model, there is always a positive probability

that all agents will eventually choose the suboptimal alternative. However, intuition

suggests that when prices are endogenized, they serve to prevent such a herding

phenomenon. Hypothetically, once a herd develops on one firm’s product, the other

firm will lower its product price to attract new consumers, and learning will not

cease. It turns out that this intuition, although not entirely correct, does have some

merit. In order for the intuitive argument to hold, signals must exhibit a property

that we shall term vanishing margins.

We say that signals exhibit vanishing margins if the density of consumers at the

posterior belief’s boundaries is zero. These consumers, i.e., consumers who receive

signals that induce the most extreme posterior beliefs, are those who are likely to

go against a herd and purchase the less popular product. From the market leader’s

perspective, they comprise the tail of the distribution. The property of vanishing

or nonvanishing margins serves as a measure of the tail’s thickness. Therefore,

thin-tailed distributions are those that exhibit the vanishing margins property.

When society herds, each agent follows in the footsteps of his predecessors.

Therefore, intuitively, one expects that a thick tail, i.e., a case in which there is

a positive probability of seeing a consumer with an extreme signal, will induce

learning. Our main result shows that the opposite occurs. When firms are myopic,

signals are bounded, and prices are strategically determined, asymptotic learning

holds if and only if signals have the vanishing margins property. We extend this

result to forward-looking firms; however, to rule out collusive behavior that prevents

learning, we need the assumptions that signals are informative enough and that

firms use Markovian strategies that depend only on the public belief and not on the

calendar time.

The intuition behind our main result is as follows. Consider a setting where

the public belief is sufficiently extreme, and a clear market leader emerges. This

leader faces the following dilemma. It can either capture the entire market by

setting a low price or forego the “tail” consumers by setting a high price. Whenever

signals exhibit thin margins, the latter option turns out to be optimal for the leader.

Consequently, when “tail” consumers do arrive, the market is completely turned.

When signals exhibit nonvanishing margins, aggressive pricing eventually prevails,

thus halting any further information aggregation.

1.1 Related Literature

Our work primarily contributes to the herding literature initiated by Bikhchandani

et al. (1992) and Banerjee (1992), who introduced models of social learning with

agents who act sequentially. Their main contribution was to point out the possibility

of rational herds that induce market failure. Smith and Sørensen (2000) noticed

that such market failure happens only when signals are bounded. The lion’s share

of follow-up studies focused on examining the robustness of the aforementioned

2When signals are unbounded, the rationale underlying Smith and Sørensen’s learning result applies

to our model and so learning prevails.

3



condition in more elaborate settings.3

The first to incorporate dynamic pricing into herding models were Avery and

Zemsky (1998). They considered a single firm whose product value is associated

with an (unknown) state of nature. Instead of having the product offered at a fixed

price, as in the earlier papers (e.g., Welch (1992)), they assumed that the price is set

dynamically. In their model a market maker computes, at each stage, the expected

value of the product and sets the price accordingly. By contrast, in our model prices

are set endogenously by the profit-maximizing firms. Moreover, Avery and Zemsky

(1998) showed that the presence of a market maker and dynamic pricing result in

learning. In our setting such learning requires the addition of an extra condition,

vanishing margins, to the information structure.

A model that is reminiscent of our model is that of Bose et al. (2006, 2008) who

studied a herding model with a forward-looking monopolist that sells a good of un-

certain quality to consumers. Consumers arrive sequentially and decide whether to

purchase the product of the monopolist based on their predecessors’ decisions, past

prices, and an additional private signal. Bose et al. (2006) restricted attention to in-

formation structures with finitely many signals and Bose et al. (2008) to symmetric

binary signals. In both models, it was shown that herding is inevitable. Addition-

ally, they showed that if the public belief is sufficiently in favor of the monopoly, then

the monopolist will price low enough to attract all consumers, regardless of their

realized signal. As we show, their results rely on finite signals where the vanishing

margins condition is never satisfied. The methodology and techniques discussed in

the present paper may be used to show that in the monopolistic setting, i.e., when

there is a single forward-looking firm that competes against an outside option, an

information structure that exhibits vanishing margins guarantees asymptotic learn-

ing and one that doesn’t exhibit vanishing margins (at both ends) guarantees that

asymptotic learning fails.

Moscarini and Ottaviani (1997) studied the duopoly case in a static setting with

a single-stage interaction between two firms and a single knowledgeable consumer.

In fact, their model is a special case of our stage game (Γ(µ)), which we study in

Section 3. Similar to Bose et al. (2006, 2008), they restricted attention to finite,

in fact binary and symmetric signal space. They showed that whenever the prior

belief is above (or below) some threshold, all equilibria in their model are deterrence

equilibria (see Definition 6). That is, in all equilibria, one firm prices out the other

firm. Clearly, the emergence of a deterrence equilibrium implies that learning stops

in the repeated model. In addition, the authors provided comparative statics over

the threshold public belief for which learning stops as a function of the informative-

ness of the signal (and this is where the restricted signal space is leveraged). As

signals become more informative the thresholds move to the extremes. Our result

for the stage game, Theorem 2, argues that deterrence occurs, and hence learning

stops, whenever the vanishing margins condition does not hold. As this condition

3For example, Lee (1993) presented a model with more than two states. Goeree et al. (2006) extended

the model from a pure common value to include a private value ingredient. Eyster et al. (2014) studied

a model where agents’ utility is affected by congestion, and Acemoglu et al. (2010), Mossel et al. (2015),

and Arieli and Mueller-Frank (2019) studied a model where agents observe only a partial set of their

predecessors.
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can never hold for a finite signal space (see Section 5.1), the result in Moscarini and

Ottaviani (1997) follows as a corollary.

Mueller-Frank introduced a pair of models with dynamic pricing of a monopoly

Mueller-Frank (2016) and a duopoly Mueller-Frank (2012). The models are very

similar to ours with the distinction that for Mueller-Frank the firms have the in-

formational advantage and know the true state of the world.4 Mueller-Frank asked

whether social learning is sufficient to drive consumers to the optimal choice in the

long run (“asymptotic efficiency”). Counterintuitively, he demonstrated equilibria

in which this is not the case. By contrast, learning entails asymptotic efficiency in

our setting (see Corollary 1).

While our major contribution is to the literature on social learning, the vanishing

margins property and its effect on firms’ strategic behavior has interesting implica-

tions for market behavior and, in particular, for market entry and the adoption of

new technologies. Previous studies on such questions assumed that incumbents have

either an informational advantage (Bagwell (2007)) or a “first move” advantage,

and that they can preempt entry by increasing capacity, investing in R&D (Ace-

moglu and Cao, 2015; Barrachina et al., 2014), or both (see Milgrom and Roberts,

1982a,b). Our stage game is an example of predatory pricing behavior, in which

both incumbent and entrant act simultaneously, and no firm has an informational

advantage.

The paper is organized as follows. Section 2 presents the model and the main

theorem for the case where firms are myopic. In Section 3 we provide an equilibrium

analysis of a stage game, which is central to the analysis of the learning model. We

then leverage the analysis of the stage game to prove the aforementioned theorem

for the myopic case. Section 4 is an extension of our model and results to the case

where firms are farsighted. Section 5 informally discusses related issues.

2 Social Learning and Myopic Pricing

Our model comprises a countably infinite number of consumers, indexed by t ∈ N,
and two firms: Firm 0 and Firm 1. There are two states of nature Ω = {0, 1}. In

state ω, firm ω ∈ {0, 1} produces the superior product. We normalize the value

of the superior product VH to 1 and the value of the inferior product VL to 0. In

every time period t the two firms first set (nonnegative) prices (τ t0, τ
t
1) ∈ [0, 1]2

for their products.5 Then consumer t receives a private signal and must decide

whether to buy product 0, product 1, or neither product. Formally, the action set

of every consumer is A = {0, 1, e}, where the action a = i ∈ {0, 1} corresponds to

the decision to buy from firm i and the action a = e corresponds to the decision to

exit and not to buy.6 The payoff of every consumer t, given the price vector (τ0, τ1)

4Mueller-Frank pointed out that when firms have an informational advantage, the equilibrium anal-

ysis crucially hinges on consumers’ off-equilibrium beliefs. This is not the case in our model, which

consequently allows for robust observations.
5We conjecture that extending our model to allow for negative prices would have little effect on the

asymptotic analysis and leave this question for future research.
6Our proofs go through with almost no changes in the case where VH > VL ≥ Ve ≥ 0 where Ve is the

value from existing. In fact, we believe that the only required conditions for our analysis are VH > 0
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as a function of the realized state ω, is

u(a, τ0, τ1, ω) =


0 if a = e

1− τa if a = ω

−τa otherwise.

(1)

For simplicity, we assume that both firms have no marginal cost of production.

Hence, firm i’s stage payoff, given a price vector (τ0, τ1), can be described as a

function of the consumer’s decision as follows:

πi(a, τ0, τ1, ω) =

τi if a = i

0 if otherwise.
(2)

We assume that the state ω is drawn at stage t = 0 according to a commonly

known prior distribution, such that P (ω = 0) = µ0 = 1 − P (ω = 1). The state

ω is unknown to both the firms and the consumers. Each consumer t ∈ N forms

a belief on the state using two sources of information: the history of prices and

actions, ht ∈ Ht = ([0, 1]2 × {0, 1, e})t−1, and a private signal st ∈ S (where S is

some abstract measurable signal space). The firms observe only the realized history

ht ∈ Ht at every time t and receive no private information. Conditional on the state

ω, signals are independently drawn according to a probability measure Fω. We refer

to the tuple (F0, F1, S) as an information structure. We assume throughout that F0

and F1 are mutually absolutely continuous with respect to each other.7 The prior

µ0 and the functions F0 and F1 are common knowledge among consumers and firms.

LetH = ∪t≥1Ht be the set of all finite histories and letH∞ = ([0, 1]2×{0, 1, e})∞

be the set of all infinite histories. We let A ⊂ ∆({0, 1, e})[0,1]2×S be the set of

decision rules for the consumer; i.e., A is the set of all measurable functions that

map pairs consisting of a price vector and a signal to a (random) consumption

decision. A strategy for consumer t is a measurable function σt : Ht → A that maps

every history ht ∈ Ht to a decision rule. We denote by σ̄ = (σt)t≥1 a pure strategy

profile for the consumers. We can view σ̄ as a function σ̄ : H → A. A (behavioral)

strategy for firm i is a (measurable) mapping ϕ̄i : H → ∆([0, 1]). We note that the

strategy profile (ϕ̄0, ϕ̄1, σ̄) together with the prior µ0 and the information structure

(F0, F1, S) induces a probability distribution P(ϕ̄0,ϕ̄1,σ̄) over Ω×H∞ × S∞.

Let µt = P(ϕ̄0,ϕ̄1,σ̄)(ω = 0|ht) be the probability that the state is ω = 0 condi-

tional on the realized history ht ∈ H. We call µt the public belief at time t. We note

that {µt}∞t=1 is a martingale and therefore, by the martingale convergence theorem,

it must converge almost surely to a limit random variable µ∞ ∈ [0, 1].

A strategy profile (ϕ̄0, ϕ̄1, σ̄) and a history ht induce both an expected payoff

Πt
i(τ0, τ1, σ̄|ht) for every firm i and an expected consumer utility Ut(τ0, τ1, σ̄|ht).We

can now define the notion of a Bayesian Nash equilibrium for myopic firms.

Definition 1. A strategy profile (ϕ̄0, ϕ̄1, σ̄) constitutes a myopic Bayesian Nash

equilibrium if for every time t the following conditions hold for almost every history

ht ∈ Ht that is realized in accordance with P(ϕ̄0,ϕ̄1,σ̄):

and VH > max{VL, Ve}.
7F0 and F1 are mutually absolutely continuous whenever F0(Ŝ) > 0 ⇐⇒ F1(Ŝ) > 0 for any

measurable set Ŝ ⊂ S. Note that under this assumption the probability of a fully revealing signal, for

which the posterior probability is either 0 or 1, is zero.
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� For every τ ∈ [0, 1] and i = 1, 2,

Πt
i(ϕ̄0, ϕ̄1, σ̄|ht) ≥ Πt

i(τ, ϕ̄−i, σ̄t|ht).

� For every price vector (τ0, τ1) ∈ [0, 1]2, and every decision rule σ ∈ A,

Ut(τ0, τ1, σ̄(ht)|ht) ≥ Ut(τ0, τ1, σ|ht).

In words, a strategy profile (ϕ̄0, ϕ̄1, σ̄) constitutes a myopic Bayesian Nash equi-

librium if, for every time t and for almost every history ht ∈ Ht that is realized in

accordance with P(ϕ̄0,ϕ̄1,σ̄), it holds that ϕ̄i(ht) maximizes the conditional expected

stage payoff to every firm i and σ̄(ht) maximizes the conditional expected payoff to

consumer t with respect to every price vector (τ0, τ1).

Note that our notion of equilibrium is weaker than the notion of a subgame

perfect equilibrium (henceforth SPE); however, it still eliminates equilibria with

non-credible threats by consumers. One such equilibrium with non-credible threats

is the following equilibrium: both firms ask for a price of 0 in every time period.

Every consumer t never buys a product (i.e., plays e) unless both firms ask for a

price of 0, in which case he buys Product 0 when µt ≥ 1
2 and Product 1 when

µt <
1
2 . Note that this equilibrium is sustained by non-credible threats made by

the consumer. Such threats are eliminated by the second condition, which requires

that, conditional on the realized history ht, the decision rule σ̄(ht) be optimal with

respect to every price vector (τ0, τ1), and not just with respect to (τ t0, τ
t
1).

The reason we focus on this set of equilibria instead of its more natural sub-

set of SPE is the following. Our results apply either to all equilibria or to none.

Therefore, our results hold for the subset of SPE. In addition, resorting to myopic

Bayesian equilibria allows us to circumvent the nontrivial requirement of specifying

off-equilibrium beliefs.

As is common in the literature, we define asymptotic learning as follows.

Definition 2. Fix an information structure (F0, F1, S). Let µ0 ∈ (0, 1) be the prior

and let (ϕ̄0, ϕ̄1, σ̄) be a strategy profile of the corresponding game. We say that

asymptotic learning holds for µ0 and (ϕ̄0, ϕ̄1, σ̄) if the belief martingale sequence

converges almost surely to a point belief assigning probability 1 to the realized

state.

Let fω denote the Radon–Nikodym derivative of Fω with respect to the prob-

ability measure F0+F1

2 . We consider the random variable p(s) ≡ f0(s)
f0(s)+f1(s)

, which

is the posterior probability that ω = 0, conditional on the signal s, when the prior

over Ω is (0.5, 0.5). Let Gω(x) = Fω({s ∈ S|p(s) < x}), ω = 0, 1, be the two cumu-

lative distribution correspondences of the random variable p(s) induced by the two

probability distributions, Fω, ω = 0, 1, over S. As is standard in the literature, let

co(supp(p)) = [ᾱ,
¯
α] be the convex hull of the support of p.

The main goal of our paper is to provide a characterization of asymptotic learning

under strategic pricing in terms of the information structure (F0, F1, S). Such a

characterization is provided by Smith and Sørensen (2000) for the standard herding

model where prices are set exogenously. We start by presenting the formal definition

of bounded and unbounded signals due to Smith and Sørensen (2000).
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Definition 3. The information structure (F0, F1, S) is called unbounded if
¯
α = 0

and ᾱ = 1. The information structure (F0, F1, S) is bounded if
¯
α > 0 and ᾱ < 1.

In words, an information structure is unbounded if for every β ∈ (0, 1) the two

sets {s : p(s) > β} and {s : p(s) < β} have positive probability under (Fω)ω=0,1.

Smith and Sørensen’s characterization shows that in the standard herding model

asymptotic learning holds under an unbounded information structure and fails under

a bounded information structure.

2.1 Characterization of Asymptotic Learning

For ease of exposition we make the following assumption on (Gω(x))ω=0,1. We refer

the reader to Section 5 for the general case.

Assumption 1. We assume that the functions {Gω(x)}ω=0,1 are differentiable on

(
¯
α, ᾱ) with continuous derivatives (gω(x))ω=0,1 : [

¯
α, ᾱ] → R+.

Definition 4. An information structure (F0, F1, S) exhibits vanishing margins if

g1(
¯
α) = g0(ᾱ) = 0.

We next show how information aggregation depends on the vanishing margins

property. The following theorem provides a full characterization of asymptotic learn-

ing in our model.

Theorem 1. If signals are unbounded or if signals are bounded and exhibit vanishing

margins, then asymptotic learning holds for every prior and every equilibrium. If

signals are bounded and do not exhibit vanishing margins then asymptotic learning

fails for every prior and every equilibrium.

The rationale underlying the statement of Theorem 1 is as follows. The public

belief gravitates toward one of the firms, say Firm 0, providing it with an oppor-

tunity to set a positive deterrence price that will drive the other firm out of the

market, in which case learning stops. Raising the price above the deterrence price

will drive the ultra-marginal consumers away from Firm 0 but will increase its profit

from the rest of the consumers. The condition of vanishing margins captures the

case where such an increase is always profitable, and therefore, learning continues.

Note that whenever asymptotic learning fails, only one firm, possibly the inferior

one, prevails. This implies that consumers may consistently buy the inferior product

with positive probability. However, when asymptotic learning holds, consumers

and firms eventually learn the superior product. Does this imply that they will

eventually buy from this firm or will the other firm be able to attract consumers

periodically by offering low prices? In Corollary 1 we show that the former outcome

holds and the probability of buying from the superior firm converges to one when

asymptotic learning occurs.8

Corollary 1. Let (σ, τ0, τ1) be a myopic Bayesian Nash equilibrium. If asymptotic

learning holds, then conditional on state ω ∈ Ω,

lim
t→∞

P(σ,τ0,τ1)({σ̄(ht)(s, (τ0, τ1)) = ω}|ω) = 1.

8In some variants of the herding model, such as those studied in Mueller-Frank (2012, 2016); Koren

and Mueller-Frank (2022), asymptotic learning does not entail asymptotic efficiency.
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Corollary 1 follows from the proof of our main theorem and its proof is relegated

to Appendix D.

In Theorem 1 we distinguish between vanishing and nonvanishing margins. One

may ask whether this condition is robust in the sense that will consumers learn

the identity of the superior firm with high probability when the proportion of the

consumers in the tail is small enough, but not zero. Our next result shows that

this transition is continuous. Namely, as margins become thinner the associated

thresholds approach zero and one. This, in turn, implies that the probability of

herding on the optimal firm approaches one. To capture the notion of “thinner

margins” we consider the density at
¯
α. A similar definition and result can be

obtained for ᾱ.

Definition 5. An information structure exhibits the δ-margins property, for δ > 0,

if g0(
¯
α) ≤ δ.

Let µ̄ be the upper deterrence threshold of an information structure with non-

vanishing margins. This is the smallest prior such that, for every µ ≥ µ̄, deterrence

occurs in Γ(µ).9

Proposition 1. For any ε > 0 and
¯
α, ᾱ > 0, there exists δ = δ(ε,

¯
α) > 0 such that

if the information structure exhibits the δ-margins property, then the deterrence

threshold satisfies µ̄ > 1− ε.

The proof of Proposition 1 is relegated to Appendix E.

3 The Proof of Theorem 1

In the proof of Theorem 1 we rely on the analysis of the following three-player stage

game Γ(µ). The game comprises two firms and a single consumer and is derived

from our sequential game by restricting the game to a single period. That is, in Γ(µ)

the state is realized according to the prior µ (state 0 is realized with probability

µ and state 1 with probability 1 − µ). The two firms post a price simultaneously

(possibly at random) and a single consumer receives a private signal in accordance

with (F0, F1, S). Based on his private signal and the realized vector of prices, the

consumer takes an action a ∈ {0, 1, e}. The utility for the consumer is determined

by equation (1) and the utility for the firms is determined by equation (2).10

To guarantee the existence of an equilibrium, we allow firms to use mixed strate-

gies. A mixed strategy for firm i is denoted by ϕi ∈ ∆[0, 1]. For a strategy profile

ϕ = (ϕ0, ϕ1, σ), let Prϕ,µ be the probability over Ω× [0, 1]2 ×S; the state, the price

vector, and the signal set S are induced by ϕ, µ, and F0, F1, respectively.

9Theorem 2, below, shows that whenever the information structure exhibits nonvanishing margins,

µ̄ < 1.
10This auxiliary stage-game model is reminiscent of a few models from the IO literature such as the

duopolistic competition model with horizontal differentiation due to Hotelling (1929) (see chapter 7 in

Tirole, 1988).
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The Consumer’s Best Reply

Given a prior µ and a pair of prices (τ0, τ1), we let vµ(τ0, τ1) ∈ [α, α] be the threshold

in terms of the private belief above which Firm 0 is the unique best reply for the

consumer. That is, choosing Firm 0 is uniquely optimal for the consumer if and only

if p(s) > vµ(τ0, τ1). A precise functional form of vµ(τ0, τ1) is derived in equation (6)

in Appendix A. We can therefore suppress the behavior of the consumer, which,

under Assumption 1, is determined uniquely for every price vector (τ0, τ1) and

almost every signal realization s ∈ S. Thus, we henceforth suppress the reference

to the strategy of the consumer when we describe equilibrium strategies.

The Firms’ Best Reply

We can write the expected profit of Firm 0 in the game Γ(µ) for the price vector

τ = (τ0, τ1) as follows:

Π0(τ0, τ1, µ) =

(µ (1−G0(vµ(τ0, τ1)) + (1− µ) (1−G1(vµ(τ0, τ1))) τ0,
(3)

where (µ (1−G0(vµ(τ0, τ1)) + (1− µ) (1−G1(vµ(τ0, τ1))) is the probability that

the consumer buys from Firm 0 given the price vector (τ0, τ1). A similar equation

can be derived for Π1(τ0, τ1, µ), the profit of Firm 1.

We make a distinction between two forms of perfect Bayesian Nash equilibria

of the game Γ(µ): a deterrence equilibrium, where one of the firms is deterred and

sells its product with probability zero, and a non-deterrence equilibrium, where both

firms sell with positive probability. That is,

Definition 6. Let (ϕ0, ϕ1) be a SPE of Γ(µ). Say that firm j is deterred if

Prϕ,µ(σ(µ, s, τ) = j) = 0.

In case one of the firms is deterred we refer to (ϕ0, ϕ1, σ) as a deterrence equilib-

rium.11

We next study the properties of a deterrence equilibrium in the game Γ(µ). We

denote the consumer’s posterior belief after observing the signal s by pµ(s). It

follows readily from Bayes’ rule that

pµ(s) =
µp(s)

µp(s) + (1− µ)(1− p(s))
.

Since p(s) ∈ [
¯
α, ᾱ] the above equation implies that pµ(s) ∈ [

¯
αµ, ᾱµ], where

¯
αµ =

µ
¯
α

µ
¯
α+ (1− µ)(1−

¯
α)

and ᾱµ =
µᾱ

µᾱ+ (1− µ)(1− ᾱ)
.

Thus
¯
αµ represents a tight lower bound on the posterior probability that the con-

sumer assigns to Firm 0 being the superior firm. Similarly, ᾱµ represents a tight

upper bound on the posterior probability that the consumer assigns to Firm 0 being

11Note that in any SPE at most one firm is not deterred. Otherwise, both firms’ expected profit would

be zero. This is impossible since the a priori preferred firm can guarantee a positive expected profit,

regardless of the other firm’s strategy, by setting a sufficiently low positive price.
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the superior firm. Assume that µ ≥ 1
2 and consider a price vector (τ0, τ1) where

τ0 = 2
¯
αµ − 1. In this case the expected profit of a consumer who buys from Firm 0

is at least
¯
αµ − τ0 =

¯
αµ − (2

¯
αµ − 1) = 1−

¯
αµ. By contrast, the expected profit of a

consumer who buys from Firm 1 is at most (1 −
¯
αµ) − τ1 ≤ 1 −

¯
αµ. Therefore, by

setting a price τd0 := 2
¯
αµ− 1 Firm 0 guarantees that the consumer buys its product

even if Firm 1 gives away its product for free (namely, even when τ1 = 0). The

following proposition shows that, indeed, in a deterrence equilibrium where Firm 1

is deterred the price of Firm 0 will be 2
¯
αµ − 1. A symmetric claim holds for Firm

1.

Hereafter we abuse notation and write ϕ1 = τi to denote a pure strategy of firm

i that assigns probability one to the price τi.

Proposition 2. Assume that (ϕ0, ϕ1) is a deterrence equilibrium in Γ(µ); then

either

Firm 1 is deterred, ϕ0 = 2
¯
αµ − 1, Π0(ϕ0, ϕ1) = 2

¯
αµ − 1, and

¯
αµ ≥ 1

2
; or

Firm 0 is deterred, ϕ1 = 1− 2ᾱµ, Π1(ϕ0, ϕ1) = 1− 2ᾱµ, and ᾱµ ≤ 1

2
.

As a corollary of Proposition 2 we have

Corollary 2. If (ϕ0, ϕ1) is a deterrence equilibrium where firm i is deterred, then

for j ̸= i it holds that Prϕ,µ(σ(µ, s, τ) = j) = 1.

Thus, whenever one firm is deterred, the other firm takes full control of the

market and sells its product with probability one.

The following theorem summarizes the main characteristics of equilibria in the

stage game Γ(µ). This characterization is the driving force behind the proof of

Theorem 1.

Theorem 2. Let µ ∈ (0, 1) and let (ϕ0, ϕ1, σ) be a Bayesian Nash subgame perfect

equilibrium of the game Γ(µ):

1. If signals are unbounded, then no firm is deterred.

2. If signals are bounded and exhibit the vanishing margins property, then no firm

is deterred.

3. If signals are bounded and do not exhibit the vanishing margins property, then

(a) If g1(
¯
α) > 0, then for some sufficiently high prior µ̄ ∈ (0, 1), Firm 1 is

deterred when µ > µ̄.

(b) If g0(ᾱ) > 0, then for some sufficiently low prior
¯
µ ∈ (0, 1), Firm 0 is

deterred when µ <
¯
µ.

To see why Theorem 2 is correct, assume without loss of generality that Firm 0

is the a priori preferred firm and offers the deterrence price, τd0 . The only possible

profitable deviation is a price increase. Such a deviation will have two offsetting

effects. On the one hand, it will increase the profit per sale but on the other hand it

will result in a loss of market share, in particular a loss of consumers whose signal is

least favorable toward Firm 0. When the vanishing margins condition is satisfied the
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loss of market share is insignificant and is compensated by the profit per sale and so

a price increase is profitable. By contrast, when the vanishing margins condition is

not satisfied and the public belief is sufficiently skewed toward Firm 0, the market

share loss becomes the dominant effect and the deviation is not profitable.

We relegate the proof of Theorem 2 and the complete analysis of the above stage

game to Appendices A and B, respectively.

The Limit Arguments

In the following lemma, which is a direct implication of Definition 1, we connect the

stage game with the sequential model.

Lemma 1. A strategy profile (ϕ̄0, ϕ̄1, σ̄) constitutes a myopic Bayesian Nash equi-

librium if and only if for every time t, and for almost every history ht ∈ Ht that is

realized in accordance with P(ϕ̄0,ϕ̄1,σ̄), the tuple (ϕ̄0(ht), ϕ̄1(ht), σ̄(ht)) is a subgame

perfect equilibrium (SPE) of Γ(µt).

The strong connection of Γ(µ) to our sequential game allows us to derive some

insight into information aggregation from the subgame perfect equilibrium proper-

ties of Γ(µ), which we analyze next. We note that, under Assumption 1, in every

perfect Bayesian Nash equilibrium of the game Γ(µ), the strategy σ prescribes a

unique action for the consumer almost everywhere.

The proof of Theorem 1 leverages the results of Theorem 2 and connects the

possibility of deterrence to asymptotic learning. Consider the case where signals

exhibit vanishing margins. Theorem 2 tells us that at every stage t, no firm is

deterred in Γ(µt) and so the consumer’s actions are actually informative of his

signal. This, in turn, implies that the public belief keeps evolving, which, by similar

arguments to those underlying the results of Smith and Sørensen (2000), leads to

asymptotic learning. On the other hand, assume learning is possible when signals do

not exhibit vanishing margins. This means that eventually the public belief will be

sufficiently in favor of the superior firm. This, by Theorem 2, the superior firm will

price sufficiently aggressively to deter the other firm. In other words, all consumers

in the stage game will necessarily buy from the aggressive firm, actions will then be

uninformative, and learning will stall. Note that when prices are set exogenously

this cannot happen.

We now turn to the formal proof of Theorem 1. We start with the following

corollary of Lemma 6 (the proof can be found in Appendix B).

Corollary 3. If signals exhibit vanishing margins or if signals are unbounded, then

for every ε > 0 there exist some r >
¯
α and δ′ > 0 such that if µ ∈ [ε, 1 − ε] and

ϕ = (ϕ0, ϕ1) is a SPE of Γ(µ), then

Pµ,ϕ(vµ(τ0, τ1) ≥ r) > δ′.

A similar condition holds for Firm 1.

In words, by Theorem 2, if signals exhibit vanishing margins or if signals are

unbounded, then the probability of a consumer going against the herd is positive.

Corollary 3 argues that this probability cannot be arbitrarily close to zero if the

prior is bounded away from the edges.
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Proof of Theorem 1. We start the proof of Theorem 1 by showing that if the

information structure (F0, F1, S) does not exhibit vanishing margins, then the mar-

tingale of the public belief must converge to an interior point. Indeed, let us assume

without loss of generality that g1(
¯
α) > 0. Let (ϕ̄0, ϕ̄1, σ̄) be a myopic equilibrium.

By Lemma 1, for almost every history ht ∈ Ht that is realized in accordance with

P(ϕ̄0,ϕ̄1,σ̄), the profile (σ̄(ht), ϕ̄0(ht), ϕ̄1(ht)) is a SPE of Γ(µt). By Theorem 2, there

exists µ̄ such that, for all µ ∈ (µ̄, 1), there is a unique Bayesian Nash subgame per-

fect equilibrium of Γ(µ) in which the consumer chooses Firm 0 almost everywhere

(i.e., Firm 1 is deterred by Firm 0). This implies that if µt ∈ (µ̄, 1], then µt+1 = µt

almost everywhere. We note that since signals are never fully informative it must

be the case that µt < 1 for all t (almost everywhere). Therefore, if the vanishing

margins property does not hold then asymptotic learning fails.

Next we show that if the vanishing margins property holds, then the public belief

martingale converges to a limit belief in which the true state is assigned probability

one. By Lemma 1, (ϕ̄0(ht), ϕ̄1(ht), σ̄(ht)) is a SPE of Γ(µt) for P(ϕ̄0,ϕ̄1,σ̄) in almost

every history ht ∈ Ht. Corollary 3 implies that if µt ∈ [ϵ, 1− ϵ] then for some δ′ > 0

and r >
¯
α, the realized price vector (τ0, τ1) satisfies vµt(τ0, τ1) ≥ r with probability

at least δ′.

Since the distributionG0(·) first-order stochastically dominatesG1(·) (see Lemma

14 in Appendix D), under any such price vector (τ0, τ1) there exists a probability

at least G0(r) > 0 that the consumer will not buy from Firm 0. Note that (again

by Lemma 14)
G0(vµt(τ0, τ1))

G1(vµt
(τ0, τ1))

≤ G0(r)

G1(r)
= β < 1.

Therefore, it follows from Bayes’ rule that with probability at least G0(r)δ
′ the

public belief µt+1 satisfies

µt+1

1− µt+1
=

µt

1− µt

G0(vµt
(τ0, τ1))

G1(vµt(τ0, τ1))
≤ µt

1− µt
β. (4)

Hence, in particular, if µt ∈ [ϵ, 1 − ϵ] then there exists a positive constant η > 0

such that |µt+1 − µt| > η, with probability at least G0(r)δ.

By the martingale convergence theorem, the limit µ∞ = limt→∞ µt exists. By

the above argument µ∞ ∈ {0, 1} almost everywhere. This shows that asymptotic

learning holds.

4 Social Learning and Farsighted Firms

In this section we show that by and large our result carries through to a setting

where the firms are farsighted and maximize a discounted expected revenue stream.

We extend our sequential model to the non-myopic case by defining the non-myopic

sequential consumption game. In this model, as in the myopic case, each firm sets a

price in every time period, except that now each firm tries to maximize its discounted

sum of the stream of payoffs. We still retain the perfection assumption with respect

to consumers.
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Let Πδ
i (ϕ̄0, ϕ̄1, σ̄) denote the repeated game and (ϕ̄0, ϕ̄1, σ̄) be a strategy profile

in it. The expected payoff to firm i when the discount factor is δ > 0 is

Πδ
i (ϕ̄0, ϕ̄1, σ̄) = E(ϕ̄0,ϕ̄1,σ̄)

(
(1− δ)

∞∑
t=1

δt−1Πt
i(ϕ̄0(ht), ϕ̄1(ht), σ̄(ht)|ht)

)
.

We define a Bayesian Nash equilibrium as follows.

Definition 7. A strategy profile (ϕ̄0, ϕ̄1, σ̄) constitutes a Bayesian Nash equilibrium

if:

� For every i = 1, 2 and every strategy ψ̄i of firm i,

Πδ
i (ϕ̄i, ϕ̄−i, σ̄) ≥ Πδ

i (ψ̄i, ϕ̄−i, σ̄).

� For every time t, almost every history ht ∈ Ht that is realized in accordance

with P(ϕ̄0,ϕ̄1,σ̄), every price vector (τ0, τ1) ∈ [0, 1]2, and every decision rule

σ ∈ A , the following condition holds:

Ut(τ0, τ1, σ̄(ht)|ht) ≥ Ut(τ0, τ1, σ|ht).

In the repeated interaction case the key impediment to asymptotic learning is

that firms collude and “split” the market. This can happen when the discount

factor is close enough to one and, say, in even-numbered time periods Firm 1 asks

for a very high price and Firm 0 takes the full market (by playing
¯
αµt

) and in odd-

numbered time periods Firm 0 asks for a very high price and Firm 1 takes the full

market. Indeed, under this strategy profile, learning stops. This sort of equilibrium,

however, is ruled out by the Markovian property that will be defined next.

Definition 8. A strategy ϕ̄i of firm i is calledMarkovian if there exists a measurable

function ψi : [0, 1] → ∆([0, 1]) such that for every strategy of the other firm j and

the consumer (ϕ̄j , σ̄) it holds, for every time t, that ϕ̄i(ht) = ψi(µt) for almost

every history ht ∈ Ht that is realized in accordance with P(ϕ̄0,ϕ̄1,σ̄). A Markovian

equilibrium is a Bayesian Nash equilibrium (ϕ̄0, ϕ̄1, σ̄) such that ϕ̄0 and ϕ̄1 are

Markovian strategies.

Here we focus our analysis on Markovian equilibria. Let (ϕ̄0, ϕ̄1, σ̄) be a strategy

profile, let ht ∈ Ht, and denote by Πδ
i (ϕ̄0, ϕ̄1, σ̄|ht) the continuation payoff to firm

i in the subgame starting in history ht ∈ Ht. Note that in a Markovian equilib-

rium there exists a measurable function Vi : [0, 1] → [0, 1] such that one can write

Πδ
i (ϕ̄0, ϕ̄1, σ̄|ht) = Vi(µt) for almost every history ht that is realized in accordance

with P(ϕ̄0,ϕ̄1,σ̄). Thus the continuation payoff of firm i at time t depends only on

the public belief µt. By Definition 7, if (ϕ̄0, ϕ̄1, σ̄) constitutes a Bayesian Nash

equilibrium, then ϕ̄i maximizes the continuation payoff Πδ
i (ϕ̄0, ϕ̄1, σ̄|ht) of firm i for

almost every history ht ∈ Ht that is realized in accordance with P(ϕ̄0,ϕ̄1,σ̄).

The use of Markovian strategies is common in economics. In our case Markovian

strategies rule out tit-for-tat strategies and hence reflect the idea that firms are

competing rather than colluding.12 Indeed, under Markovian strategies prices are

12In a different setting Bhaskar et al. (2013) demonstrate that all equilibria that are robust to payoff

perturbations are Markovian.
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functions of the public belief only and so firms cannot rely on the calendar time. We

note, however, that even when restricting attention to Markovian strategies public

randomization may serve as a coordination device that the firms can use to split

the market. In fact, public randomization drives folk theorem results such as those

obtained in Yamamoto (2019). Our model does not include public randomization.

We next discuss another possibility that may lead to failure of learning. Consider

signals with
¯
α and ᾱ that are close enough to 1

2 and thus the signals are sufficiently

uninformative. In such a case there exist strategy profiles such that in every time

period both firms achieve a positive payoff but for every pair of realized prices

(τ0, τ1) in the support of the two strategies only a single firm takes the full market.

Thus, while there exists a positive probability for every firm to extract a positive

payoff, for every realized pair of prices (τ0, τ1) consumers buy from a unique firm i

with probability one, and therefore learning stops.

Such strategies cannot constitute a Markovian equilibrium since one can show

that, for one of the firms, one price in the support yields a zero payoff in the stage

game and so this firm could deviate by assigning probability zero to this price.

However, what firms could potentially do is to play a strategy that approximates

the aforementioned strategies so that for every pair of realized prices (τ0, τ1) in the

support of the two strategies only a single firm takes the full market with very

high probability that is less than one. In such strategies the public belief may keep

slightly and vanishingly changing. This change in the public belief could serve as a

calendar time that will be used by the firm to collude. To rule out this possibility

we have added the requirement that signals satisfy
¯
α < 1

3 and ᾱ > 2
3 .

We can now state our first result for farsighted firms.

Theorem 3. Consider a bounded information structure (F0, F1, S) that exhibits

the vanishing margins property. Asymptotic learning holds for any discount factor

δ < 1 in every pure Markovian equilibrium. If, in addition,
¯
α < 1

3 and ᾱ > 2
3 ,

then asymptotic learning holds for any discount factor δ < 1 in every Markovian

equilibrium.

We next outline the proof of Theorem 3. We first show that if
¯
α < 1

3 and

ᾱ > 2
3 holds, then in every Markovian equilibrium where µt ≥ 1

2 , the identity of the

dominant firm in any strategy profile as above is determined only by the realized

price τ0 of Firm 0 (see Lemma 10). That is, for any realized price τ0 it is the case

that either almost all consumers buy from Firm 0 or almost all consumers buy from

Firm 1. This property implies that in the case where limt→∞ µt ≥ 1
2 the profit for

Firm 1 must approach zero as t goes to infinity. Otherwise, Firm 0 can eventually

make a profitable deviation (see Lemma 11). Thus the only way that learning can

stop is for one firm to take full control of the market from some time t onwards.

In order to rule out this possibility, we need to show that the public belief

µt ∈ (0, 1) never reaches a point where one of the firms takes over the market and

plays the deterrence price from time t onwards. This case is ruled out when signals

have vanishing margins. The reason for this is that the leading firm can slightly

increase the price for the product above the deterrence price and then play again the

corresponding deterrence price from the next period onward. This is a profitable

deviation since the firm increases its current period profit since the deterrence price
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is not optimal in the one-stage game and also increases its continuation payoff since

the deterrence price profit is convex (see Lemma 9).

For the converse direction we establish the following weaker result.

Theorem 4. If signals are bounded and do not exhibit vanishing margins, then

asymptotic learning fails for any discount factor δ > 0 in every pure Markovian

equilibrium.

We prove Theorem 4 by way of contradiction. We show that if asymptotic

learning holds then with positive probability the belief martingale µt reaches a point

that is arbitrarily close to either zero or one such that the expected continuation

payoff of the dominating firm i is bounded by Vi(µt) + CE|µt − µt+1| for some

constant C > 0. We then show, as in the myopic case, that the dominating firm

makes a profitable deviation to the deterrence price where all consumers buy its

product with probability one.

The proofs for Theorem 3 and Theorem 4 are relegated to Appendix C.

5 Discussion

We now turn to discuss three natural questions that arise from our model and

analysis:13

� Do our conclusions hold when the differentiability assumption on the signal

distribution (Assumption 1) is relaxed?

� Is Blackwell order consistent with asymptotic learning?

� What if, instead of profit maximizing firms, the price pairs are set by a social

planner who wishes to maximize welfare?

5.1 General Signals

Throughout the analysis we have restricted our attention to information structures

(F0, F1, S) that satisfy Assumption 1. In many applications this assumption fails to

hold. In particular, Assumption 1 does not hold when the set of signals is countable

or finite. It is therefore important to understand whether our condition can be

stated more generally to capture all signal distributions.

Fortunately, it turns out that such a general condition does exist. Let (F0, F1, S)

be a general signal distribution and let Gω be the CDFs of the posterior beliefs, as

defined in Section 2. Define g0, g1 ∈ [0,∞] as follows:

g0 = lim inf
x→

¯
α+

G0(x)

x−
¯
α

and g1 = lim inf
x→ᾱ−

1−G1(x)

ᾱ− x
.

Obviously, g0, g1 are both well defined. Note that g0 is defined using the limit from

the left (x→
¯
α+) whereas g1 uses the limit from the right (x→ ᾱ−).

We can now state the more general condition for vanishing margins as follows.

Definition 9. The information structure (F0, F1, S) satisfies vanishing margins if

g0 = g1 = 0.

13We thank the anonymous reviewers for raising these questions.
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Note that if (F0, F1, S) satisfies Assumption 1, then the condition in Definition

9 coincides with the condition in Definition 4. Moreover, note that for finite signal

distribution we have g0 = g1 = ∞, and thus vanishing margins fails. Our results

for myopic firms hold verbatim under the more general definition of vanishing mar-

gins.14

We omit the proofs for the general setting but note that the underlying ideas for

the proofs are similar whereas their exposition becomes more cumbersome.15 The

primary reason for this is that with an arbitrary information structure the consumer

can be indifferent between two options (e.g., indifferent between the two products

or between a product and exiting) with positive probability. Therefore, given a

price pair, the consumer may have more than one best reply. In addition, it is not

necessarily the case that any such best reply induces a two-player game between

the firms that admits an equilibrium. The underlying reason is that the consumer

strategy may lead to discontinuity in firms’ payoffs as a function of prices. Under

Assumption 1 the consumer has a unique best reply almost everywhere and such

discontinuity can be ignored.

An additional challenge posed by the aforementioned discontinuity pertains to

the mere existence of an equilibrium in Γ(µ). Absent this equilibrium, our results

become vacuous. Fortunately, we can use the result of Reny (1999) to overcome

this.

Consider the following specific best-reply consumer strategy: whenever a con-

sumer is indifferent between buying from one firm and the outside option he always

chooses to buy from the firm. Whenever a consumer is indifferent between buying

from Firm 0 and Firm 1, and his expected utility from purchasing a product is at

least zero, he chooses the firm that is a priori preferred. That is, in this case he

chooses Firm 0 whenever µ ≥ 1
2 and Firm 1 whenever µ < 1

2 . In all other cases he

strictly prefers one alternative and therefore chooses this alternative.

Under this consumer strategy, game Γ(µ) satisfies Reny’s (1999) better-reply

secure condition for any µ ∈ [0, 1]. Theorem 3.1 in Reny (1999) thus guarantees the

existence of a mixed subgame perfect equilibrium in Γ(µ).

5.2 Blackwell Ordering and Social Learning

In a classic paper, Blackwell (1953) defines a partial order over information struc-

tures. Roughly speaking, one information structure Blackwell dominates another

if the superior information structure can be derived from the inferior information

structure by virtue of having an additional signal. Blackwell shows that this order

is consistent with the Bayesian decision maker’s utility for all decision problems

over the underlying state space. That is, one information structure Blackwell dom-

inates another if and only if for any decision problem the Bayesian decision maker

is (weakly) better off with the dominant one. A natural question is whether the

Blackwell order is consistent with asymptotic learning.

14Although we have not written a rigorous proof for the case where firms are farsighted, we believe

that the results carry through.
15A previous version of the paper with general signals, including all proofs, is available online at

http://bit.ly/SLPricingMK.
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Surprisingly, the answer is no. To see this, it is enough to show that the vanishing

margins condition is inconsistent with Blackwell ordering. This is demonstrated

next.16

Consider the following two information structures. G1 induces a posterior dis-

tribution that is equal to the uniform distribution on [ 14 ,
3
4 ]. Thus [α, α] = [ 14 ,

3
4 ]

and G1 is obtained using a constant density of g1 = 2 over [ 14 ,
3
4 ]. G2 induces a

posterior distribution that is obtained from a triangular density g2 that is equal to

16x− 4 on [ 14 ,
1
2 ] and −16x+ 12 on [ 12 ,

3
4 ].

We note that g11(
1
4 ), g

1
0(

3
4 ) > 0 whereas g21(

1
4 ) = g20(

3
4 ) = 0. Thus G1 does not

satisfy the vanishing margins condition and G2 does satisfy the vanishing margins

condition. By contrast, G1 Blackwell dominates G2. This holds true since G1

is a mean-preserving spread of G2 (this can be easily verified through a simple

calculation).

Paradoxically, when society does not asymptotically learn (as in G1) the con-

cealment of some information from the consumers (as in G2) may lead to an im-

provement for society since it will now asymptotically learn.17

5.3 The Planner’s Problem

In our model the price pair, at each stage, is driven by the two profit-maximizing

firms. Alternatively, one could study a model where the price pair is set, at each

stage, by a social planner. The planner has access to the same information as the

firms do but wants to maximize social welfare, as measured by the discounted sum

of utilities (see Smith et al., 2017). One could then study necessary and sufficient

conditions on the information structures for the planner to asymptotically learn the

realized state. In particular, one could ask whether, the vanishing margins condition

is instrumental for learning in this case as well.

Apparently, the vanishing margins condition does not characterize asymptotic

learning in the planner’s problem. To get some intuition, recall the observation in

Section 5.2 that the vanishing margins condition does not respect Blackwell ordering.

Thus asymptotic learning may fail for a certain information structure but carry

through for another information structure that is inferior in the Blackwell-ordering

sense. We argue that this does not hold in the planner’s problem. This follows

from the fact that if the planner stopped experimenting at a certain prior µ > 1
2 for

the superior information structure, then he cannot guarantee a social welfare that

is higher than µ starting at the prior µ.18 Since the planner is always better off

under the superior information structure, he cannot guarantee more than µ with

respect to the inferior information structure. Thus he must stop experimenting

also in the problem where the consumer’s private information is obtained from the

inferior information structure.

16We thank the coeditor for pointing out this inconsistency and suggesting the example.
17By contrast, unbounded signals do respect the Blackwell ordering.
18If the planner stops experimenting at µ, then all the consumers will buy the product of Firm 0,

which generates a welfare of µ.
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A Proofs of the Stage Game

A.1 Equilibrium Analysis of Γ(µ)

We begin by studying the consumer’s best-reply strategy in Γ(µ). Recall that the

consumer’s posterior belief after observing the signal s is pµ(s) =
µp(s)

µp(s)+(1−µ)(1−p(s)) .

Fix a price vector τ = (τ0, τ1) and note that the consumer optimizes his expected

utility against τ if he follows the following strategy:

σ(µ, s, τ) =


a = 0 if pµ(s)− τ0 ≥ max{(1− pµ(s))− τ1, 0}

a = 1 if (1− pµ(s))− τ1 ≥ max{pµ(s)− τ0, 0}

a = e otherwise.

(5)

Every realized price vector (τ0, τ1) induces two possible market scenarios. One is

fully covered market scenario, where, under σ, the consumer never uses the outside

option e and always buys from one of the firms for almost all signal realizations.

The other is a partially covered market scenario, where σ(µ, s, τ) = e holds with

positive probability. We can infer from (5) that when the market is fully covered,

the consumer buys from Firm 0 whenever pµ(s)−τ0 ≥ (1−pµ(s))−τ1 and when the

market is not fully covered, the consumer buys from Firm 0 whenever pµ(s)−τ0 ≥ 0.

Given a prior µ and a pair of prices (τ0, τ1), recall that vµ(τ0, τ1) is the threshold

in terms of the private belief above which buying from Firm 0 is the unique best-

reply of the consumer. That is, choosing Firm 0 is uniquely optimal for the consumer

if and only if p(s) > vµ(τ0, τ1). One can easily see from the above equations that

vµ(τ0, τ1) has the following form:

vµ(τ0, τ1) =


(1−µ)(1+τ0−τ1)

2µ−(2µ−1)(1+τ0−τ1)
if the market is fully covered,

(1−µ)τ0
µ−(2µ−1)τ0

otherwise.
(6)

Note that vµ(τ0, τ1) is a continuous function of (µ, τ0, τ1).

We start with some preliminary results concerning equilibrium behavior in the

game Γ(µ).

For µ ∈ [0, 1] we use the following shorthand: Gµ(x) = µG0(x) + (1− µ)G1(x).

It follows by equation (3) that whenever the consumer’s strategy σ obeys equation

(5), the expected utility of Firm 0 in the game Γ(µ), Π0(τ0, τ1, σ), can be written

as follows:

Π0(τ0, τ1, σ) = (1−Gµ(vµ(τ0, τ1)))τ0. (7)

For a mixed strategy profile (ϕ0, ϕ1), let ϕ ∈ ∆([0, 1]× [0, 1]) be the price prob-

ability distribution (ϕ0, ϕ1) induced over [0, 1] × [0, 1]. By equation (7), Firm 0’s

payoff from the mixed strategy profile (ϕ0, ϕ1) can be written as follows:

Π0(ϕ0, ϕ1, σ) = Π0(ϕ0, ϕ1) =∫ (
µ(1−G0(vµ(τ0, τ1) + (1− µ)(1−G1(vµ(τ0, τ1))

)
τ0dϕ(τ0, τ1),

(8)

where vµ(·, ·) is defined as equation (6).
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The next lemma provides an alternative way to write vµ(τ0, τ1) and its derivative.

This will turn out to be useful in the sequel. Consider the following function v̄µ :

[0, 1]2 → R :

v̄µ(τ0, τ1) ≡

log(
1+τ0−τ1

2

1− 1+τ0−τ1
2

)− log( µ
1−µ )] if the market is fully covered,

log( τ0
1−τ0

)− log( µ
1−µ ) if the market is not full.

(9)

Lemma 2. It holds that

∂v̄µ(τ)

∂τ0
|τ∗(µ) =

 2
1−(τ0−τ1)2

if the market is fully covered,

1
τ0(1−τ0)

if the market is not full
(10)

and
∂vµ(τ)

∂τ0
=

ev̄µ(τ0,τ1)

(1 + ev̄µ(τ))2
∂v̄µ(τ0, τ1)

∂τ0
. (11)

Proof. The proof makes standard use of the log-likelihood ratio transformation (see,

e.g., Smith and Sørensen (Smith and Sørensen, 2000), Herrera and Hørner (Herrera

and Hörner, 2013), and Duffie et al. (Duffie et al., 2014)). The log-likelihood ratio

of a belief p ∈ [0, 1] is given by log( p
1−p ). In particular, the log likelihood ratio of

the posterior belief is

log(
pµ(s)

1− pµ(s)
) = log(

µ

1− µ
) + log(

p(s)

1− p(s)
). (12)

It follows from equation (6) that a consumer with private belief pµ(s) prefers Firm

0 if and only if

log(
pµ(s)

1− pµ(s)
) ≥ log(

vµ(τ)

1− vµ(τ0, τ1)
) = v̄µ(τ0, τ1).

Equation (11) then follows directly from the fact that vµ(τ) =
ev̄µ(τ)

1+ev̄µ(τ) .

The following simple observation will be useful in our analysis.

Observation 1. Let µ ∈ [0, 1] and let (ϕ0, ϕ1) be a SPE of Γ(µ). The following

properties hold:

ϕ0([2
¯
αµ − 1, 1]) = 1 and ϕ1([1− 2ᾱµ, 1]) = 1.

Proof. We prove the observation for Firm 0. Note that if
¯
αµ ≤ 1

2 we have nothing to

prove. Assume that
¯
αµ >

1
2 ; then, if τ0 = 2

¯
αµ−1, the consumer will buy from Firm

0 almost everywhere for almost every signal realization s and every price τ1 ≥ 0 of

Firm 1. To see this, note that pµ(s) >
¯
αµ for almost every signal s ∈ S. Therefore,

pµ(s)− (2
¯
αµ − 1) > 1− pµ(s).

This shows that for a price τ0 = 2
¯
αµ − 1 the consumer buys from Firm 0 almost

everywhere even for τ1 = 0. In particular, under any price τ0 ≤ 2
¯
αµ−1 the expected

profit of Firm 0 is τ0. Therefore, if
¯
αµ >

1
2 , the price 2

¯
αµ − 1 strictly dominates all

prices τ0 < 2
¯
αµ − 1 for Firm 0.
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A.2 Properties of Deterrence Equilibria

A key property of a deterrence equilibrium is given in the following lemma.

Lemma 3. Let (ϕ0, ϕ1) be a deterrence equilibrium in the game Γ(µ). If Firm 1 is

deterred, then
¯
αµ ≥ 1

2 . Symmetrically, if Firm 0 is deterred, then ᾱµ ≤ 1
2 .

In words, if firm i is driven out of the market (in the sense that the consumer

surely does not buy from it), it must be the case that the consumer’s posterior belief

assigns a probability of at most 1
2 that firm i is the superior firm.

Proof. Assume to the contrary that
¯
αµ <

1
2 and that (ϕ0, ϕ1) is a deterrence equilib-

rium in which Firm 1 is deterred. In this case Π1(ϕ0, ϕ1) = 0. Consider a deviation

of Firm 1 to the pure strategy τ1 =
1−2

¯
αµ

2 > 0. By equation (5) we can conclude

that any consumer whose signal falls in the set {s ∈ S|pµ(s) ∈ [
¯
αµ,

¯
αµ + ¯

αµ

2 + 1
4 )}

will choose Firm 1 almost everywhere for any equilibrium strategy ϕ0 for Firm 0.

Note that the set {s ∈ S|pµ(s) ∈ [
¯
αµ,

¯
αµ + ε)} has positive probability for every

ε > 0 and in particular for ε =
¯
αµ+ ¯

αµ

2 + 1
4 . Therefore this deviation entails a positive

expected utility for Firm 1 and hence a profitable deviation, thus contradicting the

equilibrium assumption.

We next turn to prove Proposition 2.

Proof of Proposition 2. Let us assume without loss of generality that Firm 1

is deterred and so
¯
αµ ≥ 1

2 (by Lemma 3). It follows from Observation 1 that

ϕ0([2
¯
αµ − 1, 1]) = 1. Assume by way of contradiction that ϕ0[2

¯
αµ − 1+ δ, 1] > 0 for

some positive δ > 0 and consider the price τ̃1 = δ
2 for Firm 1 (the deterred firm).

In this case, for any realized τ0 ∈ [2
¯
αµ − 1 + δ, 1], any consumer with a private

signal s such that pµ(s) ∈ [
¯
αµ,

¯
αµ + δ

4 ], an event whose probability is positive, will

buy from Firm 1, which, in turn, will have a positive utility. In the deterrence

equilibrium Firm 1’s utility is obviously zero and hence the price τ̃1 = δ
2 constitutes

a profitable deviation, thus contradicting the equilibrium assumption. Therefore

ϕ0[2
¯
αµ − 1 + δ, 1] = 0 for any δ > 0. Hence Firm 0 plays τ0 = 2

¯
αµ − 1 almost

everywhere, as claimed.

By Lemma 3, the condition
¯
αµ ≥ 1

2 is necessary in order for a deterrence equilib-

rium (in which Firm 1 is deterred) to exist. We now turn to study the implications

of this condition.

Lemma 4. If (ϕ0, ϕ1) is a non-deterrence Bayesian Nash SPE of Γ(µ), then the

following conditions hold: ϕ0((2
¯
αµ − 1, 1)) > 0, Π0(ϕ0, ϕ1, σ) ≥ 2

¯
αµ − 1, and

Π1(ϕ0, ϕ1) > 0. Symmetrically for Firm 1, ϕ1((1 − 2ᾱµ, 1)) > 0, Π1(ϕ0, ϕ1, σ) ≥
1− 2ᾱµ, and Π0(ϕ0, ϕ1) > 0.

Proof. We prove the first part of the lemma. Lemma 1 implies that ϕ0([2
¯
αµ−1, 1]) =

1.We further note that if (ϕ0, ϕ1) is a SPE profile for which ϕ0 is the Dirac measure

on 2
¯
αµ − 1, then Π0(ϕ0, ϕ1) = 2

¯
αµ − 1, which means that the consumer buys

from Firm 0 almost everywhere. Hence such an equilibrium must be a deterrence

equilibrium. Therefore, it must hold that ϕ0((2
¯
αµ − 1, 1)) > 0.

The fact that Π1(ϕ0, ϕ1) > 0 follows since, as in the proof of Proposition 2, if

ϕ0((2
¯
αµ − 1, 1)) > 0, then Firm 1 can guarantee a positive payoff against ϕ0.
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B Proof of Theorem 2

Unbounded signals

We begin the proof of Theorem 2, by studying the case of unbounded signals, i.e.,

where
¯
α = 0 and ᾱ = 1. The following corollary shows that whenever signals are

unbounded there cannot be a deterrence equilibrium. In fact all equilibria are non-

deterrence equilibria.

Corollary 4. If signals are unbounded then there are no deterrence equilibria in

Γ(µ).

Proof. Since ᾱ = 0 and
¯
α = 1 it follows that

¯
αµ = 0 and ᾱµ = 1. The proof now

follows from Lemma 3.

Bounded signals with vanishing margins

We now consider the case where signals are bounded, i.e.,
¯
α, ᾱ ∈ (0, 1), and signals

exhibit the vanishing margins property, i.e., g1(
¯
α) = 0. In the following lemma we

show that the vanishing margins property also yields that g0(
¯
α) = 0.

Lemma 5. If the information structure (F0, F1, S) exhibits vanishing margins then

g0(
¯
α) = 0.

Proof. Since the vanishing margins condition holds we have that g1(
¯
α) = 0. Assume

to the contrary that g1(
¯
α) < g0(

¯
α). Since F0, F1 are absolutely mutually continuous,

there exists ε such that
∫
¯
α+ε

¯
α

g0(s)ds >
∫
¯
α+ε

¯
α

g1(s)ds ⇒ G0(
¯
α + ε) > G1(

¯
α + ε).

This stands in contradiction to Lemma 14 in Appendix D, which shows that G0

first order stochastically dominates G1.

The second part of Theorem 2 is proved in the following proposition.

Proposition 3. If the information structure (F0, F1, S) exhibits vanishing margins,

then for every µ ∈ (0, 1) there is no deterrence equilibrium in Γ(µ).

Proof. Without loss of generality assume that µ ∈ ( 12 , 1) and assume to the contrary

that there exists a deterrence equilibrium in Γ(µ). By Lemma 3, the only possible

deterrence equilibrium is one in which Firm 1 is deterred and by Proposition 2 it

must take the form of (2
¯
αµ − 1, ϕ1). Therefore, Π0(2

¯
αµ − 1, ϕ1) = 2

¯
αµ − 1. We first

claim that it is sufficient to show that

Π0(2
¯
αµ − 1 + ε, 0)−Π0(2

¯
αµ − 1, 0) > 0 (13)

for some ε > 0. To see this, note that Π0(2
¯
αµ − 1, ϕ1) = 2

¯
αµ − 1 for any mixed

strategy ϕ1 of Firm 1. In addition, for any fixed price τ0 of Firm 0 the payoff

Π0(τ0, τ1) is (weakly) decreasing in τ1. Therefore, the inequality in (13) implies

that Π0(2
¯
αµ − 1+ ε, ϕ1) > 2

¯
αµ − 1 for any mixed strategy ϕ1 of Firm 1. Therefore,

if 2
¯
αµ − 1 + ε yields a profitable deviation to Firm 0 against price τ1 = 0 it also

yields a profitable deviation with respect to any strategy ϕ1 of Firm 1.
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To establish equation (13) note that

∂Π0(τ0, 0)

∂τ0
|τ0=2

¯
αµ−1 =

1− (2
¯
αµ − 1)

(
∂vµ(τ0, 0)

∂τ0
|2
¯
αµ−1

)
(µg0(

¯
α) + (1− µ)g1(

¯
α)) .

(14)

Since vanishing margins holds, by Lemma 5 we have that g1(
¯
α) = g0(

¯
α) = 0.

Therefore equation (14) implies that

∂Π0(τ0, 0)

∂τ0
|τ0=2

¯
αµ−1 = 1.

Hence Π0(2
¯
αµ − 1 + ε, 0)−Π0(2

¯
αµ − 1, 0) > 0 for all sufficiently small ε > 0.

If a deterrence equilibrium does not exist then at each stage of our sequential

setting the actual action of the consumer will give us additional information and

the public belief will shift. Intuitively, this drives the learning result. However, it

turns out that this is not enough. Herrera and Hørner (Herrera and Hörner, 2013)

show that in the herding model the fact that µt ̸= µt+1 almost everywhere does not

imply that asymptotic learning holds. In order to establish asymptotic learning the

following stronger result is required.

Lemma 6. If the information structure (F0, F1, S) exhibits the vanishing margins

condition or signals are unbounded, then for every ε > 0 there exists δ > 0 such that

if µ ∈ [ϵ, 1 − ϵ] and ϕ = (ϕ0, ϕ1, σ) is a SPE of Γ(µ), then Pµ,ϕ(σ(τ0, τ1, s) = a) ≤
1− δ for any Firm i = 0, 1.

Note that Lemma 6 subsumes Proposition 3 in that under vanishing margins,

a deterrence equilibrium does not exist. This applies that there exists an upper

bound on the probability that the consumer buys from any given firm. This in turn

implies that if µ is bounded away from zero and one, then the distance between µ

and the posterior probability, conditional on the action of the current consumer, is

bounded away from zero.

Proof. We prove the lemma under the assumption that the information structure

(F0, F1, S) exhibits vanishing margins. The proof for the unbounded case is similar

and therefore omitted.

Assume by way of contradiction that there exists an ϵ > 0 and a sequence of

SPE ϕk = (ϕk0 , ϕ
k
1 , σk) of Γ(µk) such that µk ≤ 1− ϵ and

lim
k→∞

Pµk,ϕk(σk(τ0, τ1, s) = 0) = 1.

In words, as k increases, the prior approaches 1. We show that this entails that the

probability of the consumer buying from Firm 0 approaches 1 as well.

We can clearly assume (possibly by considering subsequences) that the sequence

{Πω(ϕ
k
0 , ϕ

k
1 , σk)}∞k=1 converges. Similarly, we can assume that {(ϕk0 , ϕk1 , µk)}∞k=1

converges to some19 (ϕ0, ϕ1, µ). As limk→∞ Pµk,ϕk(σk(a = 0)) = 1, the limit profit

of Firm 1 shrinks to zero:

lim
k→∞

Π1(ϕ
k
0 , ϕ

k
1 , σk) = 0.

19The convergence of ϕk
ω is assumed with respect to the weak topology.

26



It follows that the limit price of Firm 0, limk→∞ ϕk0 , is the pure deterrence price

2
¯
αµ − 1. To see this assume by way of contradiction that ϕ0((2

¯
αµ − 1 + η, 1)) > 0

for some η > 0. We claim that Firm 1 can guarantee a positive profit against ϕ0 by

playing τ ′1 = η
2 in Γ(µ). In this case, the consumers for whom pµ(s) ∈ [

¯
αµ,

¯
αµ + δ

4 )

will strictly prefer to buy from Firm 1. This yields a positive expected payoff that

is bounded away from zero, for all sufficiently large k. A contradiction to the fact

that (ϕk0 , ϕ
k
1 , µk) is a SPE for every k.

Consider the game Γ(µk) and the strategy profile (ϕk0 , ϕ
k
1) = (2

¯
αµk

− 1, ϕk1).

A standard continuity consideration implies that since ϕk = (ϕk0 , ϕ
k
1) is a SPE of

Γ(µk) and limk→∞(ϕk0 , ϕ
k
1 , µk) = (ϕ0, ϕ1, µ), it holds that (ϕ0, ϕ1) is a SPE of Γ(µ).

Therefore (ϕ0, ϕ1) = (2
¯
αµ−1, ϕ1). Under the price 2

¯
αµ−1, the consumer buys from

Firm 0 almost everywhere.

This yields that (ϕ0, ϕ1) is a deterrence equilibrium of Γ(µ), which stands in

contradiction to Proposition 2.

We get the following corollary of Lemma 6.

Corollary 3. If signals exhibit vanishing margins or if signals are unbounded, then

for every ε > 0 there exists some r >
¯
α and δ′ > 0 such that if µ ∈ [ε, 1 − ε] and

ϕ = (ϕ0, ϕ1) is a SPE of Γ(µ), then

Pµ,ϕ(vµ(τ0, τ1) ≥ r) > δ′.

A similar condition holds for Firm 1.

Bounded signals without vanishing margins

The following lemma shows that the consumer’s threshold signal approaches the

lower bound
¯
α as µ approaches 1 in every SPE.

Lemma 7. Let {µk}∞k=1 ⊆ (0, 1) be a sequence of priors such that limk→∞ µk = 1.

Let ϕk = (ϕk0 , ϕ
k
1 , σk) be a SPE for the game Γ(µk). Then the following holds for

every ϵ > 0 :

limk→∞Pµk,ϕk(vµk
(τ0, τ1) ∈ [

¯
α,

¯
α+ ϵ]) = 1.

Proof. Assume by way of contradiction that there exists some ϵ0 > 0 and δ > 0 for

which the following holds (possibly considering a subsequence):

limk→∞Pµk,ϕk(vµk
(τ0, τ1) ∈ [

¯
α,

¯
α+ ϵ]) < 1− δ.

This implies that the payoff to Firm 0 is at most 1− δG0(
¯
α + ϵ0) < 1. To see this

note that with a probability of at least δ > 0 it holds for sufficiently large k that

vµk
(τ0, τ1) >

¯
α + ϵ. Therefore, with probability at least δ the profit of Firm 0 is

bounded by 1−G0(
¯
α+ ϵ0). Therefore, the expected profit of Firm 0 is bounded by

δ(1−G0(
¯
α+ ϵ0)) + (1− δ) = 1− δG0(

¯
α+ ϵ0).

Since signals are bounded and limk→∞ µk = 1 it must hold, for sufficiently large

k, that

2
¯
αµk

− 1 > 1− δG0(
¯
α+ ϵ).
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In the game Γ(µk), consider a deviation by Firm 0 to the pure price τ0 = 2
¯
αµk

− 1.

Firm 0 then guarantees an expected revenue of

2
¯
αµk

− 1 > 1− δG0(
¯
α+ ϵ),

which implies a contradiction.

The following corollary shows that as µ approaches 1, it holds that for any SPE

of Γ(µ), the equilibrium price of Firm 0 approaches 1.

Corollary 5. Let {µk}∞k=0 ⊂ (0, 1) be a sequence of priors that converges to 1, and

let (ϕk0 , ϕ
k
1 , σk) be a SPE of Γ(µk) for any k. Then,

lim
k→∞

ϕk0 = 1.

Corollary 5 follows from Proposition 2 and Lemma 4.

The following lemma provides an upper limit to the support of Firm 1 in a

non-deterrence equilibrium.

Lemma 8. If (ϕ0, ϕ1) is a non-deterrence equilibrium, then ϕ0([2
¯
αµ − 1, ᾱµ]) = 1

and ϕ1([1− 2ᾱµ, 1−
¯
αµ]) = 1.

Proof. It follows from Proposition 2 that Π0(ϕ0, ϕ1) > 0. Note further that for

any price τ0 > ᾱµ the consumer would be strictly better off choosing e than buying

from Firm 0. Therefore, we must have that ϕ0((ᾱµ, 1]) = 0 for otherwise a profitable

deviation could have been constructed for Firm 0.

Finally, we present a proof of the third part of Theorem 2, which considers the

case of nonvanishing margins. In such a case, whenever the prior is sufficiently

biased in favor of one firm, there is a unique equilibrium in which the a priori

unfavorable firm is deterred.

Proposition 4. If g0(
¯
α) > 0, then ∃µ̄ ∈ (0, 1) such that any SPE of Γ(µ) is a

deterrence equilibrium for all µ > µ̄. Symmetrically, if g1(ᾱ) > 0, then ∃
¯
µ ∈ (0, 1)

such that any SPE of Γ(µ) is a deterrence equilibrium for all µ <
¯
µ.

Proof. We prove the first part of the proposition. The proof of the second part

follows from symmetric considerations.

Assume by way of contradiction that there exists a sequence of priors {µk} such

that limk→∞ µk = 1 and a corresponding sequence of SPEs, {(ϕk0 , ϕk1)}∞k=1, such

that ϕk = (ϕk0 , ϕ
k
1) is a non-deterrence equilibrium of Γ(µk) for all values of k.

Note that it must be the case that for almost every realized price τ0 (with respect

to ϕk0) of Firm 0,

Π0(τ0, ϕ
k
1) = Π0(ϕ

k
0 , ϕ

k
1)

(otherwise Firm 0 would have a profitable deviation).

Let τk0 be the highest price in the support of ϕk0 . It follows from the above that

Π0(τ
k
0 , ϕ

k
1) = Π0(ϕ

k
0 , ϕ

k
1). (15)

Since (ϕk0 , ϕ
k
1) is a non-deterrence equilibrium, Lemma 4 implies that ϕ0((2

¯
αµk

−
1, 1]) > 0 for all k ≥ 1.
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We next show that for all sufficiently large k there exists ε > 0 such that Π0(τ
k
0 −

ε, ϕk1)−Π0(τ
k
0 , ϕ

k
1) > 0.

We claim first that vµk
(τk0 , τ1) > ¯

α for almost every realized τ1 (with respect

to ϕk1). Assume that there exists a measurable subset T ⊂ [0, 1] with ϕk1(T ) > 0

such that vµk
(τk0 , τ1) =

¯
α for all τk0 . Since vµk

(τ0, τ1) is increasing in τ0 for every

fixed τ1, it follows from the definition of τk0 that vµk
(τk0 , τ1) = ¯

α for ϕk0 almost all

realized prices τk0 of Firm 0. Therefore, we must have that the profit of Firm 1,

conditional on τ1 ∈ T, is zero. By Lemma 4, Firm 1’s expected payoff under ϕk is

strictly positive, and hence we must have a profitable deviation for Firm 1.

Using equation (7) we can write

∂Π0(τ0, ϕ
k
1)

∂τ0
|τ0=τk

0
=∫ (

µk(1−G0(vµk
(τ0, τ1) + (1− µk)(1−G1(vµk

(τ0, τ1))
)
dϕk1(τ1)

− τk0

(
∂vµk

(τ0, τ1)

∂τ0
|τk

0

)(
µkg0(vµk

(τk0 , τ1)) + (1− µ)g1(vµk
(τk0 , τ1))

)
dϕk1(τ1).

(16)

Since limk→∞ µk = 1, it follows from Lemma 7 that

lim
k→∞

Pµk,ϕk
1
(vµk

(τk, τ
k
1 )− ¯

α > δ) = 0,

for any δ > 0.

Since the information structure (F0, F1, S) does not exhibit the vanishing mar-

gins property, it follows that g1(
¯
α) > 0 and, by Lemma 5, that g0(

¯
α) > 0. Therefore,

for some β > 0,

lim
k→∞

Pµk,ϕk
1
(µkg0(vµk

(τk0 , τ1)) + (1− µk)g1(vµk
(τk0 , τ1)) > β) = 1.

We further note that ϕk1([0, 1− ¯
αµk

]) = 1 by Lemma 8.

Since limk→∞ µk = 1 we have that limk→∞ ϕk1 = 0. Moreover, Corollary 5

implies that limk→∞ τk0 = limk→∞ ϕk0 = 1. Therefore, limk→∞(τk0 − τk1 )
2 = 1.

Hence equation (9) and equation (10) of Lemma 2 imply that

lim
k→∞

(
∂vµk

(τ0, τ
k
1 )

∂τ0
|τk

0

)
= ∞, (17)

for any choice of τk1 in the support of ϕk1 . Therefore, equation (16) implies that
∂Π0(τ0,τ1)

∂τ0
|τ0=τk

0
< 0 for all sufficiently large values of k. Hence, in particular, for all

sufficiently large values of k there exists a sufficiently small ε > 0 such that

Π0(τ
k
0 − ε, ϕk1)−Π0(τ

k
0 , ϕ

k
1) > 0.

Therefore equation (15) implies that for all sufficiently large k, Firm 0 has a prof-

itable deviation from ϕk0 . This stands in contradiction to the assumption that

(ϕk0 , ϕ
k
1) is an equilibrium strategy.

Theorem 2 consolidates Corollary 4, Proposition 3, and Proposition 4.
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C Proofs for the Farsighted Firms

We state a lemma that will prove useful for obtaining the results for farsighted firms.

Lemma 9. 2
¯
αµ−1 is a strictly convex and strictly increasing function of µ on [0, 1]

with a derivative that is bounded by
2(1−

¯
α)

(1−2
¯
α)2 .

Proof. Let

h(µ) = 2
¯
αµ − 1 = 2

µ
¯
α

µ
¯
α+ (1− µ)(1−

¯
α)

− 1. (18)

The first derivative of h(µ) is h′(µ) =
2
¯
α(1−

¯
α)

[µ(2
¯
α−1)+(1−µ)]2 , which is positive and bounded

by
2(1−

¯
α)

(1−2
¯
α)2 . This establishes that 2

¯
αµ − 1 is strictly increasing with a bounded

derivative.

The second derivative of h(µ) is

d2h(µ)

dµ2
=

4(1−
¯
α)

¯
α(2

¯
α− 1)

(µ(1− 2
¯
α)− (1−

¯
α))3

. (19)

Recall that
¯
α < 0.5 and so the numerator in equation (19) is negative. In addition,

as µ ≤ 1 we conclude that 1 −
¯
α > 1 − 2

¯
α ≥ µ(1 − 2

¯
α) and so the denominator of

(19) is also negative. Thus, d2h(µ)
dµ2 > 0 and so h(µ) must be strictly convex.

C.1 Proof of Theorem 3

Theorem 3 Consider a bounded information structure (F0, F1, S) that exhibits

the vanishing margins property. Asymptotic learning holds for any discount factor

δ > 0 in every pure Markovian equilibrium. If, in addition,
¯
α < 1

3 and ᾱ > 2
3 ,

then asymptotic learning holds for any discount factor δ > 0 in every Markovian

equilibrium.

We recall that for every Markovian equilibrium (ϕ̄0, ϕ̄1, σ̄) there exists func-

tions Vi : [0, 1] → R for i = 0, 1 such that the continuation payoff of firm i

Πδ
i (ϕ̄0, ϕ̄1, σ̄|ht) = Vi(µt) is a function of the public belief µt only.

We call a Markovian equilibrium dominant if

limt→∞ maxi∈{0,1} P(ϕ̄0,ϕ̄1,σ̄)(σ̄(ht)(τ0, τ1) = i|ht) = 1 with probability. Thus, in

a dominant equilibrium, when time goes to infinity, the conditional probability

that there exists a unique firm i that dominates the market approaches one. In

contrast with the myopic case where all equilibria are dominant, in the general case

an equilibrium may be non-dominant. However, one can easily show that if the

discount factor δ is sufficiently small, then all equilibria are dominant. In general,

we have

Lemma 10. Consider a bounded information structure (F0, F1, S) and let (ϕ̄0, ϕ̄1, σ̄)

be a Markovian equilibrium. If (ϕ̄0, ϕ̄1, σ̄) is a pure equilibrium or if
¯
α < 1

3 and

ᾱ > 2
3 , then (ϕ̄0, ϕ̄1, σ̄) is a dominant equilibrium.

It follows from Lemma 10 that in order to prove Theorem 3 it is sufficient to

show that if the vanishing margins condition holds, then asymptotic learning holds

in any dominant equilibrium. We first show the following claim.
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Claim 5. If (F0, F1, S) is a bounded information structure that exhibits the van-

ishing margins property and (ϕ̄0, ϕ̄1, σ̄) is a Markovian dominant equilibrium, then

mini=0,1 lim inft→∞ Vi(µt) = 0 holds with probability one.

Proof of the claim. Assume by way contradiction that the claim doesn’t hold

for some Marokovian dominant equilibrium (ϕ̄0, ϕ̄1, σ̄). Therefore, there exists a

positive-measure subset of histories for which lim inft→∞ Vi(µt) ≥ c > 0 for both

firms. This implies that with positive probability µ∞ ∈ [η, 1− η] for some constant

0 < η < 1
2 . To see this, note that otherwise we would have that limt→∞ µt ∈ {0, 1}

with probability one, which stands in contradiction to lim inft→∞ Vi(µt) ≥ c > 0 for

both firms. Let H̃ ⊆ H∞ be the set of histories for which limt→∞ µt = µ∞ ∈ [η, 1−η]
and lim inft→∞ Vi(µt) ≥ c > 0 for both Firms i. By our assumption it holds that

P(ϕ̄0,ϕ̄1,σ̄)(H̃) = r > 0.

Recall that one can write the continuation payoff of firm i given a history ht as

follows:

Vi(µt) = (1− δ)Πi(ϕ̄0, ϕ̄1, σ̄|ht) + δEϕ̄0,ϕ̄1,σ̄(Vi(µt+1)|ht). (20)

We claim that with positive probability it holds that

Eϕ̄0,ϕ̄1,σ̄(V0(µt+1)|ht) + θ < Π0(ϕ̄0, ϕ̄1, σ̄|ht) (21)

for some θ > 0 and infinitely many times t. That is, with positive probabil-

ity the stage-game payoff at time t is larger by θ than the expected continua-

tion payoff at time t + 1. To see this, note that equation (20) implies that if

P(ϕ̄0,ϕ̄1,σ̄)(σ̄(ht)(τ0, τ1) = j|ht) ≥ 1− ϵ for some firm j, then for the other firm i

Vi(µt) ≤ ϵ+ δEϕ̄0,ϕ̄1,σ̄(V0(µt+1)|ht). (22)

Therefore if the condition in (21) does not hold with positive probability we

have that for every h ∈ H̃ and ϵ > 0 it holds for all sufficiently large t that

Eϕ̄0,ϕ̄1,σ̄(V0(µt+1)|ht) ≥ Π0(ϕ̄0, ϕ̄1, σ̄|ht) − ϵ. In addition, equation (22) implies

that 1
δ (V0(µt)− ϵ) ≤ Eϕ̄0,ϕ̄1,σ̄(V0(µt+1)|ht) infinitely often with positive probability.

Since for every h ∈ H̃ we have that V0(µt) ≥ c/2 from some time period onward, we

must have that V0(µt) > 1 with positive probability. This stands in contradiction

to the fact that V0(µ) ≤ 1 for every µ ∈ [0, 1].

Note next that if P(ϕ̄0,ϕ̄1,σ̄)(σ̄(ht)(τ0, τ1) = i|ht) ≥ 1− ε, then

P(ϕ̄0,ϕ̄1,σ̄)(vµt(τ0, τ1) ≤ ¯
α+ η(ϵ)|ht) ≥ 1− η(ϵ) for some η(ϵ) that goes to zero when

ϵ goes to zero.

Let β > 0. Consider a deviation of Firm 0 at time t that is obtained by reducing

every realized price above β in the support of ϕ̄0(ht) by β. Such a deviation ϕ̄′0
when applied at time t gurantees a stage-game payoff of Π0(ϕ̄0, ϕ̄1, σ̄|ht) − β. In

addition, for every history ht when (21) holds we have P(ϕ̄′
0,ϕ̄1,σ̄)(vµt(τ0, τ1) = ¯

α|ht)
with a probability that approaches one as t goes to infinity. Therefore, such a

deviation guarantees a stage-game payoff that is arbitrarily close to Π0(ϕ̄0, ϕ̄1, σ̄|ht)
and guarantees that µt+1 = µt with a probability that approaches one as t goes to

infinity.

Applying the deviation repeatedly in all subsequent time periods implies that

Firm 0 can guarantee a continuation payoff that is arbitrarily close to Π0(ϕ̄0, ϕ̄1, σ̄|ht)
as time goes to infinity. Equation (21) implies that for sufficiently large t it holds
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with positive probability that there exists a history ht at which Firm 0 has a prof-

itable deviation. This stand in contradiction to the fact that (ϕ̄0, ϕ̄1, σ̄) is an equi-

librium. Therefore we have that for almost every infinite history h ∈ H ′ it holds

that the liminf continuation payoff of Firm 1 lim inft→∞ V1(µt) = 0. This concludes

the proof of the claim.

To conclude the proof of Theorem 3 we prove the following claim.

Claim 6. If (F0, F1, S) is a bounded information structure that exhibits the vanish-

ing margins and (ϕ̄0, ϕ̄1, σ̄) is a Markovian equilibrium for which mini=0,1 lim inft→∞ Vi(µt) =

0 holds with probability one, then asymptotic learning holds.

Proof. Assume by way of contradiction that the claim does not hold. Then there

exists a positive measure subset of histories for which limt→∞ µt ̸∈ {0, 1}. As-

sume without loss of generality that the subset of histories h ∈ H for which

limt→∞ µt ∈ [ 12 , 1 − η] has a positive probability for some η > 0. We denote this

subset by H ′. We can now use similar arguments to those invoked in the proof

of Proposition 2 to conclude that for almost every history h ∈ H ′ it holds that

lim inft→∞ |Πδ
0(ϕ̄0, ϕ̄1, σ̄|ht)− 2

¯
αµt

− 1| = 0.

For every ϵ > 0 let us denote by Hϵ the set of all finite histories ht for which

|Πδ
0(ϕ̄0, ϕ̄1, σ̄|ht)− 2

¯
αµt

− 1| ≤ ϵ.

It follows from the above that there exists r > 0 such that for every ϵ > 0,

P(ϕ̄0,ϕ̄1,σ̄)(∃t s.t. ht ∈ Hϵ and
1

2
≤ µt ≤ 1− η

2
) ≥ r.

As we assume vanishing margins, we can invoke Proposition 3 and conclude that

there exists sufficiently small ϵ0 > 0 such that whenever µ ≤ 1− η
2 , Firm 0 has some

price τ0 ∈ [0, 1] that guarantees the following stage payoff:

Π0(τ0, ϕ1, µ) > 2
¯
αµ − 1 + ϵ0, (23)

for every strategy ϕ1 ∈ ∆([0, 1]) of Firm 1.

We define the strategy ϕ̂0 for Firm 0 as follows. Let h be some finite history.

If h ∈ H ϵ0
2

then set ϕ̂0(ht) = τ0, where τ0 is the price that satisfies the inequality

in equation (23). If h ̸∈ H ϵ0
2

but has some prefix ht ∈ H ϵ0
2

then set the price at

2
¯
αµt+1 − 1 (where µt+1 is the public belief at stage t + 1). Note that this implies

that from stage t+1 onward Firm 1 is deterred and the public belief remains fixed.

Finally, whenever no prefix of h is in H ϵ0
2

let the price be that which was chosen

according to the original strategy ϕ̄0.

The continuation payoff of Firm 0 for any finite history in H ϵ0
2

is

(1− δ)[2
¯
αµt

− 1 + ϵ0] + δE(ϕ̂0,ϕ̄1,σ̄)
[2
¯
αµt+1

− 1|ht].

That is, the current period deviation of Firm 0 yields, by equation (23), an expected

payoff of at least 2
¯
αµt

− 1 + ϵ0. Thereafter the value of µt+1 is realized and in all

subsequent periods t′ > t Firm 0 receives a constant payoff of 2
¯
αµt+1

− 1. As the
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function 2
¯
αµ − 1 is convex (by Lemma 9) this continuation payoff is guaranteed to

satisfy the following inequality:

E(ϕ̂0,ϕ̄1),σ̄
[2
¯
αµt+1

− 1|ht] ≥ 2
¯
αµt

− 1.

Comparing this with the continuation payoff from the original strategy implies that

the deviation yields a profit that is at least (1− δ) ϵ02 . This stands in contradiction

to the fact that (ϕ̄0, ϕ̄1, σ̄) is a Bayesian Nash equilibrium.

Before proving Lemma 10 we prove the following auxiliary lemma.

Lemma 11. Let µ ≥ 1
2 , (ϕ0, ϕ1) ∈ ∆([0, 1])×∆([0, 1]) a pair of mixed strategies for

the firms, and a strategy σ of consumer in Γ(µ). Assume that for every pair (τ0, τ1)

of prices in the support of (ϕ0, ϕ1) it holds that vµ(τ0, τ1) ∈ {
¯
α, ᾱ}. If Π0(ϕ0, ϕ1, σ) >

0, then there exists a price τH0 such that Π0(ϕ0, ϕ1, µ) ≥ Π0(τ
H
0 , ϕ1, µ) and vµ(τ0, τ1) =

¯
α for every price τ1 in the support of ϕ1. Moreover, if P(ϕ0,ϕ1,σ)(σ(s, (τ0, τ1)) = 1) =

r, then Π0(τ
H
0 , ϕ1, µ) ≥ 1

1−rΠ0(ϕ0, ϕ1, µ).

A symmetric statement holds for Firm 1 and µ ≤ 1
2 .

Proof. Let τH0 be the supremum across all prices in the support of ϕ0 such that

vµ(τ0, τ1) =
¯
α holds with positive probability. We claim first that vµ(τ

H
0 , τ1) = ¯

α

holds for any price in the support of ϕ1. To see this, note first that τH0 ≤
¯
αµ.

This follows since for τ0 >
¯
αµ it holds that vµ(τ0, τ1) >

¯
α for any price τ1. This

inequality follows from the fact that for τ0 >
¯
αµ some consumers have a negative

expected profit from buying Firm 0’s product. We next contend that

ᾱµ − τH0 > 1− ᾱµ. (24)

Inequality (24) follows since for
¯
α = 1

3 , ᾱ = 2
3 , if we let τH0 =

¯
αµ, then (24)

becomes 2( 2µ
2µ+(1−µ) ) − ( µ

µ+2(1−µ) ) − 1 > 0. One can easily show that the function

2( 2µ
2µ+(1−µ) )− ( µ

µ+2(1−µ) )− 1 is strictly positive on ( 12 , 1). Therefore, when
¯
α < 1

3 ,

ᾱ > 2
3 , and τ

H
0 ≤

¯
αµ the inequality is strict for 1

2 ≤ µ < 1. Inequality (24) implies

that if the price of Firm 0 is τH0 ≤
¯
αµ, then even if Firm 1 gives away its product for

free, some consumers (those with a posterior belief that is close to ᾱµ) will choose

to buy from Firm 0. This together with the fact that vµ(τ0, τ1) ∈ {
¯
α, ᾱ} implies

that vµ(τ
H
0 , τ1) = ¯

α for any price τ1 in the support of Firm 1, as desired.

Therefore, for any price τ0 > τH0 in the support of ϕ0 it holds that vµ(τ0, τ1) = ᾱ.

Hence Π0(τ
H
0 , ϕ1, σ) = τH0 ≥ Π0(ϕ0, ϕ1, σ).

Finally, note that

Π0(ϕ0, ϕ1, σ) ≤ 0× ϕ0(τ0 > τH0 ) + ϕ0(τ0 ≤ τH0 )τH0 .

The last assertion follows since

ϕ0(τ0 ≤ τH0 ) = P(ϕ0,ϕ1,σ)(σ(s, (τ0, τ1)) = 0) = 1− r.

We next turn to the proof of Lemma 10.

Proof of Lemma 10. Let (ϕ̄0, ϕ̄1, σ̄) be a Markovian equilibrium and assume to

the contrary that it is not a dominant equilibrium. As mentioned every equilibrium

for which asymptotic learning holds is also a dominant equilibrium. It therefore
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follows from Claim 6 that lim inft→∞ Vi(µt) ≥ c holds with positive probability for

some c > 0 and i = 1, 2. This implies that the following event: lim inft→∞ Vi(µt) ≥ c

for some c > 0 and i = 1, 2 and limt→∞ µt = µ∞ ∈ [η, 1 − η] for some η > 0,

holds with positive probability. Let H̃ ⊆ H∞ be a subset of histories for which

lim inft→∞ Vi(µt) ≥ c > 0 for i = 1, 2, and P(ϕ̄0,ϕ̄1,σ̄)(H̃) > 0. Assume further,

without loss of generality, that µ∞ ∈ [ 12 , 1 − η] for some η > 0 for any history

h ∈ H̃.

We note that for every ϵ > 0 and a history h ∈ H there exists a time t′ such

that for t ≥ t′ it holds that either P(ϕ̄0,ϕ̄1,σ̄)(vµt(τ0, τ1) ≤
¯
α + ϵ|ht) ≥ 1 − ϵ or

P(ϕ̄0,ϕ̄1,σ̄)(vµt(τ0, τ1) ≥ ᾱ− ϵ|ht) ≥ 1− ϵ. That is, with probability that approaches

one the realized pair of prices (τ0, τ1) has the property that vµt
(τ0, τ1) approaches

the boundaries of the signal’s posterior distribution. To see this note that, as in the

proof of Theorem 1, the subset of histories h ∈ H∞ for which P(ϕ̄0,ϕ̄1,σ̄)(vµt
(τ0, τ1) ∈

[ᾱ+ ϵ,
¯
α− ϵ]|ht) > ϵ holds infinitely often for some ϵ > 0 must lead consumers and

firms to learn the identity of the superior firm and hence µ∞ ∈ {0, 1}. Therefore,
by slightly reducing the price of firm 0 that is identified in Lemma 11 we have

that for every θ > 0 if Π0(ϕ̄0, ϕ̄1, σ̄|ht) > θ, then one can find a price τ t0 such that

both Π0(τ
t
0, ϕ̄1, σ̄|ht) approaches Π0(ϕ̄0, ϕ̄1, σ̄|ht) and vµt

(τ0, τ1) =
¯

alpha holds with

probability that approaches one as, as t goes to infinity.

We can now consider two cases. If inequality (21) holds for some θ > 0 and

infinitely many times t for a positive-measure subset of histories H ′ ⊆ H̃, then we

can use a similar consideration to the one applied in Claim 5 to deduce that Firm 0

has a profitable deviation. Otherwise we must have that Π0(ϕ̄0, ϕ̄1, σ̄|ht) approaches
Eϕ̄0,ϕ̄1,σ̄(V0(µt+1)|ht) as t goes to infinity for almost every history h ∈ H̃. Since

in addition it holds that lim inft→∞ V1(µt) ≥ c, we must have that for some r > 0

and every ϵ > 0 it holds with probability one that P(ϕ̄0,ϕ̄1,σ̄)(σ̄(ht)(s, (τ0, τ1)) =

1|ht) ≥ r. We can now again use Lemma 11 to deduce that as t goes to infinity

Firm 0 can deviate and guarantees a continuation payoff that is arbitrarily close

to 1
1−rΠ0(ϕ̄0, ϕ̄1, σ̄|ht). This stands in contradiction to the fact that (ϕ̄0, ϕ̄1, σ̄) is a

Markovian equilibrium.

C.2 Proof of Theorem 4

Theorem 4 Consider a bounded information structure (F0, F1, S) such that either

g0(
¯
α) > 0 or g1(ᾱ) > 0. Asymptotic learning fails for any discount factor δ > 0 in

every pure Markovian equilibrium.

We now turn to the proof of Theorem 4. We prove the theorem for the case

where g0(
¯
α) > 0 (the case where g1(ᾱ) > 0 is shown symmetrically). Fix δ > 0.

To prove the theorem, assume to the contrary that there exists a pure Markovian

equilibrium (ϕ̄0, ϕ̄1) for which asymptotic learning holds. That is, ϕ̄i : [0, 1] → [0, 1]

is the pure equilibrium strategy of firm i that chooses a price as a function of the

public belief. Let V : [0, 1] → [0, 1] be the function representing the continuation

payoff of Firm 0 as a function of the public belief20 µ.

20Since we analyze the game from the perspective of Firm 0, we suppress the subscript 0.
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Given a pair of prices (τ0, τ1) and a prior µ, let φa(µ, (τ0, τ1)) be the probability

that the consumer chooses action a ∈ {0, 1, e}. Thus, φω(µ, (τ0, τ1)) represents

the probability that the consumer chooses to buy from Firm ω where ω = 0, 1,

and φe(µ, (τ0, τ1)) represents the probability that the consumer chooses the outside

option e. Let wµ(τ0, τ1) be the supremum over α ∈ [α, α] such that an agent with

a posterior αµ will choose Firm 1. We can write

φ0(µ, (τ0, τ1)) = µ(1−G0(vµ(τ0, τ1))) + (1− µ)(1−G1(vµ(τ0, τ1))),

φ1(µ, (τ0, τ1)) = µG0(wµ(τ0, τ1)) + (1− µ)G1(wµ(τ0, τ1)),

φe(µ, (τ0, τ1)) = µ(G0(vµ(τ0, τ1))−G0(wµ(τ0, τ1)))+

(1− µ)(G1(vµ(τ0, τ1))−G1(wµ(τ0, τ1))).

Furthermore, for a ∈ {0, 1, e}, let µa(µ, (τ0, τ1)) be the posterior probability of ω = 0

conditional on action a of the consumer. This represents the public belief in the

next period as a function of the consumer’s choice. By Bayes’ law we have

µ0(µ, (τ0, τ1)) =
µ[1−G0(vµ(τ0, τ1))]

φ0(µ, (τ0, τ1))
, µ1(µ, (τ0, τ1)) =

µG0(wµ(τ0, τ1))

φ1(µ, (τ0, τ1))

and µe(µ, (τ0, τ1)) =
µ[G0(vµ(τ0, τ1))−G0(wµ(τ0, τ1))]

φe(µ, (τ0, τ1))
.

Note that when the public belief is µt = µ, the stage t payoff to Firm 0 is φ0(µ, (τ0, τ1))τ0.

The continuation payoff in the next stage is V (µ0(µ, (τ0, τ1))) with probability

φ0(µ, (τ0, τ1)), it is V (µ1(µ, (τ0, τ1))) with probability φ1(µ, (τ0, τ1)), and it is

V (µe(µ, (τ0, τ1))) with probability φe(µ, (τ0, τ1)). Overall, we can write Firm 0’s

expected continuation payoff Πδ
0(τ0, τ1) as a function of the pair of prices (τ0, τ1)

and the prior µ as follows:

Πδ
0(τ0, τ1|ht) = (1− δ)φ0(µ, (τ0, τ1))τ0+ (25)

δ[φ0(µ, (τ0, τ1))V (µ0(µ, (τ0, τ1))) + φ1(µ, (τ0, τ1))V (µ1(µ, (τ0, τ1)))]+

δφe(µ, (τ0, τ1)))V (µe(µ, (τ0, τ1)).

Note that for (τ0, τ1) = (ϕ̄0(µ), ϕ̄1(µ)), by the definition of V , we have that V (µ) =

Πδ
0(ϕ̄0(µ), ϕ̄1(µ)|ht).
Let C > 0 be a constant and consider an auxiliary payoff function Ψµ to Firm

0 that is obtained when one replaces the continuation payoff V in (25) with the

function Wµ(µ̂) = V (µ) + C|µ− µ̂|. That is,

Ψµ(τ0, τ1) = (1− δ)φ0(µt, (τ0, τ1))τ0 + δE(τ0,τ1)(Wµ(µa)).

In words, the next-stage continuation payoff to Firm 0 is Wµ(µa) instead of V (µa)

for any realized action a ∈ {0, 1, e}.
Let f be a function of τ0 and possibly other variables. We henceforth use the

notation f ′ to denote its right partial derivative ∂f
∂τ0

= limτ→τ+
0

f(τ0)−f(τ)
τ0−τ with

respect to τ0. We next show the following lemma.

Lemma 12. There exists β > 0, a prior µ̂ < 1, and a function K(µ, (τ0, τ1)) that

satisfies the following two conditions: first, K(µ, (τ0, τ1)) ≤ −β for every µ > µ̂ and

any pair of prices (τ0, τ1), and second,

Ψ′
µ(τ0, τ1) = (1− δ)φ0(µ, (τ0, τ1)) + δK(µ, (τ0, τ1))v

′
µ(τ0, τ1). (26)
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Proof of Lemma 12. The continuation payoff in equation (25) comprises three ex-

pressions. Differentiating the first expression with respect to τ0 gives

(1− δ)[φ0(µ, (τ0, τ1)) + τ0φ
′
0(µ, (τ0, τ1))],

where

φ′
0(µ, (τ0, τ1)) = (−µg0(vµ(τ0, τ1))− (1− µ)g1(vµ(τ0, τ1)))v

′
µ(τ0, τ1). (27)

Since g0(
¯
α) > 0 and vµ(τ0, τ1) approaches

¯
α as µ goes to one it holds that−µg0(vµ(τ0, τ1))−

(1− µ)g1(vµ(τ0, τ1)) approaches −2β for some β > 0.

In order to complete the proof of the lemma it is sufficient to show that the

derivative of the last two expressions of (25) can be written as v′µ(τ0, τ1)H(µ, (τ0, τ1)),

for some function H(µ, (τ0, τ1)) that goes to zero as µ goes to one.

We show this first for a fully covered market where the outside option e is played

with zero probability. Under this assumption the last expression of (25) is zero. The

derivative of δφ0(µ, (τ0, τ1))Wµ(µ0(µ, (τ0, τ1))) is

δ[φ′
0(µ, (τ0, τ1))Wµ(µ0(µ, (τ0, τ1)))+

φ0(µ, (τ0, τ1))W
′
µ

∂Wµ

∂µ̂
(µ0(µ, (τ0, τ1)))µ

′
0(µ, (τ0, τ1))]. (28)

Since φe(µ, (τ0, τ1)) = 0 it holds that φ1(µ, (τ0, τ1)) = 1−φ0(µ, (τ0, τ1)). There-

fore, the derivative of

δφ1(µ, (τ0, τ1))Wµ(µ1(µ, (τ0, τ1))) is

δ[−φ′
0(µ, (τ0, τ1))Wµ(µ1(µ, (τ0, τ1)))+ (29)

(1− φ0(µ, (τ0, τ1)))
∂Wµ

∂µ̂
(µ1(µ, (τ0, τ1)))µ

′
1(µ, (τ0, τ1))].

We note that the derivative of the second expression in (25) equals the sum

of the expressions in equations (28) and (29). Summing the first expression in

(28) with the first expression in (29) gives δφ′
0(µ, (τ0, τ1))[Wµ(µ0(µ, (τ0, τ1))) −

Wµ(µ1(µ, (τ0, τ1)))]. Since signals are bounded, |µ0(µ, (τ0, τ1))− µ1(µ, (τ, τ1))| goes
to zero as µ goes to one. Hence it also holds thatWµ(µ0(µ, (τ0, τ1)))−Wµ(µ1(µ, (τ0, τ1)))

approaches zero. Therefore, equation (27) implies that the sum can be written as a

product M(µ, (τ0, τ1))v
′
µ(τ0, τ1), where M(µ, (τ0, τ1)) approaches zero with µ.

It remains to show that the sum of the second expression in (28) and the sec-

ond expression in (29) can be written as L(µ, (τ, τ1))v
′
µ(τ, τ1) for some function

L(µ, (τ0, τ1)) that approaches zero with µ. This sum equals

δφ0(µ, (τ0, τ1))
∂Wµ

∂µ̂
(µ0(µ, (τ0, τ1)))µ

′
0(µ, (τ0, τ1))+

(1− φ0(µ, (τ0, τ1)))
∂Wµ

∂µ̂
(µ1(µ, (τ0, τ1)))µ

′
0(µ, (τ0, τ1)).

We show this for (1−φ0(µ, (τ0, τ1)))
∂Wµ

∂µ̂ (µ1(µ, (τ0, τ1)))µ
′
1(µ, (τ0, τ1)). The fact that

it holds also for φ0(µ, (τ0, τ1))
∂Wµ

∂µ̂ (µ0(µ, (τ0, τ1)))µ
′
0(µ, (τ0, τ1)) follows similarly.

Note first that

µ′
1(µ, (τ, τ1)) =

(1− µ)g1(vµ(τ, τ1))v
′
µ(τ, τ1)(1− φ0(µ, (τ, τ1))) + φ′

0(µ, (τ, τ1))(1− µ)G1(vµ(τ, τ1))

[1− φ0(µ, (τ, τ1))]2
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Using this and the fact that
∂Wµ

∂µ̂ (µ1(µ, (τ0, τ1))) = −C we have that

(1− φ0(µ, (τ0, τ1)))
∂Wµ

∂µ̂ (µ1(µ, (τ0, τ1)))µ
′
1(µ, (τ0, τ1)) equals

−C
(1− µ)g1(vµ(τ, τ1))v

′
µ(τ, τ1)(1− φ0(µ, (τ, τ1))) + φ′

0(µ, (τ, τ1))(1− µ)G1(vµ(τ, τ1))

1− φ0(µ, (τ, τ1))
.

Note that the first expression is −C(1− µ)g1(vµ(τ, τ1))v
′
µ(τ, τ1), which satisfies the

required condition. The second expression is equal to

−C φ′
0(µ, (τ, τ1))(1− µ)G1(vµ(τ, τ1))

µG0(vµ(τ, τ1)) + (1− µ)G1(vµ(τ, τ1))
.

Since vµ(τ, τ1) approaches
¯
α as µ goes to one, we can use a standard first-order

approximation to deduce that
Gi(vµ(τ,τ1))

gi(
¯
α)(vµ(τ,τ1)−

¯
α) approaches one for i = 0, 1. This

implies that the second expression approaches −Cφ′
0(µ, (τ, τ1))

(1−µ)g1(
¯
α)

(µg1(
¯
α)+(1−µ)g1(

¯
α) as

µ approaches one. Therefore, since
g1(

¯
α)

g0(
¯
α) = ¯

α
1−

¯
α it follows that

(1−µ)g1(
¯
α)

(µg1(
¯
α)+(1−µ)g1(

¯
α)

approaches zero when µ goes to 1. Thus, when the market is fully covered, the

lemma follows from equation (27).

Consider the case where the outside option e is played with positive probability.

Again, in order to complete the proof of the lemma for this case it is sufficient

to show that the derivative of the last two expressions of (25) can be written as

v′µ(τ0, τ1)L(µ, (τ0, τ1)), where L(µ, (τ0, τ1)) is some function that goes to zero as µ

goes to one.

Note that in this case the expression δφ1(µ, (τ0, τ1))Wµ(µ1(µ, (τ0, τ1))) in equa-

tion (25) has a derivative of zero with respect to τ0. This follows from the fact

that when the outside option is played with positive probability the term wµ(τ0, τ1)

is constant in some open neighborhood of τ0. Similarly, Gω(wµ(τ0, τ1)) also has a

zero derivative for ω = 0, 1. Hence it holds that φ′
e(µ, (τ0, τ1)) = −φ′

0(µ, (τ0, τ1)).

Therefore, the derivative of δφe(µ, (τ0, τ1))Wµ(µe(µ, (τ0, τ1))) with respect to τ0 is

δ[−φ′
0(µ, (τ0, τ1))Wµ(µe(µ, (τ0, τ1)))+

φe(µ, (τ0, τ1))
∂Wµ

∂µ̂
(µ0(µ, (τ0, τ1)))µ

′
e(µ, (τ0, τ1))]. (30)

Summing the first expression in (28) and the first expression in (30) gives

δφ′
0(µ, (τ0, τ1))[Wµ(µ0(µ, (τ0, τ1)))−Wµ(µe(µ, (τ0, τ1)))], which, as explained above,

can be written as R(µ, (τ0, τ1))v
′
µ(τ0, τ1), where R(µ, (τ0, τ1)) is some function that

approaches zero with µ.

Again, it remains to show that

δφ0(µ, (τ0, τ1))
∂Wµ

∂µ̂
(µ0(µ, (τ0, τ1)))µ

′
0(µ, (τ0, τ1))+

δφe(µ, (τ0, τ1))W
′
µ(µe(µ, (τ0, τ1)))µ

′
e(µ, (τ0, τ1))

can be written as B(µ, (τ, τ1))v
′
µ(τ, τ1), where B(µ, (τ0, τ1)) is some function that

approaches zero with µ. This is shown in a similar way as explained above for the

case where the market is fully covered.

We next state another auxiliary lemma. By Lemma 9, the function 2
¯
αµ − 1 is

convex, differentiable, as a function of µ, and has a derivative that is bounded by

some positive constant C > 1.

37



Lemma 13. Let (ϕ̄0, ϕ̄1) be the equilibrium under which asymptotic learning holds.

For every µ̂ ∈ (0, 1) it holds with positive probability that there exists a time t such

that µt = µ ≥ µ̂ and

Eϕ̄(µt)(V (µt+1)) ≤ Eϕ̄(µt)(Wµ(µt+1)) = V (µt) + Eϕ̄(µt)(C|µt+1 − µt|). (31)

Proof. For a public belief µ = µt, Firm 0 can guarantee a continuation payoff

that is greater than or equal to 2
¯
αµ − 1 by repeatedly choosing the price τ0 =

max{2
¯
αµ − 1, 0}. Therefore, V (µ) ≥ 2

¯
αµ − 1 for every µ ∈ (0, 1). Additionally, it is

easy to see that V (µ) < 1 for every µ ∈ (0, 1).

Consider the function fµ : [0, 1] → R+, which is defined as follows: fµ(µ̃) = 2
¯
αµ−

1+C|µ̃−µ|. The function fµ satisfies fµ(µ) = 2
¯
αµ−1 and fµ(µ̃) > 2

¯
αµ+|µ−µ̃|−1 for

every µ̃ ̸= µ. Therefore, fµ(1) > 2
¯
α1 − 1 = 1. Hence, for all sufficiently large µ < 1

there exist unique priors µ1, µ2 such that 0 < µ1 < µ < µ2 < 1, |µ− µ1| = |µ− µ2|,
and fµ(µ

j) = 1 for j = 1, 2. Note that µ1 and µ2 are increasing in µ and both

approach one as µ approaches one. This follows since |µ−µ2| approaches zero as µ

approaches one.

Let µ∗ be large enough such that the corresponding µ∗1 has the property that

¯
αµ∗1 = ¯

αµ∗1

¯
αµ∗1 + (1−

¯
α)(1− µ∗1)

> µ̂.

This is indeed possible as signals are bounded and
¯
α > 0.

Since asymptotic learning holds, there exists with positive probability a time t̂

such that µ∗ < µt̂. Assume that from time t̂ to time t̂+ k − 1, inequality (31) does

not hold with probability one; then it follows by induction that

Eϕ̄(V (µt̂+k)|µt̂) > V (µt̂) +

t̂+k−1∑
i=0

Eϕ̄

(
C|µt̂+i+1 − µt̂+i|

∣∣∣µt̂

)
≥ Eϕ̄(fµt̂

(µt̂+k)|µt̂).

(32)

Let η be the first random time t such that µη ̸∈ [µ1
t̂
, µ2

t̂
]. Since asymptotic learning

holds, η is finite with probability one. In addition, fµt̂
(µη) > 1 and µη ≥

¯
αµ∗1 > µ̂

by construction. Therefore, if inequality (31) does not hold from time t̂ to time η

with probability one, it follows from (32) that Eϕ̄(V (µη)|µt̂) > 1. This stands in

contradiction to the fact that V (µ̃) < 1 for every µ̃ ∈ (0, 1). Hence with positive

probability there exists a time t > t̂ such that µt > µ̂ and the inequality (31) holds.

We next prove Theorem 4.

Proof of Theorem 4. Let µ = µt and let τi = ϕ̄i(µt) for i = 0, 1 be the corre-

sponding equilibrium prices. Let τ̄0 = min{2
¯
αµ − 1 + τ1,

¯
αµ}. Note that τ̄0 > 0 for

all sufficiently large µ. The price τ̄0 is the maximal price for Firm 0, as a function of

τ1, for which the consumer chooses Firm 0 with probability one. Since asymptotic

learning holds, the probability that the consumer buys from Firm 0 is less than one

(for otherwise learning would have stopped), and thus τ̄0 < τ0.

We claim first that there exists µ̃ < 1 such that if µ̃ ≤ µt = µ, then Ψµ(τ0, τ1)−
Ψµ(τ̄0, τ1) < 0. To see this note that Lemma 12 and the mean value theorem imply

that

Ψµ(τ0, τ1)−Ψµ(τ̄0, τ1) =
(
φ0(µ, (τ, τ1)) + v′µ(τ, τ1)K(µ, (τ, τ1))

)
(τ0 − τ̄0),
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for some τ ∈ [τ̄0, τ0]. By Lemma 2 and Lemma 4, as µ goes to one τ1 approaches

zero and τ0 approaches one. Hence, as in the proof of Proposition 4, it follows that

v′µ(τ, τ1) approaches ∞ as µ goes to one. Since K(µ, (τ, τ1)) ≤ −β for all sufficiently

large µ we must have that Ψµ(τ0, τ1)−Ψµ(τ̄0, τ1) < 0.

Let t be a time such that µ = µt ≥ µ̃ and Eϕ̄(µt)(V (µt+1)) ≤ V (µt)+Eϕ̄(µ)(Wµ(µt+1)).

Such a time t exists with positive probability by Lemma 13. To derive the contra-

diction, note that

V (µt) = (1− δ)φ0(µt, (τ0, τ1))τ0 + δEϕ̄(µt)(V (µt+1)) ≤

(1− δ)φ0(µt, (τ0, τ1))τ0 + δEϕ̄(µt)(Wµ(µt+1)) = Ψµ(τ0, τ1) < Ψµ(τ̄0, τ1) =

(1− δ)τ̄0 + δV (µt). (33)

Note that the last equality in (33) holds since for the price τ̄0 the consumer chooses

Firm 0 with probability one and the public belief at time t + 1 is µt. This implies

that V (µt) < (1 − δ)τ̄0 + δV (µt) and so V (µt) < τ̄0. If, however, Firm 0 deviates

and plays the price τ̄0 from time t onwards, then, by the Markovian property, this

guarantees a continuation payoff of τ̄0. This yields a profitable deviation to Firm 0

as V (µt) < τ̄0, in contradiction to the assumption that (ϕ̄0, ϕ̄1) is a Bayesian Nash

equilibrium.

D Auxiliary Lemmas

Lemma 14. The ratio G1(r)
G0(r)

is nonincreasing in r and G1(r)
G0(r)

> 1 for all r ∈ (
¯
α, ᾱ).

In particular, G0 first-order stochastically dominates G1. Moreover, for any point

x ∈ [
¯
α, ᾱ] ∩ (0, 1), it holds that (1− x)g0(x) = xg1(x) and limx→+

¯
α

G1(x)
G0(x)

= ¯
α

1−
¯
α .

Proof. The fact that limx→+

¯
α

G0(x)
G1(x)

= ¯
α

1−
¯
α follows from the relation (1−x)g0(x) =

xg1(x) and the fact that Gω(x) =
∫ x

¯
α
gω(x)dx for ω = 0, 1 when x ≤ ᾱ. The proof

of the other parts follows from the more general result that appears in Lemma A1

of (Acemoglu et al., 2011).

Corollary 1. Let (σ, τ0, τ1) be a myopic Bayesian Nash equilibrium. If asymptotic

learning holds, then conditional on state ω ∈ Ω,

lim
t→∞

P(σ,τ0,τ1)({σt(µt, s, τ(µt)) = ω}|ω) = 1.

Proof. Without loss of generality assume that the realized state is ω = 0. Since

asymptotic learning holds, we have that limt µt = 1 almost everywhere. By Lemma

7 we have that limt→∞ vµt
(τ t0(µt), τ

t
1(µt)) =

¯
α. Therefore,

lim
t→∞

P(σ,τ0,τ1)({σt(µt, s, τ(µt)) = 0}|ω = 0) = lim
t→∞

G0(vµt
(τ t0(µt), τ

t
1(µt))) =

G0(
¯
α) = 1.
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E Proof of Proposition 1

Proof. Assume that the proposition is false. Thus, we can find some ε > 0,
¯
α > 0,

and a sequence of information structures {Gn
0 , G

n
1}∞n=1, such that:

(i) The support of Gn
0 and Gn

1 is [
¯
α, ᾱ] for every n.

(ii) For every n, gn1 (¯
α) > 0 and limn→∞ gn1 (¯

α) = 0.

(iii) The deterrence threshold, µ̄n, is bounded above by 1− ε.

Let µ be an arbitrary prior in the interval (1−ε, 1) and let Γn(µ) be the stage game

for the prior µ and the information structure (Gn
0 , G

n
1 ). Recall that (see (14)) for

every n,

∂Π0(τ0, 0)

∂τ0
|τ0=2

¯
αµ−1 = 1− (2

¯
αµ − 1)

(
∂vµ(τ0, 0)

∂τ0
|2
¯
αµ−1

)
(µgn0 (¯

α) + (1− µ)gn1 (¯
α)) .

By our assumption, the only equilibrium of the game Γn(µ) is a deterrence equilib-

rium. Thus, for every n,

1− (2
¯
αµ − 1)

(
∂vµ(τ0, 0)

∂τ0
|2
¯
αµ−1

)
(µgn0 (¯

α) + (1− µ)gn1 (¯
α)) ≤ 0. (34)

Recall that vµ(τ) is the indifference threshold in the game Γn(µ) with prices τ =

τ0, τ1. By equation (6) it is independent of the information structure’s shape and is

determined solely by the game’s prior µ and price vector τ. In addition, Gn
0 first-

order stochastically dominates Gn
1 (Lemma 14). Therefore gn0 (¯

α) ≤ gn1 (¯
α) and so

(µgn0 (¯
α) + (1− µ)gn1 (¯

α)) ≤ gn1 (¯
α). We can now deduce that

1− (2
¯
αµ − 1)

(
∂vµ(τ0, 0)

∂τ0
|2
¯
αµ−1

)
gn1 (¯

α) ≤ 0. (35)

Furthermore, since 2
¯
αµ−1 < 1 whenever µ < 1, Lemma 2 implies that

(
∂vµ(τ0,0)

∂τ0
|2
¯
αµ−1

)
<

∞. Now note that by (ii) above the limit on the left-hand side of inequality (35) is

1, a contradiction.
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