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Abstract

This paper introduces two simple betting mechanisms, Top-Flop

and Threshold betting, to elicit unverifiable information from crowds.

Agents are offered bets on the rating of an item about which they re-

ceived a private signal versus that of a random item. We characterize

conditions for the chosen bet to reveal the agents’ private signal even if

the underlying ratings are biased. We further provide micro-economic

foundations of the ratings, which are endogenously determined by the

actions of other agents in a game setting. Our mechanisms relax stan-

dard assumptions of the literature, such as common prior, and homo-

geneous and risk neutral agents.
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1 Introduction

Suppose the manager of a customer-care call center wants to assess her em-

ployees through some customer satisfaction measures. At the end of each call,

she invites customers to take a one-question survey about whether they are

satisfied with the services. She can reward participation with a small prize

(voucher or fidelity points), but this is not enough. She would also like to have

the customers think carefully about the question and provide truthful answers.

If she were able to verify the answer, incentivizing truth-telling would be easy.

However, only the customers themselves know whether they are actually satis-

fied or not, making it difficult to align rewards with truth-telling. We propose

the following solution. The manager can reformulate the survey question and

ask customers to bet whether the employee they talked to has a higher or

lower satisfaction rate than another, randomly selected employee from the call

center. Customers who win the bet receive the prize.

We call the aforementioned method Top-Flop betting and show that it

provides incentives for agents to truthfully reveal private information. We

consider two cases. In the first case, the bets are defined on a pre-existing

satisfaction rating, which may be biased as long as it is informative enough

(as specified later). In the second case, the rating is a function of the bets

chosen by other customers. Another method introduced in this paper and

that we call Threshold betting, induces truth-telling by making customers bet

on which employee (the one they talked to or a random one) is more likely to

get a satisfaction rate exceeding a given threshold.

It is easy to implement Top-Flop and Threshold betting in many settings

in which people receive private binary signals, in the form of tastes or expe-

riences. An application, which we will use as a leading example, is to elicit

whether people liked or disliked a movie after previewing it. Previewers are
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offered bets on some future performance measures of the movie, like the Rot-

ten Tomatoes rating or the number of tickets sold, versus those of another

movie of the same type. To put it simply, our mechanisms ask people to bet

on the relative performance of the previewed movie. Doing so alleviates the

concern of Keynesian beauty-contest type of herding, when agents act upon

what they think others will think, rather than upon their own signals. With a

betting mechanism on absolute performance, as in a prediction market, agents’

decisions are jointly determined by their private signals and their prior expec-

tations about movie performance. Betting on relative performance, as in our

mechanisms, disentangles the private signal from prior expectations, as we will

show.

This paper introduces simple betting mechanisms (Top-Flop betting and

Threshold betting) and determines sufficient conditions for the chosen bets to

reveal private signals. The first part of the paper considers a setting where a

single agent receives a signal about one item and bets on its rating relative to

that of another item belonging to a collection of similar items. In this setting,

we assume that the ratings are exogenous random variables. There are two

key conditions for the agent to reveal his signal through his betting behavior.

First, the rating of an item must be more informative about the signals related

to that item than the ratings of other items are. For instance, learning that

the previewed movie grossed more than $500M on its first weekend is more

informative about the probability to like that specific movie than learning that

another movie exceeded the same milestone is. Second, the agent has the same

prior for all items of the collection. That is, the agent has no reason to prefer

one movie over the other ex ante. Our results do not require the agent to be

risk neutral (or even a risk-averse expected-utility maximizer) but simply to

choose the bet giving a higher chance to win. Hence, our results are valid for

3



any decision model satisfying first-order stochastic dominance.

In the second part of the paper, we consider a game setting with at least

four agents and provide a theoretical foundation for the rating. For a given

agent, the rating for an item in the collection is determined by betting choices

of other agents. Similarly to the single-agent case, each agent in a betting game

receives a signal about one item in the collection. We again establish sufficient

conditions for agents to reveal their signals. Specifically, we do not require

that they fully agree on how signals are generated and how signals of any two

agents are related. Agents may think they all have a different prior probability

to like a given movie. They may even disagree about what these probabilities

are. They do agree that the signals of two agents are more positively correlated

when the signals are for the same item than for different items. However, they

may disagree on the exact degree of correlation. The results we obtain are

partial implementation results. We establish that agents revealing their signal

is a Nash equilibrium, but other equilibria are not excluded.

Several methods have been proposed to reveal unverifiable signals in survey

settings (Prelec, 2004; Witkowski and Parkes, 2012b; Radanovic and Faltings,

2013; Baillon, 2017; Cvitanić et al., 2019). They provide truth-telling incen-

tives by asking each agent two questions regarding a single item. One of the

questions is directly about the signal, and the other one is about predicting

other agents’ answers. These methods are based on a common-prior assump-

tion, requiring that agents only differ in the signal they received. With these

methods, truthful signal reporting is a Bayesian Nash equilibrium when agents

are risk neutral. By using more than one item, we can relax the common prior

assumption and replace it by an assumption about how the items are related.

In other words, in our model, priors may differ across agents but have to agree

across items.
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Witkowski and Parkes (2012a) also introduced a method that relaxed the

common prior assumption, but it required to elicit priors before agents receive

their signals. We do not require such additional elicitation. In that sense,

our mechanism is minimal, as defined by Witkowski and Parkes (2013). The

latter paper proposed a minimal mechanism approximating beliefs with the

empirical distribution of signals and delaying payment until the distribution is

accurate enough. We do not need such delays. Our approach also allows us to

use a payment rule that is simpler than the aforementioned mechanisms and

is robust to risk aversion, certainty effects, and other behavioral phenomena.

Finally, the game-theoretic version of our mechanisms is based on assumptions

that are close to those of Dasgupta and Ghosh (2013) and Shnayder et al.

(2016). These authors also used cross-item correlations to incentivize truthful

signal reporting (including non binary signals for Shnayder et al., 2016), but

they needed that all agents get signals for at least two items. The literature

is further discussed in Section 4.

We conclude our paper with examples of practical implementations and

potential applications of our methods. We show how Threshold betting can

be implemented as a financial derivative (an option) of prediction markets.

We also explain how our simple bets can be used to assess whether people are

willing to pay a given amount for product features that are yet to be developed.

2 Betting on exogenous ratings

2.1 Signals, ratings, and beliefs

We first consider a setting of a single agent (“he”). There is a collection of

items K ≡ {1, . . . , K} with K ≥ 2. For one1 fixed l ∈ K, the agent receives a

1We assume that, if the agent receives signals about other items, the corresponding items
are removed from the collection and that the assumptions introduced below hold conditional
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private signal, modeled as a realization t ∈ T = {0, 1} of a random variable T .

A center (“she”) wishes to elicit t. For instance, K is a collection of movies,

the agent watches movie l, and the center wants to know whether he liked it

(t = 1) or not (t = 0). Each item k ∈ K has a rating, reflecting its quality and

taking values from S, a countable subset of the reals. The ratings are unknown

to the agent and to the center when the agent receives t. Furthermore, neither

the agent nor the center can influence the ratings. Hence, ratings are modeled

as bounded2 random variables Yk with generic realization yk ∈ S.

We assume that all the random variables (ratings and signals) are defined

on the same probability space (Ω,F , P ). By Kolmogoroff (1933), this can

always be assumed. For simplicity, we avoid measure-theoretic complications

and assume that Ω is countable, that F is the sigma-algebra of all subsets of

Ω (called events), and that P is countably additive.3 The random variables

(and P ) need not describe some objective processes but rather the agent’s

beliefs. His prior probability of getting signal 1 is P (t = 1) and Hk denotes

the distribution function of his prior about the rating.

Assumption 1 (Identical prior). For any k ∈ K\{l}, Yk and Yl are identically

distributed, with Hk = Hl.

Let H (≡ Hl) be the prior, identical for all items, as defined in Assumption

1. Assumption 1 means that the agent has the same expectations about the

items in the collection before he receives a signal about item l. In practice,

it requires that items are similar. In the movie example, if the rating is a

performance measure such as reviews or gross revenue, the collection should

not mix blockbusters with independent movies because the agent may have

on the additional signals.
2A real-valued random variable Yk = Yk(ω) defined on the probability space (Ω,F ,P) is

bounded if there exists a constant M such that | Yk(ω) |≤M for all ω ∈ Ω.
3For instance, Ω may be the Cartesian product of the rating space and the signal space,

Ω = (Πk∈KS)× T .
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very different expectations of the ratings for the two categories. Dasgupta and

Ghosh (2013) and Shnayder et al. (2016) argued for the identical prior assump-

tion when the agent is ignorant about the collection and items are randomly

assigned. They typically considered agents completing multiple tasks that are

crowd-sourced, such as image labeling, peer-assessment in online courses, or

reporting features of hotels and restaurants.

A subset of the rating space, useful for what follows, is S ′ = {y ∈ S : 0 <

H(y) < 1}. It excludes all ratings that are so low or so high that the agent

believes they will never occur. It also excludes the maximum rating level the

agent believes may occur (the smallest y such that H(y) = 1).4 We consider

the non-trivial case where the agent believes that more than one rating level

may occur, i.e. S ′ not empty.

Assumption 2 (Comparative informativeness). For all k ∈ K\{l} and y ∈ S,

P (t = 1 | Yl > y) > P (t = 1 | Yk > y).

In the mechanism design literature, private signals are linked to states of

nature by a signal technology. Here, the possible ratings play the role of the

states of nature. The signal technology is (believed by the agent to be) such

that the rating of item l is more positively associated with receiving a signal

1 about l than the rating of item k is.5 Let the collection of items be, for

instance, all movies of a franchise, and the rating be how much the movies

will earn in the first month after their release. If the agent learns that movie

l = 4 has grossed $20, 000, 000 so far (so Y4 will be at least that amount),

he may update his probability of liking that movie upwards. If instead, he

4S ′ does not coincide with the support of the distribution. For instance, if S = {1, . . . , 6}
and the support is {2, 4, 5}, then S ′ = {2, 3, 4}. It excludes the highest value of the support,
5, but includes 3 because 0 < H(3) < 1 even though P (Yk = 3) = 0. We use S ′ because, as
will become transparent later, our mechanisms rely on properties of cumulative distribution
functions, not probability (or density) functions.

5Assumption 2 also implies P (t = 1) ∈ (0, 1) because a degenerate prior would give the
same posterior no matter what Yl and Yk would be.
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learns that another movie, e.g. k = 3, has grossed $20, 000, 000 so far, he

may also update his probability to like movie 4 upwards but less so. He may

even decrease his probability to like movie 4 if he thinks that a great movie

3 means a less good movie 4. Our assumption allows for biases or distrust of

the underlying ratings. For instance, the agent may think that the rating is

biased by the fact that some people see all movies of the franchise anyhow,

good or bad. Assumption 2 holds as long as the biases neither eliminate nor

reverse the stronger relation between a high rating of l and a signal 1 than

between a high rating of k and a signal 1.

Once the agent learns his signal t, he updates his beliefs about the ratings,

which yields the posterior distribution function F t
k(y) = P (Yk ≤ y | T = t).

Assumptions 1 and 2 guarantee that the signal influences his expectations

about Yl in a very specific way relative to any other Yk. For any two cumulative

distribution functions F and G with domain S, we write F �SD G (F �SD G

) and say that F (strictly) first-order stochastically dominates G when F (y) ≤

G(y) for all y ∈ S (with F (y) < G(y) for some y).

Lemma 1. Assumptions 1 and 2 imply F 1
l (y) �SD F 1

k (y) and

F 0
k (y) �SD F 0

l (y) for all k 6= l.

The proof of Lemma 1, as all other proofs, is in Appendix. Intuitively,

a signal t = 1 is more associated with high ratings of item l than with high

ratings of item k and therefore shifts posterior F 1
l more to the right than

posterior F 1
k . Note that we could have immediately assumed the implications

of Lemma 1, which would be more general than Assumptions 1 and 2. The

advantage of providing sufficient conditions is to clarify what types of items

and ratings can be used. If the agent believes the rating of l is more positively

correlated with the signal than the rating of k is and views all items of the

collection as equivalent, ex ante, in terms of ratings, then his beliefs about
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the ratings of l and of any k 6= l once he has received his signal will satisfy

the stochastic dominance properties spelled out in Lemma 1. These properties

guarantee that signals can be identified from beliefs. Before we design bets

based on this identification strategy, we introduce an additional assumption

that we will use in some of our results, in which we need the random variables

Yk and Yl to be not only identically distributed but also independent.

Assumption 3 (Independence). For any k ∈ K with k 6= l, Yk and Yl are

independent, and conditionally independent given T .

We could also replace conditional independence in Assumption 3, using the

fact that Yk and Yl are independent, by:

P (t = 1 | Yl, Yk)

P (t = 1 | Yl)
=
P (t = 1 | Yk)

P (t = 1)
. (1)

In other words, how information about Yk changes the probability of a positive

signal is invariant to information about Yl.

2.2 The bets

Let π be a prize (money, a gift, or... an actual pie) that the agent likes. The

absence of prize is denoted by 0. Let E be an event, an element of F . A bet

on E assigns π to E and 0 to the complement of E . The agent has preferences

over bets. If we do not explicitly mention that preferences are strict, we mean

weak preferences.

Assumption 4 (Probabilistic sophistication). For any three events E, E ′,

and G ∈ F , the agent prefers a bet on E to a bet on E ′ when he knows that G

occurred if and only if P (E | G) ≥ P (E ′ | G).

Assumption 4 says that the agent is probabilistically sophisticated in the

sense of Machina and Schmeidler (1992), and that preferences are consistent
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with P , the (subjective) probability measure that underlies the random vari-

ables. He may be risk neutral, or be a risk-averse expected utility maximizer,

or even transform his probabilities as long as the transformation is strictly in-

creasing in P so as to satisfy stochastic dominance (Kahneman and Tversky,

1979; Tversky and Kahneman, 1992). Assumption 4 implies that the agent

strictly prefers π (a bet on Ω) to nothing (a bet on ∅).

Definition 1. For an arbitrary k ∈ K \ {l}, a Top bet is a bet on {ω ∈ Ω :

Yl(ω) > Yk(ω)} and a Flop bet is a bet on {ω ∈ Ω : Yl(ω) < Yk(ω)}.

The center proposes a Top bet and a Flop bet to the agent, who may choose

one of them (or reject both).

Lemma 2. Under Assumptions 1 to 4, the agent, before learning t, is indif-

ferent between the Top and the Flop bet but strictly prefers any of them to

nothing.

Ex ante, the agent has the same belief H about the distribution of Yk and

Yl (Assumption 1), which are also independent (Assumption 3), and there

is no reason to prefer betting on one rating being higher rather than the

other (Assumption 4). Furthermore, the agent does not expect the ratings to

be equal with certainty and therefore expects that both bets have a nonnull

chance to yield the prize. The agent wants to participate in the betting. When

he learns his signal, he has a clear preference for one of the bets, as established

by the next Theorem.

Theorem 1. Under Assumptions 1 to 4, for any k ∈ K\{l}, the agent strictly

prefers the Top bet if t = 1 and the Flop bet if t = 0.

The following corollary makes explicit that the agent does not need to know

k, which can be selected from the collection of items with a random device. We
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assume, here and whenever we will refer to such exogenous random devices,

that they are independent of all the random variables described so far and also

conditionally independent given T , and that all elements of the collection have

a positive probability to be drawn.

Corollary 1. Theorem 1 remains valid if k is unknown to the agent and,

instead, will be randomly drawn from K \ {l}.

Even though the agent does not know which k will be drawn from item

collection K, the collection should still be clearly specified. If the agent can

imagine any item, Assumptions 1 to 3 are less likely to hold.

Our results for the Top and Flop bets rely on (conditional) independence

of the ratings. The center can also propose another type of simple bets to the

agents, which still reveal signals but without relying on independence, only on

the stochastic dominance conditions established in Lemma 1. For instance,

the agent could be asked to bet on whether the rating of item l or the rating

of item k will exceed some threshold. We call this approach Threshold betting.

Definition 2. A Threshold-y bet on k is a bet on {ω ∈ Ω : Yk(ω) > y}.

If the ratings are taken from Rotten Tomatoes, a Threshold-60 bet would

yield the prize only if the rating of the movie exceeds 60%. Ex ante, the agent

is indifferent between the items on which the Threshold-y bets are based.

Lemma 3. Under Assumptions 1 and 4, for any y ∈ S ′ and k ∈ K \ {l}, the

agent, before learning t, is indifferent between a Threshold-y bet on k and a

Threshold-y bet on l, but strictly prefers any of them to nothing.

Assumptions 1 to 4 are about the agent’s beliefs and behavior, not about

objective features of a signal technology. In that sense, they may be difficult

to verify. However, Lemma 3 provides a way to jointly test Assumptions 1
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and 4. Before previewing a movie, the agent should be indifferent between the

bets.

Theorem 2. Under Assumptions 1, 2, and 4, for any y ∈ S and k ∈ K \ {l},

the agent strictly prefers a Threshold-y bet on l to a Threshold-y bet on k if

t = 1 and a Threshold-y bet on k to a Threshold-y bet on l if t = 0.

Corollary 2. Theorem 2 remains valid if k is unknown to the agent and will

be randomly drawn from K \ {l} and/or if y is unknown to the agent and will

be randomly drawn from S.

A challenge of Theorem 2 is to find a value from the support to use as

threshold, because the support, unlike the domain, is subjective. The center

can mitigate the problem by avoiding extreme values. Corollary 2 solves the

challenge by proposing to randomly draw a value from S after the agent chooses

a bet.

Before receiving a signal, the agent is indifferent between Top and Flop

bets (Lemma 2) and also between Threshold-y bets on l and Threshold-y bets

on k (Lemma 3). No matter which signal he receives, his winning probability

always increases if he chooses optimally. With Threshold-y bets, the winning

probability with optimal choices is P (t = 1)P (Yl > y | t = 1)+P (t = 0)P (Yk >

y | t = 0), which strictly exceeds the no-signal chance of winning P (Yl > y)

(= P (Yk > y)).6 The difference between the two gives us the ex ante value

of the signal (in terms of winning chances). The same reasoning applies to

Top-Flop betting.

Now imagine that the agent has to pay a cost (or provide an effort) to

acquire the signal. He will compare this cost to the benefit — the increase in

the probability of getting π.

6Proof: P (Yl > y) = P (t = 1)P (Yl > y | t = 1)+P (t = 0)P (Yl > y | t = 0) by definition.
Replacing the P (Yl > y | t = 0) by the strictly larger P (Yk > y | t = 0) (according to
Theorem 2) establishes the result.

12



Remark 1. The ex ante value of the signal is positive. Hence, under common

regularity assumptions (continuity in utility), there exists a non-degenerate

range of costs that the agent is willing to pay to acquire the signal.

How much (effort) the agent is willing to spend on the signal will depend

on his whole utility function. Calculating it would require further assumptions

about the decision model of the agent (beyond Assumption 4). Obviously, we

can expect that increasing the value of the prize will increase the maximum

cost the agent is willing to pay. What we claim is that our simple bets can

stimulate signal acquisition. In practice, they can be used to motivate people

to look for a piece of information, preview a movie, or carefully evaluate a

product.7

3 Betting on endogenous ratings

3.1 Agents, their signals, and their beliefs

We now consider multiple agents i ∈ I = {1, · · · , Kn}, i.e., n ≥ 2 agents per

item. In the simplest case, with two items, we need a minimum of 4 agents.

In this section, most variables and objects from the previous section become

agent-specific, which will be indicated by subscript i. Each agent i gets a

signal Ti ∈ T = {0, 1}, about item li ∈ K. The set of agents with a signal

about k is Ik ≡ {j ∈ I : lj = k}, and it has cardinality n. The state space is

Ω = T Kn, where a state ω is the vector of signals received by the Kn agents.

(We need not specify ratings here, as will become apparent later.)

Agent i will be offered to bet on ratings based on the others’ actions in

7If the incentives are too high, the approach can backfire, and the agent may start looking
for other pieces of information than his private signal, distorting what the center aimed to
elicit. In the context of belief elicitation with scoring rules, this problem has been discussed
by Schotter and Trevino (2014), and a solution has been proposed by Tsakas (2020).
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the games to be defined in the next subsection. For item k = li, “the others”

mean Ii,k ≡ Ik \ {i} . In what follows, it will be desirable to consider sets of

agents with the same cardinality as this set of others. We, therefore, define

for items k 6= li, Ii,k ≡ Ik \ {j} with j = max Ik (any other j could have been

chosen as well). We can now define the analog of the random variables Yk of

the preceding section. For all i and k,

Yi,k =
∑
j∈Ii,k

Tj. (2)

The random variable Yi,k is, for agent i, the number of other agents who

received signal 1 for item k. As in the previous section, agent i’s belief Pi,

defined over Ω, generates a prior distribution Hi,k about Yi,k. The domain of

Hi,k is Si = S = {0, . . . , n − 1} because Yi,k can take values between 0 and

n− 1. The sets S ′
i is defined similarly as S ′ in the preceding section.

Example 1. The simplest case of our setting is n = K = 2, involving four

agents. State ω is a quadruplet of signals (t1, t2, t3, t4). With l1 = l2 = 1,

l3 = l4 = 2, I1,2 = {3}, and ω = (t1, t2, t3, t4), we have Y1,1(ω) = t2 and

Y1,2(ω) = t3.

Assumption 5 (Common knowledge). Agents share the common belief that

Assumption 4 holds for all agents i ∈ I, with all Pis themselves common

knowledge.

Assumption 5 means that agents may all have different Pis, but they know

that everyone satisfies first order stochastic dominance with respect to their

own beliefs. Furthermore, if Assumptions 1, 2, and 3 hold for all Pis, then this

fact is automatically common knowledge because the beliefs Pis are themselves

common knowledge. Assumptions 1, 2, and 5 do not require that all agents in

Ik have the same probability of getting a signal 1. Agent i can think everyone
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is different, and even that some people dislike everything (trolls). What we

need is that each agent i perceives Ti and Yi,k more associated when k = li

than when k 6= li. Independence (Assumption 3) can now be justified if, for

instance, signals of any two agents i and j are independent when li 6= lj.

3.2 The games

In what follows, we will first define interim preferences, i.e. preferences con-

ditional on signals: what agents believe and prefer if their signal is 0 versus

if their signal is 1. Agents must then decide, ex ante, what they will do for

each possible signal. We will obtain a Bayesian game and, finally, define a

(Bayesian) Nash equilibrium of this game.

We first define a generic game with the same action set A = {0, 1} for

all agents, with ai the action of agent i. The payoff function of the game for

agent i is Πi : AKn −→ {0, π}. Each agent chooses a strategy, which is a pair

of actions (a0i , a
1
i ) ∈ A2, where a0 will be implemented in state ω if Ti(ω) = 0

and a1 will be implemented if Ti(ω) = 1. A strategy profile, i.e. the strategy

of all agents, is denoted by (a0, a1) ∈ (A2)
Kn

. The implemented action for

agent i in state ω is a
Ti(ω)
i , which we write aωi for short. We similarly denote

aω ∈ AKn the profile of implemented actions.

Example 1 (continued). A strategy profile is of the form ((a01, a
1
1), (a

0
2, a

1
2),

(a03, a
1
3), (a

0
4, a

1
4)). If the realized state is ω = (0, 1, 1, 0), then the profile of

implemented actions is aω = (a01, a
1
2, a

1
3, a

0
4). The payoff function Πi of agent i

assigns either 0 or π to any such quadruplet.

The agents have (interim) preferences over strategy profiles, conditional on

their signal and denoted by %i|Ti
. Assumption 5, which includes Assumption
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4, implies that it is common knowledge that (a0, a1) %i|Ti
(b0, b1) if and only if

Pi ({ω ∈ Ω : Πi (aω) = π} | Ti) ≥ Pi ({ω ∈ Ω : Πi (bω) = π} | Ti) . (3)

In Equation 3, the agent first determines which are the states ω yielding π if

the strategy profile is (a0, a1) and if the strategy profile is (b0, b1). The agent

then compares the probability (given his signal) of the states yielding π when

the strategy profile is (a0, a1) to the probability obtained if the strategy profile

is (b0, b1). Agent i finally chooses the strategy profile that gives a higher chance

to get π.

With I, Ω, A, T , Ti, Pi, and %i|Ti
, we have defined a Bayesian game, further

assuming common knowledge of Ω, I, T , A, and the Πis.
8 Let (b0i , b

1
i ; a

0, a1)

be the strategy profile, which replaces a0i and a1i by b0i and b1i in (a0, a1). A

strategy profile (a0, a1) is a Nash equilibrium of the Bayesian game if for all

i ∈ I, (a0, a1) %i|Ti
(b0i , b

1
i ; a

0, a1) for all (b0i , b
1
i ) ∈ A2. We say that the Nash

equilibrium is strict if, in addition and for all i, (a0, a1) �i|Ti=0 (b0i , a
1
i ; a

0, a1)

for all b0i ∈ A \ {a0} and (a0, a1) �i|Ti=1 (a0i , b
1
i ; a

0, a1) for all b1i ∈ A \ {a1}.

Strict means that the implemented action is strictly preferred (even though

the not-implemented action is only weakly preferred).

We can now define Top-Flop and Threshold-y games. Each agent i will be

offered bets on (individualized) ratings Ŷi,k defined as a function of an action

profile a ∈ AKn by:

Ŷi,k =
∑
j∈Ii,k

aj. (4)

8 Harsanyi (1968) defined Bayesian games, where the difference in beliefs arises from an
objective information mechanism, which is common knowledge. Interim beliefs may differ,
but prior beliefs are the same. In our case, prior beliefs may also differ. However, the
(possibly different) priors are common knowledge, which still allows agents to infer others’
interim beliefs and preferences. See Osborne and Rubinstein (1994, Section 2.6.3.) for
a discussion, and their Definition 25.1 of a Bayesian game and Definition 26.1 of a Nash
equilibrium of a Bayesian game, which we followed here.
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In Section 2, the ratings were exogenous, and agents had beliefs about them.

In the present section, we provide a game-theoretic foundation for the ratings,

which are endogenously determined by the actions of others. Agents now have

beliefs about signals, which translate into beliefs about ratings Ŷi,k for a given

strategy profile. The payoff function of the game is defined on the Ŷi,ks. We

first assign hi to each agent i, given by hi = li + 1 if li < K and hK = 1.

Definition 3. In a Top-Flop game, Πi assigns π to
{
a ∈ AKn : ai = 1 &

(
Ŷi,li > Ŷi,hi

)}
(Top case) and to

{
a ∈ AKn : ai = 0 &

(
Ŷi,li < Ŷi,hi

)}
(Flop case). It assigns

0 to all other elements of AKn.

The payoff function is defined such that choosing action 1 is equivalent to

choosing a Top bet; it pays π if Ŷi,li > Ŷi,hi
. Similarly, choosing action 0 is

equivalent to choosing a Flop bet, which pays off if Ŷi,li < Ŷi,hi
.

Example 1 (continued). With l1 = l2 = 1, l3 = l4 = 2, agents 1 and 2 get a

signal about item 1, and agents 3 and 4 get a signal about item 2. Furthermore,

Ŷ1,1 = a2 and Ŷ1,2 = a3, which means agent 1 bets on the actions of agents 2

and 3. The following table describes Π1.

Ŷ1,1 Ŷ1,2 a1 = 0 a1 = 1

a2 = 0 a3 = 0 0 0

a2 = 0 a3 = 1 π 0

a2 = 1 a3 = 0 0 π

a2 = 1 a3 = 1 0 0

First note that for agent 1, the action of agent 4 does not affect his payment.

Second, he wins π in two cases: (i) if he and agent 2 report 0 while agent 3

reports 1 and (ii) if he and agent 2 report 1 while agent 3 reports 0. Case (i) is

a Flop bet, where item 2 gets a higher rating (Ŷ1,2 = 1) than item 1 (Ŷ1,1 = 0).

Symmetrically, case (ii) is a Top bet.
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Theorem 3. If all agents i ∈ I satisfy Assumptions 1 to 4, and if Assumption

5 holds, then (a0, a1) with a0i = 0 and a1i = 1 for all i ∈ I is a strict Nash

equilibrium of a Top-Flop game.

In the proof (Appendix B), we first establish that if every j 6= i plays

(0, 1), then Ŷi,k = Yi,k for all k. By Theorem 1, the best response of agent i

is then to choose a Flop bet if Ti = 0 and a Top bet if Ti = 1, hence picking

strategy profile (0, 1). All this is common knowledge, so the agents’ beliefs are

consistent with the Nash equilibrium.

Corollary 3. Under the assumptions of Theorem 3, all agents strictly prefer

the equilibrium of a Top-Flop game in which all agents play (0, 1) to all agents

playing (0, 0) or all agents playing (1, 1).

By construction, degenerate strategy profiles where everyone plays (0, 0) or

everyone plays (1, 1) yields payoff 0. Hence, the equilibrium (0, 1) is preferred

because it gives a chance to get π. We now turn to Threshold-y betting that

we similarly transform into a game.

Definition 4. In a Threshold-y game, for y ∈ {0, . . . , n− 2}, Πi assigns π to{
a ∈ AKn : ai = 1 &

(
Ŷi,li > y

)}
and to{

a ∈ AKn : ai = 0 &
(
Ŷi,hi

> y
)}

. It assigns 0 to all other elements of AKn.

With the payoff functions of a Threshold-y game, agent i gets π when

playing 1 if item li exceeds threshold y and when playing 0 if item hi exceeds

threshold y. The threshold can be any value up to n−1 because Ŷi,k can never

exceed n.

Example 2 (continued). With four agents, only a Threshold-0 game is pos-

sible.9 Agent 1 still bets on the actions of agents 2 and 3 but Π1 is now:

9Ŷi,k can only be 0 or 1, and therefore can only strictly exceed 0.
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Ŷ1,1 Ŷ1,2 a1 = 0 a1 = 1

a2 = 0 a3 = 0 0 0

a2 = 0 a3 = 1 π 0

a2 = 1 a3 = 0 0 π

a2 = 1 a3 = 1 π π

Agent 1 wins π in two cases: (i) if he and agent 2 play 1 (a1 = a2 = 1) and

(ii) if he plays 0 while agent 3 plays 1 (a1 = 0 and a3 = 1). Case (i) is a bet

on the rating of item 1 (= the action of agent 2) exceeding 0 and case (ii) a

bet on the rating of item 2 (= the action of agent 3) exceeding 0. The last row

of the table differs from the Top-Flop game.

Theorem 4. If all agents i ∈ I satisfy Assumptions 1, 2, and 4, and if

Assumption 5 holds, then (a0, a1) with a0i = 0 and a1i = 1 for all i is a strict

Nash equilibrium of a Threshold-y game when y ∈ S ′
i for all i.

Corollary 4. Under the assumptions of Theorem 4, (a0, a1) with a0i = 0 and

a1i = 1 for all i is a strict Nash equilibrium of a Threshold-y game when y is

randomly drawn from S.

Theorem 4 has two main limitations. First, all agents must think the

threshold is not trivial, neither too high nor too low. A solution, given by

Corollary 4 is to randomly draw the threshold ex post. Second, unlike in the

Top-Flop game, there exists an equilibrium that would be preferred by all

agents to playing (1, 0). If they all play (1, 1), they can all win with certainty.

This equilibrium can be excluded by altering Πi such that it is 0 if Ŷi,li =

Ŷi,hi
= n− 1 (the maximum rating). This modification of the payoff function

is not anodyne and requires to bring back Assumption 3.10

10The probability of getting π does not depend anymore on either Ŷi,li if ai = 1 or Ŷi,hi

if ai = 0, but on both Ŷi,li and Ŷi,hi
for all ai.
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4 Discussion

4.1 Limitations and related literature

In the exogenous-rating setting, it is important that the agent does not expect

the center to have control over Yk. A suspicious agent would then enter a game

with the center. Suspicion can be avoided or at least mitigated by using ratings

controlled by an independent third party or involving a multitude of people.

For instance, the rating can be the price established on a large prediction

market at a given time. This would make clear that influencing the rating

would cost more to the center than paying π to the agent.

Our exogenous-rating setting relates to the literature on canonical contract

design for adverse selection problems as in Mirrlees (1971), Maskin and Riley

(1984) and Baron and Myerson (1982). For instance, in the classical monopoly

setting, the principal (the center in our setting) does not know the agent’s pri-

vate information, but she can screen different types of agents by offering them

an incentive compatible menu of contracts, under which the agent will pick

the one revealing his true type. Since the screening is achieved by leveraging

the structure of agents’ preferences, the principal is required to know the pref-

erence for each type and its distribution. Our methods do not require that

because our screening techniques are mainly based on the complementarity

between the rating and the private signal for each agent. This is possible be-

cause, in our setting, agents have no other incentives (to either reveal or hide

the signals) than trying to win the prize.

Our Bayesian game setting relates to a strand of literature in mechanism

design, including Myerson (1986) and Crémer and McLean (1988). Both mech-

anisms construct truth-telling equilibrium by exploiting the correlation of pri-

vate information across agents. As in Myerson (1986), truth-telling in our
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paper is an equilibrium, but need not be the only one. Hence, undesirable

equilibria may also occur and our Theorems 3 and 4 are partial implemen-

tation results. By contrast, Maskin (1999) constructed mechanisms with full

implementation, i.e., not only admitting desirable equilibria but also excluding

undesirable ones. Unlike in Crémer and McLean (1988), the person extracting

the information (the center) in our setting does not need to know the prior of

the agents. Our mechanisms are detail-free; they can be implemented with-

out knowing the details of the signal technology. In that sense, the Top-Flop

and Threshold games get very close to the desiderata of the Wilson’s doctrine

(Wilson, 1987).

More recently, Bergemann and Morris spurred a renewed interest in par-

tial and full implementation problems that do not rely on strong assumptions

about agents’ beliefs (Bergemann and Morris, 2005, 2009a,b). This led to the

literature on robust implementation. Our results do not attain robustness in

the sense that they do not guarantee incentive compatibility for all possible

beliefs. They allow, however, for a relatively rich set of beliefs under common

knowledge Assumption 5. Our approach in that regard is closest to that of

Ollár and Penta (2017) and Ollár and Penta (2019), who studied partial and

full implementation under sets of beliefs based on common knowledge assump-

tions. Assumption 5 is an instance of the general belief restrictions in Ollár

and Penta (2017).

Bayesian methods to elicit private signals in surveys or on crowd-sourcing

platforms have been proposed by Prelec (2004), Miller et al. (2005), Witkowski

and Parkes (2012b), Radanovic and Faltings (2013), Baillon (2017), and Cvi-

tanić et al. (2019). All these papers rely on common prior assumptions, some-

times weakly relaxing them. Our common knowledge assumption is much

weaker, allowing all agents to disagree on the probability to observe some sig-
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nals. Note that for the Nash equilibrium to be credible, the key point is not

so much that agents know the priors of all other agents but rather that they

know that these priors are well-behaved as described by Assumptions 2 to 3.

Witkowski and Parkes (2013) were first to show that using multiple tasks

relaxes the common prior and allows for beliefs to diverge from some ‘true’

signal technology. They provide a mechanism that is minimal, like ours, and

unlike the papers discussed in the previous paragraph with the exception of

Miller et al. (2005), in that it only requires one report (in our case, one bet)

from each agent. Their mechanism then uses the empirical signal distribution,

to be elicited over time, as a proxy for beliefs and applies a scoring approach

comparable to that of Miller et al. (2005). Our mechanisms do not require

such payment delays, and our payoff rules are simpler and more transparent

than theirs.

Our beliefs assumptions are very close to those of Dasgupta and Ghosh

(2013) and Shnayder et al. (2016). These papers consider a signal correla-

tion matrix and assume that it describes the beliefs of all agents. However,

Shnayder et al. (2016) do point out that only the structure of the correlations

matters and therefore heterogeneity in beliefs would be possible (their footnote

7 and subsection 5.4). Unlike the present paper, Dasgupta and Ghosh (2013)

and Shnayder et al. (2016) only consider game settings and require that each

agent receives signals about two items (in their setting, performs two tasks)

whereas our agents receive a signal about only one item.

A major limitation of our paper, which is shared by Dasgupta and Ghosh

(2013) but not by Shnayder et al. (2016), is that we can only handle binary

signals. Extending our results to non-binary signals is not trivial and would re-

quire much heavier assumptions about beliefs, especially correlations between

signals and ratings. With binary signals, signal 1 being associated with high
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ratings means that signal 0 is associated with low ratings. With non-binary

signals, such implications do not hold anymore. Imagine that signals are satis-

faction levels {1, 2, 3} and that we have, for each item k, three ratings Y 1
k , Y 2

k ,

and Y 3
k (for instance, the number of other agents reporting signals 1, 2, and

3 respectively). An agent with satisfaction level 3 can reasonably increase the

probability that Y 3
k is at least y but also the probability that Y 2

k is at least y.

A possible approach is to split the agent sample between three groups. Some

agents get the possibility to bet on Y 3
k versus Y 3

l , which can reveal whether

their signal was 3 or not 3. Other agents get the possibility to bet on Y 2
k versus

Y 2
l and the last ones on Y 1

k versus Y 1
l .

Top-Flop and Threshold betting can handle many cases of binary signals,

but our setting and assumptions limit the scope of application. For instance,

for political elections, the identical prior assumption is unlikely to hold for

any collection of candidates. Our setting also requires that the ratings are

still unknown when agents bet. This may pose a problem in cases such as

hotel reviews (even if the review is restricted to be binary), when hotels have

publicly available ratings. However, the simple bets of this paper could still

be used to incentivize honest reporting by test clients in new hotels before

opening.

Throughout the paper, we implicitly assumed that the center, offering the

bets or organizing the games, is willing to pay up to π for each signal. Often,

participation in surveys or experiments is rewarded. What we propose here

is to use this reward as prize π, to make agents reveal their signal instead of

only rewarding them for providing any answer. Our results from the game

setting assume that agents cannot communicate. If they could, a full coalition

can make sure they get π with probability 1 if K is even, and all agents with

even items play 1, and all agents with odd items play 0. A way to deter such
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coalitions is to make the game zero-sum.

4.2 Practical implementation and examples

Organizing Top-Flop or Threshold betting on exogenous ratings is easier to

implement in practice than the respective game versions. Threshold betting

can, for instance, be combined with prediction markets. When people predict

the rating of a movie or the results of a song contest, they do not report their

own taste but their beliefs about others. Threshold betting, where the rating

is defined as the price in the prediction markets for items l and k at a given

time, reveals people’s own taste (under the assumptions and setting of Section

2). A threshold-y bet on prediction market k is a digital option that pays π

if the price reaches y. In other words, Top-Flop and Threshold bets can be

implemented as derivatives of existing markets.

Let us conclude with two other examples. The director of a company hesi-

tates where to invest in research and development. There is a set K of possible

product features that could be developed. The director would like to know

for which feature the consumers would be willing to pay $100 more. These

features do not exist yet and therefore cannot be sold to consumers. Hence,

eliciting the willingness-to-pay cannot be incentivized, for instance, with the

Becker-deGroot-Marschak mechanism (Becker et al., 1964), because it would

require actually selling the features. Instead, the director could implement a

Top-Flop game among a panel of consumers, organized in K subgroups. Each

subgroup of panelists are informed about a feature and have to bet Top or

Flop, not knowing what the other possible innovative features are. A final

example of possible application concerns environmental research. It is not

always possible to incentivize the elicitation of the willingness-to-pay to save

(or the willingness-to-accept for not saving) endangered species. Our simple
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bets can help there as well by providing subgroups of respondents with in-

formation about one (rare) species and ask them whether more people would

pay a given amount to save the species they were informed about rather than

another random species.

5 Conclusion

This paper introduced two methods, Top-Flop and Threshold betting, to elicit

private signals. The first part of the paper showed how to transform pre-

existing ratings, which may be biased or only partially-informative, into a

mechanism incentivizing truthful revelation of signals. An agent betting on

the ratings need not fully trust them, but only believe that they are somewhat

associated with the signals. In the second part of the paper, the ratings natu-

rally arise from the other agents’ betting decisions. In retrospect, our bets, and

therefore our mechanisms, look quite simple but they have been overlooked so

far in favor of more complex approaches. The payment rules of Top-Flop and

Threshold bets are transparent, with a unique, fixed prize assigned to a well-

defined event. We established conditions ensuring that Top-Flop and Thresh-

old betting properly reveal signals. These conditions are milder in terms of

individual preferences than typically assumed in the literature, and therefore

more likely to be satisfied in practical applications.
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Appendix A Proofs for the single-agent set-

ting

A.1 Proof of Lemma 1

Proof. The posterior cumulative distribution for item l is F 1
l (y) = 1−P (Yl > y | t = 1).

By Bayes rule, we have

P (Yl > y | t = 1) =
P (t = 1 | Yl > y)

P (t = 1)
× P (Yl > y) . (5)

By definition, P (Yl > y) = 1−Hl(y), and by Assumption 1, 1−Hl(y) = 1−

Hk(y) = P (Yk > y). Furthermore, Assumption 2 states that P (t = 1 | Yl > y) >

P (t = 1 | Yk > y) if y ∈ S ′. Hence, we have

P (Yl > y | t = 1) >
P (t = 1 | Yk > y)

P (t = 1)
×P (Yk > y) = P (Yk > y | t = 1) (6)

if y ∈ S ′ and

P (Yl > y | t = 1) = P (Yk > y | t = 1) = P (Yk > y) (7)

otherwise. As a conclusion, F 1
l �SD F 1

k .

We now consider t = 0. By definition,

P (Yl > y | t = 0) =
P (Yl > y)− P (Yl > y | t = 1)P (t = 1)

P (t = 0)
(8)

and

P (Yk > y | t = 0) =
P (Yk > y)− P (Yk > y | t = 1)P (t = 1)

P (t = 0)
. (9)
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By Assumption 1, P (Yl > y) = P (Yk > y) and by Eqs. 6 and 7, F 0
k �SD

F 0
l .

A.2 Proof of Lemma 2

Proof.

P ({ω ∈ Ω : Yl(ω) < Yk(ω)}) = P

(⋃
s∈S

{ω ∈ Ω : Yl(ω) = s} ∩ {ω ∈ Ω : Yk(ω) > s}

)

=
∑
s∈S

P ({ω ∈ Ω : Yl(ω) = s} ∩ {ω ∈ Ω : Yk(ω) > s})

=
∑
s∈S

P ({ω ∈ Ω : Yl(ω) = s})× P ({ω ∈ Ω : Yk(ω) > s})

=
∑
s∈S

P (Yl = s)× (1−Hk(s)) .

(10)

The second equality comes from events {ω ∈ Ω : Yl(ω) = s} for any two s being

disjoint. Independence (Assumption 3) implies the third equality. Because Yl

and Yk are identically distributed, P (Yl = s) = P (Yk = s) and Hk(s) = Hl(s)

for all s and therefore, P ({ω ∈ Ω : Yl(ω) < Yk(ω)}) = P ({ω ∈ Ω : Yl(ω) > Yk(ω)}).

By Assumption 4, the agent is indifferent between the Top and the Flop bet.

By Assumption 4, the agent would prefer a bet on ∅ to the Top bet or

to the Flop bet if and only if P ({ω ∈ Ω : Yl(ω) > Yk(ω)}) = 0 or P ({ω ∈

Ω : Yl(ω) < Yk(ω)}) = 0. We have just shown that P ({ω ∈ Ω : Yl(ω) >

Yk(ω)}) = P ({ω ∈ Ω : Yl(ω) < Yk(ω)}). Hence, the agent would prefer

a bet on ∅ if and only if P ({ω ∈ Ω : Yl(ω) = Yk(ω)}) = 1. This implies

P ({ω ∈ Ω : Yl(ω) = Yk(ω)} | t = 1) = 1 and therefore, F 1
l (y) = F 1

k (y). The

latter contradicts F 1
l (y) �SD F 1

k (y), and according to Lemma 1, it is therefore

incompatible with Assumptions 1 and 2. As a consequence, under Assumptions

1 to 4, the agent must strictly prefer any of the bets he is offered to nothing.
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A.3 Proof of Theorem 1

Proof. Assume t = 1.

P ({ω ∈ Ω : Yl(ω) < Yk(ω)} | t = 1)

=P

(⋃
s∈S

{ω ∈ Ω : Yl(ω) = s} ∩ {ω ∈ Ω : Yk(ω) > s} | t = 1

)

=
∑
s∈S

P ({ω ∈ Ω : Yl(ω) = s} ∩ {ω ∈ Ω : Yk(ω) > s} | t = 1)

=
∑
s∈S

P ({ω ∈ Ω : Yl(ω) = s} | t = 1)× P ({ω ∈ Ω : Yk(ω) > s} | t = 1)

=
∑
s∈S

P (Yl = s | t = 1)×
(
1− F 1

k (s)
)
.

(11)

The second equality comes from events {ω ∈ Ω : Yl(ω) = s} being disjoint

for any two s. Conditional independence (Assumption 3) implies the third

equality.

P ({ω ∈ Ω : Yl(ω) > Yk(ω)} | t = 1)

=
∑
s∈S

P (Yk = s | t = 1)×
(
1− F 1

l (s)
)

>
∑
s∈S

P (Yk = s | t = 1)×
(
1− F 1

k (s)
)

≥
∑
s∈S

P (Yl = s | t = 1)×
(
1− F 1

k (s)
)

=P ({ω ∈ Ω : Yl(ω) < Yk(ω)} | t = 1)

(12)

The first equality comes from Eq. 11 (reversing l and k) and the next inequality

from Lemma 1 because F 1
l (s) �SD F 1

k (s) means that F 1
l (s) ≤ F 1

k (s) with strict

inequality for some s. Notice that stochastic dominance also implies that Yl

can be obtained from Yk by moving probability mass from low values of S

to high values of S. The weights (1− F 1
k (s)) are lower for high values of S
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than for low values and therefore, replacing Yk by Yl decreases the whole sum,

which justifies the fourth line of the equation. The final line is obtained from

Eq. 11.

Together with Assumption 4, Eq. 12 implies that the agent prefers the Top

bet when his signal is t = 1. The proof from t = 0 is symmetric.

A.4 Proof of Corollary 1

Proof. If k is randomly chosen in K \ {l}, with the random device being inde-

pendent of all random variables and conditionally independent given T , then

the winning probability of the Top and Flop bets does not change, and the

preferences given in Theorem 1 still hold.

A.5 Proof of Lemma 3

Proof. Under Assumption 1, Hk(y) = Hl(y) > 0 for all y ∈ S ′. This, together

with Assumption 4, gives the result.

A.6 Proof of Theorem 2

Proof. From Lemma 1, we know F 1
l (y) �SD F 1

k (y) and

F 0
k (y) �SD F 0

l (y) for all k 6= l. More precisely, the proof showed F 1
l (y) < F 1

k (y)

for all y ∈ S ′, and by symmetry, F 0
l (y) > F 0

k (y). We obtain, for all y ∈ S ′,

P (Yl > y | t = 1) > P (Yk > y | t = 1) and P (Yl > y | t = 0) < P (Yk > y | t =

0). Assumption 4 then implies the preferences described in the theorem.

A.7 Proof of Corollary 2

Proof. If k is randomly chosen in K \ {l}, with the random device being inde-

pendent of all random variables and conditionally independent given T , then
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the winning probability of bets do not change and the preferences given in

Theorem 1 remain.

If y is drawn from S, either y ∈ S ′ and the strict preferences mentioned

in Theorem 2 hold, or the events are equally likely, and the agent would

be indifferent. Hence, before knowing y, the strict preferences mentioned in

Theorem 2 hold.

Appendix B Proofs for the game setting

B.1 Proof of Theorem 3

Proof. Consider (b0i , b
1
i ; a

0, a1) with a0j = 0 and a1j = 1 for all j 6= i and

(b0i , b
1
i ) ∈ A2. Hence, in state ω, Ŷi,k =

∑
j∈Ii,k a

Tj(ω)
j =

∑
j∈Ii,k Tj(ω), which

implies Ŷi,k = Yi,k(ω) for all k, and noticeably for li and hi. Assumptions 1 to

4 hold and therefore, applying Theorem 1, agent i strictly prefers a1i = 1 to

b1i = 0 (when b0i is fixed) if Ti = 1 and strictly prefers a0i = 0 to b0i = 1 (when

b1i is fixed) if Ti = 0. Pi(Ti = 0 | Ti = 1) = Pi(Ti = 1 | Ti = 0) = 0 implies that

the agent is indifferent between a0i = 1 and b0i = 0 (when b1i is fixed) if Ti = 1

and between a1i = 0 and b1i = 1 (when b0i is fixed) if Ti = 0. Hence, under

Assumption 5, it is common knowledge that a best response of i to a0j = 0

and a1j = 1 for all j 6= i is a0i = 0 and a1i = 1 and therefore, (a0, a1) is a Nash

equilibrium. It is a strict Nash equilibrium because we showed (0, 1) is strictly

preferred to (1, 1) given Ti = 0, and (0, 1) is strictly preferred to (1, 0) given

Ti = 1.

B.2 Proof of Corollary 3

Proof. Note that the strategy profiles with b0i = b1i = 0 for all i give payment

0 to everyone. The same is true for b0i = b1i = 1. By contrast, the equilibrium
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in Theorem 3 is strict, which would not be possible if the payment was 0.

B.3 Proof of Theorem 4

Proof. The proof is similar to that of Theorem 3, simply using Theorem 2

instead of Theorem 1.

B.4 Proof of Corollary 4

Proof. The proof is similar to that of Corollary 2.
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Crémer, J. and McLean, R. P. (1988). Full extraction of the surplus in Bayesian
and dominant strategy auctions. Econometrica, pages 1247–1257.
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