Local Global Equivalence in Voting Models:
A Characterization and Applications

Ujjwal Kumar†, Souvik Roy†, Arunava Sen‡,
Sonal Yadav§ and Huaxia Zeng¶

September 23, 2020

*We are grateful to Shurojit Chatterji, Federico Echenique, Debasis Mishra, Eyal Winter and several referees for valuable comments and suggestions. We would also like to thank the participants of 2015 IDGP workshop at Universitat Autònoma de Barcelona, the Conferences on Economic Design at Bilgi University, Istanbul (2015), the University of York (2017) and Corvinus University, Budapest (2019), the Meetings of the Society for Social Choice and Welfare at Lund University (2016) and Seoul National University (2018), the 2019 Conference on Economic Design and Algorithms at the Higher School of Economics, St. Petersburg as well as seminar participants at the Stockholm School of Economics, the City University of Hong Kong, Ashoka University for their helpful comments. Huaxia Zeng acknowledges that his work was supported by the National Natural Science Foundation of China (No. 71803116), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No. 2019140015), and the Fundamental Research Funds for the Central Universities (No. 2018110153). Sonal Yadav gratefully acknowledges financial support from the Jan Wallander and Tom Hedelius Foundation.

†Indian Statistical Institute, Kolkata, India.
‡Indian Statistical Institute, New Delhi, India.
§Umeå University, Umeå, Sweden.
¶School of Economics, Shanghai University of Finance and Economics, Shanghai 200433, China, and Key Laboratory of Mathematical Economics (SUFE), Ministry of Education, Shanghai 200433, China.
Abstract

The paper considers a voting model where each voter’s type is her preference. The type graph for a voter is a graph whose vertices are the possible types of the voter. Two vertices are connected by an edge in the graph if the associated types are “neighbours”. A social choice function is locally strategy-proof if no type of a voter can gain by misrepresentation to a type that is a neighbour of her true type. A social choice function is strategy-proof if no type of a voter can gain by misrepresentation to an arbitrary type. Local-Global equivalence (LGE) is satisfied if local strategy-proofness implies strategy-proofness. The paper identifies a condition on the graph that characterizes LGE. Our notion of “localness” is perfectly general - we use this feature of our model to identify notions of localness according to which various models of multi-dimensional voting satisfy LGE. Finally, we show that LGE for deterministic social choice functions does not imply LGE for random social choice functions.

Keywords: Local incentive constraints, strategy-proofness, mechanism design, strategic voting.

JEL Classification: D71.
1 Introduction

Mechanism design theory is concerned with models where agents have private information (called a type) which has to be elicited by the mechanism designer. The cornerstone of the theory is the collection of strategy-proofness constraints which ensure that agents do not have incentives to misreport their types (or manipulate). The standard assumption in the theory is that the proposed social choice function must be immune to all possible misreports of agents. There is, however, considerable experimental evidence that agents do not always lie in an optimal payoff-maximizing way. For instance Fischbacher and Föllmi-Heusi (2013) conduct an experiment where agents are paid money on the basis of a report of a privately observed roll of a die. In their results, only 20 percent of the subjects lie optimally, 39 percent are fully honest while the remaining lie “partially”. Agents often choose to lie credibly by only misreporting to types that are “near” or “close to” their true types. We consider a model where an agent of a particular type can only misreport to an arbitrary set of pre-specified “local” types. Our main contribution is a complete answer to the following question: under what circumstances is immunity to misreporting via a “local” type (local strategy-proofness) equivalent to immunity to misreporting via an arbitrary type (strategy-proofness)?

The equivalence issue has important conceptual and practical implications.\(^1\) If it is not satisfied, the mechanism designer can choose from a wider class of locally strategy-proof social choice functions. It may enable her, in principle, to avoid negative results such as the Gibbard-Satterthwaite Theorem (Gibbard (1973), Satterthwaite (1975)). On the other hand, suppose that the problem at hand satisfies equivalence. In order to verify that a social choice function is strategy-proof, it suffices to check that it is locally strategy-proof. The latter is a simpler task because it involves checking fewer constraints.

We consider a model where an agent’s type is a strict preference ordering over a finite set of alternatives. There are no monetary tranfers. For convenience, we shall refer to this model as the voting model and to the agent as a voter,\(^1\)

\(^1\)They have also been discussed extensively in Carroll (2012) and Sato (2013).
even though the model could apply to other settings such as matching. For our purpose, it will be sufficient to restrict attention to the case of a single voter. The set of possible preferences is called a domain. An environment is an undirected graph whose vertices are preferences in the domain. The agent whose preference is specified by a particular vertex can only misreport to another preference (or vertex) if the two vertices are connected by an edge in the environment. The set of vertices connected by an edge to a vertex are its neighbours. A social choice function is locally strategy-proof if no type of the agent can gain by manipulating to a neighbour; it is strategy-proof if the agent cannot gain by manipulating to any vertex in the graph. An environment satisfies local-global equivalence or LGE if local strategy-proofness implies strategy-proofness.

Section 2 of the paper contains some examples and observations that highlight the issues underlying LGE. It serves to motivate our main result in Section 3, Theorem 1 which is a characterization of environments that satisfy LGE. Section 4 contains discussion of the computational complexity of Property L and its relationship with earlier results in the literature. Section 5 applies Theorem 1 to multi-dimensional voting environments. Finally Section 6 uses Theorem 1 to construct an example of an environment where LGE holds but equivalence fails for random social choice functions.

The LGE property depends on the existence of certain types of paths in the environment. For every pair of preferences P and P' in the domain and alternative a, there must exist a path from P to P' satisfying a monotonicity property with respect to all alternatives that are ranked worse than a according to P. Specifically, the relative ranking of a and any alternative b ranked worse than a according to P, can change at most once along the path. We call this condition, Property L. According to Theorem 1, Property L is both necessary and sufficient for LGE.

One of the strengths of our approach is that our notion of neighbours in the definition of local strategy-proofness, is perfectly general. The earlier literature (discussed below) used the Kemeny distance metric to define “localness”. Thus

2Our results can easily be interpreted in the multi-voter setting.

3The converse is of course, always true.
two preferences are neighbours if there is a single pair of consecutively ranked alternatives that are switched between the two preferences. Preferences that are neighbours in this sense will be referred to as being adjacent. A limitation of adjacency is that it excludes several multi-dimensional voting models that are of interest. In these models, an alternative is an \(m\)-tuple \((m > 1)\) and preferences are typically assumed to satisfy some form of separability. Consequently, it is not always possible to switch a consecutively ranked pair of alternatives without affecting the ranking of other alternatives. We consider two such domains, separable domains and multi-dimensional single-peaked domains and propose natural notions of neighbours such that the resulting environments satisfy LGE.

The question of local-global equivalence also arises naturally in the context of random social choice functions. We follow the standard approach of comparing lotteries via stochastic dominance (see Gibbard (1977)). Earlier results (again discussed below) suggest that environments that satisfy LGE for deterministic social choice functions also do so for random social choice functions. We use our characterization result for the deterministic case to show that this is not true generally. We construct an environment that satisfies Property \(L\) and therefore satisfies deterministic LGE. We also find a random social choice in the same environment that satisfies local strategy-proofness but violates strategy-proofness.

1.1 Related Literature

Two important papers on LGE in voting models are Carroll (2012) and Sato (2013). Both papers use the adjacency version of localness. Carroll (2012) considers random social choice functions and shows that specific preference domains, such as the set of all strict preferences, the set of all single-peaked preferences and particular subsets of single-crossing preferences satisfy LGE. Sato (2013) provides a necessary condition and a stronger sufficiency condition for LGE in the context of deterministic social choice functions. Section 4.2 describes the relationship between Sato’s results and ours in greater detail. As already mentioned, there are two significant ways in which our main result extends and refines the earlier
analysis. The first is that our notion of neighbours is completely general and the
second is that we have a complete characterization. Both aspects of our result
permit a wider range of applications than was earlier possible.

Cho (2016) provides sufficient conditions for LGE with random social choice
functions. The notion of neighbours is once again, adjacency, but several notions
of preference extensions to lotteries are considered. In particular, it shows that a
stronger version of the sufficient condition proposed in Sato (2013) (see Property
U in Section 4.2) is sufficient for LGE if lotteries are compared via stochastic
dominance. We show in Section 6 that the condition which is necessary and
sufficient for LGE with deterministic social choice functions (using adjacency as the
notion of localness), is not sufficient for LGE with random social choice functions.

There are several papers that investigate LGE in models where monetary trans-
fers to agents are permitted and preferences are quasi-linear in the usual sense (see,
for instance Carroll (2012), Archer and Kleinberg (2014) and Mishra et al. (2016)).
Although the basic question is the same, the flavour of the analysis and the results
in the two models are very different from each other.

In a companion paper Kumar et al. (2019), we consider a multi-voter model
and address the following question: under what conditions on the environment
is it the case that every locally strategy-proof social choice function that also
satisfies the mild condition of unanimity,\(^4\) is also strategy-proof? We show that
a condition much weaker than Property \(L\) is sufficient for LGE in this sense for
both deterministic and random social choice functions.

\section{The Model}

Let \(A = \{a, b, \ldots\}\) denote a finite set of alternatives with \(|A| \geq 2\). Throughout
the paper, we shall assume that there is a single voter. This assumption is without
loss of generality as will soon be apparent.

\(^4\)A deterministic social choice function satisfies unanimity if it always picks an alternative in
a profile where it is first-ranked by all voters. In the case of a random social choice function such
an alternative is picked with probability one.
A preference P is an antisymmetric, complete and transitive binary relation over A i.e. a linear order. Given $a, b \in A$, aPb is interpreted as “a is strictly preferred to b” according to P. Let P denote the set of all preferences - the set P will be referred to as the universal domain. We shall refer to an arbitrary set $D \subseteq P$ as a domain.

An environment is an (undirected) graph $G = \langle D, E \rangle$. The set of vertices of the graph is a domain D. The set of edges is the set E. If $P, P' \in D$ and $(P, P') \in E$, the two preferences are said to be neighbours or are local.

The notion of neighbours is perfectly general. One possible specification is the one used by Carroll (2012) and Sato (2013). Fix a pair of preferences $P, P' \in D$. Two alternatives a and b in A are reversed if aPb and $bP'a$, or bPa and $aP'b$. Let $P \triangle P' = \{\{a, b\} \subseteq A : a \text{ and } b \text{ are reversed in } P \text{ and } P'\}$ be the set of all reversed pairs of alternatives between P and P'. Two preferences P and P' are called adjacent if $|P \triangle P'| = 1$. An environment where neighbours are defined by adjacency will be referred to as an adjacency environment. Whenever the notion of neighbours is defined by adjacency, we shall denote the set of edges by E^{adj}. An adjacency environment will typically be denoted by $G = \langle D, E^{adj} \rangle$. In Section 5, we shall provide an example of a non-adjacency environment.

Definition 1 A Social Choice Function (SCF) is a map $f : D \rightarrow A$.

Definition 2 Consider an environment $G = \langle D, E \rangle$. An SCF $f : D \rightarrow A$ is locally manipulable at P if there exists $P' \in D$ with $(P, P') \in E$ such that $f(P')Pf(P)$. The SCF f is locally strategy-proof if it is not locally manipulable at any $P \in D$.

Consider a graph or an environment. An SCF labels each vertex of the graph with an alternative. It is locally strategy-proof if the voter with preference of a

5We are guilty of abuse of notation here. Since a preference is an ordered pair, $P \triangle P'$ should include both ordered pairs, (a, b) and (b, a) if a and b are reversed in P and P'. In our notation, $P \triangle P'$ will include only the unordered pair $\{a, b\}$ in this case.

6An alternative and equivalent statement would be that the Kemeny distance between P and P' is exactly one.
particular vertex cannot gain by misrepresenting her preference to one which is a neighbour of her true preference.

In contrast with local strategy-proofness, an SCF is *strategy-proof* if the voter cannot gain by an arbitrary misrepresentation.

Definition 3 An SCF $f : \mathcal{D} \to A$ is manipulable at P if there exists $P' \in \mathcal{D}$ such that $f(P') \neq f(P)$. The SCF f is strategy-proof if it is not manipulable at any $P \in \mathcal{D}$.

A strategy-proof SCF is clearly locally strategy-proof. We investigate the structure of environment when the converse is true.

Definition 4 The environment $G = \langle \mathcal{D}, \mathcal{E} \rangle$ satisfies local-global equivalence (LGE) if every locally strategy-proof SCF $f : \mathcal{D} \to A$ is strategy-proof.

The next subsection makes some important observations regarding LGE.

2.1 Preliminary Observations

Our goal in this subsection is to illustrate the issues involved in LGE and to provide some intuition behind our result. We begin with some standard concepts from graph theory.

Let $G = \langle D, E \rangle$ be an environment. A path $\pi = (P_1, \ldots, P_t)$ is a sequence of distinct vertices in \mathcal{D} satisfying the property that consecutive vertices are neighbours, i.e. $(P^k, P^{k+1}) \in \mathcal{E}$ for all $k = 1, \ldots, t - 1$. Let $\Pi(P, P')$ denote the set of all paths from P to P' in G. For any path $\pi = (P_1, \ldots, P_s, P_{s+1}, \ldots, P_t)$, we let $\pi|_{[P_s, P_t]}$ denote the sub-path $(P_s, P_{s+1}, \ldots, P_t)$. We say G is connected if there exists a path between every pair of vertices in G, i.e. $\Pi(P, P') \neq \emptyset$ for all $P, P' \in \mathcal{D}$.

The example below highlights the reasons why LGE may fail.

Example 1 Let $A = \{a, b, c, z, u, v, w\}$. Consider the adjacency environment $G = \langle D, E^{adj} \rangle$ where $D = \{P^1, P^2, P^3, P^4, P^5\}$ (Table 1). It will be convenient to represent G by Figure 1.
\[P^1 \quad P^2 \quad P^3 \quad P^4 \quad P^5 \]
\[
c \quad c \quad c \quad c \quad c \\
[a] \quad [b] \quad [b] \quad [b] \quad a \\
b \quad a \quad a \quad a \quad [b] \\
z \quad z \quad z \quad z \quad z \\
v \quad v \quad v \quad u \quad u \\
w \quad w \quad u \quad v \quad v \\
u \quad u \quad w \quad w \quad w \\
\]
Table 1: Domain \(\mathcal{D} \)

\[P^1 \quad \{a,b\} \quad P^2 \quad \{w,u\} \quad P^3 \quad \{v,u\} \quad P^4 \quad \{b,a\} \quad P^5 \]

Figure 1: The Environment \(G = \langle \mathcal{D}, E_{adj} \rangle \)

The SCF \(f : \mathcal{D} \rightarrow A \) picks \(a \) at \(P^1 \) and \(b \) at other preferences.\(^9\) The SCF \(f \) is locally strategy-proof. However, it is not strategy-proof since the voter with preference \(P^5 \) can manipulate via \(P^4 \).

The cause of the failure of strategy-proofness while maintaining local strategy-proofness can be clearly identified from Example 1. Consider the path \(\pi = (P^5, P^4, P^3, P^2, P^1) \). The outcome at \(P^5 \) is \(b \). Since \(b \) “improves” at \(P^4 \) relative to \(P^5 \), local strategy-proofness implies that the outcome at \(P^4 \) must be \(b \); otherwise the voter would manipulate locally to \(P^5 \). Local strategy-proofness also implies that the outcomes at \(P^3 \) and \(P^2 \) must be \(b \). Note that \(b \) “declines” at \(P^1 \) with respect to \(a \). There are two options at \(P^1 \) that are consistent with the requirement of local strategy-proofness (with respect to \(P^1 \)). The outcome can remain \(b \), or it can switch to \(a \). In the former case, we maintain strategy-proofness.

\(^7\) In other words, repetitions of vertices in a path are ruled out.

\(^8\) Two vertices are connected by an edge in \(G \) if and only if the preferences represented by the vertices are adjacent. For instance, \(P^1 \) and \(P^2 \) are adjacent; in particular, \(aP^4b \) and \(bP^2a \). The edge between \(P^1 \) and \(P^2 \) is labelled \(\{a,b\} \) in order to signify that the only “difference” between the two preferences is the ranking of \(a \) and \(b \).

\(^9\) This is indicated by the square brackets on the alternative chosen by \(f \) at each preference.
since the outcome is b everywhere along the path π. However, if the outcome is a, a problem with strategy-proofness arises since a is preferred to b at P^5.

The failure of LGE in $G = \langle \mathcal{D}, \mathcal{E}^{adj} \rangle$ arises from an inherent asymmetry in the “monotonicity” requirement imposed by local strategy-proofness. If the outcome of an SCF at a preference improves\footnote{We are intentionally informal in this description. These notions will be made precise in due course.} relative to a local preference, the same outcome continues to be chosen at the new neighbour preference. However, if the outcome at a preference falls relative to a local preference, the new outcome can either remain the same or switch to an alternative that has improved (relative to the original outcome) in the new preference. Combining the latter option together with an improvement in the same path, can lead to a failure of strategy-proofness without violating local strategy-proofness.

A key feature of the path π in Example 1 is that a and b switch relative ranking more than once in the path. Thus aP^5b, bP^4a and aP^1b. The preceding discussion makes it clear that such paths may be problematic for LGE.

Definition 5 Let $G = \langle \mathcal{D}, \mathcal{E} \rangle$ be an environment and let $a, b \in A$. A path $\pi = (P^1, P^2, \ldots, P^t)$ satisfies no $\{a, b\}$-restoration if the relative ranking of a and b is reversed\footnote{Recall that a pair of alternatives a, b are reversed in the pair of preferences P and P' if they are ranked differently in P and P'.} at most once along π, i.e., there do not exist integers q, r and s with $1 \leq q < r < s \leq t$ such that either (i) $aP^q b, bP^r a$ and $aP^s b$ or (ii) $bP^q a, aP^r b$ and $bP^s a$.

Let $P, P' \in \mathcal{D}$ and $a, b \in A$ be such that aPb. We say that b overtakes a in path $\pi \in \Pi(P, P')$ if $bP^l a$ for some preference P^l in the path π. The notion of overtaking can be used to restate the definition of an $\{a, b\}$-restoration in an obvious way. For instance in case (i) of Definition 5, b overtakes a in the path $\pi = (P^q, \ldots, P^r)$ and a overtakes b in the path $\pi^2 = (P^r, \ldots, P^s)$.

\footnote{It is worth emphasizing that in our definition of “$\{a, b\}$-restoration”, we are not referring to an ordered pair (a, b). Thus $\{a, b\}$-restoration and $\{b, a\}$-restoration are the same in our definition. We use expressions such as “the path has no $\{a, b\}$-restoration” and “the path has no restoration for the pair $\{a, b\}$” interchangeably.}
P₀	P₆	P⁷	P₈	P₉	P¹₀
c | a | a | a | a | a
a | c | c | c | c | c
b | b | z | z | z | b
z | z | b | b | b | z
v | u | u | v | v | v
u | v | v | u | w | w
w | w | w | w | u | u

Table 2: Preferences P₀ and P₆, P⁷, P₈, P₉, P¹₀

P₁ {a, b} P² {w, u} P₃ {v, u} P₄ {b, a} P₅

{w, u} \{b, a\} \{u, v\}

Figure 2: The Environment \(\mathcal{G} = \langle \overline{\mathcal{D}}, \mathcal{E}_{\text{adj}} \rangle \)

P₁ \{a, b\} P² \{w, u\} P₃ \{v, u\} P₄ \{b, a\} P₅

\{c, a\} \{b, z\} \{w, u\} \{v, u\} \{z, b\} \{c, a\}

Figure 3: The Environment \(\mathcal{G}^* = \langle \mathcal{D}^*, \mathcal{E}_{\text{adj}} \rangle \)

It will sometimes be useful to consider paths without restoration for a pair of alternatives. Let \(P, P' \in \mathcal{D} \) and \(a, b \in A \) be such that \(aPb \). Let \(\pi = (P₁, P², \ldots, Pₜ) \in \Pi(P, P') \) be a path without \{a, b\}-restoration. If \(aP'b \), then \(aP^r b \) for all preferences \(P^r \) on the path \(\pi \). Suppose \(bP'a \) instead. Then there exists a unique preference \(P^r \) on \(\pi \) such that \(aP^s b \) for all \(s = 1, \ldots r \) and \(bP^s a \) for all \(s = r + 1, \ldots, t \).

In order to further clarify the relationship between the LGE property and paths without restoration, we make two modifications of Example 1.

Example 2 As in Example 1, \(A = \{a, b, c, z, u, v, w\} \). We consider six additional preferences \(P₀, P₆, P⁷, P₈, P₉, P¹₀ \) as shown in Table 2. Let \(\overline{\mathcal{D}} \) and \(\mathcal{D}^* \) be the domains \(\overline{\mathcal{D}} = \mathcal{D} \cup \{P₀\} \) and \(\mathcal{D}^* = \mathcal{D} \cup \{P₆, P⁷, P₈, P₉, P¹₀\} \). These domains are
used to construct two adjacency environments $G = (\mathcal{D}, \mathcal{E}_{adj})$ and $G^\ast = (\mathcal{D}^\ast, \mathcal{E}_{adj})$.

These environments are shown in Figures 2 and 3.

Consider G and a locally strategy-proof SCF $\overline{f} : \mathcal{D} \to A$ such that $\overline{f}(P_5) = b$. Using the same arguments as in Example 1, along the path $\pi = (P_5, P_4, P_3, P_2, P_1)$, we can infer that local strategy-proofness implies $\overline{f}(P_k) = b$ for all $k = 5, 4, 3, 2$, and $\overline{f}(P_1)$ is either b or a. Due to the presence P_0, there is now another path $\overline{\pi} = (P_5, P_0, P_1)$ from P_5 to P_1. This path has no $\{a, b\}$-restoration. Furthermore, the path $\overline{\pi}$ has the following properties: (i) a and b are identically consecutively ranked, and (ii) c always ranks above a, while z, u, v and w are all ranked below b.

Clearly, b does not switch places with any other alternative along $\overline{\pi}$. As a result, local strategy-proofness forces the outcome of \overline{f} to be b everywhere along $\overline{\pi}$ which rules out the manipulability of \overline{f}.

Now consider G^\ast and a locally strategy-proof SCF $f^\ast : \mathcal{D}^\ast \to A$ such that $f^\ast(P_5) = b$. Once again, local strategy-proofness along the path $\pi^\ast = (P_5, P_4, P_3, P_2, P_1)$, implies that $f^\ast(P_k) = b$ for all $k = 5, 4, 3, 2$, and $f^\ast(P_1)$ is either b or a. Consider the path $\pi^\ast = (P_5, P_6, P_7, P_8, P_9, P_{10}, P_1)$. Observe that π^\ast has no restoration for a and any of the alternatives in the set $Z = \{b, z, u, v, w\}$ which are all ranked below a in P_5. Alternatives of Z switch places among themselves along π^\ast (see for example, the sub-path $(P_6, P_7, P_8, P_9, P_{10})$). Consequently, the local strategy-proofness of f^\ast does not preclude the outcomes for preferences along π^\ast from belonging to Z. Suppose $f^\ast(P_1) = a$. Since $f^\ast(P_5) = b$, local strategy-proofness implies that some alternative in Z must “jump above” a and then “jump below” a (in order to conform with P_1) along the path π^\ast.\(^{13}\) However, this is explicitly ruled out by the observation that π^\ast has no restoration for a and any of the alternatives in Z. Therefore, it must be the case that $f^\ast(P_1) = b$.

In fact, only one of two possibilities can arise: (i) $f^\ast(P_k) = b$ for all $k = 1, \ldots, 10$, or (ii) $f^\ast(P_k) = b$ for all $k = 1, 2, 3, 4, 5, 6, 10$ and $f^\ast(P_{k'}) = z$ for all $k' = 7, 8, 9$.

In either case, f^\ast is strategy-proof.

\(^{13}\)We can first easily rule out the possibility that c is chosen at some preference in the subpath $(P_6, P_7, P_8, P_9, P_{10})$. In that case, local strategy-proofness forces the outcome of f^\ast to be c everywhere in G^\ast.\)
We conclude with an important observation. The alternative c is always ranked above a along the path $\bar{\pi}$ in \overline{G}. However, the path π^* in G^* does not forbid restoration between a and alternatives better than a in the initial preference P^5.

□

We summarize the insights of Examples 1 and 2. There is “potential” for the failure of LGE whenever there is a path in an environment that has restoration for some pair of alternatives. However LGE can be restored by the existence of certain “other” paths in the environment. As the argument relating to π^* in G^* suggests, the existence of a path that satisfies no-restoration of an alternative with respect to all alternatives that are worse at a preference, is sufficient to ensure strategy-proofness and hence, LGE. In the next section, we show that this insight is general. In fact, this condition is also necessary though the argument establishing necessity, is more subtle.

3 The Main Result

The key condition for LGE is the Lower Contour Set no-restoration property which we define below.

For any $P \in \mathcal{D}$ and $a \in A$, the lower contour set of a at P is the set of alternatives strictly worse than a according to P, i.e. $L(a, P) = \{b \in A : aPb\}$.

Definition 6 The environment G satisfies the Lower Contour Set no-restoration property (Property L) if, for all $P, P' \in \mathcal{D}$ and $a \in A$, there exists a path $\pi \in \Pi(P, P')$ with no $\{a, b\}$-restoration for all $b \in L(a, P)$.

Pick an arbitrary pair of preferences $P, P' \in \mathcal{D}$ and an alternative $a \in A$ which is not ranked last in P. Suppose $L(a, P) = \{b_1, \ldots, b_m\}$. If G satisfies Property L, there exists a path from P to P' that has no $\{a, b_i\}$-restoration for all $b_i \in \{b_1, \ldots, b_m\}$. More informally, if a lies above b_i in P' then it lies above b_i everywhere along the path. On the other hand, if the ranking of a and b_i are reversed between P and P' there is a single reversal between a and b_i along the path.
The environment G^* in Example 2 satisfies Property L. In G^*, there are exactly two paths between any pair of vertices, one “clockwise” path and the other, “counterclockwise”. For instance, between P^4 and P^5, the paths $(P^1, P^2, P^3, P^4, P^5)$ and $(P^1, P^{10}, P^9, P^8, P^7, P^6, P^5)$ are the clockwise and counterclockwise paths respectively. These paths satisfy an important property. Fix an arbitrary pair of distinct preferences P and P'. If a path between P and P' possesses a restoration, say an $\{x, y\}$-restoration, and x is better than y in P, then the other path between P and P' must have no restoration for x and any alternative of $L(x, P)$. For example, consider P^1 and P^5. The clockwise path $(P^1, P^2, P^3, P^4, P^5)$ has $\{a, b\}$-restoration and aP^1b. The counterclockwise path $(P^1, P^{10}, P^9, P^8, P^7, P^6, P^5)$ has no $\{a, x\}$-restoration for all $x \in L(a, P^1)$. The counterclockwise path $(P^1, P^{10}, P^9, P^8, P^7, P^6, P^5)$ has both $\{c, a\}$-restoration and $\{b, x\}$-restoration, cP^1a and bP^1z. On the other hand, the clockwise path $(P^1, P^2, P^3, P^4, P^5)$ has no $\{c, x\}$-restoration for all $x \in L(c, P^4)$ and no $\{b, x\}$-restoration for all $x \in L(b, P^1)$. This property ensures that G^* satisfies Property L.

Theorem 1 An environment satisfies LGE if and only if it satisfies Property L.

Proof: **Sufficiency:** Suppose $G = (D, E)$ satisfies Property L but fails LGE i.e. there exists a locally strategy-proof SCF $f : D \to A$ that is not strategy-proof. Suppose f is manipulable at P. Define the alternative x^1 as follows: $x^1 = \max_P \{a \in A : f(\bar{P}) = a$ for some $\bar{P} \in D\}$. In other words, x^1 is the highest-ranked alternative in the range of f according to P.14 Let P' be such that $f(P') = x^1$. Since f is manipulable at P, we have $x^1 \neq f(P)$.

By Property L, there exists a path $\pi = (P^1, P^2, \ldots, P^t) \in \Pi(P, P')$ that has no $\{x^1, z\}$-restoration for all $z \in L(x^1, P)$. Searching the path π backwards from P^t to P^1, let P^s be the first vertex such that $f(P^s) = x^2 \neq x^1$ i.e. $f(P^k) = x^1$ for all $s < k \leq t$. Note that P^s always exists since $f(P^t) \neq f(P^1)$. It follows from the definition of x^1 that $x^1P^1x^2$. Since $(P^s, P^{s+1}) \in E$, local strategy-proofness implies $x^2P^sx^1$ and $x^1P^{s+1}x^2$. We therefore have an $\{x^1, x^2\}$-restoration on the

14For later reference, $\max_P(B)$ refers to the P-maximal alternative in the set $B \subseteq A$.
path π, contradicting our hypothesis. Therefore, $G = \langle D, E \rangle$ satisfies LGE and completes the proof of the sufficiency part of Theorem 1.

Necessity: We define a class of SCFs that we will employ repeatedly in the proof.

Definition 7 Fix an environment $G = \langle D, E \rangle$. Let $a \in A$, $\hat{P} \in D$ and let B be a non-empty set with $B \subseteq L(a, \hat{P})$. An SCF $f : D \rightarrow A$ is monotonic with respect to (a, B, \hat{P}) if

(i) $f(P) = a$ if there is a path $\pi \in \Pi(\hat{P}, P)$ such that $B \subseteq L(a, \bar{P})$ for all $\bar{P} \in \pi$, and

(ii) $f(P) = \max_P(B)$ otherwise.

Thus $f(P) = a$ if there exists a path from \hat{P} to P such that no alternative $x \in B$ overtakes a along the path (note that $a \hat{P} x$). Clearly $f(\hat{P}) = a$. The next lemma shows that SCF f of Definition 7 is locally strategy-proof.

Lemma 1 Suppose $f : D \rightarrow A$ is monotonic with respect to (a, B, \hat{P}). Then f is locally strategy-proof.

Proof: Pick an arbitrary pair $P, P' \in D$ with $(P, P') \in E$. We show either $f(P) = f(P')$, or $f(P) P f(P')$ and $f(P') P f(P)$ establishing local strategy-proofness.

Let $D_a = \{ \hat{P} \in D : f(\hat{P}) = a \}$ denote the set of preferences which are associated to a at SCF f. There are four cases to consider.

Case 1: $P, P' \in D_a$. Then $f(P) = f(P') = a$.

Case 2: $P, P' \notin D_a$. Then $f(P) = \max_P(B)$ and $f(P') = \max_P(B)$. Hence, either $f(P) = f(P')$ or $f(P) P f(P')$ and $f(P') P f(P)$ must hold.

Case 3: $P \in D_a$ and $P' \notin D_a$. Thus, $f(P) = a \neq b = \max_{P'}(B) = f(P')$. Since $P \in D_a$, there exists a path $\pi = (P^1, \ldots, P^t) \in \Pi(\hat{P}, P)$ such that $B \subseteq L(a, P^k)$ for all $1 \leq k \leq t$ (recall Definition 7). Since $b \in B$, we have $a P b$. Next, suppose $a P' b$. Since $b = \max_{P'}(B)$, it follows that $B \subseteq L(a, P')$. Observe that P' must be distinct from the vertices in the path π; otherwise we would contradict the hypothesis that $P' \notin D_a$. Since $(P, P') \in E$, we now have a new path
\(\bar{\pi} = (P^1, \ldots, P^t, P') \in \Pi(\hat{P}, P') \) such that \(B \subseteq L(a, \hat{P}) \) for all \(\hat{P} \in \bar{\pi} \). Consequently, Definition 7 implies \(f(P') = a \). This contradicts our initial assumption that \(f(P') = b \). Therefore, \(bP' a \).

Case 4: \(P \notin \mathcal{D}_a \) and \(P' \in \mathcal{D}_a \). This case is symmetric to Case 3 above and is omitted.

This completes the proof of the lemma. ■

Lemma 1 and the LGE property implies that monotonic SCFs are also strategy-proof. This, in turn imposes certain no-restoration conditions on the environment. The rest of the proof essentially shows that Property L is the consequence of the strategy-proofness of monotonic SCFs.

Let \(G = \langle \mathcal{D}, \mathcal{E} \rangle \) be an environment satisfying LGE. We show that \(G \) satisfies Property L. We begin with an observation.

CLAIM 1 \(G \) is connected.

Proof: Suppose the Claim is false. Then there exists a component \(G' \) of \(G \) such that \(G' \neq \emptyset \) and \(G' \) is a strict subset of \(G \). i.e. there does not exist a path from any vertex in \(G' \) to any vertex not in \(G' \). Denote the set of vertices in \(G' \) by \(\mathcal{D}' \).

Pick an arbitrary vertex \(P^* \) in \(\mathcal{D}' \) and let \(a, b \in A \) be such that \(aP^*b \). Define the SCF \(f \) as follows: \(f(P) = b \) for all vertices \(P \in \mathcal{D}' \) and \(f(P) = a \) for all \(P \notin \mathcal{D}' \).

Clearly \(f \) is not strategy-proof because \(f(P^*) = b \) while \(f(P') = a \) for any \(P' \notin \mathcal{D}' \). However \(f \) is locally strategy-proof because the outcome does not change if the voter misrepresents via a neighbouring preference. Thus LGE is violated. ■

Suppose \(G \) violates Property L i.e. there exist \(P^0, P^1 \in \mathcal{D} \) and \(a \in A \) such that every path of \(\Pi(P^0, P^1) \) has an \(\{a, x\} \)-restoration for some \(x \in L(a, P^0) \). In view of Claim 1, this statement cannot hold vacuously.

Let \(\Gamma \) be the set of alternatives in \(L(a, P^0) \) that appear in some restoration with \(a \) on some path of \(\Pi(P^0, P^1) \):

\[
\Gamma = \{ x \in L(a, P^0) : \text{there exists } \pi \in \Pi(P^0, P^1) \text{ with } \{a, x\}-\text{restoration} \}.
\]

\footnote{We say that \(G' \) is a component of \(G \) if \(G' \) is a maximal connected subgraph of \(G \).}
Then, the hypothesis for the contradiction can be restated as follows: each path of $\Pi(P^0, P^1)$ has an $\{a, x\}$-restoration for some $x \in \Gamma$.

For a specific path $\pi \in \Pi(P^0, P^1)$, let Γ^π_1 denote the set of alternatives in $L(a, P^0)$ that appear in some restoration with a on the path π, i.e.

$$\Gamma^\pi_1 = \{x \in L(a, P^0) : \pi \text{ has } \{a, x\} \text{-restoration}\}.$$

Let $\Gamma^1 \subseteq [\Gamma \cap L(a, P^1)]$ be the set of alternatives such that every path $\pi \in \Pi(P^0, P^1)$ has $\{a, x\}$-restoration for some $x \in \Gamma^1$. Note that either $\Gamma^1 \neq \emptyset$ or $\Gamma^1 = \emptyset$ holds, and every alternative in Γ^1 (if Γ^1 is non-empty) is ranked below a in both preferences P^0 and P^1. We show that each of the two possible cases $\Gamma^1 \neq \emptyset$ and $\Gamma^1 = \emptyset$ leads to a contradiction.

Case A: $\Gamma^1 \neq \emptyset$.

Let $f : D \rightarrow A$ be the SCF which is monotonic with respect to (a, Γ^1, P^0). Note that f is well-defined since $\emptyset \neq \Gamma^1 \subseteq L(a, P^0)$. According to Lemma 1, f is locally strategy-proof. We show that f is not strategy-proof.

According to Definition 7, $f(P^0) = a$. Pick an arbitrary path $\pi \in \Pi(P^0, P^1)$. By definition, there exists $z \in \Gamma^1$ such that π has $\{a, z\}$-restoration, i.e. there exists $P^r \in \pi$ such that zP^ra. Hence $\Gamma^1 \not\subseteq L(a, P^r)$. Since π was chosen arbitrarily, there does not exist $\pi \in \Pi(P^0, P^1)$ such that $\Gamma^1 \subseteq L(a, P^s)$ for all $P^s \in \pi$. Consequently, Definition 7 implies $f(P^1) = \max_{P^1}(\Gamma^1) \equiv b$. Since $\Gamma^1 \subseteq L(a, P^1)$, we have $f(P^0) = aP^1b = f(P^1)$. Therefore, f is not strategy-proof and we have a contradiction to the assumption that G satisfies LGE.

This argument establishes that Case A cannot occur.

Case B: $\Gamma^1 = \emptyset$.

This case is more complicated than the earlier one. We begin with a series of claims.

Claim 2 There exists a path $\pi \in \Pi(P^0, P^1)$ such that $\Gamma^\pi_1 \cap L(a, P^1) = \emptyset$.

Proof: Suppose Claim 2 is false. This implies that in each path of $\Pi(P^0, P^1)$, at least one alternative involved in a restoration with a is ranked below a in P^1, i.e.
$\Gamma_1^* \cap L(a, P^1) \neq \emptyset$ for all $\pi \in \Pi(P^0, P^1)$. Let $\hat{\Gamma} = \bigcup_{\pi \in \Pi(P^0, P^1)} [\Gamma_1^* \cap L(a, P^1)]$. Then $\emptyset \neq \hat{\Gamma} \subseteq L(a, P^1)$ and Case A holds with $\Gamma_1 = \hat{\Gamma}$.

Following Claim 2, let $\pi^1 \in \Pi(P^0, P^1)$ be the path such that $\Gamma_1^* \cap L(a, P^1) = \emptyset$. Thus, xP^1a for all $x \in \Gamma_1^*$. Note that path π^1 has $\{a, x\}$-restoration only for all $x \in \Gamma_1^*$, and aP^0x for all $x \in \Gamma_1^*$. Searching the path π^1 from P^1 back to P^0, let $P^2 \in \pi^1 \setminus \{P^1\}$ be the the first vertex such that a overtakes some alternative of Γ_1^*. Note that preference P^2 always exists since xP^1a and aP^0x for all $x \in \Gamma_1^*$. Let Z be the (non-empty) subset of alternatives in Γ_1^* that are overtaken by a in the reverse path from P^1 to P^2 i.e. $Z \subseteq \Gamma_1^*$ such that (i) aP^2z for all $z \in Z$, (ii) yP^2a for all $y \in \Gamma_1^* \setminus Z$ (if $Z \neq \Gamma_1^*$), and (iii) $x\tilde{P}a$ for all $x \in \Gamma_1^*$ and all $\tilde{P} \in \pi^1|_{[P_2, P_1]} \setminus \{P^2\}$. Thus, subpath $\pi^1|_{[P_2, P_1]}$ has no $\{a, x\}$-restoration for any $x \in \Gamma_1^*$, and hence, $P^2 \neq P^0$. Since π^1 has $\{a, x\}$-restoration only for all $x \in \Gamma_1^*$, path π^1 must have no $\{a, y\}$-restoration for any $y \in \Gamma \setminus \Gamma_1^*$ (if $\Gamma_1^* \neq \Gamma$). Therefore, subpath $\pi^1|_{[P_2, P_1]}$ has no $\{a, x\}$-restoration for any $x \in \Gamma$.

Claim 3 \(\Gamma \cap L(a, P^1) \) is a strict subset of \(\Gamma \cap L(a, P^2) \).

Proof: It follows from the definition of Z that if $\Gamma \cap L(a, P^1) \subseteq \Gamma \cap L(a, P^2)$, then $\Gamma \cap L(a, P^1)$ must be a strict subset of $\Gamma \cap L(a, P^2)$. Suppose it is not the case that $\Gamma \cap L(a, P^1) \subseteq \Gamma \cap L(a, P^2)$ i.e. there exists $x \in \Gamma \cap L(a, P^1)$ such that xP^2a. Then, we have aP^0x, xP^2a and aP^1x which imply the $\{a, x\}$-restoration on π^1 and $x \in \Gamma_1^* \cap L(a, P^1)$. This contradicts the hypothesis $\Gamma_1^* \cap L(a, P^1) = \emptyset$.

Claim 4 For every $\hat{\pi} \in \Pi(P^0, P^2)$, there exists $x \in \Gamma$ such that $\hat{\pi}$ has $\{a, x\}$-restoration.

Proof: Suppose there exists $\hat{\pi} \in \Pi(P^0, P^2)$ and $\hat{\pi}$ has no $\{a, x\}$-restoration for any $x \in \Gamma$. Clearly P^2 is a vertex common to both $\hat{\pi}$ and $\pi^1|_{[P_2, P_1]}$. Starting from P^1, proceed along the path which is the reverse of $\pi^1|_{[P_2, P_1]}$. Let \tilde{P} be the first vertex in this reverse path which also belongs to $\hat{\pi}$. From our earlier remark,
such a vertex must exist (it could be P^2). Now combine the sequences of vertices $\hat{\pi}|_{[P_0, P]}$ and $\pi^1|_{[\hat{P}, P^1]}$ to form the vertex sequence $\bar{\pi}$. By construction, $\bar{\pi}$ contains no repetition of vertices so that it is a path and $\bar{\pi} \in \Pi(P_0, P^1)$.

For convenience, let $\bar{\pi} = (\bar{P}^1, \ldots, \bar{P}^k, \ldots, \bar{P}^t)$ where $\bar{P}^k = \hat{P}$, $\bar{\pi}|_{[P_0, \hat{P}]} = (\hat{P}^1, \ldots, \hat{P}^k)$ and $\pi^1|_{[\hat{P}, P^1]} = (\hat{P}^k, \ldots, \hat{P}^t)$. Since $\bar{\pi} \in \Pi(P_0, P^1)$, the hypothesis for the contradiction of the necessity part of Theorem 1 implies $\Gamma_{\bar{\pi}}^1 \neq \emptyset$. Therefore, there exists $b \in \Gamma$ such that $\bar{\pi}$ has $\{a, b\}$-restoration. Since neither $\hat{\pi}$ nor $\pi^1|_{[P^2, P^1]}$ have $\{a, b\}$-restoration and aP, b, it must be the case that b overtakes a on the path $(\hat{P}^1, \ldots, \hat{P}^k)$ and then a overtakes b on the path $(\hat{P}^k, \ldots, \hat{P}^t)$. Thus we have $b\hat{P}^k a$ and $a\hat{P}^t b$. Now refer back to the path π^1. Since aPb, bPa and aP^1b, path π^1 has $\{a, b\}$-restoration and hence, $b \in \Gamma_{\pi^1}^1 \cap L(a, P^1)$. This contradicts the hypothesis $\Gamma_{\pi^1}^1 \cap L(a, P^1) = \emptyset$. ■

We can now replace P^1 by P^2 in our earlier arguments and define Γ^2 in the same way as we defined Γ^1. Once again, there are two possibilities, $\Gamma^2 \neq \emptyset$ and $\Gamma^2 = \emptyset$. The former case leads to an immediate contradiction using the arguments in Case A. In the latter case, we can apply Claims 2, 3 and 4 to infer the existence of P^3 such that (i) $\Gamma \cap L(a, P^2)$ is a strict subset of $\Gamma \cap L(a, P^3)$, and (ii) every path $\pi \in \Pi(P^0, P^3)$ has $\{a, x\}$-restoration for some $x \in \Gamma$. Repeating the argument, it follows that the only way to avoid a contradiction via Case A is to find an infinite sequence of vertices $P^1, P^2, \ldots P^n, \ldots$ such that

$$[\Gamma \cap L(a, P^1)] \subset [\Gamma \cap L(a, P^2)] \subset \cdots \subset [\Gamma \cap L(a, P^n)] \cdots.$$

However this is impossible in view of the finiteness of G. Thus Case B cannot occur either and the proof is complete. ■

Property L can be simplified if an additional restriction is imposed on the domain.

For any preference P, $r_1(P)$ denotes the first-ranked alternative in P. A domain \mathcal{D} satisfies minimal richness if for all $a \in A$, there exists $P \in \mathcal{D}$ such that $r_1(P) = a$.

\[16\] Each of the subset relations is strict.
Definition 8 The environment $G = \langle D, E \rangle$ satisfies Property L' if the following two conditions hold:

1. For all $P, P' \in D$ with $r_1(P) = r_1(P') = a$, there exists a path $\pi = (P^1, \ldots, P^t) \in \Pi(P, P')$ such that $r_1(P^k) = a$ for all $k = 1, \ldots, t$.

2. For all $a \in A$ and $P' \in D$ with $r_1(P') \neq a$, there exists $P \in D$ with $r_1(P) = a$ and a path $\pi = (P^1, \ldots, P^t) \in \Pi(P, P')$ which has no $\{a, b\}$-restoration for all $b \in A \setminus \{a\}$.

Property L' is easier to verify than Property L. In order to verify the latter, we have to find the existence of a suitable path for all pairs of preferences and all alternatives not ranked last in one of the preferences. For Part 1 of Property L', we only need to check for the existence of a path with a simple property for all pairs of preferences with the same first-ranked alternative. For Part 2 of Property L', we only need to verify the existence of appropriate paths for special pairs of preferences.

Proposition 1 Properties L and L' are equivalent on all environments $G = \langle D, E \rangle$ where D is minimally rich.

Proof: Let $G = \langle D, E \rangle$ be an environment where D is minimally rich. We first show that Property L implies Property L'.

Pick $P, P' \in D$ such that $r_1(P) = r_1(P') = a$. Since G satisfies Property L, there exists a path from P to P' with no $\{a, b\}$-restoration for all $b \in L(a, P) = A \setminus \{a\}$. Clearly, all preferences on this path must have a as the first-ranked alternative. In order to show Part 2 of Property L', consider $a \in A$ and $P' \in D$ where $r_1(P') \neq a$. By minimal richness, we can find $P \in D$ with $r_1(P) = a$. Property L implies the existence of a path in $\Pi(P, P')$ that has no $\{a, b\}$-restoration for all $b \in L(a, P) = A \setminus \{a\}$. This is precisely the path required to satisfy Part 2 of Property L'.

We now show that Property L' implies Property L. Pick $P, P' \in D$ and $a \in A$. We have to show the existence of a path in $\Pi(P, P')$ which has no $\{a, b\}$-restoration for all $b \in L(a, P)$. There are four cases to consider.
Case 1: $r_1(P) = r_1(P') = a$. Part 1 of Property L' guarantees the existence of a path which satisfies the required condition.

Case 2: $r_1(P) = a$ and $r_1(P') \neq a$. According to Part 2 of Property L', there exist $P'' \in \mathcal{D}$ with $r_1(P'') = a$ and a path $\pi' \in \Pi(P'', P')$ such that π' has no \{a, b\}-restoration for any $b \neq a$. Let $\tilde{\pi} \in \Pi(P, P'')$ be the path whose existence is guaranteed by Part 1 of Property L'. Let \tilde{P} be the first vertex in the path $\tilde{\pi}$ (proceeding from P towards P'') which lies on π'. Such a vertex must exist since $P'' \in \mathcal{D}$ belongs to both $\tilde{\pi}$ and π'. Let π be the sequence of vertices obtained by concatenating the sub-paths $\tilde{\pi}|_{[\tilde{P}, \tilde{P}]}$ and $\pi'|_{[\tilde{P}, P']}$.

Case 3: $r_1(P) \neq a$ and $r_1(P') = a$. According to Case 2, there exists a path $\pi' \in \Pi(P', P)$ that has no \{a, b\}-restoration for any $b \neq a$. Let π be the reverse of path π'. Then $\pi \in \Pi(P, P')$, and π has no \{a, b\}-restoration for all $b \in L(a, P)$.

Case 4: $r_1(P) \neq a$ and $r_1(P') \neq a$. By minimal richness, there exists $\tilde{P} \in \mathcal{D}$ with $r_1(\tilde{P}) = a$. Applying the argument in Case 3, there exists a path $\tilde{\pi} \in \Pi(P, \tilde{P})$ with no \{a, b\}-restoration for any $b \in L(a, P)$. Applying Case 2, there exists a path $\hat{\pi} \in \Pi(\tilde{P}, P')$ with no \{a, b\}-restoration for all $b \in A \setminus \{a\}$. Arguments similar to those in Case 2 can now be used to construct an appropriate path from P to P'.

Let \tilde{P} be the first vertex in the path $\tilde{\pi}$ (proceeding from P to \tilde{P}) that also lies on $\hat{\pi}$. Let π be the sequence of vertices obtained by the concatenation of the sub-paths $\tilde{\pi}|_{[P, \tilde{P}]}$ and $\hat{\pi}|_{[\tilde{P}, P']}$. Clearly $\pi \in \Pi(P, P')$. Since $\tilde{\pi}$ satisfies no \{a, b\}-restoration for all $b \in L(a, P)$ and $a = r_1(\tilde{P})$, it follows that no alternative in $L(a, P)$ overtakes a in $\tilde{\pi}|_{[P, \tilde{P}]}$, i.e. $L(a, P) \subset L(a, \tilde{P})$. The sub-path $\hat{\pi}$ satisfies no \{a, b\}-restoration for all $b \neq a$; therefore the sub-path $\hat{\pi}|_{[\tilde{P}, P']}$ satisfies no \{a, b\}-restoration for all $b \in L(a, P)$. We can summarize the argument thus far as follows. Pick an arbitrary $b \in L(a, P)$ and consider the path π. If $aP'b$, then b lies everywhere less preferred to a along π. If $bP'a$, then b is less preferred to a in π till \tilde{P} and overtakes a once
from \tilde{P} to P'. In other words, π satisfies no $\{a,b\}$-restoration for all $b \in L(a,P)$.

In Section 5, we apply Property L' to various environments in order to show LGE.

4 DISCUSSION

We comment on some aspects of our results.

4.1 COMPUTATIONAL COMPLEXITY

The problem of determining whether an environment satisfies Property L, is not computationally hard. The Depth First Search Algorithm17 for efficiently traversing graphs can be modified easily to construct an algorithm that decides whether an environment satisfies Property L. The worst case time complexity of the algorithm is $O(|A|^2|D|(|D| + |E|))$ which is polynomial in the parameters of the problem. The details of the argument can be found in Chatterjee (2020).

4.2 RELATIONSHIP WITH EARLIER RESULTS

Carroll (2012) proved that the the environments $\langle P, E^{adj} \rangle$ and $\langle D^{SP}, E^{adj} \rangle$ satisfy LGE.18 Both these environments satisfy a stronger version of Property L which we refer to as Property U.

\textbf{Definition 9} The environment $G = \langle D, E \rangle$ satisfies the universal pairwise no-restoration property (Property U) if for all $P, P' \in D$, there exists a path in $\Pi(P, P')$ that satisfies no-restoration for all pairs $\{a, b\}$.

Let $\pi \in \Pi(P, P')$ be the path that satisfies no-restoration for all pairs of alternatives as required by Property U. Then π also satisfies no $\{a, b\}$-restoration

17See Cormen et al. (2001).

18Recall that P is the set of all strict preferences. Also D^{SP} is the domain of single-peaked preferences. A formal definition of single-peaked preferences can be found in Section 5.
for any $a \in A$ and $b \in L(a, P)$. Clearly, Property L is satisfied. On the other hand, Property L does not imply Property U. In order to see this, consider the environment G^* in Example 2 which satisfies Property L. For the pair (P^1, P^5) the clockwise path has $\{a, b\}$-restoration while the counterclockwise path has $\{c, a\}$-restoration. Clearly, Property U is violated.

Sato (2013) showed that Property P below is necessary for LGE in adjacency environments.

Definition 10 The environment $G = \langle D, \mathcal{E} \rangle$ satisfies the pairwise no-restoration property (Property P) if for all $P, P' \in D$, and $a, b \in A$, there exists a path in $\Pi(P, P')$ that satisfies no $\{a, b\}$-restoration.

Example 3.2 in Sato (2013) shows that Property P is not sufficient for LGE. The difficulty is that Property P does not specify the relationship between the no-restoration paths for different pairs of alternatives - the path satisfying no-restoration between P and P' for $\{a, b\}$ could be distinct from the no-restoration path between the same vertices for another pair $\{c, d\}$. Property L is clearly a strengthening of Property P.

Sato (2013) also introduced a sufficient condition for LGE in adjacency environments (we refer to this condition as Property S for convenience) which is weaker than Property U.

Definition 11 Let $G = \langle D, \mathcal{E}^{adj} \rangle$ be an environment. Consider $P, P' \in D$. A path $\pi = (P^1, P^2, \ldots, P^t) \in \Pi(P, P')$ satisfies the antidote property with respect to the pair (P, P') if, for all pairs $a, b \in A$ such that π is with $\{a, b\}$-restoration and aP^1b, then for each $h \in \{1, \ldots, t\}$ such that $bP^{h-1}a$ and aP^hb, there exists a path $\pi' \in \Pi(P, P^h)$ along which a does not overtake any alternative.

The environment G satisfies Property S if, for every $P, P' \in D$ there exists a path satisfying the antidote property with respect to (P, P').

Environment G^* in Example 2 violates Property S which establishes that Property S is stronger than Property L. Consider the pair (P^1, P^5). As noted earlier, the clockwise path from P^1 to P^5 has $\{a, b\}$-restoration since aP^1b, bP^4a and
In order for it to satisfy the antidote property, \(a \) should not overtake any alternative in the counterclockwise path from \(P_1 \) to \(P_5 \). However \(a \) does overtake \(c \) on this path. Property \(L \) is nevertheless satisfied since there is no restoration with \(a \) and any of the alternatives ranked below \(a \) in \(P_1 \) along this path.

5 Multi-dimensional Voting: the separable domain and the multi-dimensional single-peaked domain

In this section, we apply our results to a well-known voting model. The set of alternatives has a Cartesian product structure, i.e. \(A = \times_{j \in M} A_j \) where \(M = \{1, 2, \ldots, m\} \) is a finite set of components with \(m \geq 2 \). For each \(j \in M \), the component set \(A_j \) contains a finite number of elements with \(|A_j| \geq 2 \). For any \(j \in M \), \(A_{-j} = \times_{i \neq j} A_i \). An alternative \(a \in A \) is an \(m \)-tuple \(a \equiv (a_1, \ldots, a_m) \). We shall sometimes write \(a \) in the form \((a_j, a_{-j})\) where \(a_j \in A_j \) and \(a_{-j} \in A_{-j} \). A preference \(P \) is a linear order over \(A \). A marginal preference over component \(j \) is a linear order over \(A_j \).

A preference \(P \) is separable if, for all \(a_j, b_j \in A_j \), \(c_{-j}, d_{-j} \in A_{-j} \) and \(j \in M \), \((a_j, c_{-j})P(b_j, c_{-j}) \) implies \((a_j, d_{-j})P(b_j, d_{-j}) \). Thus every separable preference \(P \) induces an \(m \)-tuple of marginal preferences \((P_1, \ldots, P_m) \).\(^{19}\) Let \(D_S \) denote the set of all separable preferences. Note that for every component \(j \) and any marginal preference \(P_j \) over the component set \(A_j \), there exists \(P \in D_S \) such that \(P \) induces the marginal preference \(P_j \) over \(A_j \). There is a large literature on committee voting following Barberà et al. (1991) which assumes separable preferences.

Another domain of preferences that we shall consider is that of multi-dimensional single-peaked preferences introduced by Barberà et al. (1993). (See also Le Breton and Sen (1999)) This notion generalizes the well-known class of single-peaked pref-
erences (see Moulin (1980)). For this purpose, additional structure is introduced on each component set.

Let \prec_j denote a linear order over A_j for each $j \in M$. A grid is an m-tuple $(\prec_1, \ldots, \prec_m)$. Let P be a preference over A whose first-ranked alternative is x. Then P is multi-dimensional single-peaked with respect to the grid $(\prec_1, \ldots, \prec_m)$ if for all distinct $a, b \in A$, we have $[x_j \preceq_j a_j \prec_j b_j$ or $b_j \prec_j a_j \preceq_j x_j$ for all $j \in M$ with $a_j \neq b_j] \Rightarrow [aPb]$.\footnote{A grid can be interpreted as a product of lines. The notion of multi-dimensional single-peakedness can be generalized on a product of trees where our result still holds. For notational convenience, let $a_j \preceq_j b_j$ denote either $a_j \prec_j b_j$ or $a_j = b_j$.}

The domain D_{MSP} contains preferences that are not separable (see Section 3 in Le Breton and Sen (1999)). However $D_S \cap D_{MSP} \neq \emptyset$. In order to see this, pick an arbitrary m-tuple of marginal preferences (P_1, \ldots, P_m) where each $P_j, j \in M$ is single-peaked with respect to \prec_j. Construct P as follows. For all distinct $c, d \in A$ with $c \neq d$, let j be the integer in M such that $c_j \neq d_j$ and $c_r = d_r$ for all $r < j$. Then cPd if and only if $c_jP_jd_j$. It is easy to verify that $P \in D_S$. We also claim $P \in D_{MSP}$. Suppose x is the first-ranked alternative in P. Pick distinct alternatives $a, b \in A$. Clearly, $a_j \neq b_j$ for some $j \in M$. Assume further that $x_j \preceq_j a_j \prec_j b_j$ or $b_j \prec_j a_j \preceq_j x_j$ for all $j \in M$ with $a_j \neq b_j$. Let $k \in M$ be the lowest component such that $a_k \neq b_k$. By virtue of the single-peakedness of P_k, $x_k \preceq_k a_k \prec_k b_k$ or $b_k \prec_k a_k \preceq_k x_k$ implies $a_kP_kb_k$. Then, aPb follows directly from the construction of P.

We introduce a new notion of neighbours that applies to any domain which includes separable preferences. Let $P, P' \in D_S$. We say that P and P' are separably adjacent (denoted by $(P, P') \in E^{SA}$) if there exist $j \in M$ and $a_j, b_j \in A_j$ such that $\{x, y\} \in P \triangle P' \Rightarrow [x_j = a_j, y_j = b_j$ and $x_k = y_k$ for all $k \neq j]$. Thus P and P'

\footnote{In the case where $m = 1$, multi-dimensional single-peakedness reduces to single-peakedness. The definition of multi-dimensional single-peakedness is silent regarding the comparison of some alternatives. For instance, suppose $m = 2$, \prec is the $<$ ordering on real numbers and $A_1 = A_2 = \{0, 1\}$. Let $(0, 0)$ be the highest-ranked alternative in the multi-dimensional single-peaked preference \hat{P}. We must have $(0, 0)\hat{P}(1, 0), (0, 0)\hat{P}(0, 1), (0, 0)\hat{P}(1, 1), (1, 0)\hat{P}(1, 1)$ and $(0, 1)\hat{P}(1, 1)$ by definition.}
Table 3: Domains D_S and D_{MSP}

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>P_4</th>
<th>P_5</th>
<th>P_6</th>
<th>P_7</th>
<th>P_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0,0)$</td>
<td>$(0,0)$</td>
<td>$(0,1)$</td>
<td>$(0,1)$</td>
<td>$(1,0)$</td>
<td>$(1,0)$</td>
<td>$(1,1)$</td>
<td>$(1,1)$</td>
<td></td>
</tr>
<tr>
<td>$(0,1)$</td>
<td>$(1,0)$</td>
<td>$(0,0)$</td>
<td>$(1,1)$</td>
<td>$(0,0)$</td>
<td>$(1,1)$</td>
<td>$(0,1)$</td>
<td>$(1,0)$</td>
<td></td>
</tr>
<tr>
<td>$(1,0)$</td>
<td>$(0,1)$</td>
<td>$(1,1)$</td>
<td>$(0,0)$</td>
<td>$(1,1)$</td>
<td>$(0,0)$</td>
<td>$(1,0)$</td>
<td>$(0,1)$</td>
<td></td>
</tr>
<tr>
<td>$(1,1)$</td>
<td>$(1,1)$</td>
<td>$(1,0)$</td>
<td>$(1,0)$</td>
<td>$(0,1)$</td>
<td>$(0,1)$</td>
<td>$(0,0)$</td>
<td>$(0,0)$</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4: $\langle D_S, E^{ASA} \rangle$ and $\langle D_{MSP}, E^{ASA} \rangle$

are separably adjacent if all pairs of alternatives that are reversed between P and P' differ in the values of exactly one component.\footnote{Separably adjacency is based on a notion of Kemeny distance that applies to separable preferences. Two (separable) preferences are separably adjacent if they disagree on the relative ranking of two alternatives that differ in the values of exactly one component. Further analysis of separable adjacency can be found in Chatterji and Zeng (2019).} We emphasize that separable adjacency applies \textit{only} to separable preferences.

Separable adjacency does not cover the standard adjacency case. We therefore consider a strengthened version of separable adjacency: P and P' are \textit{adjacent-separably adjacent} (denoted by $(P, P') \in E^{asa}$)\footnote{The acronym \textit{ASA} stands for adjacent-separably adjacent.} if either $(P, P') \in E^{adj}$ or $(P, P') \in E^{sa}$ holds. Two separable preferences P and P' are neighbours in the ASA sense if one can be obtained from the other by a “minimal” change.

\textbf{Example 3} Let $A = A_1 \times A_2$ with $A_1 = A_2 = \{0, 1\}$. In the special case $|A_j| = 2$ for all $j \in M$, we have $D_S = D_{MSP}$ implying that the environments $\langle D_S, E^{asa} \rangle$ and $\langle D_{MSP}, E^{asa} \rangle$ are the same. Table 3 lists the preferences in D_S and D_{MSP}. Note that the domain satisfies minimal richness.

This environment is shown in Figure 4. The thicker lines in the figure show...
the environment \(\langle D_S, E^{adj} \rangle\), i.e. \(E^{adj} = \{(P^1, P^2), (P^3, P^4), (P^5, P^6), (P^7, P^8)\}\).

The other edges in the figure belong to \(E^{SA}\). Note that \((P^1, P^2) \notin E^{SA}\) since \(P^1 \triangle P^2 = \{(0,1), (1,0)\}\). Also \(P^1 \triangle P^3 = \{(0,0), (0,1), (1,0), (1,1)\}\).

Observe that the set of alternatives that are reversed between \(P^1\) and \(P^3\) can be obtained by switching the value of component 2 from 0 to 1 at different values of component 1. Clearly \((P^1, P^3) \in E^{SA}\). On the other hand \((P^2, P^4) \notin E^{SA}\) since \(\{(0,0), (1,1)\} \in P^2 \triangle P^4\).

We will show later that the environment \(\langle D_{MSP}, E^{ASA} \rangle\) satisfies Property \(L'\).

Clearly, Part 1 of Property \(L'\) is satisfied as indicated by the four thick edges in Figure 4. Now consider the preference \(P^1\) and the alternative \((1,1)\) which is not first-ranked in \(P^1\). We have \((1,1)\) first-ranked in preference \(P_8\) and the path \((P^8, P^7, P^4, P^3, P^1)\) has no restoration for \((1,1)\) and any other alternative. Consequently, the requirement of Part 2 of Property \(L'\) is satisfied in this case. \(\square\)

Example 3 and Figure 4 also lead to the conclusion that the environments \(\langle D_S, E^{ISA} \rangle\), \(\langle D_{MSP}, E^{ISA} \rangle\), \(\langle D_S, E^{adj} \rangle\) and \(\langle D_{MSP}, E^{adj} \rangle\) fail LGE. The graphs in these environments are not connected which can be verified by inspection and by our earlier remarks.

According to the main result in the section, combining the adjacency and separable adjacency notions of neighbours with the separable and multi-dimensional single-peaked domains leads to LGE.

Proposition 2 The environments \(\langle D_S, E^{ISA} \rangle\) and \(\langle D_{MSP}, E^{ISA} \rangle\) satisfy LGE.

The proof of Proposition 2 can be found in the Appendix.

6 LGE and Random Social Choice Functions

In this section, we examine LGE in the context of random social choice functions. Our result is the following: an environment that satisfies LGE for deterministic social choice functions may not satisfy LGE for random social choice functions.
Let $\Delta(A)$ denote the set of probability distributions over A. An element $\lambda \in \Delta(A)$ will be referred to as a lottery. We let λ_a denote the probability with which $a \in A$ is selected by λ. Thus $0 \leq \lambda_a \leq 1$ and $\sum_{a \in A} \lambda_a = 1$.

A Random Social Choice Function (or RSCF) is a map $\varphi : D \rightarrow \Delta(A)$ that associates a lottery $\varphi(P)$ with each $P \in D$.

For every $P \in D$, and $k = 1, 2, \ldots, |A|$, let $r_k(P) \in A$ denote the kth ranked alternative in P i.e. $r_k(P) = a$ implies $|\{b \in A : bPa\}| = k - 1$. The lottery λ stochastically dominates lottery λ' at $P \in D$ (denoted by $\lambda P \sd \lambda'$) if $\sum_{t=1}^{t} \lambda_{r_k(P)} \geq \sum_{t=1}^{t} \lambda'_{r_k(P)}$ for all $t = 1, \ldots, |A|$.

Let $G = \langle D, E \rangle$ be an environment. A RSCF $\varphi : D \rightarrow \Delta(A)$ is locally sd-strategy-proof if $\varphi(P) P \sd \varphi(P')$ for all $(P, P') \in E$. A RSCF $\varphi : D \rightarrow \Delta(A)$ is sd-strategy-proof if $\varphi(P) P \sd \varphi(P')$ for all $P, P' \in D$.

The environment $G = \langle D, E \rangle$ satisfies random local-global equivalence or RLGE if every locally sd-strategy-proof RSCF $\varphi : D \rightarrow \Delta(A)$ is also sd-strategy-proof.

In the case where a RSCF is deterministic, local sd-strategy-proofness and sd-strategy-proofness reduce to local strategy-proofness and strategy-proofness respectively. An immediate consequence of this observation is an environment that satisfies RLGE also satisfies LGE. The results of Carroll (2012) and Cho (2016) show that the converse is true for several special domains. The example below shows that LGE does not imply RLGE.

Example 4 Let $A = \{a, b, c, v, w, x, y, z\}$. The domain \tilde{D} is described in Table 4. The environment $\tilde{G} = \langle \tilde{D}, E^{adj} \rangle$ is shown in Figure 5.

By using arguments similar to those in Example 2, we can show that \tilde{G} satisfies Property L. Therefore, Theorem 1 implies that \tilde{G} satisfies LGE. We construct a RSCF which satisfies local sd-strategy-proofness but not sd-strategy-proofness.

For any $d \in A$, we let e_d denote the degenerate lottery that picks d with probability one. Consider the RSCF $\varphi : \tilde{D} \rightarrow \Delta(A)$:

$$\varphi(P^k) = \begin{cases} \frac{1}{2}e_a + \frac{1}{2}e_b & \text{if } k \in \{1, 10\}, \\ \frac{1}{2}e_a + \frac{1}{4}e_b + \frac{1}{4}e_c & \text{if } k \in \{2, 3, 4, 5\}, \\ \frac{1}{4}e_a + \frac{1}{2}e_b + \frac{1}{4}e_c & \text{if } k \in \{6, 7, 8, 9\}. \end{cases}$$
In order to verify the local sd-strategy-proofness of φ it suffices to show that the voter cannot gain by manipulation in each of the following cases: (i) from P_1 to P_2 and vice versa, (ii) from P_5 to P_6 and vice versa and (iii) from P_9 to P_{10} and vice versa. This can be verified easily in each of the cases. Consider (i), for instance. Observe that c locally overtakes b from P_1 to P_2. Correspondingly, probability $\frac{1}{4}$ is transferred from b to c, (keeping other probabilities fixed) as we move from $\varphi(P_1)$ to $\varphi(P_2)$. Therefore, $\varphi(P_2)P_{sd}\varphi(P_1)$ and symmetrically, $\varphi(P_1)P_{sd}\varphi(P_2)$. The same argument can be made in cases (ii) and (iii).

However, it is not the case that $\varphi(P_5)P_{sd}\varphi(P_1)$ (in fact $\varphi(P_1)P_{sd}\varphi(P_5)$). Consequently φ is not sd-strategy-proof.

We make two observations about Example 4.

Observation 1 As mentioned earlier, Carroll (2012) and Cho (2016) have established the equivalence of local sd-strategy-proofness and sd-strategy-proofness in specific adjacency environments. These environments all satisfy Property U. The environment \tilde{G} in Example 4 violates Property U since both the clockwise and
counterclockwise paths between P^1 and P^5 have restorations.

Observation 2 The key feature of the example in Example 4 that makes the LGE and RLGE results differ is that some lotteries under φ have support $\{a, b, c\}$, e.g. $\varphi(P^k)$, $k = 2, \ldots, 9$. However, no locally strategy-proof SCF can have a range that includes all three alternatives a, b, and c. In order to see this, let $f: \tilde{D} \to A$ be a locally strategy-proof SCF. Theorem 1 implies that f is strategy-proof. Suppose $\{a, b, c\} \subseteq \text{Range}(f) = \{d \in A : f(P) = d \text{ for some } P \in \tilde{D}\}$. Thus, there exists a preference where f takes value a and another preference where f takes value b. Strategy-proofness immediately implies $f(P^k) = a$ for all $1 \leq k \leq 5$ and $f(P^l) = b$ for all $6 \leq l \leq 10$. Hence, we have a contradiction.

A characterization for RLGE appears to be significantly more difficult than that for LGE. In our companion paper Kumar et al. (2019) we derive a weak sufficient condition for RLGE in multi-voter models where RSCFs satisfy the additional property of unanimity.

Appendix: Proof of Proposition 2

We begin by observing that both the separable domain D_S and the multi-dimensional single-peaked domain D_{MSP} satisfy the minimal richness property. Applying Theorem 1 and Proposition 1, it suffices to show that both domains satisfy Property L'. Furthermore both domains satisfy Part 1 of Property L' as is shown in Appendices E.2 and E.5 of Chatterji and Zeng (2019). Therefore, we only verify Part 2 of Property L'.\(^{24}\)

We first investigate the separable domain D_S. Next, we show Part 2 of Property L' on the intersection of the separable domain and the multi-dimensional single-peaked domain $D_S \cap D_{MSP}$, and then extend the result to the multi-dimensional single-peaked domain D_{MSP}.

\(^{24}\)Part 1 of Property L' is the same as the interior\(^+\) property of Chatterji and Zeng (2019). Hence, we can directly apply their result for this part. However, Part 2 of Property L' is stronger than their exterior\(^+\) property so we have to show this independently.
In the proofs, we shall occasionally employ a special type of separable preferences called lexicographic separable preferences. Let \((P_1, \ldots, P_m)\) be an \(m\)-tuple of marginal preferences and let \(P_0\) be strict order over the set \(M\). The preference \(P\) is lexicographically separable with respect to the \((m+1)\)-tuple \((P_0, P_1, \ldots, P_m)\) if, for all \(a, b \in A\),
\[a_j P_j b_j \text{ and } a_r = b_r \text{ for all } r \text{ such that } r P_0 j \Rightarrow a P b.\]
In other words, \(a\) is ranked strictly better than \(b\) according to \(P\) if \(a_j\) is ranked higher than \(b_j\) according to the marginal preference \(P_j\) and \(a_r = b_r\) for all components \(r\) that are ranked strictly higher than \(j\) according to the component preference \(P_0\). We shall write a lexicographically separable preference \(P\) as \(P \equiv (P_0, P_1, \ldots, P_m)\).

We first prove two preliminary lemmas.

Lemma 2 Let distinct \(P, P' \in \mathcal{D}_S\) induce the same marginal preferences. Then there exists a path from \(P\) to \(P'\) in \((\mathcal{D}_S, \mathcal{E}_\text{adj})\) such that there is no restoration for any pair of alternatives.

Proof: This lemma follows from Fact 5 of Chatterji and Zeng (2019).

Lemma 3 Fix marginal preferences \(P_1, \ldots, P_m\). Let \(a\) be an alternative such that \(a_j\) is not the first-ranked element in \(P_j\) for some \(j \in M\). For each component \(k\), let \(X_k = \{x_k \in A_k : x_k P_k a_k\} \cup \{a_k\}\). Let \(X = X_1 \times \ldots \times X_m\). Pick component \(j\), and let \(b_j, c_j \in X_j\) or \(b_j, c_j \in A_j \setminus X_j\) be consecutively ranked elements in \(P_j\). Then there exists a separable ordering \(\bar{P}(j)\) satisfying the following properties:

1. \(\bar{P}(j)\) induces the marginal preferences \(P_1, \ldots, P_m\).
2. \([x \bar{P}(j) a] \Rightarrow [\text{for each } k \in M, \text{ either } x_k P_k a_k \text{ or } x_k = a_k, \ i.e. \ x \in X]\).
3. \((b_j, z_{-j})\) and \((c_j, z_{-j})\) are consecutively ranked in \(\bar{P}(j)\) for all \(z_{-j} \in A_{-j}\).

Proof: We construct a partition of the set \(A\). In order to do so, define the following sets: \(A_{-j} = \times_{k \neq j} A_k, X_{-j} = \times_{k \neq j} X_k, Y_j = A_j \setminus X_j, \text{ and } Y_{-j} = A_{-j} \setminus X_{-j}\). The sets \(X, B = X_j \times Y_{-j}, C = Y_j \times X_{-j}\) and \(D = Y_j \times Y_{-j}\) constitute a partition of the set \(A\). The ordering \(\bar{P}(j)\) is defined by the Conditions 1 and 2 below.
1. $XP(j)BP(j)CP(j)D$ i.e. all alternatives in X are ranked above those in B which in turn are ranked above those in C, while all alternatives in D are ranked below those in C.

2. $\bar{P}(j)$ over X is lexicographically separable according to $(P_0(j), P_1, \ldots, P_m)$ where j is ranked last in the component preference $P_0(j)$ i.e. given $x, y \in X$, $[x_k P_k y_k$ and $x_r = y_r$ for all $r \neq (j)k] \Rightarrow [x P(j)y]$. Similarly, $\bar{P}(j)$ is lexicographically separable over alternatives respectively in B, C and D with respect to $(P_0(j), P_1, \ldots, P_m)$.

Observe that a_k is the lowest ranked element in X_k according to P_k for all $k \in M$. Therefore, by the construction, a is the worst alternative in X according to $\bar{P}(j)$. As X is the highest-ranked block according to $\bar{P}(j)$, it follows that all alternatives x that are ranked higher than a according to $\bar{P}(j)$ must satisfy $x \in X$.

This establishes Part 2 of Lemma 3.

To show that $\bar{P}(j)$ is a separable preference and satisfies Part 1 of Lemma 3, it suffices to show that for an arbitrary pair of alternatives that disagree in exactly one component, say $x = (x_k, z_{-k})$ and $y = (y_k, z_{-k})$, we have $[(x_k, z_{-k})\bar{P}(j)(y_k, z_{-k})] \Rightarrow [x_k P_k y_k]$. If x and y both belong to one of the sets X, B, C or D, the result follows immediately. Henceforth, assume that x and y belong to two different sets of X, B, C and D.

Suppose $k = j$. We know either $z_{-j} \in X_{-j}$ or $z_{-j} \in Y_{-j}$. If $z_{-j} \in X_{-j}$, $(x_k, z_{-k})\bar{P}(j)(y_k, z_{-k})$ implies $x \in X$ and $y \in C$. Similarly, if $z_{-j} \in Y_{-j}$, $(x_k, z_{-k})\bar{P}(j)(y_k, z_{-k})$ implies $x \in B$ and $y \in D$. Consequently, in both cases, $x_j \in X_j$ and $y_j \in Y_j$, and hence $x_j P_j y_j$.

Suppose $k \neq j$. Let z_{-jk} denote the vector z_{-k} with its element of component j deleted. Since $x \bar{P}(j)y$, and x and y agree on component j, we know either $x \in X$ and $y \in B$, or $x \in C$ and $y \in D$, both of which imply $(x_k, z_{-jk}) \in X_{-j}$ and $(y_k, z_{-jk}) \in Y_{-j}$. Since X_{-j} is a Cartesian product set, $(x_k, z_{-jk}) \in X_{-j}$ implies $x_k \in X_k$ and $z_{-jk} \in \times_{r \neq j} X_r$. Last, since $z_{-jk} \in \times_{r \neq j} X_r$, $(y_k, z_{-jk}) \notin X_{-j}$ implies $y_k \notin X_k$. Therefore, $x_k P_k y_k$.

Hence $\bar{P}(j)$ is a separable preference, and induces marginal preferences P_1, \ldots, P_m. 32
Part 3 of Lemma 3 is an immediate consequence of the fact that \(\bar{P}(j) \) over alternatives of \(X \) and \(B \) respectively is lexicographically separable with respect to the component preference \(P_0(j) \) where component \(j \) is ranked last. ■

We now show that the separable domain \(D_S \) satisfies Part 2 of Property \(L' \).

Proof: Consider \(P' \in D_S \) and \(a \in A \) such that \(a \) is not the first-ranked alternative in \(P' \). Let \(P'_1, \ldots, P'_m \) be the induced marginal preferences of \(P' \). Without loss of generality, assume that \(a_1, a_2, \ldots, a_r, r \leq m \), are not first-ranked in \(P'_1, P'_2, \ldots, P'_r \) respectively, while \(a_v = r_1(P'_v) \) for all \(v = r + 1, \ldots, m \). We will construct a sequence of preferences which are edges in \(\langle D_S, \mathcal{E}^{ASA} \rangle \) with the property that \(a \) keeps “rising” along the sequence. The sequence will terminate in a preference \(P \in D_S \) where \(a \) is first-ranked. Then, the reverse path from \(P \) to \(P' \) has no \(\{a, b\}\)-restoration for all \(b \in A \setminus \{a\} \), as required by Part 2 of Property \(L' \).

We start from \(P'_1 \). Let \(P_1 \) denote the set of all marginal preferences over \(A_1 \). Pick a marginal ordering \(P_1 \) such that \(a_1 \) is first-ranked. By Proposition 4.1 of Sato (2013), we have a path \(\pi^1 = (P'_1, \ldots, P'_i) \) from \(P'_1 \) to \(P_1 \) in \(\langle P_1, \mathcal{E}^{adia} \rangle \) which has no restoration for any pair of elements of \(A_1 \).\(^{25}\) Since \(L(a_1, P'_1) \subset L(a_1, P_1) \), \(a_1 \) must keep rising along the path \(\pi^1 \) i.e. \(L(a_1, P_1^k) \subseteq L(a_1, P_1^{k+1}) \) for all \(1 \leq k < t \).

Therefore, for all \(1 \leq k < t \), if \(a_1 \) is involved in the local switching elements across \(P_1^k \) and \(P_1^{k+1} \), it is true that \(x_1 P_1^k a_1 \) and \(a_1 P_1^{k+1} x_1 \) for some \(x_1 \in A_1 \).

For each \(k = 1, \ldots, t \), let \(X_1^k = \{x_1 \in A_1 : x_1 P_1^k a_1\} \cup \{a_1\} \). For each \(k = 1, \ldots, t-1 \), consider \((P_1^k, P_1^{k+1}) \) and let \(P_1^k \Delta P_1^{k+1} = \{b_1^k, c_1^k\} \). Since \(L(a_1, P_1^k) \subseteq L(a_1, P_1^{k+1}) \), it must be the case that either \(b_1^k, c_1^k \in X_1^k \) or \(b_1^k, c_1^k \in A_1 \setminus X_1^k \). Next, for each \(k = 1, \ldots, t \), by Lemma 3, let \(\bar{P}^k(1) \in D_S \) be such that (i) it induces the marginal preferences \(P_1^k, P_2', \ldots, P_m' \), (ii) if \(x \bar{P}^k(1) a \), then for all \(j \in M_1 \), either \(x_j = a_j \) or \(x_j \) is strictly better than \(a_j \) according to the \(j \)th marginal ordering of \(\bar{P}^k(1) \), and (iii) \((b_1^k, z_{-1}) \) and \((c_1^k, z_{-1}) \) are consecutively ranked in \(\bar{P}^k(1) \) for all \(z_{-1} \in A_{-1} \). Let \(\hat{P}^k(1) \) be the ordering obtained by switching all alternatives of the

\(^{25}\)For instance, we generate \(P_1 \) by moving \(a_1 \) directly to the top of \(P'_1 \) while keeping the rankings of other elements unchanged, and then construct the path from \(P'_1 \) to \(P_1 \) in \(\langle P_1, \mathcal{E}^{adia} \rangle \) by progressively moving \(a_1 \) to the top of \(P'_1 \).
type \((b^k_1, z_{-1})\) and \((c^k_1, z_{-1})\) for some \(z_{-1} \in A_{-1}\). It is clear that \(\hat{P}^k(1)\) is a separable preference with the same marginal preferences as \(\tilde{P}^k(1)\) for all components other than 1. For component 1, \(c^k_1\) is now ranked immediately above \(b^k_1\), while the rankings of other elements are unchanged. Therefore, there are three properties of \(\hat{P}^k(1)\) that are important: (i) \(\langle P^k(1), P^k(1) \rangle \in \mathcal{E}^{SA}\) and \(P^k(1) \triangle \hat{P}^k(1) = \{(b^k_1, z_{-1}), (c^k_1, z_{-1})\} : z_{-1} \in A_{-1}\},\) (ii) \(L(a, \tilde{P}^k(1)) \subseteq L(a, \hat{P}^k(1))\) where the strict inclusion holds if and only if \(a_1 = c^k_1\), and (iii) \(\hat{P}^k(1)\) and \(\tilde{P}^{k+1}(1)\) have the same marginal preferences, and \(L(a, \hat{P}^k(1)) \subseteq L(a, \tilde{P}^{k+1}(1))\) by Part 2 of Lemma 3 in the construction of \(\tilde{P}^{k+1}(1)\).

Now, we have a sequence:

\[
P' \to \hat{P}^1(1) \to \tilde{P}^1(1) \to \hat{P}^2(1) \to \cdots \to \hat{P}^{t-1}(1) \to \tilde{P}^{t-1}(1) \to \tilde{P}^t(1).
\]

Note that \(\tilde{P}^t(1)\) has marginal preference \(P_1\) where \(a_1\) is the first-ranked element. Since \(P'\) and \(\tilde{P}^1(1)\) have the same marginal preferences \(P'_1, P'_2, \ldots, P'_m\), we know that either \(P = \tilde{P}^1(1)\), or there exists a path \(\tilde{P}^0\) from \(P\) to \(\tilde{P}^1(1)\) in \(\langle D_S, \mathcal{E}^{adj} \rangle\) which has no restoration for any pair of alternatives (by Lemma 2). Similarly, for all \(1 \leq k < t\), we know that either \(\hat{P}^k(1) = \tilde{P}^{k+1}(1)\), or there exists a path \(\hat{P}^k\) from \(\hat{P}^k(1)\) to \(\tilde{P}^{k+1}(1)\) in \(\langle D_S, \mathcal{E}^{adj} \rangle\) which has no restoration for any pair of alternatives. Since \(\langle \hat{P}^k(1), \tilde{P}^k(1) \rangle \in \mathcal{E}^{SA}\) for all \(k = 1, \ldots, t-1\), we construct a concatenated path \(\bar{P} = (\tilde{P}^0, \bar{P}^1, \ldots, \bar{P}^{t-1})\) from \(P'\) to \(\bar{P}^t(1)\) in \(\langle D_S, \mathcal{E}^{ASV} \rangle\).\(^{26}\) Recall that \(L(a, P') \subseteq L(a, \bar{P}^1(1))\), \(L(a, \hat{P}^k(1)) \subseteq L(a, \tilde{P}^{k+1}(1))\) and \(L(a, \hat{P}^k(1)) \subseteq L(a, \tilde{P}^{k+1}(1))\) for all \(k = 1, \ldots, t-1\). Then, no restoration on subpaths \(\tilde{P}^0, \bar{P}^1, \ldots, \bar{P}^{t-1}\) implies that \(a\) keeps rising along the path \(\bar{P}\).

We can clearly repeat this procedure, progressively moving \(a_1\) to the top in the marginal preference \(P_1\), and then doing the same for \(a_2\), through till \(a_r\).

\(^{26}\)The concatenated path \(\bar{P}\) has no repeated preference. Given two preferences \(\hat{P}\) and \(\tilde{P}\) in \(\bar{P}\), we know \(\hat{P} \in \bar{P}^k\) and \(\tilde{P} \in \bar{P}^k\) for some \(0 \leq k, k' \leq t-1\). If \(k = k'\), it is evident that \(\hat{P} \neq \tilde{P}\) by the definition of the path \(\bar{P}^k\). Next, assume \(k < k'\). Note that \(\hat{P}^{k'}(1)\) and \(\tilde{P}^{k'+1}(1)\) induce the same marginal preference \(P_1^{k'+1}\) and the path \(\bar{P}^{k'}\) connecting \(\hat{P}^{k'}(1)\) and \(\tilde{P}^{k'+1}(1)\) has no restoration for any pair of alternatives. Then, \(\bar{P} \in \bar{P}^{k'}\) implies that \(\bar{P}\) induces the marginal preference \(P_1^{k'+1}\). Symmetrically, \(\hat{P}\) induces the marginal preference \(P_1^{k'+1}\), which is distinct from \(P_1^{k'+1}\). Therefore, \(\hat{P}\) and \(\tilde{P}\) must be distinct.
procedure generates a path in \(\langle D_S, E^{ASA} \rangle \) culminating in a preference \(P \in D_S \) where \(a \) is first-ranked. Moreover if \(a \) overtakes some \(x \) at some preference on the path, it beats \(x \) at all preferences further along the path. It follows immediately that the reverse path from \(P \) to \(P' \) satisfies no \(\{a, b\} \)-restoration for all \(b \in A \setminus \{a\} \). This establishes Part 2 of Property \(L' \), and hence proves Proposition 2 for the separable domain \(D_S \).

To show Part 2 of Property \(L' \) in the multi-dimensional single-peaked domain \(D_{MSP} \), we first consider the domain \(D_S \cap D_{MSP} \). We make several observations. Firstly, \(D_S \cap D_{MSP} \) satisfies Part 1 of Property \(L' \) by Appendix E.4 of Chatterji and Zeng (2019). Secondly, Lemma 2 remains valid in \(D_S \cap D_{MSP} \) according to Fact 11 of Chatterji and Zeng (2019). Thirdly, Lemma 3 holds when we set the marginal preferences \(P_1, \ldots, P_m \) to be single-peaked with respect to \(\prec_1, \ldots, \prec_m \) respectively, and change preference \(\bar{P}(j) \) to be both separable and multi-dimensional single-peaked. Finally, in the verification of Part 2 of Property \(L' \) in the separable domain, if we replace \(D_S \) with \(D_S \cap D_{MSP} \), \(P_1 \) with \(S_1 \) which is the set of all single-peaked marginal preferences with respect to \(\prec_1 \), and the reference to Proposition 4.1 of Sato (2013) with a reference to Proposition 4.2 of Sato (2013), our earlier proof works for verifying Part 2 of Property \(L' \) in \(D_S \cap D_{MSP} \). Therefore, \(D_S \cap D_{MSP} \) satisfies Property \(L' \).

To extend the result to the multi-dimensional single-peaked domain, we use the following lemma which follows from Lemma 8 of Chatterji and Zeng (2018).

Lemma 4 Given distinct \(P, P' \in D_{MSP} \), let \(r_1(P) = r_1(P') \). Then there exists a path from \(P \) to \(P' \) in \(\langle D_{MSP}, E^{adj} \rangle \) such that there is no restoration for any pair of alternatives.

We now show Part 2 of Property \(L' \) in the multi-dimensional single-peaked domain \(D_{MSP} \).

Proof: Consider \(P' \in D_{MSP} \) and \(a \in A \) such that \(a \) is not the first-ranked alternative in \(P' \). Let \(r_1(P') = \bar{a} \). Fix \(k \in M \). If \(a_k = \bar{a}_k \), we pick an arbitrary single-peaked marginal preference \(P'_k \) that has \(a_k \) as the first-ranked element. If
If $a_k \neq \bar{a}_k$, we identify a particular single-peaked marginal preference P'_k which satisfies the following condition: $[x_k \preceq_k a_k \Rightarrow [\bar{a}_k \preceq_k x_k \prec_k a_k$ or $a_k \prec_k x_k \preceq_k \bar{a}_k]$. The marginal preferences P'_1, \ldots, P'_m are single-peaked by construction. Applying the counterpart of Lemma 3, we have $\bar{P}' \in \mathcal{D}_S \cap \mathcal{D}_{MSP}$ such that \bar{P}' induces P'_1, \ldots, P'_m, and $[x \preceq_k a_k \Rightarrow [\bar{a}_k \preceq_k x_k \prec_k a_k \text{ or } a_k \prec_k x_k \preceq_k \bar{a}_k]$. Note that $L(a, \bar{P}') \supseteq L(a, P')$. By Lemma 4, since $r_1(P') = r_1(\bar{P}')$, we have a path π from \bar{P}' to P' in $\langle \mathcal{D}_{MSP}, E^{adj} \rangle$ which has no restoration for any pair of alternatives. Moreover, since $\mathcal{D}_S \cap \mathcal{D}_{MSP}$ satisfies Property L', we have $P \in \mathcal{D}_S \cap \mathcal{D}_{MSP}$ that has a first-ranked, and a path $\bar{\pi}$ from P to \bar{P}' in $\langle \mathcal{D}_S \cap \mathcal{D}_{MSP}, E^{ASA} \rangle$ that has no \{a,b\}-restoration for all $b \neq a$.

Now, we have a concatenated path $\pi = (\bar{\pi}, \hat{\pi})$ from P to P' in $\langle \mathcal{D}_{MSP}, E^{ASA} \rangle$.\(^{27}\)

We show that π has no \{a,b\}-restoration for all $b \neq a$. Fix an arbitrary $b \neq a$. If b overtakes a on path $\bar{\pi}$, then no \{a,b\}-restoration on $\bar{\pi}$ implies that b overtakes a on $\bar{\pi}$ exactly once, and $b \bar{P}' a$. Then, $L(a, \bar{P}') \supseteq L(a, P')$ implies $bP'a$, and no restoration on $\hat{\pi}$ from \bar{P}' to P' implies $b\hat{P}a$ for all $\hat{P} \in \hat{\pi}$. Hence, the concatenated path π has no \{a,b\}-restoration. If b does not overtake a on path $\bar{\pi}$, then no \{a,b\}-restoration on $\bar{\pi}$ implies $a\bar{P}b$ for all $\bar{P} \in \bar{\pi}$, and hence $a\bar{P}'b$. Furthermore, no restoration on $\hat{\pi}$ implies that b can overtake a on $\hat{\pi}$ for at most once. Hence, the concatenated path π has no \{a,b\}-restoration. This establishes Part 2 of Property L', and hence proves Proposition 2 for the multi-dimensional single-peaked domain \mathcal{D}_{MSP}.

\(^{27}\)By an argument similar to the earlier one, the concatenated path π has no repeated preference.
REFERENCES

