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Abstract

Our understanding of risk preferences can be sharpened by considering their evo-
lutionary basis. The existing literature has focused on two sources of risk: idiosyn-
cratic risk and aggregate risk. We introduce a new source of risk, heritable risk, in
which there is a positive correlation between the fitness of a newborn agent and the
fitness of her parent. Heritable risk was plausibly common in our evolutionary past
and it leads to a strictly higher growth rate than the other sources of risk. We show
that the presence of heritable risk in the evolutionary past may explain the tendency
of people to exhibit skewness loving today.

JEL Classification: D81, D91. Keywords: evolution of preferences, risk atti-
tude, risk interdependence, long-run growth rate, fertility rate.

1 Introduction

Our understanding of risk preferences can be sharpened by considering their evolutionary
basis (see Robson and Samuelson, 2011, for a survey). This claim was advanced in the
economics literature by Robson (1996), for example, who presented a model in which
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each agent lives a single period and faces a choice between lotteries over the number of
offspring. (See also related models in Lewontin and Cohen, 1969; McNamara, 1995.) Some
of the feasible lotteries involve aggregate risk (when all agents obtain the same realization).
Robson (1996) showed that idiosyncratic risk (independent across individuals) induces a
higher long-run growth rate (henceforth “growth rate”) than aggregate risk, and as a result
natural selection should induce agents to be more risk averse with respect to aggregate risk.1

This result has been put into an intriguing new light by Robatto and Szentes (2017)
who reconsider the model in continuous time. In such a framework it is appealing to
formulate both consumption and the production of offspring as rates. Once this is done
aggregate risk becomes equivalent to idiosyncratic risk as long as fertility and mortality
are age-independent. (See Robson and Samuelson, 2019, and Section 7 of this paper.)

The way in which idiosyncratic risk has been modeled in the previous literature captures
well coin flips concerning fertility that only affect a particular individual. However, it
is compelling that, in the evolutionary past, there were plausibly many cases in which
the “outcome of the flip” persisted from parents to offspring. In this paper we capture
this persistence by introducing a new source of risk, heritable risk, which is basically
idiosyncratic risk, but allows a positive correlation between the fitness of a newborn agent
and the fitness of her parent.

Heritable risk in this sense must have been common in the evolutionary past of human
beings. Such risk is induced if the agent’s fitness is heritable due to imitation of the
parent’s behavior or genetic inheritance. For example, a foraging technique in prehistoric
hunter-gatherer societies would be inherited if an individual copied her parent’s technique.
Alternatively, risk is heritable if the choice an individual makes is controlled genetically,
and this gene is passed down from mother to daughter. The key properties are just: (1)
there is a positive correlation between the fitness of an agent and that of her parent, and
(2) by contrast, there is little correlation between the fitness of two randomly chosen agents
in the population.

We show that this heritable risk yields a strictly higher growth rate than the other
sources of risk. We derive this result in Robatto and Szentes’s (2017) setup, as it is more
striking to see the advantage of heritable risk in a setup in which all other sources of risk
are equivalent. It is relatively simple to show that heritable risk is also advantageous in
other setups considered in the literature.

1See Heller (2014) for a discussion of why this might explain people’s tendency to overestimate the
accuracy of their private information.

2



Highlights of the model Consider a simple setup in which agents occasionally redraw
a lottery over their consumption rate, and the realized consumption determines the fertility
rate through a concave increasing function ψ. Specifically, assume that the lottery can yield
a high consumption rate (ch, inducing a fertility rate rh = ψ (ch)) with probability qh or a
low consumption rate (cl, inducing a fertility rate rl = ψ (cl)) with probability ql = 1− qh.
Each agent redraws her realized level of fertility at an annual rate of λ. For simplicity
assume that there is no mortality. Our crucial departure from the existing literature is
to assume that a newborn agent inherits the realized fertility rate of her parent and the
values remain the same until either the parent or the offspring redraws their fertility rate.

Key result Theorem 1 shows that the growth rate x∗ induced by heritable risk is both
(1) strictly higher than the lottery’s expected fertility rate µ ≡ q` · r` + qh · rh, but x∗ → µ

as λ → ∞, and (2) strictly below the highest realization rh, but x∗ → rh as λ → 0. To
see the intuition behind (2), consider the case where λ > 0 is small. The effect of the
high realization of the heritable fertility rate gets compounded over time since parents
with high fertility rates beget offspring with high fertility rates. Agents with high fertility
rates therefore form an increasing fraction of the population over time, causing the overall
growth rate to increase, and in the long run to be close to rh.

Our result has two main implications: (1) heritable risk induces a higher growth rate
than either aggregate risk or idiosyncratic risk (both of which induce a growth rate that is
equal to the lottery’s expectation µ), and (2) this difference in the growth rates is especially
large when dealing with positively skewed lotteries (since the growth rate can be made close
to rh in a way that is independent of the probability qh).

One can interpret our result as follows. The long-run impact of risk interdependence
depends on the “direction” of the interdependence (vertical or horizontal). The form
of risk we introduce induces correlation between an agent’s outcome and her offspring’s
outcome. This “vertical correlation” is helpful to the growth rate, as it allows successful
families to have fast exponential growth. By contrast, this risk does not involve “horizontal
correlation” of risk between agents of the same cohort, which would be harmful to the
growth rate. The insight that vertical correlation increases the growth rate, but horizontal
correlation decreases it, may be applicable in other domains of economics and finance.

Risk attitude We assume that individuals in our evolutionary past had different types,
and that the agent’s type determines her risk attitude—in particular, how the agent chooses
between a risky consumption option and a safe one. An agent is likely to have the same
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type as her parent due to genetic inheritance. Occasionally, new types are introduced into
the population following a genetic mutation. Observe that the population share of agents
of the type that induces the highest long-run growth rate will grow, until, in the long run,
almost all agents are of this type.

In Section 5 we show that our key result implies that the type with the highest growth
rate is (1) risk averse with respect to most lotteries over consumption (due to the concavity
of the function ψ relating consumption and fertility), but (2) risk loving with respect to
sufficiently positively skewed lotteries. Since biological types evolve slowly, it is likely that
this risk attitude persists in modern times, even though the birth rate may no longer
be increasing in the consumption rate. This finding fits the stylized empirical fact that
people, although being in general risk averse, are skewness loving. That is, people like
lotteries involving a small probability of winning a high prize. (See, for example, Golec
and Tamarkin, 1998; Garrett and Sobel, 1999.)

Structure The rest of the paper is organized as follows. Section 2 informally presents
the essence of our key result. The model is presented in Section 3. Section 4 formally
presents our key result. In Section 5 we discuss the implications of our result for attitudes
to risk. Section 6 extends our baseline model by allowing dependency between redraws of
heritable risk within each of a number of dynasties, with independence across dynasties,
which seems plausible in various applications. We show that this extension does not affect
our results for infinite populations. By contrast, this structure can affect the growth rate
of finite populations, which we investigate by numerical simulations. We discuss several
additional related references in Section 7 and conclude in Section 8.

2 Informal Treatment of Key Result

The following example conveys the gist of our key result. Consider three populations, each
having a random fertility rate (which is independent of the agent’s age) with the same
marginal distribution. Each population has a probability q` of having a low fertility rate
of r`, and a probability qh = 1 − q` of having a high fertility rate of rh. For notational
compactness, we now take as implicit the dependence of fertility on consumption rates
ci, i = `, h. For simplicity, we focus on fertility, so that there is no mortality. The source
of risk is independent across populations.

In Population 1 risk is idiosyncratic; that is, the fertility rate of each agent is inde-
pendent of the fertility rate of all other agents in the populations and, in particular, of
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her parent’s fertility rate. Applying the law of large numbers, the number of agents in
Population 1 at time t is equal to N(t) = e(q`·r`+qhrh)·t, where N(0) = 1, and the annual
growth rate is 1

t
· lnN(t) = q` · r` + qhrh ≡ µ.

In Population 2 risk is aggregate. There are two states: ` and h. In state `, all agents
have fertility rate r`, and in state h, all agents have fertility rate rh. There is a continuous
probability rate λ that the state is redrawn. If it is, the fertility rate is r` with probability
q` and rh with probability qh. What is the (long-run) growth rate of the population exposed
to this aggregate risk? If N(t) is the population at time t, and N(0) = 1, it follows that

lnN(t)
t

= r` · (time in state `) + rh · (time in state h)
t

−→ q` · r` + qh · rh = µ,

as t→∞, given the evident ergodicity of the process. Thus, as shown in Robatto and
Szentes (2017), both idiosyncratic risk and aggregate risk induce the same growth rate.

We introduce a novel form of risk in Population 3, called heritable risk. Each agent
redraws her heritable birth rate independently of all other agents at a rate λ, and at each
redraw the agent gets a fertility rate r` or rh with probability q` or qh = 1−q`, respectively
(independently of all other events). The previous literature makes an implicit assumption
that each offspring is given a fresh draw, and so all offspring are equivalent and evolutionary
success entails simply counting these undifferentiated offspring. By contrast, suppose that
each offspring inherits the realized fertility rate of the parent. Since offspring are now
differentiated, the value of these offspring varies with type and simply counting them is
inadequate. Our key result shows that in this case the growth rate is strictly higher than
the expectation µ, and indeed converges to rh as λ→ 0.

To understand the gist of the argument, consider a simplified alternative setup in which
redraws arrive deterministically and in synchrony every τ periods, which is comparable
to an arrival rate of λ = 1/τ . As before, the redrawn values of different agents are
independent. On each draw, a share q` of the agents get r` and the remaining agents
get rh. If the initial population is of size 1, then, after a time k · τ , the population is
N(k · τ) = (q` · er`·τ + qh · erh·τ )k, so that

1
k · τ

lnN(k · τ) = 1
τ
· ln(q` · er`·τ + qh · erh·τ ) ≡ ḡ(λ).

It follows that the growth rate of the population, ḡ (λ), is decreasing in λ, ḡ(λ) → rh if
λ → 0 (τ → ∞), and ḡ(λ) → µ ≡ q` · r` + qh · rh, if λ → ∞ (τ → 0). This, in particular,
implies that the growth rate is strictly higher than the lottery’s expectation µ, which is the
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Figure 1: Long-Run Growth Rate for a Binary Lottery ( rh = 5%, rl = 0%, and qh = 10%).

growth rate induced by either idiosyncratic risk or aggregate risk with the same marginal
distribution.

Recall that x∗ is the growth rate in the general model. What Theorem 1 shows, more
precisely, is that x∗ > µ and x∗ > rh−λ.2 This latter result implies that x∗ → rh as λ→ 0,
given x∗ < rh. Figure 1 illustrates our result for the values rh = 5%, rl = 0%, and qh = 10%;
i.e., for a binary lottery that yields a high annual birth rate of 5% with probability 10%
and a zero birth rate with probability 90%. When risk is either idiosyncratic or aggregate
the (long-run) growth rate is equal to the expected birth rate µ = 0.5%. Theorem 1 (and
the informal argument above) shows that when the risk is heritable the growth rate is
strictly larger than µ. The figure also draws the exact growth rate induced by heritable
risk according to the explicit formula presented in Claim 1 (in Appendix C) for binary
lotteries. As can be seen from the figure, when the redraw rate λ is very small (resp.,
large) with respect to rh, then the growth rate is slightly above rh − λ (resp., µ).

2The simplifying assumption that the intervals between redraws are deterministic (rather than stochas-
tic intervals induced by a Poisson process) decreases the growth rate, and thus the above example might
yield a lower growth rate than the lower bound rh − λ of Theorem 1.
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3 Model

Consider a continuum population of an initial mass one. Time is continuous, indexed by
t ∈ R+. To simplify matters, we assume that reproduction is asexual. The growth process
depends on the parameters (δ, (X, qx, λx) , (Y, qy, λy) , (Z, qz, λz)), as described below.

In what follows, we first present an intuitive description of Poisson processes on the
individual level that incorporate the probability of each agent dying, giving birth, and
changing her birth rate (parts (i) below). We then specify the corresponding exact evolution
of the large population that is assumed in our model (parts (ii) below).3

1. (i) We suppose intuitively that each agent experiences a constant Poisson death rate
δ ≥ 0 that is independent of all other random variables and, in particular, of all
components of the birth rates.

(ii) We assume precisely that, in each infinitesimal period of time between t and
t + dt, a fraction δ · dt of the population dies, where this fraction is uniform across
all components of the birth rate.

Each individual i at time t has a birth rate bi (t) = xi (t) + yi (t) + z (t) with three
components. These components are constructed as follows:

2. (i) The random variable xi (t) ≥ 0 is the heritable component of the birth rate.
A newborn agent obtains the heritable birth rate of her parent. We assume that
the random variable xi has a finite support X = supp (x) = {x1, ..., xn}, where
x1 < ... < xn and n ≥ 2. The function qx : X → (0, 1), ∑x∈X qx = 1, assigns a
probability to each x ∈ X. Intuitively, in each infinitesimal period of time dt each
agent has a probability of λx ·dt of redrawing her heritable birth rate (where λx > 0),
and these redrawing events are independent of all other events.

(ii) The precise assumptions on the heritable component are as follows. Suppose
that w(t) is the total population at time t and wk(t) is the mass of agents who are
endowed with heritable component xk. Then the rate of increase of wk(t) is

dwk(t)
dt

= wk(t)xk − λxwk(t) + λxw(t)qx(xk)− δwk(t). (1)

3The formalization of the intuitive claim that the idiosyncratic Poisson process for the birth rate of an
individual in a large population implies the mean is exactly attained raises various technical difficulties.
See Duffie and Sun (2012) (and the citations therein) for details.
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The first term expresses the increase in wk(t) due to offspring who are endowed
with xk. This captures the key characteristic of heritable risk that all offspring are
endowed with the same component xk as their parent. Since this term is independent
of λx, it will follow that wk(t) grows at rate xk − δ when λx → 0. The second term
expresses the loss from wk(t) of those agents who redraw. The third term represents
the increase due to all agents from w(t) (including those from wk(t)) who redraw and
obtain xk. The final term represents the loss from wk(t) due to death.

3. (i) The random variable yi(t) ≥ 0 is the idiosyncratic component of the birth rate.
The idiosyncratic birth rate of an agent is independent of all other random variables
governing the birth rates in the population. The random variable yi has a finite
support Y = supp (y) =

{
y1, ..., yny

}
. The function qy : Y → (0, 1], ∑y∈Y qy = 1,

assigns a probability to each y ∈ Y. In each infinitesimal period of time dt each
agent has a probability of λy · dt of redrawing her idiosyncratic birth rate, and these
redrawing events are independent of all other events.

(ii) The precise assumption is that the idiosyncratic component within any group
of agents always reflects the distribution qy. That is, the share of agents with id-
iosyncratic outcome y`, for example, in the group of agents with heritable outcome
xk is exactly equal to qy(y`) for any time t ≥ 0. This implies that the idiosyncratic
component in any group of agents with any heritable component xk is exactly equal
to the expectation µy.

4. The aggregate component of the birth rate z (t) ≥ 0 can be handled more straight-
forwardly since all agents in the population share this aggregate rate. We assume
that the random variable zi has a finite support Z = supp (z (t)) = {z1, ..., znz}.
The function qz : Z → (0, 1], ∑z∈Z qz = 1, assigns a probability to each z ∈ Z.

At time t = 0 the aggregate birth rate z (0) is randomly determined according to
the distribution qz. In each infinitesimal period of time between t and t + dt a new
random value of the aggregate birth rate is drawn independently (according to qz)
with a probability of λz · dt, where λz > 0. This aggregate birth rate applies to all
individuals in the entire population equally.
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4 Key Result

Let w (t) denote the mass of the population at time t. We normalize w (0) = 1. We say that
the growth process of w (t) given by (δ, (X, qx, λx) , (Y, qy, λy) , (Z, qz, λz)) has an equivalent
(long-run) growth rate g ∈ R if and only if

limt→∞
lnw (t)

t
= g, almost surely.

Let µx = ∑
k xk·qx (xk) (resp., µy = ∑

k yk·qy (yk), µz = ∑
k zk·qz (zk)) be the expectation

of the heritable (resp., idiosyncratic, aggregate) birth rate. We show that the equivalent
growth rate is the sum of four components: g = f (X, qx, λx) + µy + µz − δ. The results
on the idiosyncratic and aggregate components of the overall growth rate accord with the
existing literature (Robatto and Szentes, 2017), namely, these components are equal to µy
and µz, respectively. The novel part of the result is that the heritable birth component
satisfies

f (X, qx, λx) ∈ (max (µx, xn − λx) , xn) .

That is, the heritable birth component is always larger than µx, and it cannot be more
than λx away from the highest realization xn. The first property shows that the desirability
of heritable risk is that it induces a higher growth rate than comparable aggregate or
idiosyncratic risk. The second property shows that the highest realization of the heritable
risk has a substantial influence, regardless of how low is its probability. That is, a lottery
in which xn > λx induces a growth rate of at least xn−λx regardless how small qx(xn) and
µx might be.

The intuition is that the distribution of the heritable birth rate in the population
converges to a distribution p ∈ ∆ (X) that first-order stochastically dominates qx. This is
because, at each point in time, agents with a high heritable birth rate tend to have more
offspring and these offspring share the parent’s heritable birth rate. Hence, in a steady
state, the share of agents with a high heritable birth rate is strictly higher than q. Higher
values of λ reduce this effect, as the offspring redraw more rapidly a new value for their
heritable birth rate (according to qx).

The final claim is that f (X, qx, λx) increases following a mean-preserving spread of the
heritable birth rate. The intuition is that a mean preserving spread increases the high
xk’s while decreasing the low xk’s, and there is a net gain from this due to the over-
representation of high xk-agents in the steady-state distribution.
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Theorem 1. Let (δ, (X, qx, λx) , (Y, qy, λy) , (Z, qz, λz)) be a growth process. Then its equiv-
alent growth rate is equal to g = f (X, qx, λx)+µy+µz−δ, where, setting f (X, qx, λx) = x∗

for compactness, x∗ is the unique positive solution of

x∗ = λx
n∑
k=1

qk · xk
λx + x∗ − xk

∈ (max (µx, xn − λx) , xn) ,

with qk ≡ qx (xk) for each k ∈ {1, .., n}. It follows that x∗ → ∑n
k=1 qkxk = µx as

λx →∞ and x∗ → xn as λx → 0.
Moreover, if (X ′, q′x) is a mean-preserving spread of (X, qx), then f (X ′, qx′ , λx) >

f (X, qx, λx).

Sketch of proof; The full proof is in Appendix A. Since the novel result here concerns her-
itable risk, let us suppose, for simplicity, that there is no aggregate risk, idiosyncratic risk,
or mortality. Suppose further that the size of the population at time t is w(t) and that
a steady-state fraction pk of this population has birth rate xk.4 The net increase in each
infinitesimal period dt of those agents with birth rate xk is then pk · xk ·w (t) · dt (offspring
born to parents with a birth rate xk who inherit this rate) minus (pk − qk) · λx · w (t) · dt.
(Note that λx ·w (t) · dt agents have redrawn a fresh value for the heritable birth rate, and
the share of xk-agents among them has changed from pk to qk.) The increase in the total
mass of agents is ∑k pk · xk ·w (t) · dt (the sum of offspring born to parents with each birth
rate). The equilibrium value of p should match the ratio of the net increase of agents with
a high heritable birth rate to the net increase of the population, such that

pk = (pk · xk + (qk − pk) · λx) · w (t) · dt∑
k pk · xk · w (t) · dt = pk · xk + (qk − pk) · λx∑

k pk · xk·
.

Solving for pk yields (where x∗ ≡ ∑k pk · xk):

pk = λx · qk
λx + x∗ − xk

. (2)

This solution assumes that pk is positive for all k so that x∗ > xn − λx. Next we multiply
each k-th equation by xk and sum to an equation in one unknown:

x∗ =
∑
k

xk · λx · qk
λx + x∗ − xk

. (3)

4The formal proof deals with the general case, and shows global convergence to the steady state.
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Observe that in the domain x∗ > xn − λx the LHS (resp., RHS) is increasing (resp.,
decreasing) in x∗, which implies that there exists a unique solution x∗ > xn − λx to Eq.
(3). Substituting this solution in Eq. (2) yields the unique steady-state distribution p.
From Eq. (3) it follows that

x∗ =
∑
k

xk · qk
1 + x∗−xk

λx

→
∑
k

xk · qk, (4)

as λx →∞. Since x∗ ∈ (xn − λx, xn), it is also immediate that x∗ → xn as λx → 0.
The final claim is proved as follows. Eq. (3) can be written as

Ex

[
x · λ

λ+ x∗ − x

]
= x∗, (5)

where x is the random variable (X, qx). The fact that x·λ
λ+x∗−x

is a convex function of
x implies that it increases following a mean-preserving spread. This, together with the
fact that it is decreasing in x∗, implies that in order to maintain Eq. (5) following a
mean-preserving spread, the growth rate x∗ must increase.

5 Risk Attitude

We suppose that individuals in a large population may have different types, where the type
represents the agent’s risk attitude—in particular, how the agent chooses between a risky
consumption option and a safe one. An agent has the same type as her parent. Occasion-
ally, new types may be introduced into the population as genetic mutations. Observe that
the population share of agents that are endowed with the type that induces the highest
long-run growth rate for its practitioners will grow, until, in the long run, almost all agents
are of this type. For example, suppose that there are two types θ, θ′ in the population,
each with an initial frequency of 50% that induce growth rates g(θ), g(θ′), respectively.
After time t the share of agents having type θ will be eg(θ)t

eg(θ)t+eg(θ′)t
, which converges to one

as t → ∞, if g (θ) > g (θ′). See Robson and Samuelson (2011) and the citations therein,
for a more detailed argument of why natural selection induces agents to have types that
maximize the long-run growth rate.

Now consider a setup in which agents face choices between various alternatives, where
each alternative corresponds to a lottery over the consumption rate. We assume that
the birth rate is a concave increasing function of consumption, given by ψ : R+ → R+.
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To simplify the presentation, assume that the birth rate is entirely heritable; the result
remains qualitatively the same if the birth rate induced by consumption has all three risk
components (heritable, idiosyncratic, and aggregate). We now argue that a growth-rate-
maximizing type induces agents (1) to be risk averse with respect to most lotteries over
consumption, and, yet, (2) to strictly prefer some fair lotteries that are sufficiently skewed.
Thus, natural selection should induce agents to have a risk attitude combining risk aversion
and skewness loving.

For simplicity, assume that an agent faces choices among lotteries over consumption
(C, q) with a finite support C, where c > 0 for all c ∈ C. Suppose probabilities are
assigned by q : C → [0, 1],∑c∈C q(c) = 1. Let m = max {c ∈ C} be the maximal possible
realization and let c̄ = ∑

c∈C q(c) · c be the mean. For any fixed lottery, we show that,
once ψ is sufficiently concave, the constant consumption rate of c̄ will induce a higher long-
run growth rate than the lottery (C, q). This explains why the growth-rate-maximizing
type should induce the agents to be risk averse with respect to most lotteries, when ψ is
sufficiently concave. Consider, for example, the function ψ(c) = cβ for β ∈ (0, 1]. Theorem
1 shows that the individual prefers the lottery (C, q) to the mean c̄ when β = 1 so that
ψ(c) = c. However, if β is small enough this preference is reversed. This is formalized in the
following proposition that shows that, given any lottery over consumption, the individual
will prefer the mean consumption to the lottery if β is small enough.

Proposition 1. Suppose that ψ(c) = cβ for β ∈ (0, 1]. Then, given any gamble (C, q), the
mean c̄ = ∑

c∈C q (c) · c induces a higher growth rate than the lottery (C, q), if β > 0 is
close enough to 0.

Proof See Appendix B.
On the other hand, for a fixed function ψ(c), if the lottery (C, q) is sufficiently skewed—

i.e., if m is high enough and q (m) is low enough so that ψ(m) − λx > ψ(c̄)—then the
lottery induces a strictly higher growth rate than the constant consumption rate of c̄. This
follows from Theorem 1 since the lottery’s long-run growth rate is bounded from below by
ψ(m) − λx. This implies that growth-rate-maximizing agents would prefer a sufficiently
positively skewed lottery to its expectation.

The above argument suggests that natural selection has induced people to be generally
risk averse and sometimes skewness loving. As biological types evolve slowly, it seems
likely that this risk attitude persists in modern times, in which, arguably, the birth rate is
no longer increasing in the consumption rate. Thus, our findings fit the stylized fact that
people, although being in general risk averse, are skewness loving, in the sense of being risk
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loving with respect to lotteries involving a small probability of winning a high prize (e.g.,
buying state lottery tickets; see Golec and Tamarkin, 1998; Garrett and Sobel, 1999).

6 An Extended Model: Dynasties

In our baseline model, the event of an agent redrawing her heritable birth rate is inde-
pendent of her parent’s redrawing event. In various environments, it seems plausible that
members of a dynasty may change their heritable birth rate together, while remaining
independent of other dynasties. For example, if heritable risk is induced by a foraging
technique or a geographical location, and environmental changes affect the effectiveness of
the foraging technique, then an entire dynasty of agents (who use the same foraging tech-
nique or live in the same geographical location) may simultaneously change their heritable
birth rate.

In this section we extend our baseline model by introducing dynasties, and allowing
dependency between redraws of heritable risk within each dynasty. We show that this
extension does not affect our results for infinite populations. By contrast, this structure can
affect the growth rate of finite populations, which we investigate by numerical simulations.

Extended model In what follows we extend our baseline model to a continuum of
dynasties. We adopt the same notation as in the baseline model. The processes according to
which agents die, are born, and change their idiosyncratic and aggregate birth components
remain the same as in the baseline model. Importantly, each offspring is born into the
same dynasty as her parent.

Let [0, 1] be the set of dynasties, where each agent i in the initial population (of mass
one) lives in a different dynasty i ∈ [0, 1]. Each dynasty is initially endowed with a heritable
birth rate according to the distribution qx. Formally, we assume that the mass of dynasties
having heritable birth component xk ∈ X is equal to qx(xk). The heritable birth component
of each agent is tied to the heritable birth component of all members of her dynasty.

There are two processes that change the heritable birth component of agents. We
begin with an intuitive description of two Poisson processes that change the heritable
birth component: migration and a dynasty’s redraw. We then specify the corresponding
exact evolution of the distribution of the heritable birth component as the product of these
two processes.
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1. Migration: Intuitively, in each infinitesimal time dt each agent has a probability of
λm · dt (where λm ≥ 0) to leave her dynasty and move to a new random dynasty
(distributed uniformly in the set of all dynasties [0,1]). These migration events are
independent of all other events. Following the migration, the agent is endowed with
the heritable birth component of her new dynasty.

2. Dynasty’s redraw: Intuitively, in each infinitesimal time dt each dynasty j ∈ [0, 1]
has a probability of λr · dt to redraw a fresh value for its heritable birth component.
These redrawing events are independent of all other events. When a dynasty redraws
its heritable component it changes the heritable component of all agents living in
that dynasty.

Next, we formulate the precise dynamics of the mass of agents wk(t) who are endowed
with the heritable component xk that is induced by the combined effect of migration and
a dynasty’s redraws. The rate of increase of wk(t) is

dwk(t)
dt

= wk(t)xk − λmwk(t) + λmw(t)qx(xk)− λrwk(t) + λrw(t)qx(xk)− δwk(t). (6)

The first and final terms are identical to Eq. (1) of the baseline model. The first term
expresses the increase in wk(t) due to offspring who are endowed with xk. The final term
represents the loss from wk(t) due to death.

The second and third terms express the impact of migration. The second term (−λmwk(t))
is the loss from wk(t) of agents who migrate out of dynasties with heritable component
xk. The third term (λmw(t)qx(xk)) represents the increase due to all agents from w(t)
(including those from wk(t)) who migrate into dynasties with heritable component xk.

The fourth and fifth terms express the impact of redraws of dynasties. The fourth term
(−λrwk(t)) represents the loss from wk(t) of agents who live in dynasties with heritable
component xk that redraw a fresh draw. Finally, the fifth term (λrw(t)qx(xk)) represents
the increase due to all agents from dynasties (including dynasties that already had xk)
that draw a fresh value of heritable component xk.

Observe that Eq. (6) is equivalent to Eq. (1) of the basic model except that λx is
replaced with λm + λr. That is, the dynamics of wk(t) in the extended model is exactly
the same as in the baseline model with λx = λm + λr. As the impact of the heritable
component on the growth rate is exactly captured by wk(t), this implies that all of our
results hold in this extended setup with dynasties.
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Ever-growing population with dying dynasties Consider a simple case in which:
(1) λm = 0, i.e., agents never migrate, and each dynasty is an isolated subpopulation, (2)
all risk is heritable, (3) the growth rate predicted by the continuum model is positive, and
(4) an aggregate birth rate with the same marginal distribution induces a negative growth
rate. For example, assume that the heritable birth rate of each dynasty is randomly chosen
to be either xl = 0% or xh = 2% with equal probability, that there is a constant death rate
of δ = 1.4%, and that the redrawing rate of the heritable risk by each dynasty is given by
λr = 2%. Theorem 1 and Claim 1 imply that this heritable birth rate induces a positive
growth rate of 0.014%, while if the birth rate were induced by aggregate risk with the same
distribution, then the growth rate would be negative: −0.4% = (0.5 · 0% + 0.5 · 2%)−1.4%.

Each dynasty is a completely isolated subpopulation with risk that is essentially aggre-
gate within the subpopulation. Thus, each dynasty is doomed to extinction since it has
a negative growth rate of −0.4%. This yields a seemingly paradoxical result: the entire
population grows exponentially, while each of its dynasties eventually becomes extinct.
Such a result holds with a continuum of dynasties. Although each dynasty eventually dies,
in each finite time there is still a continuum of surviving dynasties with a large realized
growth rate, such that the growth rate of the entire population can be positive.

The intuition behind this result can be illustrated more clearly in a simple alternative
setup in which each dynasty in each period can be either successful or go extinct with equal
probability. A successful dynasty increases its size by a factor of 4 in each period. Observe
that the expected size of each dynasty after t period is 2t, which is the product of a tiny
probability of 0.5t of the dynasty surviving and the very large size of the dynasty (4t),
conditional on surviving. If the population includes a continuum of mass one of dynasties,
then (by applying an exact law of large numbers) after t periods the size of the population
is 2t (with probability one), and this population is concentrated on a continuum of a small
mass of 0.5t of surviving large dynasties. Thus, the population’s size converges to infinity,
even though the share of surviving dynasties converge to zero. By contrast, if the number
of dynasties were finite (instead of a continuum), then after a sufficiently long finite time,
the population’s size would eventually be zero with probability one.

Finite populations The result of an ever-growing population in which each dynasty
is eventually doomed cannot happen when the number of dynasties is finite. Since each
dynasty is doomed to extinction, so too is the overall population. However, the fact that
the mean size of each subpopulation is growing implies that the overall population may
grow significantly in the interim. As the finite model converges to the continuum model,
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this initial growth phase becomes more and more prolonged, and the inevitable ultimate
demise of the population is postponed indefinitely.

When there is no migration, a large finite population tends to ultimately put all its eggs
in one basket. That is, the distribution of the finite population over its subpopulations
tends to become very unequal, often concentrated in just one subpopulation. Such large
subpopulations hold up the mean, which is the growth rate found here. Once the population
is concentrated like this, however, doom is inevitable because the heritable risk of a large
subpopulation, essentially, becomes an aggregate risk since it affects a large share of the
entire population.

Migration introduces a new element to these observations. In the finite model migration
has a distinct effect from that of the redraw rate. If some subpopulations grow large,
and others shrink, migration acts to redistribute the population. This means that the
population can exploit the numbers in the large subpopulations, while diversifying the
risk. These observations motivate the simulations described below.

6.1 Numerical Analysis of Finite Populations

In this section we present simulations that test whether our theoretical results for contin-
uum populations hold for finite populations.

Description of the Simulation The simulation is a discrete-time version of the ex-
tended model (with dynasties) described above. Specifically, the basic time step of the
simulation is one year, and we replace each continuous Poisson rate with the respective
independent per-year probability (e.g., an annual birth rate of 2% is replaced with an in-
dependent probability of 2% of each agent giving birth in each year). The Python code
(contributed by Renana Heller) is included in the online supplementary material.

We describe here the results of 150 simulation runs, which comes from 15 runs of 10
different parameter combinations. In each simulation run, the initial population includes
3,000 agents that are initially randomly allocated to 300 dynasties. The aggregate birth
rate and the idiosyncratic birth rate are both equal to zero (i.e., µy = µz = 0). The
heritable birth rate in each dynasty is randomly chosen to be either xl = 0% or xh = 2%
with equal probabilities (i.e., q = 0.5). We set the total annual rate at which each agent
switches the heritable birth rate to be λm + λr = 2%. We set the annual death rate at
1.4%, which implies that the theoretical prediction for a continuum population (see Claim
1 in Appendix C) is that: (1) the share of agents with a high heritable birth rate converges

16



to about 71%, and (2) the annual long-run growth rate will be about 0.014%. A naive
prediction that treats heritable risk as if it were aggregate risk predicts a long-run growth
rate of −0.4% = (0.5 · 0% + 0.5 · 2%)− 1.4%. Due to technical constraints and time limits
we stopped each simulation run after (1) 20,000 years have passed, (2) the population size
increases by 300-fold to 1,000,000 or more, or (3) the population size decreases by 300-fold
to 10 or less (henceforth, extinction). The various simulation runs study 10 different ratios
λm
λr

of the migration rate relative to the dynastic risk redrawing rate (while maintaining
λm + λr = 2%): 0.01, 0.02, 0.05, 0.1, 0.25, 0.5, 1, 2, 4, 10.

Numerical Results Figure 2 presents four representative simulation runs with ratios:
0.01 (λm = 0.02%, λr = 1.98%), 0.05 (λm = 0.1%, λr = 1.9%), 0.25 (λm = 0.4%,
λr = 1.6%), and 1 (λm = λr = 1%).

Figure 2: Representative Simulation Runs for four Ratios of λm
λr

17



The top-left panel of Figure 2 shows the dynamics of the total population in each of
the four simulation runs. The top-right panel shows how the frequency of agents that
are endowed with a high heritable birth rate evolves. The bottom-left panel shows the
percentage of agents that live in the most populated dynasty (among the 300 dynasties).
The bottom-right panel shows the cumulative growth rate up to time t in each year (i.e.,
it shows g (t) = ln(w(t))

t
).

The figure shows that when the ratio λm
λr

is small (0.01 or 0.05), dynastic risk has similar
properties to aggregate risk. The low rate of migration implies that a couple of “successful”
dynasties (which happen to have had a high heritable birth rate for a long time) contain
most of the population. This causes the heritable risk, essentially, to be aggregate. The
frequency of agents with a high heritable birth rate has large fluctuations, since a single
change of the heritable birth rate of the most populated dynasty has a large impact on this
frequency. This is shown in the top-right panel. The cumulative growth rate (bottom-right
panel) is initially positive, but after a couple of thousand years it becomes negative and
starts converging to the negative growth predicted by aggregate risk, until the population
becomes extinct (top-left panel).

By contrast, Figure 2 shows that when the ratio λm
λr

is 0.25 (resp., 1), then the theoretical
prediction for the continuum case becomes relatively (resp., very) accurate for the finite
population. When the migration rate is sufficiently high, a “successful” dynasty spreads
its offspring to many other dynasties, staving off extinction. The bottom-left panel shows
that the frequency of agents living in the most populated dynasty is at most 10% (resp.,
2%). This implies that the share of agents with a high heritable birth rate has a relatively
(resp., very) small fluctuations around Claim 1’s predicted value of about 71%, as can be
seen in the top-right panel. The cumulative growth rate (bottom-right panel) converges to
the positive value of 0.01%, as predicted in Claim 1, as is shown in the top-left panel.

Figure 3 presents the mean long-run growth rate obtained in the 15 simulation runs
for each of the ten ratios of λm

λr
. The results show that conclusions drawn from the four

representative simulation runs presented in Figure 2 are indeed valid for the entire set of
150 simulation runs.

7 Discussion

Asexual reproduction Our model, like the related literature, makes the simplifying
assumption that reproduction is asexual, where offspring are identical to the parent. Sim-
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Figure 3: Mean Long-Run Growth Rate for each Ratio of λm
λr

The black points describe the mean growth rate of 15 simulation runs for each ratio of λm
λr

.
The vertical bars show intervals of one standard deviation on each side of the mean. The
labels describe how many simulation runs ended in an extinction of the population.

ilar results should hold if reproduction were sexual and haploid, where a single genetic
variant—an allele—that determines choice is inherited with probability 1/2 from either
parent. That is, if a particular choice in a gamble is currently favored, this advantage will
hold in a muted form if offspring inherit it through haploid sex. Further, if the gene con-
trolling choice is evident to a mate, homophily—a preference for like individuals—would
accentuate this advantage, bringing the model back to the asexual case.

Horizontal and vertical correlation An insight of our model is that vertical corre-
lation increases the growth rate, but horizontal correlation decreases it. Horizontal cor-
relation is called within-generation bet hedging by Lehmann and Balloux (2007). Vertical
correlation is called the multiplayer effect by McNamara and Dall (2011) who study a
non-overlapping generations model in which an asexual species breeds annually in one of
a large number of breeding sites. Each site can be either good (high expected number of
offspring) or bad. In each generation each site changes its type with probability less than
0.5. Each animal observes a noisy signal about the quality of the site in which it was born,
and it has to choose whether to stay or to migrate to a new site. McNamara and Dall
show that when the signal is sufficiently noisy, it is best for nature to induce each animal
to ignore the signal, and always stay in its birth site because the mere fact that the animal
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was born in the site makes it more likely that the site is good.

Additive separability Our model assumes that the various component of risk are ad-
ditively separable. This assumption clearly facilitates the analysis. It permits a direct
comparison of the implications of the three types of risk. Separability seems intuitively
unlikely to be crucial to the results. At the least, there ought to be approximate results for
a general non-separable criterion and small aggregate, heritable and idiosyncratic compo-
nents. Further, it seems that it would be possible to allow for arbitrary aggregate shocks
with heritable and idiosyncratic shocks conditional on the aggregate state, much as in
Robson (1996).

Age structure Recently, a different approach was applied by Robson and Samuelson
(2019) to show that risk interdependence matters in a continuous-time setting (see also
related results in Robson and Samuelson, 2009). Specifically, they show that adding age
structure to Robatto and Szentes’s (2017) setting (i.e., allowing the fertility rate to depend
on the agent’s age) implies that interdependence of risk influences the growth rate. By
contrast, the present paper shows that interdependence of risk is important for the induced
growth rate in a hierarchical population, even when the age structure is trivial, but still
in a continuous-time setting. It would be interesting for future research to study the
implications of heritable risk in age-structured populations.

Migration between fragmented habitats Our numerical analysis suggests an impor-
tant advantage to connecting isolated small habitats of an endangered species. The related
existing literature (e.g., Burkey, 1999; Smith and Hellmann, 2002) shows that having sev-
eral isolated small habitats for a species induces a larger extinction probability relative to
a situation in which the species lives in a single large habitat. This result holds in a setup
in which the birth rates are decreasing in the population’s density, and are deterministic.
The present paper shows that connecting isolated small habitats with migration increases
the long-run growth rate. We adopt a complementary setup of the birth rate that does not
depend on the population’s density, but does have a dynastic stochastic component (the
heritable component of the birth rate).
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8 Conclusion

In this paper, we demonstrate that a crucial aspect of the evolution of a population exposed
to risk is inheritance. If the actual choice made by a parent is inherited by her offspring,
this induces a correlation between the parent’s risk and the offspring’s risk. A type that
does this will outperform types that are exposed to either idiosyncratic or aggregate risk.
This result is a force favoring risk-taking. Although most risk-taking may be reversed
by a sufficiently concave relationship between resources and offspring, positively skewed
lotteries that involve high enough prizes, but relatively low means, will be taken.

A Proof of Theorem 1

The following global convergence result of Goh (1978) will be helpful in the proof

Lemma 1 (Goh, 1978, Theorems 1 and 2). Consider the system of n differential equations

dpk (t)
dt

= pk (t) · Fk (p) , k = 1, .., n,

where each Fk (p) is a continuous function of p ∈ Rn
+ ≡ {p|pk > 0∀k ∈ {1, .., n}}. Suppose

there is a fixed point p∗ > 0 satisfying 0 = p∗k · Fk (p∗) for each k. Assume further that
there exists a constant matrix E such that for all p ∈ Rn

+: (1) ∂Fk(p)
∂pk

≤ Ekk < 0 for each
k ∈ {1, .., n}, and (2)

∣∣∣∂Fk(p)
∂pj

∣∣∣ ≤ Ejk for each j 6= k, and all the leading principal minors of
−E are positive. Then every trajectory p (t) starting at any initial state p (0) > 0 converges
to p∗ > 0.5

For each time t, let wk (t) be the mass of agents with heritable birth rate xk at time
t (henceforth, xk-agents). Let pk (t) = wk(t)

w(t) be the share of xk-agents at time t. Let
b̄ (t) = ∑

k pk (t) · xk + µy + z (t) be the average birth rate at time t. Let bk (t) be the
average birth rate of xk-agents in time t: bk (t) = xk + µy + z (t). The mass of xk-agents
at time t+ dt is given by (neglecting terms of O

(
(dt)2

)
):

wk (t+ dt) = wk (t) + dt · ((bk (t)− δ − λ) · wk (t) + w (t) · λx · qk) ,

Hence
dwk(t)
dt

= (bk (t)− δ − λx) · wk (t) + w (t) · λx · qk.

51978 before Theorem 1 and Theorem 2. Goh’s (1978) Theorem 2 implicitly assumes the existence of
a fixed point explicitly assumed in Goh’s (1978) Theorem 1. It follows that the fixed point is unique.
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The mass of agents at time t+ dt is given by

w (t+ dt) = w (t) + dt ·
(
b̄ (t)− δ

)
· w (t) ,

so that
dw

dt
=
(
b̄ (t)− δ

)
· w (t) .

Since
1

pk(t)
dpk(t)
dt

= 1
wk(t)

dwk(t)
dt

− 1
w(t)

dw(t)
dt

,

it follows that

dpk(t)
dt

=
(
bk (t)− b̄ (t)− λx

)
· pk (t) + λx · qk.

Substituting x̄ (t) ≡ ∑k pk (t) · xk, we obtain

dpk (t)
dt

= ((xk − x̄ (t))− λx) · pk (t) + λx · qk = pk (t) · Fk (p) . (7)

Let ∆n
+ ⊆ Rn

+ be the interior of the simplex, ∆n
+ =

{
p ∈ Rn

+|
∑
k pk = 1

}
. Since

d
dt

∑n
1 pk(t) = 0, it follows that p (0) ∈ ∆n

+ implies that p (t) ∈ ∆n
+ for each t.

We now show that there exists a fixed point p∗ ∈ ∆n
+. If dpk(t)

dt
= 0 and pk (t) = p∗k in

Eq. (7), then setting x∗ ≡ ∑k p
∗
k · xk yields the requirement:

p∗k = λx · qk
λx + x∗ − xk

, (8)

where it will be shown that the denominator is positive, for all k = 1, ..., n. Next multiply
each p∗k in (8) by xk and sum to obtain an equation in one unknown:

x∗ =
∑
k

xk · λx · qk
λx + x∗ − xk

. (9)

In the range x∗ > xn − λx the LHS (resp., RHS) is increasing (resp., decreasing) in x∗.
Further, LHS<RHS if x∗ − (xn − λx) > 0 but small enough and LHS>RHS if x∗ is large
enough. These observations imply that there exists a unique solution x∗ > xn − λx to Eq.
(9). This implies, using Eq (8), that p∗k > 0, k = 1, ..., n and that ∑n

k=1 p
∗
k = 1 so that

p∗ ∈ ∆n
+.
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We now prove global asymptotic convergence to this p∗ from any initial state. We have

dpk (t)
dt

= pk (t) · Fk (p) , where Fk (p) = (xk − x̄ (t))− λx + λ · qk
pk

. (10)

Taking the partial derivative of Fk (p) we obtain, for j 6= k:
∣∣∣∣∣∂Fk (p)
∂pj

∣∣∣∣∣ = −xj < 0, and

∂Fk (p)
∂pk

= −
(
xk + λx

qk

(pk)2

)
< −xk < −x1 < 0.

Let the matrix E be equal to −x1 on the main diagonal, and equal to zero otherwise.
Then all the conditions of Lemma 1 are satisfied, which implies that p (t) converges to
p∗ ∈ ∆n

+ from any initial state p (0) ∈ ∆n
+. The fact that p (t) converges to p∗ implies that

lim
t→∞

∣∣∣b̄ (t)− x∗ − µy − z (t)
∣∣∣ = 0.

This, in turn, implies that the equivalent growth rate is given by:

g = lim
t→∞

logw (t)
t

= f (X, q, λx) + µy + µz − δ,

where f (X, q, λx) ≡ x∗ ∈ (max (µx, xn − λx) , xn) .

We prove the final claim as follows. Let g (xk, x∗) be defined as:

g (xk, x∗) ≡
xk · λx

λx + x∗ − xk
− x∗.

Observe that g (xk, x∗) is a strictly decreasing function of x∗ (in the domain x∗ > xn−λx).
Next we show that g (xk, x∗) is strictly convex in xk:

∂g (xk, x∗)
∂xk

= λx · (λx + x∗)
(λx + x∗ − xk)2 ⇒

∂2g (xk, x∗)
∂ (xk)2 = 2 · λx · (λx + x∗)

(λx + x∗ − xk)3 > 0.

.

Eq. (9) is equivalent to Ex [g (x, x∗)] = 0. The convexity of g (xk, x∗) implies that
Ex [g (x, x∗)] increases following a mean preserving spread from x = (X, qx) to x′ =
(X ′, qx′), which, in turn, implies that the unique solution x∗ to Ex [g (x, x∗)] = 0 must
strictly increase as well, since g (xk, x∗) is strictly decreasing in x∗. In particular, this
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implies that x∗ > µx.

B Proof of Proposition 1

The growth rate derived from the mean c̄ = ∑
c∈C q(c)c is c̄β. The growth rate derived

from the lottery (C, q) is the unique solution for x∗ > mβ − λx of

x∗ = λx
∑
c∈C

q(c) · cβ
λx + x∗ − cβ

. (11)

If β > 0 is sufficiently small, it follows that x∗ < c̄β if

R ≡ c̄β > λx
∑
c∈C

q(c) · cβ
λx + c̄β − cβ

≡ S.

This is because the LHS of Eq. (11) is increasing in x∗ and the RHS of Eq. (11) is
decreasing in x∗ for x∗ > mβ − λx. In addition, c̄β > mβ − λx, for sufficiently small β > 0.

We have R = S = 1 at β = 0. In addition,

dS

dβ

∣∣∣∣∣
β=0

= (1 + (1/λx))
∑
c∈C

q(c) ln c− (1/λx) ln c̄ < ln(c̄) = dR

dβ

∣∣∣∣∣
β=0

. (12)

Hence R > S for all small enough β > 0 due to the concavity of the function ln(x).

C Explicit Solution for Binary Lotteries

Theorem 1 has derived the key properties of the growth rate, without calculating an explicit
formula for f (X, qx, λx). In what follows we present such an explicit formula in the case
of binary lotteries over the heritable birth rate, which is used to yield the theoretical
predictions in Section 6.1 and in Figure 1. Specifically, we now assume that the heritable
birth rate has two possible realizations, i.e., X = {xl, xh}. Let µx denote the lottery’s
expectation, let ∆x = xh − xl denotes the lottery’s spread, and let q ≡ qx (xh) denote the
probability of the higher realization.

Claim 1. The equivalent growth rate of a growth process with a binary heritable birth rate
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is equal to g = f (∆x, µx, q, λx) + µy + µz − δ, where

f (∆x, µx, q, λx) = µx +
∆x · (1− 2 · q)− λx +

√
(∆x− λx)2 + 4 · q ·∆x · λx
2 . (13)

Moreover, f (∆x, µx, q, λx) is decreasing in λx.

Proof. Substituting ph = p, pl = 1− p, qh = q and ql = 1− q in Eq. (2) yields:

p = λx · q
λx − (1− p) ·∆x ⇔ p2 ·∆x+ p · (λx −∆x)− q · λx = 0.

This quadratic equation has a unique solution in (0, 1):

p(∆x, q, λx) =
∆x− λx +

√
(∆x− λx)2 + 4 · q ·∆x · λx

2 ·∆x , (14)

which yields (13), when substituting this solution into

f (∆x, µx, q, λx) = p(∆x, q, λx) · xh + (1− p(∆x, q, λx)) · x` = µx + (p(∆x, q, λx)− q) ·∆x.

Next we prove that f (∆x, µx, q, λx) is decreasing in λx. Take the derivative of p(∆x, q, λx):

∂p(∆x, q, λx)
∂λx

= 1
2 ·∆x

 −2 · (∆x− λx) + 4 · q ·∆x
2 ·
√

(∆x− λx)2 + 4 · q ·∆x · λx
− 1

 .
We have to show that ∂p(∆x,q,λx)

∂λx
is negative for any λx > 0, which is true iff

√
(∆x− λx)2 + 4 · q ·∆x · λx > ∆x · (2 · q − 1) + λx

After some algebra, this condition holds if and only if q(1 − q) > 0 which is true for all
q ∈ (0, 1).
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