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We study a general class of consumption–savings problems with recursive prefer-
ences. We characterize the sign of the consumption response to arbitrary shocks
in terms of the product of two sufficient statistics: the elasticity of intertempo-
ral substitution (EIS) between contemporaneous consumption and continuation
utility, and the relative elasticity of the marginal value of wealth (REMV). Under
homotheticity, the REMV always equals 1, so the propensity of the agent to save
or “dis-save” is always signed by the relationship of the EIS with unity. We apply
our results to derive comparative statics in classical problems of portfolio allo-
cation, consumption–savings with income risk, and entrepreneurial investment.
Our results suggest empirical identification strategies for both the value of the EIS
and its relationship with unity.
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erences.
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1. Introduction

A growing body of theoretical literature assumes that investors have recursive prefer-
ences, particularly the constant relative risk aversion, constant elasticity of intertempo-
ral substitution specification studied in Epstein and Zin (1989) and Weil (1989). This
utility function allows two different parameters (relative risk aversion and elasticity of
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intertemporal substitution) to separately govern the attitude toward risky gambles and
the willingness to smooth consumption over time, which are mechanically linked for
additively separable constant relative risk aversion (CRRA) preferences.

In applied theoretical models with Epstein–Zin preferences and generalizations
thereof, there remains a considerable debate with respect to “reasonable” choices for the
elasticity of intertemporal substitution (EIS), which is conventionally defined in terms of
a comparative static: the percentage change in consumption growth induced by a 1 per-
cent increase in the rate of return on investment. This debate persists in part because
empirical estimates of EIS vary considerably from being larger than 1 to significantly
negative.1

This lack of consensus regarding the magnitude of EIS is troubling since the relation-
ship between EIS and unity plays a central role in affecting the dynamics of many the-
oretical models in both quantitative and qualitative terms. For example, in the Bansal
and Yaron (2004) long-run risk model, when EIS> 1, investors are willing to pay a pre-
mium to hedge against lower future economic growth rates. The wealth–consumption
ratio is pro-cyclical, the equity premium is high, and the risk-free rate is low and stable.
Setting EIS< 1 changes many basic intuitions for the model and often reverses each of
these properties.2 Moreover, Kaplan and Violante (2014) find that EIS > 1 is crucial for
getting households to hold large illiquid positions and thus to quantitatively match the
consumption response to tax rebates. Assuming EIS > 1 also has striking implications
for the response of asset prices to changes in uncertainty.3

This paper develops robust comparative statics for an investor’s optimal
consumption–savings decision in a general portfolio problem with recursive prefer-
ences over contemporaneous consumption and a certainty equivalence functional of
their continuation utility. We generalize the definition of EIS to this setting, where, in
contrast to the more conventional definition of EIS (and target estimand in the em-
pirical literature), our definition depends only on preferences and makes no specific
assumptions on budget constraints and investment opportunities. In the Epstein–Zin
case (which nests the standard CRRA expected-utility model), our definition always cor-
responds with the structural parameter. By contrast, the more conventional definition
may or may not correspond with the structural parameter depending on additional de-
tails of the budget constraint of the consumption–savings–investment problem.4 Our
specification allows for essentially unrestricted flexibility in risk tolerance, impatience,
willingness to substitute over time, ambiguity aversion, riskiness of returns, investment
opportunities, and both state and time variation in all of these factors.

1See Havranek, Horvath, Irsova, and Rusnak (2015) for a review.
2Similar changes occur to asset prices and quantity dynamics in production-based models (Kaltenbrun-

ner and Lochstoer (2010), Croce (2014)).
3In endowment economies, Bansal and Yaron (2004) and Barro (2009) find that asset prices fall in re-

sponse to increased volatility and disaster risk when EIS> 1, and rise otherwise. Drechsler and Yaron (2011)
and Di Tella (2017) argue that EIS> 1 is crucial for explaining the variance risk premium and balance sheet
recessions, respectively.

4For example, consumers may face hard borrowing constraints that bind with positive probability. This
induces a wedge in the consumption–savings problem that leads to a difference between the “standard”
measure of EIS and ours, even when preferences themselves are homothetic.
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We provide three main results, which establish a tight link between our general no-
tion of the EIS and the consumption responses to shocks to continuation values. First,
we show that the sign of the consumption response to shocks is characterized by the
relationship with unity of the product of two sufficient statistics: the EIS, capturing will-
ingness to substitute consumption over time; and the relative elasticity of the marginal
value of wealth (REMV), which is the ratio between the elasticity of the marginal value of
wealth and the elasticity of the value of wealth. This statistic captures the size of wealth
effects induced by the shock. Hence, consumption increases in response to a positive
shock to continuation values if and only if EIS × REMV ≤ 1.

Second, we show that if the agent’s preferences are homothetic, then the REMV is
identically equal to 1. Thus, the signs of consumption responses with homothetic pref-
erences are characterized precisely by the relationship of the EIS with unity.

Third, using techniques from the literature on monotone comparative statics (Mil-
grom and Shannon (1994)), we provide general sufficient conditions on the agent’s pref-
erences for any possible optimal consumption function to be globally increasing or de-
creasing with respect to arbitrary shifters of continuation utility. Our sufficient condi-
tion shows that if the product of suitably generalized global counterparts to the EIS and
REMV are always less than unity, then consumption is increasing in shifters that increase
continuation value.

The intuition for these results is best exemplified in a simple two-period setting with-
out risk, which forms the first section of the paper. Concretely, consider an agent choos-
ing whether to consume today or tomorrow in the presence of a risk-free asset that can
be freely traded. The sign of the consumption response to an increase in the risk-free
rate depends on two factors. First, if the interest rate increases, then the opportunity
cost of contemporaneous consumption increases, which induces the consumer to wish
to save more and increase continuation utility via a substitution effect. If continuation
utility is a gross substitute for consumption today (i.e., EIS> 1), then this effect pushes
the agent to substitute consumption today for more continuation utility. Conversely, if
continuation utility is a gross complement for consumption today (i.e., EIS < 1), then
greater continuation utility crowds in more consumption today. Second, if the agent
earns future endowment income, then the change in interest rates reduces the value of
his/her future endowment. This reduces the magnitude of the wealth effect induced
by changes in interest rates and makes the agent more predisposed to cut consump-
tion (i.e., REMV > 1). Thus, consumption falls under the less stringent condition that
EIS × REMV > 1. Our general results clarify that this simple intuition is fully general:
one need only work out the EIS and the REMV to sign consumption responses to any
shock.

We apply our results to understand how consumption responds to various shocks in
three applications: (i) portfolio allocation, (ii) consumption–savings with labor income
risk, and (iii) entrepreneurial investment. To operationalize our theoretical results, we
show in our three settings that continuation values are adversely affected by (i) increases
in risk aversion, reduced investment opportunities, lower returns to investment, riskier
returns to investment, diminished continuation value of consumption, and increased
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ambiguity aversion; (ii) lower labor income, increased income risk, and reduced op-
portunities to hedge income risk; (iii) less productive production technology, higher
rental rates for capital and labor, higher depreciation rates, riskier depreciation rates,
and higher capital tax rates. Thus, in each case, our general theoretical results can be
applied directly to show that consumption decreases in response to these changes if and
only if EIS×REMV ≤ 1. We moreover provide sufficient conditions for each environment
to be homothetic, in which case consumption decreases if and only if EIS ≤ 1.

Finally, we provide practical guidance on how to leverage these comparative stat-
ics to test whether EIS � 1. Concretely, by characterizing the sign of the consumption
response to shocks in terms of the relationship of the EIS with unity, we achieve sign-
identification of EIS − 1 by observing the sign of the consumption response to shocks.
Thus, our results may allow empirical researchers to exploit variations in multiple vari-
ables beyond risk-free returns to estimate the sign of EIS − 1 in a model-free manner
simply by observing whether an agent consumes more or less. This is important because
the standard estimand of the elasticity of the growth rate of consumption to risk-free
rates (the standard empirical measure of the EIS) need not coincide with the structural
definition of the EIS under realistic frictions, such as borrowing constraints. Moreover,
while these tests only partially identify EIS (i.e., its relationship with unity), with addi-
tional structural assumptions one can use our formulas for consumption responses to
point-identify EIS.

Related literature Some of the theoretical implications of the relationship between EIS
and unity have appeared in the literature. For example, working with CRRA preferences,
many classic papers have found that riskier environments increase or decrease savings
depending on whether relative risk aversion is greater or less than 1.5 Our results are
considerably more general as they place no parametric structure on the environment.
Moreover, by working with recursive preferences, we clarify that these results are driven
exclusively by EIS, not risk aversion, extending an intuition developed in Weil (1993) and
the approximate solutions of Campbell (1993) and Campbell, Giglio, Polk, and Turley
(2018).6 We allow for considerably more flexibility in how risk aversion, time discount-
ing, and even future EIS evolve over time, and also allow for preferences that incorporate
ambiguity aversion (as modeled in, e.g., Epstein and Schneider (2003), Hayashi (2005),
Hayashi and Miao (2011)), realistic life cycle features, and various kinds of investment
opportunities.

Our paper is also related to Epstein (1988), who studies the asset pricing implica-
tions of recursive preferences in a representative-agent endowment economy. He de-
rives comparative statics results, which depend on the magnitude of EIS relative to unity.
Our paper is different because we focus on the response of consumption behavior to ar-
bitrary shocks and impose much weaker restrictions, allowing for general recursive pref-
erences and stochastic processes. More recently, in independent work, Iachan, Nevov,

5See, for example, Phelps (1962, Section 6(ii)), Levhari and Srinivasan (1969, p. 161), Merton (1969,
p. 254), Sandmo (1970, p. 358), and Rothschild and Stiglitz (1971, p. 70).

6Weil (1993) considers an optimal consumption–savings problem with recursive preferences that exhibit
constant elasticity of intertemporal substitution (CEIS) and constant absolute risk aversion (CARA). The
relevant comparative statics appears in Section 2.5 of that paper, where he assumes income is independent
and identically distributed (IID).
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and Simsek (2021) show that expanding portfolio choice (which they refer to as finan-
cial innovation) increases savings if EIS is greater than 1. Our analysis is complemen-
tary since we put little structure on the model and consider many other types of com-
parative statics, whereas they focus on one channel but also study general equilibrium
implications. An advantage of the level of generality considered here is that, in addi-
tion to allowing for more flexibility than existing theoretical results, we can summarize
many key predictions about savings behavior with recursive preferences in a simple,
self-contained way that also has general implications for how applied researchers can
set- and point-identify EIS from different shocks in different settings.

Outline The paper proceeds as follows. Section 2 develops a simple two-period ex-
ample to illustrate our main results. Section 3 describes our general model and main
results. Section 4 applies our results to problems of portfolio allocation, consumption–
savings, and entrepreneurial investment. Section 5 describes the implications of these
results for identification and estimation of EIS. Section 6 concludes. Proofs are provided
in the Appendix.

2. EIS and consumption: A two-period example

To exemplify and build intuition for our definition of EIS and main comparative statics
results, we begin with a simple two-period example without uncertainty. Time is in-
dexed by t ∈ {1, 2}. The agent is endowed with et ∈ R+ units of the consumption good
in each period and can freely buy and sell a risk-free asset in period 1 with gross return
Rf ∈R++. Thus, the agent faces the lifetime budget constraint

c1 + c2

Rf
≤ e1 + e2

Rf
.

In period 2, if the agent consumes c2 ∈ R+, their utility is simply u2(c2 ) = c2. In pe-
riod 1, the agent has recursive preferences over period 1 consumption c ∈R+ and period
2 utility v ∈ R+ represented by the aggregator f (c, v). To avoid corner or multiple solu-
tions, we assume that f is twice continuously differentiable, strictly increasing in each
argument, strictly quasi-concave, and satisfies the Inada condition.

In this setting, we define the EIS of f as7

ψ= − d log(c/v)
d log(fc/fv )

, (1)

where fx = ∂f/∂x is the date 1 marginal utility of x ∈ {c, v}.8 The EIS captures the substi-
tutability between contemporaneous consumption and future utility. Indeed, under our

7The numerical value of EIS is invariant to a monotonic transformation of the utility function (aggrega-
tor). To see this, let g(c, v) = F(f (c, v)), where F is strictly increasing and differentiable. Then, by the chain
rule, we have gc = F ′fc and gv = F ′fv , so gc/gv = fc/fv .

8Since log(fc/fv ) is a function, not a variable, the notation (1) is not rigorous. Formally, given an arbitrary
point (c, v), let s = log(fc/fv ), and define c(s) and v(s) that jointly solve f (c(s), v(s)) = f (c, v). Then the EIS
at a particular point is ψ= − d log(c/v)

ds .
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assumption that the agent can trade a risk-free asset, the agent’s first-order condition for
optimal consumption implies that fc/fv =Rf . Thus, as v= c2, the EIS is equivalent to the
commonplace definition of the EIS as the elasticity of consumption growth to changes
in the risk-free rate:

ψ= −d log(c1/c2 )
d logRf

. (2)

Critically, our definition of the EIS in (1) depends solely on the agent’s preferences,
while (2) requires restrictions on investment opportunities and preferences that might
be violated in practice: (i) preferences could be nonhomothetic, i.e., utility might not
be a linear function of period 2 consumption or (ii) the household may face borrowing
constraints.

Our main theoretical results characterize the consumption response to arbitrary
shocks in terms of the agent’s EIS and the wealth effects induced by these shocks. To
parameterize such shocks in this example environment, suppose that the agent faces a
preference shifter ρ ∈R+ such that the agent’s time 1 utility is given by f (c, ρv). The fol-
lowing proposition characterizes how consumption in period 1 is affected by changes in
(i) the risk-free rate and (ii) the value of continuation utility.

Proposition 1. The sign of the consumption response to a change in continuation value
(at ρ= 1) is given by

sgn
(
∂c

∂ρ

)
= sgn(1 −ψ). (3)

Moreover, letting

ε= e1 − c+ e2/Rf

e1 − c ≥ 1,

the sign of the consumption response to a change in the risk-free rate is given by

sgn
(
∂c

∂Rf

)
= sgn(1 − εψ). (4)

Thus, the effect on consumption of a change in continuation values is exactly signed
by the relationship of the EIS with unity. In particular, if and only ifψ> 1, when continu-
ation values increase, consumption today decreases. Intuitively, whenψ> 1, the agent is
willing to substitute consumption today for the now relatively more valuable consump-
tion in the future. However, were ψ < 1, the agent would increase consumption today
because consumption today and consumption tomorrow are sufficiently complemen-
tary.

The response of consumption to changes in the interest rate depends on both the
EIS and the wealth effects that the change in interest rates induces. These wealth effects
are summarized by the ratio of lifetime wealth to contemporaneous wealth ε. When the
agent receives no additional wealth in the future, e2 = 0, this wealth effect is neutral,
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Figure 1. Response of consumption to Rf (or ρ) with Epstein–Zin preferences.

ε = 1, and the consumption response to an interest rate shock is signed by the rela-
tionship of the EIS with unity. However, when the agent receives wealth in the future,
an increase in Rf reduces the value of the agent’s endowment in period 1 as borrowing
forward that wealth to period 1 is more expensive. This causes the agent to experience
a negative wealth effect in period 1, which makes the agent more predisposed to cut
period 1 consumption. As a result, consumption now falls under the less stringent con-
dition that ψ > 1/ε. In our general model, ε is the REMV, which we previewed in the
Introduction and will shortly define formally.9

As a concrete example of the above discussion, consider the Epstein–Zin (or constant
elasticity of substitution (CES)) aggregator

f (c, ρv) = (
(1 −β)c1−1/ψ +β(ρv)1−1/ψ) 1

1−1/ψ ,

where 0<β< 1 is the discount factor. Using calculus (see Proposition 6 in Appendix A.7
for a general solution in a dynamic environment), we obtain

(c, ρv) =
(

(1 −β)ψ(e1 + e2/Rf )

(1 −β)ψ +βψ(ρRf )ψ−1 ,
βψ(ρRf )ψ(e1 + e2/Rf )

(1 −β)ψ +βψ(ρRf )ψ−1

)
.

Figure 1 plots the budget sets, indifference curves, and optimal consumption bundles
for different values of the interest rate (0%, 25%, and 50%) when e2 = 0 and β = 1/2.
Different columns correspond to different choices of EIS, ψ= 1/2, 1, 2.

In the middle panel, EIS equals 1 and the aggregator is Cobb–Douglas. Hence, the
agent spends a constant fraction of wealth on each good, so consumption is invariant
to Rf . When EIS is less than unity (left panel), consumption and continuation utility
are gross complements, so the agent consumes more of both goods. The opposite is the
case in the right panel, in which the two goods are gross substitutes as the EIS exceeds 1.

9For a proportional shock to continuation values, the REMV equals 1, which is why ε does not explicitly
appear in (3).
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Our main theoretical results generalize, to dynamic and stochastic environments
with much less structure, this basic insight that the consumption response to any shock
to continuation values is characterized by the relationship between the product of the
EIS and wealth effects (ε) with one. This allows us to derive comparative statics in appli-
cations and provide insight into strategies by which the EIS might be robustly estimated.

3. Model and main results

We now introduce our general framework and derive our main results relating the EIS
with consumption responses to shocks.

3.1 Model primitives

Time is discrete, finite, and indexed by t ∈ T = {0, 1, � � � , T }. All random variables are
defined with respect to a probability space (�, F , P ). A single agent has preferences
defined over random consumption plans {ct+s}T−t

s=0 for all t ∈ T that are constructed re-
cursively as follows. Terminal utility is UT = uT (cT ) for some uT : R+ → R+. Given a
random continuation utility Ut+1 ∈ U , the time t recursive utility is given by

Ut = ft
(
ct , Mt(Ut+1 )

)
,

where ft : R+ ×R+ → R+ is upper semicontinuous, and aggregates consumption and a
certainty equivalence functional of the distribution of the continuation value Mt : U →
R+.

Suppose that the agent has financial wealth wt ∈R++ at time t. The agent can invest
this wealth in portfolios θt ∈ 
t . When the agent invests w − c in portfolio θt , his/her
continuation wealth next period is the random variableWt+1(w−c, θt ). Define the value
function at date t given wealth w as Vt(w). By the principle of optimality and backward
induction, the value function is given by the Bellman equation

Vt(w) = sup
c∈[0,w],θt∈
t

ft
(
c, Mt

(
Vt+1

(
Wt+1(w− c, θt )

)))
.

To index our comparative statics, we parameterize the aggregation functional, the
continuation wealth function, and the subjective distribution over continuation val-
uations by a scalar parameter α ∈ [0, 1], and define the continuation value function
vt : R+ × [0, 1] →R+,

vt(w, α) = sup
θt∈
αt

Mα
t

(
V αt+1

(
W α
t+1(w, θt )

))
, (5)

with the normalization that vt(w, ·) is an increasing function for allw ∈ R+. Suppressing
time subscripts, we can express the consumption–savings problem of the agent as

sup
c∈[0,w]

f
(
c, v(w− c, α)

)
(6)

and define the pair E = (f , v) as an environment.
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Remark 1 (Dynamic Consistency and Finite Horizon Are Inessential). All of our theo-
retical results hold even if the agent does not expect to optimize from date t+ 1 onward.
That is, the agent may be time-inconsistent or even not necessarily in control of any fu-
ture decisions. In this setting, we can still define vt as in (5) with Vt+1 replaced by Ut+1

and our analysis follows as written. This also makes clear that the agent’s problem could
have an infinite horizon. As long as the agent’s value function exists, we can still study
the consumption–savings decision of the agent by studying (6).

Toward understanding the consumption response to shocks using local perturba-
tions, we define environments in which this approach is generally possible as (strongly)
regular.

Definition 1. The environment E = (f , v) is regular if the following conditions are
satisfied:

(i) The aggregator f is strictly increasing and twice continuously differentiable with
positive cross-partial derivative.

(ii) The continuation value function v is strictly increasing and twice continuously
differentiable.

If, in addition, the following condition is satisfied, then the environment is strongly reg-
ular :

(iii) All solutions to (6), c : R+ × [0, 1] →R+, are such that c(w, α) ∈ (0, w).

In Lemma 4 in Appendix B, we provide sufficient conditions in terms of primitives
{uT , (�, F , P ), {ft , Mt ,
t ,Wt }t∈T } such that the induced environments {(ft , vt )}t∈T are
strongly regular for almost all levels of wealth.

3.2 Main results: The EIS and consumption responses to shocks

Toward characterizing the consumption response to shocks, we first define the concepts
of both the EIS and the REMV. The EIS is the elasticity of substitution between current
consumption and future continuation value.

Definition 2 (Elasticity of Intertemporal Substitution). The EIS is

ψ= −
∂ log(c/v)

∂α
∂ log(fc/fv )

∂α

, (7)

where all partial derivatives are evaluated at c.

The REMV is the ratio between the elasticity of the marginal value of wealth with
respect to the shock and the elasticity of the value of wealth with respect to the shock.
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Definition 3 (Relative Elasticity of the Marginal Value of Wealth). The REMV is

ε=
∂ logvw
∂α

∂ logv
∂α

, (8)

where all partial derivatives are evaluated at c.

Intuitively, the REMV measures the impact of any wealth effects in the consumption
response to shocks, while the EIS measures substitution effects.

In strongly regular environments, the following result establishes a formula for the
consumption response to changes in the continuation value. It moreover shows, under
the benchmark condition that the continuation value of wealth is concave, that the sign
of the consumption response to a positive shock to continuation value is characterized
by the relationship of the product of the EIS and REMV with unity.

Theorem 1. If the environment (f , v) is strongly regular and vww ≤ 0, then

sgn
(
∂c

∂α

)
= sgn(1 − εψ). (9)

We prove this result by applying the implicit function theorem to the necessary first-
order condition for optimal consumption and reexpressing the resulting equation in
terms of the EIS and REMV. This yields the following formula for the consumption re-
sponse to shocks (which holds even when continuation value functions are not concave
in wealth):

(
1
c

+ vw

v
−ψvww

vw

)
cα = vα

v
(1 − εψ). (10)

It follows immediately from (10) that when the continuation value function is concave
in wealth, the consumption response is signed by 1 − REMV × EIS.

To understand the intuition behind this result, note that consumption increases in
response to increased continuation value if and only if εψ≤ 1. When wealth effects are
neutral (i.e., ε = 1), this reduces to the familiar condition that ψ ≤ 1 that simply asks
if consumption today and tomorrow are gross complements. If they are gross comple-
ments, then the gain in continuation utility from an increase in α induces additional
consumption today as the agent wishes to increase consumption today and utility to-
morrow in tandem.

However, in general, wealth effects through the REMV complicate this relationship.
If the marginal value of wealth increases proportionally more in response to the shock
to continuation values than the value of wealth, then ε > 1. In this case, the relative rise
in the marginal value of wealth makes saving more attractive. As a result, consumption
today and continuation value must now be sufficiently complementary to overcome this
wealth effect and consumption only increases today if ψ≤ 1/ε < 1.
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For a concrete example, consider the effects of changes on interest rates on con-
sumption in our simple two-period example. Observe that Proposition 1 is a special
case of Theorem 1 that sets v(w) =Rfw+ e2 and α=Rf . Since (4) and (9) are consistent
with one another, it follows that

ε= e1 − c+ e2/Rf

e1 − c
in the two-period example coincides precisely with our general definition of the REMV.
Intuitively, when e2 > 0 and the consumer is a saver (e1 − c > 0), we have ε > 1 and
wealth effects induced by changes in Rf are smaller relative to the case with e2 = 0. This
follows because the decrease in the present value of the endowment partially offsets the
benefits associated with saving at the higher interest rate.

Remark 2 (Consumption Responses to Discrete Changes in α). While it is expressed lo-
cally, Theorem 1 can also be used to provide robust comparative statics for consumption
responses to discrete changes in α. Concretely, suppose we want to know the consump-
tion response to a change in α from α0 to α1. If the environment is strongly regular, we
have that

c(w, α1 ) − c(w, α0 ) =
∫ α1

α0

cα(w, s) ds.

Thus, by substituting (10) into the integral, we have a formula for the discrete change.
Most importantly, when the continuation value function is concave in wealth (vww ≤ 0),
if we know the sign of the function 1 − ε(w, α)ψ(w, α) ≷ 0 for all α ∈ [α0, α1], then we
know that

∫ α1
α0
cα(w, s) ds ≷ 0 and, therefore, that c(w, α1 ) − c(w, α0 ) ≷ 0. Moreover, even

changes in objects with no obvious continuous counterpart can be parameterized in a
smooth way by α. Concretely, suppose that we want to understand the consumption
effect of transitioning from α0 to α1. We can always parameterize as

v(w, α) = α− α0

α1 − α0
v(w, α1 ) +

(
1 − α− α0

α1 − α0

)
v(w, α0 )

and apply the above formulas. Thus, the global relationship of the product of the EIS
and REMV with unity is sufficient to sign the consumption response to discrete shocks.

More broadly, even in cases where optimal consumption is not interior, while we
cannot characterize the response of consumption, we can still provide sufficient condi-
tions for globally monotone responses of consumption to α using techniques from the
literature on monotone comparative statics (Milgrom and Shannon (1994)). Indeed, un-
der only the hypotheses that f is twice continuously differentiable, v is continuously dif-
ferentiable, and vw is continuously differentiable in α, we obtain the following sufficient
condition for every possible optimal consumption function to be increasing in α.
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Theorem 2. Suppose the environment (f , v) is regular. If

vw

v
fc

f

⎛
⎜⎝
vwα

vw
vα

v

+ vfvv

fv

⎞
⎟⎠

(
fcvf

fcfv

)−1

< 1, (11)

then any optimal c is increasing in α. Under the reverse inequality, any optimal c is de-
creasing in α.

To understand condition (11), observe that consumption is increasing in α as long
as the left-hand side is bounded above by 1. The left-hand side is the product of three
terms. The first is the marginal value of wealth in units of the marginal value of con-
sumption, which indexes the value of wealth effects in consumption equivalent units.
The second is the sum of the REMV (now extended away from the optimum) and the cur-
vature of the aggregator in continuation value, which together index the size of wealth
effects. Thus, the first two terms represent the total wealth effect from global shocks to
α.

The third and final term is the inverse of the normalized complementarity of con-
sumption and continuation value for the aggregator, which indexes the substitutability
of consumption and continuation values. This mimics the role of the EIS, but does so
globally instead of just around the optimum. To see this, observe that when f (c, v) is of
the Epstein–Zin form in which the EIS is globally constant and equal to ψ, then

f (c, v) = (
(1 −β)c1−1/ψ +βv1−1/ψ) 1

1−1/ψ =⇒
(
fcv(c, v)f (c, v)
fc(c, v)fv(c, v)

)−1

≡ψ.

Hence, even away from the optimum where the EIS is defined, Theorem 2 provides an
analogous condition to that provided by Theorem 1: the product of wealth effects (rep-
resented by an extended REMV) and substitution effects (represented by an extended
EIS) must be less than unity for consumption to increase in response to a positive con-
tinuation value shock.

3.3 Consumption responses under homotheticity

So far we have seen how the consumption response to a shock to continuation values
depends on both the EIS and REMV. Therefore, to isolate the role of the EIS, it is illustra-
tive to consider environments in which the REMV is known to equal 1. The most natural
and commonly occurring such environments are those that are homothetic.

Definition 4. An environment (f , v) is homothetic if f is homogeneous of degree 1 and
v is a strictly increasing, linear function in wealth,10 i.e., v(w, α) = g(α)w with g(α)> 0.

10Corollary 1 will hold under a weaker notion of homotheticity wherein the continuation value function
is multiplicatively separable and concave in wealth, i.e., v(w, α) = g(α)h(w) with g(α)> 0 and h concave.
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Under homotheticity, we know that both (i) the continuation value function is con-
cave in wealth as it is linear (vww = 0) and (ii) the REMV is identically equal to unity
(ε= 1). Thus, in homothetic environments, the following corollary to Theorem 1 char-
acterizes the sign of the consumption response to continuation value shocks in terms of
the relationship of the EIS to unity.

Corollary 1. If the environment (f , v) is homothetic and strongly regular, then

sgn
(
∂c

∂α

)
= sgn(1 −ψ). (12)

The intuition for this result is, of course, that homotheticity makes wealth effects
neutral. To see this algebraically, observe that we can write the REMV under homoth-
eticity as

ε=
vwα

vw
vα

v

=
g′(α)
g(α)
g′(α)w
g(α)w

= 1. (13)

In homothetic environments, we can similarly simplify the sufficient condition from
Theorem 2 for the consumption function to be monotone in α.

Corollary 2. Suppose the environment (f , v) is homothetic and regular. If

1
w
fc

f

(
fcvf

fcfv

)−1

< 1,

then any optimal c is increasing in α. Under the reverse inequality, any optimal c is de-
creasing in α.

This result exploits the neutrality of wealth effects and homogeneity of the aggrega-
tor. Thus, under homotheticity, as long as the product of the marginal value of wealth in
consumption units and the extended notion of the EIS is less than 1, any optimal con-
sumption function is increasing. For practical purposes, this can be checked by verifying
the simpler condition

1
w

fv

fcv
< 1.

4. Applications

In this section, we apply our comparative statics results to study how consump-
tion responds to various shocks in three applications: portfolio allocation problems,
consumption–savings problems, and entrepreneurial investment problems.
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4.1 Risk, ambiguity, and investment

An investor is endowed with initial wealthw0 and receives no additional wealth in future
periods. Each period, he/she decides how to optimally invest his/her wealth wt . The set
of feasible portfolios at each time t is given by 
t . For each θ ∈ 
t , the random vari-
able Rt+1(θ) yields the gross return on invested wealth today. Thus, the total return on
invested wealth is given by wt+1 = Rt+1(θt )(wt − ct ). The agent’s intertemporal aggre-
gators are given by ft . We now consider how shocks in this setting affect consumption
and investment in environments with certainty equivalence functionals that feature the
potential for risk aversion and ambiguity aversion.

4.1.1 Risk To model risk aversion, we suppose that the certainty equivalence func-
tional is given by the standard quasi-arithmetic form

Mt(U ) =φ−1
t

(
Et

[
φt(U )

])
, (14)

where φt : R+ → R is a strictly increasing and concave function.
We study the following five comparative statics to the agent’s preferences and invest-

ment opportunities in this setting.

CS.1 Risk aversion increases: φt changes to φ̃t , where g = φ̃t ◦φ−1
t is increasing and

concave.

CS.2 The investment opportunity set shrinks: 
t changes to 
̃t ⊂
t .
CS.3 The portfolio returns become lower: {Rt+1(θ)}θ∈
t changes to {R̃t+1(θ)}θ∈
t ,

where Rt+1(θ) �FOSD R̃t+1(θ) for all θ ∈ 
t (where FOSD denotes first-order
stochastic dominance).

CS.4 The portfolio returns become riskier: {Rt+1(θ)}θ∈
t changes to {R̃t+1(θ)}θ∈
t ,
where Rt+1(θ) �SOSD R̃t+1(θ) for all θ ∈ 
t (where SOSD denotes second-order
stochastic dominance).

CS.5 Future consumption expenditure becomes less valuable: the aggregator shifts
from ft+1 to f̃t+1, where f̃t+1(c, v) = ft+1(c/g(c, v), v), where g(c, v) ≥ 1 for all
(c, v).

Proposition 2. Comparative statics CS.1–CS.3 and CS.5 lower the agent’s continuation
value function at all previous dates. If the agent’s value functions are concave, then com-
parative static CS.4 lowers the agent’s continuation value function at all previous dates.

Thus, we can parameterize CS.1–CS.5 by an arbitrary smooth transformation in-
dexed by α.11 It follows that when the environment is strongly regular, Theorem 1 imme-
diately implies that consumption decreases in response to any of these changes if and
only if εψ≤ 1.

11Recall by Remark 2 how this is possible even for discrete changes, such as changes in the investment
opportunity set.
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As before, these comparative statics are complicated by the presence of wealth ef-
fects through the REMV. However, under the following benchmark assumptions, the en-
vironment is homothetic and ε= 1.

Lemma 1. The induced environments {(ft , vt )}t∈T are homothetic if the following condi-
tions hold:

(i) The aggregators {ft }t∈T are weakly increasing, strictly quasi-concave, and homo-
geneous of degree 1.

(ii) The certainty equivalent is of the CRRA form:

φt(x) =

⎧⎪⎨
⎪⎩
x1−γt
1 − γt (γt > 0, γt �= 1),

logxt (γt = 1).

(iii) The sets of potential portfolios {
t }t∈T are compact and returns {Rt+1(θ)}θ∈
t ,t∈T
are bounded.

(iv) The terminal utility is proportional to consumption uT (c) = bT c for some random
variable bT > 0.

Thus, under these conditions, increases in risk aversion, decreased investment op-
portunities, lower and riskier returns, and lower future value to consumption all de-
crease consumption if and only if ψ≤ 1. As a concrete illustration, in Appendix A.7, we
leverage this result to provide an explicit solution for optimal consumption in the case
where the agent has Epstein–Zin preferences (Proposition 6).

Moreover, in Appendix A.7, we extend the environment in this section to allow for
stochastic death and (linear) bequest motives, and show that Lemma 1 continues to
hold (Remark 4). Moreover, adverse shocks to the value of bequests reduce continuation
value functions. Thus, the response of the agent to increased estate taxes is to decrease
contemporaneous consumption if and only if ψ≤ 1.

4.1.2 Ambiguity We now study the consumption response to ambiguity in situations
where a decision maker considers multiple prior distributions over the state. To model
such situations where the decision maker is ambiguity-averse, we follow the approach to
modeling ambiguity of Hayashi and Miao (2011) and Ju and Miao (2012), and consider
certainty equivalents of the form

Mt(U ) = ϕ−1
t

(
Eμt

[
ϕt

(
φ−1
t

(
Eπt

[
φt(U )

]))])
, (15)

where φt and ϕt capture risk aversion and ambiguity aversion, respectively. Here πt ∈
Pt is the subjective probability measure over the state space, and μt is the subjective
probability measure over the set of the underlying stochastic process Pt . When ϕt =φt ,
(15) reduces to (14), where the expectation is taken over μt ◦πt . If the agent is infinitely
ambiguity-averse, then (15) reduces to

Mt(U ) =φ−1
t

(
min
πt∈Pt

Eπt

[
φt(U )

])
,
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which is the classical multi-priors model introduced by Gilboa and Schmeidler (1989)
and generalized to the intertemporal setting (without the separation of EIS from risk
aversion) by Epstein and Schneider (2003) and (with the three-way separation between
EIS, risk aversion, and ambiguity aversion) by Hayashi (2005).

In these settings, we consider the following two comparative statics.

CS.6 The agent becomes more ambiguity-averse in the smooth environment: ϕt
changes to ϕ̃t , where g= ϕ̃t ◦ϕ−1

t is increasing and concave.

CS.7 The agent considers more prior distributions in the infinitely ambiguity-averse
environment: Pt changes to P̃t with P̃t ⊃ Pt .

Proposition 3. Comparative statics CS.6 and CS.7 lower the agent’s continuation value
function at all previous dates.

Thus, once again, we can parameterize these changes by a smooth transformation
indexed by α. When the environment is strongly regular, Theorem 1 again immediately
implies that consumption decreases in response to any of these changes if and only if
εψ≤ 1.

4.2 Consumption–savings problems with income risk

An agent facing a stochastic income stream and a borrowing constraint decides how
to optimally save. The agent’s income in each period yt is the product of a permanent
income component pt and an IID transitory income shock τt . Moreover, permanent
income evolves according to a geometric random walk with IID shocks ηt . The house-
hold can save its wealth in a variety of portfolios θ ∈
t that yield random gross returns
Rt+1(θ), which potentially allow for both hedging labor income risk and investing in
financial markets. The agent faces a borrowing constraint such that ct ≤wt .

The agent has quasi-arithmetic risk preferences with function φt , and aggregates
consumption and continuation values according to ft . The household’s terminal utility
function is linear in consumption uT (cT ) = bT cT for bT > 0.

In the terminal period, the household’s value function is VT (wT , pT ) = bTwT . In all
previous periods, the value function is defined recursively by

Vt(wt , pt ) = max
ct ,wt+1,θt∈
t

ft
(
ct , φ

−1
t

(
Et

[
φt

(
Vt+1(wt+1, pt+1 )

)]))
,

where

wt+1 =Rt+1(θt )(wt − ct ) + yt+1,

yt = ptτt ,
pt = pt−1ηt ,

ct ≤wt .
We study the following three comparative statics in this setting.
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CS.8 The agent’s permanent or transitory income falls: The distribution of τt , de-

noted by Fτt , or ηt , denoted by Fηt , becomes F̃τt or F̃ηt with Fτt �FOSD F̃τt or

Fηt �FOSD F̃ηt .

CS.9 The household’s investment or hedging opportunities shrink: 
t changes to


̃t ⊂
t .
CS.10 The agent’s income becomes riskier: The distribution of τt , denoted by Fτt , or

ηt , denoted by Fηt , becomes F̃τt or F̃ηt with Fτt �SOSD F̃τt or Fηt �SOSD F̃ηt .

Proposition 4. Comparative statics CS.8 and CS.9 lower the agent’s continuation value

function at all previous dates. When the agent’s value functions are concave, comparative

statics CS.10 lowers the agent’s continuation value function at all previous dates.

Thus, once more, we can parameterize these changes by a smooth transformation

indexed by α. When the environment is strongly regular, Theorem 1 again immediately

implies that consumption decreases in response to any of these changes if and only if

εψ≤ 1.

Of course, the REMV ε complicates the relationship between consumption re-

sponses to shocks and the EIS. For example, a reduction in hedging opportunities can

change the marginal values of permanent income and wealth through a precautionary

savings channel. Nevertheless, under benchmark assumptions, we can derive an exact

formula for the REMV.

Lemma 2. Suppose the agent’s aggregators {ft }t∈T are homogeneous of degree 1 and

his/her certainty equivalence functionals {Mt }t∈T are of the CRRA form. The REMV is

given by

ε=
1 + p

w

vp

vw

1 + p

w

vpα

vwα

. (16)

This expression makes clear that while the REMV complicates the relationship be-

tween consumption and the EIS, it does so precisely to the extent that permanent labor

income is relatively important to the household when compared to financial wealth. In-

deed, for households that have little permanent income relative to wealth (p/w≈ 0), (16)

implies ε≈ 1, and the consumption response is characterized by the relationship of the

EIS with unity. Indeed, structural estimates from Gourinchas and Parker (2002) suggest

that the behavior of older, high net worth households (a group that owns a large share

of total financial wealth overall) is primarily driven by life-cycle (bequest/retirement)

motives, rather than these precautionary concerns.
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4.3 Entrepreneurial investment

Understanding the consumption–savings behavior of entrepreneurs is critical to asset
pricing, as business owners are vastly over-represented at the top of the wealth distri-
bution (Smith, Yagan, Zidar, and Zwick (2019)). Moreover, unlike households in mod-
els with exogenous labor income, business owners’ earnings can plausibly respond to
changes in investment opportunities, a feature that can more easily preserve homo-
theticity of the problem and thus avoid some of the challenges posed by the REMV.
To illustrate this, this section considers an environment with an entrepreneur who de-
cides how much to produce, consume, and invest in both her own capital stock and
financial markets. Concretely, the agent has two investment opportunities: (i) invest-
ing at dollars in portfolios θ ∈ 
t of risky financial assets with (random) gross return
Rt+1(θ) = 1 + rt+1(θ) and (ii) purchasing capital kt at price Pkt , which is subject to pro-
ductivity (zt ) and stochastic depreciation (δt ) shocks.

The entrepreneur has access to the production technology

yt = ztgt(kt , lt ),

where gt is homogeneous of degree 1, lt is the number of efficiency units of labor hired
in a competitive labor market at wage νt per efficiency unit, and kt is the firm’s capital
stock, which evolves according to

kt = (1 − δt )kt−1 + it/Pkt .

Importantly, negative investment (i.e., liquidation of capital) is permitted.
Due to an unmodeled agency friction, the firm is only able to borrow bt ∈ [0,

λ(Pktkt )] one-period debt at rate 1 + rb,t+1 for some constant λ ∈ (0, 1) and is other-
wise unable to raise external sources of financing.12 Stochastic depreciation shocks are
uninsurable and hit before investment decisions are made, exposing the agent to id-
iosyncratic business-specific risk. Moreover, investment returns, profits, and changes in
the value of the capital stock are assumed to be taxed at a common capital tax rate τt .

Under these assumptions, the entrepreneur’s net worth evolves according to

wt+1 = at
(
1 + (1 − τt+1 )rt+1(θt )

) + {
(1 − τt+1 )Pk,t+1(1 − δt+1 ) + τt+1Pkt

}
kt

+ (1 − τt+1 )[yt+1 − νt+1lt+1] − bt(1 + (1 − τt+1 )rb,t+1],

where financial assets at and bt are both weakly positive and we assume that all returns
are bounded. In addition, the entrepreneur faces the simple budget constraint

wt − ct = Pktkt − bt + at , (17)

12We assume for simplicity that the distribution of δt and changes in capital prices ensure that Pk,t+1(1−
δt+1 ) − λPktRb,t+1 > 0 and debt is default-free. Relaxing this comes at the expense of additional notation
and assumptions about what happens in case of default, but simple extensions with defaultable debt pre-
serve the homogeneity in net worth.
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so net worth, after consumption, is split between a portfolio of financial assets or the
firm.13

The entrepreneur has CRRA preferences over risk,

Mt(U ) = (
Et

[
U1−γt ]) 1

1−γt ,

and the intertemporal aggregators {ft }t∈T are all weakly increasing, strictly quasi-
concave, and homogeneous of degree 1. These conditions ensure, in conjunction with
the constant returns to scale on the production side of the model, that the environments
faced by the entrepreneur are homothetic.

Lemma 3. The induced environments {(ft , vt )}t∈T are homothetic.

With these ingredients in hand, we study how entrepreneur consumption and sav-
ings respond to the following five comparative statics.

CS.11 The production technology becomes less productive: The distribution of zt ,
denoted by Fzt , becomes F̃zt with Fzt �FOSD F̃zt .

CS.12 Wage rates increase: The distribution of νt , denoted by Fνt , becomes F̃νt with
Fνt �FOSD F̃νt .

CS.13 Depreciation rates increase: The distribution of δt , denoted by Fδt , becomes
F̃δt with Fδt �FOSD F̃δt .

CS.14 Depreciation rates become riskier: Fδt becomes F̃δt with Fδt �SOSD F̃δt .

CS.15 The capital tax rate increases: τt becomes τ̃t with τ̃t ≥ τt .

Proposition 5. Comparative statics CS.11–CS.15 lower the agent’s continuation value
function at all previous dates.

Thus, as the environment is homothetic, it follows by Corollary 1 that consumption
decreases in response to any of these shocks if and only if ψ≤ 1. This result underscores
the critical role of the EIS (and its relationship with unity) in structural asset pricing
models with entrepreneurs (see, e.g., Di Tella (2017)).

5. Implications for identification and estimation of EIS

As we discussed in the Introduction, the relationship between the EIS and unity is criti-
cal for understanding various qualitative and quantitative properties of dynamic models

13Alternatively, we could consider the simpler environment where the entrepreneur rents the capital on
a period-by-period basis,

wt+1 = at
(
1 + (1 − τt+1 )rt+1(θt )

) + (1 − τt+1 )[yt+1 −φt+1lt+1 −φkt+1kt+1],

where φk,t is the rental rate of capital, but the right-hand side of the budget constraint is the same as (17)
except that kt = bt = 0. In this setting, increases in rental rates would also lower the agent’s continuation
value function.
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in both macroeconomics and finance. Moreover, there is no empirical consensus on the
value of the EIS. For example, Havranek et al. (2015) collect 2,735 estimates of EIS from
169 published studies and find that the mean and standard deviation of published esti-
mates of EIS from 33 articles in the top 5 economics journals are 0.5 and 1.4, respectively.

Our main theoretical results can be expressed in more statistical language as sign-
identifying REMV × EIS − 1 from the sign of consumption responses to exogenous
shocks. Under homotheticity, the sign of consumption responses sign-identifies EIS−1.
We can operationalize these theoretical results to provide a road map for applied re-
searchers to empirically estimate the sign of EIS − 1 and to point-identify the EIS under
stronger assumptions.

First, without additional structural assumptions, our results clarify that the compli-
cations posed by the REMV generally prevent identification of the EIS from consump-
tion responses alone. This observation by itself provides a window for understanding
why various empirical strategies may fail to recover the EIS, as either the shocks consid-
ered or populations of interest may have non-unit REMV. Thus, for this road map, we
suppose that the researcher is willing to assume that the agents’ problems are approxi-
mately homothetic.

Second, suppose that we have access to a data set of individuals indexed by i, po-
tentially with a panel dimension indexed by t, that includes data on consumption cit ,
total financial wealth wit , and some aggregate or idiosyncratic shifters of investment
opportunities or preferences αt and αit .

Third, we can use our theoretical results to derive the following formula for the EIS.

Corollary 3. Suppose that the environment is homothetic and strongly regular.14 If we
have a shifter x ∈ {αt , αit } of the marginal value of wealth git(αt , αit ), then

ψit = 1 −

∂ log
cit

wit − cit
∂x

∂ loggit
∂x

.

Corollary 3 suggests an instrumental-variables-like empirical strategy that is valid
for an arbitrary shifter of investment opportunities with the numerator ∂ log cit

wit−cit /∂x
representing the reduced form and the denominator ∂ loggit/∂x representing the first
stage.

Fourth, this strategy can be operationalized. If we are willing to assume that ψit de-
pends on some set of observable characteristics, one could estimate the reduced-form
elasticity ∂ log cit

wit−cit /∂x directly from the data within groups with the same (or suffi-
ciently similar) observables. If we can also estimate the magnitude of the first stage
∂ loggit/∂x, then EIS is point-identified. This could be achieved by finding shocks and
settings in which ∂ loggit/∂x is known or estimable. For example, within the setting of
our portfolio allocation application, in Appendix A.7 we provide a formula for g in terms
of the agent’s aggregator, their risk aversion, and the investment opportunities available

14Homotheticity is in the sense of Definition 4 and strong regularity is in the sense of Definition 1.
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to them. Under structural assumptions on these objects, ∂ loggit/∂x is obtainable and
point-identification can be achieved.

However, even when this is not feasible, the researcher can still sign-identifyψit−1 if
they are willing to assume the sign of ∂ loggit/∂x based on knowledge of the shock under
consideration. Concretely, suppose without loss of generality that ∂ loggit/∂x > 0. Then
we have that

sgn

⎛
⎜⎝
∂ log

cit
wit − cit
∂x

⎞
⎟⎠ = sgn(1 −ψit )

and the sign of the consumption response identifies the relationship of the EIS with
unity.

This strategy is, however, subject to the following two caveats. First, it relies on the
assumption that the REMV is known to equal 1. As a result, it is likely to be most applica-
ble to populations for which permanent income from human capital is relatively unim-
portant relative to financial wealth (in line with Lemma 2). Otherwise precautionary
savings motives may induce non-unit REMV and prevent identification. For example, if
changes in investment opportunities take place alongside changes in labor income risk
and permanent income is nonnegligible relative to financial wealth, then the REMV will
not equal 1. Consequently, this strategy is likely to apply to older and wealthier groups
of households—which make up the bulk of participants in financial markets—but may
struggle to identify the EIS for younger and poorer households.

Nevertheless, even when labor income risk makes the REMV non-unitary, we can
extend the above strategy to identify the value of EIS − 1 under certain conditions.
Lemma 2 implies that the REMV is greater than 1 if and only if the elasticity of the
marginal value of wealth exceeds the elasticity of the marginal value of permanent in-
come.15 Thus, if we observe a decrease in consumption in response to an adverse shock
to investment opportunities and we are willing to suppose the previous condition holds,
then we know that ψ ≤ 1/ε ≤ 1. Hence, a researcher can leverage his/her knowledge
of the shock under consideration (perhaps through the lens of a structural model) to
provide bounds on the REMV that allow set identification of the EIS from the sign of
consumption responses alone.

Second, households must actually perceive and act upon the shocks so that they are
relevant and the first stage is nonzero. If households are inattentive (or otherwise cog-
nitively constrained) or face large adjustment costs, it is possible that the shocks identi-
fied by the researcher may not influence household behavior, preventing identification.
There are at least two possibilities to overcome this limitation: the researcher could ver-
ify by a direct survey that a household is aware of the shock under consideration or they
could consider large shocks that are likely to have large costs to ignore.

15Mathematically speaking, Lemma 2 implies that ε≥ 1 ⇐⇒ 1 ≥ vpα/vp
vwα/vw

.
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6. Conclusion

In this paper, we study consumption–savings problems with general recursive prefer-
ences. We characterize the sign of the consumption responses to arbitrary shocks in
terms of whether the product of two sufficient statistics, the EIS and the REMV, is greater
or less than 1. In homothetic environments, the REMV is always 1, and the sign of con-
sumption responses is characterized solely by the relationship of the EIS with unity. This
allows us to derive a range of comparative statics in applications to portfolio allocation,
consumption–savings problems with income risk, and entrepreneurial investment.

In more empirical language, our results sign-identify EIS − 1 with the sign of the
consumption response to a variety of shocks under homotheticity. This is important for
two reasons. First, this relationship is critical for the qualitative and quantitative pre-
dictions of dynamic models in macroeconomics and finance as well as their normative
implications. Second, there is a large amount of uncertainty regarding this relationship
empirically. Finally, under additional structural assumptions, our formulae for the con-
sumption responses to shocks can be used to identify the EIS even when homotheticity
fails.

Appendix A: Omitted proofs

A.1 Proof of Proposition 1

The agent’s problem can be stated as

max
c,v∈R+

f (c, ρv) subject to v=Rf (e1 − c) + e2.

As we have assumed an Inada condition on f , we can ignore nonnegativity constraints.
The following first-order condition is therefore necessary for optimality:

fc
(
c, ρRf (e1 − c) + ρe2

) − ρRf fv
(
c, ρRf (e1 − c) + ρe2

) = 0.

Applying the implicit function theorem, we can compute

d log
(
c

v

)

dρ
=
∂c

∂ρ

c
−
Rf (e1 − c) + e2 −Rf ∂c

∂ρ

Rf (e1 − c) + e2
,

d log
(
fc

fv

)

dρ
= 1,

d log
(
c

v

)

dRf
=

∂c

∂Rf

c
−

−Rf ∂c
∂Rf

+ (e1 − c)

Rf (e1 − c) + e2
,

d log
(
fc

fv

)

dRf
= 1
Rf

.

Thus, by the definition of the EIS, rearranging yields
(

1
c

+ Rf

Rf (e1 − c) + e2

)
∂c

∂ρ
= 1 −ψ,

(
1
c

+ Rf

Rf (e1 − c) + e2

)
∂c

∂Rf
= 1
Rf

(
Rf (e1 − c)

Rf (e1 − c) + e2
−ψ

)
.

Substituting the definition of ε completes the proof.
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A.2 Proof of Theorem 1

By regularity, f and v are twice continuously differentiable. Moreover, [0, w] is compact.
Thus, by the extreme value theorem, we have that the maximum is attained and the
agent solves

max
c∈[0,w]

f
(
c, v(w− c, α)

)
. (18)

By strong regularity, c = c(w, α) ∈ (0, w). Thus, any optimal c solves the first-order con-
dition

fc
(
c, v(w− c, α)

) − vw(w− c, α)fv
(
c, v(w− c, α)

) = 0. (19)

Thus, suppressing all arguments, we can compute

d
dα

log
(
fc

fv

)
= d

dα
logvw = vwα − vwwcα

vw
, (20)

where all partial derivatives here exist by the hypothesis of strong regularity. In particu-
lar, the partial derivative of c with respect to α (which was not assumed to exist) obtains
by application of the implicit function theorem with respect to (19). We can, moreover,
compute

d
dα

log
(
c

v

)
= cα

c
− −vwcα + vα

v
. (21)

By (20), (21), and the definition of EIS in (7), we have

−ψ=
cα

c
− −vwcα + vα

v
vwα − vwwcα

vw

,

which is equivalent to

(
1
c

+ vw

v
−ψvww

vw

)
cα = vα

v

⎛
⎜⎝1 −

vwα

vw
vα

v

ψ

⎞
⎟⎠ = vα

v
(1 − εψ),

where the final equality follows by the definition of the REMV. The final claim that (9)
holds when vww ≤ 0 follows immediately by noting that vw ≥ 0 and ψ≥ 0.

A.3 Proof of Theorem 2

By regularity, the agent faces problem (18). Define the function f̃ (c, α) = f (c, v(w −
c, α)). The constraint set [0, w] is a lattice and does not depend on α. Furthermore,
α ∈ [0, 1], which is a totally ordered set. As c ∈ R+, f̃ is quasi-supermodular in c. Thus,
if f̃ satisfies the strict single-crossing property in (c, α), then by Theorem 4′ in Milgrom
and Shannon (1994), any optimal consumption function must be increasing in α. By the
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hypothesis of regularity, f̃ is twice continuously differentiable. Thus, the strict super-
modularity condition f̃cα > 0 is sufficient for the strict single-crossing property. Taking
partial derivatives, this can be expressed as

f̃cα = (fvc − fvvvw )vα − fvvαw > 0,

which is equivalent to

fcv >
vwα

vα
fv + vwfvv = vw

v

vwα

vw
vα

v

fv + vw

v
vfvv. (22)

If well defined, we can rewrite (22) as

1>
vw

v

⎛
⎜⎝
vwα

vw
vα

v

fv + vfvv

⎞
⎟⎠ f−1

cv = vw

v

⎛
⎜⎝
vwα

vw
vα

v

+ vfvv

fv

⎞
⎟⎠ fv

fcv

=
vw

v
fc

f

⎛
⎜⎝
vwα

vw
vα

v

+ vfvv

fv

⎞
⎟⎠ fcfv

fcvf
=
vw

v
fc

f

⎛
⎜⎝
vwα

vw
vα

v

+ vfvv

fv

⎞
⎟⎠

(
fcvf

fcfv

)−1

,

completing the proof.

A.4 Proof of Corollary 1

The consumption response is given by (10). As v(w) = g(α)w, we have that vw
v = 1

w−c ,
vα
v = gα

g > 0, vww = 0, and ε= 1. Thus,

(
1
c

+ 1
w− c

)
cα = gα

g
(1 −ψ) (23)

and (12) follows immediately by noting that gα, g > 0. To see that the generalization
noted in footnote 10 holds, observe that ε = 1 and vww ≤ 0. Thus, Theorem 1 implies
this extension immediately.

A.5 Proof of Corollary 2

By Theorem 2, we have that any possible consumption function is increasing in α if (11)
holds. Under homotheticity, by (13), we have that vwαvw /

vα
v = 1. Moreover, vwv = 1

w−c . Fur-
ther, by homogeneity (of degree 1) of the aggregator and Euler’s theorem, we have that
f = cfc + vfv. This implies that fvv = − c

v fcv. Substituting these observations yields

vw

v
fc

f

⎛
⎜⎝
vwα

vw
vα

v

+ vfvv

fv

⎞
⎟⎠

(
fcvf

fcfv

)−1

= 1
w− c

(
fc

f

)−1

⎛
⎜⎜⎝1 +

v

(
− c
v
fcv

)

fv

⎞
⎟⎟⎠

(
fcvf

fcfv

)−1
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= 1
w− c

(
1 − c fcv

fv

)(
fcv

fv

)−1

= 1
w− c

(
fv

fcv
− c

)
.

Hence, the sufficient condition (11) becomes

1
w− c

(
fv

fcv
− c

)
< 1.

Rewriting this yields

1>
1
w

fv

fcv
=

1
w
fc

f

fcfv

fcvf
=

1
w
fc

f

(
fcvf

fcfv

)−1

,

completing the proof.

A.6 Proof of Proposition 2

By definition, vt(w) = maxθ∈
t φ
−1
t (Et[φt(Vt+1(w′ ))]), with w′ =Rt+1(θ)w. We prove the

five comparative statics in turn.

(i) Risk aversion increases: φt changes to φ̃t , where g = φ̃t ◦ φ−1
t is increasing and

concave. We see that we can write

φ̃t
(
ṽt(w)

) = max
θt∈
t

Et
[
φ̃t

(
Vt+1

(
w′))] = max

θt∈
t
Et

[
g ◦φt

(
Vt+1

(
w′))]

≤ max
θt∈
t

g
(
Et

[
φt

(
Vt+1

(
w′))]) = g

(
max
θt∈
t

Et
[
φt

(
Vt+1

(
w′))])

= g ◦φt
(
vt(w)

) = φ̃t
(
vt(w)

)
,

where the inequality follows by Jensen’s inequality. This implies that ṽt(w) ≤
vt(w).

(ii) The investment opportunity set shrinks: 
t changes to 
̃t ⊂
t . We see that

ṽt(w) = max
θ∈
̃t

φ−1
t

(
Et

[
φt

(
Vt+1

(
w′))]) ≤ max

θ∈
t
φ−1
t

(
Et

[
φt

(
Vt+1

(
w′))]) = vt(w).

(iii) The portfolio returns become lower: {Rt+1(θ)}θ∈
t changes to {R̃t+1(θ)}θ∈
t ,
where Rt+1(θ) �FOSD R̃t+1(θ) for all θ ∈
t . We can write

φt
(
ṽt(w)

) = max
θ∈
t

Et
[
φt

(
Vt+1

(
R̃t+1(θ)w

))] = Et
[
φt

(
Vt+1

(
R̃t+1

(
θ̃∗)w))]

≤ Et
[
φt

(
Vt+1

(
Rt+1

(
θ̃∗)w))] ≤ max

θ∈
t
Et

[
φt

(
Vt+1

(
Rt+1(θ)w

))]

=φt
(
vt(w)

)
, (24)

where the first inequality follows as Rt+1(θ) �FOSD R̃t+1(θ) for all θ ∈ 
t , φt is
increasing, and Vt+1 is increasing in wealth, and the second inequality follows by
the definition of the maximum.
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(iv) The portfolio returns become riskier: {Rt+1(θ)}θ∈
t changes to {R̃t+1(θ)}θ∈
t ,
whereRt+1(θ) �SOSD R̃t+1(θ) for all θ ∈
t . This follows by exactly the same chain
of inequalities as (24), but where the first inequality follows as Rt+1(θ) �SOSD

R̃t+1(θ) for all θ ∈
t , φt is concave and Vt+1 is concave by hypothesis.

(v) Future consumption expenditure becomes less valuable: The aggregator shifts
from ft+1 to f̃t+1, where f̃t+1(c, v) = ft+1(c/g(c, v), v), where g(c, v) ≥ 1 for all
(c, v). We can write the period t + 1 value function as

Ṽt+1(w) = max
c∈[0,w]

f̃t+1
(
c, vt+1(w− c)

)

= max
c∈[0,w]

ft+1

(
c

g
(
c, vt+1(w− c)

) , vt+1(w− c)

)

= ft+1

(
c∗

g
(
c∗, vt+1

(
w− c∗)) , vt+1

(
w− c∗)

)

≤ ft+1
(
c∗, vt+1

(
w− c∗))

≤ max
c∈[0,w]

ft+1
(
c, vt+1(w− c)

) = Vt+1(w).

Thus, we have that

ṽt(w) = max
θ∈
t

φ−1
t

(
Et

[
φt

(
Ṽt+1

(
w′))]) ≤ max

θ∈
t
φ−1
t

(
Et

[
φt

(
Vt+1

(
w′))]) = vt(w).

A.7 Proving Lemma 1, explicit Epstein–Zin solution, and extension to death with
bequests

We first prove Lemma 1.

Proof of Lemma 1. To show that the induced environments are homothetic, by Defi-
nition 4 we need to show that ft is homogeneous of degree 1 and that v(w, α) = g(α)w
with g > 0. We have the first of these by assumption; thus, it suffices to show the second.
We do this by first establishing that Vt(w) = btw for some random variables bt for all
t ∈ T . To this end, observe in period T that uT (cT ) = bT cT for bT > 0. Thus, we have that
VT (w) = bTw. Proceeding inductively, suppose that Vt+1(w) = bt+1w for some bt+1 > 0.
We have that

Vt(w) = max
c∈[0,w],θ∈
t

ft
(
c, Et

[
Vt+1

(
Rt+1(θ)(w− c)

)1−γt ] 1
1−γt

)

= max
c∈[0,w],θ∈
t

ft
(
c, Et

[(
bt+1Rt+1(θ)(w− c)

)1−γt ] 1
1−γt

)

= max
c∈[0,w]

ft
(
c, max
θ∈
t

Et
[(
bt+1Rt+1(θ)(w− c)

)1−γt ] 1
1−γt

)

= max
c∈[0,w]

ft
(
c, (w− c) max

θ∈
t
Et

[(
bt+1Rt+1(θ)

)1−γt ] 1
1−γt

)
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= max
c̃∈[0,1]

wft
(
c̃, (1 − c̃) max

θ∈
t
Et

[(
bt+1Rt+1(θ)

)1−γt ] 1
1−γt

)

=w max
c̃∈[0,1]

ft
(
c̃, (1 − c̃) max

θ∈
t
Et

[(
bt+1Rt+1(θ)

)1−γt ] 1
1−γt

)

= btw,

where

bt = max
c̃∈[0,1]

ft
(
c̃, (1 − c̃) max

θ∈
t
Et

[(
bt+1Rt+1(θ)

)1−γt ] 1
1−γt

)
> 0. (25)

The first line is by definition; the second is by the induction hypothesis; the third
follows as ft is upper semicontinuous, the set of portfolios is compact, and returns are
bounded. The fourth line follows by identity; the fifth follows by homogeneity of degree
1 of ft ; the sixth is by identity; the seventh is by definition. To complete the proof, we
now observe that this implies linearity of the continuation value functions in wealth:

vt(w) = max
θ∈
t

Et
[
Vt+1

(
Rt+1(θ)w

)1−γt ] 1
1−γt

= max
θ∈
t

Et
[(
bt+1Rt+1(θ)w

)1−γt ] 1
1−γt

=wmax
θ∈
t

Et
[(
bt+1Rt+1(θ)

)1−γt ] 1
1−γt .

Thus, if we set g(α) = maxθ∈
t Et[(bt+1Rt+1(θ))1−γt ]
1

1−γt > 0, we are done.

We now use this lemma to derive an explicit solution for the consumption function
when the agent has Epstein–Zin preferences.

Proposition 6. With Epstein–Zin preferences, the optimal consumption function is

ct(w) = (1 −β)ψb1−ψ
t w,

where bt is defined recursively by

bt =

⎧⎪⎪⎨
⎪⎪⎩

(
(1 −β)ψ +βψ

(
max
θ∈
t

Et
[(
bt+1Rt+1(θ)

)1−γ] 1
1−γ

)ψ−1) 1
ψ−1

, ψ �= 1,

(1 −β)1−βββ
(

max
θ∈
t

Et
[(
bt+1Rt+1(θ)

)1−γ] 1
1−γ

)β
, ψ= 1.

The proof is nearly identical to Toda (2014, Corollary 7).
We now provide conditions under which there is a unique optimal portfolio (Re-

mark 3) and extend Lemma 1 to allow for death and bequest motives (Remark 4).

Remark 3. Since, by assumption, the aggregator f is strictly quasi-concave, the optimal
consumption rule c̃t is unique. If the portfolio set is 
t finite or convex and there are no
redundant assets, then the optimal portfolio is unique.
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Remark 4. Here we extend the model to incorporate stochastic death and bequests. In
each period t < T , if still alive, the agent dies with probability δt . In period t = T , if the
agent is still alive, the agent dies for sure. If the agent dies with wealthw in period t, then
his/her terminal utility function over bequests is of the form udt(w) = bdt(w) for some
random variable bdt > 0. In this case, the Bellman equation becomes

Vt(w) = max
c∈[0,w],θ∈
t

ft
(
c,

[
δtEt

[(
bd,t+1Rt+1(θ)(w− c)

)1−γt ]

+ (1 − δt )Et
[
Vt+1

(
Rt+1(θ)(w− c)

)1−γt ]] 1
1−γt

)
.

The extension of Lemma 1 to this case is immediate. It is also a straightforward exten-
sion of Proposition 2 that adverse changes in the distribution of bd,t+1 in the sense of
second-order stochastic dominance reduce the continuation value function at all previ-
ous dates.

A.8 Proof of Proposition 3

We prove the two comparative statics in turn.

(vi) The agent becomes more ambiguity-averse in the smooth environment: ϕt
changes to ϕ̃t , where g = ϕ̃t ◦ ϕ−1

t is increasing and concave. We can express
the continuation value function as

ϕ̃t
(
ṽt(w)

) = max
θ∈
t

Eμt

[
ϕ̃t

(
φ−1
t

(
Eπt

[
φt

(
Vt+1

(
w′))]))],

where w′ = Rt+1(θ)w. Hence, application of the same steps as in the proof of
comparative static CS.1 in Proposition 2 yields the result.

(vii) The agent considers more prior distributions in the infinitely ambiguity-averse
environment: Pt changes to P̃t with P̃t ⊃ Pt . As the minimization under P̃t is
taken over a larger set, we have that

ṽt(w) = max
θ∈
t

φ−1
t

(
min
πt∈P̃t

Eπt

[
φt

(
Vt+1

(
w′))])

≤ max
θ∈
t

φ−1
t

(
min
πt∈Pt

Eπt

[
φt

(
Vt+1

(
w′))]) = vt(w).

A.9 Proof of Proposition 4

Observe that the continuation value function in this instance is given by

vt(w; p) = max
θ∈
t

φ−1
t

(
Et

[
φt

(
Vt+1

(
Rt+1(θ)w+pτt+1ηt+1

))])
.

We prove the three comparative statics in turn.

(viii) The agent’s permanent income or transitory income falls in the sense of FOSD.
Observe that under either of these changes that the distribution of the random
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variable Rt+1(θ)w+ pτt+1ηt+1 falls in the sense of FOSD. Thus, the same steps
as in the proof of comparative static CS.3 in Proposition 2 establish the result.

(ix) The household’s investment or hedging opportunities shrink: 
t changes to

̃t ⊂ 
t . The same steps as in the proof of comparative static CS.2 in Propo-
sition 2 establish the result.

(x) The agent’s income becomes riskier in the sense of SOSD. Observe that under
either of these changes, the distribution of the random variable Rt+1(θ)w +
pτt+1ηt+1 falls in the sense of SOSD. Thus, the same steps as in the proof of
comparative static CS.4 in Proposition 2 establish the result.

A.10 Proof of Lemma 2

To show this result, we first establish that the continuation value functions {vt }t∈T are
homogeneous of degree 1. We do this by backward induction. Consider the terminal
period T . We have that VT (w, p) = uT (w) = bTw, which is homogeneous of degree 1. By
the definition of the continuation value function in period T − 1, we have

vT−1(λw, λp) = max
θ∈
T−1

ET−1
[
VT

(
RT (θ)λw+ λpτTηT , λpτTηT

)1−γT−1
] 1

1−γT−1

= max
θ∈
T−1

ET−1
[
λ1−γT−1VT

(
RT (θ)w+pτTηT , pτTηT

)1−γT−1
] 1

1−γT−1

= λvT−1(w, p).

Thus, vT−1 is homogeneous of degree 1.
Proceeding inductively, suppose that vt is homogeneous of degree 1. We wish to

show that vt−1 is homogeneous of degree 1. We first show that Vt is homogeneous of
degree 1,

Vt(λw, λp) = max
c∈[0,λw]

ft
(
c, vt(λw− c, λp)

)

= max
c∈[0,λw]

κft

(
c

κ
,
vt(λw− c, λp)

κ

)

= κ max
c∈[0,λw]

ft

(
c

κ
, vt

(
λw− c
κ

,
λp

κ

))

= λ max
c∈[0,λw]

ft

(
c

λ
, vt

(
λw− c
λ

,
λp

λ

))

= λ max
c̃∈[0,w]

ft
(
c̃, vt(w− c̃, p)

)

= λVt(w, p),

where the first equality is by definition, the second is by homogeneity of degree 1 of ft ,
the third is by homogeneity of degree 1 of vt , the fourth is by setting κ= λ, the fifth is by
defining c̃ = c

λ , and the last is by the definition of the value function.
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We now use this fact to show that vt−1 is homogeneous of degree 1. Note that

vt−1(λw, λp) = max
θ∈
t−1

Et−1
[
Vt

(
Rt(θ)λw+ λpτtηt , λpτtηt

)1−γt−1
] 1

1−γt−1

= max
θ∈
t−1

Et−1
[
λ1−γt−1Vt

(
Rt(θ)w+pτtηt , pτtηt

)1−γt−1
] 1

1−γt−1

= λvt−1(w, p).

We now use this to derive the claimed formula for the REMV. By Euler’s theorem, we have
that v= vww+ vpp. Thus, we have the required expression

ε=
∂ logvw
∂α

∂ logv
∂α

= vwα

vw

vww+ vpp
vwαw+ vpαp =

1 + p

w

vp

vw

1 + p

w

vpα

vwα

.

A.11 Proof of Lemma 3

We can reexpress the model the same as the one we developed in Section 4.1.1. Once
this is done, the result follows by verifying the hypotheses of Lemma 1. Define θ̃t =
(θt , at , bt , kt ) ∈ 
̃t and observe that we can write

wt+1 =Rt+1(θ̃t )(wt − ct ),

where we have simplified away yt+1 and lt+1 by observing that any optimal lt+1 is pinned
down immediately by kt+1, gt+1, νt+1, and zt+1 by solving the cost minimization prob-
lem. Thus, the model reduces to our portfolio allocation problem. Moreover, the ag-
gregator is CRRA, terminal utility is linear, and ft is increasing, strictly quasi-concave
and homogeneous of degree 1. The returns are, moreover, bounded and 
̃t is compact.
Thus, Lemma 1 yields the result.

A.12 Proof of Proposition 5

Observe by the proof of Lemma 3 that the continuation value function can be reex-
pressed in the form of the homothetic case of the model from Section 4.1.1. Thus, by
Lemma 1, we have that

vt(w) = btw,

where bt is given by (25). We now prove the five comparative statics in turn.

(xi) The production technology becomes less productive in the sense of FOSD. This
follows by observing that this reduces returns and carrying out the same steps
as comparative static CS.3 in the proof of Proposition 2.

(xii) Wage rates increase in the sense of FOSD. This follows by the same argument as
CS.11.
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(xiii) Depreciation rates increase in the sense of FOSD. This follows by the same argu-
ment as CS.11.

(xiv) Depreciation rates become riskier in the sense of SOSD. This increases the risk-
iness of returns and follows by the same argument as comparative static CS.4 in
Proposition 2.

(xv) The capital tax rate increases. This follows by the same argument as CS.11.

A.13 Proof of Corollary 3

By (23) in the proof of Corollary 1, we have

(
1
c

+ 1
w− c

)
cα = gα

g
(1 −ψ).

Observing that the left-hand side is simply ∂ log c
w−c /∂α and gα/g= ∂ logg/∂α, the result

follows immediately.

Appendix B: Sufficient conditions for strong regularity

The conditions for (strong) regularity require primitive conditions on f as well as non-
primitive conditions on v and c. In this Appendix, we provide verifiable conditions
on the setting {uT , (�, F , P ), {ft , Mt ,
t ,Wt }t∈T } such that the induced environments
{(ft , vt )}t∈T are strongly regular. These conditions take the form of technical restric-
tions on the probability space with respect to which random variables are defined and
standard interiority and smoothness conditions on the evolution of wealth and both
intratemporal and intertemporal aggregation.

Definition 5. A setting {uT , (�, F , P ), {ft , Mt ,
t ,Wt }t∈T } is discrete, interior, and
smooth (DIS) if the following conditions are satisfied:

(i) The state space � is discrete.

(ii) All intertemporal aggregators {ft }t∈T and the terminal utility function uT are
strictly increasing, infinitely continuously differentiable, normalized in the sense
that ft(0, 0) = uT (0) = 0, and satisfy the Inada conditions that limc→0 ftc(c, v) =
∞, limv→0 ftv(c, v) = ∞, and limc→0 uTc(c) = ∞.

(iii) The certainty equivalence functionals {Mt }t∈T are infinitely continuously differ-
entiable16 and normalized in the sense that Mt(0) = 0.

(iv) The spaces of portfolios {
t }t∈T are discrete, and the continuation wealth func-
tions {Wt(·, θ)}t∈T ,θ∈
t are infinitely continuously differentiable and normalized
in the sense thatWt(0, θ) = 0.

16As the state space is discrete, the random variables for continuation utility take finite values, so differ-
entiability of Mt is in the standard sense.
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These conditions allow an inductive proof that the environments are strongly reg-
ular starting from the terminal period. This allows us to show that the continuation
value functions inherit normalization properties (which imply Inada conditions hold,
ensuring interiority) and are twice continuously differentiable (in fact, they are infinitely
continuously differentiable).17

Lemma 4. If the setting {uT , (�, F , P ), {ft , Mt ,
t ,Wt }t∈T } is DIS, then the induced envi-
ronments {(ft , vt )}t∈T satisfy the following properties:

(i) The function vt is is almost everywhere (with respect to wealth) continuously dif-
ferentiable in wealth.

(ii) The function vt is almost everywhere (with respect to wealth) infinitely continu-
ously differentiable in wealth.

(iii) Any optimal consumption function is interior.

Proof. When the setting is DIS, we have that � is discrete. Denote a particular state
ωt at date t and let the set of all states at each date t be �t . Any random variable rep-
resenting continuation values Vt+1(Wt+1(w, θ)) can then be associated with the vector
{Vt+1(Wt+1(w, θ;ωt );ωt )}ωt∈�t . Thus, we can express the certainty equivalence func-
tional in the form, for all t ∈ T ,

Mt
(
Vt+1(w)

) = gt
({
Vt+1

(
Wt+1(w, θ;ωt );ωt

)}
ωt∈�t

)
.

Moreover, by the hypothesis of infinitely continuous differentiability, this representation
is such that gt : R|�t | → R is infinitely continuously differentiable for all t ∈ T . Finally, by
the normalization property of Mt , we have that gt(0) = 0 for all t ∈ T .

We now establish properties of the environment by backward induction. We begin
with period T , where

VT (w;ωT ) = uT (w;ωT )

is infinitely continuously differentiable by the hypothesis that uT is infinitely continu-
ously differentiable. Thus

vT−1(w) = max
θ∈
T−1

gT−1
({
VT

(
WT (w, θ;ωT );ωT

)}
ωT∈�T

)
,

where the maximum is attained by compactness of
T−1 and infinite continuous differ-
entiability of gT−1, VT , andWT . Moreover, by the envelope theorem (Milgrom and Segal
(2002), Theorem 2), we have that vT−1 is almost everywhere continuously differentiable.
Furthermore, by discreteness of
T−1, vT−1 is almost everywhere infinitely continuously
differentiable. Finally, vT−1(0) = 0 as gT−1(0) = 0,WT (0, θ) = 0, and VT (0) = uT (0) = 0.

Now suppose that vt is almost everywhere continuously differentiable, almost every-
where infinitely continuously differentiable, and vt(0) = 0 for t ≤ T − 1. We wish to show

17To obtain twice continuous differentiability, the hypotheses of infinite continuous differentiability in
the DIS assumption can be weakened to finite but large times continuous differentiability.
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that vt−1 is almost everywhere continuously differentiable, almost everywhere infinitely
continuously differentiable, and vt−1(0) = 0. We observe that (suppressing the state ωt )

Vt(w) = max
c∈[0,w]

ft
(
c, vt(w− c)

)
.

By the assumed Inada conditions and the fact that vt(0) = 0, we have that any optimal
ct(w) is interior. Moreover, by differentiability of vt and ft , a necessary condition for
optimality is that

ftc
(
c(w), vt

(
w− c(w)

)) − vtw
(
w− c(w)

)
ftv

(
c(w), vt

(
w− c(w)

)) = 0.

Applying the implicit function theorem to this equation, which is possible almost ev-
erywhere by almost everywhere infinite differentiability of ft and vt , reveals that ct(w) is
almost everywhere infinitely continuously differentiable. Thus,

Vt(w) = ft
(
ct(w), vt

(
w− ct(w)

))

is almost everywhere infinitely continuously differentiable. As gt−1 andWt are infinitely
continuously differentiable, it follows that vt−1 is almost everywhere infinitely continu-
ously differentiable. Moreover, by applying the envelope theorem, vt−1 is almost every-
where continuously differentiable.

Finally, as vt(0) = 0, if w = 0, then Vt(0) = ft(0, vt(0)) = ft(0, 0) = 0, where the final
equality follows by the assumed normalization condition on ft . Thus,

vt−1(0) = Mt
(
Vt

(
Wt(0)

)) = Mt(0) = 0

by the assumed normalization conditions on Mt andWt .
We have now established the required properties for all t ∈ T .

Thus, if we assume that the setting is DIS and choose a smooth parameterization
for α (recall by Remark 2 that this is always possible), then Lemma 4 implies that strong
regularity holds for almost all levels of wealth.

This lemma is useful as it allows one to verify the (strong) regularity hypotheses of
Theorems 1 and 2 directly in terms of deep model primitives. Concretely, consider our
investment under risk application from Section 4.1.1. We need only assume that the
space of portfolios is discrete and that φt is smooth to ensure strong regularity. Similar
weak regularity conditions on primitives can be found for our other applications.

References

Bansal, Ravi and Amir Yaron (2004), “Risks for the long run: A potential resolution of
asset pricing puzzles.” Journal of Finance, 59, 1481–1509. [232]

Barro, Robert J. (2009), “Rare disasters, asset prices, and welfare costs.” American Eco-
nomic Review, 99, 243–264. [232]

Campbell, John Y. (1993), “Intertemporal asset pricing without consumption data.”
American Economic Review, 83, 487–512. [234]

https://www.e-publications.org/srv/te/linkserver/setprefs?rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/bansal-yaron2004&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/Barro2009AER&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/campbell1993&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/bansal-yaron2004&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/Barro2009AER&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:3/campbell1993&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23


264 Flynn, Schmidt, and Toda Theoretical Economics 18 (2023)

Campbell, John Y., Stefano Giglio, Christopher Polk, and Robert Turley (2018), “An in-
tertemporal CAPM with stochastic volatility.” Journal of Financial Economics, 128, 207–
233. [234]

Croce, Mariano Massimiliano (2014), “Long-run productivity risk: A new hope for
production-based asset pricing?” Journal of Monetary Economics, 66, 13–31. [232]

Di Tella, Sebastian (2017), “Uncertainty shocks and balance sheet recessions.” Journal of
Political Economy, 125, 2038–2081. [232, 249]

Drechsler, Itamar and Amir Yaron (2011), “What’s vol got to do with it.” Review of Finan-
cial Studies, 24, 1–45. [232]

Epstein, Larry G. (1988), “Risk aversion and asset prices.” Journal of Monetary Eco-
nomics, 22, 179–192. [234]

Epstein, Larry G. and Martin Schneider (2003), “Recursive multiple-priors.” Journal of
Economic Theory, 113, 1–31. [234, 246]

Epstein, Larry G. and Stanley E. Zin (1989), “Substitution, risk aversion, and the temporal
behavior of consumption and asset returns: A theoretical framework.” Econometrica, 57,
937–969. [231]

Gilboa, Itzhak and David Schmeidler (1989), “Maxmin expected utility with non-unique
prior.” Journal of Mathematical Economics, 18, 141–153. [246]

Gourinchas, Pierre-Olivier and Jonathan A. Parker (2002), “Consumption over the life
cycle.” Econometrica, 70, 47–89. [247]

Havranek, Tomas, Roman Horvath, Zuzana Irsova, and Marek Rusnak (2015), “Cross-
country heterogeneity in intertemporal substitution.” Journal of International Eco-
nomics, 96, 100–118. [232, 250]

Hayashi, Takashi (2005), “Intertemporal substitution, risk aversion, and ambiguity aver-
sion.” Economic Theory, 25, 933–956. [234, 246]

Hayashi, Takashi and Jianjun Miao (2011), “Intertemporal substitution and recursive
smooth ambiguity preferences.” Theoretical Economics, 6, 423–472. [234, 245]

Iachan, Felipe S., Plamen T. Nevov, and Alp Simsek (2021), “The choice channel of finan-
cial innovation.” American Economic Journal: Macroeconomics, 13, 333–372. [235]

Ju, Nengjiu and Jianjun Miao (2012), “Ambiguity, learning, and asset returns.” Economet-
rica, 80, 559–591. [245]

Kaltenbrunner, Georg and Lars A. Lochstoer (2010), “Long-run risk through consump-
tion smoothing.” Review of Financial Studies, 23, 3190–3224. [232]

Kaplan, Greg and Giovanni L. Violante (2014), “A model of the consumption response to
fiscal stimulus payments.” Econometrica, 82, 1199–1239. [232]

Levhari, David and Thirukodikaval N. Srinivasan (1969), “Optimal savings under uncer-
tainty.” Review of Economic Studies, 36, 153–163. [234]

https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/CampbellGiglioPokTurleyI2018&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/croce2014&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/ditella2017&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/drechsler-yaron2011&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/Epstein1988&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:9/epstein-schneider2003&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:10/EpsteinZin1989&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:11/gilboa-schmeidler1989&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/GourinchasParker2002&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:13/HHIR2015&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/hayashi2005&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/hayashi-miao2011&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/IachanNevovSimsek2021&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:17/ju-miao2012&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/kaltenbrunner-lochstoer2010&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:19/KaplanViolante2014&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:20/levhari-srinivasan1969&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/CampbellGiglioPokTurleyI2018&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/CampbellGiglioPokTurleyI2018&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/croce2014&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/ditella2017&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:7/drechsler-yaron2011&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/Epstein1988&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:9/epstein-schneider2003&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:10/EpsteinZin1989&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:10/EpsteinZin1989&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:11/gilboa-schmeidler1989&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/GourinchasParker2002&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:13/HHIR2015&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:13/HHIR2015&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/hayashi2005&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/hayashi-miao2011&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/IachanNevovSimsek2021&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:17/ju-miao2012&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/kaltenbrunner-lochstoer2010&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:19/KaplanViolante2014&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:20/levhari-srinivasan1969&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23


Theoretical Economics 18 (2023) Elasticity of intertemporal substitution 265

Merton, Robert C. (1969), “Lifetime portfolio selection under uncertainty: The
continuous-time case.” Review of Economics and Statistics, 51, 247–257. [234]

Milgrom, Paul and Ilya Segal (2002), “Envelope theorems for arbitrary choice sets.”
Econometrica, 70, 583–601. [262]

Milgrom, Paul and Chris Shannon (1994), “Monotone comparative statics.” Economet-
rica, 62, 157–180. [233, 241, 253]

Phelps, Edmund S. (1962), “The accumulation of risky capital: A sequential utility anal-
ysis.” Econometrica, 30, 729–743. [234]

Rothschild, Michael and Joseph E. Stiglitz (1971), “Increasing risk II: Its economic con-
sequences.” Journal of Economic Theory, 3, 66–84. [234]

Sandmo, Agnar (1970), “The effect of uncertainty on saving decisions.” Review of Eco-
nomic Studies, 37, 353–360. [234]

Smith, Matthew, Danny Yagan, Owen Zidar, and Eric Zwick (2019), “Capitalists in the
twenty-first century.” The Quarterly Journal of Economics, 134, 1675–1745. [248]

Toda, Alexis Akira (2014), “Incomplete market dynamics and cross-sectional distribu-
tions.” Journal of Economic Theory, 154, 310–348. [257]

Weil, Philippe (1989), “The equity premium puzzle and the risk-free rate puzzle.” Journal
of Monetary Economics, 24, 401–421. [231]

Weil, Philippe (1993), “Precautionary savings and the permanent income hypothesis.”
Review of Economic Studies, 60, 367–383. [234]

Co-editor Florian Scheuer handled this manuscript.

Manuscript received 14 July, 2020; final version accepted 15 March, 2022; available online 24
March, 2022.

https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:21/merton1969&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:22/MilgromSegal2002&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:23/MilgromShannon1994&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:24/Phelps1962&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:25/RothschildStiglitz1971Risk2&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:26/Sandmo1970&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:27/smith2019capitalists&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:28/Toda2014JET&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:29/Weil1989&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:30/Weil1993&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:21/merton1969&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:22/MilgromSegal2002&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:23/MilgromShannon1994&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:24/Phelps1962&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:25/RothschildStiglitz1971Risk2&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:26/Sandmo1970&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:27/smith2019capitalists&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:28/Toda2014JET&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:29/Weil1989&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:30/Weil1993&rfe_id=urn:sici%2F1933-6837%282023%2918%3A1%3C231%3ARCSFTE%3E2.0.CO%3B2-%23

	Introduction
	Related literature
	Outline

	EIS and consumption: A two-period example
	Model and main results
	Model primitives
	Main results: The EIS and consumption responses to shocks
	Consumption responses under homotheticity

	Applications
	Risk, ambiguity, and investment
	Risk
	Ambiguity

	Consumption-savings problems with income risk
	Entrepreneurial investment

	Implications for identiﬁcation and estimation of EIS
	Conclusion
	Appendix A: Omitted proofs
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Proposition 2
	Proving Lemma 1, explicit Epstein-Zin solution, and extension to death with bequests
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Proposition 5
	Proof of Corollary 3

	Appendix B: Sufﬁcient conditions for strong regularity
	References

