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Comparing school choice and college admissions mechanisms
by their strategic accessibility
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Dozens of school districts and college admissions systems around the world have
reformed their admissions rules in recent years. As the main motivation for these
reforms, the policymakers cited the strategic flaws of the rules in place: students
had incentives to game the system. However, after the reforms, almost none of the
new rules became strategy-proof. We explain this puzzle. We show that the rules
used after the reforms are less prone to gaming according to a criterion called
“strategic accessibility”: each reform expands the set of schools wherein each stu-
dent can never get admission by manipulation. We also show that the existing
explanation of the puzzle due to Pathak and Sönmez (2013) is incomplete.
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1. Introduction

In recent years, many school districts around the world have reformed their school ad-
missions systems. Examples include education policy reforms for the K-9 Boston Public
Schools (PS) in 2005, the Chicago Selective High Schools (SHS) in 2009 and 2010, the
Denver Public Schools in 2012, the Seattle Public Schools in 1999, the Ghanaian Sec-
ondary Public Schools in 2007, and the English Public Schools between 2005 and 2011.
The series of reforms concern college admissions as well, such as college admissions in
China and Taiwan.
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Sometimes the reforms were a pressing issue. The Chicago SHS, for example, called
for reform midstream in their admissions process. What were the policymakers con-
cerned about, and what was at stake for such a sudden midstream change? It was widely
reported that the concern behind all these reforms was an excessive vulnerability of the
admissions mechanisms to manipulations. For example, the former superintendent of
the Boston PS said that their mechanism should be replaced with an alternative [...] that
removes the incentives to game the system (Pathak and Sönmez 2008).

Indeed, manipulability made strategy an essential decision for students and led to
serious mismatches. Strategic sophistication was playing an unbalanced role in the ad-
missions versus priorities/grades, and that was perceived as undesirable. For example,
the Chicago SHS called for reform after they observed that High-scoring kids were be-
ing rejected simply because of the order in which they listed their college prep preferences
(Pathak and Sönmez 2013). Prior to the reform, one parent in China remarked that, a
good score in the college entrance exam is worth less than a good strategy in the ranking
of colleges (Chen and Kesten 2017, Nie 2007).

Did the reforms remove all possibilities for manipulation? The answer is no. Every
reform, except Boston PS, replaced one vulnerable mechanism with another vulnerable
mechanism. Having said that, one would expect the new mechanisms to be less vul-
nerable to manipulation than the ones in place prior to the reforms. In this paper, we
develop a criterion to investigate this conjecture.

To explain our criterion, let us begin with the robust mechanisms. A mechanism is
strategy-proof when no student can benefit by misrepresenting her preferences. In such
a mechanism, no school is accessible to any student by manipulation. Let us generalize
this definition to any, possibly nonstrategy-proof, mechanism. We say that school s is
not strategically accessible to student i via mechanism ϕ if for any problem there is no
profitable misreport by which i could be placed at s via ϕ. In other words, all the misre-
ports that result in i’s admission to school s via mechanism ϕ are not profitable. Student
i may still profitably manipulate the mechanism and be strategically admitted at other
schools—but not at s.

We measure the level of vulnerability of each mechanism by the set of schools, which
are not strategically accessible to each student. We deem mechanism ϕ less strategically
accessible than ψ if, for each student, every school which is not strategically accessible
to her via ψ is also not strategically accessible to her via ϕ, while there is a school choice
context where the converse is not true.

The main result of this paper is that the mechanism used after each of the reforms
mentioned above is less strategically accessible than the mechanism used before the
reform (Theorems 1, 2, 3, Table 2). Simultaneously, following the reforms, each school
became strategically accessible to a weakly smaller set of students.

Roughly, the reforms resulted in mechanisms that were less strategically accessible
by mandating one or both of the following. First, they allowed students to submit longer
lists of acceptable schools. Second, for the submitted lists, they switched from the im-
mediate acceptance to the deferred acceptance procedure. Intuitively, a longer list al-
lows students to be less strategic about selecting which schools to include in the list,
while deferred acceptance facilitates the truthful ranking of the selected schools. We
illustrate the concept and the result in the following example.
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# School name US rank min score max score

1 Payton 9 898 900
2 Northside 23 894 900
3 Lane 69 873 900
4 Young 71 883 900
5 Jones 91 891 900

6 Brooks 186 799 890
7 Lindblom 272 772 858
8 Westinghouse 574 773 884
9 King 1133 678 844

10 South Shore 6066 684 820

Note: South Shore was added to SHS in 2011, followed by Hancock school in 2015. The US rank is according to US News &
World 2019 Report; the grades are reported for general admission in 2019, the maximal feasible grade is 900; the data source is
www.go.cps.edu.

Table 1. Chicago selective high schools (SHS): rankings and cutoff grades.

Illustrative example

We consider two reforms of the Chicago SHS, in 2009 and 2010. Each school uses a
common priority based on students’ composite scores. The admission to each of these
schools is very competitive. To give you an idea, in the 2018 admissions session, only
4000 out of more than 10,000 participants were admitted. In 2009, the Chicago SHS re-
placed the immediate acceptance mechanism (a.k.a. Boston mechanism) where stu-
dents can rank only four schools (β4) with a serial dictatorship with the same constraint
(SD4).1 In 2010, they kept the serial dictatorship procedure but extended the ranking
constraint to six (SD6).

Five of the ten schools are elite schools. They are the top five schools in the state of
Illinois and are among the top 100 in the US (see Table 1). These schools are preferred
by most, if not all, students over the other schools. For simplicity, let us suppose that
students have tier preferences. That is, each student prefers each elite school over each
of the nonelite schools, but students may rank schools in each tier differently. Let each
school have 400 seats.

Under the mechanism β4, each of the 400-highest priority students is guaranteed a
seat at her most preferred school, while every other student may need to manipulate the
mechanism to gain admission to any given school. Thus, under β4 each school is not
strategically accessible only to the 400-highest priority students.

However, under the mechanism SD4, each of the 1600-highest priority students is
guaranteed one of her four most preferred schools. No school is strategically accessible
to any of them (Proposition 2), while every school is strategically accessible to each of the
other students. Under SD6, this set represents the 2400-highest priority students; while
each elite school is no longer strategically accessible to any student. Thus, following the
reforms, strategic accessibility to schools decreased and the share of students for whom

1The serial dictatorship is a mechanism where students follow the common priority order and choose
their most preferred schools among those that remain. The definitions of the mechanisms are given in the
next section.

http://www.go.cps.edu
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the elite schools were not strategically accessible increased from 4% to 24% in 2009 and
further to 100% in 2010.

The state-of-the-art for explaining these reforms is the notion of manipulability pro-
posed by Pathak and Sönmez (2013). Mechanism ϕ is less manipulable thanψ if at every
preference profile where ϕ is manipulable by at least some student, ψ is also manipula-
ble by at least some student, and there is a school choice context where the reverse does
not hold.

We show that this notion does not apply to some reforms. First, we show that ma-
nipulability only partially explains the reforms in England. These reforms followed a
single act of Parliament banning the so-called first-preference-first admission criterion.
If all schools in the system used this principle before the reform, then the mechanism
is equivalent to the Boston mechanism, and the reform resulted in a less manipulable
mechanism. However, if only some schools used this principle, the reform did not result
in a less manipulable mechanism (Table 2). We provide a counterexample to a corre-
sponding result by Pathak and Sönmez (2013).

Second, we argue that when preferences are homogeneous, manipulability does not
distinguish the constrained serial dictatorship and the constrained Boston mechanism.
Indeed, it suffices that one student has a profitable manipulation to declare a mecha-
nism as manipulable at a preference profile. However, with tier preferences as in the ex-
ample above—competition for the elite schools—at least one such student always exists.
More generally, we show that the constrained serial dictatorship mechanism is not ma-
nipulable if and only if the constraint is not binding for every student (Proposition 2). In
contrast, strategic accessibility to schools changed significantly after both the 2009 and
2010 reform, and the fact that elite schools are no longer strategically accessible may
explain why SD6 has been used in Chicago ever since.

Strategic accessibility was first formulated by Bonkoungou (2018) to rank a class of
mechanisms that favor the higher ranking of schools. Recently, Arribillaga and Massó
(2016) ranked voting rules by the set inclusion of the vulnerable preference relations of
each agent, that is, the relations for which there exist preferences of others such that
this agent can manipulate. This notion was recently used by Decerf and Van der Lin-
den (2020) to rank the constrained Boston mechanism and the constrained deferred ac-
ceptance mechanism as well as different constraints of the deferred acceptance mech-
anism. Andersson et al. (2014a) ranked budget balanced and fair rules by counting, for
each preference profile, the number of agents with the incentive to manipulate. They
find rules that minimize the number of agents and coalitions that can manipulate. In
the same problem, Andersson et al. (2014b) find the rule that minimizes the maximal
gain that an agent can get by manipulation. Next, Chen and Kesten (2017) and Dur et al.
(forthcoming) used manipulability to compare mechanisms in China and Taiwan, re-
spectively. Chen et al. (2016) formulated another notion by counting and comparing,
for each preference profile, the set of outcomes that each agent can get via manipula-
tion. This notion is useful for ranking stable matching mechanisms. The main difference
with our notion is that it is a preference by preference comparison, and cannot explain
any of the reforms studied here (except the Chicago SHS in 2010).
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In two companion papers, we give a complementary rationale for a subset of reforms
in school admissions systems. The reforms also decreased the set of instances where the
outcome is unstable, and some reforms decreased the number of students with justified
envy, Bonkoungou and Nesterov (2020b), and the number of students with an incen-
tive to manipulate, Bonkoungou and Nesterov (2020a), which strengthens the results in
Pathak and Sönmez (2013).

The paper is organized as follows. In Section 2, we present the model and the main
definitions. In Section 3, we present the main results. In Section 4, we compare them
to the results for manipulability. In Section 5, we develop an equilibrium refinement
of strategic accessibility. In Section 6, we conclude. We collect some proofs in the Ap-
pendix.

2. Model

There is a finite and nonempty set I of students with a generic element i and a finite
and nonempty set S of schools with a generic element s. Each student i has a strict
preference relation Pi over S ∪ {∅} (where ∅ represents the outside option for this stu-
dent). Each school s has a strict priority order �s over I and a capacity qs (a natural
number representing the maximal number of students that this school can admit). For
each student i, letRi denote the “at least as good as” relation associated with Pi.2 School
s is acceptable to student i if s Pi ∅, and unacceptable if ∅ Pi s. The list P = (Pi)i∈I is
a preference profile, �= (�s)s∈S is a priority profile and q = (qs)s∈S is a capacity vector.
We often write a preference profile P = (Pi�P−i) to emphasize the preference relation of
student i.3

We extend the priority order �s of each school s over I to the set 2I of subsets of
students and assume that it is responsive to the priority order over I (Roth 1985). By
definition, the priority order �s over 2I is responsive if for any students i� j ∈ I and any
subset N ⊂ I \ {i� j} such that |N|< qs, then (i) N ∪ {i} �s N , and (ii) N ∪ {i} �s N ∪ {j} if
and only if i�s j.

The tuple (I� S��� q) is a school choice context and (I� S�P��� q) a school choice
problem. In order to reflect school choice in real life, we assume that there are at least
two schools and more students than schools, |I| > |S| ≥ 2. We assume that the school
choice context (I� S��� q) is fixed, such that the preference profile determines the prob-
lem.4

A matching μ is a function μ : I → S ∪ {∅} such that for each school s, |μ−1(s)| ≤ qs.
We say that student i is unmatched when μ(i)= ∅.

Next, we define some basic terms. Let P be a preference profile. A matching μ is
individually rational under P if for each student i, μ(i) Ri ∅. Student i has justified envy
toward student j under the matching μ if there is a school s such that s Pi μ(i), μ(j)= s

2That is, for each s� s′ ∈ S ∪ {∅}, s Ri s′ if and only s Pi s′ or s = s′.
3More generally, we write a preference profile P = (PI′ �P−I′) to emphasize the components of a subset

I ′ of students.
4We assume that schools are not strategic. In practice, the priorities are determined by law or by students’

performances, and are known to students before they submit their preferences.
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and i �s j. A matching μ is nonwasteful if for each student i, there is no school s such
that s Pi μ(i) and |μ−1(s)|< qs. A matching is stable under P if it is individually rational,
no student has a justified envy toward another, and it is nonwasteful.

A mechanism ϕ is a function that maps each problem P to a matching. Let ϕi(P)
denote the assignment for student i.

2.1 Mechanisms

Gale–Shapley In a seminal paper, Gale and Lloyd (1962) showed that for each problem,
there exists a stable matching. They also showed that there is a matching, the student-
optimal stable matching, where each student finds her assignment at least as good as
her assignment at any other stable matching. They proposed the following student-
proposing deferred acceptance algorithm to find this matching.

• Step 1: Each student applies to her most preferred acceptable school (if any). If a
student did not rank any school acceptable, then she is unmatched. Let I1

s denote
the applicants of school s at this step. Each school s tentatively accepts min(qs� |I1

s |)
of the �s-highest priority applicants and rejects the remaining ones. Let A1

s denote
the tentative acceptances of school s at this step.

• Step t, t > 1: Each student who is rejected at step t − 1 applies to her most pre-
ferred acceptable school among those she has not yet applied to (if any). If a stu-
dent is rejected by all of her acceptable schools, then she is unmatched. Let Its de-
note the new applicants of school s at this step. Each school s tentatively accepts
min(qs� |At−1

s ∪ Its |) of the �s-highest priority applicants and rejects the remaining
ones. LetAts denote the tentative acceptances of school s at this step.

The algorithm stops when every student is either tentatively accepted or rejected by
all of her acceptable schools. The tentative acceptances at this step become the final
matching. The Gale–Shapley mechanism GS assigns to each preference profile P the
matching GS(P) obtained by this algorithm.

Serial dictatorship In every school choice context (I� S��� q) where schools have the
same priority order, that is, for each s� s′ ∈ S, �s=�s′ , the Gale–Shapley mechanism is
called a serial dictatorship mechanism. Let SD(P) denote the matching assigned by
this mechanism to each preference profile P . The mechanism can be described in the
following simple procedure. The student who is ordered first by the priority order picks
her most preferred acceptable school (if any). The student ordered next picks her most
preferred acceptable school among those remaining (if any), and so on.

Boston Abdulkadiroğlu and Sönmez (2003) describe the following immediate accep-
tance mechanism that Boston PS was using until 2005:

• Step 1: Each student applies to her most preferred acceptable school (if any). If
a student did not rank any school acceptable, then she is unmatched. Let I1

s de-
note the applicants of school s at this step. Each school s immediately accepts
min(qs� |I1

s |) of the �s-highest priority applicants and rejects the remaining ones.
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For each school s, let q1
s = qs − min(qs� |I1

s |) denote its remaining capacity after this
step.

• Step t, t > 1: Each student who is rejected at step t − 1 applies to her most preferred
acceptable school among those she has not yet applied to (if any). If a student is
rejected by all of her acceptable schools, then she is unmatched. Let Its denote the
applicants of school s at this step. Each school s immediately accepts min(qt−1

s � |Its |)
of the �s-highest priority applicants and rejects the remaining ones. Let qts = qt−1 −
min(qt−1

s � |Its |) denote the remaining capacity of school s after this step.

The algorithm stops when each student is either immediately accepted or rejected by all
her acceptable schools. Every school is assigned to the students that it accepted at each
step. The Boston mechanism assigns to each preference profile P , the matching β(P)
obtained by this algorithm. The Boston mechanism is individually rational but does not
always produce a stable matching (Abdulkadiroğlu and Sönmez 2003).

First-preference-first Pathak and Sönmez (2013) describe a mechanism that the school
boards of many English cities were using until 2007 when the Parliament banned its use
throughout the country. In this system, each school is either an equal preference school
or first-preference-first school. This distribution is exogenous and is a parameter for the
mechanism. In the mechanism, the original priority of each equal preference school
remains unchanged, while the original priority of each first-preference-first school is
adjusted according to the ranking of schools in the following way.

Let P be a preference profile. For each school s, let I1
s denote the set of students who

ranked s first (including the ranking of the outside option ∅), I2
s the set of students who

ranked it second, I3 the set of students who ranked it third, and so on. Let �̂s denote the
following adjusted priority order:

1. for each equal preference school s, �̂s =�s and

2. for each first-preference-first school s,

• for each i ∈ I1
s and each j ∈ I \ I1

s , we have i �̂s j. For each � ∈ {2� � � � � |S|}, each
i ∈ I�s and each j ∈ I \ (I1

s ∪ · · · ∪ I�s ), we have i �̂s j.
• for each � ∈ {1� � � � � |S| + 1} and each i� j ∈ I�s such that i�s j, we have i �̂s j.

The First-Preference-First (FPF) mechanism assigns to each preference profile P , the
student-optimal stable matching under P where the priority order has been replaced by
�̂. Let FPF(P) denote this matching.

Remark. In the immediate acceptance algorithm, at each step, students applying to the
same school have assigned to it the same rank. Therefore, students applying to a school
at a given step of the algorithm rank this school higher than those applying to it at any
step after. In particular, no student could be rejected by a school while another student,
who has assigned a lower rank to it, is accepted. Thus, the Boston mechanism is a First-
Preference-First mechanism where every school is a first-preference-first school. This
result follows from Proposition 2 of Pathak and Sönmez (2008).
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Note also that the Gale–Shapley mechanism is a First-Preference-First mechanism
when each school is an equal preference school.

Constrained versions In practice, school districts restrict the number of schools that
each student is allowed to list. This practice is first studied by Haeringer and Klijn (2009).
Let k ∈ {1� � � � � |S|}. For each student i, the truncation after the k’th acceptable school (if
any) of the preference relation Pi with x acceptable schools is the preference relation
Pki with min(x�k) acceptable schools such that all schools are ordered as in Pi. The
constrained version ϕk of the mechanism ϕ assigns to each problem P the matching
ϕk(P)= ϕ(Pk).
Chinese parallel Chen and Kesten (2017) describe the parametric mechanisms that the
school boards of many Chinese provinces have been using. Let e≥ 1 be a natural num-
ber and P a preference profile. The procedure has multiple rounds. In the first round,
students are matched according to the constrained Gale–Shapley mechanism GSe. The
matching is final for matched students, while unmatched students proceed to the next
round. We reduce the capacity of each school by the number of the students matched
to it in this round and we remove the students matched in this round. For each un-
matched student, we remove her top-e schools that rejected her in this round. In the
next round, the remaining students are again matched according to the constrained
Gale–Shapley mechanism GSe with the remaining capacities and the new preference
profile. The matched students are removed, the capacities are decreased, and the pro-
file is updated the same way as before. The procedure continues until either every stu-
dent is matched or no seat remains. The Chinese mechanism Ch(e) with parameter e
assigns to each preference profile P the matching Ch(e)(P) found at the end of this pro-
cedure.5

3. Results

We motivate our definition from the following question. When can we say that the ad-
mission of student i to school s via mechanism ϕ is not due to manipulation? Obviously,
if there is no profitable misreport by which i could gain admission at s via mechanism ϕ,
then any admission of student i to school s via ϕ cannot be attributed to manipulation.
When this is true for all students and all schools, then the mechanism is strategy-proof.
Formally, ϕ is strategy-proof if for each student i, there is no preference profile P and a
preference relation P̂i such that

ϕi(P̂i�P−i) Pi ϕi(P)�

Under a strategy-proof mechanism, no admission is due to manipulation. However,
even in nonstrategy-proof mechanisms some admissions are not due to manipulation.

5This definition of the Chinese parallel mechanisms is given only for a class (of the symmetric version)
where each round has the same length e. See Chen and Kesten (2017) for details.
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Definition 1. Let ϕ be a mechanism. School s is not strategically accessible to student
i via ϕ if there is no preference profile P and a preference relation P̂i such that

s = ϕi(P̂i�P−i) Pi ϕi(P)�

Otherwise, school s is strategically accessible to student i viaϕ. Mechanismϕ is strategy-
proof for a student if no school is strategically accessible to her via ϕ.

The unconstrained Gale–Shapley GS mechanism, for example, is strategy-proof
(Roth 1982, Dubins and Freedman 1981).

Definition 2. Mechanism ϕ is less strategically accessible than ψ if (i) every school
which is not strategically accessible to a student via ψ is also not strategically accessible
to her via ϕ, and (ii) there is a school choice context where a school is not strategically
accessible to a student via ϕ but via ψ.

3.1 Reforms and strategic accessibility

In this section, we present our main results: the comparisons of the mechanisms before
and after the reforms. All proofs are in the Appendix.

In England and Wales According to the field observation (see Table 2), more than
50 cities in England and Wales have replaced constrained FPF mechanisms with con-
strained GS mechanisms. In the following theorem, we show that the replacement
mechanisms are less strategically accessible.

Theorem 1. Let k > 1 and suppose that there are at least k schools and at least one first-
preference-first school. The constrained Gale–Shapley mechanism GSk is less strategically
accessible than the constrained First-Preference-First mechanism FPFk.

The school boards of Newcastle have replaced a constrained FPF with a constrained
GS but with a longer list. This replacement also resulted in a less strategically accessible
mechanism:

Corollary 1. Let k> � and suppose that there are at least k schools and at least one first-
preference-first school. The constrained Gale–Shapley mechanism GSk is less strategically
accessible than the constrained First-Preference-First mechanism FPF�.

In Chicago and Denver In 2009, the Chicago Selective High Schools moved from a con-
strained Boston to a constrained serial dictatorship. A similar replacement has been
observed in Denver and four other cities in England. Since the Boston mechanism is
a special case of the First-Preference-First mechanism FPF, and the serial dictatorship
mechanism SD a special case of the Gale–Shapley mechanism, we make the following
conclusion.

Corollary 2. Let k ≥ � and suppose that there are at least k schools. The constrained
Gale–Shapley mechanism GSk is less strategically accessible than the constrained Boston
mechanism β�.
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Allocation system Year From To Manipulable?
(More or less?)

Strategically accessible?
(More or less?)

Boston PS 2005 Boston GS Less Less
Chicago SHS 2009 Boston4 SD4 Less Less

2010 SD4 SD6 Less Less
Ghana–Sec. Schools 2007 GS3 GS4 Less Less

2008 GS4 GS6 Less Less
Denver Public Schools 2012 Boston2 GS5 Less Less
Seattle Public Schools 1999 Boston GS Less Less

2009 GS Boston More More
England and Wales

48 cities 2006/07 FPF3 GS3 Not comparable Less
1 city 2010 GS3 GS4 Less Less
1 city 2010 GS3 GS6 Less Less
4 cities 2005/06 FPF6 GS6 Not comparable Less
1 city 2007 FPF7 GS7 Not comparable Less
1 city 2005 FPF4 GS4 Not comparable Less
1 city 2007 Boston3 GS4 Less Less
1 city 2007 FPF3 GS4 Not comparable Less
1 city 2005 Boston3 GS3 Less Less
3 cities 2007 Boston3 GS3 Less Less

China
Jiangsu 2001-12 Ch(1) Ch(3) Less Less
5 provinces 2001-12 Ch(1) Ch(4) Less Less
5 provinces 2001-12 Ch(1) Ch(5) Less Less
Hainan 2001-12 Ch(1) Ch(6) Less Less
Tibet 2001-12 Ch(1) Ch(10) Less Less

Table 2. School and college admissions reforms.

In Chicago and Ghana In 2010, the Chicago SHS again replaced its constrained serial
dictatorship with a version with a longer list. In 2007, the Ghanaian Secondary Schools
undertook a similar change, from a constrained GS to a version with a longer list and
extended the list again in 2008. These types of changes have also been observed in New-
castle (2010) and Surrey (2010) in England.

Theorem 2. Let k > � and suppose that there are at least k schools. The constrained
Gale–Shapley mechanism GSk is less strategically accessible than the constrained Gale–
Shapley mechanism GS�.

In Table 2, we list all reforms in school choice and college admissions. The table
is constructed using information from Pathak and Sönmez (2013) and Chen and Kesten
(2017). We also feature those reforms that are comparable á la Pathak and Sönmez (2013)
and those that are not (see Definition 3 and Section 4 for the results).

In college admissions in China Starting from 2001, the school boards of many Chinese
provinces changed their mechanisms from the Boston mechanism to various other par-
allel mechanisms.
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Theorem 3. Let e > e′ and suppose that there are at least e schools. The Chinese mecha-
nism Ch(e) is less strategically accessible than the Chinese mechanism Ch(e

′).

The proofs of the results above are constructive and use similar arguments. For each
school choice context, we assume that some school s is strategically accessible to some
student i via a new mechanism. The fact that s is strategically accessible to i has certain
implications about the priority profile �. Knowing this, we construct a preference profile
and show that s is strategically accessible to i via the old mechanism.

4. Comparison with manipulability

We introduce the notion of manipulability due to Pathak and Sönmez (2013), and com-
pare it with our notion. Given a mechanism ϕ, a preference profile P is vulnerable under
ϕ if there exists a student i and a preference relation P̂i such that

ϕi(P̂i�P−i) Pi ϕi(P)�

Definition 3 (Pathak and Sönmez 2013). Mechanism ϕ is less manipulable than ψ if
(i) every preference profile which is vulnerable under ϕ is also vulnerable under ψ and
(ii) there is a preference profile not vulnerable under ϕ but vulnerable under ψ.

Broadly, whenever a student has a profitable manipulation at a preference profile P
under ϕ, then at least one student (possibly more) has a profitable manipulation at the
same profile P under ψ, while the reverse is not true in some school choice context. It is
important to note that a manipulation of one student is enough to declare a preference
profile as vulnerable under a mechanism. Comparing mechanisms with respect to a
certain property profile by profile is common in the literature. A notable example is
Kesten (2006).

4.1 Limitation in England and Wales

Recall that the school boards of many English cities have replaced the constrained First-
Preference-First mechanism with a constrained Gale–Shapley mechanism. Pathak and
Sönmez (2013) claim that this resulted in a less manipulable mechanism.

Claim 1 (Pathak and Sönmez 2013, Proposition 3). Suppose that there are at least k
schools where k > 1. Then the constrained Gale–Shapley mechanism GSk is less manipu-
lable than the constrained First-Preference-First mechanism FPFk.

We provide a counterexample to this claim. We specify the relevant part of the pri-
orities such that the incomplete part indicates that this part is irrelevant and omitted.

Example 1 (Counterexample to Claim 1). We consider a problem with seven students
and seven schools. Each school has one seat. We specify a preference profile and a
priority profile below.



892 Bonkoungou and Nesterov Theoretical Economics 16 (2021)

P1 P2 P3 P4 P5 P6 P7 �s1 �s2 �s3 �s4 �s5 �s6 �s7 �̂s5
s1 s1 s2 s3 s5 s4 s6 2 3 4 7 6 6 5 5

s2 ∅ ∅ ∅ s7 s5 s4
���

���
��� 1 5 7

��� 6

s3 ∅ s6 ∅ 6
���

���
���

s4 ∅

���

∅

We assume that school s5 is the only first-preference-first school. We have

FPF3(P)= GS3(P)=
(

1 2 3 4 5 6 7
∅ s1 s2 s3 s5 s4 s6

)
�

where every student but student 1 has received her most preferred school. Therefore,
only student 1 may be able to benefit by misrepresenting her preferences to FPF3 and
GS3. Let Ps41 denote one of student 1’s preference relations where she ranks only school
s4 as acceptable. Then

GS3(Ps41 �P−1
) =

(
1 2 3 4 5 6 7
s4 s1 s2 s3 s7 s5 s6

)
�

By reporting the preference relation Ps41 to GS3, student 1 is matched to an acceptable
school s4 but is unmatched when she reports her true preference relation P1. Therefore,
the profile P is vulnerable under GS3.

However, because school s5 is a first-preference-first school and as student 5 has
ranked it higher than student 6, we have (where �s5 has been replaced by �̂s5 )

FPF3(Ps41 �P−1
) =

(
1 2 3 4 5 6 7
∅ s1 s2 s3 s5 s6 s4

)
�

By reporting the preference relation Ps41 under FPF3, student 1 is unmatched, same as
when she reports her true preferences. It is enough to check for misrepresentation by
ranking schools first.6 In addition, student 1 cannot misrepresent her preferences to
obtain a seat at school s1, s2 and s3. Therefore, the preference profile P is not vulnerable
under FPF3.

The intuition is that when student 1 applies to school s4, she causes the rejection of
student 6. Then student 6 applies to school s5. Under GS3, student 5 is rejected from
school s5 and she applies to school s7, ending the process. However, under FPF3, school
s5 is a first-preference-first school which student 5 ranks first. This time it is student 6
who is rejected from school s5. Then she applies to school s6 and causes the rejection of
student 7. Ultimately, student 7 applies to school s4 and takes it back from student 1.

Note that this example does not contradict our result (Theorem 1). Indeed, con-
sider a preference profile (P̂7�P−7) where P7 has been replaced by a preference relation

6This is because if for some student i and a school s, GSi(P ′
i � P

k
−i)= s, then by ranking school s first under

Psi , we have GSi(Psi �P
k
−i)= s (Roth 1982).
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P̂7 where s6 is the only acceptable school for student 7. Then FPF3(P̂7�P−7) = FPF3(P)

where student 1 is unmatched. However, FPF3
4(P

s4
1 � P̂7�P−{1�7})= s4. That is, school s4 is

strategically accessible to student 1 via FPF3. ♦

The oversight in the proof of Claim 1 by Pathak and Sönmez (2013) is that they only
consider the case where FPFk(P) is not stable under P and there is a student with jus-
tified envy toward another student at a first-preference-first school. However, they did
not consider that a student can have a justified envy toward another student at an equal
preference school. Unfortunately, as the above example shows, this may occur. Never-
theless, when each school is a first-preference-first school the manipulability compar-
ison of the constrained Boston mechanism and the constrained Gale–Shapley mecha-
nism is valid (Pathak and Sönmez 2011). Table 2 features the reforms in England and
Wales that can and that cannot be evaluated using the manipulability criterion.

4.2 Limitation under homogeneous preferences

Manipulability compares mechanisms across all preference profiles. Let us focus on
specific preference profiles. First, let us look at the preference profiles where the con-
strained serial dictatorship mechanism is not manipulable. When the constrained serial
dictatorship SD mechanism is not manipulable, its outcome is the same as the outcome
of its unconstrained version.

Proposition 1. Let k≥ 1. A preference profile P is not vulnerable under the constrained
serial dictatorship mechanism SDk if and only if SDk(P)= SD(P).

Proof. The “if” part is straightforward. If SDk(P) = SD(P), then at SDk(P) each stu-
dent is matched to her best available school among the remaining ones and cannot
profitably misreport her preferences.

We prove the “only if” part by contraposition. Suppose that SDk(P) 
= SD(P) and
consider the highest priority student i for whom SDk

i (P) 
= s = SDi(P). Each student
with higher priority than i received under SDk(P) the same school as under SD(P).
Therefore, under SDk(P) student i had the same choice set of remaining schools as
under SD(P). The only way i missed school s under SDk(P) is if the constraint k was
binding for her, that is, each of her top k schools were already assigned, and school s
was not listed among the top k acceptable schools under Pi. However, school s still had
available seats, and i could manipulate SDk at P by listing school s as one of her top k
acceptable schools.

Abdulkadiroğlu et al. (2011) argue that in many real life contexts of school choice,
students tend to value schools based on the same set of qualities such as safety and aca-
demic reputation. As a result, they have similar ordinal preferences. For these profiles,
the constraint is almost guaranteed to be binding for at least one student, and thus the
constrained serial dictatorship SD mechanism is manipulable. In this domain, manip-
ulability does not distinguish the constrained Boston mechanism and the constrained
serial dictatorship mechanism. Next, we generalize the Chicago example presented in
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the Introduction. We show that when students have tier preferences, the constrained
serial dictatorship SD mechanism is manipulable.

Example 2 (Serial dictatorship and tier preferences). We consider a school choice con-
text with n students and m schools such that for each s� s′ ∈ S, qs = qs′ = λ, and �s=�s′ .
We assume that students have tier preferences. That is, the set S of schools is partitioned
into t > 1 sets S1� S2� � � � � St . For each tier � < t, each student i prefers each school in S�
over each school in S�+1.7 We assume that each student finds each school acceptable
and that there is a shortage of seats, that is, n >

∑
s qs = λ×m.

Whenever the number of schools except the schools in the lower tier is at least as
large as the constraint, |S1| + · · · + |St−1| ≥ k, no student ranks a school in St among
the top k acceptable schools. The constrained serial dictatorship mechanism SDk is
manipulable at every tiered preference profile. Indeed, if every student reports her pref-
erences truthfully, then some students are unmatched while the schools in St are unas-
signed. Under Proposition 1, this is necessary and sufficient for the manipulability of
the constrained serial dictatorship mechanism SDk. Thus, for these tier preferences, the
constrained serial dictatorship mechanism is as manipulable as the constrained Boston
mechanism. ♦

However, strategic accessibility distinguishes the constrained serial dictatorship
mechanism and the constrained Boston mechanism on the entire domain.

Proposition 2. Let k ≥ 1. Let the capacities of the schools be increasingly ordered q1 ≤
q2 ≤ · · · ≤ q|S| and α= q1 + · · · + qk. Then the constrained serial dictatorship mechanism
SDk is strategy-proof for each of the α-highest priority students.

See the Appendix for the proof. Proposition 2 is stated for the entire domain of pref-
erence profiles, and it remains true in the domain of tier preferences. Therefore, in Ex-
ample 2, the share of students for whom SDk is strategy-proof is λ× k/n.

The schools in the upper tiers are not strategically accessible to any student. By
switching from β4 to SD4 in 2009, and to SD6 in 2010, the share of students to whom
the Chicago elite schools are not strategically accessible increased from 4% to 24% and
eventually to 100%, respectively.

5. Strategic accessibility in equilibrium

In this section, we develop a more refined concept of strategic accessibility. Previously,
we called the admission of student i to school s strategic if there exists a preference pro-
file and a profitable deviation for i that places her at s. But this deviation was not re-
quired to be optimal among all deviations. The same is true for the reports of the other
students: we did not assume that these students best-respond. Now, we require the
strategies to be mutually optimal.

Let us motivate this with an example.

7Coles et al. (2013) observed that the academic job market has this structure and referred to it as block
correlated preferences.
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Example 3. We consider a school choice context with three students i, j, and k and
three schools s1, s2, and s3 such that each school has one seat. We specify a preference
profile and priority profile as follows:

Pi Pj Pk �s∈S
s1 s1 s1 j

s2 s2 s2 k

s3 s3 s3 i

∅ ∅ ∅

We consider the Boston mechanism. Its outcome is as follows:

β(P)=
(
i j k

s3 s1 s2

)
�

Suppose instead that student i reports the preference relation P
s2
i where she ranks

school s2 first. If student j and k report truthfully as in P , we have

β
(
P
s2
i � P−i

) =
(
i j k

s2 s1 s3

)
�

According to the notion developed earlier, school s2 is strategically accessible to stu-
dent i via the Boston mechanism. However, it is not a best response for student k to
report truthfully Pk, when student i reports Ps2i . Student i has the lowest priority at ev-
ery school. This strategic accessibility of student i to school s2 stems from the fact that
the other students reported their preferences truthfully without best-responding. ♦

The type of strategic accessibility featured in the example may disappear when we
require best responses. To take these best responses into account, we introduce an equi-
librium concept. Any mechanism ϕ induces a normal form game such that the students
are the players, the strategies are the preference reports, and the outcome function is ϕ.
Then a strategy profile P ′ is a Nash equilibrium of the game [I�P�ϕ] if for each student
i, P ′

i is a best response to P ′
−i.

8 We simply denote the game as [P�ϕ].

Definition 4. Let ϕ be a mechanism. School s is not strategically accessible to student
i via mechanism ϕ in equilibrium if there is no preference profile P and a preference
relation P̂i such that:

(1) (P̂i�P−i) is a Nash equilibrium of the game [P�ϕ] and

(2) s = ϕi(P̂i�P−i) Pi ϕi(P)

Otherwise, school s is strategically accessible to student i via ϕ in equilibrium.

We use this notion to rank the mechanisms as in Definition 2.

8That is, for each student j, there is no strategy P ′′
j such that ϕj(P ′′

j �P
′
−j) Pj ϕj(P

′).
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Definition 5. Mechanism ϕ is strongly less strategically accessible than ψ if (i) every
school which is not strategically accessible to a student via ψ in equilibrium is also not
strategically accessible to her via ϕ in equilibrium and, (ii) there is a school choice con-
text where a school is not strategically accessible to a student via ϕ in equilibrium but
via ψ.

With this notion, we establish results in line with Theorem 1 and Theorem 2.

Theorem 4. (i) Let k > 1 and suppose that there are at least k schools and at least
one first-preference-first school. Then the constrained Gale–Shapley mechanism GSk is
strongly less strategically accessible than the constrained First-Preference-First mecha-
nism FPFk. (ii) Let k > � and suppose that there are at least k schools. Then the con-
strained Gale–Shapley mechanism GSk is strongly less strategically accessible than the
constrained Gale–Shapley mechanism GS�.

See the Appendix for the proof. In contrast, the prior ranking of the Chinese mecha-
nisms does not hold anymore.

Proposition 3. Not all Chinese mechanisms are comparable with strong strategic acces-
sibility. In particular, there are e, e′ with e > e′, and at least e schools such that the Chinese
mechanism Ch(e) is not strongly less strategically accessible than the Chinese mechanism
Ch(e

′).

Proof. We prove it with the following example. We consider a school choice context
where there are four students and four schools such that each school has one seat. We
specify a preference profile P∗ and a priority profile � as follows:

P∗
i P∗

j P∗
k P∗

m P∗
t P ′

i �s1 �s2 �s3 �s4
s3 s3 s2 s2 s4 s1 k i j t

s4 s2 s1 s3 ∅ s2 m k
���

���

s1 ∅ ∅ s1 ∅ j
���

s2 ∅ t

∅ i

Then we have

Ch(2)
(
P∗) =

(
i j k m t

∅ s3 s2 s1 s4

)
�

Suppose that student i reports the preference relation P ′
i . We show that (P ′

i� P
∗
−i) is a

Nash equilibrium of the game [P∗�Ch(2)]. First,

Ch(2)
(
P ′
i� P

∗
−i

) =
(
i j k m t

s1 s3 s2 ∅ s4

)
� (1)
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In this matching, every student but i and m is matched to her most preferred school
under P∗. Thus, we need to check that it is a best response for student i and m. Schools
s3 and s4 are assigned to the highest priority students. Therefore, student i cannot get
a seat at each of them by reporting a preference relation other than P ′

i . Let us consider
now student m. In any strategy where she did not include school s1 among the top two
acceptable schools, the outcome is the matching in equation (1). Suppose that she uses
a strategy P ′

m where she includes school s1 among the top two acceptable schools. Then

Ch(2)
(
P ′
i� P

′
m�P

∗
−{i�m}

) =
(
i j k m t

s2 s3 s1 ∅ s4

)
�

where student m remains unmatched. Therefore, students i and m do not have a prof-
itable deviation, and thus (P ′

i� P
∗
−i) is a Nash equilibrium of the game [P∗�Ch(2)]. Since

s1 = Ch(2)i
(
P ′
i� P

∗
−i

)
P∗
i Ch(2)i

(
P∗)�

school s1 is strategically accessible to student i via Ch(2) in equilibrium.
Next, we show that school s1 is not strategically accessible to student i via Ch(1) = β

in equilibrium. Suppose that for some preference profile P and P ′′
i , we have

s1 = Ch(1)i
(
P ′′
i � P−i

)
Pi Ch(1)i (P)� (2)

We show that (P ′′
i � P−i) is not a Nash equilibrium of the game [P�β]. This will complete

the proof. The Boston mechanism produces a Pareto efficient matching with respect
to reported preferences (Abdulkadiroğlu and Sönmez 2003).9 Therefore, equation (2)
implies there is a student j′ ∈ {j�k�m� t} who is worse off atβ(P ′′

i � P−i) compared toβ(P).
We consider two cases:

Case 1: Student j′ is matched to her first choice school at β(P), denoted by s. Then
j′ is the highest priority student among those who ranked school s first. Since j′ is worse
off, and thus not matched to school s atβ(P ′′

i � P−i), student i ranks school s first underP ′′
i

and is matched to it. Under equation (2), s = s1, which contradicts the fact that student
j′ has higher priority than student i at �s1 .

Case 2: Student j′ is not matched to her first choice school at β(P). Let s = βj′(P).
Then no student ranked school s first at P . Let Psj′ be a preference relation where she
ranks school s first. We claim that βj′(P ′′

i � P
s
j′�P−{i�j′})= s. Suppose, to the contrary, that

this is not the case. Then, student i ranks school s first at P ′′
i , and is the only student

who ranks it first at (P ′′
i � P−i). Thus, s = βi(P ′′

i � P−i)= s1. Since student i has lower prior-
ity than student j′ under �s1 , βj′(P ′′

i � P
s
j′�P−{i�j′})= s, contradicting our assumption that

student j′ is not matched to school s.
Therefore, student j′ has a profitable deviation from (P ′′

i � P−i), and (P ′′
i � P−i) is not a

Nash equilibrium of the game [P�β].
9A matching μ is Pareto efficient under P if there is no matching μ′ such that for each student i, μ′(i) Ri

μ(i), and for some student j, μ′(j) Pj μ(j).
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Next, we formulate a second way to refine strategic accessibility. In contrast to the
past definition, we deem an admission to be strategic when the specified manipulation
is a best response for the student in question without requiring truth telling to be a best
response for the other students.

Definition 6. Let ϕ be a mechanism. School s is not best-response strategically acces-
sible to student i via ϕ if there is no preference profile P and a misreport P ′

i such that (1)
P ′
i is a best response to P−i via ϕ and (2) s = ϕi(P ′

i� P−i) Pi ϕi(P).

The main difference with Definition 4 is that we do not require the reports of stu-
dents other than i to be best responses. School s is strongly strategically accessible
to student i via ϕ ⇒ school s is best-response strategically accessible to student i via
ϕ ⇒ school s is strategically accessible to student i via ϕ. Then an analogue of Theo-
rems 1–2 can be obtained using this concept.

In addition, in all the preference profiles that we constructed to prove our results in
Section 3.1, the profitable misreport of the student in consideration is a best response.
Therefore, the comparisons between the Chinese parallel mechanisms (Theorem 3) are
valid according to this concept.

6. Conclusion

Pathak and Sönmez (2013) show that numerous school districts have recently reformed
their admissions systems to address incentive concerns. Yet, the reforms do not elimi-
nate all possibilities for manipulation. We applied a notion introduced by Bonkoungou
(2018) to show that each of these reforms resulted in the adoption of a less strategically
accessible mechanism. More precisely, each reform expands, by the set inclusion, the
set of schools wherein each student cannot get an admission via manipulation.

We formulated two refined versions of strategic accessibility: an optimal version and
an equilibrium version. If we only count optimal manipulations, not just beneficial
ones, then we compare the mechanisms with the best strategically accessible schools.
All of our results carry over to this version of strategic accessibility.

The equilibrium version is more restrictive: when student i manipulates a mecha-
nism to get an admission at a school at the preference profile P , we require P and i’s
deviation to form an equilibrium in the game induced by the mechanism. This concept
is arguably less realistic for markets where a best response is hard to expect, for example,
when the market is large, but it is a standard refining criterion for smaller problems. Our
main results carry over to this equilibrium version of strategic accessibility, except the
reforms in China (Theorem 4, Proposition 3).

We emphasize that strategic accessibility is not necessarily the be-all and end-all
for comparing school choice mechanisms. Perhaps, the ultimate concern of the policy-
makers and the parents is not the vulnerability itself, but rather the complexity of find-
ing an optimal strategy. This complexity results in drawbacks, such as higher number
of mismatches (justified envy) and overall dissatisfaction with the system. Surprisingly,
mechanism-designers around the world seem ready to tolerate certain levels of these
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drawbacks. This could explain why they maintain constrained mechanisms even though
the unconstrained version of the Gale–Shapley mechanism is strategy-proof. The con-
tinued use of constraints in school choice is an open question.

Strategic accessibility may also be of interest outside the school choice context. The
set of outcomes that each agent can achieve by a manipulation may quantify her in-
centives, and thus the vulnerability of mechanisms. It is also important to understand
which basic properties make a mechanism more or less strategically accessible than an-
other mechanism.

Appendix: Proofs

Theorem 1. Let k > 1 and suppose that there are at least k schools and at least one first-
preference-first school. The constrained Gale–Shapley mechanism GSk is less strategically
accessible than the constrained First-Preference-First mechanism FPFk.

Proof. We prove the theorem through the contrapositive. Suppose that school s is
strategically accessible to student i via GSk. There is a preference profile P and a prefer-
ence relation P̂i such that

s = GSki (P̂i�P−i) Pi GSki (P)� (3)

We prove two facts and derive a lemma that we also use in later proofs.

Fact 1. GSki (P)=∅. In equation (3) student i is better off misrepresenting her preferences
at P . As shown by Pathak and Sönmez (2013), GSki (P)= ∅.

Fact 2. Student i did not rank school s among the top k acceptable schools under Pi.
Otherwise, school s would have been acceptable under Pki and as GSi(Pk)= ∅, we would
have

GSi
(
P̂ki �P

k
−i

) = s Pki ∅ = GSi
(
Pk

)
�

This equation contradicts the fact that the Gale–Shapley mechanism is strategy-
proof. Because GSk is individually rational, equation (3) implies that school s is accept-
able to student i under Pi. Now, because school s is acceptable under Pi but not under
Pki , student i ranks more than k schools acceptable under Pi. We formulate this as a
lemma.

Lemma 1. Let P be a preference profile and suppose that for some student i, some school
s, and some preference relation P ′

i , we have

s = GSki
(
P ′
i� P−i

)
Pi GSki (P)�

Then (i) student i ranks more than k schools acceptable under Pi, and (ii) school s is ac-
ceptable under Pi but is not ranked among the top k schools under Pi.
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Now, we prove that school s is strategically accessible to student i via FPFk. Ac-
cording to Lemma 1, student i ranks more than k acceptable schools. Let s1� � � � � sk de-
note the acceptable schools that she has ranked first, second, through k under Pki . Let
μ = GSk(P). Then μ is stable under Pk. Following Fact 1, we have μ(i) = ∅. For each
�≤ k, we have s� Pki μ(i), and by the stability of μ under Pk, |μ−1(s�)| = qs� and for each
student j ∈ μ−1(s�), j �s� i. We consider the following preference profile P∗:

P∗
i P∗

j 
=i
s1 μ(j)

s2 ∅

���

sk
s

∅

(4)

For each � ≤ k, each of the students in μ−1(s�) has higher priority than i under �s�
and has ranked it first under P∗. Thus, FPFki (P

∗) 
= s�. Therefore, FPFk(P∗) = μ where
student i is unmatched. Let Psi be a preference relation where student i finds only school
s acceptable. We claim that FPFki (P

s
i �P

∗
−i)= s. We consider two cases:

Case 1: |μ−1(s)|< qs. In this case, it is clear that FPFki (P
s
i �P

∗
−i)= s because no more

than qs students find school s acceptable under (Psi �P
∗k
−i ).

Case 2: |μ−1(s)| = qs. In this case, we claim that there is at least one student inμ−1(s)

who has lower priority than student i under �s. Suppose, to the contrary, that each
student in μ−1(s) has higher priority than i under �s.

Since μ = GS(Pk) is stable under Pk, it is also stable under (Psi �P
k
−i). This is be-

cause μ(i) = ∅ and every student in μ−1(s) has higher priority than i under �s. As
shown by Roth (1986), under responsive priorities, the set of students who are matched
is the same at all stable matchings. Since student i is unmatched under μ, she is also
unmatched under GS(Psi �P

k
−i). According to a second result shown by Roth (1982),

GSi(P ′k
i �P

k
−i)= s implies that GSi(Psi �P

k
−i)= s. This contradicts the previous conclusion

that GSi(Psi �P
k
−i) = ∅. Therefore, there is at least one student in μ−1(s) who has lower

priority than student i under �s.
Thus, FPFki (P

s
i �P

∗
−i) = s. Finally, because FPFki (P

∗) = ∅ and school s is acceptable
under P∗

i by construction,

s = FPFki
(
Psi �P

∗
−i

)
P∗
i FPFki

(
P∗)�

proving that school s is strategically accessible to student i via FPFk.
Finally, we construct a school choice context where a school is strategically acces-

sible to some student via FPFk but not via GSk. We consider a school choice context
where each school has one seat and they have a common priority order. By assumption,
there is at least one first-preference-first school. Let s be one such school. Without loss
of generality, suppose that student i is ordered first, j second and m third, in the com-
mon priority order. Since k ≥ 2, for each preference profile where j ranks at least two
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acceptable schools, she is always matched, under GSk, to one of the acceptable schools
that she has ranked first or second. Therefore, s is not strategically accessible to student
j via GSk. Since there are at least k≥ 2 schools, there is a school s′ distinct from s. Let P
be a preference profile such that the components for i, j andm are specified as below.

Pi Pj Pm

s′ s′ s

s s s′
∅ ∅ ∅

Then, FPFkj (P)= ∅ because school s is a first-preference-first school which student
m has ranked first and that student j has ranked second. Let Psj be a preference relation

where s is the only acceptable school for student j. Then, FPFkj (P
s
j �P−j)= s. Therefore,

school s is strategically accessible to student j via FPFk.

Theorem 2. Let k > � and suppose that there are at least k schools. The constrained
Gale–Shapley mechanism GSk is less strategically accessible than the constrained Gale–
Shapley mechanism GS�.

Proof. We prove the theorem through the contraposition. Suppose that school s is
strategically accessible to student i via GSk. Then there is a preference profile P and a
preference relation P̂i such that

s = GSki (P̂i�P−i) Pi GSki (P)�

We show that school s is strategically accessible to student i via GS�.
Under Lemma 1, student i ranks more thank schools acceptable underPi and school

s is acceptable under Pi but is not ranked among the top k schools. Let s1� � � � � sk denote
the schools that student i has ranked first, second, through k, respectively, under Pi.

Let μ = GS(Pk). Then, μ is stable under Pk. By Fact 1, μ(i) = ∅. Thus, for each
�′ ≤ k, because s�′ Pki μ(i) and μ stable under Pk, we have |μ−1(s�′)| = qs�′ and for each
j ∈ μ−1(s�′), j �s�′ i. We consider the following preference profile P∗:

P∗
i P∗

j 
=i
s1 μ(j)

s2 ∅

���

s�
s

∅

(5)

Then, GS�(P∗) = μ, where student i is unmatched. Let Psi be a preference relation
where student i ranks school s as the only acceptable school. If |μ−1(s)| < qs, then
GS�i (P

s
i �P

∗
−i) = s. If |μ−1(s)| = qs, then by Case 2 above, student i has higher priority
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than at least one student in μ−1(s). Therefore, GS�i (P
s
i �P

∗
−i) = s. Therefore, school s is

strategically accessible to student i via GS�.
We provide a school choice context where a school is strategically accessible to a stu-

dent via GS� but not via GSk. We consider a school choice context where each school has
one seat and they have a common priority order. Then, the Gale–Shapley mechanism
is the serial dictatorship mechanism. Let 1�2� � � � � |I| denote the student who is ordered
first, second, through |I| according to the common priority order. Because k ≥ � + 1
and that there are at least k schools, Proposition 2 implies that no school is strategically
accessible to student � + 1 via GSk. Now, let P be a preference profile where students
rank all schools acceptable and have a common ranking. Since there are more students
than schools, by assumption, and at least k schools, SD�

�+1(P) = ∅ while SDk
�+1(P) = s

for some school s. Let Ps�+1 be a preference relation where student � + 1 ranks s first.

Then, SD�
�+1(P

s
�+1�P−{�+1})= s. Thus, school s is strategically accessible to student �+ 1

via GS� but not via GSk.

Proof of Corollary 1. Suppose that school s is strategically accessible to student i
via GSk. According to Theorem 2, it is also strategically accessible to student i via GS�.
Under Theorem 1, school s is also strategically accessible to student i via FPF�.

It remains to provide a school choice context where the converse is not true. We
consider the school choice context provided in the proof of Theorem 1. There, a school
s is strategically accessible to student i via FPF� but not GS�. Under Theorem 2, school s
is not strategically accessible to student i via GSk.

Theorem 3. Let e > e′ and suppose that there are at least e schools. The Chinese mecha-
nism Ch(e) is less strategically accessible than the Chinese mechanism Ch(e

′).

Proof. We collect some basic results that are established by Chen and Kesten (2017).

Lemma 2 (Chen and Kesten 2017). Let P be a preference profile and Psi a preference rela-
tion where student i ranks school s first.

(i) If Ch(e)i (P)= s then we have Ch(e)i (P
s
i �P−i)= s.

(ii) Suppose that student i ranks school s among her top e acceptable schools under Pi
and s Pi Ch(e)i (P). There is no preference relation P̂i such that Ch(e)i (P̂i�P−i)= s.

We prove the theorem through the contraposition. Suppose that school s is strate-
gically accessible to student i via Ch(e). There is a preference profile P and a preference
relation P̂i such that

s = Ch(e)i (P̂i�P−i) Pi Ch(e)i (P)� (6)

Let Psi be a preference relation where student i has ranked school s first. By part (i) of

Lemma 2, Ch(e)i (P
s
i �P−i)= s. Then, under Ch(e)(Psi �P−i), student i is matched in the first

round of the mechanism. Thus,

GSi
(
Psi �P

e
−i

) = s� (7)
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Since s Pi Ch(e)i (P), student i has been rejected by school s in some round. Hence, all
the seats of school s have been assigned under μ= Ch(e)(P). That is, |μ−1(s)| = qs. Let
N = μ−1(s).

In part (ii) of Lemma 2, equation (6) implies that student i did not rank school s
among her top e acceptable schools under P . Together with equation (6), if μ(i) is a
school, then it is not ranked among the top e acceptable schools under Pi. We consider
two cases:

Case 1: At least one student in N has lower priority than student i under �s . Since
e′ < e, student i has ranked more than e′ schools above school s under Pi. Let s1� � � � � se′
denote the schools that student i has ranked first, second, through e′, respectively, under
Pi. We consider the following preference profile P∗:

P∗
i P∗

j 
=i
s1 μ(j)
��� ∅

se′
s

μ(i)

∅

Recall that student i is not matched in the first round under Ch(e)(P). Thus
GSi(Pe) = ∅. Then, for each � = 1� � � � � e′, each student in μ−1(s�) has higher priority
than i under �s� .10 Furthermore, under P∗, each student in N ranks school s first and
student i did not rank it among the top e′. Therefore,

Ch(e
′)(P∗) = μ�

Since at least one student inN has lower priority than student i under �s , we have

Ch(e
′)(Psi �P∗

−i
) = s�

Because s P∗
i μ(i), school s is strategically accessible to student i via Ch(e

′).
Case 2: Every student in N has higher priority than student i under �s. We establish

the following claim.

Claim. At least one student inN did not rank school s among the top e acceptable schools
under P .

Proof. Suppose, to the contrary, that every student inN ranks school s among the top e
acceptable schools under P . Letη= GS(Pe). Student i is not matched to one of her top e
acceptable schools under Ch(e)(P). Therefore, η(i)= ∅. Every student in N is matched
to school s under μ and has ranked it among the top e acceptable schools under P .
Then, for each j ∈ N , η(j) = s. Because every student in N has higher priority than

10This is because, if we let ν = GS(Pe), then for each �= 1� � � � � e′, s� Pei ν(i) and ν is stable under Pe.
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student i under �s, η is also stable under (Psi �P
e
−i). As shown by Roth (1986), under

responsive priorities, the set of matched students is the same at all stable matchings.
Hence, GSi(Psi �P

e
−i)=∅, contradicting equation (7). �

Since there is at least one student in N who did not rank school s among the top e
acceptable schools under P and that e′ < e, there is at least one student inN who did not
rank school s among the top e′ acceptable schools under P . Let j be one such student.
For each � = 1� � � � � e′, let si� and sj� denote the �’s ranked schools, from most preferred
to worst, of student i and j, respectively, under P . We consider the following preference
profile P∗.

P∗
i P∗

j P∗
k
=i�j

si1 s
j
1 μ(k)

���
��� ∅

sie′ s
j
e′

s s

μ(i) ∅

∅

All the seats of each of the schools sj1� � � � � s
j
e′ are assigned in the first round of

Ch(e)(P). Since student i is matched (if at all) in a round later than the first round of
Ch(e)(P), μ(i) is not one of the schools sj1 � � � � s

j
e′ . Let �= 1 � � � � e′. Because student j has

ranked school sj� among the top e acceptable schools under P and has been rejected, all
its seats have been assigned at the first round of Ch(e)(P) to students who have higher
priority than her under �

s
j
�
. Thus, each student in μ−1(s

j
�) has higher priority than stu-

dent j under �
s
j
�
. Because j �s i and |μ−1(s)| = qs, we have

Ch(e
′)(P∗) = μ�

Now, under (Psi �P
∗
−i), there are qs students (including student i) who have ranked school

s among the top e′ acceptable schools. Therefore, Ch(e
′)

i (Psi �P
∗
−i)= s and

s = Ch(e
′)

i

(
Psi �P

∗
−i

)
P∗
i Ch(e

′)
i

(
P∗)�

proving that school s is strategically accessible to student i via Ch(e
′).

We provide a school choice context where a school is strategically accessible to a stu-
dent via Ch(e

′) but not via Ch(e). We consider the school choice context where schools
have a common priority order and each of them has one seat. Let 1�2� � � � � |I| denote
the first, second, through the last ordered student, respectively. We consider student
e′ + 1. Because there are at least e schools and that e ≥ e′ + 1, under Proposition 2,
SDe is strategy-proof to student e′ + 1.11 Note now that for each preference profile P ,

11This is because student e′ + 1 is one of the e-highest priority students under the common priority.
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Ch(e)e′+1(P) = SDe
e′+1(P). Thus, Ch(e) is strategy-proof to her. Since there are more stu-

dents than schools and at least e schools, |I| ≥ e′ + 2. We consider the following prefer-
ence profile P

Pi 
=e′+2 Pe′+2

s1 se′+1
���

���

s|S|

Since student e′ + 2 is the only student who ranked school se′+1 among the top e′ ac-

ceptable schools, then Ch(e
′)

e′+2(P)= se′+1. In addition, the schools s1� � � � � se′ are matched

to the students 1� � � � � e′, respectively, under Ch(e
′)(P). Thus, student e′ + 1 is matched

to a school (if any) that she finds worse than se′+1. Let P
se′+1
e′+1 be a preference relation

where she has ranked school se′+1 first. Then, we have Ch(e)e′+1(P
se′+1
e′+1 �P−{e′+1}) = se′+1.

Therefore, school se′+1 is strategically accessible to her via Ch(e
′)

Proposition 2. Let k ≥ 1. Let the capacities of the schools be increasingly ordered q1 ≤
q2 ≤ · · · ≤ q|S| and α= q1 + · · · + qk. Then, the constrained serial dictatorship mechanism
SDk is strategy-proof to the α-highest priority students.

Proof. The serial dictatorship mechanism SD is strategy-proof. Let P be a preference
profile and suppose that student i is matched under SDk(P) or has ranked k acceptable
schools or less. Under Lemma 1, student i cannot manipulate SDk at P . Let i be one
of the α-highest priority students. We show that she never misses one of her k most
preferred schools whenever she ranks at least k acceptable schools. This will complete
the proof.

Suppose, to the contrary, that student i has ranked at least k acceptable schools and
ends up unmatched under SDk(P). Then, at her turn, all the seats of her k most pre-
ferred schools S′, have been selected. Then, at least λ = ∑

s∈S′ qs students have moved
before her. Then, i is not one of the λ-highest priority students. This contradicts the fact
that i is one of the α-highest priority students because α≤ λ.

Theorem 4. (i) Let k > 1 and suppose that there are at least k schools and at least
one first-preference-first school. Then, the constrained Gale–Shapley mechanism GSk is
strongly less strategically accessible than the constrained First-Preference-First mecha-
nism FPFk. (ii) Let k > � and suppose that there are at least k schools. Then, the con-
strained Gale–Shapley mechanism GSk is strongly less strategically accessible than the
constrained Gale–Shapley mechanism GS�.

Proof. Suppose that school s is strategically accessible to student i via GSk in equilib-
rium. There is a preference profile P and a preference relation P ′

i such that

• (P ′
i� P−i) is a Nash equilibrium of [P�GSk] and

• s = GSki (P
′
i� P−i) Pi GSki (P).
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We show that school s is strategically accessible to student i via FPFk and GS� in equi-
librium. The difference with the proof of Theorem 1 and Theorem 2 is that we further
assumed that (P ′

i� P−i) is a Nash equilibrium of [P�GSk]. For each of the preference pro-
files that we constructed in equations (4) and (5), we have

s = GSki
(
Psi �P

∗
−i

)
P∗
i GSki

(
P∗)�

where student i has ranked school s first under Psi . Note that there is a student in μ−1(s)

who has lower priority than student i under �s . Let j be the lowest priority students
among them. Now, under FPFk(Psi �P

∗) student j is unmatched, student i is matched
to school s and each of the remaining students is matched to their first choice school.
The strategy (Psi �P

∗
−i) is a Nash equilibrium of [P�FPFk]. Indeed, student i cannot get a

seat at a school s′ that she prefers to s because each student in μ−1(s′) has ranked s′ first
and has higher priority than her under �s′ . Similarly, each student matched to school s
under FPFk(Psi �P

∗
−i) has higher priority than student j under �s and has ranked it first

under (Psi �P
∗
−i). Thus, student j cannot be matched to school s by reporting a preference

relation other than P∗
j . This proves that school s is strategically accessible to student i

via FPFk in equilibrium.
The argument can be used to prove that (Psi �P

∗
−i) is a Nash equilibrium of the game

[P�GS�] where P∗ is the preference profile in equation (5).
We provide a school choice context where a school is strategically accessible to a stu-

dent via FPFk in equilibrium but not via GSk. We consider a school choice context where
schools have a common priority and where each school has one seat. By assumption,
there are at least k≥ 2 schools and students. Let students be ordered from 1, the highest
priority student, to |I|, the lowest priority student. Under Proposition 2, GSk = SDk is
strategy-proof to student 2. Since there is at least one first-preference-first school and,
without loss of generality, let us assume that school s2 is a first-preference-first school.
Let P be the following preference profile:

P1 P2 P3 P−{1�2�3}
s1 s1 s2 ∅

∅ s2 ∅

∅

Since k ≥ 2, FPFk2 (P) = ∅. Let Ps22 be a preference relation where student 2 has
ranked school s2 first. Clearly, (Ps22 �P−2) is a Nash equilibrium of the game [P�FPFk]
and

s2 = FPFk2
(
P
s2
2 �P−2

)
P2 FPFk2 (P)�

Therefore, school s2 is strategically accessible to student 2 via FPFk in equilibrium.
We consider the same school choice context to show that a school is strategically

accessible to a student via GS� in equilibrium but not via GSk. Since k ≥ � + 1, under
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Proposition 2, GSk = SDk is strategy-proof to student �+ 1. We consider the following
preference profile P (recall that there are at least k schools).

Pi∈I
s1
���

s�
s�+1

∅

Then, GS��+1(P) = ∅. Let Ps�+1
�+1 be a preference relation where student � + 1 has

ranked school s�+1 first. Clearly, (Ps�+1
�+1 �P−{�+1}) is a Nash equilibrium of the game

[P�GS�], and

s�+1 = GS��+1
(
P
s�+1
�+1 �P−{�+1}

)
P�+1 GS��+1(P)�

Then, s�+1 is strategically accessible to student �+ 1 via GS� in equilibrium.
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