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Games with switching costs and endogenous references
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We introduce a game-theoretic model with switching costs and endogenous ref-
erences. An agent endogenizes his reference strategy, and then taking switching
costs into account, he selects a strategy from which there is no profitable devia-
tion. We axiomatically characterize this selection procedure in one-player games.
We then extend this procedure to multiplayer simultaneous games by defining a
Switching Cost Nash Equilibrium (SNE) notion, and prove that (i) an SNE always
exists; (ii) there are sets of SNE, which can never be a set of Nash equilibrium
for any standard game; and (iii) SNE with a specific cost structure exactly char-
acterizes the Nash equilibrium of nearby games, in contrast to Radner’s (1980)
ε-equilibrium. Subsequently, we apply our SNE notion to a product differentia-
tion model, and reach the opposite conclusion of Radner (1980): switching costs
for firms may benefit consumers. Finally, we compare our model with others, es-
pecially Köszegi and Rabin’s (2006) personal equilibrium.

Keywords. Switching cost Nash equilibrium, choice, endogenous reference,
switching costs, epsilon equilibrium.
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1. Introduction

Switching costs are a feature of daily life. In individual settings, a new job offer in another
state involves social and financial relocation costs; firms build in switching costs for con-
sumers by offering lengthy contracts (or loyalty programs) with penalties for switching
providers. In multiagent settings, such as the competition between firms, firms may
face switching costs when changing their production technologies or the composition
of their workforce. Such costs play an important role in a variety of decisions and can ex-
plain experimental deviations from rational behavior (Guney and Richter (2018)). More-
over, these costs can be economically significant. For example, on June 12, 2020, United
Airlines made an 8-K filing where the airline valued its mileage program at $21.9 billion
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while its stock valuation on that day was $11.5 billion.1 That is, the value of the airline
itself, for example, planes, routes, fares, landing spaces, etc. is negative, and this nega-
tive value is more than outweighed by the value of its mileage program. To rephrase an
old joke, “United Airlines is a mileage program with an airline attached.”

We study a model of switching costs with endogenous references in a game-theoretic
environment. An agent evaluates each of his own strategies by viewing it as a reference
and considering deviations from it by taking into account both the utility difference and
switching cost of such a deviation, given the strategies of other players. In an equilib-
rium, each agent chooses a strategy from which there is no profitable deviation, given
the equilibrium play of others. We term this notion a Switching Cost Nash Equilibrium
(SNE) and study SNE in two game-theoretic settings: one-player and multiplayer games.

In the one-player setting, we provide an axiomatic characterization of our model,
which uses the classical α and γ axioms of Sen (1971), and two convexity-like axioms. As
in the previously mentioned real-life examples, the switching cost function in our model
depends on both the reference strategy and the strategy to which the agent switches.
Switching costs are nonnegative and have a special “excess bilinear” formulation: when
deviating from a mixed strategy to another mixed strategy, the agent incurs a switching
cost that is bilinear over the excess parts of these mixed strategies, rather than over the
mixed strategies themselves. To fix ideas, imagine a factory owner who allocates his
employees among a set of tasks and for whom it is costly to move employees between
a pair of tasks. So, an allocation here can be thought of as a mixed strategy where the
probability pi specifies the fraction of workers assigned to task i. In order to move from
one allocation to another, the factory owner does not need to reassign every worker.
Rather, he only reassigns workers from tasks with excess supply (in the initial allocation)
to tasks that need additional workers (for the final allocation), and this reassignment is
done proportionally. An allocation is an equilibrium if the factory owner finds it weakly
nonprofitable to alter the employees’ work assignments.

In the multiplayer setting, we study SNE in simultaneous games and show that the
set of possible standard Nash Equilibria (NE) is a strict subset of the set of possible SNE.
That is, there are equilibria that arise in our switching cost model, which cannot arise
in any standard game. This is different than saying that “adding switching costs creates
more equilibria given the same utility function” (which is always true). Rather, it states
something that is not immediately obvious, namely that there are new equilibria sets,
which are not realizable for any standard game with possibly different utility functions
and actions. Next, we show that the only overlap between the SNE notion and Radner’s
(1980) ε-equilibrium notion is the NE. Then we find that for a particular cost function,
the SNE of a game equals the set of NE of all nearby games. This is a strengthening of
Mailath et al.’s (2005) one-way result for the connection between ε-equilibria and the
NE of nearby games. Consequently, a reader who is not interested in SNE for its own
sake, but who is interested in nearby games, may still find SNE to be a technically useful
tool.

1For the 8-K filing, see https://www.sec.gov/ix?doc=/Archives/edgar/data/100517/
000110465920073190/tm2022354d3_8k.htm and for historical market caps, see https://ycharts.com/
companies/UAL/market_cap.

https://www.sec.gov/ix?doc=/Archives/edgar/data/100517/000110465920073190/tm2022354d3_8k.htm
https://ycharts.com/companies/UAL/market_cap
https://www.sec.gov/ix?doc=/Archives/edgar/data/100517/000110465920073190/tm2022354d3_8k.htm
https://ycharts.com/companies/UAL/market_cap
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In our application, we study a model of vertical product differentiation where firms
face switching costs. When switching costs are low, nothing goes beyond NE, and when
switching costs are high, anything goes. However, the case of intermediate switching
costs is surprising. There are new SNE, and in them, consumers benefit, firms suffer,
and the consumer effect dominates, so overall efficiency increases.

Finally, our model of switching costs with endogenous references relates to the per-
sonal equilibrium notion of Köszegi and Rabin (2006, 2007). However, there are signifi-
cant behavioral differences. For example, their model does not necessarily nest NE and
equilibria may not exist in their setting.

The paper proceeds as follows. Section 2 provides an axiomatic study of one-player
games with switching costs and endogenous references. Section 3 studies the SNE of
multiplayer games and relates it to the notion of ε-equilibrium. Section 4 contains an
application to vertical product differentiation. Section 5 analyzes alternative models
and Section 6 surveys the related literature. Section 7 discusses some implications of our
model. All proofs are presented in the Appendix A and two examples regarding personal
equilibrium models are provided in Appendix B.

2. One-player games

In this section, we take an axiomatic approach to understanding an agent’s choice be-
havior in one-player games (decision problems). Let X be a finite grand set of actions
(pure strategies) and X be the set of all nonempty subsets of X . A mixed strategy m is
a convex combination of pure strategies aj with weights mj , that is, m = ∑

j m
jaj . The

term mixed strategy is used to refer to both trivial mixtures (pure strategies) and nontriv-
ial mixtures (strictly mixed strategies). Typically, we use a, b, � � � to denote pure strate-
gies and m, n, � � � to denote mixed strategies (whether trivial or not). For any set of pure
strategies A, we denote the associated set of mixed strategies by �(A). A choice corre-
spondence C is a nonempty valued map C : X ⇒ �(X ) such that C(A) ⊆ �(A) for any
A ∈ X . In words, from each set of pure strategies, an agent can only choose mixtures of
those pure strategies.

We first propose and discuss a choice procedure of costly switching from endoge-
nous references, and then provide an axiomatic characterization for that.

Definition 2.1. A choice correspondence C represents costly switching from endoge-
nous references if for any A ∈ X ,

C(A) = {
m ∈ �(A)|U(m) ≥U

(
m′) −D

(
m′, m

) ∀m′ ∈ �(A)
}

,

for some

(1) U : �(X ) → R such that U(m) = ∑
j m

jU(aj ) for all m ∈ �(X ) and aj ∈ supp(m),

(2) D : �(X ) ×�(X ) →R+ such that D(m, m) = 0 for all m ∈ �(X )

Here, U is an expected utility function and we interpret it as the reference-free utility
of each strategy. We call D a switching cost function, and we interpret D(m′, m) as the
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switching cost the agent incurs when he deviates to strategy m′ from a reference strat-
egy m. Note that staying with the same strategy m is associated with zero cost while
the cost of switching to another strategy m′ is nonnegative. In this model, the agent
chooses a strategy m if he would not want to deviate to any other strategy m′ when m is
his reference, taking the utility U and switching costs D(m′, m) into account. The choice
correspondence C selects all strategies from which the agent cannot profitably deviate.

In the procedure of costly switching from endogenous references, we focus on a spe-
cific class of switching cost functions, namely excess bilinear ones. To keep track of ex-
cesses, we denote the overlap between any two mixed strategies m and n by the vector
o= min(m, n) as in the following definition.

Definition 2.2. A switching cost function D : �(X ) × �(X ) → R+ is called excess

bilinear if for any (m, n) ∈ �(X ) ×�(X ) with m �= n, o= min(m, n), and ‖o‖1 = ∑|A|
j=1 o

j

D(m, n) =
|A|∑
j=1

|A|∑
k=1

m̂jn̂kD
(
aj , ak

)(
1 − ‖o‖1

)
, where

(m̂, n̂) = (m− o, n− o)
1

1 − ‖o‖1
.

While an excess bilinear switching cost function gives the cost of switching between
any pair of mixed strategies, let us note that it is uniquely defined by its behavior on pure
strategies. That is, when defining an excess bilinear switching cost function, it suffices
to specify the switching costs on pures only.

An excess bilinear switching cost function is simply obtained by calculating the ex-
pected switching cost for the vector of normalized excesses. Specifically, for a pair of
mixed strategies, (i) the common weight between the two mixed strategies is subtracted
from each of them, so excesses are obtained for each, (ii) these excesses are normalized
to �(X ), and (iii) the renormalized expected switching cost between these excesses is
calculated. Renormalization ensures a linear structure such that D(t, pb + (1 − p)t ) =
pD(t, b), that is, the switching cost of moving from pb+ (1 −p)t to t is the fraction p of
the whole cost of switching from b to t. This function is bilinear on the excess strategies,
which motivates the name “excess bilinear.”

To clarify, when switching from one pure strategy b to another pure strategy t, the in-
curred switching cost is simply D(t, b). When switching between nonoverlapping mixed
strategies, say from 1

2b+ 1
2b

′ to 1
2 t + 1

2 t
′, the excess strategies are the same as the origi-

nal mixed strategies and therefore the switching cost is bilinear: D( 1
2 t + 1

2 t
′, 1

2b+ 1
2b

′ ) =
1
4D(t, b)+ 1

4D(t ′, b)+ 1
2D(t ′, b)+ 1

4D(t ′, b′ ). When switching between overlapping mixed
strategies, the switching costs are bilinear on the excess strategies, and not on the origi-
nal ones.

To illustrate the calculation of an excess bilinear switching cost in more detail, we
now present three examples. In these examples, mixed strategies are represented by
vectors of weights over pure strategies.
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Example 1 (One mixed strategy and one pure strategy). Consider a mixed strategy
m = [ 1

2 , 1
4 , 1

4 ] and a pure strategy n = [0, 1, 0]. Then o = [0, 1
4 , 0], m − o = [ 1

2 , 0, 1
4 ] and

n − o = [0, 3
4 , 0]. Therefore, the normalized excesses are m̂ = 4

3 · [ 1
2 , 0, 1

4 ] = [ 2
3 , 0, 1

3 ] and
n̂ = 4

3 · [0, 3
4 , 0] = [0, 1, 0] ⇒ D(m, n) = ( 2

3D(a, b) + 1
3D(c, b)) · 3

4 ⇒ D(m, n) = 1
2D(a, b) +

1
4D(c, b). This linearity holds in general when one strategy is pure and the other is mixed:

D

(
x,

|A|∑
j=1

njaj

)
=

|A|∑
j=1

njD
(
x, aj

)
and D

( |A|∑
j=1

mjaj , y

)
=

|A|∑
j=1

mjD
(
aj , y

)
.

♦

Example 2 (Two mixed strategies with nonoverlapping supports). Consider two mixed
strategies m = [ 1

2 , 1
2 , 0, 0] and n = [0, 0, 1

2 , 1
2 ]. Then o = [0, 0, 0, 0] and, therefore, m̂ = m

and n̂ = n. Thus, D(m, n) = 1
4D(a, c) + 1

4D(a, d)+ 1
4D(b, c) + 1

4D(b, d). Therefore, D is
bilinear when the intersection of supports is empty.

♦

Example 3 (Two mixed strategies with overlapping supports). Consider two mixed
strategies m = [ 1

2 , 1
2 , 0] and n = [0, 2

3 , 1
3 ]. Then o = [0, 1

2 , 0] ⇒ m − o = [ 1
2 , 0, 0] and

n − o = [0, 1
6 , 1

3 ]. Therefore, the normalized excesses are m̂ = 2 · [ 1
2 , 0, 0] = [1, 0, 0] and

n̂ = 2 · [0, 1
6 , 1

3 ] = [0, 1
3 , 2

3 ]. So, D(m, n) = 1
2 ( 1

3D(a, b) + 2
3D(a, c)) = 1

6D(a, b) + 1
3D(a, c).

In particular, the switching costs are calculated using the probability that needs to be
shifted, that is, 1

6 to a from b, and 1
3 to a from c.

♦
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Besides the standard understanding, we now present three other interpretations of
mixed strategies and excess bilinear switching cost functions.

Interpretation 1 (Allocations). To continue the motivating example from Section 1,
a mixed strategy refers to the proportion of workers a factory owner assigns to each
task, while switching from one mixed strategy to another refers to his reassignment of
workers among tasks. The allocation interpretation similarly applies to any problem in
which agents divide a continuous amount of resources among different options, such
as investors reallocating funds among assets or firms apportioning resources to differ-
ent product lines. D(aj , ak ) is the cost that the factory owner incurs when reassign-
ing all workers from task ak to task aj . In order to calculate the cost of switching from
one mixed strategy to another, the factory owner is assumed to proportionally reassign
the excess workers from overstaffed tasks to understaffed tasks. While we presume that
switching is proportional, all of our results also carry through for a factory owner who is
either talented or untalented at reassigning workers.2

Interpretation 2 (Population distributions). Consider a population of identical
agents. Agents do not actually randomize, they only play pure strategies. A mixed strat-
egy here refers to the fractions of the population playing each pure strategy. Switching
from one mixed strategy to another refers to some (or all) members of the population
changing the pure strategies that they play. D(aj , ak ) is the cost that each individual
member of the population incurs when switching from ak to aj , and D(m, n) refers to
the aggregate cost of switching when the population switches from n to m. In particular,
we would like to emphasize that we do not take a representative agent point of view.
Instead, this interpretation relies upon the fundamental lemma of the paper: a mixed
strategy is a best response if and only if all of the pures in its support are best responses.
That is, for a mixed strategy to be a best response, it must be that each member of the
population is individually best responding.

2Suppose that D̃i(m, n) = ∑
j

∑
k w

jkDi(a
j
i , aki )(1 −‖min(m, n)‖1 ) where wjk ≥ 0,

∑
j w

jk = n̂k,
∑

k w
jk =

m̂j , and m̂j , n̂k are as in Definition 2.2. Our proportional weight model has wjk = m̂jn̂k. A factory owner
who has an excellent (or terrible) reassignment ability would choose the weights to reassign workers in the
cheapest (or costliest) manner. Importantly, all of our results are robust to any choice of weights.
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State Strategy
1 c

2 c

3 b

4 b

5 b

6 c

←

State Strategy
1 a

2 a

3 b

4 b

5 b

6 b

Figure 1. Statewise switching.

Interpretation 3 (State-dependent strategies). Consider a world with various payoff-
irrelevant states and for each state, the agent chooses a pure strategy to play there. He
does not randomize. A mixed strategy refers to the measure of states in which the agent
plays that pure strategy. Switching from one mixed strategy to another requires that
the agent changes the pure strategy he selects in some (or all) states of the world. He
changes his pure strategy in the smallest measure of states possible and the switching
costs D(aj , ak ) he incurs when he changes his pure strategy from ak to aj are state-
independent. The agent proportionally reassigns his strategy across states such that
strategies that are now played less frequently are exchanged for strategies that are now
played more frequently. In Figure 1, each state is equally likely and a switch from 2

6a+ 4
6b

to 3
6b+ 3

6c is illustrated. In states 1, 2, and 6, the agent switches his pure strategies, and
the switching cost is 2

6D(c, a) + 1
6D(c, b).

We now introduce four axioms which will characterize our model. The first two are
classical properties introduced by Sen (1971).

Axiom 2.1 (α). For any A, B ∈ X where B ⊆ A,

if m ∈ C(A) and m ∈ �(B), then m ∈ C(B).

Axiom α states that if a mixture is chosen from a set and is choosable from a subset,
then it must be chosen from that subset as well.

Axiom 2.2 (γ). For any A, B ∈ X ,

if m ∈ C(A) ∩C(B), then m ∈ C(A∪B).

Axiom γ states that if a strategy is chosen from two sets, then it must also be chosen
from their union.Recall that both Axioms α and γ are necessary for the classical Weak
Axiom of Revealed Preference (WARP), though they are not sufficient (even together).

Axiom 2.3 (Convexity). For any A ∈ X and for any p ∈ (0, 1),

if m, m′ ∈ C(A), then pm+ (1 −p)m′ ∈ C(A).
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Axiom Convexity stipulates that the choice correspondence is convex-valued. This
is a standard property of best responses: if two strategies are both best responses, then
any mixture of these two strategies is also a best response. Furthermore, it also expresses
some risk aversion as the agent weakly prefers to hedge.

Axiom 2.4 (Support). For any A ∈ X ,

if m ∈ C(A) and a ∈ supp(m), then a ∈ C(A).

Axiom Support states the following game-theoretic property in a one-player setting:
if a mixed strategy is a best response, then so is every pure strategy in its support. It also
rules out any strict benefit from randomization, including phenomena like ambiguity
aversion, and a preference for randomization (Cerreia-Vioglio et al. (2019)).3

Theorem 2.1. A choice correspondence C satisfies Axioms α, γ, Convexity, and Support
if and only if C represents costly switching from endogenous references where costs are
excess bilinear.

If Axioms α and γ are strengthened to WARP, then there is a representation with D ≡
0, that is, the standard model of expected utility. While our model accepts the rational
model as a special case, it also allows for agents who do not behave rationally. To see this,
suppose that X = {x, y, z}, U(x) = 0, U(y ) = 2, U(z) = 4 , and D(a, a′ ) = 3 for all a �= a′.
Then C(X ) = �({y, z}) and C({x, y}) = �({x, y}).

Remark 1. The functions U and D in Theorem 2.1 are not necessarily unique, even up
to monotonic transformations. Suppose X = {t, b} and C(X ) = �(X ). Then the exter-
nal observer can conclude that either U(t ) ≥ U(b) and D(t, b) ≥ U(t ) − U(b) holds; or
U(b) > U(t ) and D(b, t ) ≥ U(b) − U(t ) holds, but cannot tell which. This could be re-
solved if reference-free choices are also observed, but such decision problems are out-
side of our model.

Remark 2. A classical argument against mixed strategies is that they are more compli-
cated than pure strategies. Thus, it might be natural that an agent incurs an additional
complexity cost only when he switches from pure to mixed strategies. As it turns out,
the introduction of such complexity costs into our model does not alter our results. The
reason is that whenever there is a profitable pure-to-mixed deviation, there is also a
profitable pure-to-pure deviation. This argument equally applies to multiplayer games
and so a surprising byproduct is that adding complexity costs into the standard model
does not change the set of NE.

3Recall the standard Independence Axiom: p ∼ q ⇔ λp + (1 − λ)r ∼ λq + (1 − λ)r, ∀p, q, r. If an agent’s
preferences satisfy Independence, then his choices satisfy Axioms Support and Convexity. Hence, Support
and Convexity are both weaker than Independence.
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3. Multiplayer games

3.1 Framework and results

Consider a simultaneous game setting with N > 1 agents. Each agent i has a nonempty
finite set of actions (pure strategies) Ai and can play any mixed strategy from Mi =
�(Ai ). The Cartesian products A := ∏N

i=1 Ai and M := ∏N
i=1 Mi denote the spaces

of pure and mixed strategy profiles, respectively. The vectors a = (ai )Ni=1 ∈ A and
m = (mi )Ni=1 ∈ M denote profiles of pure and mixed strategies, respectively. The nota-
tion a−i and m−i denote pure and mixed strategy profiles, respectively, excluding agent
i’s. Each agent i possesses an expected utility function Ui : M → R. Up to this point,
we have described a standard game-theoretic model, which can formally be written as
�= 〈N , (Ai )Ni=1, (Ui )Ni=1〉.

We extend the standard notion of a simultaneous game by supposing that each agent
i is endowed with an excess bilinear cost function Di : Mi ×Mi → R+ as in Theorem 2.1.
Our main object of study is a D-game, which is a tuple 〈N , (Ai )Ni=1, (Ui )Ni=1, (Di )Ni=1〉.
In a D-game, switching costs take place between strategies and this imposes discipline
on the model. If switching costs were between outcomes, then the cost incurred by an
agent would depend not only on the two strategies he switches between, but also on the
entire profile of choices of all other agents. As a result, the agent would bear a switching
cost when other agents alter their choices, even though he himself is sticking with the
same strategy. Since the number of profiles is much larger than the number of strategies
for an individual agent, the switching cost function is more strongly tied down when it
operates across strategies rather than across profiles of strategies.

We now define when a strategy is a switching cost best response to other agents’
strategies. The definition is the same as in the classical theory except that an agent now
takes into account the switching cost as well when contemplating deviations from the
specified strategy to another one.

Definition 3.1. In a D-game, for agent i, a strategy mi ∈ Mi is a switching cost best
response (SBR) to m−i ∈ M−i if Ui(mi, m−i ) ≥ Ui(m′

i, m−i ) − Di(m′
i, mi ) holds for all

m′
i ∈ Mi. Formally, agent i’s SBR correspondence is SBRi(m−i ) := {mi|Ui(mi, m−i ) ≥

Ui(m′
i, m−i ) −Di(m′

i, mi ) ∀m′
i ∈Mi}.

According to this definition, a strategy mi is an SBR if, given other agents’ strategies
m−i, the agent has no incentive to deviate when he plays mi and views mi as his refer-
ence. The existence of SBRs is trivially guaranteed since any standard best response of
the underlying standard game is an SBR. This is because if an agent has no profitable
deviation when switching costs are ignored, then there is clearly no profitable deviation
when they are taken into account.

The SBR notion satisfies some of the properties that are found in the standard set-
ting. The most important of these can be stated as follows: A mixed strategy is an SBR
if and only if each pure strategy in its support is an SBR (see the lemma in Appendix
A). According to the population interpretation of mixed strategies, this property states:
a mixed strategy is an SBR if and only if each member of the population is playing an
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Table 1. Matching pennies.

H T

H 1, −1 −1, 1
T −1, 1 1, −1

SBR. In general, all of the following results hold for any cost function that satisfies this
property and that is linear when one strategy is pure and the other is mixed.

We define a Switching Cost Nash Equilibrium analogously to the standard Nash
Equilibrium (NE).

Definition 3.2. In a D-game, a Switching Cost Nash Equilibrium (SNE) is a profile of
mixed strategies m= (mi )Ni=1 ∈M such that mi ∈ SBRi(m−i ) for each agent i.

Note that an SNE profile serves two purposes. The standard one is to specify optimal
play of all agents, given other agents’ behavior. The other is that it serves as the endoge-
nous reference strategy from which switching costs are measured. Notice that any NE is
an SNE and, therefore, the existence of an SNE is trivially guaranteed.

Proposition 3.1 states that the range of possible equilibrium profiles in D-games is a
strict superset of those possible in the standard setting. To formally state that, we define

NE := {T |T is the set of NE for some standard game},

SNE := {T |T is the set of SNE for some D-game}

Proposition 3.1. NE � SNE

The weak inclusion in Proposition 3.1 is trivial, while the strict inclusion requires
constructing an example whose SNE are not realizable as a set of NE for any standard
game. Formally, there is a D-game 〈N , (Ai )Ni=1, (Ui )Ni=1, (Di )Ni=1〉 whose SNE are different
than the NE of any other standard game 〈N , (A′

i )
N
i=1, (U ′

i )Ni=1〉, where both the action sets
and utility functions are allowed to vary between the two games.

Example 1. Consider a matching pennies D-game where payoffs are as in Table 1 and
both players’ switching costs are Di(H, T ) = Di(T , H ) = 0.1. Figure 2 depicts both play-
ers’ SBR correspondences (blue for player 1, red for player 2) and the set of SNE (yellow
for the intersection). ♦

Figure 2. Figure 2 depicts both players’ SBR correspondences (darker for player 1, lighter for
player 2) and the set of SNE (the intersection).
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21

1

2 H

S

Figure 3. A pure strategy profile where the seeker does not find the hider.

Example 2. Consider a two-dimensional hide-and-seek game with two players H and S

(Rubinstein et al. (1997)). Each agent chooses an x-coordinate and a y-coordinate from
the set {1, 2} × {1, 2}. A possible strategy profile is depicted in Figure 3.

Player H is a hider and receives a payoff 1 if both players choose different locations
and 0 otherwise. Player S is a seeker and receives a payoff of 1 if both players choose the
same location and 0 otherwise. Formally,

UH

([
xH
yH

]
,

[
xS
yS

])
= 1[xH

yH

]
�=
[xS
yS

] and US

([
xH
yH

]
,

[
xS
yS

])
= 1[xH

yH

]
=
[xS
yS

]
As in the game of matching pennies, this game has a unique NE—both players uni-

formly randomize over all possible locations (with probability ¼), and the seeker finds
the hider with probability ¼.

Regarding switching costs, we now suppose that each agent can switch a single co-
ordinate for free, but that it costs at least 1 to switch both coordinates. Without loss of
generality, Di

([ x′
y ′

]
,
[ x
y

]) = 1x′ �=x1y ′ �=y . This is in the spirit of Ayala and Rubinstein (2019)
where an agent can only change one dimension. The following proposition character-
izes the set of SNE.

Proposition 3.2. In the above hide-and-seek D-game, besides the standard Nash equi-
librium, there are additional SNE such that:

1. The additional SNE are all pure profiles
([ xH

yH

]
,
[ xS
yS

])
such that xH �= xS and yH �= yS .

2. In any additional SNE, the seeker does not find the hider, so US = 0, and UH = 1.

As a simple counting exercise, notice that there are 16 pure strategy profiles that the
agents may play. In four of them, the seeker finds the hider. In the remaining twelve, the
hider hides successfully, and four of those twelve are SNE profiles. In the first panel of
Figure 4, we depict the standard Nash equilibrium. The other three panels depict all of
the pure profiles (up to permutation).4

♦

4An essential feature of this hide-and-seek game and of our model is the heterogeneity in switching
costs between different pure strategies. In this particular game, an agent’s switching cost depends upon
how many dimensions he deviates in. If switching costs were homogenous here, then the set of SNE would
be similar to that in Example 1.
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Figure 4. Hide-and-seek.

3.2 A formal comparison of SNE and ε-equilibrium

Notice that the notion of SNE can be equivalently formulated as a profile of mixed strate-
gies m ∈M such that for each agent i,

Ui(mi, m−i ) ≥Ui

(
m′

i, m−i

) −D
(
m′

i, mi

) ∀m′
i ∈ Mi.

This is reminiscent of the ε-equilibrium notion due to Radner (1980). In order to
compare that notion with the SNE notion, we need to formally define an ε-game and an
ε-best response.

An ε-game is a tuple 〈N , (Ai )Ni=1, (Ui )Ni=1, ε〉 and an ε-best response is

εBRi(m−i ) = {
mi|Ui(mi, m−i ) ≥Ui

(
m′

i, m−i

) − ε, ∀m′
i ∈Mi

}
.

An ε-Nash Equilibrium (εNE) is a profile of mixed strategies m ∈ M such that for
each agent i, mi ∈ εBRi(m−i ). This definition of εNE coincides with Radner’s (1980) ε-
equilibrium definition, which is any profile of mixed strategies m ∈M such that for each
agent i,

Ui(mi, m−i ) ≥Ui

(
m′

i, m−i

) − ε ∀m′
i ∈Mi.

Thus, εNE can be viewed as an equilibrium with the cost function Di(m′
i, mi ) = ε for

all m′
i, mi ∈ Mi. This flat cost function differs fundamentally from ours because it is not

excess bilinear. To understand differences, first notice that in εNE the switching cost be-
tween any pair of distinct pure strategies is a homogenous ε, whereas the cost function
in SNE can be heterogenous, that is, costs can differ between any pair of pure strategies.
Second, the cost function in SNE scales linearly between a pure strategy and mixtures
of itself, that is, D(λa+ (1 − λ)a′, a′ ) = λD(a, a′ ) = λε, whereas the cost function in εNE
remains ε. That is, the difference between SNE and εNE cost functions is analogous to
that of “variable costs” and “fixed costs.”

To illustrate the differences between εBR and SBR, let us return to the matching pen-
nies game where payoffs are as in Table 1. Figure 5 depicts player 1’s εBR correspon-
dences for two different epsilon values5 and Figure 6 does the same for SBR correspon-
dences.

5Algebraic calculations show U1(λH + (1 −λ)T , γH + (1 −γ)T ) = λ(4γ− 2) − 2γ+ 1. Thus, if γ > 1/2 (so
that H is a best response for player 1), then λH + (1 − λ)T is an ε-best response if and only if λ ≥ 1 − ε

4γ−2 .
Similarly, if γ < 1/2, then λH + (1 − λ)T is an ε-best response if and only if λ ≤ ε

2−4λ .
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Figure 5. εBR for Player 1 in a matching pennies game with ε = 0.1 (left) and ε= 1 (right).

Clearly, both notions extend the standard best response notion. The next result
shows that extensions are completely distinct: the only correspondences that are both
εBR and SBR are standard best responses. To formally state this result, we make the fol-
lowing definitions. In each, the f are best response correspondences and the defined
sets consist of all possible best response correspondences for each notion.

BR := {f |f is the BR of some player in some standard game}

SBR := {f |f is the SBR of some player in some D-game}

εBR = {f |f is the εBR of some player in some ε-game}

The two best response correspondences depicted in Figure 5 are members of εBR,
and not of SBR nor BR (see Figure 7). Likewise, the two best response correspondences
depicted in Figure 6 are members of SBR, and not of εBR nor BR (see Figure 7).

Proposition 3.3. BR = SBR ∩ εBR

Notice that Proposition 3.3 goes beyond simply stating that cost functions cannot be
mimicked across the two best response notions. The set SBR includes any SBR for any

Figure 6. SBR for Player 1 in a matching pennies game with D = 0.1 (left) and D = 1 (right)
between pures.
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Figure 7. Illustration of Proposition 3.3.

D-game and likewise a member of εBR is any ε-best response for any ε-game. There-
fore, when a function f is in both SBR and εBR, this f may arise from different games
with different utilities, different cost functions, and different action sets. However, all
of these games must have the same set of other players and other players’ strategies
because otherwise the common best response correspondence f would have different
domains. This proposition shows that even though the D-game and the ε-game may
differ in utilities, D-functions, ε-value, and the strategies available to the best respon-
der, any best response correspondence that is both an SBR and an εBR must also be a
standard best response correspondence.

We now analyze the following prisoner’s dilemma game (Table 2). This analysis not
only exhibits the difference between the two equilibrium notions (SNE and εNE) more
clearly, but also forms the basis for our next proposition, which we view as a fundamen-
tal result regarding SNE.

First, notice that there is a unique NE, namely (Defect , Defect ). Additionally, if
D(ai, a′

i ) ≤ ε < 1 for every pair of actions ai, a′
i ∈ {Coop, Defect }, then (Defect , Defect )

is also the unique SNE. However, for any ε > 0, the set of εNE includes not only
(Defect , Defect ) but also other mixed profiles. To see this, notice that (λCoop + (1 −
λ)Defect , λCoop + (1 − λ)Defect ) is an εNE as long as λ ≤ ε. The difference is because
according to SNE, costs incurred to switch between two very similar mixed strategies
are very small whereas the cost remains flat according to εNE. Thus, when moving from
a standard game to one with ε switching costs, all mixed strategies that were best re-
sponses remain so, but so are nearby mixed strategies since the switching cost to the
best response cannot be overcome. This need not be the case for the SNE notion be-
cause as a mixed strategy gets closer to a standard best response, the switching costs to
that standard best response also decrease.

Table 2. Prisoner’s dilemma.

Coop Defect

Coop 5, 5 0, 6
Defect 6, 0 1, 1
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Mailath et al. (2005) develop a notion of ε-equilibrium for extensive form games
that extends Radner’s (1980) definition for normal form games. Mailath et al. (2005)
show that for any extensive form game G, the following are true: (i) all NE of nearby
games are ε-equilibria of G, and (ii) all pure ε-equilibria of G are NE of nearby games.
Thus, the equivalence between ε-equilibria of a game and NE of nearby games holds for
pure strategy profiles, but not for mixed profiles since mixed ε-equilibria may not be NE
of nearby games. This is because, for any pure NE and small enough ε, nearby mixed
profiles are ε-equilibria, but not NE of nearby games. The above prisoner’s dilemma
game is an example of this: not only does the game have (Defect , Defect ) as the unique
NE, but also every nearby game has (Defect , Defect ) as its unique NE, whereas the set
of ε-equilibria is strictly larger than the singleton {(Defect , Defect )}. On the contrary,
since (Defect , Defect ) is the unique SNE of the above prisoner’s dilemma game, there
is a chance that the equivalence between SNE of the original game and NE of nearby
games holds for both pure and mixed strategy profiles. The next proposition shows that
this is indeed the case.

To measure the distance between games, we employ the following notion of Mailath
et al. (2005).

Definition 3.3. Given two games G and G′ with the same number of players and the
same sets of strategies, the distance between them is �(G, G′ ) = maxi,m |Ui(m) −U ′

i(m)|.

Proposition 3.4. For any standard game G = 〈N , (Ai )Ni=1, (Ui )Ni=1〉, define the D-game
Gε = 〈N , (Ai )Ni=1, (Ui )Ni=1, (Di )Ni=1〉 where D is the excess bilinear cost function such that
Di(ai, a′

i ) = ε for all i and all action pairs ai �= a′
i. Then

SNE(Gε ) =
⋃

{
G′|�

(
G,G′

)
≤ε/2

}NE
(
G′).

This proposition considers a specific excess bilinear switching cost function which
takes the same ε value across all different pure strategy pairs. Under this specific cost
function, an equivalence is obtained between SNE of a game and NE of nearby games
for both pure and mixed strategy profiles. Hence, Proposition 3.4 is a strengthening of
Mailath et al.’s (2005) result. It implies that the SNE notion can serve as a computational
tool for calculating the set of NE of all nearby games. Specifically, calculating the NE of
all nearby games can be complicated because there are infinitely many nearby games,
each of which has a set of NE to be solved for. This proposition provides an alternative
approach: one can simply calculate the SNE of the game with ε costs (between pure
strategies) which only requires the calculation of equilibria for one game. Therefore, a
reader who is not interested in SNE for its own sake may still find SNE to be a useful tool
for studying NE of nearby games.

4. An application to vertical differentiation

In a setting with firms and consumers, either party can face switching costs. When con-
sumers face switching costs, such as reward programs, the impact is fairly trivial: con-
sumers are locked in, so firms can charge them higher prices, which benefits firms and
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harms consumers. What happens when firms face switching costs? In this section, we
investigate a standard model of vertical differentiation where firms face switching costs
and analyze its welfare/efficiency implications.

Consider two firms, 1 and 2, who choose quality levels q1, q2 ∈ [q, q], respectively,

and face a continuum of consumers distributed uniformly on [θ, θ] where θ > 2θ.6

A type θ consumer’s utility from consuming a good of quality qi is U(θ, qi ) = θqi − pi,
where pi is the price that firm i charges for the good. We further assume that every con-
sumer buys a good. Both firms face a linear cost of production, c, and their profits are

i = (pi − c)μi, where μi is the measure of agents who shop at firm i. For simplicity,
we restrict our attention to pure strategies. In our analysis, without loss of generality,
we focus on the case where the second firm produces a good of higher quality, that is,
q2 ≥ q1.

Our model is based upon Tirole’s (1988) treatment of Shaked and Sutton (1982),
who study a two-stage model with firms choosing quality in the first stage and price
in the second stage. They demonstrate that there is a unique subgame perfect Nash

equilibrium, where the pricing functions are p1(q1,q2 ) = c + θ−2θ
3 �q and p2(q1, q2 ) =

c + 2θ−θ
3 �q with �q = q2 − q1. In our model, we focus only on the first stage, namely the

competition over quality, and assume that firms use these pricing functions.
In the absence of switching costs, there is a unique NE (up to permutation) and it fea-

tures maximal differentiation: q1 = q and q2 = q. This is because both firms’ objectives
are aligned and their profits are increasing in the firms’ quality difference.

We now introduce linear switching costs into the model so that it is costly for each
firm to deviate from its planned quality level, Di(q̂i, qi ) = λ|q̂i − qi|, which might be due
to expenses that firms face in retooling factories or training. With such switching costs,
firms now face a trade-off when they are not maximally differentiated. Firms would
like to further differentiate themselves to increase their profits, but doing so would lead
them to incur a switching cost.

The following proposition establishes that there are three regions which govern the
structure of equilibria, and analyzes their welfare and efficiency implications. We use
the phrase “welfare” to refer to overall consumer welfare and “profits” to refer to total
firm profits (
1 +
2). Our efficiency criterion is the standard one: welfare plus profits.
In the low switching cost region, the differentiation incentive dominates the switching
costs and so the only SNE is the NE. In the intermediate switching cost region, the high-
quality firm picks the maximum quality while the low-quality firm picks any quality (not
necessarily the lowest one). All additional SNE have lower profits, higher welfare, and
higher efficiency than the NE. Finally, in the high switching cost region, switching costs
dominate the differentiation incentive, and anything goes: every quality profile is an
SNE, including ones which are simultaneously worse for both consumers and firms.

6Without this assumption, the model collapses to a Bertrand competition where firms compete on price
and make zero profit.
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Proposition 4.1 (Vertical differentiation). There are thresholds, λl = (θ−2θ)2

9(θ−θ)
and λh =

(2θ−θ)2

9(θ−θ)
, such that when the switching cost parameter λ is

Strictly below λl: There is a unique SNE (up to permutation) and it is equal to the
NE, (q, q).

Between λl and λh: The SNE are all profiles (q1, q) where q ≤ q1 ≤ q. Furthermore, in
comparison to the NE:

All additional SNE are strictly less profitable, strictly more effi-
cient, and strictly welfare improving.

Weakly above λh: Any quality profile is an SNE. Furthermore, in comparison to the
NE:

All additional SNE are strictly less profitable. Some SNE are
strictly more efficient and some are strictly less efficient. Finally,
if θ < (7 + 3

√
3)θ/2, then all additional SNE are strictly welfare

improving, whereas if θ > (7 + 3
√

3)θ/2, then there are also SNE
which are strictly welfare worse.

As discussed earlier, firms’ profits are increasing in their quality difference. With-
out switching costs, this pushes firms to maximally differentiate their qualities. With
switching costs, it is possible to support interior choices where the firms are not pushed
to the extremes, and Proposition 4.1 deduces which interior outcomes are possible and
when. The key observation is that while both firms profit from differentiation, they do
not profit from it equally as the high-quality firm’s profit function has a higher slope than
that of the low-quality firm. Thus, there is an intermediate switching cost region where
the high-quality firm chooses the highest quality possible, but the low-quality firm need
not choose the lowest quality. This implies that all additional SNE in this region have the
high-quality firm producing the maximum quality. Relative to the NE benchmark, these
additional SNE are more efficient (because the new quality profile Pareto-dominates it),
yield less profit for the firms (because the closer the firms’ qualities are, the less profits
they earn) and, therefore, are better for consumers. However, when switching costs are
high enough, then even the high-quality firm can be dissuaded from altering its produc-
tion in favor of higher-quality products, and thus, anything goes. Table 3 summarizes
Proposition 4.1.

Table 3. Summary of Proposition 4.1.

Switching Costs SNE Welfare Profits Efficiency

Low Only (q, q) = = =
Intermediate Any (q1, q) ↑ ↓ ↑
High Anything Goes

↑ if θ < (7 + 3
√

3)θ/2 ↓ ↑,↓↑, ↓ if θ > (7 + 3
√

3)θ/2
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5. Alternative models

In this section, we contrast our model to one with fully bilinear switching costs and to
Köszegi and Rabin’s (2006) personal equilibrium model. We find that for each model
class, at least one of the following fails: our Proposition 3.4, existence of an equilibrium,
or extension to the NE.

5.1 Fully bilinear switching costs

A fully bilinear switching cost function is D : M × M → R+ such that for any two mixed
strategiesm = ∑

j m
jaj and n = ∑

k n
kak, D(m, n) := ∑

j,km
jnkD(aj , ak ). Notice that

a fully bilinear cost function differs from our excess bilinear cost function in that the
common part of any two mixed strategies is no longer subtracted. Thus, unlike our
model, an agent with a fully bilinear cost function may face positive switching costs even
when he does not change his strategy. For example, D( 1

2 t + 1
2b, 1

2 t + 1
2b) = 1

4D(t, b) +
1
4D(b, t ) > 0. Now, consider a one-player game setting with C(A) = {m|U(m) −
D(m, m) ≥ U(m′ ) − D(m′, m), ∀m′ ∈ �(A)} as in our model but suppose that D is fully
bilinear. This agent’s choice behavior satisfies Axioms α, γ, and Support. However, since
he faces a positive switching cost in order to remain at his reference strategy, his choice
correspondence C may not satisfy the Convexity Axiom and thus, he may have a dispref-
erence for hedging.7

Similarly, in a multiplayer game setting with fully bilinear costs, the convex-
valuedness of best responses need not hold, which means that this model is quite dif-
ferent from ours. A more important distinction is regarding our fundamental result that
demonstrates the equality of SNE of a game to NE of nearby games (Proposition 3.4).
This result does not hold when the switching cost function is fully bilinear. To see this,
consider the following battle of the sexes game shown in Table 4.

Let D be a switching cost function such that Di(ai, a′
i ) = ε, ∀i, ai �= a′

i as in Propo-
sition 3.4 and let ε = 0.1. Figure 8 displays the players’ best response correspondences
and the equilibria when D is excess bilinear (left panel) and when D is fully bilinear
(right panel). Furthermore, notice the difference in best response correspondences: the
SBRs (left panel) are thick and the best responses in the fully bilinear case (right panel)
have 0 width. Likewise the set of equilibria are quite different: there is a square region of
mixed SNE (left panel), but in the fully bilinear case, there is exactly one mixed equilib-
rium (right panel). Therefore, Proposition 3.4 does not hold for fully bilinear switching
costs. One can also see that in the case of fully bilinear costs, the best response corre-
spondence (right panel) is not convex-valued as it has a positive slope.

Table 4. Battle of the sexes.

B O

B 2, 1 0, 0
O 0, 0 1, 2

7To see this, suppose that A = {t, b} and U(t ) = 2, U(b) = 1, D(t, b) = D(b, t ) = 2. Then t, b ∈ C(A), but
m= 1

2 t + 1
2b /∈ C(A). To see why, note that 2 − 1 = U(t ) −D(t, m) >U(m) −D(m, m) = 3

2 − 1.
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Figure 8. Best responses and equilibria under excess bilinear costs (left) and fully bilinear costs
(right).

5.2 Personal equilibria

Based on Köszegi and Rabin (2006, 2007) and Köszegi (2010), Freeman (2017) character-
izes a general version of personal equilibrium (and preferred personal equilibrium) in
an abstract setting and Freeman (2019) characterizes an expected utility preferred per-
sonal equilibrium model of choice under risk. Throughout this section, we focus on
the general version of personal equilibrium which we refer to as PE, and the Personal
Equilibrium with Linear Loss Aversion (PE-LLA).8 Table 5 summarizes our findings.

Personal equilibrium In the Personal Equilibrium (PE) model, a decision maker has a
reference-dependent utility function v(m′|m) which conveys his utility from choosing
the strategy m′ when his reference is m. Given v and an available set of mixed strategies
S, the set of personal equilibria is

PEv(S) = {
m|v(m|m) ≥ v

(
m′|m

)
, ∀m′ ∈ S

}

Table 5. Summary of differences between the switching cost and personal equilibrium models.

PE model PE-LLA model

one-player
Existence Issues

Reduces to Rationality
Failure of Convexity and Support Axioms

multiplayer
Existence Issues

Does not nest NE
Does not always nest NE

8Köszegi and Rabin (2007) also introduce the notion of choice-acclimating personal equilibrium, which
is characterized by Masatlioglu and Raymond (2016). The choice-acclimating personal equilibrium model
differs from ours in that (i) it reduces to the rational theory when alternatives are deterministic; and (ii) it
satisfies a “Mixture Aversion” property: the mixture of two indifferent nontrivial lotteries is always weakly
(and often strictly) less preferred than either of them, whereas agents in our model are “Mixture Indifferent”
(choices are convex-valued).
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Figure 9. The incompatibility of the Freeman’s (2019) nonexistence inequalities (vertical) and
the switching cost inequalities (horizontal).

This is a generalization of our model by setting v(m′|m) = U(m′ ) − D(m′, m). How-
ever, there is a cost to this generalization as there can be existence issues, unlike our
model. Freeman (2019) provides an example where a PE does not exist: S = {m, m′},
v(m′|m) > v(m|m) and v(m|m′ ) > v(m′|m′ ). This example is impossible in our frame-
work. To see why, notice that in our model, the nonnegativity of switching costs implies
v(m′|m′ ) ≥ v(m′|m) because the utility is the same on both sides of the inequality, but on
the left side the agent does not face switching costs whereas on the right side he does.
Likewise, v(m|m) ≥ v(m|m′ ). Figure 9 displays these conditions and those of the Free-
man example, and shows that they form a cycle. This demonstrates the incompatibility
of the Freeman example with our model. Hence, unlike in our paper, there must be a
negative switching cost (i.e., boost) in the Freeman example. That is, for some different
x, y ∈ {m, m′}, the agent is better off choosing x when his reference is y rather than when
his reference is x itself, formally v(x|y ) > v(x|x). Just as nonnegative switching costs cor-
respond to the status quo bias (Masatlioglu and Ok (2005, 2014)), boosts correspond to
a status quo aversion, which in turn can lead to existence issues.

Köszegi (2010) prove that in the one-player PE model, these existence issues can
be resolved by allowing the agent to choose from convex sets. For example, suppose
that the agent has two pure strategies t and b, and chooses from the simplex �({t, b}).
Let v(t|t ) = v(b|b) = 0 and v(t|b) = v(b|t ) = 1. That is, the agent has 0 utility from both
options, but he likes switching and gets a boost of 1 whenever he does. In this example,
there is no personal equilibrium in pure strategies, but by expected utility, there is a
mixed strategy personal equilibrium. Naturally, this is a violation of our Axiom Support.
In our one-player setting with nonnegative costs, mixing is not vital for existence, and
there is always a pure strategy equilibrium.

For the multiplayer PE model, in Appendix B, we provide a 2 × 2 example where
the reference-dependent utility function is continuous and yet, an equilibrium does not
exist. This non-existence is due to the fact that the best response correspondences need
not be convex-valued.

Personal equilibrium with linear loss aversion In the Personal Equilibrium with Lin-
ear Loss Aversion (PE-LLA) model, when choosing an alternative m with reference m′,
the agent receives (i) expected utility from m, and (ii) gain-loss utility from m, resulting
from its comparison to m′. Moreover, choice outcomes can be multidimensional, for
example, a bundle of consumption goods or a multiattribute good. Unlike our model,
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the one-player PE-LLA model with single-dimensional outcomes reduces to rational
choice.9 For multiplayer games, the PE-LLA equilibria does not extend NE because it
often has different mixed equilibrium. In Appendix B, we show this in a simplified 11–20
money request game. Furthermore, the mixed PE-LLA equilibrium there is unappealing
because it converges to the globally welfare-worst outcome as loss aversion increases.

6. Related literature

Guney and Richter (2018) also model reference effects via costly switching, but from ex-
ogenous status quos. This is in contrast to the current paper which studies endogenous
reference points.10 An advantage of the endogeneity here is that the current model is
portable to standard game-theoretic settings where agents do not naturally have observ-
able references. Furthermore, Guney and Richter (2018) consider pure strategies only,
whereas mixed strategies are of fundamental importance for the current paper. To study
mixed strategies, the present paper introduces the excess bilinear switching cost func-
tion. Applications in both papers also differ in flavor. Guney and Richter (2018) focus
on prisoners’ dilemma games, and derive necessary and sufficient conditions to explain
cooperation observed in experiments, using their model as well as other models in the
literature. In this paper, we instead perform a general game-theoretic analysis and then
explore specific games, including the games of matching pennies, hide-and-seek, 11–20
money request, as well as a vertical product differentiation application.

In the game theory literature, the two closest papers are Shalev (2000) and Ayala and
Rubinstein (2019). Shalev (2000) considers a simultaneous game setting in which each
agent takes his expected utility as a reference. Each agent evaluates outcomes by ap-
plying loss aversion to the generated lottery of payoffs relative to his reference utility.
Thus, these agents are always rational in deterministic environments, unlike our model.
In Ayala and Rubinstein (2019), agents play a symmetric simultaneous game with mul-
tidimensional actions. Each agent only considers unidimensional deviations. In the
language of switching costs, these agents face zero switching costs between strategies
varying in at most one dimension and infinite switching costs otherwise. In contrast,
our model allows for costs with intermediate values. A more significant difference is
that in their model, each agent’s actions are partitioned into cells and an equilibrium is
a profile of cells such that each agent’s cell contains an action from which there is no
profitable unidimensional deviation, given that the agent believes that his opponents
randomize uniformly over their own cells.

There is also a significant literature on repeated games where agents play the same
game in each period and pay a cost to switch actions across periods. Prominently, Klem-
perer (1987, 1995), Beggs and Klemperer (1992), Farrell and Shapiro (1989), and Von

9Suppose there is a unique utility-maximizing pure strategy a. It is chosen in the PE-LLA model because
deviating to any other strategy (pure or mixed) gives lower utility and negative gain-loss utility. Further-
more, no other b can be chosen because the agent could profitably deviate to a since v(a|b) > u(a) > u(b) =
v(b|b). The case with indifferences is similar.

10For choice-theoretic works on endogenous references, see Ok et al. (2014) and Guney and Richter
(2018).
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Weizsäcker (1984) study firms’ pricing decisions in models where customers face switch-
ing costs when moving between firms. Caruana and Einav (2008) and Libich (2008) con-
sider time-varying switching costs, whereas Lipman and Wang (2000, 2009) establish
folk-theorem-like results for certain games. All of the these papers differ from ours in
the following ways: (i) they study repeated games and we study simultaneous one-shot
games; (ii) the reference point there is the previous period’s action, whereas in our model
each equilibrium is a reference for itself; (iii) switching costs there are flat across actions
as opposed to the varying costs in our model; (iv) they generally consider specific games
in contrast to the general class of games considered here; and (v) mixed actions generally
do not figure into their analysis whereas they play a fundamental role here.

7. Discussion

We introduced and studied an equilibrium model with switching costs. Even though
not framed in this language, the ε-equilibrium models of Radner (1980) and Mailath
et al. (2005) can also be viewed as switching cost models where the cost is a flat ε for all
switches. Our results are related as well. While Mailath et al. (2005) find the one-way
result that all NE of nearby games are ε-equilibria, our model achieves a stronger two-
way result: for a particular cost function, the SNE fully characterizes the set of all NE of
nearby games. This suggests, in some sense, that our switching cost model may be the
“correct” version of ε-equilibria.

Furthermore, Radner’s (1980) classic result for a finitely repeated Cournot game is
that ε-equilibria can sustain collusive outcomes which are good for firms and bad for
consumers, provided that the end of the game is sufficiently distant. In a standard NE,
collusion typically unravels; but if the last period is sufficiently far away, then the dis-
counted benefit of deviating in that far off future is less than ε, and so collusion com-
prises an ε-equilibrium. Mailath et al. (2005) point out that this use of ε-equilibrium to
sustain collusion deserves some healthy skepticism as today’s ε is being used to mea-
sure the far future’s benefit. Their contemporaneous ε-equilibria notion avoids these
timing issues by keeping the switching costs in the same time period as when deviations
are being made. Moreover, their one-way result on the NE of nearby games implies that
substantial collusion is no longer supported in the finitely repeated Cournot game.

Focusing on simultaneous games, we analyzed a switching cost model that is free
of the timing issues raised by Mailath et al. (2005) and went beyond skepticism to fully
overturning Radner’s (1980) classic conclusion: switching costs in our model benefit
consumers. Furthermore, our conclusions are robust and unambiguous. In contrast,
the ε-equilibrium notion does not actually deliver such a clear message: in a simultane-
ous Cournot game, ε-equilibrium can support both outcomes where firms produce less
(which benefit firms and harm consumers) and outcomes where firms produce more
(which harm firms and benefit consumers).

In our view, models where firms are constrained by switching costs fit into the recent
literature on Bounded Rationality and Industrial Organization (Spiegler (2011)), except
it is now the firms that are bounded. Can firms mitigate their weakness from switching
costs? Will they lose because of it or can they even turn it into an advantage? After
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all, there are now models in both directions. Further research remains to discover the
general welfare implications of boundedly rational firms.

Appendix A

We first present a fundamental lemma (and its proof) that will be useful for the proof of
Theorem 2.1, and throughout. The one-player version states:

“a mixed strategy m is chosen if and only if every pure strategy in its support is chosen.”

After proving the lemma, we present its multiplayer version.

Lemma (One-Player). Given any expected utility function U , excess bilinear function D,
and m ∈ �(A), then

U(m) ≥U(n) −D(n, m) ∀n ∈ �(A)

⇔ U(a) ≥U(n) −D(n, a) ∀a ∈ supp(m), ∀n ∈ �(A).

Proof of Lemma (One-Player). For any m, n ∈ �(A), let o = min(m, n) and

‖o‖1 = ∑|A|
j=1 o

j . Given any n �=m, define m̂= m−o
1−‖o‖1

and n̂ = n−o
1−‖o‖1

. Notice that

U(n) −U(m) >D(n, m)

⇔ (
1 − ‖o‖1

)(
U(n̂) −U(m̂)

)
>

(
1 − ‖o‖1

)
D(n̂, m̂)

⇔ U(n̂) −U(m̂) >D(n̂, m̂)

⇔
|A|∑
j=1

|A|∑
k=1

n̂jm̂k
(
U

(
aj

) −U
(
ak

))
>

|A|∑
j=1

|A|∑
k=1

n̂jm̂kD
(
aj , ak

)

[⇐] If U(m) � U(n) − D(n, m) for some n ∈ �(A), then U(n) − U(m) >D(n, m). By
the above equivalence, for some aj ∈ supp(n) and some ak ∈ supp(m), U(aj ) > U(ak ) −
D(aj , ak ). In words, if m is not chosen, then one of its underlying pure strategies ak is
also not chosen.

[⇒] If U(ak ) � U(z) − D(z, ak ) for some z ∈ �(A) and ak ∈ supp(m), then U(z) −
U(ak ) > D(z, ak ). Since U is linear, and D is linear in the first coordinate when its
second coordinate is a pure strategy, ∃aj ∈ supp(z) so that U(aj ) − U(ak ) > D(aj , ak ).
Then U(m̄) −U(m) >D(m̄, m) where m̄ = m−mkak +mkaj , and thus, U(m) �U(m̄) −
D(m̄, m). In words, if some ak in the support of m is not chosen; then m is also not
chosen.

We now present the multiplayer version of the above fundamental lemma. It states:

“a mixed strategy m is a best response if and only if every pure strategy in its support is a best
response.”
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Lemma (Multiplayer). For any D-game 〈N , (Ai )Ni=1, (Ui )Ni=1, (Di )Ni=1〉, player i, and
mixed strategy mi,

mi ∈ SBRi(m−i ) ⇔ ai ∈ SBRi(m−i ) ∀ai ∈ supp(mi ).

Proof of lemma (Multiplayer). The proof is exactly the same as the one-player ver-
sion with the following replacements made everywhere: U(m) by Ui(mi, m−i ), and
D(n, m) by Di(ni, mi ).

Proof of Theorem 2.1. [⇒] Assume that C satisfies Axioms α, γ, Convexity, and Sup-
port. First, we define a binary relation R on X : namely, for any a, b, define aRb if
b /∈ C(ab).11 Intuitively, “a rules out b.” Notice that, by Axiom α, if a �= b and aRb, then b

can never be chosen from any set of actions that also contains a.
We now show that R is antisymmetric and acyclic. To show that R is antisymmetric,

suppose aRb. If a strictly mixed strategy m ∈ �(ab) is in C(ab), then by Axiom Support
b ∈ C(ab) which violates aRb. Therefore, C(ab) = {a} and so b�Ra. To show that R is
acyclic, suppose a1Ra2R� � �RanRa1. Take m ∈ C(a1 � � � an ) and ai ∈ supp(m). Then, by
Axiom Support, ai ∈ C(a1 � � � an ) and by Axiom α, ai ∈ C(ai−1ai ). Therefore, ai−1�Rai.

Since R is acyclic and antisymmetric, there exists a U : X → [0, 1] that represents
R in the sense that for any pair a �= b, aRb ⇒ U(a) > U(b). Next, extend U through
expected utility to U : �(X ) → [0, 1]. Now, for every a, b, define D(a, b) = 0 if aRb or
a = b, and D(a, b) = 1 otherwise. Next, extend D to �(X ) × �(X ) so that for any m,

D(m, m) = 0, and for any pair m �= n, let o= min(m, n), ‖o‖1 = ∑|A|
j=1 o

j and define

D(m, n) =
|A|∑
j=1

|A|∑
k=1

m̂jn̂kD
(
aj , ak

)(
1 − ‖o‖1

)
, where

(m̂, n̂) = (m− o, n− o)
1

1 − ‖o‖1
.

It finally remains to be shown that for the above U and D:

C(A) = {
m ∈ �(A)|U(m) ≥U

(
m′) −D

(
m′, m

) ∀m′ ∈ �(A)
}

.

[⊆] Take z ∈ C(A). By Axiom Support, for every b ∈ supp(z), b ∈ C(A). By Axiom
α, for all a ∈ A, b ∈ C(ab) and so a�Rb. Therefore, D(a, b) = 1 for all a ∈ A. This im-
plies U(b) ≥ U(a) −D(a, b) for all a ∈ A because 1 ≥ U(b), U(a) ≥ 0. Then, by linearity,
U(b) ≥U(m′ ) −D(m′, b) ∀m′ ∈ �(A) and recall that this holds for any b ∈ supp(z). By the
lemma, U(z) ≥U(m′ ) −D(m′, z) ∀m′ ∈ �(A).

[⊇] Take z ∈ �(A) such that U(z) ≥ U(m′ ) −D(m′, z) ∀m′ ∈ �(A). By the lemma, for
any b ∈ supp(z), U(b) ≥ U(m′ ) − D(m′, b) ∀m′ ∈ �(A). Therefore, in particular, for any
a ∈ A, U(b) ≥ U(a) −D(a, b). If aRb, then by definition U(a) >U(b) and D(a, b) = 0, a
contradiction. Thus, it must be that a�Rb. Therefore, b ∈ C(ab) for all a ∈ A. By repeated

11For simplification, we drop the curly brackets and write C(ab) instead of C({a, b}).
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applications of Axiom γ, one obtains b ∈ C(A) for all b ∈ supp(z). By Axiom Convexity,
z ∈ C(A).

[⇐] We now assume there exist U and D with the properties outlined in the state-
ment of the theorem and show that axioms are satisfied.

To show that Axiom α holds, take any m ∈ C(A). Then U(m) ≥U(m′ ) −D(m′, m) for
all m′ ∈ �(A) and in particular for any m′ ∈ �(B) such that B ⊆ A. Hence, m ∈ C(B) as
well.

To show that Axiom γ holds, take m ∈ C(A) ∩ C(B). Then, by definition, U(m) ≥
U(m′ ) − D(m′, m) for all m′ ∈ �(A) ∪ �(B). Now, suppose U(m) < U(n) − D(n, m) for
some n = ∑

i,j α
iai + βjbj with ai ∈ A and bj ∈ B. Then there must exist ak ∈ supp(m)

such that U(ak ) < U(n) − D(n, ak ). Then U(ak ) < U(n) − D(n, ak ) = ∑
i αi[U(ai ) −

D(ai, ak )] + ∑
j βj[U(bj ) − D(bj , ak )] < U(x) − D(x, ak ) for some x ∈ {ai, bj }i,j , where

the equality follows from the linearity of D when one strategy is pure and the other is
mixed. Recall that m ∈ C(A) ∩ C(B) implies ak ∈ C(A) ∩ C(B) and the last inequality
above is a contradiction to either ak ∈ C(A) or ak ∈ C(B).

To show that Axiom Convexity holds, take any m, m′ ∈ C(A). By definition, U(m) ≥
U(n) − D(n, m) and U(m′ ) ≥ U(n) − D(n, m′ ) for all n ∈ �(A). Suppose there exists p ∈
(0, 1) such that U(pm + (1 − p)m′ ) < U(n) − D(n, pm + (1 − pm′ )) for some n ∈ �(A).
Then there must exist ak ∈ supp(m) ∪ supp(m′ ) such that U(ak ) < U(n) − D(n, ak ). But
this is a contradiction to either m ∈ C(A) or m′ ∈ C(A).

For Axiom Support, it is enough to recall the lemma we proved earlier. Axiom Sup-
port is the same as one direction of the if and only if statement in the lemma.

Proof of Proposition 3.1. The weak inclusion NE ⊆ SNE is trivial. For any standard
game G, there is a corresponding D-game G′ where for every player i and for every
mi, m′

i ∈ Mi, Di(mi, m′
i ) = 0. Then BRG

i = SBRG′
i for all i and consequently NE(G) =

SNE(G′ ).
To demonstrate the strict inclusion, we now provide an example. Define G′ to be

A1 = {t, b}, A2 = {l, r}, D1(t, b) = 2, D1(b, t ) = 0, and D2(l, r ) = D2(r, l) = 0. Payoffs are
as in Table 6.

Notice that

D1
(
λt + (1 − λ)b, ωt + (1 −ω)b

) =
{

2(ω− λ) if ω> λ

0 otherwise

In other words, a strategy that deviates by placing more probability on b is never
profitable because the potential benefit is capped at ω−λ and the switching cost always

Table 6. Payoffs for strict inclusion proof.

l r

t 1, 0 0, 0
b 0, 0 1, 0
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Figure 10. SBR correspondence (shaded).

outweighs this benefit. Thus, for any given mixed strategy, the only deviations that may
be profitable increase the probability placed on t. Thus, a mixed strategy λt + (1 −λ)b is
an SBR to γl + (1 − γ)r if and only if

U1
(
λt + (1 − λ)b, γl + (1 − γ)r

) ≥U1
(
t, γl + (1 − γ)r

)
⇔ λγ + (1 − λ)(1 − γ) ≥ γ

⇔ (1 − λ)(1 − γ) ≥ γ(1 − λ)

⇔ γ ≤ 1/2 or λ = 1

Figure 10 depicts the SBR function of player 1. Notice also that every mixed strategy
of player 2 is a best response to any mixed strategy of player 1. Therefore, Figure 10 also
depicts SNE(G′ ) of this D-game.

If there is a game G such that NE(G) = SNE(G′ ), then since (t, r ), (b, r ) ∈ SNE(G′ ),
it must be that U1(t, r ) = U1(b, r ). Since (t, 1

2 l + 1
2 r ), (b, 1

2 l + 1
2 r ) ∈ SNE(G′ ), it must be

that U1(t, 1
2 l + 1

2 r ) = U1(b, 1
2 l + 1

2 r ). By expected utility, U1(t, l) = U1(b, l). Similarly,
because (t, 1

2 l + 1
2 r ), (t, r ) ∈ SNE(G′ ), it must be that U2(t, l) = U2(t, r ) and because

(b, 1
2 l + 1

2 r ), (b, r ) ∈ SNE(G′ ), it follows U2(b, l) =U2(b, r ). Notice that if each player has
no further actions, then NE(G) = M × M �= SNE(G′ ). However, it is possible that there
are further actions and then the payoff matrix must look like Table 7.

Since (b, l) /∈ SNE(G′ ) = NE(G), it must be the case that either player 1 or 2 must
have a strictly profitable deviation from (b, l). If it is player 1, then U1(n, l) >w, but then

Table 7. Payoff matrix with potential deviations.

l r m . . .

t w, x y, x
b w, z y, z
n
...
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(t, l) /∈ NE(G), contradicting NE(G) = SNE(G′ ) because (t, l) ∈ SNE(G′ ). If it is player
2, then U2(b, m) > z, but then (b, r ) /∈ NE(G), again contradicting NE(G) = SNE(G′ )
because (b, r ) ∈ SNE(G′ ). Since we reach a contradiction in either case, it cannot be
that NE(G) = SNE(G′ ) for any standard game G.

Proof of Proposition 3.2. Trivially, the standard mixed NE is an SNE. We now show
that there is no other SNE where the seeker finds the hider. Let (mH , mS ) be an SNE
where both agents play a common location, say

[ 1
1

]
, with nonzero probability, that is,

mH

([ 1
1

])
, mS

([ 1
1

])
> 0. Then, by our fundamental lemma,

[ 1
1

]
is an SBR for the hider,

and so it must be that mS

([ 1
1

]) ≤ mS

([ 1
2

])
. Thus,

[ 1
1

]
,
[ 1

2

]
are SBRs for the seeker, and

since the seeker can costlessly switch between them, it be that mH

([ 1
1

]) = mH

([ 1
2

])
. But

then
[ 1

2

]
is an SBR for the hider and so mS

([ 1
2

]) =mS

([ 1
1

])
. Iterating this argument across

all strategies gives mS

([ 1
1

]) = mS

([ 1
2

]) =mS

([ 2
1

])
. So for this to be an SNE, it is necessary

that the seeker uniformly randomizes over all locations and likewise for the hider, which
is simply the standard NE.

Any other SNE must have the seeker not finding the hider. This is the first-best for
the hider, so it only needs to be checked when the seeker does not have a profitable
deviation. The seeker has a profitable deviation if and only if the seeker and hider play
adjacent strategies with nonzero probability because then the seeker could costlessly
deviate and find the hider with nonzero probability.12 Since there are only two choices
in each dimension, the seeker has no profitable deviations if and only if the seeker and
hider play pure strategies, which differ in both dimensions.

Proof of Proposition 3.3. [⊆] Trivially, BR � SBR and BR ⊆ εBR hold.
[⊇] Take f ∈ SBR ∩ εBR. Then there is a corresponding game 〈N , (Ai )Ni=1, (Ui )Ni=1〉

and ε ≥ 0 such that f is player i’s ε-best response. If ε = 0 in the corresponding game,
then f is a standard best response. Therefore, suppose that ε > 0.

By expected utility, for any profile of other agents’ strategies m−i, there is a pure strat-
egy ai such that Ui(ai, m−i ) ≥ Ui(m′

i, m−i ) ∀m′
i ∈ Mi. Now, take a sequence of strategies

{mn
i }, which assign positive probability to every pure strategy in Ai such that mn

i → ai.
By the continuity of Ui, there is a mixed strategy in this sequence so that Ui(mn

i , m−i ) ≥
Ui(ai, m−i ) − ε, and thus mn

i ∈ f (m−i ). Therefore, for any profile m−i, f (m−i ) contains
at least one mixed strategy that assigns positive probability to every pure strategy in Ai.
Since f is also an SBR for some D-game, the lemma applies and stipulates that all ac-
tions in the support of that strategy are best responses. Thus, all actions in Ai (the pure
strategies from the ε-game) are best responses. Therefore, ∀i, ai ∈ Ai, m−i, ai ∈ f (m−i ).
But, by again applying the lemma, one obtains that ∀i, f (m−i ) = Mi, a standard best
response.13

Proof of Proposition 3.4. [⊆] Take m ∈ SNE(Gε ). Then, by the lemma, ∀ai ∈
supp(mi ) and ∀a′

i �= ai, Ui(ai, m−i ) ≥ Ui(a′
i, m−i ) − D(a′

i, ai ) = Ui(a′
i, m−i ) − ε. This im-

plies that the utilities of all pure strategies in the support of m are within ε of each other.

12Two locations are adjacent if they coincide in one dimension and differ in the other.
13Notice that in the D-game for which f is an SBR, player i may have access to more pure strategies than

the ε-game that we analyze, but this is irrelevant for the above analysis.
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Let vi = minai∈supp(mi ) Ui(ai, m−i ) + ε/2. For any action profile a, define

U ′
i(a) =

⎧⎨
⎩
Ui(a) + vi −Ui(ai, m−i ) if a ∈ supp(m),

Ui(a) − ε

2
otherwise.

To show that m ∈ NE(G′ ), it remains to show for any action ai, U ′
i(mi, m−i ) ≥

U ′
i(ai, m−i ). First, notice that for any ai ∈ supp(mi ), U ′

i(ai, m−i ) = Ui(ai, m−i ) + vi −
Ui(ai, m−i ) = vi. Thus, by the linear expected utility of the standard setting,
U ′
i(mi, m−i ) = vi. Therefore, there is no profitable deviation to any action ai ∈ supp(mi ).

Second, for any âi /∈ supp(mi ), U ′
i(âi, m−i ) = Ui(âi, m−i ) − ε

2 . Now, recall that mi ∈
SNE(Gε ) implies (by the lemma) that minai∈supp(mi ) Ui(ai, m−i ) ≥ Ui(âi, m−i ) − ε. Thus,
U ′
i(mi, m−i ) = vi = minai∈supp(mi ) Ui(ai, m−i )+ ε

2 ≥Ui(âi, m−i )−ε+ ε
2 =Ui(âi, m−i )− ε

2 =
U ′(âi, m−i ). Therefore, there is no profitable deviation to any action âi /∈ supp(mi ). Fi-
nally, recall a well-known game theory result that if there is no profitable deviation to
any pure strategy, then there are no profitable deviations to mixed strategies as well
(Proposition 116.2, Osborne (2003)).

[⊇] Take a game G′ such that �(G, G′ ) ≤ ε/2 and m′ ∈ NE(G′ ) and take an action
a′
i ∈ supp(m′

i ). Then in G′, a′
i ∈ BR′(m′

−i ). For any other pure strategy ai, it must be that
U ′
i(ai, m

′
−i ) ≤ U ′

i(a
′
i, m

′
−i ) ⇒ Ui(ai, m′

−i ) − ε ≤ Ui(a′
i, m

′
−i ). Therefore, a′

i ∈ SBR(m′
−i ). By

the lemma, m′
i ∈ SBR(m′

−i ) and applying this argument for each agent i implies m′ ∈
SNE(G).

Proof of Proposition 4.1. Given the equilibrium pricing functions, each firm’s profit
can be computed as


1(q1,q2 ) =
(
θ− 2θ

3

)2 �q

θ− θ
and 
2(q1,q2 ) =

(
2θ− θ

3

)2 �q

θ− θ

While there are a continuum of deviations that each firm could make, there are only a
few that could be most profitable. If the most profitable deviation is not desirable, then
there are no profitable deviations at all. In particular, since switching costs are linear
and the profit functions above are linear in the quality difference, the agent’s benefit of
deviating is piecewise linear with kinks at q, q1, q2, and q. Furthermore, deviating from
q1 to q2 (or vice versa) is never worthwhile, because firms make 0 profit if they produce
the same quality. Thus, q and q are the only points that need to be checked for profitable
deviations.

The four best possible deviations are depicted in Figure 11. As it turns out, deviation
1r is less profitable than deviation 2r while deviation 2l is less profitable than deviation
1l. We now show this for the 1r ↔ 2r case:

(1r ) 
1(q, q2 ) −
1(q1, q2 ) =
(

2θ− θ

3

)2 q− q2

θ− θ
−

(
θ− 2θ

3

)2 q2 − q1

θ− θ

<

(
2θ− θ

3

)2 q− q2

θ− θ
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Figure 11. Best possible deviations.

=
(

2θ− θ

3

)2 q

θ− θ
−

(
2θ− θ

3

)2 q2

θ− θ

=
(

2θ− θ

3

)2 q− q1

θ− θ
−

(
2θ− θ

3

)2 q2 − q1

θ− θ

= 
2(q1, q) −
2(q1, q2 ) (2r)

Thus, a deviation by firm 1 to q has a lower benefit than firm 2 switching to q. Fur-
thermore, to deviate to q, firm 1 has to move further and thus faces a higher switch-
ing cost than firm 2 would. Therefore, the deviation 1r is always strictly less profitable
than the deviation 2r. Similarly, one can show that the deviation 2l is always strictly less
profitable than the deviation 1l. Therefore, it only needs to be checked when the most
profitable deviations 1l and 2r are not profitable.

The deviation 1l is unprofitable when


1(q1, q2 ) ≥
1(q, q2 ) −D1(q, q1 )

⇔ D1(q, q1 ) ≥
1(q, q2 ) −
1(q1, q2 )

⇔ λ(q1 − q) ≥ (θ− 2θ)2(q1 − q)

9(θ− θ)
(1l)

Thus, in equilibrium, we have

λ ≥ (θ− 2θ)2

9(θ− θ)
= λl or q1 = q (1l)

Similarly, for the deviation 2r, we have that in equilibrium

λ≥ (2θ− θ)2

9(θ− θ)
= λh or q2 = q (2r)

The temptingness of deviations and consequently, the set of SNE is summarized in
Figure 12.

To understand the furthermore statements, note that in any SNE (including the stan-
dard NE), consumers with θ < (θ+ θ)/3 buy the lower quality good and the rest buy the
higher quality good. Therefore,

Efficiency = E(q1, q2 ) =
∫ θ+θ

3

θ
θq1

dθ

θ− θ
+

∫ θ

θ+θ
3

θq2
dθ

θ− θ
− c
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Figure 12. SNE equilibrium regions for vertical competition.

= θ+ θ

2
q1 + 8θ

2 − 2θθ− θ2

18(θ− θ)
�q− c

Total Profit =
(q1, q2 ) =
(

5θ
2 − 8θθ+ 5θ2

9

)
�q

θ− θ

Welfare = Efficiency − Total Profit

Intermediate switching cost region (λl ≤ λ < λh): As q1 ∈ [q, q] and q2 = q, it follows
that efficiency is strictly higher in the additional SNE than in the NE. Since �q is smaller,
overall profits are strictly lower. Finally, since welfare is equal to efficiency minus profits,
it must be that consumer welfare is strictly higher.

High switching cost region (λh ≤ λ): Note that efficiency, welfare, and total profit
are linear in q1, q2. Therefore, only the extreme SNE need to be checked: (q, q) (checked
above) and (q, q) (checked now). When q1 = q2 = q, efficiency is minimized. Since �q =
0, overall profits are minimized.

Finally, welfare is improved if and only if

0 ≤ ∂W

∂q2
= ∂E

∂q2
− ∂


∂q2
= 8θ

2 − 2θθ− θ2

18(θ− θ)
−

(
5θ

2 − 8θθ+ 5θ2

9(θ− θ)

)
= −2θ

2 + 14θθ− 11θ2

18(θ− θ)

Focusing on the numerator, dividing through by θ2 and letting r = θ/θ, we get 0 ≤ −2r2 +
14r − 11. Since we assumed that r > 2, the welfare of the extreme SNE strictly increases
if r < (7 +3

√
3)/2, that is, if θ < (7 +3

√
3)θ/2, and the welfare of the extreme SNE strictly

decreases if r > (7 + 3
√

3)/2, that is, if θ > (7 + 3
√

3)θ/2.

Appendix B

Example 1: Nonexistence of an equilibrium in the multiplayer PE model

In the multiplayer setting, the most natural extension of the PE model is as follows:

BRPE
i (m−i ) = {

mi|Vi(mi, m−i|mi ) ≥ Vi
(
m′

i, m−i|mi

)
, ∀m′

i ∈Mi

}
An equilibrium is a profile where each agent is best responding. Consider a matching

pennies game where player 2 is rational and payoffs are as in Table 1. Denote player 2’s
strategy as m2 = q ·H + (1 − q) · T . Define V1 as below, which implies the best response
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Figure 13. Non-existence of an equilibrium in the PE model.

correspondence BRPE
1 .

V1
(
m′

1, m2|m1
) =

⎧⎪⎪⎨
⎪⎪⎩

1 if m′
1 = H and q ≥ 1/2

1 if m′
1 = T and q ≤ 1/2

< 1 otherwise

BRPE
1 (m2 ) =

⎧⎪⎪⎨
⎪⎪⎩
H if q > 1/2

{H, T } if q = 1/2

T if q < 1/2

Figure 13 depicts both players’ best response correspondences. Since they do not
intersect, there is no personal equilibrium. This is in contrast to our model where the
existence of an equilibrium is guaranteed by the convexity of best response correspon-
dences (which does not hold in the PE model).

Example 2: PE-LLA equilibrium in a simplified 11–20 money request game

The extension of the PE-LLA model to multiplayer games could potentially be done in
various ways, but one natural method would be to treat other players’ strategies as dif-
ferent dimensions. Specifically, an agent takes the other agents’ choices as given, and
receives (i) expected utility from (m1, m−1 ), and (ii) gain-loss utility from the new strat-
egy profile (m1, m−1 ) when it is compared to the reference strategy profile (m′

1, m−1 ). In
this model, references are utility-based and the gain-loss utility calculation uses not just
the agent’s own strategy and reference strategy, but also the strategy of his opponents.
This is a key difference of that model from ours, because switching costs in our model
are between strategies and depend only on m1 and m′

1. The two models are formally
written in Table 8.

In the multiplayer setting, the set of personal equilibrium does not extend the set
of NE. That is, while an agent behaves rationally in the one-player setting, in a multi-
player setting the equilibria are no longer the same as those of the rational model. This
is generically true, but to illustrate, we now present a simplified version of the 11–20
money request game (Ayala and Rubinstein (2012)). A player can bid either h = 2 (high)
or l = 1 (low). Every player is paid their bid, and in addition, if a player bids low and the
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Table 8. The switching cost and PE-LLA models.

Switching Costs U1((m′
1, m−1 )|m1 ) = E[U1(m′

1, m−1 )] −D(m1, m′
1 )

Personal Equilibrium with U1((m′
1, m−1 )|(m1, m−1 )) = E[U1(m′

1, m−1 )] −DKR(m1, m′
1, m−1 )

Linear Loss Aversion where DKR(m1, m′
1, m−1 ) =

(PE-LLA)
∑|A1|

j=1

∑|A1|
k=1

∑|A−1|
l=1 m

j
1m

′k
1 ml−1μ(u1(aj , al ) − u1(ak, al ))

and μ is a gain-loss utility function, that is, μ(z) =
{
z if z ≥ 0
λz if z < 0 and λ > 1

other player bids high, then the low bidder receives a bonus of 3. The payoff matrix is
presented in Table 9.

This game has two pure NE, (h, l) and (l, h), and one mixed NE, namely ( 1
3h +

2
3 l,

1
3h + 2

3 l). Note that, in the standard model, player 1’s mixed strategy must leave
player 2 indifferent between pure strategies (and vice versa). However, in the PE-LLA
model, when player 1 plays this mixture, player 2 is no longer indifferent, rather he
strictly prefers to bid low. To see why, suppose that player 1 plays m = 1

3h + 2
3 l. Then

player 2’s payoff of deviating from m to l is

U2
(
(m, l)|(m, m)

) = 2 + 1
3

· 1 · 1
3

· 2 + 1
3

· 1 · 2
3

· (−λ) = 20
9

− 2λ
9

and his payoff from remaining at m is

U2
(
(m, m)|(m, m)

) = 2 + 1
3

(
1
3

· 2
3

· (−3λ) + 2
3

· 1
3

· 3
)

+ 2
3

(
1
3

· 2
3

· 1 + 2
3

· 1
3

· (−λ)

)

= 64
27

− 10λ
27

Since λ > 1, algebraic calculations show that U2((m, l)|(m, m)) >U2((m, m)|(m, m)).
However, a mixed personal equilibrium exists, it is symmetric, and it differs from the
NE. In the mixed personal equilibrium, each player plays p · h + (1 − p) · l where

p = −
√

λ2+2λ+33+λ+5
2(λ−1) . Thus, the PE-LLA model does not extend the NE (nor does the

PE model).
Let us call this mixed equilibrium, KR(λ). Notice that, limλ↓1 KR(λ) = 1

3h+ 2
3 l, that is,

it approaches the mixed NE as loss aversion vanishes. Furthermore, limλ↑∞ KR(λ) = l.
This is counterintuitive because the mixed equilibrium profile converges to (l, l) as loss
aversion increases, but this profile is Pareto-dominated and the welfare-worst outcome.

Table 9. A simplified 11–20 money request game.

h l

h 2, 2 2, 4
l 4, 2 1, 1
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