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Shortages in organs for transplantation have resulted in a renewed interest in
designing incentive policies to promote organ supply. The donor-priority rule,
which grants priority for transplantation based on deceased organ donor regis-
tration status, has proven to be effective in both theory and practice. This study
investigates the implications of the donor-priority rule for optimal deceased or-
gan allocation policy design under a general formulation of blood-type barriers.
We find that for any blood typing and organ matching technology, reserving type
X organs for only type X patients maximizes the aggregate donation rate under
regular distributions, which also ensures equity in organ sharing. Moreover, this
is the unique optimal allocation policy if and only if the directed compatibility
graph that corresponds to a given organ matching technology is acyclic.
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1. Introduction

Most of the world is facing increasing shortages in the supply of human organs for trans-
plantation. On average, 20 patients in the U.S. die each day while waiting for an organ
transplant. Deceased donors represent the most common source of transplant organs in
the U.S. and much of the rest of the world. Each deceased donor can provide multiple or-
gans and potentially save 8 lives.1 In an effort to address chronic organ shortages, a wide
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range of policy initiatives have been proposed and implemented to improve the avail-
ability of organs for transplantation (Bernstein (2016)). Among these incentive policies,
the donor-priority rule, which grants priority for organ transplantation based on the
organ donor registration status, has generated increasing interest among economists
(Kessler and Roth (2012)). In practice, Singapore adopted the donor-priority rule in 1987
(Iyer (1987)), and this priority rule was introduced in Israel in 2008 (Lavee et al. (2010)),
in Chile in 2013 (Zuniga-Fajuri (2015)) and in China in 2018.2 Meanwhile, the donor-
priority rule and its variants have been constantly proposed in other countries, includ-
ing the U.S. (Chan (2020)), the U.K. (Gray (2013)) and Canada (Burkell et al. (2013)). In
this study, we investigate the optimal design of organ allocation policies among different
blood-type groups in terms of promoting the aggregate donation rate under the donor-
priority rule.3

Blood-type compatibility is a major medical requirement for most successful organ
transplantations. Among the 36 human blood group systems recognized by the Interna-
tional Society of Blood Transfusion (Storry et al. (2016)), the ABO classification with the
four blood-type groups of O, A, B, and AB is the most standard and widely discussed in
the economics literature (Roth et al. (2004, 2005, 2007)). The ABO classification defines
one of the most important biological barriers in organ transplantations from donors to
patients:4 O donors are blood-type compatible with patients of all four blood types, A
donors are compatible with A and AB patients, B donors are compatible with B and AB
patients, and AB donors are compatible with patients of only type AB.5

In practice, two types of deceased organ allocation policies naturally arise from the
ABO compatibility requirement in organ transplantations. The first policy type, which is
referred to as the ABO-identical allocation policy in the medical literature, reserves type
X organs for only type X patients. This policy is implemented for deceased donor kidney
allocations in the U.S. and for most of the organ types in Israel. By contrast, under the
class of ABO-compatible allocation policies, organs can be offered to any compatible
patient. There is potentially a continuum of the ABO-compatible policies that are char-
acterized by the number of organs transferred to compatible blood-type groups. This
type of policy is the current practice in the U.S. for organs with greater medical urgency
(other than kidneys), for all organ types in China and for the Eurotransplant Kidney Al-
location System (Glander et al. (2010)).

2Please refer to https://www.codac.org.cn/cstatute/transcplantationdocments/201601223/699067.htm
for more details of the Chinese policy.

3Although a difference exists in practice between registering for deceased donation in advance and being
an available donor at death, we refer to both as “donating” in this paper for convenience.

4There is another type of compatibility requirement, known as tissue-type compatibility, for the trans-
plantation of organs such as kidneys and hearts. Our model framework is sufficiently general to incorporate
tissue-type compatibility, as discussed in Section 4.3.

5Although recent advances in desensitization and immunosuppressive protocols have made blood-type
(and tissue-type) incompatibility much less of a constraint in transplantations associated with incompati-
ble living donor allograft recipients (see Andersson and Kratz (2020), Heo et al. (2021) and the references in
these papers), to the best of our knowledge, these advances have been almost exclusively practiced among
living donor transplantations instead of deceased donor transplantations.

https://www.codac.org.cn/cstatute/transcplantationdocments/201601223/699067.htm
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In this paper, we attempt to provide an economic rationale for the choice of ABO-
identical or ABO-compatible policies to promote deceased donor registration and in-
crease the organ supply, which could influence practical organ allocation policies and
donation decisions. In practice, the considerations of these allocation policies vary de-
pending on the organ type, transplantation network and country (Park et al. (2013),
Lai and Roberts (2016)). The current choices of different ABO allocation policies are
largely driven by disparities in the waiting times to transplantation among different
blood groups and the post-transplantation survival rate (Jawitz et al. (2013), Cai et al.
(2015)). Although the medical literature on whether ABO-compatible transplants have
comparable outcomes to ABO-identical transplants remains controversial (Aladag et al.
(2006), Koukoutsis et al. (2007), Bergenfeldt et al. (2015), Taghavi et al. (2014)), the eco-
nomic consequences of such allocation policies in combination with the donor-priority
rule have not been clearly established. These organ allocation policies may affect not
only the relative organ availability to each blood type but also the incentives to con-
tribute to the organ supply.

Our model setup is sufficiently general to account for both existing technologies and
future advances in blood typing and organ matching from two perspectives. First, we
consider a finite and possibly large number of blood types, which can incorporate any
of the current 36 human blood group systems and the more detailed blood subtyping
technologies. It is important to model a wide range of blood types because new allo-
cation policies are usually based on medical advances in blood grouping technologies
(Sönmez et al. (2018)). For instance, under the standard ABO classification, blood type A
can be further classified into A1 and A2, which have different immunological properties
(Nelson et al. (2002)). This advance in subtyping technology formed the basis of a pol-
icy reform in 2014 in the allocation of deceased-donor kidneys in the U.S. Second, our
model allows for a wide class of organ matching functions, which can account for the
current biological barriers and future medical possibilities of organ-specific matching
technology. This generalization ensures that our results are robust to future advances
in organ matching technology. For example, an improved technology that dates to the
1980s allows a certain fraction of blood type A kidneys, which are referred to as sub-
type A2 kidneys, to be transplanted to medically qualified blood type B and O patients
(Brynger et al. (1983)). Therefore, the ABO-identical and ABO-compatible allocation
policies based on the ABO classification serve merely as particular examples in our gen-
eral model framework. In accordance with the terminologies in the medical literature,
we use the prefix “XYZ” to represent allocation policies under a general blood-type clas-
sification and refer to them as the XYZ-identical and XYZ-compatible allocation poli-
cies.

For a wide class of donation cost (regular type) distributions, we find that for any
blood-typing and organ matching technology, the XYZ-identical deceased organ allo-
cation policy, which reserves type X organs for only type X patients, maximizes the ag-
gregate donation incentives under the donor-priority rule. This result remains robust
after considering several extensions of our general framework. The XYZ-identical pol-
icy has a desirable byproduct of equalizing access to organs among different blood-type
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groups, which is consistent with the equity objective stated in the organ transplanta-
tion policies of many countries. For instance, the primary goals of the OPTN in the
U.S. are “to increase and ensure the equity of organ sharing in the national system of
organ allocation” and “to increase the supply of donated organs available for transplan-
tation” (Duda (2005)). Meanwhile, a patient’s blood type is identified as one of the top
three contributors to the disparities in access to deceased donor kidney and liver trans-
plants (Stewart et al. (2018)). Such equity considerations among blood-type groups have
also been widely discussed and promoted in both the economics and medical literature,
for instance, Bertsimas et al. (2013), Lai and Roberts (2016) and Sönmez et al. (2020).
Therefore, our findings indicate that the XYZ-identical allocation policy can simultane-
ously achieve both objectives of increasing the organ supply and ensuring equity across
blood-type groups.

In the general organ donation and allocation framework, we establish that equal ac-
cess among all the blood-type groups is essential to achieve maximal aggregate dona-
tion incentives under any given organ matching technology. The main reason is that
unequal access to deceased donations leads to distortions in the donation incentives
across blood-type groups, which can compromise the aggregate donation rate. Further-
more, we show that the XYZ-identical allocation policy is the unique optimal policy in
terms of maximizing the aggregate donation incentive if and only if the directed com-
patibility graph that corresponds to a given organ matching technology is acyclic. The
condition of acyclicity essentially implies that “autarky” is the only way to eliminate in-
centive distortions since it is impossible to achieve a balanced “trade” of organs across
groups if there is no directed cycle in the compatibility graph. A direct implication of
this result is that under the standard ABO organ matching technology, it is strictly sub-
optimal to allocate organs to patients of nonidentical types in terms of promoting the
organ supply.

By calibrating our model with U.S. heart donation and allocation data, we conduct
numerical simulations to document that the potential improvement in the aggregate
donation rate with the ABO-identical organ allocation policy is considerable. After in-
troducing the donor-priority rule, the ABO-identical policy achieves a further increase
of more than 10% in the aggregate donation rate relative to the improvement from the
donor-priority rule itself, which is robust with respect to several specifications of cost
type distributions. Under the de facto ABO-compatible policy implied from recent U.S.
heart transplantation data, we observe significantly imbalanced incentives among the
four blood-type groups, with pairwise differences in the group donation rates that reach
over 19 percentage points when the donation cost is relatively small.

The remainder of this paper proceeds as follows. In the rest of this section, we briefly
review the related literature and emphasize our main contributions. Section 2 starts with
a simple example and then develops the general organ donation and allocation model.
We analyze the optimal organ allocation policy in Section 3 and discuss its extensions
in Section 4. In Section 5, we perform numerical simulations to explore the size of the
improvement with the optimal policy. Section 6 concludes. All proofs are presented in
the Appendix.
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1.1 Related literature and contribution

This paper is most closely related to the emerging literature on incentivizing deceased
organ donations via different organ allocation rules and, in particular, the donor-priority
rule, which provides priority on organ waiting lists to individuals who previously reg-
istered as organ donors. The pioneering work by Kessler and Roth (2012) shows both
experimentally and theoretically that the donor-priority rule significantly outperforms
an alternative policy that does not utilize such a priority allocation in terms of donation
rates. This seminal work was later extended with several variants of the donor-priority
rule in laboratory experiments by Li et al. (2013), Kessler and Roth (2014), and Herr and
Normann (2016) and in theory by Kim et al. (2021) and Dai et al. (2020), among many
others. Empirically, Stoler et al. (2017) document the positive impacts of the donor-
priority rule in Israel on the donor registration rate. However, none of these previous
studies considers how the donor-priority rule interacts with blood-type barriers and
consequently affects the donation incentives among different blood-type groups. Our
paper contributes to the theory of deceased organ allocations and donations by formally
investigating the implications of the donor-priority rule for the allocation policies that
naturally arise from the biological barriers to organ transplantations.

Our model considers one of the most important and extensively studied medical
barriers to deceased organ transplantation, namely, blood-type compatibility, in a uni-
fied deceased organ donation and allocation framework. The explicit consideration of
blood-type compatibility in organ transplantation is widely featured in the kidney ex-
change literature as one of the most successful applications of matching theory initi-
ated by Roth et al. (2004, 2005, 2007), who study the matching and exchange mecha-
nisms among blood-type incompatible living donor-patient pairs to improve the effi-
ciency and welfare of organ markets. These seminal works have played important roles
in designing kidney exchange policies in the U.S. and Europe. However, these papers
and subsequent studies have mostly considered the standard ABO blood-type classifica-
tion. Sönmez et al. (2018), as one of the few exceptions, consider technological advances
in blood typing and study the economic consequences of a recent reform by the United
Network for Organ Sharing (UNOS) in 2014 that prioritizes subtype A2 deceased-donor
kidneys for blood type B patients. In our paper, we consider more general blood typing
and organ matching technologies that apply to existing and future medical advances,
and our findings are robust in terms of these technologies.

The optimal organ allocation policy in our framework not only maximizes the num-
ber of organ transplants by directly promoting the total organ supply but also guaran-
tees equity in organ sharing. Equity in access to organ transplantation has emerged as
an important concern in the kidney exchange literature (Sönmez et al. (2020)). In the
medical literature, Lai and Roberts (2016) investigate the impact of ABO-nonidentical
liver transplantation on waitlist disparities by blood types. More broadly, our study also
contributes to the operations research literature on optimal organ allocation policies,
for instance, Ruth et al. (1985), Su and Zenios (2006), Kong et al. (2010), and Bertsimas
et al. (2013), among many others. While most of these studies have considered an ex-
ogenous supply of deceased organs, we explicitly analyze how organ allocation policies
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among different blood-type groups endogenously determine the organ supply by blood
type, which in turn can affect the optimal design of organ allocation policies.

Finally, the design of a default organ registration status is also an important policy
dimension to incentivize organ donations that has received much attention. Although
many previous studies have provided direct evidence that an “opt-out” system, where
everyone is presumed to be a registered donor unless an individual actively indicates
otherwise, generates higher registration rates compared with an “opt-in” system (John-
son and Goldstein (2003), Abadie and Gay (2006)), there are critical arguments against
shifting from an opt-in to an opt-out policy (Fabre et al. (2010)). In particular, a recent
study by Glazier and Mone (2019) has raised concerns that switching to an opt-out sys-
tem may have unintended consequences that make this policy less effective at increas-
ing final donation rates under the current U.S. gift law. In addition, recent empirical
studies by Sharif (2018) and Arshad et al. (2019) have offered opposing evidence that an
opt-out system will not automatically lead to increased organ donation.

2. Model

This section first discusses a simplified example to present the essentials of our model
and the intuition behind the analysis and then formally defines the general framework.

2.1 Illustrative example

There are two groups of agents with blood types A and O, with a continuum of agents
in each, and each group has a measure of 1/2. In the first stage, each agent decides
whether to register for organ donation. The net cost of committing to donation is c,
which is uniformly distributed on [−γ, 1 − γ], with cumulative distribution function
(CDF) F(c) = γ + c and γ ∈ (0, 1). In the second stage, each agent may be brain dead
with probability β ∈ (0, 1) or may encounter organ failure with probability θ ∈ (0, 1). Af-
ter brain death, a registered donor donates one organ, which is to be allocated among
those who need one, with a higher priority granted to registered donors. We focus on a
scenario with organ shortage, that is, β < θ, such that among those with organ failure,
a patient may receive an organ donation only if he is a previously registered donor. The
payoff from receiving an organ donation is normalized to 1.

Under the AO-identical policy, type-O (A) organs are allocated to only type-O (A)
patients, although type-O donors are also blood-type compatible with type-A patients.
Let ci with i ∈ {A, O} denote the cutoff cost such that only an agent of blood type i with
a donation cost lower than ci will commit to donation. The total supply of type i organs
is β(ci + γ)/2, and the effective demand for type i organs by registered donors is θ(ci +
γ)/2. Therefore, the probability for patients who are registered donors to obtain organ
allocations is pi ≡ β/θ. In equilibrium, the cutoff costs should satisfy ci = θpi with i ∈
{A, O}, which results in c∗

A = c∗
O = β. The aggregate donation rate under the AO-identical

policy is therefore [F(c∗
A ) + F(c∗

O )]/2 = β+ γ.
We next consider the class of AO-compatible policies, which allow the transfer of or-

gans from group O to A (but not from A to O due to blood-type incompatibility given cur-
rent organ matching technology). Let k/2 > 0 denote the number of organs transferred
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from group O to A under a given AO-compatible policy. Then the probabilities for regis-
tered donors to receive organ allocations become pA = [β(cA + γ) + k]/[θ(cA + γ)] and
pO = [β(cO + γ) − k]/[θ(cO + γ)]. If k > 0, then pA > β/θ > pO ; therefore, cA > β > cO .
This indicates that when exporting organs from group O donors to group A patients,
agents in group A obtain a higher transplantation rate and are thus more incentivized to
donate, while agents in group O become less incentivized than their counterparts un-
der the AO-identical policy. Accordingly, unequal access to the organ transplantations
between the two groups distorts the donation incentives.

Based on the equilibrium conditions ĉA = θp̂A and ĉO = θp̂O , we can derive that
ĉA + ĉO is strictly decreasing in k, and so is the equilibrium aggregate donation rate
[F(ĉA ) + F(ĉO )]/2. Therefore, the class of AO-compatible policies reduces the number
of organ donations and transplantations, i.e., [F(ĉA ) +F(ĉO )]/2 < [F(c∗

A ) +F(c∗
O )]/2 for

any k > 0. This is mainly because transferring k/2 > 0 organs from group O to group A
decreases the transplantation rate of group O by �pO = k/[θ(cO + γ)], while it increases
the transplantation rate of group A by only �pA = k/[θ(cA + γ)] < �pO , since cA > cO .
Specifically, any given AO-compatible policy disincentivizes donations in group O more
than it incentivizes donations in group A and, therefore, results in a decrease in the ag-
gregate donation rate compared with the AO-identical policy.

This simple example illustrates the optimality of the AO-identical policy in incen-
tivizing deceased donor registrations by considering two equally populated blood-type
groups and a simplified version of the standard organ matching technology. It is also
a unique optimal policy in this simplified context. We next present a general model
framework that incorporates not only a large number of blood types with any possible
population distributions but also a wide class of organ matching functions.

2.2 General framework

Based on Kessler and Roth (2012), we consider a parsimonious model of organ dona-
tion and allocation that includes a unit mass of agents. The organ donation decisions
of the agents are modeled as a simple two-period game. In the first period, agents si-
multaneously decide whether to register for deceased organ donation. Although there
are psychological and logistical costs associated with deceased donor registration, it is
also an altruistic act that brings expected utility gains by improving someone’s life and
reducing suffering. Therefore, we consider the net costs as the psychological and logis-
tical costs of registration minus the expected utility of registering. The private net costs
of registering (or equivalently, donating) c are independently and identically distributed
(i.i.d.) with a smooth CDF F(c) and probability density function (PDF) f (c) = F ′(c) > 0.
The net donation cost is modeled as heterogeneous since each agent perceives the organ
donation decision differently. Some agents may feel a great psychological burden when
thinking about death at the time of making this decision, whereas other agents could be
altruistic and enjoy a rewarding feeling that overrides the psychological and logistical
costs associated with donation. Therefore, the net cost of donating may even be neg-
ative. To account for the presence of such altruistic agents, we consider F(0) > 0 such
that a group of donors always exists regardless of the incentive rules. For the simplicity
of presentation, we refer to c as the donation cost in the rest of this paper.
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Our main analysis assumes that 1/F(c) is strictly convex. This property is implied by
regularity, ρ-concavity, and satisfied by many distributions that are widely used in the
literature (Ewerhart (2013)). The first related concept is the notion of regularity, which
is critical for several most remarkable results in the mechanism design literature, for in-
stance, Myerson (1981) and Myerson and Satterthwaite (1983). 1/F(c) is strictly convex
if and only if the virtual cost r(c) := c + F(c)/f (c) is strictly increasing in c. The second
related concept pertains to a general notion of concavity, known as ρ-concavity, with
the index ρ ∈ [−∞, ∞] measuring the degree of concavity (Caplin and Nalebuff (1991a,
1991b)). Any ρ-concave distribution F with ρ >−1 has a strictly convex 1/F .

In the second period, agents encounter health shocks and receive payoffs. We con-
sider two mutually exclusive shocks, namely, brain death (due to a nonorgan-related dis-
ease or accident) and organ failure. Each agent experiences brain death with probability
β ∈ (0, 1) and organ failure with probability θ ∈ (0, 1) and remains healthy with proba-
bility 1 −β−θ ∈ (0, 1). When a registered donor encounters brain death, he contributes
α organs to the pool of deceased organs, which are allocated among agents with organ
failure via a waiting list mechanism. Each agent with organ failure, also referred to as a
patient, needs to obtain an organ for transplantation from the pool of deceased organs.
If such a patient receives an organ allocation, he gains a normalized payoff of V , which
represents the value of receiving an organ with an improved life expectancy and quality
of life. Otherwise, if an agent in need of an organ does not receive one, his payoff from
organ allocation is normalized to zero. Without loss of generality, we consider α = 1 and
normalize V = 1 throughout the theoretical analysis for expositional simplicity, which
are relaxed in Section 5 for simulation analysis.

The available organs are distributed based on a waiting list mechanism. Although
in practice, waiting lists are administered separately for different organ types depending
on many factors, such as medical emergency, immunological match, and geographical
distance, our main analysis abstracts away from these nonincentive-related details to fo-
cus on the aspects that are more likely to influence the incentive to register for deceased
donation. More specifically, we consider a waiting list mechanism that features three
key elements. First, the biological barriers among different blood-type groups are deter-
mined by organ matching technology. Second, a class of allocation policies describes the
discretion in transplants between blood-type-compatible but nonidentical donors and
recipients. Third, the donor-priority rule grants a higher priority to registered donors
than to nondonors in receiving a transplant.

2.2.1 Matching technology A major factor for the successful transplantation of organs
is blood-type compatibility. We consider a general classification of blood types that can
incorporate any of the current human blood group systems and future developments
in blood subtyping technologies. Let B = {b1, b2, � � � , bm} denote a finite and possibly
large set of blood types, with ni ∈ (0, 1) as the measure of blood type i agents such that∑m

i=1 ni = 1. We use b to denote a generic blood group in B.
Under the general blood-type classification, we consider a large class of matching

functions M to describe the blood-type compatibility barriers to organ transplantations,
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which can incorporate any existing or future organ matching technology, as follows:

M := {
μ : B × B → {0, 1} | μ(bi, bi ) = 1, for any bi ∈ B

}
,

where μ(bi, bj ) defines the medical feasibility of transplanting organs of blood type bj
donors to blood type bi patients. Equivalently, M is a set of m × m matrices whose di-
agonal entries are one, and the off-diagonal entries are either zero or one. For nota-
tional simplicity, we denote μij := μ(bi, bj ). Note that the only restriction in this class
of matching functions is compatibility within the same blood group, which is a minimal
requirement in practice.

A standard matching technology among this large class is ABO blood-type compat-
ibility, which is most widely discussed and modeled in the kidney exchange literature
(Roth et al. (2004, 2005, 2007)). It can be described by four blood types B = {O, A, B, AB}
and the standard ABO organ matching function μ̃ as follows:

μ̃(AB, b) = 1 for any b ∈ {O, A, B, AB}; μ̃(A, b) =
{

1 if b ∈ {O, A},

0 otherwise;

μ̃(B, b) =
{

1 if b ∈ {O, B},

0 otherwise;
μ̃(O, b) =

{
1 if b = O,

0 otherwise.

The ABO-compatible transplantation is a conventional matching technology, and ABO
incompatibility has long been considered to be a contraindication to organ transplanta-
tion in practice. Nevertheless, over the past 25 years, ABO-incompatible transplantation
has increasingly been performed to overcome donor shortages in the case of adult kid-
ney (for living donors) and liver transplantation and pediatric heart transplantation, and
the outcomes have steadily improved (Morath et al. (2017), Yu et al. (2017)). Therefore,
with future medical advances, an ideal organ matching technology would be full com-
patibility, which could make the transplantations between any donor-patient pair med-
ically feasible. The full compatible matching function μ∗ can be represented as μ∗

ij = 1
for any i, j ∈ {1, � � � , m}, i.e., μ∗ is a matrix of ones.

2.2.2 Allocation policy An allocation policy is represented by an m × m matrix 	 :=
{λij }{i,j=1, ���,m}, where λij ∈ [0, 1] denotes the proportion of type bj donors (organs) al-
located to type bi patients and

∑m
i=1 λij = 1 for any j ∈ {1, � � � , m}. For any given organ

matching technology μ ∈ M (by nature or technology), an optimal allocation policy must
satisfy

m∑
i=1

λijμij = 1, ∀j = 1, � � � , m.

These constraints guarantee the full utilization, i.e., nonwastefulness, of organs, which
immediately implies that if μij = 0, then we must have λij = 0 in an optimal policy.

A typical example of an organ allocation policy is the XYZ-identical allocation pol-
icy, which reserves type bi organs for type bi patients, even if the existing organ match-
ing technology allows transplantations of type bi organs to patients of another type, i.e.,
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μij = 1 for some j 	= i. The XYZ-identical allocation policy can be represented as an iden-
tity matrix with λ∗

ii = 1 and λ∗
ij = 0 for any i, j ∈ {1, � � � , m} and i 	= j, i.e., 	∗ ≡ I. Under

the ABO blood-type classification, the XYZ-identical policy largely corresponds to the
ABO-identical allocation policy applied in practice for deceased kidney transplants in
the U.S. One of the main arguments for adopting this policy is that the ABO classifica-
tion leads to an immunological asymmetry in the sense that blood type O patients are
especially disadvantaged by having less access to the organ supply pool than patients
with the other three blood types (A, B, and AB). The ABO-identical allocation policy for
deceased-donor transplants thus aims to mitigate the resulting disadvantage to type O
patients by reserving O kidneys for O patients.

By contrast, the class of XYZ-compatible allocation policies are flexible in the sense
that organs can be offered to any compatible patients by a proportion of λij with i 	= j un-
der the existing organ matching technology. We refer to any allocation policy with λij > 0
for some i 	= j, i.e., a nonidentity allocation matrix, as an XYZ-compatible policy. Note
that this requirement is imposed merely to exclude the XYZ-identical policy from the
class of XYZ-compatible policies, which can facilitate our following discussions. Under
the ABO blood-type classification, the corresponding ABO-compatible allocation poli-
cies are more common in the U.S. for organs with greater medical urgency. The Euro-
transplant Kidney Allocation System adopts the ABO-compatible scheme, but it results
in a substantial drain of O kidneys with longer waiting times and worse outcomes for
blood type O patients on organ waitlists (Glander et al. (2010)).

2.2.3 Donor-priority rule With the donor-priority rule, registered donors are strictly
prioritized over nondonors to receive organ allocations, which is conditioned on the
same blood-type group. The assumption of strictly higher priority for donors is re-
laxed in Section 4.1. To capture the shortage of the organ supply in practice, we assume
that the demand rate of organs is larger than the supply rate, i.e., αβ = β ≤ θ, which is
consistent with the calibrated parameter values in Section 5.1. A similar assumption is
adopted in Sönmez et al. (2020). Accordingly, our main analysis focuses on the case in
which the organ supply is insufficient to satisfy the demand of donors for each blood-
type group. Let pi ∈ [0, 1] denote the survival rate of blood type i patients (i.e., agents
with organ failure) who have registered for donation, i.e., the probability of receiving
an organ allocation in the case of organ failure. For the following discussions, we re-
fer to pi as the survival rate for simplicity. We denote the vector of survival rates as
P := (p1, � � � , pm ) ∈ [0, 1]m, which measures the exclusivity of the donor-priority queue.

2.2.4 Donation decision and market equilibrium Given any blood-type classification B
and any associated organ matching technology μ ∈ M, a waiting list mechanism, which
distributes organs procured from deceased donors to patients with organ failure, can be
defined by the allocation policies among different blood-type groups 	 and the survival
rates under the donor-priority rule P .

In making the donation decision, an agent needs to weigh his private cost of do-
nation over the marginal benefit of donation, which is measured by the probability of
being in need of an organ, the value for receiving an organ and his incremental chance
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of receiving a transplant. The donation decision for type i agents is therefore charac-
terized by a threshold donation cost ci such that ci = θpi. A type i agent with donation
cost c would register for donation if and only if c ≤ θpi, i.e., his cost of donation is no
more than his marginal benefit of donating. In this sense, an agent with donation cost
ci is known as a threshold agent. We use δi = F(ci ) = F(θpi ) to denote the donation rate
among type i agents. Therefore, δini = F(θpi )ni is the measure of blood type i donors in
the population.

To define the organ market equilibrium, we first need to specify the organ supply
available to each blood-type group and the effective organ demand by each blood-type
group. The organ supply made available to type i agents under an allocation policy 	 is
measured by β

∑m
j=1 δjnjλijμij , which accounts for the brain death rate in the population

β, the measure of each type of donors δjnj , the allocation policy from type j donors to
type i patients λij , and the matching technology μij . The effective organ demand of type
i agents (donors) is θδinipi, which is determined by the probability of organ failure θ,
the proportion of type i donors δi, the measure of type i agents ni in the population and
the survival rate of type i patients pi. Therefore, we have m market clearing conditions
in the equilibrium

θδinipi = β

m∑
j=1

δjnjλijμij , ∀i = 1, � � � , m.

3. Analysis of the optimal policy

Given any blood-type classification B and organ matching technology μ, we consider
the social planner’s objective of maximizing the aggregate donation rate by choosing
the allocation policy 	 and the survival rates of patients with organ failure P as

max
	∈[0,1]m×m,P∈[0,1]m

m∑
i=1

F(θpi )ni (1a)

subject to θF(θpi )nipi −β

m∑
j=1

F(θpj )njλijμij = 0, ∀i = 1, � � � , m; (1b)

m∑
i=1

λijμij − 1 = 0, ∀j = 1, � � � , m. (1c)

where constraints (1b) are the market clearing conditions for each blood type, and equa-
tions (1c) represent the full utilization constraints on the allocation policies among m

blood-type groups conditioned on the given matching technology.

3.1 Optimal allocation policy

To derive the optimal organ allocation policy, we start by considering a simplified opti-
mization problem with fully compatible matching technology, i.e., μ = μ∗. With μ∗

ij = 1
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for all i, j ∈ {1, � � � , m}, the optimization problem defined by (1a)–(1c) becomes

max
	∈[0,1]m×m,P∈[0,1]m

m∑
i=1

F(θpi )ni (2a)

subject to θF(θpi )nipi −β

m∑
j=1

F(θpj )njλij = 0, ∀i = 1, � � � , m; (2b)

m∑
i=1

λij − 1 = 0, ∀j = 1, � � � , m. (2c)

By adding the m constraints in (2b), we can derive a more simplified optimization prob-
lem that concerns only the choice of P as follows:

max
P∈[0,1]m

m∑
i=1

F(θpi )ni (3a)

subject to
m∑
i=1

θF(θpi )nipi −β

m∑
j=1

F(θpj )nj = 0. (3b)

It is clear from (3b) that the problem of maximizing the aggregate donation rate in (3a)–
(3b) is equivalent to maximizing the aggregate organ transplantations. Furthermore, we
can show that this simplified problem in (3a)–(3b) is equivalent to the problem defined
by (2a)–(2c) by the following lemma.

Lemma 1. Given any P ∈ [0, 1]m that satisfies equation (3b), we can always find 	 ∈
[0, 1]m×m that satisfies constraints (2b) and (2c).

Since the optimization problem in (3a)–(3b) with μ = μ∗ pertains only to the choice
of P , we first explore the survival rates for patients with organ failure that result from an
optimal allocation policy, without yet specifying the corresponding optimal allocation
matrix 	. For the simplified problem defined by (3a)–(3b), the following proposition
states that the unique optimal solution is to equalize the survival rates after organ failure
among all blood-type groups with P = P∗ = (p∗, � � � , p∗ ), where p∗ := β/θ.

Proposition 1. If μ = μ∗, we must have P = P∗ in an optimal policy.

Proposition 1 suggests that under the ideal matching technology of full compatibility
μ∗, an optimal allocation policy to maximize the aggregate donation incentives (equiva-
lently, organ transplantations) should always provide equal access to organ transplants
among all blood-type groups, regardless of the population size of each group ni, i.e.,
P = P∗ uniquely maximizes the aggregate donation under μ∗. It follows immediately
from the equilibrium donation decisions that the threshold agent in each blood-type
group has the same donation cost ci = c∗ = θp∗ = β and that the donation incentive
among each group is balanced with δi = δ∗ = F(θp∗ ) = F(β). By equalizing the marginal
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cost of contribution in the organ procurement process, this optimal policy simultane-
ously equalizes the marginal benefit of allocation in organ sharing among each group,
which results in balanced donation incentives across the blood-type groups.

To provide intuition for this result, consider otherwise that an optimal allocation
policy under μ∗ leads to unequal access to organs across the blood-type groups. It im-
mediately follows that the corresponding allocation policy must be XYZ-compatible.
This is because under the XYZ-identical policy with 	 = I, each blood-type group es-
sentially operates as an “autarky” in a separate and identical submarket (except for pos-
sible differences in market size), without any interactions among them. Therefore, the
survival rate within each group must be uniformly determined by the market clearing
condition θδinipi = βδini such that pi = p∗ = β/θ. Under an XYZ-compatible policy,
unequal access to donated organs implies that at least one group is a “net importer” of
donated organs in the sense of receiving (or “importing”) more donations from the other
m − 1 groups than the total amount that it has transferred (or “exported”) to the other
groups. Meanwhile, since there is no external source of organ supply, at least one group
is a “net exporter” of organs in the market. Net importers have higher donation incen-
tives than net exporters since net importers enjoy a relatively higher marginal benefit
in receiving organ allocations with a larger survival rate after organ failure. As a result,
unequal access to organs distorts the donation incentives across the blood-type groups.

Now let us consider the incentive effects of redistributing a marginal amount of the
organs enjoyed by a net importing group bi to a net exporting group be. Note that it is
always feasible to do this because of the fully compatible matching technology currently
under consideration. With strictly convex 1/F(c), such a redistribution incentivizes the
donations in group be to a larger extent on the margin than it decreases the donation
incentives of group bi. This is because organs are relatively more scarce for group be,
and a marginal increment in the benefits of receiving organ allocations stimulates more
type-be agents to donate when 1/F(c) is strictly convex. Therefore, eliminating the trade
imbalances in organs among the different blood-type groups can mitigate the incentive
distortions and achieve the optimal aggregate donation rate.

More generally, the following theorem states that for any given organ matching tech-
nology μ ∈ M, equal access among all the blood-type groups is a necessary and sufficient
condition to achieve maximal aggregate donation incentives. We establish this result in
two parts. The first step is to observe that the optimization problem with μ= μ∗ in (3a)–
(3b) is in fact a relaxed problem of the original optimization problem with a general
matching technology μ ∈ M defined by (1a)–(1c). This is because adding the m market
clearing constraints in (1b) and applying the m full utilization constraints in (1c) result
in (3b). This indicates that for any given μ, if an allocation policy results in equal ac-
cess with P = P∗ such that the donation rate achieves the upper bound of δ∗ = F(β), it
must be an optimal allocation policy under the given matching technology. In the sec-
ond step, we show that under any matching technology, an allocation policy that results
in unequal access with P 	= P∗ must be suboptimal. This is established by first trans-
forming the original optimization problem with μ ∈ M to the optimization problem with
μ = μ∗ and then applying the result of Proposition 1.



344 Kim and Li Theoretical Economics 17 (2022)

Theorem 1 (Equal access in organ sharing). For any given organ matching technology
μ ∈ M, if an allocation policy results in P = P∗, it must be an optimal policy. In contrast,
any allocation policy that results in P 	= P∗ is suboptimal.

The intuition of Theorem 1 similarly follows from the discussions of Proposition 1
in that unequal access in organ sharing leads to incentive distortions among the blood-
type groups and, therefore, undermines the aggregate donation rate. Based on the pre-
vious discussions, with an arbitrary matching technology, the redistribution of organs
from a net importing group bi to a net exporting group be requires either compatibil-
ity between at least one type of the organs currently consumed by group bi and type-be
patients or, in an indirect way, that there is a path to transfer organs through several
compatible intermediary groups that terminates at group be. The indirect method of re-
distribution is always feasible by simply reversing the pairwise organ transfers between
groups with λij > 0 in the corresponding allocation matrix.

An alternative way of understanding the intuition for equal access in an optimal pol-
icy under any given matching technology is to observe that the incentive to donate for
each group is largely determined by the incremental chance of receiving a transplant
from being a nondonor to a registered donor. When each group has identical survival
rates, transferring an organ from group bj to a compatible group bi results in a marginal
increase in nipi by 1/(θδi ) and a marginal decrease in njpj by 1/(θδj ), according to the
market clearing conditions of these two groups. Since group bi now has a higher do-
nation incentive with more access to organs, i.e., δi > δj , such a transfer decreases the
amount of organ donations in group bj more than it incentivizes donations in group bi
with 1/(θδi ) < 1/(θδj ), provided that 1/F(c) is strictly convex. Therefore, moving from
equal access to unequal access not only has distributional effects but, more importantly,
leads to incentive distortions and undermines the aggregate donation rate.

We now turn to the optimal design of specific allocation policies. For any general
matching technology μ ∈ M, our next main result establishes that the XYZ-identical allo-
cation policy with 	∗ = I maximizes the aggregate incentives to donate under the donor-
priority rule, which is general in terms of the classifications and population distributions
of blood types and the organ-specific matching technologies.

Theorem 2 (Optimality of the XYZ-identical policy). For any μ ∈ M, the allocation pol-
icy of λ∗

ii = 1 and λ∗
ij = 0 for i 	= j (i.e., 	∗ = I), which results in P = P∗, is optimal.

This result indicates that regardless of the organ matching technology, it is always
optimal to offer blood-type bi organs only to type bi patients while simultaneously en-
suring equal access to organs among all blood-type groups, as in Theorem 1. The proof
of this result relies on a relaxation of the original optimization problem in (1a)–(1c) and,
subsequently, the application of Proposition 1. To understand the intuition behind the
optimality of the XYZ-identical policy, we note that with each group staying in autarky,
this equalizes the access to organs and balances the donation incentives across the dif-
ferent blood-type groups. In contrast, allowing organ transfers between compatible
but nonidentical blood-type donor-patient pairs may result in an incentive distortion
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among these groups, as a standard matching technology naturally creates immunolog-
ical asymmetries between different blood types. For instance, with the ABO matching
function μ̃, type O patients have inherent disadvantages because they are not compati-
ble with any other type of organ and, consequently, have less access to deceased donor
organs than the other three types of patients, while type AB patients are in a more fa-
vorable situation. Such disparity in access to transplants has motivated many interest-
ing studies in the living donor-patient kidney exchange literature (Sönmez et al. (2018,
2020)). In particular, with μ = μ̃, our result in Theorem 2 is parallel to the finding in
Sönmez et al. (2020) that the ABO-identical exchange policy is optimal in the sense of
maximizing the measure of transplants to the donor-recipient pairs.6

3.2 Uniqueness of the optimal policy

Although Theorem 2 suggests that the XYZ-identical policy maximizes the aggregate do-
nation incentive, it may not be a unique allocation policy to achieve this. Intuitively, any
allocation policy that results in a balanced trade of organs among the blood-type groups
ensures equal access in organ sharing and can therefore be optimal according to Theo-
rem 1. To further explore the general set of optimal allocation policies, we next investi-
gate the implications of bilateral matching feasibility on the optimal transfers among the
different blood-type groups. Let us first consider group bj from a supplier’s or donor’s
perspective. If the type-bj organs (such as type AB under the standard ABO classifica-
tion) are not compatible with any other type-bi (where i 	= j) patients, an optimal policy
should not export any type-bj organs because of the full utilization constraint for group
bj . Meanwhile, group bj should not import any organs from another group due to the
equal access condition in optimal policies. We next consider group bi as a receiver in the
market. A symmetric argument applies from the perspective of recipients or patients as
follows. If type-bi patients (such as type O under the standard ABO classification) are not
compatible with any type-bj (where j 	= i) organs under a given matching technology, it
would be wasteful to transfer any type-bj organs to group bi based on the full utilization
constraint. Meanwhile, it is also suboptimal to export any type-bi organs to any other
group because of the equal access property in an optimal allocation policy based on
Theorem 1. These arguments lead to the following lemma.

Lemma 2. Consider any fixed j or any fixed i. If μij = 0 for all i 	= j, an optimal allocation
policy should satisfy λii = 1 and λij = λji = 0 for any i 	= j.

An important implication of Lemma 2 is that the suboptimality of the XYZ-
compatible policies is closely related to the configuration of μ, i.e., the given match-
ing technology. The next theorem establishes the necessary and sufficient condition for
the XYZ-identical policy to be the unique optimal policy. For notational simplicity and
clarity, we denote, for instance, μ(i1, i� ) := μi1i� := μ(bi1 , bi� ), in the following.

6In the kidney exchange literature with living donors, the ABO-identical exchange policy matches an
arriving incompatible pair (with a blood-type bi recipient and a blood-type bj donor) with a mutually com-
patible pair of its reciprocal type (with a blood-type bj recipient and a blood-type bi donor).
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Theorem 3 (Uniqueness of optimal policy). If μ(i1, i� )μ(i�, i�−1 ) · · ·μ(i3, i2 )μ(i2, i1 ) = 0
for any i1, i2, � � � , i� and � ≥ 2, the optimal allocation policy is unique with 	∗ = I and
P = P∗. Otherwise, a continuum of optimal policies exists with 	 	= I and P = P∗.

When � = 2, the condition in Theorem 3 corresponds to μ(i1, i2 )μ(i2, i1 ) = 0 for any
two groups i1 and i2, which means that, for any pair of blood-type groups, at least one
group must be incompatible with the other. More generally, to better understand the
condition for the uniqueness of the optimal policy, we note that given any blood-type
classification B and the corresponding matching technology μ, we can construct a di-
rected compatibility graph G = (B, E) by encoding each blood-type group bi ∈ B as a
vertex and adding a directed edge e = (bj , bi ) ∈ E from bj to bi if organs of type bj are
compatible with patients of type bi, i.e., μij = 1. Note that G permits self-loops with
edges that connect a vertex to itself. Following the standard definition in graph theory,
the adjacency matrix of G is a square m×m matrix AG = {aij } such that aij = 1 when there
is a directed edge from vertex bi to vertex bj and aij = 0 otherwise. Therefore, the com-
patibility matrix representation of a matching technology is essentially the transpose of
the adjacency matrix representation of the corresponding directed compatibility graph,
i.e., μ =AT

G. It follows that the condition of μ(i1, i� )μ(i�, i�−1 ) · · ·μ(i3, i2 )μ(i2, i1 ) = 0 for
any i1, i2, � � � , i� and � ≥ 2 is equivalent to the requirement that the compatibility graph
G does not contain any directed cycles (not accounting for the self-loops from bi to bi),
i.e., G is a directed acyclic graph (which permits self-loops).

The uniqueness of an optimal allocation policy critically depends on the configu-
ration of the directed compatibility graph that corresponds to a given organ matching
technology. The first part of Theorem 3 states that when the directed compatibility graph
is acyclic, the XYZ-identical policy is the unique optimal allocation policy, which also re-
sults in equal access to organ transplants with P = P∗. The second part establishes that
if there exists at least one directed cycle in the compatibility graph, we have a continuum
of XYZ-compatible policies that are optimal and can achieve the same donation rate as
the XYZ-identical policy while ensuring equal access to organs. The intuition is as fol-
lows. To maximize the aggregate donation incentives, an allocation policy must result in
equal access to organ transplants as established in Theorem 1. The key to guaranteeing
an identical survival rate across groups is to have a balanced trade of organs under the
class of XYZ-compatible policies or simply have no trade at all as in the XYZ-identical
policy. When the compatibility graph is acyclic, it is impossible to achieve a balanced
trade with XYZ-compatible policies. This is because starting at any blood-type group
bi, which exports some of the type-bi organs to other groups, there is no consistently
directed sequence of edges to allow for continuous flows of organs that eventually loops
back to group bi again. That is, group bi cannot import as much as it exports, which
makes it a net exporter in the market, and thus results in incentive distortions. There-
fore, when the directed compatibility graph that corresponds to a given organ matching
technology is acyclic, the only feasible way to avoid a trade surplus or trade deficit in
organs is to keep each group in a state of autarky, i.e., to restrict organ imports and ex-
ports by reserving type X organs for only type X patients such that 	∗ = I, which is the
XYZ-identical policy. In contrast, if there is a directed cycle in the compatibility graph, it
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is possible to realize a fairly even reciprocal trade pattern among the blood-type groups
along the cycle, where each group can balance the overall trade by offsetting a trade
deficit (with one group) with a trade surplus (with another group). Accordingly, a contin-
uum of optimal allocation policies achieves a balanced trade of organs and equal access
to organ transplants when the compatibility graph G contains directed cycles.

These arguments also have direct implications for the optimal way to allocate each
specific type of organs. When the condition of acyclicity in Theorem 3 is violated, the
continuum of optimal policies actually applies to only the groups that are in the com-
patible cycles, whereas the remaining groups that are not a part of any directed trade cy-
cle should remain in autarky. More specifically, if blood-type group bi cannot form any
directed cycle with the other groups, it is optimal for this group to refrain from trade, i.e.,
to reserve type bi organs for type bi patients only such that λii = 1 and λij = λji = 0 for
any j 	= i. Otherwise, group bi can engage in a balanced trade along at least one directed
compatible cycle with the other groups, which thus creates a continuum of optimal al-
location policies for group bi with λii < 1. This argument leads to Corollary 1, which is
a generalization of Lemma 2. When � = 1, the condition in Corollary 1 corresponds to
μ(i, j1 )μ(j1, i) = 0 for any blood-type group j1 	= i.

Corollary 1. For any fixed blood-type group i, if μ(i, j� ) · · ·μ(j2, j1 )μ(j1, i) = 0 for any
� ≥ 1 and jk 	= i, where k = 1, 2, � � � �, the optimal allocation policy for group i is unique
with λii = 1 and λij = λji = 0 for any j 	= i. Otherwise, a continuum of optimal allocation
policies exists for group i with λii < 1.

Theorem 3 immediately suggests the suboptimality of the ABO-compatible policies,
i.e., the ABO-identical policy is the unique optimal allocation policy. Intuitively, with
the asymmetry and acyclicity in the ABO blood-type compatibility matrix, the O group
is especially disadvantaged because it can only serve as an exporter while never serv-
ing as an importer in the market for organ transplants. This intuition is consistent with
the well-documented empirical evidence that the ABO-compatible allocation policy in
the Eurotransplant Kidney Allocation System results in a substantial drain of O kidneys
and longer waiting times, higher death rates, and an accumulation of blood type O pa-
tients on the waiting list for kidneys, which will further aggravate the so-called “blood
group O problem” in the future (Glander et al. (2010)). The next corollary formalizes and
generalizes this result to any general blood-type classifications.

Corollary 2. If μ = μ̃, or more generally, if μ is a triangular matrix, there is a unique
optimal policy with 	∗ = I and P = P∗.

In general, if μ can be represented in the form of an m×m triangular matrix (by rear-
ranging the rows and columns that correspond to each blood-type group, if necessary),
the second part of Corollary 2 states that the XYZ-identical policy is the unique optimal
allocation policy. This result intuitively follows from a sequence of iterative eliminations
of groups that can never participate in cross-group trades. Without loss of generality, we
consider a lower triangular compatibility matrix with the rows and columns represent-
ing blood-type groups b1, b2, � � � , bm in sequence. In the first step, we observe that group
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b1 cannot receive any other type of organs since μ(b1, bj ) = 0 for all j > 1. In an opti-
mal policy, equal access to organ transplants requires that organs donated by group b1

should not be exported to any other group since group b1 cannot import any organ due
to incompatibility. Since group b1 can never be involved in any trade, we can remove it
from the market, and thus eliminate the first row and the first column of the compatibil-
ity matrix μ. In the second step, we consider group b2 in the reduced compatibility ma-
trix among the remaining m−1 groups b2, b3, � � � , bm, which is an (m−1)× (m−1) lower
triangular matrix. In this reduced market, type b2 patients cannot receive any other type
of organs since μ(b2, bj ) = 0 for all j > 2. By a similar argument, group b2 should also
not be involved in any trade in an optimal policy, and thus can be removed from the
market. By repeating these steps, each group is iteratively eliminated from the market
for possible organ trade across groups. Therefore, this sequence of procedures rules out
all the XYZ-compatible policies and results in a unique optimal allocation policy, which
is the XYZ-identical policy.

Finally, we note that our main results rely on a common condition of a regular cost-
type distribution, i.e., 1/F(c) is strictly convex. In our model, the cost of donation cap-
tures the disincentives involved in deceased donor registration in practice, which may
encompass both the psychological costs and financial costs (Hawley et al. (2018)). In
practice, the psychological costs are likely to play a more important role and are often
difficult to measure (Kessler and Roth (2012), Dai et al. (2020)). Although it is a challeng-
ing task to directly measure the exact cost distribution, many empirical studies have ex-
plored and identified various factors, including the sociodemographic characteristics,
attitudes, beliefs and subjective norms, that can influence the intention of donation
through surveys (Baughn et al. (2006), López et al. (2018)). Based on these empirical
studies, the regularity condition, which is satisfied under many common distributions,
is a reasonable approximation of the underlying cost distribution. If regularity fails to
hold, i.e., if 1/F(c) is not strictly convex, then we have the following negative result on
the suboptimality of P = P∗. For the proof, we simply construct a counterexample with
a cost distribution such that 1/F(c) is not convex at β.

Proposition 2. If 1/F(c) is not strictly convex, then P = P∗ may be suboptimal, i.e., an
XYZ-compatible policy may strictly dominate the XYZ-identical policy.

4. Extension and discussion

Our main analysis, although general in terms of the blood-type group classifications and
organ matching technology, has made a few simplifying assumptions. In particular, to
capture as directly as possible the key feature of potential incentive distortions due to
asymmetries in matching technology, we have abstracted away from additional medical
considerations in practical organ transplantations. This section further discusses sev-
eral extensions and alternative model specifications, which are largely motivated by the
details in practical allocation policies, to explore the robustness of our main results.



Theoretical Economics 17 (2022) Optimal organ allocation policy 349

4.1 Relative priority

The prioritization criteria for patients on waiting lists are complex, which vary across
organ types and depend on many characteristics of patients and organs beyond the reg-
istered donor status and blood type (Bertsimas et al. (2013)), which tend to make the
relative priority between donors and nondonors less stark than that in our model. For
instance, the deceased kidney allocation policy in Israel conforms with a point system
that ranks patients according to individual allocation scores, which take into account the
patient’s deceased donor registration status, age, waiting period, genetic compatibility,
and level of antibodies (Lavee et al. (2010)).

To account for these details, we further examine a scenario with only a relatively
higher priority for donors instead of the absolute priority in the main analysis. Specifi-
cally, we consider pi as the transplantation rate of blood type i patients who were reg-
istered for donation and (1 − t )pi as the transplantation rate of blood type i patients
who are not registered donors. The relative priority between donors and nondonors is
measured by t ∈ (0, 1], with a higher t indicating a starker difference and higher relative
priority for the donors. Note that the marginal increment in the probability of getting a
transplantation by registering to become a donor is tpi, and hence decreasing t reduces
the incentive to donate. If t was considered to be a policy parameter, it is trivial that
t∗ = 1 would be the optimal policy, and the analysis degenerates to our previous discus-
sions. Therefore, we consider t ∈ (0, 1] as exogenously given in the following analysis,
which may incorporate other practical factors in determining organ allocation priori-
ties, such as geographic distances (Kong et al. (2010)).

Individuals in each blood-type group compare the expected utility gain of the donors
from receiving organ transplantation θpi and the expected utility gain of the nondonors
θ(1 − t )pi in making donation decisions. Therefore, a type i individual with donation
cost c will register for donation if and only if c ≤ θtpi. The market clearing condition
becomes θ(1 − t + tδi )nipi = β

∑m
j=1 δjnjλijμij for each group i ∈ {1, � � � , m}. The follow-

ing proposition states the optimal allocation policy after introducing the relative priority
between donors and nondonors.

Proposition 3. If 1/(F(c) + 1−t
t ) is strictly convex in c, then given any μ ∈ M and t ∈

(0, 1], the allocation policy 	∗ = I, with survival rates P = P̄ := (p̄){i=1, ���,m}, is optimal,
where p̄ ∈ (0, 1) is a solution to (1 − t )θp̄ = (β− θtp̄)F(θtp̄).

With relative priority between donors and nondonors, the XYZ-identical allocation
policy is still optimal to maximize the aggregate donation rate, regardless of the extent
of priority provided to donors. This optimal policy also has a nice byproduct of equaliz-
ing the access to organ transplants with P = P̄ among the different blood-type groups,
similar to our previous analysis. In particular, when t = 1, the optimal policy sets p̄ = p∗,
which coincides with the absolute priority case in Theorem 2, and when t → 0, we have
p̄ → F(0)p∗ <p∗, which is the case without donor priority. This further suggests that the
access to organ transplantation measured by pi unanimously improves with the XYZ-
identical allocation policy under the donor-priority rule.
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4.2 Degree of severity

Organ allocation policies are designed to address multiple objectives in practice, such
as the equality across the blood-type groups and regions (Kong et al. (2010), Bertsimas
et al. (2013)) and an efficient match of organs to patients of different degrees of severity
(Assfalg et al. (2016), Kratz (2019)). Indeed, the degree of severity of the patient’s con-
ditions plays an important role in determining the waitlist for certain types of deceased
organ transplantations, including livers, lungs, and hearts (Colvin-Adams et al. (2012)).
For instance, in Israel, the waiting list for heart transplants takes medical urgency as the
first consideration in the allocation decision, and within the less urgent group, regis-
tered donors are prioritized at the top of the candidacy list (Lavee et al. (2010), Berzon
(2008)).

To accommodate the feature of medical urgency, we consider two types of organ
shocks, namely, severe (S) and mild (M), which result in severe and mild patients. The
probability of a severe organ failure shock is θS ∈ (0, 1), while a mild organ failure shock
occurs with a probability of θM ∈ (0, 1). These two shocks are mutually exclusive, and
θ = θS +θM ∈ (0, 1) is the probability of organ failure shock. Agents only know the distri-
butions of these two types of organ shocks but are unaware of which type of organ shock
will be realized at the time of their donation decisions. We focus on a scenario with in-
sufficient organ supply for severe patients by assuming β ≤ θS . If a patient (severe or
mild) in need of organ transplantation receives an allocation, he gains a utility of V = 1,
as in our previous setup. To distinguish between severe and mild patients, we assume
that in the case of not receiving an organ transplant, a severe patient’s payoff from organ
allocation is zero, while a mild patient obtains 1 − x with x ∈ (0, 1), where x represents
the cost of additional medical aids to maintain a functioning life.7

To account for both the donor priority and the degree of severity in an allocation
policy, we consider the probabilities for patients who are registered donors to receive an
organ allocation as follows. Let pi denote the transplantation rate of blood type i severe
patients and τpi denote the transplantation rate of blood type i mild patients. In this
setup, τ ∈ [0, 1] is an additional policy parameter that determines the extent of priority
granted to severe patients, and a lower τ indicates more priority for severe patients.8 In
making donation decisions, agents weigh the expected utility gain for donors in organ
allocations, which is θSpi + θM[τpi + (1 − τpi )(1 − x)], and the expected utility gain
for nondonors in organ allocations, which is θM (1 − x). Therefore, a type i individual
with donation cost c registers for donation if and only if c ≤ (θS + τxθM )pi. The market
clearing condition for each blood-type group i ∈ {1, � � � , m} becomes (θS + τθM )δinipi =
β

∑m
j=1 δjnjλijμij . The following proposition states that it is optimal to provide absolute

priority to severe patients with τ∗ = 0 and to equalize the access to organ transplants
with p̃= β/θS ∈ (0, 1].

7Alternatively, one can interpret x as a reduced formulation for severity or urgency, and in this case,
severe patients will be dead with a probability of one without transplantation, while mild patients will be
dead with a probability of x ∈ (0, 1) without transplantation.

8In the kidney exchange literature, the prioritization for patients with severe conditions is modeled by
Dickerson and Sandholm (2014) and Kratz (2019), with patients sorted into priority groups based on the
severity of their conditions.
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Proposition 4. For any μ ∈ M, the allocation policy 	∗ = I with survival rates P = P̃ :=
(p̃){i=1, ���,m} and τ∗ = 0 is optimal.

This result again confirms that the XYZ-identical allocation policy with equal ac-
cess to organ transplantations is optimal in terms of maximizing donation incentives by
considering different degrees of severity. In addition, this result suggests that consider-
ing an efficient match of organs to patients with different severities of conditions also
increases the donation rate. All else being equal, it is optimal to provide severe patients
an absolutely higher priority over mild patients with τ∗ = 0 in incentivizing deceased
donor registrations. This is consistent with the practice in Israel where candidates with
urgent conditions are given priority for heart, lung, and liver transplantations (Lavee
et al. (2010)).

4.3 Alternative model specifications

Excess supply. Although medical urgency plays an important role in certain types of or-
gan transplantations, the number of patients in the most urgent group is typically small
compared with the potential deceased organ supply. For instance, at any given mo-
ment, there are generally fewer than 50 candidates listed nationwide in the U.S. with
the most urgent designation waiting for liver transplantations. To feature an excess sup-
ply of organs for severe patients, we further extend the analysis in Section 4.2 by con-
sidering β > θS . In this case, among the registered donors, severe patients can always
receive a transplant, and the transplantation rate for type i mild patients is denoted by
pi. The expected utility gain from the organ transplantation of the donors now becomes
θS + θM[pi + (1 − pi )(1 − x)], while the expected utility of the nondonors is θM (1 − x).
Therefore, a type i individual with donation cost c will register for donation if and only if
c ≤ θS +xθMpi. It follows that the market clearing condition for each blood-type group i

is (θS +θMpi )δini = β
∑m

j=1 δjnjλijμij . Similar to the previous discussions, we can estab-
lish that it remains optimal to distribute organs equally across different blood types with
identical transplantation rates p̂ = (β−θS )/θM ∈ (0, 1], and the XYZ-identical allocation
policy maximizes the aggregate donation rate.

Heterogeneous health shocks. Empirical evidence suggests that organ failure shock
may disproportionately affect different blood-type groups. For instance, it is well docu-
mented that African Americans are two to four times more likely to have kidney failure
than white Americans because of differences in clinical, socioeconomic, or genetic risk
factors (Collins et al. (2014), Carnethon et al. (2017)). Given that nearly 70% of African
Americans are blood types O or B, the pervasive racial disparity in organ-related disease
naturally translates to different risks of organ failure among blood types. To take this fact
into account, our model can introduce heterogeneous organ failure rates across blood
types with θi. More generally, we can allow for further heterogeneity in brain death rates
with βi < θi for i ∈ {1, 2, � � � , m}. The previous analysis similarly applies, and the XYZ-
identical allocation policy remains optimal in terms of incentivizing deceased donor
registrations.

Equity across tissue type/donor service area. The OPTN report on equity in access
has identified the blood type, donor service area, and tissue type as the top three main
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contributors to disparities in access to deceased donor kidney transplants (Stewart et al.
(2018)). Although our main analysis focuses on the blood-type groups, it can also be
easily extended to incorporate these additional characteristics, provided that the agents
are aware of their individual attributes at the time of donation decisions. More specifi-
cally, each individual’s type can be denoted by a multidimensional vector that specifies
his blood type, donor service area, tissue type, and other attributes that factor into the
practical organ allocation process. As long as the type space is discrete, the matching
technology defined in Section 2.2.1 is sufficiently general to encompass the feasibility
of organ allocations across all of these types, which can account for current and future
medical technologies or legal constraints. All of our main results directly translate to this
extended setting. Alternatively, if the individual tissue type is unknown at the time of the
donation decision, a similar analysis as that in Section 4.2 can be applied to account for
tissue-type compatibility by considering severe patients as the highly sensitized type
and τ as a measure for the relative priority for such disadvantaged patients. The re-
sult in Proposition 4 suggests prioritizing such disadvantaged patients within the same
blood-type group, which is consistent with practical deceased organ allocation polices
(Bertsimas et al. (2013), Stewart et al. (2018)). In addition, as noted by Sönmez et al.
(2020), the primary method of reducing inequity in access for highly sensitized patients
is to enlarge the organ pool size. From this perspective, by maximizing the aggregate
donation incentives, the XYZ-identical policy also indirectly contributes to the objective
of equitable organ allocation across tissue types.

5. Simulations

This section investigates the extent of the donation rate improvement by adopting the
optimal ABO-identical allocation policy. For this purpose, we conduct counterfactual
simulations by calibrating our model with U.S. heart donation and transplantation data.
Note that deceased donation is the only source of supply, and the ABO-compatible allo-
cation policy is currently implemented for heart transplantations in the U.S.

5.1 Simulation setup

Table 1 reports the calibrated parameters of our model with the extension of relative pri-
ority. The blood-type distribution in the population follows from Sönmez et al. (2020),
which is calculated based on the blood-type distribution for different ethnicities and
fractions of each ethnicity in the U.S. population. Since our theoretical framework mod-
els deceased donor registration behavior, we focus on a subsample of deceased donors
authorized through state registries in the calibration, which accounted for approxi-
mately 49% of all deceased donors in 2018.9 The average number of hearts supplied
by each donor (α = 0.318) is measured by the number of heart transplants performed
over the number of deceased donors in 2018, as reported by the OPTN. According to the
organ donation statistics provided by the HRSA, only 3 in 1000 people die in a manner

9The other deceased donations were authorized by family or next of kin consent. Data obtained from
https://www.organdonor.gov/statistics-stories/statistics.html.

https://www.organdonor.gov/statistics-stories/statistics.html
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Table 1. Parameter calibration for numerical simulation.

Parameter Definition Value

nO Fraction of blood-type O in the population 0.456
nA Fraction of blood-type A in the population 0.378
nB Fraction of blood-type B in the population 0.126
nAB Fraction of blood-type AB in the population 0.040
α Average number of hearts supplied by each deceased donor 0.318
β Probability of dying in a way that allows for organ donation 0.003
θ Probability of being in need of a heart transplant 0.001
t Relative priority between donors and nondonors 0.966
F(0) Default donation rate as the eligible designated donor rate 0.380
V Value for receiving a heart transplant 485,000
	̃ De-facto ABO-compatible allocation matrix used in practice Calculated*

*The ABO-compatible allocation matrix 	 is calculated based on the type-specific number of donors and number of heart
transplants performed according to the OPTN data, which represents the de-facto ABO-compatible policy currently used for
the heart transplantation practice in the U.S. The detailed methods of the calculations are discussed in Section 5.1.

that allows for organ donation. Therefore, the probability of brain death is measured as
β = 0.003 in the numerical calculations.

For the default donation rate without any donor-priority incentive as in the current
U.S. policy, F(0) is measured by the eligible designated donor rate, which is 38% and ob-
tained from the 2018 Donate Life America Annual Report. This measure extends beyond
the number of registered donors in the general adult population to measure the rate of
donor registration among the individuals who are in the population of likely donors,
which is consistent with the full utilization of donated organs in our model setting. It
follows that we can calculate the probability of being in need of a heart transplant in
the population as θ = βF(0)W/D, where W is the number of patients added to the wait-
list for heart transplants and D represents the number of deceased donors. To measure
the value of receiving a heart transplant, we estimate the underlying exponential dis-
tribution of patient survival among adult heart transplant recipients from 2010 to 2012
based on Colvin et al. (2019). The results suggest that the expected post-transplant life
expectancy is approximately 9.7 years. Following Dai et al. (2020), we assume that the
economic value per quality-adjusted life-year to be $50,000 (Diamond and Kaul (2009)),
which provides an estimate of V = $485,000 as the value of receiving a heart transplant.

To uncover the current ABO-compatible allocation policy matrix 	̃ for heart trans-
plantation, we first note that with the standard ABO organ matching technology μ̃, the
full utilization constraints in an ABO-compatible allocation policy require λ̃O,j = 0 for
j ∈ {A, B, AB}, λ̃A,j = 0 for j ∈ {B, AB}, λ̃B,j = 0 for j ∈ {A, AB}, and λ̃AB,AB = 1. Ac-
cording to the definition of an allocation policy matrix, each column must add up to
one, i.e.,

∑
i∈{O,A,B} λ̃ij = 1 for j ∈ {O, A, B}, which results in 3 feasibility constraints for

	̃. In addition, based on the type-specific number of donors Di and the number of heart
transplants performed Ri in the OPTN data, we have 4 more market clearing constraints,
i.e.,

∑
j∈{O,A,B,AB} λ̃ijαβDj =Ri, for i ∈ {O, A, B, AB}. With a total number of 7 equations

and 8 parameters to recover, this leaves one degree of freedom. Without loss of gener-
ality, we set λ̃A,O as the free parameter and derive its range as λ̃A,O ∈ [0.061, 0.092]. In
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the numerical simulations, we consider the intermediate value of λ̃A,O = 0.076, which
defines the de facto ABO-compatible allocation matrix endogenously implied from the
observed US data as follows:

	̃ ≡

⎛
⎜⎜⎜⎝

λ̃O,O 0 0 0
λ̃A,O λ̃A,A 0 0
λ̃B,O 0 λ̃B,B 0
λ̃AB,O λ̃AB,A λ̃AB,B 1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0.797 0 0 0
0.076 0.977 0 0
0.086 0 0.998 0
0.041 0.023 0.002 1

⎞
⎟⎟⎟⎠ .

Due to the lack of reliable empirical data, we consider a wide range of donation cost
distributions in the numerical simulations and obtain comparable results. In the follow-
ing discussions, we focus on the set of simulation results based on normal distributions
with a mean that varies from $600 to $200 while calibrating the standard deviation to
match the donor registration rate before the introduction of the donor-priority rule, i.e.,
F(0) = 0.38. Existing studies suggest that introducing the donor-priority rule can lead
to an approximately 13% increase in organ availability in the U.S. (ScienceDaily (2019)).
Therefore, we calibrate the level of relative priority between donors and nondonors as
t = 0.966 such that the donation rate under the ABO-identical policy is 51%, with an in-
termediate level of average donation cost of c̄ = 400. Based on these calibrated param-
eters, we solve for the equilibrium in each set of the simulations and compare the re-
spective donation rates under the donor-priority rule with the de facto ABO-compatible
allocation policy 	̃ and with the ABO-identical allocation policy 	∗.

5.2 Simulation results

Table 2 summarizes the simulation results, with the rows corresponding to different av-
erage donation costs. The row with c̄ = 400 is the baseline used for calibrating the degree
of relative priority, while the remaining rows serve as robustness checks of our simu-
lation results. In addition, these results provide insights into the interactive effects of
allocation policy design and other initiatives to reduce donation costs.

We observe substantial increases in the aggregate donation rates shown in columns
(2) and (3) compared with the current donation rate without any donor-priority incen-
tive, which is 38%. The donor-priority rule can realize an increase in the donation rate
of approximately 8 percentage points even when the average cost of donation is rela-
tively high, with c̄ = 600. Comparisons between columns (2) and (3) suggest a consid-
erably higher donation rate under the ABO-identical allocation policy than under the
de facto ABO-compatible allocation policy 	̃ implied from the U.S. data. For all the
distributions examined, the relative increment in the donation rate shown in column
(4) is more than 10%, which is measured as the improvement by moving from the de-
facto ABO-compatible policy to the ABO-identical policy (with the donor-priority rule)
over the improvement by introducing the donor-priority rule (under the de facto ABO-
compatible policy). Further comparisons across distributions suggest that the superior
performance of the ABO-identical policy is even more stark when the average donation
cost becomes smaller. In the case of c̄ = 200, implementing the donor-priority rule while
keeping the current ABO-compatible allocation policy increases the aggregate donation
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Table 2. The equilibrium donation rates under different allocation policies (%).

Mean
Cost

ABO-
Compatible

ABO-
Identical

Relative
Increment

Donation Rate by Groups under 	̃

O A B AB
(1) (2) (3) (4) (5) (6) (7) (8)

600 45.72 46.56 10.87 44.77 47.13 45.78 42.97
500 47.28 48.33 11.31 46.17 49.01 47.22 43.70
400 49.61 51.00 11.96 48.29 51.84 49.30 44.63
300 53.46 55.47 12.99 51.84 56.57 52.46 45.75
200 60.84 64.23 14.82 58.94 65.74 57.54 46.63

Note: This table summarizes the aggregate donation rates in columns (2)–(3) and the type-specific donation rates under

the de facto ABO-compatible policy 	̃ in columns (5)–(8). The relative increment in column (4) measures the increase in the
donation rate while moving from the ABO-compatible policy to the ABO-identical policy (with the donor-priority rule) over the
improvement by introducing the donor-priority rule (under the de facto ABO-compatible policy).

rate from 38 to 60.84%. By adopting the ABO-identical policy, we can achieve a further
increase in the donation rate of 3.39 percentage points, which accounts for approxi-
mately 14.82% of the relative increment. These results further imply that the efficacy
of the donor-priority rule combined with the ABO-identical allocation policy can be en-
hanced by complementary initiatives that aim to reduce the psychological and logistical
costs of deceased organ donation.

In Columns (5)–(8) of Table 2, we further examine how the relative donation incen-
tive varies across the different blood-type groups under the current ABO-compatible
allocation policy. Although each group unanimously has a higher incentive to donate
after introducing the donor-priority rule than the default rate of 38%, the improvement
is not equally shared among the four groups. We observe significantly unbalanced in-
centives among the four blood-type groups, with the highest increase for group A and
the lowest increase for group AB. The individuals in group B are relatively less incen-
tivized than the individuals in group A but more incentivized than those in group O.
Compared with the aggregate donation rate under the ABO-identical allocation policy
in Column (3), group A is more incentivized, while groups O, B, and AB are all less in-
centivized under the ABO-compatible policy 	̃. The blood-type O agents export part
of the supply by O donors to the other three groups with λ̃A,O , λ̃B,O , λ̃AB,O > 0, which
decreases their marginal benefits in becoming organ donors and results in a smaller do-
nation rate. Although groups A, B, and AB are all net importers of organs, only group A
is more incentivized to donate than its counterpart under the ABO-identical policy. This
is because the current ABO-compatible policy 	̃, as endogenously implied from the ob-
served transplantation statistics, provides an excess supply for the donors in these three
groups. As a result, a considerable proportion of nondonors become “free riders.” The
marginal benefit of donor registration is then determined as one minus the probabil-
ity of nondonors to receive transplants. With a moderate excess supply, more dona-
tion is incentivized for group A. However, if the excess supply is considerably large, the
free-riding effect dominates, making the marginal benefit of donation less attractive and
resulting in a relatively small donation rate, which is the case for groups B and AB.

By implementing the optimal ABO-identical allocation policy, the incentive among
each group becomes balanced since each group is autarkic and there is no excess supply.
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Overall, the pairwise difference in the group donation rates under 	̃ increases when the
mean cost of donation becomes smaller. In particular, the difference in the donation
rates between groups A and AB is approximately 4 percentage points when c̄ is high at
600, while it reaches over 19 percentage points with c̄ = 200. One implication is that
the ABO-compatible allocation policy creates more distortions in the incentives among
different blood-type groups when the cost of donation is relatively lower. As a result, the
policy initiatives and efforts to reduce donation costs should also be complemented by
the ABO-identical allocation policy.

6. Concluding remarks

From the perspective of practical market design, it is crucial to understand the incre-
mental changes associated with a new policy initiative and, more importantly, how
it interacts with pre-existing rules and arrangements (Roth (2018)). Our results pro-
vide a better understanding about how the interaction between the donor-priority rule
and matching technology barriers affects donation incentives, which could possibly
influence practical organ allocation policies and decisions. More broadly, our model
framework can also be generalized to the donation and allocation problem of other
scarce public resources that are privately provided ex ante and rationed through wait-
ing list mechanisms ex post, such as the family replacement program in blood donations
(Lacetera et al. (2013), Sun et al. (2016)) and the recent proposal for incentivizing plasma
donations from recovered COVID-19 patients (Kominers et al. (2020)). How these re-
sources are allocated and distributed can moderate their scarcity through changes in
both donation incentives and allocation equity.

Appendix: Proofs

Proof of Lemma 1

Fix any P ∈ [0, 1]m that satisfies (3b). First, we choose any λ1j , j = 1, � � �m that satisfies
(2b) and (2c). Note that this is always possible because otherwise, we have

0 < θF(θp1 )n1p1 −β

m∑
j=1

F(θpj )nj ≤
m∑
i=1

θF(θpi )nipi −β

m∑
j=1

F(θpj )nj ,

which violates the condition (3b). Next, we recursively choose any λ2j , λ3j , � � � for j =
1, � � � , m that satisfies (2b) and (2c). This is always possible since otherwise, let i0 ≤m be
the smallest index such that we cannot choose λi0j , which satisfies (2b) and (2c). Then
we have

0 <

i0∑
i=1

θF(θpi )nipi −β

m∑
j=1

F(θpj )nj ≤
m∑
i=1

θF(θpi )nipi −β

m∑
j=1

F(θpj )nj ,

which violates (3b). Therefore, we can construct 	 ∈ [0, 1]m×m that satisfies (2b) and
(2c).
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Proof of Proposition 1

We first focus on the interior solutions and later show that boundary solutions cannot
be optimal for the problem defined by (3a)–(3b). To find the critical points, we derive
the (interior) first-order conditions as

Hi := θf (θpi )ni + θf (θpm )nm
∂pm

∂pi
= 0, i = 1, � � � , m− 1, (4)

where
∂pm

∂pi
= − ni

nm

F(θpi ) − (β− θpi )f (θpi )
F(θpm ) − (β− θpm )f (θpm )

. (5)

That is, any critical point satisfies the following system of equations:

f (θpi )
F(θpi ) − (β− θpi )f (θpi )

= f (θpm )
F(θpm ) − (β− θpm )f (θpm )

, ∀i 	= m; (6)

m∑
i=1

θF(θpi )nipi −β

m∑
j=1

F(θpj )nj = 0. (7)

Since 1/F(c) is strictly convex, we have (1/F )′′ = (2f 2F−f ′F2 )/F4 > 0, which gives 2f 2 −
f ′F > 0. We can use this inequality to show that

� := f (θp)
F(θp) − (β− θp)f (θp)

(8)

is strictly decreasing in p by considering its first-order derivative with respect to p as

∂�

∂p
= θ

[
f ′(θp)F(θp) − 2f 2(θp)

]
[
F(θp) − (β− θp)f (θp)

]2 < 0. (9)

It immediately follows that to have equations (6) hold, we need to have p1 = p2 = · · · =
pm. Then, by equation (7), we have

m∑
i=1

θF(θpi )nipi −β

m∑
j=1

F(θpj )nj = θF(θpi )pi −βF(θpi ) = 0,

which gives pi = p∗ = β/θ < 1 for all i, since F(θp∗ ) 	= 0. Thus, P = P∗ is the unique
critical point for (3a)–(3b).

To further show that the second-order conditions are satisfied at P = P∗, we need
to show that the Hessian matrix is negative definite. By differentiating Hi in (4) and
∂pm/∂pi in (5), we obtain

Hii := ∂Hi

∂pi
= θ2f ′(θp∗)ni + θ2f ′(θp∗)nm

(
∂pm

∂pi

)2

+ θf
(
θp∗)nm ∂2pm

∂p2
i

;

Hij := ∂Hi

∂pj
= θ2f ′(θp∗)nm

(
∂pm

∂pi

)(
∂pm

∂pj

)
+ θf

(
θp∗)nm ∂2pm

∂pi∂pj
, ∀j 	= i, m;

∂2pm

∂p2
i

= −2ni(ni + nm )θ

n2
m

f
(
θp∗)

F
(
θp∗) ;

∂2pm

∂pi∂pj
= −2ninjθ

n2
m

f
(
θp∗)

F
(
θp∗) , ∀j 	= i, m.
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Together with ∂pm/∂pi = −ni/nm at P = P∗, we can derive that the Hessian matrix H at
P = P∗ has entries Hij , where

Hii = ni(ni + nm )
θ2

nm

[
f ′(θp∗) − 2f 2(θp∗)

F
(
θp∗)

]
;

Hij = ninj
θ2

nm

[
f ′(θp∗) − 2f 2(θp∗)

F
(
θp∗)

]
.

Note that for any nonzero x = (x1, x2, � � � , xm−1 ) ∈R
m−1,

xHxT = θ2

nm

[
f ′(θp∗) − 2f 2(θp∗)

F
(
θp∗)

][(
m−1∑
i=1

nixi

)2

+ nm

(
m−1∑
i=1

nix
2
i

)]
< 0.

The inequality comes from the strict convexity of 1/F . Therefore, the Hessian matrix H

is negative definite at P = P∗. As a result, the local maximum is achieved at P = P∗.
Next, we show that boundary solutions are not possible. Consider pj = 1 for

some j. Since we have established in (8) and (9) that strict convexity of 1/F implies
that f (θp)/[F(θp) − (β−θp)f (θp)] is strictly decreasing in p, with pj = 1 >pm, we have

f (θpj )
F(θpj ) − (β− θpj )f (θpj )

<
f (θpm )

F(θpm ) − (β− θpm )f (θpm )
.

By rearranging this inequality and substituting (5), it then follows that

Hj = θf (θpj )nj + θf (θpm )nm
∂pm

∂pj
< 0.

Therefore, it is strictly better to decrease pj . Similarly, when pj = 0, we can establish

Hj = θf (θpj )nj + θf (θpm )nm
∂pm

∂pj
> 0,

and thus, it is strictly better to increase pj . Therefore, P∗ is the global maximizer for
(3a)–(3b), and we must have P = P∗ in an optimal policy when μ = μ∗.

Proof of Theorem 1

We first establish the optimality of P = P∗ for any given μ ∈ M. Let �∗
μ denote an optimal

donation rate under any given μ, i.e.,

�∗
μ := max

	∈[0,1]m×m,P∈[0,1]m

m∑
i=1

F(θpi )ni (10a)

subject to θF(θpi )nipi −β

m∑
j=1

F(θpj )njλijμij = 0, ∀i = 1, � � � , m; (10b)

m∑
i=1

λijμij − 1 = 0, ∀j = 1, � � � , m. (10c)
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We note that the optimization problem with μ = μ∗ in (3a)–(3b) (or equivalently, (2a)–
(2c)) is a relaxation of (1a)–(1c), because adding (1b) and applying (1c) give

m∑
i=1

θF(θpi )nipi −β

m∑
j=1

[
F(θpj )nj

m∑
i=1

λijμij

]
=

m∑
i=1

θF(θpi )nipi −β

m∑
j=1

F(θpj )nj = 0,

which is equivalent to (3b). According to Proposition 1, when μ = μ∗, the maximum
donation rate in (3a)–(3b) is F(β). It then follows that we must have �∗

μ ≤ F(β). Fur-
thermore, it is clear that �∗

μ = F(β) can be achieved at P = P∗. Therefore, for any given
μ, if an allocation policy results in equal access with P = P∗ such that the donation rate
achieves the upper bound of F(β), it must be an optimal policy. This proves the first
part of the theorem.

Next, to show the suboptimality of P 	= P∗ for any given μ, we prove it by contra-
diction. Suppose that an allocation policy denoted by 	̃ := (λ̃ij ){i,j=1, ���,m} with P = P̃ :=
(p̃i ){i=1, ���,m} 	= P∗ is optimal for a given μ, i.e.,

m∑
i=1

F(θp̃i )ni =
m∑
i=1

F
(
θp∗)ni = F(β), (10a′)

where θF(θp̃i )nip̃i −β

m∑
j=1

F(θp̃j )njλ̃ijμij = 0, ∀i = 1, � � � , m, (10b′)

m∑
i=1

λ̃ijμij − 1 = 0, ∀j = 1, � � � , m. (10c′)

By the full utilization constraints, it is clear that if μij = 0 (where i 	= j), then λ̃ij = 0. It
follows that by replacing μij = 0 with μ′

ij = 1 in (10b′)–(10c′) and setting the correspond-

ing λ̃ij = 0, we obtain an equivalent set of constraints since λ̃ijμij = λ̃ijμ
′
ij = 0. Therefore,

we can replace μ by μ∗ while restricting λ̃ij = 0 if μij = 0 in (10b′)–(10c′), yielding the
following equivalent set of conditions:

θF(θp̃i )nip̃i −β

m∑
j=1

F(θp̃j )njλ̃ijμ
∗
ij = 0, ∀i = 1, � � � , m,

m∑
i=1

λ̃ijμ
∗
ij − 1 = 0, ∀j = 1, � � � , m.

By Lemma 1, these two conditions are equivalent to the conditions by adding the m

market clearing conditions. As a result, we have

m∑
i=1

F(θp̃i )ni =
m∑
i=1

F
(
θp∗)ni = F(β),

where
m∑
i=1

θF(θp̃i )nip̃i −β

m∑
j=1

F(θp̃j )nj =
m∑
i=1

θF
(
θp∗)nip∗ −β

m∑
j=1

F
(
θp∗)nj = 0.
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This suggests that P̃ is an optimal solution for (3a)–(3b). This contradicts Proposition 1
in that P = P∗ uniquely maximizes the donation rate if μ = μ∗.

Proof of Theorem 2

Note that the simplified problem in (3a)–(3b) with μ = μ∗ gives a relaxed optimization
problem of (1a)–(1c), which is established in the proof of Theorem 1. It is easy to check
that the optimal solution for (3a)–(3b), i.e., pi = p∗ = β/θ, and λii = 1, λij = 0 for i 	= j to-
gether define a feasible solution for (1a)–(1c). Accordingly, it is also an optimal solution
for the original optimization problem in (1a)–(1c).

Proof of Lemma 2

Consider a fixed j with μij = 0 for all i 	= j. If λij > 0 for some i 	= j, then
∑m

i=1 λijμij =
λjj < 1 since

∑m
i=1 λij = 1. This violates the full utilization constraint for type-j organs.

Thus, we must have λij = 0 for all i 	= j in an optimal allocation policy, and it immediately
follows that λjj = 1. If λji > 0 for some i 	= j, we must have either of the following:

m∑
k=1

λkiμki =
∑
k	=j

λkiμki ≤
∑
k	=j

λki < 1, if μji = 0,

pj =
βδjnj +β

∑
i 	=j

δiniλjiμji

θδjnj
≥ p∗ + βδiniλjiμji

θδjnj
> p∗, if μji = 1.

That is, it either violates the full utilization constraint for type-i organs or the optimality
condition of P = P∗ in Theorem 1. Therefore, we must have λji = 0 for i 	= j in an optimal
allocation policy. This proves the first part of the lemma.

Next, consider a fixed i with μij = 0 for all j 	= i. If λij > 0 for some j 	= i, we must have

m∑
k=1

λkjμkj =
∑
k	=i

λkjμkj ≤
∑
k	=i

λkj < 1.

This violates the full utilization constraint for type-j organs. Accordingly, we must have
λij = 0 if j 	= i in an optimal policy. If λji > 0 for some j 	= i, then λii < 1 since

∑m
j=1 λji = 1,

and we must have pi < p∗, as

pi =
βδiniλii +β

∑
j 	=i

δjnjλijμij

θδini
= βδiniλii

θδini
<

β

θ
= p∗.

This violates the optimality condition P = P∗ in Theorem 1. Thus, in an optimal allo-
cation policy, we must have λji = 0 if j 	= i, and it immediately follows that λii = 1. This
completes the proof.
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Proofs of Theorem 3

To prove the first part of Theorem 3, suppose that for any sequence of distinct
i1, i2, � � � , i� with � ≥ 2, the given matching technology μ satisfies μ(i1, i� )μ(i�, i�−1 ) · · ·
μ(i3, i2 )μ(i2, i1 ) = 0, and 	 is an optimal policy with λj2j1 > 0 for some j2 	= j1. It imme-
diately follows that μ(j2, j1 ) = 1 since otherwise, the full utilization constraint of type-j1

organs is violated. Additionally, by the assumption of μ(j1, j2 )μ(j2, j1 ) = 0, we must
have μ(j1, j2 ) = 0.

If λkj2 = 0 for all k 	= j2, we have λj2j2 = 1 since
∑m

k=1 λkj2 = 1 and, therefore,

pj2 =
βδj2nj2λj2j2 +β

∑
k	=j2

δknkλj2kμ(j2, k)

θδj2nj2

≥ βδj2nj2 +βδj1nj1λj2j1μ(j2, j1 )
θδj2nj2

>
β

θ
= p∗,

which violates the optimality condition of P = P∗ in Theorem 1. Similarly, if λj1k = 0 for
all k 	= j1, we have

pj1 =
βδj1nj1λj1j1 +β

∑
k	=j1

δknkλj1kμ(j1, k)

θδj1nj1

= βδj1nj1λj1j1

θδj1nj1

<
β

θ
= p∗,

where the inequality follows from λj1j1 < 1 since λj2j1 > 0 and
∑m

k=1 λkj1 = 1. This again
violates the optimality condition of P = P∗ in Theorem 1. Accordingly, we must have
λj3j2 > 0 and λj1j� > 0 for some j3 	= j2 and j� 	= j1. It immediately follows that μ(j3, j2 ) =
1 and μ(j1, j� ) = 1 by the full utilization constraints of type-j2 or type-j� organs, which
also implies j3 	= j1 and j� 	= j2 since μ(j1, j2 ) = 0. Moreover, according to our assump-
tion, we must have j3 	= j� since otherwise, we have μ(j1, j3 )μ(j3, j2 )μ(j2, j1 ) = 1. Thus
{j1, j2, j3, j�} are all distinct from one another.

With similar arguments as above, we must have λj4j3 > 0 and λj�j�−1 > 0 for some j4 /∈
{j1, j2, j3, j�−1, j�} and j�−1 /∈ {j1, j2, j3, j4, j�}. Otherwise, we have P 	= P∗, which violates
the optimality condition of P = P∗ in Theorem 1. It immediately follows that μ(j4, j3 ) = 1
and μ(j�, j�−1 ) = 1 according to the full utilization constraints of type-j3 or type-j�−1

organs. Moreover, according to our assumption, we must have j4 	= j�−1 since otherwise,
we have μ(j1, j� )μ(j�, j4 )μ(j4, j3 )μ(j3, j2 ) μ(j2, j1 ) = 1. Therefore, {j1, j2, j3, j4, j�−1, j�}
are all distinct from one another. By repeating this process, we find that the optimal 	
requires more than m distinct blood types, which contradicts the fact that only m blood
types exist. This completes the proof for the first part.

Next, suppose that there exists a sequence of distinct i1, i2, � � � , i� with � ≥ 2 such that
μ(i1, i� )μ(i�, i�−1 ) · · ·μ(i3, i2 )μ(i2, i1 ) = 1. Without loss of generality, we can assume that
min{ni1 , ni2 , � � � , ni� } = ni1 . We construct an allocation policy 	 	= I as follows. Pick any
λi2i1 = x ∈ [0, 1] and let

λik+1ik = ni1
nik

x, λikik = 1 − λik+1ik for any k = 1, 2, � � � , �− 1,
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λi1i� = ni1
ni�

x, λi�i� = 1 − λi1i� .

In addition, let λii = 1 for any i /∈ {i1, i2, � � � , i�}. We can check that the market clearing
conditions and the full utilization constraints are all satisfied under this policy 	 with
P = P∗. By Theorem 1, 	 is optimal, which, however, is not the XYZ-identical policy.
Moreover, by varying the size of x ∈ [0, 1], we have a continuum of optimal allocation
policies that achieve P = P∗ and donation rate F(β), which completes the proof.

Proof of Corollary 1

The first part can be proved by contradiction. Suppose that the stated condition is sat-
isfied and that there is an optimal allocation policy for group i with λii < 1, λji > 0 or
λij > 0 for some j 	= i. Similar to the arguments in the first half of the proof of Theo-
rem 3, we find that either case would require more than m distinct blood types, which
contradicts the fact that there are only m blood types. To prove the second part, when
μ(i, j� ) · · ·μ(j2, j1 )μ(j1, i) = 1 for some �≥ 1, jk 	= i, we can construct a continuum of op-
timal allocation policies for group i by transferring a positive measure of organs along
the directed compatible cycle i → j1 → j2 → ·· · → j� → i such that λii < 1 in a similar
manner as the second half of the proof of Theorem 3.

Proof of Corollary 2

The proof is immediate from Theorem 3 by noticing that the ABO-compatibility ma-
trix μ̃ is a 4 × 4 triangular matrix, and any triangular compatibility matrix satisfies the
condition of acyclicity.

Proof of Proposition 2

We consider the following example with the full compatibility matching technology μ =
μ∗. There are two blood types with an equal share of the population, i.e., m = 2 and
n1 = n2 = 1/2. The optimal policy is determined by (3a)–(3b). Given any 0 < a < b < 1,
let F , q1, and q2 satisfy the following:

F(c)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

= a for c = θq1 := β
a

a+ b
,

∈
(
a,

a+ b

2

)
for c = θp∗ = β,

= b for c = θq2 := β

(
1 + a

a+ b

)
.

Basically, we construct F such that 1/F is not convex at θp∗. Here, we find that

θF(θq1 )n1q1 + θF(θq2 )n2q2 = βF(θq1 )n1 +βF(θq2 )n2,

F
(
θp∗)n1 + F

(
θp∗)n2 <

a+ b

2
= F(θq1 )n1 + F(θq2 )n2,
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where the first equation shows that p1 = q1, p2 = q2 satisfies the market clearing condi-
tion (3b), and the second inequality indicates that the aggregate donation rate is higher
under p1 = q1, p2 = q2 than under p1 = p2 = p∗.

Proof of Proposition 3

With the relative priority, the social planner’s optimization problem becomes

max
	∈[0,1]m×m,P∈[0,1]m

m∑
i=1

F(θtpi )ni, (11a)

subject to θ
[
1 − t + tF(θtpi )

]
nipi = β

m∑
j=1

F(θtpj )njλijμij , ∀i = 1, � � � , m; (11b)

m∑
i=1

λijμij − 1 = 0, ∀j = 1, � � � , m; (11c)

Similar to the previous analysis, we start by considering a simplified optimization prob-
lem for (11a)–(11c) with μ= μ∗ as follows:

max
P∈[0,1]m

m∑
i=1

F(θtpi )ni, (11a′)

subject to
m∑
i=1

θ
[
1 − t + tF(θtpi )

]
nipi −β

m∑
j=1

F(θtpj )nj = 0. (11b′)

We first focus on the interior solutions and later show that boundary solutions cannot
be optimal. The critical points are determined by the (interior) first-order conditions as

θtf (θtpi )ni + θtf (θtpm )nm
∂pm

∂pi
= 0, ∀i 	=m,

where
∂pm

∂pi
= − ni

nm

1 − t + tF(θtpi ) − (β− θtpi )tf (θtpi )
1 − t + tF(θtpm ) − (β− θtpm )tf (θtpm )

.

Note that if 1/[F + (1 − t )/t] is strictly convex, then f (θtp)/[1 − t + tF(θtp) − (β −
θtp)tf (θtp)] is strictly decreasing in p. Therefore, for the first-order conditions to hold,
we need to have p1 = p2 = · · · = pm ≡ p̄. The market clearing condition becomes
θ[1 − t + tF(θtp̄)]p̄ − βF(θtp̄) = 0, which implies that p̄ should satisfy (1 − t )θp̄ =
(β− θtp̄)F(θtp̄).

Let P̄ := (p̄){i=1, ���,m}. We next check the second-order conditions at P = P̄ . For sim-
pler notation, let

N(p̄) := 2tf (θtp̄) − (β− θtp̄)tf ′(θtp̄),

D(p̄) := 1 − t + tF(θtp̄) − (β− θtp̄)tf (θtp̄).
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We obtain the following derivatives at P = P̄ :

∂pm

∂pi
= − ni

nm
,

∂2pm

∂p2
i

= −ni(ni + nm )

n2
m

θtN(p̄)
D(p̄)

,
∂2pm

∂pi∂pj
= −ninj

n2
m

θtN(p̄)
D(p̄)

.

Thus the Hessian at P = P̄ is

Hii = ni(ni + nm )
(θt )2

nm

[
f ′(θtp̄) − f (θtp̄)N(p̄)

D(p̄)

]
,

Hij = ninj
(θt )2

nm

[
f ′(θtp̄) − f (θtp̄)N(p̄)

D(p̄)

]
, for i 	= j, m.

By strict convexity of 1/[F + (1 − t )/t], the Hessian is negative definite at P = P̄ . We
can similarly check that boundary solutions are not possible. Accordingly, the global
maximum is achieved at P = P̄ .

Next, since the optimization problem in (11a′)–(11b′) is a relaxed problem of (11a)–
(11c) and P = P̄ with 	∗ = I is a feasible solution for (11a)–(11c), it provides an optimal
solution for the original optimization problem. This completes the proof.

Proof of Proposition 4

We denote α̃ := θ/(θS + τθM ) and Ṽ := (θS + τxθM )/θ. The social planner’s objective
under different degrees of severity can be formulated as

max
	∈[0,1]m×m,P∈[0,1]m,τ∈[0,1]

m∑
i=1

F(Ṽ θpi )ni (12a)

subject to θF(Ṽ θpi )nipi = α̃β

m∑
j=1

F(Ṽ θpj )njλijμij , ∀i = 1, � � � , m; (12b)

m∑
i=1

λijμij − 1 = 0, ∀j = 1, � � � , m; (12c)

We first note that if treating τ as a free parameter, the optimization problem defined by
(12a)–(12c) is equivalent to the original problem specified in (1a)–(1c) through a change
of notation (by considering the general scenario that α 	= 1 and V 	= 1 in the original
problem). Therefore, by Proposition 1, the optimal solution is λ∗

ii = 1 and λ∗
ij = 0 for

i 	= j, with survival rates p1 = p2 = · · · = pm = α̃β/θ = β/(θS + τθM ). Next, if we consider
τ ∈ [0, 1] as a decision variable, the aggregate donation rate becomes

m∑
i=1

δini =
m∑
i=1

F(ci )ni = F(Ṽ α̃β) = F

(
β(θS + τxθM )

θS + τθM

)
,

which is strictly decreasing in τ. Accordingly, the optimal solution is to set τ∗ = 0, which
gives p1 = p2 = · · · = pm = β/θS . This completes the proof.
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