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Generalized compensation principle
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Economic disruptions generally create winners and losers. The compensation
problem consists of designing a reform of the existing income tax system that
offsets the welfare losses of the latter by redistributing the gains of the former.
We derive a formula for the compensating tax reform and its impact on the gov-
ernment budget when only distortionary tax instruments are available and wages
are determined endogenously in general equilibrium. We apply this result to the
compensation of robotization in the United States.
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Introduction

Economic disruptions, for instance, technological change, opening to international
trade, inflows of immigration, or exogenous price shocks, generally create winners and
losers, i.e., real wage and welfare gains for some individuals and welfare losses for oth-
ers. The welfare compensation problem consists of designing a reform of the tax-and-
transfer system that offsets the losses by redistributing the winners’ gains. We solve this
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problem in an environment where only distortionary taxes are available, and wages are
determined endogenously in general equilibrium.

The traditional public finance literature (Kaldor (1939), Hicks (1939, 1940)) shows
that in an economy where individualized lump-sum taxes are available, the tax reform
that redistributes the welfare gains and losses caused by a disruption is straightforward:
It simply consists of raising (resp., lowering) the lump-sum tax liability of agents whose
welfare increases (resp., decreases) from the shock by an amount equal to their com-
pensating variation. This standard Kaldor–Hicks approach is flawed, however. First,
because of asymmetric information, as in Mirrlees (1971), the only tax instrument at the
government’s disposal, the labor income tax, is distortionary. Second, many economic
shocks require explicitly modeling the endogeneity of wages.

Consider, for example, an inflow of low-skilled immigration, i.e., an exogenous (rel-
ative) increase in the total supply of low-skilled labor. In partial equilibrium, i.e., if
wages were exogenous, this would not affect the individual utility of resident workers.
However, in general equilibrium, this disruption lowers the wage of low-skilled workers
whose marginal product of labor is decreasing and raises the wage of high-skilled work-
ers whose labor is complementary to the tasks performed by the incoming workers; see,
e.g., Card (2009). Therefore, immigration flows have nontrivial welfare consequences
only because the endogeneity of wages is explicitly taken into account. Similarly, the im-
pact of automation on inequality can be understood as a race between education—the
supply of high-skilled workers—and technology; see, e.g., Katz and Murphy (1992). In
both of these examples, movements in the relative labor supplies of different skills fun-
damentally drive trends in relative wages. As a result, standard public finance models
in which labor supply is endogenous but wages are exogenous cannot properly account
for the welfare implications of these disruptions.

Now suppose that in response to the disruption, the government implements a tax
reform that aims to compensate the welfare losses of agents whose wages are adversely
impacted. Since the only available policy tools are distortionary taxes, such a reform af-
fects workers’ labor supply choices. These labor supply adjustments impact individuals’
wages and utility by the same general equilibrium forces we just described. The result-
ing welfare effects themselves need to be accounted for and compensated. But this can
only be done through the distortionary tax code, which creates further welfare gains and
losses, and so on. Hence the combination of distortionary taxes and endogenous wages
leads to an a priori complex fixed point problem for the compensating tax reform.

We start by analyzing the welfare compensation problem in a partial-equilibrium
environment where wages are exogenous. We show that the design of the compensating
tax reform that brings every agent’s utility back to its pre-disruption level is simple, even
when distortionary income taxes are the only available instrument. The key insight here
is that individual utility is only affected by the average tax rates of the reform; that is,
the changes in marginal tax rates do not impact welfare. This follows from an envelope
theorem argument: The marginal tax rate that individuals face affects their indirect util-
ity only through their optimal labor supply decision so that the corresponding welfare
effect is second order. As a consequence, it is straightforward to show that a suitably
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designed adjustment in the average tax rate is sufficient to achieve exact welfare com-
pensation. Namely, one that exactly cancels out the after-tax income gain or loss caused
by the exogenous disruption, regardless of the marginal tax rate changes it induces.

The analysis becomes significantly more complex when distortionary taxes are cou-
pled with general-equilibrium forces. In this case, despite the envelope theorem, en-
dogenous changes in labor supply do matter for welfare through their impact on wages,
resulting from the decreasing marginal productivities and the production complemen-
tarities. Therefore, in general equilibrium, because of the labor supply responses that
they generate, the tax reform’s marginal rates directly affect the agent’s utility, even con-
ditional on the average tax rate change. As a result, to determine the compensating tax
reform, we must solve for its average and marginal rates simultaneously. This is the key
difference from the partial-equilibrium environment and the main technical challenge
of our paper. We show that the solution to the welfare compensation problem can be
formalized as the solution to an integro-differential equation.

Our first main result is to derive a formula for the compensating tax reform in general
equilibrium in terms of elasticity variables that can be measured empirically. This for-
mula is valid for arbitrary preferences, initial tax code, production function, and wage
disruptions as long as they are marginal; that is, our tax reform compensates for the
first-order welfare effects caused by general disruptions. Our second main result is to
derive a formula for the fiscal surplus (or deficit), i.e., the impact of the disruption and
its compensation on the government budget. Thus, our analysis generalizes the tradi-
tional Kaldor–Hicks criterion and provides a simple test to determine whether economic
shocks or policies are compensable, that is, whether offsetting the individual welfare
changes using only distortionary tax instruments is budget-feasible. More generally, the
value of the fiscal surplus (not only its sign) provides a relevant monetary measure of the
aggregate welfare gains or losses from the disruption.

The main economic insight of our general-equilibrium compensation formula is
that whenever the exogenous disruption features a sharp nonlinearity around some in-
come level (say, a large wage drop), the compensating policy smoothes out the distor-
tions by spreading the tax rebates over the entire range of incomes below that level. More
specifically, exact compensation is achieved via a progressive tax reform over that range
of incomes, with monotonic reductions in marginal and average tax rates. The rate of
progressivity of the compensating tax reform—i.e., how fast the average tax rate grows
with income—is given by the ratio between the labor demand and labor supply elastici-
ties, net of the rate of progressivity of the initial tax code. These results stand in contrast
to the partial-equilibrium compensation, which tracks the nonlinearities of the wage
disruption one-for-one.

To understand this result and derive further analytical properties of the compensa-
tion, we apply our formula to several simple disruptions. We assume that the production
function is constant elasticity of substitution (CES) and consider first a disruption that
affects all wages uniformly. In this case, the compensating tax reform in general equi-
librium coincides with the partial-equilibrium compensation. This follows from the fact
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that the endogenous wage responses caused by the decreasing marginal product of la-
bor and the skill complementarities in production exactly offset each other—a conse-
quence of Euler’s homogeneous function theorem—thus removing the need to adjust
the partial-equilibrium policy.

Now consider the polar opposite case, where a single skill is adversely affected by the
disruption, thus creating a sharp nonlinearity in wage losses. In partial equilibrium, the
compensation would grant a large tax rebate to the corresponding income level. How-
ever, doing so would involve large movements in the marginal tax rates around that
income level, which would cause sizeable unintended welfare consequences in general
equilibrium. Instead, to offset these welfare effects from wage responses, the appro-
priate policy smoothes the tax changes by progressively reducing the tax liabilities of
all incomes below that of the disrupted agent. When the marginal product of labor is
decreasing, the tax reform must ensure that the (negative) welfare effects caused by a
reduction in any worker’s marginal tax rate are offset by the (positive) welfare effects of
reducing her average tax rate. If, as empirically relevant, the ratio of the elasticities of la-
bor demand and labor supply is larger than the rate of progressivity of the preexisting tax
code, the reduction in the marginal tax rate at each income level must be compensated
by an even larger reduction in the average tax rate. Thus, the tax rebates on earnings
below that of the disrupted worker are exponentially growing, i.e., progressive.

Next, skill complementarities in production generate additional indirect wage ad-
justments that also need to be compensated. The marginal tax rates of this second round
of compensation cause, in turn, further wage and welfare changes, which themselves re-
quire compensation, and so on. We generally solve this fixed point problem by defining
inductively a sequence of functions that each capture a round of general-equilibrium
wage changes and their compensation. In other words, when the shock hits, we adjust
the tax schedule to compensate for it, ignoring production complementarities. We then
compute the first round of general equilibrium effects on wages, compensate for them
again, and so forth until convergence. If the production function is CES, this series boils
down to a uniform shift of the marginal tax rates, adding to the progressive component
described in the previous paragraph.

We then apply our compensating formula, under a CES technology, to disruptions
that affect all incomes uniformly above (or below) a threshold or over an interior range of
incomes. We show that one can analytically decompose the compensation of such dis-
ruptions into the sum of three elements: first, the partial-equilibrium reform that tracks
income gains and losses one for one; second, a correction for the decreasing marginal
product of labor that features progressively growing tax changes—at a rate given by the
simple combination of elasticities described above—on all incomes below each sharp
nonlinearity in wage gains and losses; third, a correction for the cross-wage comple-
mentarities that amounts to a uniform shift in tax rates. We then quantitatively explore
the robustness of the compensating tax reform to the size of the labor supply and de-
mand elasticities, the initial tax schedule, and the (nonmarginal) size of the disruption.
We show, in particular, that our tax reform compensates for at least 95% (resp., 78%,
53%) of the welfare losses of a disruption that leads to 1% (resp., 5%, 10%) wage losses.
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We finally apply our theory in the context of the robotization of the U.S. economy
between 1990 and 2007. Acemoglu and Restrepo (2020) estimate the impact of an ad-
ditional robot per one thousand workers on the wages of different skills—roughly the
amount observed in the United States between these dates. The closed-form solution
we derive allows us to easily evaluate the compensating reform quantitatively. For in-
stance, we find that an additional robot per thousand workers requires compensating
agents at the 10th (resp., 85th) percentile of the wage distribution by 97% of their in-
come loss (resp., 132% of the income gain) from the disruption. This represents a 0.7
percentage point (resp., 0.08 percentage point (pp)) decrease in their average tax rate
and generates a $145 budget deficit for the government.

Related literature Our theoretical analysis builds on Kaplow (2004, 2012) and Hendren
(2020), who extend the Kaldor–Hicks principle to the case of distortionary taxes in par-
tial equilibrium using inverse-optimum weights (see, e.g., Jacobs, Jongen, and Zoutman
(2017)). Our main contribution is the analysis of the general equilibrium environment
in which wages are endogenous. Guesnerie (1998), Itskhoki (2008), and Antras, de Gor-
tari, and Itskhoki (2016) study compensating tax reforms and the welfare implications
of trade liberalization in a general-equilibrium framework similar to ours. They restrict
the analysis to specific classes of distortionary taxes and tax reforms, however: linear
for Guesnerie (1998) and with a constant rate of progressivity (as in Bénabou (2002),
Heathcote, Storesletten, and Violante (2017)) for Antras, de Gortari, and Itskhoki (2016).
While we do not consider a sophisticated trade model, we solve the compensation prob-
lem by allowing for arbitrarily nonlinear tax schedules and nonlinear tax reforms. The
generality of the tax reforms, in particular, is necessary to ensure that every agent’s wel-
fare is compensated for. Andersen and Bhattacharya (2017, 2020) and Andersen, Bhat-
tacharya, and Liu (2020) extend the Kaldor–Hicks approach to dynamic overlapping
generations (OLG) settings; they focus on achieving generation-by-generation Pareto
neutrality via taxation and debt, and do not consider intra-generational heterogene-
ity. More broadly, our model is within the class of Mirrleesian economies in general
equilibrium. Stiglitz (1982), Rothschild and Scheuer (2013), and Sachs, Tsyvinski, and
Werquin (2020) study optimal taxes in this environment for given production and social
welfare functions. Ales, Kurnaz, and Sleet (2015), Guerreiro, Rebelo, and Teles (2017),
Uwe (2018), Costinot and Werning (2018), Hosseini and Shourideh (2018), Beraja and
Zorzi (2021) characterize optimal income taxes, robot taxation, or trade policies follow-
ing disruptions. Costinot and Werning (2018), in particular, derive optimal robot taxes
by studying, like us, tax changes that keep utility unchanged. In contrast to these pa-
pers, our goal is to study the specific tax reform that achieves such compensation in
general equilibrium. Finally, our paper is related to the literature that analyzes the set
of Pareto efficient taxes—an important alternative to the standard optimal tax prob-
lem that does not require positing a social welfare function; see, e.g., Werning (2007),
Scheuer and Werning (2017), Bierbrauer and Boyer (2014), Lorenz and Sachs (2016),
Bierbrauer, Boyer, and Hansen (2020). We discuss in more detail the relationship to the
optimal and Pareto efficient taxation literature in Section 4.1. Finally, from a technical
viewpoint, our derivations are based on the general-equilibrium tax incidence analy-
sis of Sachs, Tsyvinski, and Werquin (2020). However, this paper does not address the
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compensation problem, which requires solving not only for labor supply changes in re-
sponse to a given tax reform, but also for the tax reform itself.

Outline In Section 1, we set up the model and define the welfare compensation prob-
lem. In Section 2, we solve for the compensating tax reform and the fiscal surplus in
partial and general equilibrium. In Section 3, we analyze the compensating tax reform
considering various examples of disruptions and an empirical application to the robot
disruption. Section 4 concludes with a discussion of the differences between the com-
pensation approach and the standard optimal taxation approach. The proofs are gath-
ered in the Appendix.

1. Welfare compensation problem

1.1 Initial equilibrium

There is a continuum of measure 1 of individuals indexed by their skill i ∈ [0, 1]. In the
initial (undisrupted) economy, agents i earn a pre-tax wage rate wi ∈ R+ that they take
as given. Without loss of generality, we order skills so that wages wi are increasing in
i. Thus, the skill index i ∈ [0, 1] can be interpreted as the agent’s percentile in the wage
distribution of the initial economy.

Agents with skill i have preferences over consumption c and labor supply l that are
represented by the utility function ui(c, l). They choose effort li and earn pre-tax in-
come yi =wili. Under standard assumptions on preferences, income yi =wili is strictly
increasing in i, so that there are one-to-one maps between skills i, wages wi, and in-
comes yi in the initial equilibrium.1 We assume that incomes yi belong to an interval
[y, ȳ] ⊂R+ and have a continuous density f (·).

The government levies a nonlinear income tax. The tax schedule T : R+ →R is twice
continuously differentiable. Agents i consume their after-tax income ci = yi − T (yi ).
Their indirect utility Ui is thus given by

Ui = ui
(
wili − T (wili ), li

)
, (1)

where the labor supply li satisfies the first-order condition2

−
∂ui
∂l

(
wili − T (wili ), li

)
∂ui
∂c

(
wili − T (wili ), li

) = (
1 − T ′(wili )

)
wi. (2)

There is a continuum of mass 1 of identical firms whose inputs in production are the
aggregate labor supplies Lj of all types j ∈ [0, 1]. The production function has constant

1This is the case, for instance, if agents have a common utility function u that satisfies the Spence–
Mirrlees condition. Importantly, because we focus on marginal perturbations, this ordering of wages need
not be preserved by the disruption and the tax reform.

2We assume that this equation has a unique solution.
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returns to scale and is denoted by F(L), where L≡ {Lj }j∈[0,1]. In equilibrium, firms earn
no profits and the wage wi is equal to the marginal product of labor of skill i,

wi = ∂F
∂Li

(L). (3)

We finally denote government revenue by

R=
∫ 1

0
T (wili )di. (4)

For future reference, we define the local rate of progressivity of the tax schedule at in-
come yi as (minus) the elasticity of the retention rate ri = 1 −T ′(yi ) with respect to gross
income yi, that is, p(yi ) ≡ −∂ ln(1 − T ′(yi ))/∂ ln yi.

1.2 Wage disruption and tax reform

Consider an exogenous perturbation ŵE = {ŵEi }i∈[0,1] of the wage distribution w =
{wi}i∈[0,1], where ŵEi ∈ R for all i. That is, the wage of agent i changes, on impact, from
wi to wi(1 + μŵEi ), where μ > 0 is a constant. Such a disruption can be caused by var-
ious exogenous shocks, e.g., technological change, which affects the production func-
tion F , or immigration flows, which modify the relative shares of different skills in the
economy.3 Without loss of generality, we normalize supi∈[0,1] |ŵEi | = 1.4 Thus, the map
{ŵEi }i∈[0,1] defines the (infinite-dimensional) direction of the disruption, while the scalar
μ parametrizes its size.

Following the disruption, the government can implement an arbitrarily nonlinear
tax reform T̂ (·), whereby the statutory tax payment at income yi changes from T (yi ) to
T (yi ) +μT̂ (yi ).5

In response to the wage disruption ŵE and the tax reform T̂ , individuals optimally
adjust their labor supply. In general equilibrium, these decisions impact their wages,
which in turn further modify their labor supply choices, and so on. We denote by μŵi
and μl̂i the total endogenous percentage changes in the wage and labor supply of in-
dividual i between the initial and the perturbed equilibria. Thus, the wages and labor
supplies in the disrupted economy are, respectively, given by wi(1 + μŵEi + μŵi ) and

li(1 +μl̂i ).
We define agent i’s compensating variation μÛi as the change in utility between the

initial and the perturbed equilibria, normalized by the (initial) marginal utility of con-
sumption ∂ui/∂c so as to obtain a monetary measure of the welfare gains and losses.
Finally, we denote by μR̂ the change in government revenue caused by the disruption
and the tax reform, or fiscal surplus.

3For instance, the wage disruption implied by a change in the production function from F to F̃ is given
by μŵEi ≡ 1

wi
[∂F̃/∂Li − ∂F/∂Li] for all i.

4Throughout the paper, we focus on continuously differentiable functions i �→ ŵEi on [0, 1].
5In Section 2.4, we assume that the tax reforms T̂ that the government can implement belong to the

Banach space of functions that are continuously differentiable and bounded, with bounded first derivative.
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1.3 Compensation problem

Compensating tax reform The welfare compensation problem consists of designing a
reform T̂ of the existing tax code that offsets the welfare gains and losses of the wage
disruption μŵE . Hence, the tax reform T̂ must be designed such that each agent’s com-
pensating variation is equal to zero:

Ûi = 0 ∀i ∈ [0, 1]. (5)

We say that the disruption {ŵEi }i∈[0,1] is compensable if the fiscal surplus is nonnegative,
i.e., R̂≥ 0.

Marginal wage disruptions In this paper, we characterize analytically the solution to
the welfare compensation problem for marginal wage disruptions, i.e., as μ→ 0. Thus,
our exercise consists of designing and evaluating the fiscal impact of a tax reform T̂ that
compensates the first-order welfare effects of a small wage disruption in the direction
ŵE . In Section 3.4, we explore quantitatively how our compensating tax reform fares
against large shocks.

Aggregate gains of disruptions If a disruption is compensable, then it is possible to find
a reform of the initial tax code T that achieves a strict Pareto improvement.6 Conversely,
it is possible that a disruption generates strictly positive aggregate gains, both in terms of
gross incomes and government revenue, but that these gains are not compensable (i.e.,
the fiscal surplus R̂ is negative) if the labor supply distortions that the compensation
would generate outweigh these gains. More generally, the value of the fiscal surplus, not
only its sign, carries important information: It provides a metric that allows us to com-
pare, in monetary units, the aggregate welfare gains (or losses) of different economic
shocks. For example, suppose that a given disruption (say, automation) generates more
revenue, after implementing the compensating tax reform, than another (say, an inflow
of immigration). It follows that the government can achieve a strictly better Pareto im-
provement from the former shock.

Remark: A more general problem It is natural to wonder what a compensating tax re-
form would be if the government’s objective were to compensate all agents to make their
welfare at least as large (rather than exactly as large) as in the initial economy, i.e., Ûi ≥ 0
for all i. To address this problem, we can directly specify the nonzero welfare improve-
ments (or losses) Ûi = hi ∈R that one wants to achieve for each skill level. We then solve
the compensation problem by replacing 0 with hi in the right-hand side of (5). The dif-
ferential equation derived in Lemma 2 below now features the exogenous function h.
The corresponding tax reform and fiscal surplus can then be straightforwardly derived
following identical steps as in the proofs of Propositions 1 and 2.

6For instance, the government can redistribute lump sum the budget surplus uniformly to all workers.
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2. Compensating tax reform and fiscal surplus

2.1 Elasticity concepts

As a preliminary step, we start by defining the elasticities of labor supply, labor demand,
and substitution on which the solution to the compensation problem depends. All of
them are standard and can be naturally mapped to empirical estimates.

Elasticities of labor supply We decompose the uncompensated (Marshallian) elasticity
∂ ln li/∂ ln ri of labor supply of skill i with respect to the retention rate ri as eri − eni , where
eri ≡ ∂ ln lci /∂ ln ri > 0 is the compensated (Hicksian) elasticity, or substitution effect, and
eni ≡ ri ∂ ln li/∂(−ni )> 0 is the income effect parameter—i.e., (minus) the semi-elasticity
of labor supply with respect to non-labor income ni. The elasticity of labor supply with
respect to the wage wi is then equal to ewi = (1 − p(yi ))eri − eni . We define the corre-
sponding elasticities along the nonlinear budget constraint7 by εxi ≡ exi /(1 +p(yi )eri ) for
x ∈ {r, n, w}. The scaling factor 1 + p(yi )eri accounts for the fact that the direct labor
supply response exi endogenously affects the agent’s marginal tax rate T ′(yi ) by the rate
of progressivity p(yi ), which in turn causes a further labor supply adjustment given by
p(yi )eri .

Elasticities of labor demand and substitution We define the cross-wage elasticity γij of
the wage of skill i with respect to the aggregate labor of skill j and the own-wage elas-
ticity (or inverse elasticity of labor demand) 1/εdj of the wage of skill j with respect to

Lj by ∂ lnwi/∂ lnLj = γij − (1/εdj )δ(i − j), where δ(·) is the Dirac delta function.8 For
instance, if the production function has a constant elasticity of substitution (CES) be-
tween skills,9 the own-wage elasticity 1/εd is constant and the cross-wage elasticity is
equal to γij = (1/εd )yj/Ey. In this case, we have γij > 0 for all i, j, so that different skills
are Edgeworth complements in production. Moreover, γij does not depend on i, imply-
ing that an increase in the labor supply of type j raises the wages of all types i 
= j by the
same percentage amount.

2.2 Incidence of disruptions and tax reforms

To characterize the compensating tax reform and the fiscal surplus, we derive first-order
Taylor expansions asμ→ 0 of the perturbed equilibrium conditions ((23)–(26) in the Ap-
pendix) around the initial equilibrium (1)–(4). This variational approach was pioneered
by Saez (2001) and extended to general-equilibrium environments by Sachs, Tsyvinski,
and Werquin (2020).

Welfare changes The (normalized) change Ûi in the utility of agent i induced by the
wage disruption ŵE and the tax reform T̂ is given by

Ûi =
(
1 − T ′(yi )

)
yi

[
ŵEi + ŵi

] − T̂ (yi ) = 0, (6)

7See, e.g., Scheuer and Werning (2017), Jacquet and Lehmann (2021).
8The Dirac notation ensures that the Euler theorem holds:

∫ 1
0 wiLi × (Lj/wi )(∂wi/∂Lj )di= 0.

9The CES production function is defined by F(L) = [
∫ 1

0 θjL
1−1/εd

j dj]ε
d/(εd−1).
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where the second equality imposes that once the new tax schedule is implemented,
agent i keeps the same level of welfare in the disrupted economy as in the initial equilib-
rium. The first term on the right-hand side of (6) shows that the change in the utility of
agents i is equal to their total income gain or loss yi[ŵEi + ŵi] caused by both the exoge-
nous shock ŵEi and the general-equilibrium adjustments ŵi,10 weighted by the share
(1 − T ′(yi )) of this income change that they keep after paying taxes. The second term
shows that their utility also responds to the change in their tax liability T̂ (yi ), which
makes them poorer (resp., richer) if T̂ (yi )> 0 (resp., < 0).

Labor supply changes The disruption ŵE and the tax reform T̂ induce changes in labor
supply equal to

l̂i = εwi
[
ŵEi + ŵi

] − εri
T̂ ′(yi )

1 − T ′(yi )
+ εni

T̂ (yi )(
1 − T ′(yi )

)
yi

. (7)

This equation shows that agents i adjust their effort upward, l̂i > 0, if their wage in-
creases (first term on the right-hand side of (7)), their marginal tax rate decreases (sec-
ond term), and their total tax liability—or average tax rate—increases (third term). For
future reference, we denote the labor supply response to a disruption and a tax reform
absent any endogenous wage adjustment ŵi (i.e., in partial equilibrium) by

l̂Ei = εwi ŵEi − εri
T̂ ′(yi )

1 − T ′(yi )
+ εni

T̂ (yi )(
1 − T ′(yi )

)
yi

. (8)

Endogenous wage changes The disruption ŵE and the tax reform T̂ lead to endogenous
wage changes equal to

ŵi = − 1

εdi
l̂i +

∫ 1

0
γij l̂j dj. (9)

Intuitively, a 1% increase in the labor supply of individuals with skill i leads to a −1/εdi
percent change in their own wage, because the marginal product of labor is decreas-
ing. A 1% increase in the labor supply of agents with skill j ∈ [0, 1] leads to a γij percent
change in the wage of type i through complementarities between skills in production.

Fiscal surplus Finally, the fiscal surplus generated by the disruption ŵE and the tax
reform T̂ is given by

R̂=
∫ 1

0

[
T̂ (yi ) + T ′(yi )yi

(
ŵEi + ŵi + l̂i

)]
di. (10)

The first term in square brackets is the mechanical effect of the compensation on gov-
ernment revenue due to the statutory changes in tax rates. The second term accounts
for the fiscal externalities from changes in workers’ earnings yi via wage adjustments and
labor supply choices. The marginal tax rate T ′(yi ) captures the share of these earnings
gains or losses that accrues to the government.

10Recall that ŵi is a percentage wage change, so that wiŵi is the absolute wage change, and li × (wiŵi ) is
the gross income change.
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2.3 Compensation in partial equilibrium

In this section, we show that the solution to the compensation problem takes a simple
form in partial equilibrium, even when taxes are distortionary. Suppose that the pro-
duction function is given by F(L) = ∫ 1

0 θiLi di, so that for any i, the wage wi is equal to
the exogenous technological parameter θi. The marginal product of labor is then con-
stant (εdi → ∞) and skills are infinitely substitutable in production (γij = 0). In this case,

a disruption ŵE generates no further endogenous adjustment in the wage: ŵi = 0 for
all i. Equation (6) thus gives immediately the compensating tax reform T̂ . Since there
is a one-to-one map between skills i and incomes y ≡ yi in the initial equilibrium, we
denote ŵE(y ) ≡ ŵEi and εxy ≡ εxi for x= r, n, w.

Proposition 1. In partial equilibrium, the tax reform that compensates a marginal
wage disruption in the direction ŵE is given by

T̂ (y )
y

= (
1 − T ′(y )

)
ŵE(y ). (11)

The fiscal surplus generated by the disruption and the compensating tax reform is given
by

R̂= E
[
y ŵE(y )

] −E
[
T ′(y )y εryψ̂(y )

]
, (12)

where ψ̂(y ) ≡ dŵE(y )
d ln y measures the local variation of the exogenous wage disruption along

the income distribution.

Equation (11) shows that if wages are exogenous, the compensating tax reform sim-
ply consists of increasing or decreasing the average tax rate (ATR) T̂ (yi )/yi of each agent
i by an amount equal to her net-of-tax wage gain or loss resulting from the disruption,
(1 − T ′(yi ))ŵEi . This makes them just as well off as if the disruption had not occurred.
Equation (12) allows us to determine whether a given economic shock {ŵEi }i∈[0,1] is com-
pensable. Note in particular that calculating the fiscal surplus does not require actually
implementing or even computing the compensating tax reform: The expression for R̂
depends only on the exogenous disruption and the characteristics—tax rates, income
distribution, and labor supply elasticities—of the initial (undisrupted) economy.

Taking stock The feature that allowed us to solve trivially for the compensating tax re-
form T̂ in partial equilibrium is that, in the absence of endogenous wage adjustments
(ŵi = 0), the changes in marginal tax rates (MTR), T̂ ′(yi ), do not enter (6). That is, con-
ditional on the total tax change T̂ (yi ), the MTR does not matter for welfare. This fol-
lows from the envelope theorem: The MTR that individuals face affects their utility only
through their labor supply decision (2), but since labor supply is initially chosen opti-
mally, these behavioral responses induce no first-order effect on welfare. As a result, it is
sufficient to adjust all agents’ total tax payment (or ATR) to neutralize their income gain
or loss due to the exogenous disruption, regardless of the changes in MTR that such a
reform implies. Of course, while the endogenous labor supply responses (8) are irrele-
vant for the welfare compensating tax reform, they determine the deadweight loss of the
reform and, therefore, the fiscal surplus R̂.
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2.4 Compensation in general equilibrium

We now characterize the compensating tax reform and the fiscal surplus when wages
are endogenous. In general equilibrium, (6) no longer gives directly the tax reform T̂

that compensates the exogenous disruption ŵE , because the wage changes ŵi are en-
dogenous to the tax reform. Specifically, these wage responses are determined by the
labor supply responses via (9). In turn, these labor supply changes are driven by the
changes in marginal and average tax rates via (7).

Labor supply changes The first step of the analysis is to solve for the total labor supply
changes following the disruption and tax reform. Substituting for ŵi into (7) using (9)
implies that the labor supply adjustments {l̂Ei }i∈[0,1] are the solution to an integral equa-
tion. The following lemma follows from Proposition 1 in Sachs, Tsyvinski, and Werquin
(2020) and is proved in the Appendix.

Lemma 1. Assume that
∫

[0,1]2 |φiεwi γij|2 didj < 1, whereφi ≡ 1/(1+εwi /εdi ).11 The change
in labor supply of agent i in response to a wage disruption and a tax reform is given by

l̂i =φil̂Ei +φiεwi
∫ 1

0
	ijφjl̂

E
j dj, (13)

where l̂Ei is defined by (8). If the production function is CES, we have	ij = γij/(
∫ 1

0 φk
yk
Ey dk)

with γij = (1/εd )yj/Ey. More generally, we have 	ij ≡ ∑∞
n=0 	

(n)
ij with 	(0)

ij = γij and for all

n≥ 1, 	(n)
ij = ∫ 1

0 	
(n−1)
ik φkε

w
kγkj dk.

The first term on the right-hand side of (13) is the partial-equilibrium change in
labor supply l̂Ei , scaled by a factor φi. This scaling factor accounts for the fact that
the marginal product of labor is decreasing, so that the agent’s initial (say, positive)
labor supply adjustment lowers her wage by a factor 1/εdi , which in turn leads her
to reduce her labor supply by a factor εwi /ε

d
i , thus dampening her initial response by

φi ≡ 1/[1 + εwi /εdi ].
The second term on the right-hand side of (13) captures the change in the labor

supply of agent i caused by the behavioral responses of all other agents j ∈ [0, 1] through
complementarities in production. An increase in the labor supply of skill j raises the
wage of skill i by the cross-wage elasticity 	ij , which in turn raises the labor supply of
skill i proportionately to εwi . If the production function is CES, 	ij is simply proportional
to the structural elasticity γij . For a general production function, it is defined by a series∑∞
n=0 	

(n)
ij that comprises the direct effect 	(0)

ij = γij of the labor supply lj on the wagewi,
as well as the infinite sequence of indirect effects that occur in general equilibrium: For
each n≥ 1, 	(n)

ij accounts for the impact of lj onwi via the wage and, hence, labor supply

adjustments of n intermediate types; e.g., for n= 1, lj
γkj−→wk

εwk−→ lk
γik−→wi.

11This condition ensures that the series defining 	ij converges. It is straightforward to derive sufficient
conditions on primitives for this condition to hold: e.g., a CES production function, a constant rate of pro-
gressivity (CRP) tax schedule, and a quasilinear utility function with isoelastic disutility of labor.
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Integro-differential equation characterization Combining (6), (9), and (13) yields an
implicit characterization of the compensating tax reform.

Lemma 2. The compensating tax reform T̂ is the solution to

T̂ (yi )
yi

= (
1 − T ′(yi )

)

̂Ei + φi

εdi

[
εri T̂

′(yi ) − εni
T̂ (yi )
yi

]
+ (

1 − T ′(yi )
)
φi�i, (14)

where 
̂Ei is the total wage disruption faced by agent i and is defined by


̂Ei =φiŵEi +φi
∫ 1

0
	ijφjε

w
j ŵ

E
j dj, (15)

and where �i is equal to

�i =
∫ 1

0
	ijφj

[
−εrj

T̂ ′(yj )

1 − T ′(yj )
+ εnj

T̂ (yj )(
1 − T ′(yj )

)
yj

]
dj. (16)

Moreover, the (income-weighted) mean change in average tax rates is equal to the mean
exogenous disruption: E[(y/Ey ) T̂ (y )/((1 − T ′(y ))y )] = E[(y/Ey ) 
̂Ey ].

The interpretation of (14) is again that the ATR change T̂ (yi )/yi must compensate
the wage (and, hence, welfare) gains or losses incurred by agent i. The first term on
the right-hand side, (1 − T ′(yi ))
̂Ei , is the net-of-tax wage change caused by the exoge-

nous disruption. In partial equilibrium, we have 
̂Ei = ŵEi , so that (14) reduces to (11).

In general equilibrium, 
̂Ei accounts for the full incidence of the initial shock—absent
any tax reform—on the wage of agent i. Equation (15) shows that this total disruption
comprises the direct impact ŵEi scaled by the own-wage dampening factorφi, plus all of
the indirect effects caused by the wage adjustments {ŵEj }j∈[0,1], which affect the wage of
skill i via cross-skill complementarities 	ij . Empirical studies that evaluate the impact
of a disruption on the wage distribution may already account for these labor demand
spillovers. In this case, the compensation formula we derive below can be applied using
{
̂Ei }i∈[0,1], rather than {ŵEi }i∈[0,1], as a primitive.

The remaining terms on the right-hand side of (14) account for the welfare gains and
losses triggered by changes in the tax rates themselves. The key observation is that, in
general equilibrium, both the average and—this is new—the marginal tax rates impact
welfare: This is because they generate labor supply distortions that, despite the enve-
lope theorem, have a first-order effect on utility through their impact on wages. The
welfare consequences of a given tax reform are thus much richer, and the design of the
compensation is correspondingly more complex, than in partial equilibrium. The sec-
ond term (in square brackets) on the right-hand side of (14) captures the welfare effects
of agent i’s own tax rate changes, while the third term captures the welfare effects caused
by the tax changes of all other agents j 
= i.

Formally, an increase in the MTR of agents i by T̂ ′(yi ) reduces their labor supply
(substitution effect) by φiεri T̂

′(yi ) and, hence, because the marginal product of labor is
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decreasing, raises their own wage by (φiεri /ε
d
i )T̂ ′(yi ). Analogously, an increase in the

ATR of agents i by T̂ (yi )/yi raises their labor supply (income effect) byφiεni T̂ (yi )/yi and,
hence, reduces their own wage by (φiεni /ε

d
i ) T̂ (yi )/yi. Therefore, while a higher average

tax rate at income yi hurts the welfare of agents i by directly making them poorer (as
in partial equilibrium) and by triggering increases in labor supply, a higher marginal
tax rate, by discouraging effort and consequently raising wages, increases the welfare of
agents i.12 Analogously, an increase in the marginal (respectively, average) tax rate of any
agents j 
= i by T̂ ′(yj )> 0 (resp., T̂ (yj )> 0) leads to a reduction (resp., increase) in their
labor supply and, hence in the wage of agents iwhenever these skills are complementary
in production (	ij > 0). Summing over all j leads to the term �i in (16).

Taking stock To sum up, (14) formalizes the insight that, in general equilibrium, the
ATR and the MTR of the tax reform have to be determined simultaneously as they both
affect welfare: The compensating policy must be designed such that the total effect of
these two instruments exactly offsets that of the exogenous disruption. Suppose, for in-
stance, that the planner implements the tax reform (11) that would compensate every
agent’s welfare in partial equilibrium. This tax reform is constructed so that its average
tax rates exactly compensate the wage gains or losses of the disruption. While the im-
plied adjustments in marginal tax rates can be ignored in partial equilibrium because of
the envelope theorem, in general equilibrium they lead to additional, unintended wel-
fare consequences. These first-order welfare effects themselves need to be compensated
(second term on the right-hand side of (14)), which requires further changes in marginal
tax rates, and so on. As a result, the combination of distortionary tax instruments and
elastic labor supply (whereby marginal tax rates affect labor supply behavior) and gen-
eral equilibrium (whereby labor supply decisions determine wages) leads to a fixed point
problem for the compensating tax reform, formalized by expressing the compensating
reform T̂ as the solution to the integro-differential equation (14).

Solution to the compensation problem The next proposition gives the solution to (14):
It is the main result of this paper. As before, since there is a one-to-one map between
skills i and incomes y ≡ yi, we can change variables and denote the wage disruption (15)
by 
̂E(y ), the welfare effects due to production complementarities (15) by �(y ), the la-
bor supply and demand elasticities by εxy for x= r, n, w, d, and the cross-wage elasticities
in (13) by 	y,z .13

Proposition 2. The tax reform that compensates a marginal wage disruption in the
direction ŵE is given by

T̂ (y )
y

= (
1 − T ′(y )

) ∫ y

y
�(y, z)

[
φ−1
z 
̂

E(z) +�(z)
]
dz (17)

12The fact that an agent is made better off from a higher marginal tax rate (conditional on a total tax pay-
ment) follows from the same logic as the “trickle-down” result of Stiglitz (1982) that implies lower optimal
high-income tax rates than in partial equilibrium.

13The relevant change of variables for the cross-wage elasticities reads γyi ,yj ≡ γij/y
′
j and 	yi ,yj ≡ 	ij/y

′
j ,

where y ′
j ≡ ∂yj/∂j. In particular, if the production function is CES, we have γij = (1/εd )yj/Ey and γyi ,yj =

(1/εd )yjf (yj )/Ey , where f is the density of incomes.
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and the fiscal surplus reads as14

R̂= E
[
y 
̂E(y )

] −E

[
T ′(y )y

∫ y

y

εdy

εdz
�(y, z)εrẑ(z)dz

]
, (18)

with ̂(z) ≡ d[φ−1
z 
̂

E(z) +�(z)]/d lnz. In these expressions, we let

�(y, z) = εdz
εrzz

exp
(

−
∫ z

y

εdx
εrxx

dx

)

and �(z) = ∑∞
n=1�

(n)(z) is defined inductively, for all n≥ 1, as

�(n)(z) =
∫ ȳ

y
	z,yε

d
y

[
φy�

(n−1)(y ) −
∫ ȳ

z
�(y, x)�(n−1)(x)dx

]
dy,

with �(0)(z) ≡ φ−1
z 
̂

E(z). If the production function is CES, �(z) is a constant
E[y(φy�(0)(y ) − ∫ ȳ

y �(y, x)�(0)(x)dx)]/E[y
∫ ȳ
y �(y, x)dx].

Formulas (17) and (18) depend only on the exogenous wage disruption 
̂E (or ŵE)
and on variables that are observed in the pre-disruption economy: statutory marginal
tax rates, elasticities of labor supply εry , εny , εwy , elasticities of labor demand εdy , and elas-
ticities of substitution between skills 	y,z (or γy,z). It is thus straightforward to imple-
ment such a tax reform in practice. In Section 3, we analyze the shape of the compensa-
tion (17) in detail, and study various examples and an empirical application.

Before proceeding, we describe the structure of the compensation formula (17).
It expresses the tax reform as a series of partial compensations. Suppose first that
the marginal product of labor is decreasing but that skills are perfect substitutes in
production, so the cross-wage elasticities 	z,y are equal to 0. In this case, the com-

pensation of the exogenous wage disruption �(0)(z) ≡ φ−1
z 
̂

E(z) reduces to (1 −
T ′(y ))y

∫ y
y �(y, z)�(0)(z)dz (we analyze this expression in the next section). For a gen-

eral production function, this compensation and the cross-wage effects 	z,y generate
further wage changes for agent z given by �(1)(z). These must be compensated by
(1 − T ′(y ))y

∫ y
y �(y, z)�(1)(z)dz (second round of “compensating the compensation”),

thus leading to further changes in wages and so on. Repeating this procedure for all
n ≥ 2 yields the full compensation (17), where each term �(n)(z) in the series captures
the (cross-)wage changes caused by the (n − 1)th round of partial compensation. In
other words, when the exogenous shock hits, we adjust the tax schedule to compen-
sate for it, ignoring the endogeneity of wages due to production complementarities, i.e.,
treating each labor market with its own labor demand curve and decreasing marginal
product of labor, independently of the others. We then compute the first round of
general-equilibrium effects on wages, naively compensate for them again, and so forth,
until we have settled. When the production function is CES, this iterative procedure

14This expressions assumes for simplicity that ȳ → ∞; the general expression is derived in the proof in
the Appendix.
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becomes particularly simple: In this case, each intermediate round of compensation
leads to uniform wage changes across workers (i.e., constant �(n)(·)), so the series �(·)
collapses to a constant.

Remark: Extensive margin of labor supply Our results extend to a setting where, in ad-
dition to adjusting their labor effort on the intensive margin, workers can respond to
wage disruptions and tax changes by deciding to enter or exit the labor force. Suppose
that agents differ along two dimensions: their skill i ∈ [0, 1], as in the previous sections,
and their fixed cost of participating in the labor force κ ∈ R+. These two characteristics
can be arbitrarily correlated in the population. An agent with types (i, κ) has idiosyn-
cratic preferences over consumption c and labor supply l described by ui(c, l) − κ I{l>0},
where I{l>0} is an indicator function equal to 1 if the agent is employed. Agents i partic-
ipate if their fixed cost of work κ is smaller than a threshold κi equal to the difference
between the utility conditional on employment, ui[wili−T (wili ), li], and the utility con-
ditional on unemployment, ui[−T (0), 0]. We can easily show that the tax reform de-
rived in Proposition 2, along with a fixed unemployment transfer −T (0), continues to
solve the compensation problem in this setting. Indeed, this reform leaves unchanged
the worker’s utility both conditional on employment and on unemployment, so that no
agent switches participation status after the disruption and its compensation.15

3. Analysis of the compensating tax reform

In this section, we analyze the economic implications of Proposition 2 by applying the
compensation (17) to various disruptions. In Sections 3.1, 3.2, and 3.3, we study three
benchmark classes of disruptions: first, those that affect all skills uniformly; second,
those that change the wage of a single skill; third, those that involve an interval of skills
(e.g., the middle class or the top decile). These special cases help establish the main
principles of welfare compensation in general equilibrium. In Section 3.4, we evaluate
the robustness of our results to the size of the behavioral elasticities, the shape of the
initial tax schedule, and the size of (nonmarginal) disruptions. Finally, Section 3.5 turns
to a concrete empirical application: the compensation of robots in the United States.
Unless stated otherwise, we impose the following assumption throughout this section.

Assumption 1. The initial (pre-disruption) production function is CES. Preferences take
the form u(c, l) = c1−η/(1 − η) − l1+1/e/(1 + 1/e) with e > 0 and η ≥ 0. The initial tax
schedule has a constant rate of progressivity (CRP), i.e., T (y ) = y − ((1 − τ)/(1 −p))y1−p
with τ ∈R and p< 1.

Assumption 1 ensures that the rate of progressivity p(y ) = p, the Hicksian elasticity
eri = e/(1 + (1 − p)eη), the income effect parameter eni = (1 − p)ηeri , the labor supply
elasticities εri , ε

n
i , εwi , the labor demand elasticity εdi , and the elasticity of substitution

between skills, are all constant.

15This argument implies in particular that the values of the elasticities of participation with respect to the
tax rates (which otherwise would matter to determine the endogenous wage adjustments ŵi) are irrelevant
for the construction of the compensating tax reform.
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3.1 Uniform disruptions

We first study a perturbation that reduces the wages of all workers by the same amount
in percentage terms.

Corollary 1. Suppose that Assumption 1 holds. Consider a uniform wage disruption, so
that ŵEi ≡ ŵE for all i ∈ [0, 1]. Then the general-equilibrium compensation (17) coincides
with the partial-equilibrium compensation (11).

To show this result, notice first that the partial- and general-equilibrium compen-
sations coincide if and only if the endogenous wage adjustments ŵi in (9) vanish; that
is, if −(1/εd )l̂i + ∫ 1

0 γij l̂j dj = 0. Now Euler’s homogeneous function theorem imposes

that −1/εd + ∫ 1
0 γij dj = 0. Thus, it suffices to prove that, under Assumption 1, the la-

bor supply response to the disruption and the compensation is uniform, i.e., l̂Ei = l̂Ej for
all i, j. But this is straightforward to show by plugging (11) into (8). Therefore, for a
uniform wage disruption and the assumed preferences and tax schedule, the own- and
cross-wage effects just offset each other, thus yielding zero general-equilibrium wage
adjustments. As a result, the partial-equilibrium (PE) tax reform achieves exact welfare
compensation even in the general-equilibrium (GE) environment.

The uniform disruption and its compensation are represented in Figure 1. We cali-
brate the elasticity of labor supply to e = 0.33 (Chetty (2012)) and the elasticity of sub-
stitution between skills to εd = ∞ (partial equilibrium) or εd = 1.5 (Katz and Murphy
(1992), Card and Lemieux (2001), Card (2009)). We suppose moreover that there are no
income effects on labor supply: η = 0. We take a rate of progressivity of the initial tax
schedule equal to p = 0.15 and a level parameter of τ = −3 (Heathcote, Storesletten,
and Violante (2017)). The marginal tax rate is thus increasing with income: It is equal
to 9% at $20,000, to 23% at $60,000, and to 29% at $100,000. We match the U.S. annual
earnings distribution by positing a (truncated) log-normal distribution below $150,000
with mean 10 and variance 0.95 and appending a Pareto distribution with a tail param-
eter that decreases from a = 2.5 at $150,000 to a = 1.5 for all incomes above $350,000
(Diamond and Saez (2011)). As in Saez (2001), we infer the wage distribution from the
observed earnings distribution and the individuals’ first-order conditions (see Sachs,
Tsyvinski, and Werquin (2020) for details on the extension of this method to the general-
equilibrium setting).

The left panel shows that the disruption reduces the wage of all agents by 1%. These
wage losses translate into pre-tax income losses represented by the black curve in the
right panel: e.g., workers with income equal to $60,000 (respectively, $100,000, $500,000)
before the disruption suffer pre-tax earnings losses of $600 (resp., $1000, $5000). The
blue and red curves in the right panel show the compensation in partial and general
equilibrium, respectively. Recall that the decrease in the agent’s average tax rate implied
by the tax reform mirrors the after-tax income losses due to the wage disruption. Since
the initial tax schedule is progressive, this implies that the compensation is flatter than
the gross income losses: Losing a dollar of pre-tax income does not hurt higher-paid
workers as much, since they retain a smaller share 1−T ′(y ) of that dollar. Quantitatively,
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Figure 1. Uniform disruption and compensation.

a pre-tax income loss of $1000 at $100,000 (respectively, $5000 at $500,000) translates
into an after-tax income loss—and thus requires a reduction in tax payment—of $712
(resp., $2796).

3.2 Dirac disruptions

Our second polar case consists of a disruption that affects only the wage of agents with
a given skill i∗ and corresponding income y∗. Formally, we let ŵE(y ) = −δ(y− y∗ ), where
δ(·) is the Dirac delta function.16

Corollary 2. Suppose that Assumption 1 holds and let ȳ → ∞. Consider a Dirac wage
disruption at income y∗, so that ŵEi ≡ −δ(yi − y∗ ) for all i ∈ [0, 1]. Then the general-
equilibrium compensation is given by

T̂ (y )
y

= −ε
d

εr
(1 − τ)

yε
d/εr−p

y
εd/εr+1∗

I{y≤y∗} +C(1 − τ)y−p, (19)

where C = y∗f (y∗ )/Ez− (εd/εr )E[(z/Ez)(z/y∗ )ε
d/εr+1

I{z≤y∗}] is a constant.

To understand this result, first ignore the cross-wage complementarities. In this
case, (19) with C = 0 follows from the first-order linear ordinary differential equation
(ODE) (14), which reduces to

T̂ (y )
y

= εd

φεr
T̂ ′(y ) ∀y < y∗. (20)

This equation requires that the change in average tax rates is proportional to the change
in marginal tax rates at every income level below y∗. Intuitively, suppose that the gov-
ernment naively compensates for the partial-equilibrium disruption by reducing the tax

16Note that this perturbation is not differentiable. We approximate it with a sequence of smooth wage
disruptions centered around income y∗.
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Figure 2. Dirac disruption and compensation.

liability of agent y∗. It must then reduce the marginal tax rates of those with lower in-
comes y < y∗, i.e., T̂ ′(y ) < 0. However, in general equilibrium, this reduction in MTR
raises their labor supply and, hence, lowers their wage, thereby causing welfare losses
that are proportional to the ratio of elasticities of labor supply and demand. These wel-
fare losses must be offset by welfare gains of equal magnitude through reductions in
their average tax rates T̂ (y )/y < 0.

If εd/εr > p or, equivalently εd/φεr > 1,17 the average tax rate must fall more than
one-for-one in response to a marginal tax rate cut. However, this mechanically lowers
the tax bill of agents with slightly higher income, thus requiring an even larger cut in
their marginal tax rate, and so on. This “race” between the MTR and the ATR leads to
exponentially decreasing tax rates on [y , y∗ ), captured by T̂ (y )/y ∝ −yεd/εr−p in the so-
lution to the ODE (19). That is, the compensating tax reform is progressive at a rate given
by the ratio of elasticities of labor demand and labor supply εd/εr , net of the rate of
progressivity p of the preexisting tax code.

Finally, accounting for the cross-wage effects adds the correction C(1 − T ′(y ))y to
the compensating tax reform in (19). It is easy to show that this amounts to raising the
parameter τ of the baseline CRP tax schedule by an amount τ̂/(1 − τ) = (1 − p)C. That
is, skill complementarities require a uniform percentage shift in tax rates over the entire
income distribution.

Figure 2 illustrates these results. We construct a 1% wage disruption μŵE(y∗ ) at
income level y∗ = $60,000.18 This leads to a pre-tax income loss of y∗μŵE(y∗ ) = $600
(black curve in the right panel) and an after-tax income loss of (1 − T ′(y∗ ))y∗μŵE(y∗ ) =
$461 (blue curve in the right panel). The compensating tax reform in partial equilib-
rium tracks the after-tax income losses: It leaves the tax liabilities of all agents y 
= y∗
unchanged while reducing the tax bill of income y∗ by a large amount (blue curve). In
general equilibrium, the compensation (red curve) accounts for the additional wage ad-
justments induced by the disruption and tax changes. In particular, the wage loss at

17Empirically, the inequality εd/εr > p is clearly satisfied, since we have p≈ 0.15, εr ≈ 0.3, and εd ≥ 0.5.
18The calibration is the same as in Figure 1.
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income y∗ lowers these agents’ labor supply, marginally increasing their wages and re-
ducing the compensation necessary to keep utility unchanged. At the same time, all
other income levels need to be compensated because the labor supply reductions at y∗
adversely affect their wages via production complementarities.

The key insight from Figure 2 is that the partial-equilibrium compensation creates
large movements in marginal tax rates around income y∗, which yield sizeable unin-
tended welfare consequences in general equilibrium. For instance, such a tax reform
would make agents with income just below y∗ strictly worse off because of the very sharp
decrease in their marginal tax rate, which raises labor supply and lowers their wages and
welfare. Instead, the accurate compensation reduces the tax payment of the disrupted
agent at y∗ by a much smaller amount while at the same time granting substantial tax
rebates to incomes below y∗ even though the disruption did not initially hurt them.19

Finally, agents with an income higher than y∗ also face tax cuts; these are barely notice-
able in Figure 2, however, since the disruption affects a small number of workers and,
thus, generates minor cross-wage effects.

3.3 Interval disruptions

We finally consider disruptions intermediate between the two polar (uniform and Dirac)
cases studied above, and affect a nontrivial range of workers; e.g., all incomes above a
threshold or all incomes within a given interval.

Corollary 3. Suppose that Assumption 1 holds and let ȳ → ∞. Consider a wage dis-
ruption that affects uniformly all skills above i∗, with corresponding income y∗; thus,
ŵE(y ) ≡ −I{y≥y∗}. Then the general-equilibrium compensation is given by

T̂ (y )
y

= (
1 − T ′(y )

)[
ŵE(y ) −

(
y

y∗

)εd/εr
I{y≤y∗} +C

]
, (21)

where C = E[(z/Ez)(z/y∗ )ε
d/εr

I{z≤y∗}] is a positive constant. More generally, consider a
disruption that affects all skills in an interval [iL, iH ] uniformly, with corresponding in-
comes [yL, yH ]; thus, ŵE(y ) ≡ −I{yL≤y≤yH }. Then the general-equilibrium compensation
is given by

T̂ (y )
y

= (
1 − T ′(y )

)[
ŵE(y ) −

(
y

yL

)εd/εr
I{y≤yL} +

(
y

yH

)εd/εr
I{y≤yH } +C

]
, (22)

where C = E[(z/Ez)(z/yL )ε
d/εr

I{z≤yL}] −E[(z/Ez)(z/yH )ε
d/εr

I{z≤yH }] is a constant.

19Note also that the compensation peaks at an income y∗∗ that is strictly below the income y∗ that incurs
the largest wage loss. Indeed, by definition, the agent y∗∗ with the highest tax reduction has a zero marginal
tax rate change. Thus, an agent with a slightly higher income gets almost the same total tax rebate (the
difference between the two is second order since T̂ ′(y∗∗ ) = 0) and a strictly higher marginal tax rate change
(the difference is first order if T̂ ′′(y∗∗ ) > 0), and, hence, a strictly higher compensation. This explains why
we must have y∗∗ < y∗.
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Formula (21) characterizes the compensation for a disruption that hurts all workers
above an income threshold y∗. The compensation can be decomposed as the sum of
three terms. The first is the partial-equilibrium compensation derived in Proposition 1.
Appropriately normalized by the net-of-tax rate (1 − T ′(y ))y to account for the redistri-
bution already achieved by the existing tax code, this term tracks the exogenous wage
losses ŵE(y ) one-for-one.

The second term in (21) corrects for the own-wage effects caused by the decreasing
marginal product of labor. It reduces the tax liabilities below the disrupted incomes, i.e.,
on [0, y∗], and has the same shape as in the case of a Dirac disruption in Corollary 2. In
particular, its rate of progressivity—that is, the rate at which the compensation’s average
and marginal rates fall with income—is equal to the ratio of elasticities of labor demand
and labor supply, εd/εr , net of the rate of progressivity p of the initial tax code.

Finally, the third term in (21) compensates for the cross-wage effects caused by skill
complementarities in production. It amounts to a uniform increase in average tax rates
at all income levels, above and beyond the partial-equilibrium compensation and the
progressive correction we just described. Again, this last element of the compensation
is similar to the corresponding term in Corollary 2.

The compensation for a disruption that affects an interior interval of skills, given
by (22), follows again from a similar logic, except that there are now two progressive
corrections due to own-wage effects, captured by the second and third terms on the
right-hand side: The former spreads tax cuts across workers y ≤ yL to compensate for
the sharp wage loss at income yL, while the latter has the opposite sign and compensates
for the sharp reversal at income yH .

Figure 3 shows this decomposition graphically for a uniform interval disruption
that affects workers in the income range yL = $20,000 and yH = $100,000, with corre-
sponding income losses shown in black. The left panel shows the partial-equilibrium
(dashed blue) and general-equilibrium (solid red) compensations. The right panel de-
composes the latter into its four components: the partial-equilibrium compensation
(dashed blue), the progressive corrections for the decreasing marginal product of labor
(solid and dotted curves), and the uniform correction for the cross-wage complemen-
tarities (dashed red).

Figure 4 constructs the compensation of smoothed-out versions of the same pertur-
bation. In the top panels, a smooth disruption hurts middle-class workers and peaks
at y∗ = $60,000. In the bottom panels, the disruption uniformly affects all workers with
earnings higher than $120,000. The top and bottom left panels depict the direct and to-
tal wage losses ŵE(y ) and 
̂E(y ), respectively. The black curves in the top and bottom
right panels show the corresponding gross earnings losses.

The key insights described in the previous sections carry over to these cases. First,
the compensation in partial equilibrium tracks the shape of the after-tax earnings losses
due to the exogenous disruption. These are represented by the dashed blue curves in
the top and bottom right panels. As before, a given percentage change in the wage
leads to more considerable earnings losses at higher income levels, although these
losses are dampened by the progressivity of the initial tax code. In general equilib-
rium, the compensation—represented by the solid red curves in the top and bottom
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Figure 3. Compensation of an interval disruption: decomposition.

Figure 4. Interval disruptions and compensation.
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right panels—accounts for the additional wage adjustments induced by the disruption
and tax changes. The robust finding is that whenever the partial-equilibrium compen-
sation implies sharp changes in marginal tax rates and substantial unintended welfare
effects, the general-equilibrium forces smooth out such nonlinearities. They spread the
tax changes over all the lower income levels, as captured by the progressive terms in
(21) and (22). The top right panel of Figure 4 also shows that the general-equilibrium
compensation reduces the tax rates even for the indirectly affected, high-income work-
ers. This reflects the compensation for the general-equilibrium wage changes due to
cross-skill complementarities.

3.4 Robustness of the results

In this section, we evaluate the robustness of our results to the values of the labor supply
and demand elasticities, the shape of the baseline tax schedule, and the size of the ex-
ogenous disruption. Throughout this section, we focus on the middle-class disruption
studied in the top panel of Figure 4.

Behavioral elasticities The top left panel of Figure 5 displays the compensation for dif-
ferent values of the Frisch elasticity e ∈ {0.25, 0.33, 0.5}, otherwise keeping the same cal-
ibration as in the previous sections. The top right panel of Figure 5 plots the compen-
sation for various values of the income effect on labor supply, η ∈ {0, 0.25, 0.5}. While
the partial-equilibrium compensation is unaffected by these different behavioral elas-
ticities, the general-equilibrium compensation is sensitive to the values of e and η. Re-
call from Lemma 2 that income effects increase the welfare cost of raising an individ-
ual’s total tax liability: They make the agents work more, which reduces their wage. As
a result, higher income effects move the general-equilibrium compensation closer to
the partial-equilibrium one. Moreover, the endogenous wage adjustments are driven
by the magnitude of the labor supply responses to tax and wage changes, which are
in turn determined by the Frisch elasticity. Accordingly, the compensation in general
equilibrium is closer to the partial-equilibrium compensation for smaller values of e.
The bottom panel of Figure 5 displays the compensations for different labor demand
elasticities εd ∈ {0.5, 1.5, 2.5, ∞}. This exercise shows that the magnitude of general-
equilibrium effects plays a critical role for the compensation of the middle-class disrup-
tion. A smaller value of εd implies stronger own- and cross-wage effects, lowering the
middle class’s compensation and raising the tax cuts for higher incomes. Conversely, as
εd grows larger, the compensation converges to the partial-equilibrium case (εd = ∞).

Baseline tax schedule In our previous simulations, we assumed that the initial tax
schedule had a constant rate of tax progressivity (CRP). This may be unrealistic for at
least two reasons: The phasing out of low-income transfers may lead to high marginal
tax rates at the bottom (rather than negative tax rates in the case of a CRP tax code), and
the tax rates converge to a value lower than 100% at the top. We now evaluate (17) for
alternative tax codes. To illustrate the impact of these two features, we use the optimal
Mirrlees tax schedule (in partial or general equilibrium) as the baseline tax code. As is
well known, the optimal tax schedule has high marginal tax rates at the bottom, and the
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Figure 5. Robustness to the behavioral elasticities.

tax rate at the top is bounded away from 1, with an overall U-shape for the marginal
tax rates. Figure 6 plots the compensation of the middle-class disruption studied above.
The left panel (resp., right panel) shows the compensation in partial equilibrium (resp.,
general equilibrium) for these alternative baseline tax schemes. The shape of the com-
pensating tax reform is qualitatively robust to the initial tax scheme: it always follows the
shape of the disruption in dollar values. However, the size of the compensation is sen-
sitive to the preexisting tax rates. The CRP tax scheme has the lowest marginal tax rates
in the depicted income range and, hence, the highest retention rates. Accordingly, the
tax cuts are largest in this case. In contrast, the tax changes under the optimal Mirrlees
tax schedules are substantially smaller. The optimal tax schedule in general equilibrium
features lower marginal tax rates and, hence, higher retention rates than the Mirrlees
optimum in partial equilibrium, so that the compensation under the former tax code
is slightly closer to that obtained under a CRP tax scheme. Properly accounting for the
schedule of marginal tax rates in the preexisting economy is therefore important for the
design of the welfare compensation.
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Figure 6. Robustness to the baseline tax schedule.

Large disruptions A key assumption we have made throughout this paper is that the
disruption is marginal. In other words, our compensation scheme only compensates
for the first-order effects of a disruption of the wage distribution. A natural question
is whether appropriately scaling up our compensating tax reform accurately compen-
sates workers against a large disruption in a given direction. We study this question in
Figure 7. Again, we consider the middle-class disruption studied above, but contrast a
1% with a 5% wage shock in that direction (solid versus dashed curves). The figure dis-
plays the utility changes, expressed as a percentage of pre-tax income, that result from
the correspondingly scaled-up compensations in partial equilibrium (blue curves in the
left panel) and in general equilibrium (red curves in the right panel).20 That is, a value

Figure 7. Robustness to the size of the disruption.

20The figures depict the actual utility gains and losses of the disruption and the compensation, that is,

μÛi (scaled by income); these are proportional to the size of the disruption μ and are, consequently, larger
for the 5% disruption than for the 1% disruption. However, when we compare the utility losses between
disruptions, we report the values of the unweighted utility changes Ûi, so that the compensation does not
get mechanically more accurate as μ→ 0.
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of −0.01 means that the utility loss is equal to 1% of income. We compare these util-
ity changes to those we would obtain in the absence of compensation (purple curves in
both panels). For the 1% disruption, the compensation approach performs very well:
It offsets almost exactly (at least 95.8% of) the utility losses from the disruption.21 For
the 5% disruption, the compensation is no longer exact, but still offsets at least 78% of
the utility losses in general equilibrium and at least 97.3% of the losses of those workers
whose utility after compensation remains strictly lower than in the initial economy. For
a very large disruption of 10% of initial wages (not represented in the figure), our tax re-
form still offsets at least 53.6% of the utility losses from the disruption, and at least 87.4%
of the losses of the workers who remain worse off than in the initial equilibrium.

3.5 Empirical application: Robots

In this section, we show how our theoretical results can be implemented in an empirical
application: compensating for the welfare consequences of robotization in the United
States. Using the 1990 and 2007 U.S. Census data, Acemoglu and Restrepo (2020) have
estimated the impact of one additional robot per thousand workers22 on wages, em-
ployment, and hours worked. These estimates are obtained by comparing people in the
same skill cell, but who reside in commuting zones with different exposure to robots.
They include both the direct effects of robots on employment and wages, and any indi-
rect spillover effects that might arise because of a resulting decline in local demand; in
other words, they estimate the total disruption 
̂E rather than the direct impact ŵE .

The left panel of Figure 8 plots the wage disruption, i.e., the percentage change in
the wage, along the baseline earnings distribution, as well as the standard errors. We
use panel A in Figure 10 of Acemoglu and Restrepo (2020) to calculate the impact of
robots throughout the income distribution. Since the effects are only calculated for
the 5th, 10th, � � � , and 95th wage percentiles, we use a linear extrapolation to estimate
the disruption for the entire wage distribution and keep constant the disruption for all
workers above the 95th percentile. The figure shows that, for the bottom and middle per-
centiles, the change in wages is increasing with the agent’s position in the income dis-
tribution. At the top, wages start to decline again. The wage of the 10th wage percentile
in 1990 was reduced by 0.76%, while the 85th percentile experienced an estimated in-
crease in their wage of 0.06%. The wage at the 90th percentile declines by 0.05%. The
solid black curve in the right panel of Figure 8 gives the corresponding changes in annual
income.

In the right panel of Figure 8, we plot the compensating tax reform (dashed blue
curve) obtained in the partial-equilibrium environment (11). (We use the same baseline
calibration as in Section 3.1.) The partial-equilibrium compensation tracks one-for-one
the shape of the income gains and losses (solid black curve), correcting only for the fact

21The value 95.8% is computed as (1 minus) the maximum value of the ratio of utility changes (in ab-
solute value) without versus with compensation. Note that some adversely impacted workers realize a net
utility gain after the compensation. If we exclude these workers, the remaining utility losses represent less
than 0.6% of the losses due to the disruption.

22This corresponds to the increase in robots observed in the United States between 1990 and 2007.
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Figure 8. Robots disruption and compensation.

that the initial tax schedule is progressive so that gross income changes differ from net
income changes. Workers in the 10th income percentile ($9500 per year) have their tax
bill reduced by $73 (i.e., 101% of their income loss), while in the 85th income percentile
($74,500 per year) they face a tax increase of $33 per year (i.e., 74% of their income gain).

The solid red curve in the right panel of Figure 8 plots the compensation in general
equilibrium. Up to an income of $80,000, the wage losses of the disruption are declining
with income. The compensation is achieved by smoothing-out the tax changes: Middle-
class workers face tax cuts that are smaller than their income losses. They are made
indifferent by the joint effects of reduced total tax liabilities and higher marginal tax
rates. This front-loading avoids the steep decline in marginal tax rates at low and mid-
dle incomes that the partial-equilibrium compensation would create. Symmetrically,
the compensation in the upper regions of the income distribution is flatter than the dis-
ruption. Moreover, in general equilibrium, the decline in marginal tax rates resulting
from the shape of the disruption reduces the welfare of these workers. The compensa-
tion therefore lowers their total tax payments (red curve) strictly more than in partial
equilibrium (dashed blue curve).

Quantitatively, a low-income worker in the 10th percentile (whose annual income
is $9500) now receives a compensation of $70 (97% of the income loss). At the same
time, a high-income worker in the 85th percentile (whose annual income is $75,500)
also experiences a tax cut of $58 (−132% of the income gain). The average tax payment
of the low-income (resp., high-income) worker declines by 0.7 percentage points (resp.,
0.08 percentage points), versus 0.8 percentage points (resp., 0.04 percentage points) in
partial equilibrium.23 The disruption and the compensation generate a fiscal deficit
(−$145 in partial and general equilibrium), which is only partly due to the disruption
itself, whose fiscal cost without compensation is −$47.

23Recall that these numbers are for one additional robot per thousand workers. The compensation
should be scaled accordingly when more robots are introduced.
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4. Discussion

4.1 Comparison with optimal taxation

The compensation and optimal tax approaches address conceptually different ques-
tions. The optimal taxation problem starts by positing a social welfare—typically
weighted utilitarian—objective and proceeds by characterizing the tax schedule that
maximizes this objective subject to a government budget constraint. In response to a
given disruption, this approach would compare the optimal tax-and-transfer system be-
fore and after the disruption, keeping the social welfare function fixed, and infer how
the optimal tax rates should be adjusted; for an illustration of this exercise in a similar
setting as this paper, see, e.g., Ales, Kurnaz, and Sleet (2015). An important alternative
approach, explored by Werning (2007), Bierbrauer and Boyer (2014), Lorenz and Sachs
(2016), Scheuer and Werning (2017), Bierbrauer, Boyer, and Hansen (2020), avoids taking
an explicit stand on the social welfare objective and characterizes the set of Pareto effi-
cient tax systems instead. That is, the goal is to provide bounds on tax rates below which
any redistribution necessarily entails winners and losers; in response to a disruption,
the boundary of this Pareto set adjusts.

The compensation problem studied in this paper contrasts with and complements
both of these alternatives. It places constraints on the realized, individual-level utility
gains and losses rather than on the fiscal surplus functional. On the one hand, the main
benefit of our approach is that, as in the latter set of papers, it relies only on the Pareto
principle: We do not need to choose a social welfare function or make interpersonal
comparisons of welfare. Yet, as the optimum approach, it pins down a unique tax reform
in response to a disruption rather than a set of possible reforms. A practical advantage
of our solution is that the policy response to an economic disruption is given by a reform
of the actual (e.g., U.S.) tax schedule rather than a fictitious, optimal one that was not
implemented in the first place.24 On the other hand, the main drawback of our approach
is that it is silent about how to redistribute the resulting fiscal surplus or deficit if any.

Figure 9 illustrates how the policy prescriptions of the optimum and the compen-
sation approaches differ, employing a concrete example. Consider the interval disrup-
tion studied in Section 3.3 that reduces middle-class workers’ wages (top panel of Fig-
ure 4). To make the comparison between both approaches transparent, suppose that
the tax schedule in the initial (undisrupted) economy is the Rawlsian optimum.25 The
solid red curve in the left panel depicts the compensating tax reform. The dashed blue
curve plots the change in tax payments required to implement the new Rawlsian opti-
mum, i.e., the optimum associated with the perturbed wage distribution.26 While both
tax reforms cut the tax liabilities of the most adversely affected (middle-class) workers,
the optimum approach responds much more sensitively to the disruption and involves
large tax hikes (resp., cuts) at the bottom (resp., top) of the income distribution. The re-

24The compensation formula also depends on sufficient statistics (endogenous elasticities and income
distribution) estimated with current data rather than evaluated at the optimum—unobserved—tax system.

25The rest of the calibration is the same as in Sections 3.1–3.3.
26We construct the figure by backing out the changes in the exogenous labor productivity parameters of

the CES production function that rationalize the wage disruption.
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Figure 9. Compensation approach versus optimum approach.

sulting utility gains and losses, depicted in the right panel of Figure 9, reflect the shape
of these reforms: While the compensation does not induce any welfare changes—up
to small approximation errors—by construction (solid red curve), the Rawlsian optimal
reform causes large welfare losses among low- and high-income workers, and large wel-
fare gains for the middle class. Notice that the compensating tax reform generates a
fiscal deficit of −$161 since everyone faces wage losses. To facilitate the comparison be-
tween the two approaches, the dotted line in the left panel plots a uniform upward shift
of the tax payments that restores the budget balance. The corresponding utility losses
in the right panel are also uniform since we assumed a quasilinear utility function.27

The preceding discussion naturally raises the question of how to redistribute the fis-
cal surplus or allocate the burden of higher taxes if the compensation leads to a fiscal
deficit. In the latter case, this question becomes particularly important because, oth-
erwise, the compensation is not feasible. One possibility, of course, would consist of
choosing a social welfare function and optimally redistributing the net surplus (whether
positive or negative) according to this objective. However, there would then be little
benefit to using the compensation rather than the optimum approach to begin with.
However, we can also let the policy-maker redistribute the surplus or allocate the losses
according to other, not necessarily explicit, objectives. For instance, the redistribution
depicted by the dotted curves of Figure 9, which equalizes the welfare losses from the
disruption across the population, can be rationalized as the maximization of some un-
derlying social welfare function. However, this social welfare function does not need to
be known ex ante, let alone specified analytically, to implement this redistributive ob-
jective. In the same vein, the compensation approach allows a policy-maker to design
redistributive schemes that respond to various political economy considerations in re-
sponse to the disruption, for instance, ensuring that the welfare of a given coalition that

27Note that the y-axis of Figure 9 gives the absolute utility gains and losses (in dollars, since preferences
are quasilinear in consumption). In contrast, Figure 7 represents these utility changes as a percentage of
the worker’s initial income.
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amounts to half of the electorate improves.28 Rather than specifying a social welfare ob-
jective ex ante without knowing a priori how to distribute the resulting utility gains and
losses, our approach directly targets the ex post levels of welfare gains and losses across
the income distribution. This allows us to achieve specific objectives that the standard
approach would find more challenging to handle.

Finally, even though we think that the shape of the compensating tax reform is inter-
esting in its own right—it has recently been a particularly salient policy question—one
can also view our paper in a more positive (as opposed to normative) light. The fiscal
surplus defines a relevant notion of aggregate welfare gains or losses of a disruption,
e.g., a measure of the “gains from trade” (or gains from automation, etc.) that accounts
for the distortionary nature of redistributive tax instruments and does not rely on the
choice of a social welfare function. In this light, our paper generalizes the analysis of
Hendren (2020) to the case where taxes have general-equilibrium effects.

4.2 Directions for future research

Our analysis abstracts from several important dimensions that we view as fruitful di-
rections for future research. First, throughout most of our analysis, we have focused on
marginal disruptions. Our formulas are thus well suited for compensating the impact of,
say, the progressive introduction of robots into the economy (see Section 3.5), less so for
the impact of a large one-time event such as the “China shock.” A systematic analysis of
the compensation for large disruptions would require accounting for the second- and
higher-order effects of tax changes on labor supply, wages, and welfare.

Second, our analysis does not allow for multidimensional worker heterogeneity. In
particular, the disruptions we consider do not have heterogeneous effects conditional
on income. A one-dimensional income tax instrument would no longer be able to com-
pensate for such multidimensional shocks. We can easily add “tags” and implement tax
reforms that target specific sectors (say), as long as there is no endogenous switching
between sectors. However, in its full generality, the multidimensional compensation
problem would require richer policy instruments.

Third, we also ignored the dynamic effects that an economic disruption and its com-
pensation may cause. For instance, the literature on optimal taxation highlights the
importance of incorporating the endogenous accumulation of human capital. An eco-
nomic disruption, e.g., caused by automation, may alter the incentives for workers to
obtain higher education. At the same time, the compensation of low-income house-
holds may disincentivize them from acquiring human capital if they anticipate tax re-
lief. The level of compensation we derived in our static setting is a first step toward
understanding the design of tax changes over the life cycle or over time. Andersen and
Bhattacharya (2017, 2020), Andersen, Bhattacharya, and Liu (2020), and, more recently,
Dávila and Schaab (2021), who extend the generalized marginal social welfare weights

28In a similar vein, Scheuer and Wolitzky (2016) characterize optimal capital taxes under the constraint
that a policy must attract the support of a large enough coalition of citizens to be sustainable. Bierbrauer,
Boyer, and Peichl (2021) study a set of reforms of a status quo tax schedule that are able to gather majority
support.
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approach of Saez and Stantcheva (2016) to dynamic environments, provide useful steps
in these directions.

Conclusion

The classic policy question of compensating winners and losers from an economic dis-
ruption becomes quite involved when the environment features distortionary taxes and
general-equilibrium responses. At the same time, both of these considerations are im-
portant in many applied and policy settings (e.g., to compensate for the adverse effects
of technical change). We derive and analyze a general closed-form formula for the de-
sign of the welfare-compensating tax reform and its impact on the government budget.
This equation is straightforward to implement in practical applications.

Appendix

Definition of the perturbed equilibrium. After a disruption and a tax reform, the
perturbed indirect utility of agent i is given by

Ũi = ui
[
w̃il̃i − T (w̃il̃i ) −μT̂ (w̃il̃i ), l̃i

]
, (23)

where the equilibrium labor supplies l̃i = li(1 +μl̂i ) and wages w̃i =wi(1 +μŵEi +μŵi )
are defined by the perturbed first-order condition

−u
′
i,l

[
w̃il̃i − T (w̃il̃i ) −μT̂ (w̃il̃i ), l̃i

]
u′
i,c

[
w̃il̃i − T (w̃il̃i ) −μT̂ (w̃il̃i ), l̃i

] = [
1 − T ′(w̃il̃i ) −μT̂ ′(w̃il̃i )

]
w̃i (24)

and the perturbed wage equation

w̃i = F̃ ′
i

({
Lj(1 +μl̂j )

}
j∈[0,1]

)
. (25)

The perturbed government revenue is given by

R̃ =
∫ 1

0

[
T (w̃il̃i ) +μT̂ (w̃il̃i )

]
di. (26)

Proof of (6). The change in utility of agent i in response to the disruption and tax re-
form is given by

μÛi ≡ Ũi −Ui = ui
[
w̃il̃i − T (w̃il̃i ) −μT̂ (w̃il̃i ), l̃i

] − ui
[
wili − T (wili ), li

]
,

where w̃i =wi(1 +μŵEi +μŵi ) and l̃i = li(1 +μl̂i ). A first-order Taylor expansion of this
equation around the initial equilibrium (as μ→ 0) yields

Ũi −Ui = μ
[(

1 − T ′(yi )
)(
yil̂i + yiŵEi + yiŵi

) − T̂ (yi )
]
u′
i,c +μlil̂iu′

i,l + o(μ). (27)

However, the first-order condition (2), or the envelope theorem, implies (1 −
T ′(yi ))yil̂iu′

i,c + lil̂iu′
i,l = 0. We thus obtain (6).
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Proof of (7). The perturbed first-order condition of agent i in response to the disrup-
tion and tax reform is given by

0 = [
1 − T ′(w̃il̃i ) −μT̂ ′(w̃il̃i )

]
w̃iu

′
i,c

[
w̃il̃i − T (w̃il̃i ) −μT̂ (w̃il̃i ), l̃i

]
+ u′

i,l

[
w̃il̃i − T (w̃il̃i ) −μT̂ (w̃il̃i ), l̃i

]
.

A first-order Taylor expansion of this equation around the initial equilibrium (as μ→ 0)
gives

0 = [(
1 − T ′(yi )

)2
w2
i u

′′
i,cc + 2

(
1 − T ′(yi )

)
wiu

′′
i,cl + u′′

i,ll −w2
i T

′′(yi )u′
i,c

]
lil̂i

+ [(
1 − T ′(yi )

)2
wiliu

′′
i,cc + (

1 − T ′(yi )
)
liu

′′
i,cl +

(
1 − T ′(yi ) −wiliT ′′(yi )

)
u′
i,c

]
×wi

(
ŵEi + ŵi

)
−wiu′

i,cT̂
′(yi ) − [(

1 − T ′(yi )
)
wiu

′′
i,cc + u′′

i,cl

]
T̂ (yi ).

The Hicksian (compensated) labor supply elasticity eri and the income effect parameter
eni are, respectively, equal to (see, e.g., Saez (2001, p. 227))

eri =
u′
i,l

li(
u′
i,l

u′
i,c

)2

u′′
i,cc − 2

(
u′
i,l

u′
i,c

)
u′′
i,cl + u′′

i,ll

,

eni =

(
u′
i,l

u′
i,c

)2

u′′
i,cc −

(
u′
i,l

u′
i,c

)
u′′
i,cl(

u′
i,l

u′
i,c

)2

u′′
i,cc − 2

(
u′
i,l

u′
i,c

)
u′′
i,cl + u′′

i,ll

.

(28)

Solving the previous equation for l̂i then implies

l̂i =
(
1 −p(yi )

)
eri − eni

1 +p(yi )e
r
i

(
ŵEi + ŵi

)

− eri
1 +p(yi )e

r
i

T̂ ′(yi )
1 − T ′(yi )

+ eni
1 +p(yi )e

r
i

T̂ (yi )(
1 − T ′(yi )

)
yi

.

Using the definitions of the elasticities along the nonlinear budget constraint εri , ε
n
i , εwi

leads to (7).

Proof of (9). Consider an exogenous disruption μF̂E of the production function and
a tax reform μT̂ , with μ> 0. The corresponding wage disruption is defined by

ŵEi = ∂F̂E

∂Li

(
{Lj }j∈[0,1]

)
.
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Denote by μŵi and μl̂i the first-order endogenous percentage changes as μ→ 0 in the
wage and labor supply of type i, and let w̃i = wi(1 + μŵEi + μŵi ) and l̃i = li(1 + μl̂i ). In
the perturbed equilibrium, the wage is equal to the marginal product of the labor of the
corresponding type:

w̃i =
∂
[
F +μF̂E]
∂Li

({
Lj(1 +μl̂j )

}
j∈[0,1]

)
.

The Gateaux derivative of the wage functional is given by

ŵi ≡ lim
μ→0

1
μwi

[
w̃i −wi −μŵEi

]

= lim
μ→0

1
μwi

{
∂
[
F +μF̂E]
∂Li

({
Lj(1 +μl̂j )

}
j∈[0,1]

)

− ∂F
∂Li

(
{Lj }j∈[0,1]

) −μ∂F̂
E

∂Li

(
{Lj }j∈[0,1]

)}
.

This expression is equal to

ŵi = 1
wi

∫ 1

0
l̂jLj

∂2F(L)
∂Li∂Lj

dj.

The own-wage (or inverse labor demand) and cross-wage elasticities are defined by

Lj

wi

∂wi
∂Lj

≡ γij − 1

εdj
δ(j − i)

for all i, j. In particular, when the production function is CES, the cross-wage elasticities
are given by, for i 
= j,

Lj

wi

∂2F(L)
∂Li∂Lj

= Lj

wi

∂

∂Lj

{
θiL

−1/εd

i

[∫ 1

0
θjL

1−1/εd

j dj

] 1
εd−1

}

= 1

εd

θjL
1−1/εd

j∫ 1

0
θkL

1−1/εd

k dk

= 1

εd
wjLj

F(L)
≡ γj ,

and the own-wage elasticities by

Li
wi

∂2F(L)

∂L2
i

= Li
wi

∂

∂Li

{
θiL

−1/εd

i

[∫ 1

0
θjL

1−1/εd

j dj

] 1
εd−1

}

= γi − 1

εd
1
wi
θiL

−1/εd

i

[∫ 1

0
θjL

1−1/εd

j dj

] 1
εd−1

δ(0) = γi − 1

εd
δ(0).
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Substituting into the formula for ŵi leads to

ŵi =
∫ 1

0
l̂j

{
γij − 1

εdj
δ(j − i)

}
dj,

which leads to (9).

Proof of (10). The effect of the wage disruption and the corresponding compensating
tax reform on government budget is given by

R̂= lim
μ→0

1
μ

{∫ 1

0

[
T (w̃il̃i ) +μT̂ (w̃il̃i )

]
di−

∫ 1

0
T (wili )di

}
.

A first-order Taylor expansion around the initial equilibrium easily leads to (10).

Proof of Lemma 1. This lemma follows from Sachs, Tsyvinski, and Werquin (2020); for
completeness, we give its proof here. Substituting for ŵi into (7) using (9) leads to

l̂i =φil̂Ei +φiεwi
∫ 1

0
γij l̂j dj, (29)

where we let φi = 1
1+εwi /εdi

and

l̂Ei = εwi ŵEi − εri
T̂ ′(yi )

1 − T ′(yi )
+ εni

T̂ (yi )(
1 − T ′(yi )

)
yi

. (30)

This is a Fredholm integral equation in {l̂i}i∈[0,1]. To solve for the labor supply changes
for a general production function, substitute for l̂j in the integral to obtain

l̂i = φil̂
E
i +φiεwi

∫ 1

0
γij

[
φjl̂

E
j +φjεwj

∫ 1

0
γjkl̂k dk

]
dj

=
[
φil̂

E
i +φiεwi

∫ 1

0
γijφj l̂

E
j dj

]
+φiεwi

∫ 1

0

[∫ 1

0
γikφkε

w
kγkj dk

]
l̂j dj

≡
[
φil̂

E
i +φiεwi

∫ 1

0
γijφj l̂

E
j dj

]
+φiεwi

∫ 1

0
	(1)
ij l̂j dj,

where 	(0)
ij = γij and 	(1)

ij = ∫ 1
0 	

(0)
ik φkε

w
kγkj dk. By induction, it is easy to show that, for

allN ≥ 0,

l̂i =
[
φil̂

E
i +φiεwi

∫ 1

0

{
N∑
n=0

	(n)
ij

}
φjl̂

E
j dj

]
+φiεwi

∫ 1

0
	(N+1)
ij l̂j dj,

where, for all n≥ 0, 	(n+1)
ij = ∫ 1

0 	
(n)
ik φkε

w
kγkj dk. The condition

∫ 1
0

∫ 1
0 |φiεwi γij |2 didj < 1

ensures that the series
∑N
n=0 	

(n)
ij converges as N → ∞. This implies (13). Note that we
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can write the endogenous wage changes as

ŵi = φi

εdi

[
−εwi ŵEi + εri

T̂ ′(yi )
1 − T ′(yi )

− εni
T̂ (yi )(

1 − T ′(yi )
)
yi

]

+φi
∫ 1

0
	ijφj

[
εwj ŵ

E
j − εrj

T̂ ′(yj )

1 − T ′(yj )
+ εnj

T̂ (yj )(
1 − T ′(yj )

)
yj

]
dj, (31)

which follows from (7) and (13). Finally, if the initial production function is CES, the
cross-wage elasticities γij depend only on j. Multiplying both sides of (29) by γi and
integrating from 0 to 1 then leads to∫ 1

0
γil̂i di =

∫ 1

0
γiφil̂

E
i di+

(∫ 1

0
γiφiε

w
i di

)(∫ 1

0
γjl̂j dj

)

=

∫ 1

0
γiφil̂

E
i di

1 −
∫ 1

0
γiφiε

w
i di

.

Substituting this expression into (29) yields

l̂i =φil̂Ei +φiεwi
∫ 1

0
	jφjl̂

E
j dj,

where 	j ≡ γj/(1 − ∫ 1
0 γkφkε

w
k dk). Using the expression of the cross-wage elasticities

γk = yk/(εdEy ), we can write 1 − ∫ 1
0 γkφkε

w
k dk = ∫ 1

0 (yk/Ey )(1 − φkε
w
k /ε

d )dk. Using

φk = 1/(1 + εwk /εd ) finally gives 	j = γj/(
∫ 1

0 φkyk/Ey dk).

Proof of Lemma 2. Substitute for ŵEi + ŵi in (6) using (7) to get

T̂ (yi ) = 1
εwi

(
1 − T ′(yi )

)
yil̂i + εri

εwi
yiT̂

′(yi ) − εni
εwi
T̂ (yi ).

Using the expression we derived above for l̂i leads to

T̂ (yi ) =
[

1
εwi

(
1 − T ′(yi )

)
yiφil̂

E
i + εri

εwi
yiT̂

′(yi ) − εni
εwi
T̂ (yi )

]

+ (
1 − T ′(yi )

)
yiφi

∫ 1

0
	ijφj l̂

E
j dj.

Replacing the partial-equilibrium labor supply changes l̂Ei with their expression (30) al-
lows us to rewrite this equation as

T̂ (yi ) = (
1 − T ′(yi )

)
yiφi

[
ŵEi +

∫ 1

0
	ijφjε

w
j ŵ

E
j dj

]

+ εri /ε
d
i

1 + εwi /εdi
yiT̂

′(yi ) − εni /ε
d
i

1 + εwi /εdi
T̂ (yi )
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− (
1 − T ′(yi )

)
yiφi

∫ 1

0
	ijφj

[
εrj

T̂ ′(yj )

1 − T ′(yj )
− εnj

T̂ (yj )(
1 − T ′(yj )

)
yj

]
dj.

This leads to (14). Rearranging and summing over all agents leads to

∫ 1

0

T̂ (yi )
1 − T ′(yi )

=
∫ 1

0
yi
̂

E
i di+

∫ 1

0

φi

εdi
yi

[
εri

T̂ ′(yi )
1 − T ′(yi )

− εni
T̂ (yi )(

1 − T ′(yi )
)
yi

]
di

−
∫ 1

0
φiyi�i di.

The last integral in this expression can be rewritten as

∫ 1

0
φiyi�i di=

∫ 1

0

{∫ 1

0
φiyi	ij di

}
φj

[
εrj

T̂ ′(yj )

1 − T ′(yj )
− εnj

T̂ (yj )(
1 − T ′(yj )

)
yj

]
dj.

An application of Euler’s homogeneous function theorem (see Lemma 2, (24) in Sachs,
Tsyvinski, and Werquin (2020)) implies that

∫ 1
0 φiyi	ij di = (1/εdj )yj . We thus obtain

E[T̂ (yi )/(1 − T ′(yi ))] = E[yi
̂Ei ].

Proof of Proposition 1. Equation (11) is a special case of (14) obtained by setting
	ij = 0 and letting εd → ∞. Using this formula for the compensating tax reform in partial
equilibrium along with ŵi = 0, the fiscal surplus (10) can be expressed as

R̂=
∫ 1

0

[
ŵEi + T ′(yi )l̂i

]
yi di.

Differentiate T̂ (y ) with respect to y in (11) to obtain the marginal tax rates of the com-
pensating tax reform. Letting y ′

i ≡ dyi/di, we obtain

T̂ ′(yi ) = 1

y ′
i

[
−y ′

iT
′′(yi )yiŵEi + (

1 − T ′(yi )
)
y ′
iŵ
E
i + (

1 − T ′(yi )
)
yi
dŵEi
di

]
.

Using p(yi ) = yiT ′′(yi )/(1 − T ′(yi )), we can thus write

l̂i = εwi ŵEi − εri
[(

1 −p(yi )
)
ŵEi + yi

y ′
i

dŵEi
di

]
+ εni ŵEi = −εri

yi

y ′
i

dŵEi
di

,

where we used the fact that εwi = (1 −p(yi ))εri − εni . Substituting into the above expres-
sion for R̂ and changing variables from skills to incomes leads to (12).

Proof of Proposition 2. Since there is a one-to-one map between skills i and in-
comes yi, we can change variables to express the ODE (14) in terms of incomes. We
obtain

T̂ ′(y ) −
(

1 −p(y ) + εdy

εry

)
T̂ (y )
y

= −(
1 − T ′(y )

)εdy
εry

A(y ),
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where we used 1/(φiεri /ε
d
i ) = 1 −p(yi ) + (εdi − εni )/εri and where

A(y ) ≡ φ−1
y 
̂

E(y ) +
∫ ȳ

y
	y,zφz

[
−εrz

T̂ ′(z)
1 − T ′(z)

+ εnz
T̂ (z)(

1 − T ′(z)
)
z

]
dz

= φ−1
y 
̂

E(y ) +�(y ),

with


̂E(y ) =φyŵE(y ) +φy
∫ ȳ

y
	y,zφzε

w
z ŵ

E(y )dz.

We can solve this equation as a first-order ODE. The general solution to the homoge-
neous equation is given by

T̂H(y ) = Ce−
∫ ȳ
y (1−p(z)+ εdz

εrz
) dzz = C

(
1 − T ′(y )

)
y(

1 − T ′(ȳ )
)
ȳ
e
− ∫ ȳ

y
εdz
εrz

dz
z ,

where C is a constant and where the second equality uses the fact that p(z)/z =
T ′′(z)/(1 − T ′(z)), so that

∫ y
x (1 − p(z))dz/z = log[((1 − T ′(y ))y )/((1 − T ′(x))x)]. Using

the method of variation of the parameter, we find a particular solution of the form

T̂P (y ) = C(y )

(
1 − T ′(y )

)
y(

1 − T ′(ȳ )
)
ȳ
e
− ∫ ȳ

y
εdz
εrz

dz
z ,

where the function C(y ) satisfies

C(y )(
1 − T ′(ȳ )

)
ȳ

=
∫ ȳ

y

εdx
εrx
e

∫ ȳ
x
εdz
εrz

dz
z A(x)

dx

x
.

The general solution to (14) is thus equal to

T̂ (y ) = (
1 − T ′(y )

)
y

∫ ȳ

y
�(y, x)A(x)dx+C

(
1 − T ′(y )

)
y(

1 − T ′(ȳ )
)
ȳ
e
− ∫ ȳ

y
εdz
εrz

dz
z ,

where�(y, x) = (εdx/ε
r
xx)e−

∫ x
y (εdz /ε

r
z )dz/z . If the initial tax schedule is Pareto efficient, the

tax reform should be T̂ (·) = 0 in the absence of a disruption (
̂E(·) = 0). (Note that as
ȳ → ∞, the last term in the previous expression converges to zero for any value of C.)

If the production function is CES, 	y,z does not depend on y and, hence, �(y ) is

equal to a constant � ∈ R. To find �, recall that E[T̂ (y )/(1 −T ′(y ))] = E[y
̂E(y )]. Substi-
tuting the solution to the ODE into this condition (setting C = 0) yields

�=
E

[
y
̂E(y )

] −E

[
y

∫ ȳ

y
�(y, x)φ−1

x 
̂
E(x)dx

]

E

[
y

∫ ȳ

y
�(y, x)dx

] .
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For a general production function, we can use the ODE and insert its solution into the
definition of the auxiliary function A(·) to rewrite it as

A(y ) = φ−1
y 
̂

E(y ) −
∫ ȳ

y
	y,zφz

[(
εwz + εdz

) T̂ (z)(
1 − T ′(z)

)
z

− εdzA(z)

]
dz

= φ−1
y 
̂

E(y ) +
∫ ȳ

y
	y,zφzε

d
zA(z)dz−

∫ ȳ

y
	y,zε

d
z

[∫ ȳ

z
�(z, x)A(x)dx

]
dz,

where the second equality usesφz(εwz +εdz ) = εdz . Inverting the order of the two integrals
in the last line implies that this expression can be rewritten as

A(y ) =φ−1
y 
̂

E(y ) +
∫ ȳ

y

[
	y,zφzε

d
z −

∫ z

y
�(x, z)	y,xε

d
x dx

]
A(z)dz.

However, this is a standard linear Fredholm integral equation, with kernel equal toK(0)
y,z ,

where

K(0)
y,z ≡ 	y,zε

d
zφz −

∫ z

y
�(x, z)	y,xε

d
x dx.

Assume that ∫
[y, ȳ]2

∣∣K(0)
y,z

∣∣2
dy dz < 1,

which ensures the convergence of the series
∑∞
n=0K

(n)
y,z defined below. Following steps

analogous to the proof of Lemma 1, we get

A(y ) =φ−1
y 
̂

E(y ) +
∫ ȳ

y

{ ∞∑
n=0

K(n)
y,z

}
φ−1
z 
̂

E(z)dz,

with K(n)
y,z = ∫ ȳ

y K
(n−1)
y,x K(0)

x,z dx for all n. Inverting the integrals one more time leads to

∫ ȳ

y
K(0)
y,zφ

−1
z 
̂

E(z)dz

=
∫ ȳ

y
	y,zε

d
z 
̂

E(z)dz−
∫ ȳ

y
	y,zε

d
z

[∫ ȳ

z
�(z, x)φ−1

x 
̂
E(x)dx

]
dz

≡
∫ ȳ

y
λ(0)(y, z)dz,

where we denote

λ(0)(y, z) = 	y,zε
d
z

[
φz

(
φ−1
z 
̂

E(z)
) −

∫ ȳ

z
�(z, x)

(
φ−1
x 
̂

E(x)
)
dx

]
.
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Now, for any n≥ 1, we can write

∫ ȳ

y
K(n)
y,z

[
φ−1
z 
̂

E(z)
]
dz =

∫ ȳ

y
K(n−1)
y,x

[∫ ȳ

y
K(0)
x,zφ

−1
z 
̂

E(z)dz
]
dx

=
∫ ȳ

y
K(n−1)
y,z

[∫ ȳ

y
λ(0)(z, x)dx

]
dz,

so that

∞∑
n=0

{∫ ȳ

y
K(n)
y,zφ

−1
z 
̂

E(z)dz
}

=
∫ ȳ

y
λ(0)(y, z)dz+

∞∑
n=1

{∫ ȳ

y
K(n−1)
y,z

[∫ ȳ

y
λ(0)(z, x)dx

]
dz

}

=�(1)(y ) +
∞∑
n=0

{∫ ȳ

y
K(n)
y,z�

(1)(z)dz
}

,

where we denote

�(1)(y ) ≡
∫ ȳ

y
λ(0)(y, z)dz

=
∫ ȳ

y
	y,zε

d
z

[
φz

(
φ−1
z 
̂

E(z)
) −

∫ ȳ

z
�(z, x)

(
φ−1
x 
̂

E(x)
)
dx

]
dz.

By induction, repeating the above steps for n≥ 2 leads to

∞∑
n=0

{∫ ȳ

y
K(n)
y,zφ

−1
z 
̂

E(z)dz
}

=
N∑
n=1

�(n)(y ) +
∞∑
n=0

{∫ ȳ

y
K(n)
y,z�

(N )(z)dz
}

for allN , where, for all n≥ 2,

�(n)(y ) =
∫ ȳ

y
K(0)
y,z�

(n−1)(z)dz

=
∫ ȳ

y
	y,zε

d
z

[
φz�

(n−1)(z) −
∫ ȳ

z
�(z, x)�(n−1)(x)dx

]
dz.

Assuming that the series converges asN → ∞, we finally obtain

A(y ) =φ−1
y 
̂

E(y ) +
∞∑
n=1

�(n)(y ).
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For completeness, let us compute�(z) from the series representation when the pro-
duction is CES. In this case, recall that 	y,z = 1/(εdE[yφy ])zf (z), so that

�(1)(y ) ≡ 1
E[yφy ]

∫ ȳ

y
z

[
φz

(
φ−1
z 
̂

E(z)
) −

∫ ȳ

z
�(z, x)

(
φ−1
x 
̂

E(x)
)
dx

]
f (z)dz

= 1
E[yφy ]

E
[
z
̂E(z)

] −
E

[
z

∫ ȳ

z
�(z, x)

(
φ−1
x 
̂

E(x)
)
dx

]
E[yφy ]

.

Note that�(1)(y ) ≡�(1) is a constant that does not depend on y. By induction, assuming
that �(n−1)(z) is a constant, we get, for any n≥ 2,

�(n)(y ) = 1
E[yφy ]

∫ ȳ

y
z

[
φz�

(n−1) −
∫ ȳ

z
�(z, x)�(n−1) dx

]
f (z)dz

= �(n−1)
E[yφy ] −E

[
z

∫ ȳ

z
�(z, x)dx

]
E[yφy ]

,

which is a constant. We thus obtain

∞∑
n=1

�(n) =
E

[
z
̂E(z)

] −E

[
z

∫ ȳ

z
�(z, x)

(
φ−1
x 
̂

E(x)
)
dx

]
E[yφy ]

+
∞∑
n=2

(
1 −

E

[
z

∫ ȳ

z
�(z, x)dx

]
E[yφy ]

)
�(n−1).

Solving for �≡ ∑∞
n=1�

(n) leads to

∞∑
n=1

�(n) =
E

[
z
̂E(z)

] −E

[
z

∫ ȳ

z
�(z, x)

(
φ−1
x 
̂

E(x)
)
dx

]

E

[
z

∫ ȳ

z
�(z, x)dx

] ,

which is indeed the expression we found above.
We finally compute the fiscal surplus (10). Substituting for l̂i using (7) and for ŵEi +ŵi

using (6) in this expression, we can write

R̂=
∫ 1

0
T̂ (yi )di−

∫ 1

0
T ′(yi )yi

[
εri

T̂ ′(yi )
1 − T ′(yi )

− (
1 + εwi + εni

) T̂ (yi )(
1 − T ′(yi )

)
yi

]
di.

The ODE (14) can be rewritten as

T̂ ′(yi )
1 − T ′(yi )

=
(

1 −p(yi ) + εdi
εri

)
T̂ (yi )(

1 − T ′(yi )
)
yi

− εdi
εri
φ−1
i 
̂

E
i − εdi

εri
�i.
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Using this equation to substitute for T̂ ′(yi ) in the fiscal surplus expression yields

R̂=
∫ 1

0

[
1 + (

1 − εdi
) T ′(yi )

1 − T ′(yi )

]
T̂ (yi )di+

∫ 1

0
T ′(yi )yiεdi

[
φ−1
i 
̂

E
i +�i

]
di.

Using the relationship E[T̂ (y )/(1−T ′(y ))] = E[y
̂Ey ] allows us to rewrite the first integral

on the right-hand side as
∫ 1

0 yi
̂
E
i di−

∫ 1
0 T

′(yi )/(1−T ′(yi ))εdi T̂ (yi )di. Using the solution
for T̂ leads to

R̂ =
∫ 1

0
yi
̂

E
i di

+
∫ 1

0
T ′(yi )yiεdi

{[
φ−1
i 
̂

E
i +�i

] −
∫ ȳ

yi

�(yi, yj )
[
φ−1
j 
̂

E
j +�(yj )

]
dyj

}
di.

Changing variables from skills to incomes and integrating the last term by parts, letting
X(z) ≡φ−1

z 
̂
E(z) +�(z), leads to

R̂ = E
[
y
̂E(y )

] −E

[
T ′(y )y

(∫ y

y

εdy

εdz
�(y, z)εrzzX

′(z)dz
)]

+E
[
T ′(y )yεdy e

− ∫ y
y

εdx
εrxx

dx]
X(y ).

If the ratio εdx/ε
r
x is constant, then the last term in this expression is proportional to

ȳ−εd/εr and converges to zero as ȳ → ∞. This holds more generally as long as εdy /ε
r
y is

bounded away from zero, since in this case 0< e−
∫ y
y (εdx/ε

r
x )dx/x → 0 as ȳ → ∞.

Proof of Corollary 1. Suppose that the production function is CES, the tax schedule
is CRP, and the labor supply elasticities are constant. Consider a uniform wage disrup-
tion, i.e., ŵE(y ) = ŵE ∀y ∈ [y, y]. The partial-equilibrium compensation reads

T̂PE(y ) = (
1 − T ′(y )

)
yŵE

T̂ ′
PE(y ) = (

1 − T ′(y )
)
(1 −p)ŵE .

The general-equilibrium wage disruption—absent any compensation—is given by


̂Ei =φi

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ŵEi +

∫ 1

0
φjε

w
j γjŵ

E
j dj∫ 1

0
φj
yj

Ey
dj

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=φŵE +φε
w

εd
ŵE = ŵE ,

where the last equality follows from φεw/εd = 1 −φ. The ODE (14) thus simplifies to

ŵE =
(

1 +φε
n

εd

)
T̂ (yi )(

1 − T ′(yi )
)
yi

−φε
r

εd
T̂ ′(yi )

1 − T ′(yi )

+φ
∫ 1

0

yj

Ey

[
εr

εd
T̂ ′(yj )

1 − T ′(yj )
− εn

εd
T̂ (yj )(

1 − T ′(yj )
)
yj

]
dj.
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Plugging in the partial-equilibrium compensation in the right-hand side leads to(
1 +φε

n

εd

)
ŵE −φε

r

εd
(1 −p)ŵE +φ

∫ 1

0

yj

Ey

[
εr

εd
(1 −p)ŵE − εn

εd
ŵE

]
dj = ŵE .

Therefore, T̂PE satisfies (14).

Proof of Corollary 2. Under Assumption 1, we have

�(y, z) = εd

εr
yε

d/εr

zε
d/εr+1

and 	ij =φ−1γij , with φ−1 = 1 + εw/εd and γij = (1/εd )yj/E[y], or

γ(yi, yj ) = 1

εd
yjf (yj )
E[y]

.

Thus, we get


̂E(y ) =φŵE(y ) + (1 −φ)
E

[
yŵE(y )

]
E[y]

and, as ȳ → ∞,

�= −ε
d/εr

E[y]
E

[∫ ∞

y

(
y

x

)εd/εr+1

ŵE(x)dx
]

+
(

1 − εw

εd

)
E

[
yŵE(y )

]
E[y]

.

Substituting these expressions into formula (17), we obtain that the compensation is
given by

T̂ (y )(
1 − T ′(y )

)
y

=
∫ ∞

y
�(y, z)ŵE(z)dz+

E
[
zŵE(z)

] −E

[
z

∫ ∞

z
�(z, x)ŵE(x)dx

]
E[z]

. (32)

It is easy to check that
∫ ∞
y �(y, z)dz = 1, so that T̂ (y )/((1 − T ′(y ))y ) = 1 for a uniform

disruption ŵE(·) = 1. For a Dirac disruption ŵE(y ) = −δ(y − y∗ ), we get

T̂ (y )(
1 − T ′(y )

)
y

= −
∫ ∞

y
�(y, z)δ(z− y∗ )dz−

E
[
zδ(z− y∗ )

] −E

[
z

∫ ∞

z
�(z, x)δ(x− y∗ )dx

]
E[z]

= −�(y, y∗ )I{y≤y∗} − 1
E[z]

[
y∗f (y∗ ) − εd

εr

∫
z≤y∗

(
z

y∗

)1+εd/εr
f (z)dz

]
.

In particular, as εd → ∞, the second term in this expression (in square brackets) con-
verges to 0, and the first term converges to 0 for all y < y∗ and to −∞ for y = y∗; we thus
recover the partial-equilibrium compensation.
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Proof of Corollary 3. Applying the compensating tax reform (32) to the disruption
ŵE(y ) ≡ −I{y≥y∗} leads to

T̂ (y )(
1 − T ′(y )

)
y

= −
[∫ ∞

y
�(y, z)dz

]
I{y≥y∗} −

[∫ ∞

y∗
�(y, z)

]
I{y≤y∗}

−
E[zI{z≥y∗}] −E

[
z

(∫ ∞

y∗
�(z, x)dx

)
I{z≤y∗} + z

(∫ ∞

z
�(z, x)dx

)
I{z≥y∗}

]
E[z]

= −I{y≥y∗} −
(
y

y∗

)εd/εr
I{y≤y∗}

−
E[zI{z≥y∗}] −E

[
z

(
z

y∗

)εd/εr
I{z≤y∗} + zI{z≥y∗}

]
E[z]

,

which easily leads to formula (21). In particular, as εd → ∞, the second and third terms
in this expression converge to 0, leaving only the first term −I{y≥y∗}; we thus recover the
partial-equilibrium compensation.

Similarly, for the disruption ŵE(y ) ≡ −I{yL≤y≤yH }, we get

T̂ (y )(
1 − T ′(y )

)
y

= −
[∫ yH

yL

�(y, z)dz
]
I{y≤yL} −

[∫ yH

y
�(y, z)dz

]
I{yL≤y≤yH }

−
E[zI{yL≤z≤yH }] −E

[
z

{(∫ yH

yL

�(z, x)dx
)
I{z≤yL} +

(∫ yH

z
�(z, x)dx

)
I{yL≤z≤yH }

}]
E[z]

.

Straightforward algebra leads to

T̂ (y )(
1 − T ′(y )

)
y

=
((

y

yH

)εd/εr
−

(
y

yL

)εd/εr)
I{y≤yL} +

((
y

yH

)εd/εr
− 1

)
I{yL≤y≤yH }

+
E

[
z

((
z

yL

)εd/εr
−

(
z

yH

)εd/εr)
I{z≤yL} − z

(
z

yH

)εd/εr
I{yL≤z≤yH }

]
E[z]

,

which in turn yields formula (22). In particular, as εd → ∞, the first and third terms in
this expression converge to 0, and the second term converges to −I{yL≤y≤yH }; we thus
recover the partial-equilibrium compensation.
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