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The structure of equilibria in trading networks with frictions

Jan Christoph Schlegel
Department of Economics, City, University of London

Several structural results for the set of competitive equilibria in trading networks
with frictions are established: The lattice theorem, the rural hospitals theorem,
the existence of side-optimal equilibria, and a group-incentive-compatibility re-
sult hold with imperfectly transferable utility and in the presence of frictions.
While our results are developed in a trading network model, they also imply anal-
ogous (and new) results for exchange economies with combinatorial demand and
for two-sided matching markets with transfers.
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competitive equilibrium, indivisible goods, frictions, lattice, rural hospitals.

JEL classification. C78, D47, D52, L14.

1. Introduction

The assumption of transferable utility is pervasive in models of matching markets, ex-
change economies with indivisible goods, trading networks, and in mechanism design.
The transferable utility assumption can simplify the analysis considerably since it allows
us to exploit the duality between optimal allocations and supporting equilibrium prices.
While the assumption of transferable utility simplifies the analysis, it is often empirically
problematic. Wealth effects are present in marriage and labor markets so that matching
models with transferable utility are unrealistic for these applications. Even if wealth ef-
fects are absent, transaction frictions such as those induced by taxation, subsidies, or
transaction costs, make a transferable utility model inapplicable. This has motivated
researchers to explore how results for matching markets with transfers (Demange and
Gale (1985), Legros and Newman (2007), Nöldeke and Samuelson (2018), Galichon et al.
(2019)) and for trading networks (Fleiner et al. (2019), Hatfield et al. (2021)) can be gen-
eralized beyond transferable utility.
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In this paper, we contribute to this discussion and study wealth effects and frictions1

in the context of trading networks (Hatfield et al. (2013)). Trading networks with bilateral
contracts model complex supply chains in an industry where firms are engaged in up-
stream as well as downstream contracts. They generalize two-sided matching markets,
in the sense that they replace a bipartite graph of potential relations, by an arbitrary
graph where each edge represents a potential trade. We show that important structural
results for trading networks do not depend on the assumption of transferable utility, and
establish several results about the set of competitive equilibria under minimal assump-
tions on utility functions. Our results apply even in the case of wealth effects, in the
presence of frictions, and if constraints make the execution of certain combinations of
trades infeasible.

Our results can be summarized as follows: For a model of trading networks with fric-
tions (Fleiner et al. (2019)) and under the assumptions of full substitutability (Sun and
Yang (2006), Ostrovsky (2008), Hatfield et al. (2013)) and the laws of aggregate demand
and supply (Hatfield et al. (2012, 2021)), we show that

– the set of competitive equilibria is a sublattice of the price space (first part of Theo-
rem 1),

– a generalized “rural hospitals theorem” holds: the difference between the number
of signed downstream and the number of signed upstream contracts is the same for
each firm in each equilibrium (second part of Theorem 1),

– assuming additionally “bounded willingness to pay” (Fleiner et al., 2019),2 there is
an equilibrium that is most preferred by terminal sellers and an equilibrium that is
most preferred by terminal buyers (Theorem 2),

– a mechanism that selects buyer-optimal equilibria is group-strategy-proof for ter-
minal buyers on the domain of unit-demand utility functions and similarly a mech-
anism that selects seller-optimal equilibria is group-strategy-proof for terminal sell-
ers on the domain of unit-supply utility functions (Theorem 3).

While our results are established for trading networks, the results are already new
for many-to-one matching markets and for exchange economies with combinatorial de-
mand, which are special cases of our model. For matching markets, similar results were
so far only known (a) under transferable utility, (b) for models without transfers and with
strict preferences, or (c) for one-to-one matching markets with imperfectly transferable
utility. For exchange economies with indivisible goods, analogous results were so far
only known for (a) quasilinear utility, or for the case of (b) unit demand.

1We use the term “frictions” for any situation where utility is not necessarily a function of the sum of
transfers received, but a function of the entire vector of transfers. If frictions are present, it thus not only
matters how much a firm receives in total transfers, but also through which trades it receives the transfers.
This can, for example, be the case if different trades involve different transaction costs. The results in our
paper apply to both wealth effects and frictions.

2Alternatively, the result also holds with “bounding compensating variations” instead of bounded will-
ingness to pay, as we show in the full working paper version (Schlegel (2020)).
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Working with imperfectly-transferable utility requires us to develop fundamentally
new techniques: Similar results without the transferable utility assumption were so far
only known for one-to-one matching markets (Demange and Gale (1985)) and the proof
techniques developed in this context (in particular the “decomposition lemma”) do not
adapt to more general settings. On the other hand, techniques from transferable util-
ity models do not generalize to our model: Hatfield et al. (2013) use the efficiency of
competitive equilibria and the submodularity of the indirect utility function to estab-
lish the lattice property. For our model with frictions, competitive equilibria can fail
to be efficient. Moreover, full substitutability implies only the weaker notion of quasi-
submodularity (Hatfield et al. (2020)). More subtly, as we will discuss below, with wealth
effects or frictions there are several nonequivalent definitions of full substitutability and
these definitions are not distinguishable through conditions on the indirect utility func-
tion alone. Thus, an approach as in Hatfield et al. (2013) that characterizes competi-
tive equilibria through the indirect utility function and uses properties of that function
under full substitutability does not generalize. Likewise, the network flow approach to
trading networks (Candogan et al. (2021)) obtains structural results on the set of equi-
libria through the duality between optimal allocations and supporting prices. Since effi-
ciency fails in our setting this duality approach does not generalize. Finally, techniques
from trading networks without transfers (Ostrovsky (2008)) that rely on Tarski’s fixed-
point theorem do not apply to the our model. With transfers, the issue of tie-breaking
arises that is not present in models without transfers and with strict preferences. While
versions of Tarski’s fixed-point theorem for correspondences are known (Zhou (1994)),
none of them work under sufficiently weak assumptions to be useful in our environ-
ment.

Since existing techniques do not work for our setting, we introduce a new approach
to establish structural results for the set of competitive equilibria. The approach can
be characterized as a tie-breaking approach: we show that for each finite set of (equi-
librium) price vectors and each firm a single-valued selection from the demand corre-
spondence can be made such that the properties of full substitutability and the laws
of aggregate demand and supply are satisfied by the selection, and moreover, relevant
trades that are demanded in the supporting equilibrium allocations are demanded in
the selection. The assumption of the laws of aggregate demand and supply is necessary
for our tie-breaking argument, and our result does not hold under full substitutability
alone (see Example 3).

We also make a more technical contributions to the literature on trading networks
with imperfectly transferable utility and clarify issues related to the definition of full sub-
stitutability: For the transferable utility model, there are various equivalent definitions
of full substitutability (Hatfield et al. (2019)). The equivalence, however, breaks down if
we go beyond transferable utility, and, for our results, it matters which of the full substi-
tutability notions is used. More specifically, it matters how full substitutability restricts
the demand at price vectors at which the demand is multivalued. We consider weak
notions of full substitutability and the laws of aggregate demand and supply that only
restrict the demand at price vectors where the demand is single-valued and stronger
versions that also restrict it at prices where the demand is multivalued. The notions are
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equivalent for transferable utility, but not in general. The set of competitive equilibria
is a lattice only under the strong versions of full substitutability (see Example 1) and the
rural hospitals theorem requires the strong versions of the law of aggregate demand and
supply (see Example 2). Our group-strategy-proofness result, however, holds also un-
der the weaker notions (Corollary 1). Thus, the exact definition of full substitutability
matters in the model with frictions.3

We proceed as follows: In Section 2, we introduce the model and discuss different
versions of the full substitutability conditions and their relation to each other. In Sec-
tion 3, we prove our main results: the lattice structure of the set of competitive equilibria,
the generalized rural hospitals theorem, the existence of extremal equilibria, and group-
incentive compatibility for terminal buyers. In Section 4, we apply our main results to
two-sided matching markets, and to exchange economies with indivisible goods.

1.1 Related literature

The literature on trading networks has its origins in the literature on matching markets
with transfers. In a seminal paper, Kelso and Crawford (1982) show that, under the as-
sumption of gross substitutability, competitive equilibria with personalized prices exist
and are equivalent to core allocations in a many-to-one labor market matching model.
The construction is by an approximation argument where the existence in the contin-
uum is obtained from the existence of an equilibrium in a discrete markets with smaller
and smaller price increments. Different versions of a strategy-proofness result for a
many-to-one matching model with continuous transfers were established by Hatfield
et al. (2014), Schlegel (2018), Jagadeesan et al. (2018). Subsequent to Kelso and Craw-
ford (1982), the question of existence of equilibria has been studied in the context of
exchange economies with indivisibilities. See, for example, Gul and Stacchetti (1999)
and the recent contribution of Baldwin and Klemperer (2019).

Trading networks with bilateral contracts and continuous transfers were introduced
by Hatfield et al. (2013). Under the assumption of transferable utility and full substi-
tutability, they establish many results that we generalize to the case of general utility
functions. The notion of full substitutability has been studied in detail by Hatfield et al.
(2019) who show the equivalence of various different definitions of full substitutability.
The existence result of Hatfield et al. (2013) is proved via a reduction to the existence re-
sult of Kelso and Crawford (1982). An alternative approach is via a submodular version
of a network flow problem (Candogan et al. (2021)).

The work of Hatfield et al. (2013) builds on the work of Ostrovsky (2008) on trad-
ing networks without transfers that generalizes matching models with contracts (Hat-
field et al. (2005), Fleiner (2003), Roth (1984)) beyond two-sided markets. The matching
model with contracts in turn originates in the discrete version of the model of Kelso and
Crawford (1982). Hatfield et al. (2012) and Fleiner et al. (2016) provide additional re-
sults for the discrete trading networks model, which in many ways are parallel to the

3Related issues occur in Hatfield et al. (2021) where the stronger monotone substitutability property is
needed that restricts the choice in circumstances where the choice correspondence is multivalued.
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results we obtain in the continuous model. Importantly, results for the model without
continuous transfers rely on the assumption of strict preferences.

All of the above mentioned work for the continuous models make the assumption
of transferable utility.4 There are few papers that deal with wealth effects, frictions, or
constraints and that are particularly close to our work: In a classical paper, Demange
and Gale (1985) establish several structural results about the core (or equivalently the
set of competitive equilibria) for a one-to-one matching model with continuous trans-
fers. In particular, they show that the core has a lattice structure and an agent that is
unmatched in one core allocation receives his reservation utility in each core allocation
(the result is often called the rural hospitals theorem in the literature on discrete match-
ing markets). Moreover, they show that the mechanism that selects an extreme point of
the bounded lattice is strategy-proof for one side of the market. Importantly, these re-
sults are established without assuming transferable utility. They only require that utility
is increasing, continuous in transfers and satisfies a full range assumption. We general-
ize this work to trading networks and to situations in which utility does not satisfy the
full range assumption.

In recent work, Fleiner et al. (2019) study trading networks with frictions. Their work
is in many regards complementary to our work. In particular, Fleiner et al. (2019) es-
tablish the existence of a competitive equilibrium under the assumption of full substi-
tutability and mild regularity conditions. Moreover, they study the efficiency of compet-
itive equilibria and provide conditions under which equilibria correspond to allocations
satisfying different related cooperative solution concepts. We derive our results for com-
petitive equilibria. However, by the equivalence result of Fleiner et al. (2019) analogous
results also would hold for “trail-stable” allocations. All results of Hatfield et al. (2013),
except for the maximal domain result (Theorem 7) are generalized to the model with
frictions, either in our work or by Fleiner et al. (2019). Table 1 summarizes results for
trading networks with frictions.

Kojima et al. (2020b) introduce constraints in the job matching model of Kelso and
Crawford (1982) and characterize constraints that leave the gross substitutes condition
invariant. The model with constraints is a special case of the model in the current pa-
per so that we obtain as a corollary of our results a version of a lattice and of the ru-
ral hospital theorems for their model of job matching under constraints. In a spin-off
paper, Kojima et al. (2020a) study comparative statics for their model and also prove
versions of the lattice result and the rural hospitals theorem. These results have been
obtained independently and contemporaneously with the results in the current paper.5

2. Model

The model follows Hatfield et al. (2013), and the extensions of Fleiner et al. (2019)
and Hatfield et al. (2021). We consider a finite set of firms F and a finite set of trades
�. Each trade ω ∈ � is associated with a buyer b(ω) ∈ F and a seller s(ω) ∈ F with

4Note however that the existence proof of Kelso and Crawford (1982) is actually more general and applies
as long as preferences are continuous, monotonic, and unbounded in transfers for each bundle.

5Weaker versions of these results were obtained prior to that in Schlegel (2018).
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Table 1. Sufficient conditions for results for trading networks with frictions.

Result (Theorem*) Source FS LADS BCV BWP NF

Existence of Equil. (1) Fleiner et al. (2019) x x
1st Welfare Theorem (2) Fleiner et al. (2019) x
Rural Hospitals (3) Theorem 1(ii) x x
Lattice (4) Theorem 1(i) x x
Side Optimality (4) Theorem 2 x x x
Equil. ⇒ Stable (5) Fleiner et al. (2019) x
Stable ⇒ Equil. (6) Fleiner et al. (2019) x x
Stable ⇔ Group-Stable (8,9) Fleiner et al. (2019) x x x
Trail-Stable ⇔ Equil. Fleiner et al. (2019) x x
Chain-Stable ⇔ Stable Hatfield et al. (2021) x x
Group-Strategy-Proofness Theorem 3 x x x

Note: Theorem* Corresponding theorem in Hatfield et al. (2013) under transferable utility. The existence of a side-optimal
equilibrium additionally assumes finite valuations. FS stands for Full Substitutability, LADS stands for the Laws of Aggregate
Demand and Supply, BCV stands for Bounded Compensating Variations, BWP stands for Bounded Willingness to Pay, and NF
stands for No Frictions.

b(ω) �= s(ω). For a set of trades � ⊆ � and firm f ∈ F , we define the set of down-
stream trades for f by �f→ := {ω ∈ � : s(ω) = f } and the set of upstream trades by
�→f := {ω ∈ � : b(x) = f }. Moreover, we let �f :=�f→ ∪�→f . A firm f ∈ F such that
�f→ = ∅ is called a terminal buyer and a firm such that �→f = ∅ is called a terminal
buyer. Note that terminal buyers and/or terminal buyers do not need to exist. A con-
tract is a pair (ω, pω ) ∈�×R, where pω is the price attached to the trade ω.

An allocation is a pair (�, p) consisting of a set of trades�⊆� and a price vectorp ∈
R�. We denote the set of allocations by A and we let Af := {(�f , (pω )ω∈�f ) : (�, p) ∈ A}.

An arrangement is a pair [�, p] ∈ 2� ×R�. In contrast to an allocation, the price vector
also contains prices for unrealized trades.

Each firm has a utility function uf : Af → R ∪ {−∞}. For notational convenience,
we extend uf to 2� × R� by defining for � ⊆ � and p ∈ R�, the utility uf (�, p) :=
uf (�f , (pω )ω∈�f ). We allow the utility function to take on a value of −∞ in which case

the combination of trades is infeasible for the firm.6 We require that

• if a bundle is infeasible under some prices, then it is infeasible under all prices: if
uf (�, p) = −∞ for p ∈R�f then uf (�, p′ ) = −∞ for each p′ ∈R�f ,

• at least one bundle of trades is feasible: there is a �⊆�f such that uf (�, ·)>−∞.

Moreover, we make the following assumptions on utility functions:

• Continuity: For�⊆�f with uf (�, ·)>−∞, the function uf (�, ·) is continuous on
R�.

6Infeasibilities can, for example, arise through technological constraints, if producing and selling an
output good requires the firm to buy certain input goods. In that case, executing a downstream alone
without executing related upstream trades is infeasible. Alternatively, infeasibilities can also arise through
institutional constraints that restrict, for example, such as in Kojima et al. (2020b), the number of trades
that a firm is allowed to execute.
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• Monotonicity: For�⊆�f with uf (�, ·)>−∞ and p, p′ ∈R� with p′ �= p:

(i) If p′
ω = pω for ω ∈�f→ and pω ≤ p′

ω for ω ∈�→f , then uf (�, p)> uf (�, p′ ).

(ii) If p′
ω = pω forω ∈�→f and pω ≥ p′

ω forω ∈�f→, then uf (�, p)> uf (�, p′ ).

Thus, utility is continuous in prices and firms strictly prefer higher sell prices to lower
sell prices and lower buy prices to higher buy prices.

We allow utility for a set of trades � to be different for prices p, p′ ∈ R�, even if
the transfers received are the same for both price vectors, that is, even if

∑
ω∈�f→ pω −∑

ω∈�→f
pω = ∑

ω∈�f→ p
′
ω − ∑

ω∈�→f p
′
ω. This can, for example, be the case if different

trades involve different transaction costs. If utility only depends on the set of trades and
the transfers received, we have a special case of our model: We say that uf satisfies no
frictions (Fleiner et al. (2019)) if there is a function ũf : 2�f ×R →R∪ {−∞} such that

uf (�, p) = ũf (�,
∑

ω∈�f→
pω −

∑
ω∈�→f

pω ).

A utility function without frictions has full range if for each � ⊆ �f , � �= ∅, ũf (�, ·) is
a surjective function onto R. It is quasilinear if there is a valuation function vf : 2�f →
R∪ {−∞} such that

ũf (�, t ) = vf (�) + t.
A utility function uf induces an indirect utility function vf : R� →R by

vf (p) := max
�⊆�f

uf (�, p),

and a demand correspondenceDf : R� ⇒ 2� by

Df (p) := argmax
�⊆�f

uf (�, p).

Continuity of the utility function implies (e.g., by Berge’s maximum theorem) that the
demand correspondence is upper hemicontinuous. Monotonicity of the utility func-
tion implies that price vectors where the demand is single-valued are dense in price
space. We will repeatedly use these facts to generate a single-valued selection from the
demand-correspondence that inherits its good properties (such as full substitutability
or the laws of aggregate demand and supply) by perturbing the price vector such that it
becomes single-valued; see, in particular, Lemma 3. The proof is straightforward, and
hence omitted.

Lemma 1. For a continuous and monotonic utility function uf :

(i) the induced demandDf is upper hemicontinuous, that is, for each p ∈R�f there is
an ε > 0 such for any q ∈ R�f with ‖p− q‖ < ε (where ‖ · ‖ denotes the Euclidean
norm) we haveDf (q) ⊆Df (p),
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(ii) the set of price vectors such that the induced demand is single-valued is dense in
R�f , that is, for each ε > 0 and p ∈ R�f there is a q ∈ R�f with ‖p − q‖ < ε such
that |Df (q)| = 1.

2.1 Full substitutability

Our results rely on a full substitutability assumption on utility functions. Informally, the
condition requires that a firm sees upstream (downstream) trades as substitutes to each
other, and upstream and downstream trades as complements to each other. Hatfield
et al. (2019) show that for transferable utility various ways of defining full substitutabil-
ity are equivalent, and hence one can work with either of the definitions discussed in
their paper. Going beyond transferable utility makes issues more subtle: Not all equiv-
alence results of Hatfield et al. (2019) generalize and it matters which of the full sub-
stitutability conditions are used. More specifically, it matters how the full substitutes
condition is defined in instances where indifferences matter, that is, when the demand
is multivalued.

We will proceed as follows: First, we introduce our main definition of full substi-
tutability which restrict the demand both at price vectors where the demand is single-
valued and where it is multivalued. Second, we introduce a weaker version of full sub-
stitutability that only restricts the demand at price vectors where the demand is single-
valued. We provide an example that shows that the single-valued version of full sub-
stitutability is strictly weaker than the multivalued version. We later show, using this
example, that the single-valued full substitutability condition is not sufficient for estab-
lishing the lattice and the rural hospitals theorem. Importantly, the difference between
the single-valued and multivalued version of full substitutability only matters for the
“cross-side conditions” on firms’ demand functions. In particular, the notions are equiv-
alent for a two-sided market and the results for two-sided markets (see Section 4.1) hold
under the single-valued notion of full substitutability. Third, we show that the multi-
valued and the single-valued versions are, however, closely related in the sense that for
each demand correspondence satisfying single-valued full substitutability, a selection
from the demand correspondence exists that satisfies multivalued full substitutability
and can be rationalized by a utility function inducing the same indirect utility. In partic-
ular, this will allow us, later on (Corollary 1), to obtain a group-strategy-proofness result
using the single-valued full substitutability notion.

2.1.1 Multivalued full substitutability The following notion of full substitutability is
due to Hatfield et al. (2019).7 Precursors of the full substitutability notion were intro-
duced for exchange economies (Sun and Yang (2006)) and for trading networks without

7Hatfield et al., 2019 call this version of full substitutability the “demand-language expansion” version
of full substitutability (cf. Definition A.3 in Hatfield et al., 2019). Throughout the paper, we use “demand
language” definitions of full substitutability that restrict the demand correspondence induced by the utility
function. The demand language definitions are generally weaker than the corresponding “choice language”
definitions that restrict the choice correspondence induced by the utility function. Consequently, all of our
result would also hold under the corresponding “choice language” notions of full substitutability. Alterna-
tive multivalued definitions of full substitutability are discussed in the full working paper version (Schlegel
(2020)).
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transfers (Ostrovsky (2008)). Full substitutability can be further decomposed in a same-
side substitutability and a cross-side complementarity notion.

Expansion Same-Side Substitutability (SSS) Forp, p′ ∈R�f and each�′ ∈Df (p′ ), there
exists a� ∈Df (p) such that if pω = p′

ω for ω ∈�f→ and pω ≤ p′
ω for ω ∈�→f , then

{
ω ∈�→f : pω = p′

ω

} ⊆�′
→f ,

and if pω = p′
ω for ω ∈�→f and pω ≥ p′

ω for ω ∈�f→, then

{
ω ∈�f→ : pω = p′

ω

} ⊆�′
f→.

Expansion Cross-Side Complementarity (CSC) For p, p′ ∈ R�f and each �′ ∈ Df (p′ ),
there exists a� ∈Df (p) such if pω = p′

ω for ω ∈�f→ and pω ≤ p′
ω for ω ∈�→f , then

�′
f→ ⊆�f→,

and if pω = p′
ω for ω ∈�→f and pω ≥ p′

ω for ω ∈�f→, then

�′
→f ⊆�→f .

Expansion Full Substitutability (FS) The demand of firm f satisfies expansion full sub-
stitutability if it satisfies expansion same-side substitutability and expansion cross-side
complementarity.

Next, we introduce monotonicity properties called the law of aggregate demand, re-
spectively, the law of aggregate supply. Under quasilinear utility and without frictions,
the two properties are implied by full substitutability. However, in general they are inde-
pendent of full substitutability.

Expansion Law of Aggregate Demand (LAD) For p, p′ ∈ R�f and each �′ ∈ Df (p′ ),
there exists a � ∈ Df (p) such that if pω = p′

ω for ω ∈ �f→ and pω ≤ p′
ω for ω ∈ �→f ,

then

|�→f | − |�f→| ≥ ∣∣�′
→f

∣∣ − ∣∣�′
f→

∣∣.
Expansion Law of Aggregate Supply (LAS) For p, p′ ∈ R�f and each �′ ∈Df (p′ ), there
exists a� ∈Df (p) such that if pω = p′

ω for ω ∈�→f and pω ≥ p′
ω for ω ∈�f→, then

|�f→| − |�→f | ≥
∣∣�′

f→
∣∣ − ∣∣�′

→f

∣∣.
Remark 1. Hatfield et al. (2021) introduce the notion of monotone substitutability,
which requires that FS, LAD, and LAS hold jointly for the same bundles of trades. Hat-
field et al. (2021) do not assume continuity of utility functions for their main result, and
in that case, monotone substitutability is generally a stronger property than the com-
bination of FS, LAD, and LAS. With continuity, however, monotone substitutability is
equivalent to the combination of FS, LAD, and LAS. The proof of the equivalence is
straightforward. See the full working paper version (Schlegel (2020)).
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Alternatively, the combination of FS, LAD, and LAS for continuous and monotonic
utility functions can also be formulated as a generalized single-improvement property as
we show in the full working paper version (Schlegel (2020)). Many of our results indi-
rectly rely on this observation.

2.1.2 Single-valued full substitutability Next, we introduce a weaker notion of full sub-
stitutability where the condition only needs to hold at price vectors where the demand
is single-valued. The weaker notion of full substitutability together with weaker notions
of the law of aggregate demand/supply will be sufficient for our main incentive compat-
ibility result (Corollary 1 in Section 3.3), but not for the other main results in the paper.

Single-valued full substitutability (weak FS) For p, p′ ∈ R�f such thatDf (p) = {�} and
Df (p′ ) = {�′}, if pω = p′

ω for ω ∈�f→ and pω ≤ p′
ω for ω ∈�→f , then

{
ω ∈�→f : pω = p′

ω

} ⊆�′
→f and �′

f→ ⊆�f→,

and if pω = p′
ω for ω ∈�→f and pω ≥ p′

ω for ω ∈�f→, then

{
ω ∈�f→ : pω = p′

ω

} ⊆�′
f→ and �′

→f ⊆�→f .

The notions of single-valued same side substitutability and single-valued cross
side complementarity are defined analogously.

Remark 2. The single-valued and the expansion notions of same sided substitutabil-
ity are equivalent. Thus, for two-sided markets the two notions of full substitutability
are equivalent. See Appendix A of the full working paper version (Schlegel (2020)) for a
discussion of this and related facts.

We also define single-valued versions of the laws of aggregate demand and supply.

Single-valued law of aggregate demand (Weak LAD) For p, p′ ∈R�f , such thatDf (p) =
{�} andDf (p′ ) = {�′}, if pω = p′

ω for ω ∈�f→ and pω ≤ p′
ω for ω ∈�→f , then

|�→f | − |�f→| ≥ ∣∣�′
→f

∣∣ − ∣∣�′
f→

∣∣.
Single-valued law of aggregate supply (Weak LAS) For p, p′ ∈ R�f , such that Df (p) =
{�} andDf (p′ ) = {�′}, if pω = p′

ω for ω ∈�→f and pω ≥ p′
ω for ω ∈�f→, then

|�f→| − |�→f | ≥
∣∣�′

f→
∣∣ − ∣∣�′

→f

∣∣.
The following example shows that the two notions of full substitutability that we

have defined can differ for trading networks with frictions. In Section 3.1, we will use the
example to show that under weak FS the lattice result in our paper does not necessarily
hold.
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Example 1. Consider four trades � = {α1, α2, β1, β2} with f = b(α1 ) = b(α2 ) = s(β1 ) =
s(β2 ). We let

uf (∅) = 0,

uf
({
αi, βj

}
, pαi , pβj

) = 2 −pαi +pβj , for i, j, = 1, 2,

uf
({
α1, α2, β1, β2}, p

) = 4 − exp
(
pα1 +pα2

2
− 1

)
− exp

(
1 − pβ1 +pβ2

2

)
.

We let uf (�, p) = −∞ for any other�⊆�. Observe that

Df (1, 1, 1, 1) = {{
α1, β1},

{
α1, β2},

{
α2, β1},

{
α2, β2},

{
α1, α2, β1, β2}}

but

Df (0, 1, 1, 1) = {{
α1, β1},

{
α1, β2}}.

As {α1, α2, β1, β2} ∈Df (1, 1, 1, 1), FS would require that there is a� ∈Df (0, 1, 1, 1) with
{β1, β2} ⊆ �. Hence FS is not satisfied. As the demand at (0, 1, 1, 1) and (1, 1, 1, 1) is
multivalued, weak FS does not impose any structure here. More generally, note that the
bundle {α1, α2, β1, β2} is only demanded at prices (1, 1, 1, 1) so that if we replace uf by
the utility function ũf such that

ũf
({
α1, α2, β1, β2}, ·) = −∞,

ũf (�, ·) = uf (�, ·) for� �= {
α1, α2, β1, β2},

only the demand at prices (1, 1, 1, 1) changes. One readily checks that ũf satisfies FS.
Hence uf satisfies weak FS. Note, moreover, that uf satisfied LAD and LAS. ♦

Similarly, weak LAD/LAS is strictly weaker than LAD/LAS.

Example 2. Consider two trades�= {ω1,ω2} with f = b(ω1 ) = b(ω2 ). We let uf (∅) = 0,
uf ({ωi}, pωi ) = 3 −pωi for i= 1, 2, and

uf
(
{ω1,ω2}, p

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4 −pω1 −pω2 if pω1 +pω2 ≤ 2,

2 − (pω1 +pω2 )2 − 4
12

if 4 ≥ pω1 +pω2 > 2,

5 −pω1 −pω2 else.

See Figure 1 for a geometric representation of the demand in the example. The induced
demand violates LAD at p′ = (2, 2) and, for example, p = (1, 2) since �′ = {ω1,ω2} ∈
Df (p′ ) butDf (p) = {{ω1}}. One readily checks that ũf satisfies FS and weak LAD. ♦

In Example 1, the bundle {α1, α2, β1, β2} is only demanded at prices (1, 1, 1, 1), but
not at any price vector in the neighborhood. Similarly, in Example 2, the bundle {ω1,ω2}
is demanded at (2, 2) but at no other price vector in the neighborhood. One can show
that if there are no such “isolated” bundles, that is, bundles that are demanded at a price
vector but nowhere in the neighborhood of it, then weak FS and FS are equivalent and
weak LAD/LAS and LAD/LAS are equivalent. Formally this requirement is the following.
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Figure 1. A representation of the demand of firm f from Example 2 in price space. Black lines
indicate prices at which f is indifferent between several bundles. At prices (2, 2), the bundle
{ω1,ω2} is demanded in addition to bundle {ω1} and {ω2}. Since {ω1,ω2} is demanded at (2, 2)
but at no other price vector in a neighborhood, NIB is violated.

No Isolated Bundles (NIB) For each p ∈ R�f , � ∈ Df (p) and ε > 0, there is a q ∈ R�f

with ‖p− q‖< ε andDf (q) = {�}.
Conversely, if demand satisfies FS (CSC is sufficient here), LAD and LAS then it sat-

isfies NIB. The equivalence between weak FS, weak LAD/LAS and NIB on one side and
FS and LAD/LAS on the other side will be crucial for subsequent proofs.

Lemma 2. Let uf be a continuous and monotonic utility function inducing a demand
Df .

(i) IfDf satisfies NIB and weak FS, then it satisfies FS.

(ii) IfDf satisfies NIB and weak LAD/LAS, then it satisfies LAD/LAS.

(iii) IfDf satisfying CSC, LAD and LAS, then it satisfies NIB.

The converse of the first part of the lemma is not true in general. The demand in
Example 2 satisfies FS but not NIB.

Next, we show that for each utility function satisfying weak FS, weak LAD and weak
LAS, we can construct a demand correspondence that satisfies FS, LAD, and LAS by re-
moving isolated bundles from the original demand. The resulting demand can be ratio-
nalized by a continuous and monotonic utility function. Put differently, we show that the
two notions of full substitutability are almost equivalent in the following sense: for each
utility function uf for which the induced demand Df satisfies weak FS, weak LAD, and
weak LAS, there is a corresponding utility function ũf for which the induced demand D̃f

satisfies FS, LAD, and LAS, and such that D̃f selects fromDf . The utility function can be
chosen such that the induced indirect utility is the same.
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Proposition 1. Let uf satisfy weak FS, weak LAD, and weak LAS. Then there is a utility
function ũf that satisfies FS, LAD, and LAS such that the induced indirect utility functions
are the same

vf (p) = ṽf (p) for each p ∈R�f ,

and the induced demand is a selection from the original demand,

D̃f (p) ⊆Df (p) for each p ∈R�f .

3. Results

3.1 The lattice theorem and the rural hospitals theorem

As our first main result, we establish that equilibrium prices in trading networks form a
lattice and that (modulo indifferences) for each firm the difference between the num-
ber of signed upstream and downstream contracts is the same in each equilibrium. The
join and meet are the coordinatewise maximum and minimum of the two price vec-
tors under consideration, that is, the lattice is a sublattice of R� with the usual partial
order. These results extend results established by Hatfield et al. (2013) for the case of
transferable utility, and by Ostrovsky (2008), Hatfield et al. (2012), Fleiner et al. (2016)
for the case without transfers and with strict preferences (for the solution concepts of
chain-stability, stability, respectively, trail-stability).

In the following, a competitive equilibrium for utility profile u = (uf )f∈F is an ar-
rangement [�, p] ∈ 2� × R� such that for each f ∈ F and the demand Df induced by
uf we have �f ∈ Df (p). We call (�, (pω )ω∈� ) the equilibrium allocation induced by
[�, p]. We denote the set of equilibrium price vectors for u by E(u) and define for each
price vector p ∈ R� the (possibly empty) set E(u, p) := {�⊆� :�f ∈Df (p) for each f ∈
F } of sets of trades that support p as a competitive equilibrium under u.

Theorem 1. Let u be a utility profile such that for each firm the induced demand satisfies
FS, LAD, and LAS.

(i) Lattice theorem: Let p, p′ ∈ E(u) be equilibrium prices. Then p̄, p ∈R� defined by

p̄ω := max
{
pω, p′

ω

}
, p

ω
:= min

{
pω, p′

ω

}
,

are equilibrium prices.

(ii) Rural hospitals theorem: Let p, p′ ∈ E(u) be equilibrium prices. For each � ∈
E(u, p), there exists a �′ ∈ E(u, p′ ) such that for each f ∈ F we have |�→f | −
|�f→| = |�′

→f | − |�′
f→|.

The proof and all subsequent proofs of this section are in Appendix B. However,
for the moment we give a sketch of the proof strategy and comment on the challenges
when generalizing results beyond transferable utility. Let p, p′ ∈ E(u) be two equilib-
rium price vectors and consider the pairwise maximum p̄ ∈ R� (a dual argument works
for the pairwise minimum p). Suppose for the moment that the demand for each firm
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is single-valued at p and at p′, that is, each firm f has unique optimal bundles of trades
�f and �′

f at the equilibrium prices p and p′. The argument proceeds in two steps the
first of which relies on the FS condition and the second of which relies on LAD/LAS:

No excess supply: For each f ∈ F , let �̄f ∈Df (p̄) be demanded at p̄. FS applied at p
and p̄, respectively, at p′ and p̄ implies that

�̄f→ ⊆ {
ω ∈�f→ : pω ≥ p′

ω

} ∪ {
ω ∈�′

f→ : p′
ω > pω

}
(1){

ω ∈�→f : pω ≥ p′
ω

} ∪ {
ω ∈�′

→f : p′
ω > pω

} ⊆ �̄→f . (2)

Taking the union of (1) and of (2) over all firms shows that there is no excess supply
of trades at p̄:⋃

f∈F
�̄f→ ⊆ {

ω ∈� : pω ≥ p′
ω

} ∪ {
ω ∈�′ : p′

ω > pω
} ⊆

⋃
f∈F

�̄→f ,

No excess demand: LAD/LAS imply that for each f ∈ F ,

|�→f | − |�f→| ≥ |�̄→f | − |�̄f→|. (3)

Summing inequality (3) for all firms, we obtain

0 =
∑
f∈F

|�→f | − |�f→| ≥
∑
f∈F

|�̄→f | − |�̄f→| ⇒
∣∣∣∣⋃
f∈F

�̄f→
∣∣∣∣ ≥

∣∣∣∣⋃
f∈F

�̄→f

∣∣∣∣.
Combining this inequality with the previous observation that there is no excess sup-
ply shows that there is no excess demand and the market clears,⋃

f∈F
�̄f→ =

⋃
f∈F

�̄→f ,

and thus p̄ ∈ E(u).

Suppose now that we want to generalize the argument to the case of multivalued de-
mand at the equilibrium prices. A natural idea is to use a perturbation argument: Con-
tinuity and monotonicity of utility in transfers allows us (see Lemma 1) to perturb price
vectors to obtain a single-valued selection from the demand correspondence at prices
p, p′, and p̄.

Lemma 3. Let uf be a utility function inducing a demand correspondence Df satisfying
weak FS, weak LAD, and weak LAS. Let P ⊆ R�f be finite. Then there is a (single-valued)
demand function D̃f : P → 2�f that selects fromDf , that is, D̃f (p) ∈Df (p) for p ∈ P and
satisfies FS, LAD, and LAS.

Once perturbed, the argument above could be applied to the perturbed price vec-
tors. However, this line of argument has a flaw: There is no guarantee that the trades
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demanded at the perturbed prices support an equilibrium,8 since not every collection
of demanded trades at an equilibrium price vector support these prices as an equilib-
rium. While a naive perturbation argument fails to work, we can use a more intricate
perturbation argument. We perturb prices for each firm individually. Importantly, we
can rely on the observation (Lemma 2) that for each firm f there are prices q (in gen-
eral different for different firms) close to p where the equilibrium set of trades �f is the
unique demanded bundle of trades. This allows to show that for each firm f there is a
�̄f ∈Df (p̄) that satisfies (1), (2) and (3) simultaneously (and a�f ∈Df (p) that satisfies
dual properties for the pairwise minimump). This is the content of the following lemma
that is a main ingredient in the proof of the theorem.

Lemma 4. Let uf be a utility function inducing a demand correspondence Df satisfying
FS, LAD, and LAS. Let p, p′ ∈R�f , and define p̄, p ∈R�f by

pω := max
{
pω, p′

ω

}
, p

ω
:= min

{
pω, p′

ω

}
.

Let� ∈Df (p) and�′ ∈Df (p′ ).

(i) There is a �̄ ∈Df (p̄) with

{
ω ∈�→f : pω ≥ p′

ω

} ∪ {
ω ∈�′

→f : p′
ω > pω

} ⊆ �̄→f ,

�̄f→ ⊆ {
ω ∈�f→ : pω ≥ p′

ω

} ∪ {
ω ∈�′

f→ : p′
ω > pω

}
.

(ii) There is a� ∈Df (p) with

�→f ⊆ {
ω ∈�→f : p′

ω ≥ pω
} ∪ {

ω ∈�′
→f : pω > p′

ω

}
,{

ω ∈�f→ : p′
ω ≥ pω

} ∪ {
ω ∈�′

f→ : pω > p′
ω

} ⊆�f→.

(iii) �̄ and� can be chosen such that

|�→f | − |�f→| ≥ |�→f | − |�f→| ≥ |�̄→f | − |�̄f→|.

With the lemma, the proof of the theorem can be carried out as described before.
The lemma and the first part of the theorem fail to hold if we replace FS by weak FS, as
the following example shows.

Example 1 (cont.). Consider the set of trades � = {α1, α2, β1, β2} and firm f with the
utility function uf as defined in Example 1. The induced demandDf satisfies weak FS as
previously shown. Moreover, for each p ∈ R�f and � ∈Df (p) we have |�f→| = |�→f |.
Thus, Df satisfies LAD and LAS. Consider four additional firms s1, s2, b1, b2 with s1 =

8This is related to the observation that the set of competitive equilibrium price vectors for our model can
fail to be connected. See the example in Roth and Sotomayor (1988) for the case of one-to-one matching
with transfers which is a special case of our model. In contrast to this, for the transferable utility case
it is easy to show that the set of competitive equilibrium price vectors is convex, and thus, in particular,
connected.
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s(α1 ), s2 = s(α2 ), b1 = b(β1 ), and b2 = b(β2 ). Define utility functions for the additional
firms as follows: For i= 1, 2, define

us
i({
αi

}
, pαi

) = pαi ,
ub

i({
βi

}
, pβi

) = 2 −pβi ,
us

i
(∅) = ubi(∅) = 0.

Observe that the equilibria for u are [�, (1, 1, 1, 1)] and [{αi, βj }, (0, 0, 2, 2)] for i, j =
1, 2. In particular, the vector (1, 1, 2, 2) is not an equilibrium price vector, since
Ds

1
(1, 1, 2, 2) = {{α1}} and Ds

2
(1, 1, 2, 2) = {{α2}} but Df (1, 1, 2, 2) = {{α1, β1}, {α1, β2},

{α2, β1}, {α2, β2}}. ♦

Similarly, the second part of the theorem fails if LAD (LAS) is replaced by weak LAD
(weak LAS) as the following example shows.

Example 2 (cont.). Consider the set of trades � = {ω1,ω2} and firm f with the utility
function uf as defined in Example 2. As observed before, Df satisfies FS, weak LAD,
(and, trivially, LAS), but not LAD. Consider a second firm f ′ with f ′ = s(ω1 ) = s(ω2 ) with
utility function uf

′
defined by

uf
′(

{ωi}, pωi
) = pωi , for i= 1, 2,

uf
′(

{ω1,ω2}, p
) = pω1 +pω2 − 1.5,

uf
′
(∅) = 0.

The induced demand satisfies FS and LAS (and, trivially, LAD). The set of equilibrium
vectors is E(u) = {p : 1 ≤ pω1 = pω2 ≤ 1.5} ∪ {(2, 2)}. Each p ∈ E(u) \ {(2, 2)} is supported
by {ω1} and by {ω2}. The equilibrium prices (2, 2) are supported by {ω1,ω2}. An analo-
gous example can be constructed to show that LAS and not just weak LAS is necessary
for the rural hospitals theorem. ♦

It is well known that the theorem fails to hold without FS, even for transferable util-
ity. The following example shows that the first part of the theorem fails without LAD.
More generally, the example shows that without LAD the set of equilibria can even fail
to be a lattice with respect to the (weaker) partial ordering induced by terminal sell-
ers’ preferences. The example relies on the previous logic highlighted in the discussion
of Theorem 1: The FS condition can be used to show that there is no excess supply of
trades at the pairwise maximum of two equilibrium price vectors. However, without the
LAD there can still be strict excess demand of trades at the pairwise maximum (or at
price vectors dominating it).

Example 3. Let � = {ω1,ω2,ω3}. Let b(ωi ) = f for i = 1, 2, 3, and s(ωi ) �= s(ωj ) for
i �= j. We let us(ωi )(ωi, pωi ) = pωi , u

s(ωi )(∅) = 0 for i = 1, 2 and us(ω3 )(ω3, pω3 ) = −∞,
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us(ω3 )(∅) = 0. We define uf by

uf (∅) = 0,

uf
(
{ω1,ω2}, (pω1 , pω2 )

) = 2 −pω1 −pω2 ,

uf
(
{ω1,ω2,ω3}, p

) = 1 − 1

1 + exp
(−(pω1 +pω2 +pω3 )

) ,

and uf (�, ·) = −∞ else.
Consider the price vectors p= (0, 1, 0) and p′ = (1, 0, 0). Note that {ω1,ω2} ∈Df (p)

and {ω1,ω2} ∈Df (p′ ). Moreover, we have Ds(ω1 )(p) = {{ω1}} =Ds(ω1 )(p′ ), Ds(ω2 )(p) =
{{ω2}} = Ds(ω2 )(p′ ) and Ds(ω3 )(p) = {∅} = Ds(ω3 )(p′ ). Thus, p and p′ are equilibrium
price vectors. Suppose there is a p̄ that each terminal seller weakly prefers to p and p′,
that is, vs(ω1 )(p̄) ≥ max{vs(ω1 )(p), vs(ω1 )(p′ )} = 1, vs(ω2 )(p̄) ≥ max{vs(ω2 )(p), vs(ω2 )(p′ )} =
1, and vs(ω3 )(p̄) ≥ vs(ω3 )(p) = vs(ω3 )(p′ ) = us(ω3 )(∅) = 0. Thus, p̄ω1 ≥ 1 and p̄ω2 ≥ 1. But
then Df (p̄) = {{ω1,ω2,ω3}}. Moreover, Ds(ω3 )(p̄) = {∅}. Thus, there is no such equilib-
rium price vector p̄.

To check that uf satisfies FS, first note that for eachp ∈R�f , we have uf ({ω1,ω2,ω3},
p) > 0 = uf (∅). Thus, at each p ∈ R�f , we have Df (p) ⊆ {{ω1,ω2}, {ω1,ω2,ω3}} and
the only possible FS violation could occur for p ≤ p′ with p′

ω3
= pω3 and {ω1,ω2,ω3} ∈

Df (p). However, if uf ({ω1,ω2,ω3}, p) ≥ uf ({ω1,ω2}, p), then as uf ({ω1,ω2,ω3}, p) −
uf ({ω1,ω2}, p) is increasing in pω1 and in pω2 for each pω3 , we have uf ({ω1,ω2,ω3},
p′ ) ≥ uf ({ω1,ω2}, p′ ). Thus, FS holds.9 ♦

3.2 Extremal equilibria

So far, we have not considered whether competitive equilibria exist in our model and, in
principle, the lattice in Theorem 1 could be empty. Next, we show that under the addi-
tional assumption of bounded willingness to pay (we follow the terminology of Fleiner
et al., 2019), side-optimal equilibria exist, that is, there exist an equilibrium that is a most
preferred equilibrium for all terminal buyers and an equilibrium that is a most preferred
equilibrium for all terminal sellers.

Bounded willingness to pay (BWP) The utility function uf satisfies bounded willing-
ness to pay if there exists a K ≥ 0 such that for all p ∈ R�f and � ∈ Df (p) if ω ∈�→f ,
then pω <K and if ω ∈�f→, then pω >−K.

The condition rules out, for example, the case that for a trade the seller would never
sell under any price and the buyer would buy under any price. BWP guarantees that
equilibrium prices of trades realized in equilibrium are bounded. It follows straightfor-
wardly from the continuity of utility functions that equilibrium prices of trades realized
in equilibrium form a closed set. Thus, the set of equilibrium prices of trades realized
in equilibrium is compact. The existence of side-optimal equilibria follows straightfor-
wardly from this.

9The example violates the BWP and the BCV conditions that we consider in Section 3.2.
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Theorem 2 (Existence of extremal equilibria). Under the assumption of BWP, FS, LAD,
LAS, there exists a seller-optimal equilibrium, that is, a p̄ ∈ E(u) such that for each termi-
nal seller f ∈ F :

vf (p̄) ≥ vf (p) for each p ∈ E(u),

and a buyer-optimal equilibrium, that is, a p ∈ E(u) such that for each terminal buyer
f ∈ F :

vf (p) ≥ vf (p) for each p ∈ E(u).

Remark 3. Under the assumptions of weak FS and BWP, Fleiner et al. (2019) establish
that equilibrium allocations are equivalent to trail-stable allocations.10 Thus, under
BWP, FS, LAD, LAS there is a seller-optimal trail-stable allocation and a buyer-optimal
trail-stable allocation. In the case of no frictions, BWP is implied by requiring, that
uf (∅)>−∞ and utility functions have full range.

Fleiner et al. (2019) also introduce an alternative regularity condition, called
bounded compensating variations (BCV), which guarantees that utility of individually
rational allocations is bounded for all agents.

Bounded compensating variations The utility function of firm f satisfies bounded
compensating variations if for each�⊆� we have

inf
p∈R�:uf (�,p)>uf (∅)

( ∑
ω∈�f→

pω −
∑

ω∈�→f

pω

)
>−∞.

Remark 4. The previous result also holds if BWP is replaced by BCV. See the full working
paper version (Schlegel (2020)) for the proof.

Theorem (Existence of extremal equilibria with BCV, Schlegel (2020)). Under the as-
sumption of BCV, FS, LAD, LAS, there exists a seller-optimal equilibrium and a buyer-
optimal equilibrium.

3.3 Strategic considerations

The existence of buyer-optimal equilibria established in Theorem 2 allows us to obtain
a group-incentive compatibility result.11 In the following, a domain of utility profiles
is a set U =×f∈FUf where Uf is a set of (continuous and monotonic) utility functions

10Fleiner et al. (2019) use the choice-language definition of weak FS. They show that the choice-language
definition is equivalent to the demand-language definition when the price space is amended by infinite
prices. Under BWP, it is easy to see that the equivalence between the choice-language and the demand-
language versions of weak FS and of FS also holds on the standard price space R� .

11In the following, we talk about incentives for terminal buyers. A completely analogous result also holds
for terminal sellers.
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for firm f . A mechanism is a function M : U → A. A mechanism is (weakly) group-
strategy-proof for a set of workers F ′ ⊆ F on the domain U ′ ⊆ U if for each u, ũ ∈ U ′ with

ũ−F ′ = u−F ′
, there exist a f ∈ F ′ with

uf
(
M(u)

) ≥ uf (M(ũ)
)
.

Theorem 2 allows us to define a class of focal mechanisms on the domain of utility

profiles satisfying BWP, FS, LAD, and LAS: A buyer-optimal mechanism maps to each

utility profile a buyer-optimal equilibrium allocation.

To obtain a group-strategy-proofness results for terminal buyers for buyer-optimal

mechanisms, we have to restrict the domain. In the following, a unit demand utility

function is a uf such that for the induced demand Df at each p ∈ R�f and � ∈Df (p)
we have |�→f | ≤ 1. For the case without transfers and with strict preferences, analogous

results are proved by Hatfield et al. (2012) (for the case of acyclic networks and the solu-

tion concept of stability) and Fleiner et al. (2016) (for arbitrary networks and the solution

concept of trail-stability).

Theorem 3 (Group-strategy-proofness). Each buyer-optimal mechanism is group-

strategy-proof for terminal buyers on the domain of utility profiles such that terminal

buyers’ utility functions satisfy unit demand and BWP and all other firms’ utility func-

tions satisfy BWP, FS, LAD, and LAS.

In view of Proposition 1, we can extend the construction to profiles satisfying BWP,

weak (!) FS, weak LAD, and weak LAS. For each such profile u, there exists a correspond-

ing profile ũ satisfying BWP, FS, LAD, and LAS such that the indirect utility functions

are the same for both profiles. The mechanism that assigns to each profile u a buyer-

optimal equilibrium allocation under a corresponding profile ũ is group-strategy-proof

for terminal buyers (since for terminal buyers (and terminal sellers) the weak FS and the

FS condition coincide), and the assigned allocations are equilibrium allocations under

u as well.

Corollary 1 (Group-strategy-proofness under weak FS). On the domain of utility pro-

files such that terminal buyers’ utility functions satisfy unit demand and BWP and all

other firms’ utility functions satisfy BWP, weak FS, weak LAD, and weak LAS, there exists

a group-strategy-proof mechanisms for terminal buyers that implements a competitive

equilibrium.

Remark 5. As noted in Remark 4, the existence of extremal equilibria can alternatively

be proved with BWP replaced by BCV. Analogously, we can obtain a group-strategy-

proofness result with BWP replaced by BCV. The proof remains unchanged in that case.
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4. Applications

4.1 Two-sided matching markets

The results in the previous sections immediately apply to two-sided matching markets.
In this case, the results generalize previously known results for two-sided matching mar-
kets in two directions: we provide a lattice result, a rural hospitals theorem, and a group-
strategy-proofness result for markets with a) wealth effects and frictions for both sides
of the market b) the possibility that it is infeasible for a hospital to hire certain groups of
doctors. As remarked in Section 2.1, the weak version of full substitutability is sufficient
to obtain the results for two-sided markets.

Instead of a set of firms, the economy now consists of a finite set of hospitals H and
a finite set of doctors D. Each hospital h has a utility function uh : {(D′, p) :D′ ⊆D, p ∈
RD

′
} → R ∪ {−∞} that assigns to each D′ ⊆ D and price vector p ∈ RD

′
a utility level.

We extend uh to 2D × RD by letting uh(D′, p) := uh(D′, (pd )d∈D′ ). We allow the utility
function to take on a value of −∞ to indicate that it is infeasible for the hospital to hire
a particular group of doctors. This allows us, for example, to incorporate institutional
constraints such as the “generalized interval constraints” characterized by Kojima et al.
(2020b), which specify a lower and an upper bound on the number of doctors a hospital
can hire. We assume that uh(D′, p) = −∞ implies uh(D′, p′ ) = −∞ for each p′ ∈ RD

′
.

We assume that there is at least one group of doctors D′ ⊆D that is feasible to hire, that
is, such that uh(D′, ·) > −∞. Moreover, we require that for uh(D′, ·) �= −∞, the utility
function uh(D′, ·) is continuous and strictly decreasing in prices. The utility function in-
duces a demand correspondence Dh : RD ⇒ 2D by Dh(p) := argmaxD′⊆Duh(D′, p). We
assume that doctors are gross substitutes for hospitals. We only need to require the con-
dition for price vectors where the demand is single-valued.

Weak gross substitutability Forp, p′ ∈ RD withp≤ p′,Dh(p) = {D′} andDh(p′ ) = {D′′},
we have {d ∈D′ : p′

d = px} ⊆D′′.

Moreover, we require the law of aggregate demand.

Law of aggregate demand For p, p′ ∈ RD with p ≤ p′ and each D′ ∈Df (p′ ), there is a
D̃ ∈Df (p) with |D̃| ≥ |D′|.

Each doctor d has a utility function ud :H×R∪ {∅} →R that is strictly increasing and
continuous in its second argument. We extend ud toH ∪ {∅} ×RH by letting ud(h, p) :=
ud(h, phd ) and ud(∅, p) := ud(∅).

A matching is a function μ : H × D → 2D ∪ H with μ(h) ⊆ D for each h ∈ H and
μ(d) ∈H ∪ {∅} for each d ∈D such that d ∈ μ(h) if and only if h= μ(d). A competitive
equilibrium (μ, p) is a pair consisting of a matching μ, and a price vector p ∈ RH×D
such that for each h ∈H and ph := (phd )d∈D we have μ(h) ∈Dh(ph ), and for each d ∈D
and pd = (phd )h∈H we have ud(μ(d), pd ) = maxh∈H∪{∅} u

d(h, pd ). The following is an
immediate consequence of Theorems 1, 2, and 3 and generalizes results of Hatfield et al.
(2013, 2014) for the transferable utility model.12

12It is important that we use the “multivalued” version of the law of aggregate demand. Otherwise, Ex-
ample 3 demonstrates that the lattice result can fail. An example similar to Example 2 but with two instead
of one seller demonstrates that the rural hospitals theorem can fail.
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Corollary 2. For each matching market such that doctors are weak gross substitutes for
hospitals and the law of aggregate demand holds, the following is true:

(i) Let p, p′ ∈ RH×D be equilibrium prices. Then p̄, p ∈ RH×D defined by

p̄hd = max
{
phd , p′

hd

}
, p

hd
= min

{
phd , p′

hd

}
are equilibrium prices.

(ii) Let p, p′ ∈ RH×D be equilibrium prices. For each matching μ supporting p as an
equilibrium (μ, p), there is a matching μ′ supporting p′ as an equilibrium (μ′, p′ )
such that

(a) a doctor is unemployed in μ if and only if he is unemployed in μ′, that is,
μ(d) = ∅ ⇔ μ′(d) = ∅, for each d ∈D,

(b) each hospital hires the same number of doctors in μ and μ′, that is, |μ(h)| =
|μ′(h)| for each h ∈H.

(iii) If utility functions satisfy, moreover, BWP, then there exists a worker-optimal equi-
librium allocation and a hospital-optimal equilibrium allocation.

(iv) The worker-optimal mechanism is group-strategy-proof for workers on the do-
main of utility profiles such that workers’ utility functions satisfy unit supply and
BWP and hospitals’ utility functions satisfy BWP, weak GS, and LAD.

Proof. We can construct a corresponding trading network with � = H ∪ D and
ũh(�, p) = uh({d : (h, d) ∈ �}, p) for � ⊆ �h for each h ∈ H, and ũd({(h, d)}, phd ) =
ud(h, phd ), ũd(∅) = ud(∅) and ũd(�, ·) = −∞ if �⊆�d with |�| > 1 for each d ∈D. The
weak gross substitutes condition then corresponds to the weak SSS condition. Weak SSS
is equivalent to SSS as shown in Appendix D of Fleiner et al. (2019) (SSS corresponds
to the conjunction of the two properties that Fleiner et al. (2019) call “increasing price
full substitutability for sales” and “decreasing price full substitutability for purchases”).
Since the market is two-sided, SSS and FS are equivalent. The corollary follows from
Theorems 1, 2, and 3.

4.2 Exchange economies with uniform pricing

Next, we apply the model to the exchange of indivisible objects. The result extends re-
sults of Gul and Stacchetti (1999) and Hatfield et al. (2013) (see the discussion in their
Section IV.B) to imperfectly transferable utility. As in Gul and Stacchetti (1999), we main-
tain the assumption that the market is cleared through transfers of a perfectly divisible
good and there is no constraint on the amount of the divisible good an agent can con-
sume. Moreover, negative quantities of the divisible good can be consumed. However,
we do not assume that utility in the divisible good is quasilinear. Similar assumptions
are standard in the object allocation literature with general preferences; see, for exam-
ple, Morimoto and Serizawa (2015).
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In the following, we let X be a finite set of heterogeneous indivisible objects. From
now on, we use the term agents in lieu of firms. Agents have utility functions over bun-
dles of objects and transfers, ũf : 2X ×R → R such that for each Y ⊆X , ũf (Y , ·) is con-
tinuous, strictly increasing, and has full range,13 and for each t ∈ R and Y ⊆ Y ′ ⊆ X ,
we have ũf (Y , t ) ≤ ũf (Y ′, t ). Each agent f is endowed with a bundle of objects Xf ⊆X

such that Xf ∩ Xf ′ = ∅ for f �= f ′ and
⋃
f∈F Xf = X . An exchange economy is a pair

(ũ, (Xf )f∈F ) of utility functions and endowments for each agent. We define for each
f ∈ F a demand correspondence D̃f : RX+ × 2X ⇒ 2X by

D̃f (p,Xf ) := argmax
Y⊆X

ũf
(
Y ,

∑
x∈Xf \Y

px −
∑

x∈Y\Xf
px

)
.

Remark 6. In contrast to quasilinear utility, demand can depend on the endowment,
that is, in general D̃f (p,Xf ) �= D̃f (p, X̃f ) forXf �= X̃f .

We assume that objects are gross substitutes for agents.14

Gross Substitutability (GS) For p, p′ ∈ RX+ with p ≤ p′, if p′
x = px for x ∈ Xf , then for

each Y ′ ∈ D̃f (p′,Xf ) there exists a Y ∈ D̃f (p,Xf ) such that {x ∈ Y : p′
x = px} ⊆ Y ′, and

if p′
x = px for x ∈ X \ Xf , then for each Y ∈ D̃f (p,Xf ) there exists a Y ′ ∈ D̃f (p′,Xf ),

such that {x ∈ Y : p′
x = px} ⊆ Y ′.

Moreover, we assume the law of aggregate demand.

Law of Aggregate Demand (LAD) For p, p′ ∈RX+ with p≤ p′, if p′
x = px for x ∈Xf , then

for each Y ′ ∈ D̃f (p′,Xf ) there exists a Y ∈ D̃f (p,Xf ), and if p′
x = px for x ∈X \Xf , then

for each Y ∈ D̃f (p,Xf ) there exists a Y ′ ∈ D̃f (p′,Xf ), such that |Y | ≥ |Y ′|.

Remark 7. We assume that there is only one copy of each object. More generally, we can
extend the model to multiple units of the same object by creating identical copies of ob-
jects. In this case, we can use the strong substitutes condition (Baldwin and Klemperer
(2019)) that requires that objects are gross substitutes for agents if each of the identical
copies of an object is treated as a separate object. The law of aggregate demand can be
generalized in an analogous way. One can show that under the assumption of strong
substitutes and the generalized law of aggregate demand, an equilibrium with uniform
prices (identical copies of the same good have the same price) exists whenever an equi-
librium with nonuniform prices (identical copies of the same good can have different
prices) exists. All subsequent results generalize to this setting.

An allocation of objects is a partition Y = (Yf )f∈F with Yf ⊆ X and Yf ∩ Yf ′ = ∅
for f �= f ′. A competitive equilibrium of the exchange economy (ũ, (Xf )f∈F ) is a pair

13This assumption is only necessary for the existence of side-optimal allocations and otherwise redun-
dant.

14As in Section 3.1 and in contrast to Section 4.1, we need a multivalued version of gross substitutability
to obtain corresponding results for exchange economies. This is because gross substitutability between a
good that an agent owns and one that he does not own corresponds to cross-side complementarity in a
trading network.
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[Y , p] where Y is an allocation of objects and p ∈ RX+ such that for each f ∈ F we have
Yf ∈ D̃f (p,Xf ).

For each exchange economy (ũ, (Xf )f∈F ), a corresponding trading network can be
defined as follows: The set of trades is

� := {
(x, f1, f2 ) ∈X × F × F : x ∈Xf1 , f2 �= f1

}
where for ω= (x, f1, f2 ) ∈� we have s(ω) = f1 �= f2 = b(ω). We write x(ω) for the object
involved in trade ω. For�⊆�f and p ∈R�f , define

Xf (�) := {
x(ω) :ω ∈�→f

} ∪Xf \ {
x(ω) :ω ∈�f→

}
,

pf (�) :=
∑

ω∈�f→
pω −

∑
ω∈�→f

pω.

Utility functions are induced by utility functions over bundles of objects and transfers;

for�⊆�f and p ∈R
�f
+ we let

uf (�, p) =

⎧⎪⎪⎨
⎪⎪⎩
ũf

(
Xf (�), pf (�)

)
, if

{
x(ω) :ω ∈�f→

} ⊆Xf and x(ω) �= x(ω′)
forω,ω′ ∈�withω �=ω′,

−∞, else.

To apply the results from the previous sections, we also extend the utility functions to
negative prices; for�⊆�f and p ∈R� \R�+ we let

uf (�, p) := uf (�,
(
max{pω, 0}

)
ω∈�

) +
∑

ω∈�f→
min{pω, 0} −

∑
ω∈�→f

min{pω, 0}.

Remark 8. Extending utility for negative prices in this way implies (see the proof of
Lemma 5) that the induced demand Df satisfies FS on R�f whenever it satisfies FS on

R
�f
+ . Moreover, is easy to see that for each�⊆�f with uf (�, ·)>−∞, uf is continuous

(as uf is continuous on R�+ , and min and max are continuous) and monotonic on R�.
This will allow us to apply the results from previous sections.

Equilibrium prices in the trading network are nonnegative by our assumption that
ũf (Y , t ) ≤ ũf (Y ′, t ) for t ∈ R and Y ⊆ Y ′ ⊆ X : Let p ∈ R� and define �− := {ω ∈ � :
pω < 0}. First, note that for � ∈Df (p) we have � ∩�−

f→ = ∅: Define p+ ∈ R� by p+
ω :=

max{pω, 0} for ω ∈�f→ and p+
ω := pω else. Note that Xf (�) ⊆Xf (� \�−

f→ ). Thus, by
monotonicity

uf (�, p) ≤ uf (�, p+) ≤ uf (� \�−
f→, p+) = uf (� \�−

f→, p
)
.

As � ∈ Df (p), all inequalities hold with equality, in particular, uf (�, p) = uf (�, p+ )
and, therefore, by monotonicity, � ∩�−

f→ = ∅. By a similar argument, if � ∈Df (p) and

�−
→f �= ∅, then�∩�−

→f �= ∅. Thus, for p ∈R� \R�+ there is excess demand, and for each
p ∈ E(u), we have pω ≥ 0 for each ω ∈�.
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The gross substitutes condition for ũf corresponds to the full substitutability condi-
tion for uf and the law of aggregate demand for ũf implies the laws of aggregate demand
and supply for uf .

Lemma 5. If ũf satisfies GS, then uf satisfies FS. If ũf satisfies LAD, then uf satisfies LAD
and LAS.

In general, different trades involving the same object can be priced differently. In the
following, we call p ∈ E(u) a competitive equilibrium of the trading network with uni-
form pricing, if for ω,ω′ ∈�, with x(ω) = x(ω′ ) we have pω′ = pω. Trades in the same
object are perfect substitutes to each other for the seller of the object, and he will sell
the object to a buyer who is offering the highest price. Thus, we can always construct
an equilibrium with uniform pricing from an equilibrium with nonuniform pricing by
setting the price of the nonrealized trades to the highest price for the involved object
over all trades in the trading network. Similarly, a competitive equilibrium in the ex-
change economy, induces a competitive equilibrium with uniform pricing in the trading
network. The following theorem can be interpreted as a generalization of Theorem 10
of Hatfield et al. (2013).

Proposition 2.

(i) If p ∈ R�+ are equilibrium prices in the trading network induced by an exchange
economy, then (maxω∈�,x=x(ω)pω )x∈X ∈RX+ are equilibrium prices in the exchange
economy.

(ii) Ifp ∈RX+ are equilibrium prices in an exchange economy, then (px(ω) )ω∈� ∈R�+ are
equilibrium prices in the trading network induced by the exchange economy.

Proof. Let [�, p] be an equilibrium in the induced trading network. Let q :=
(maxω∈�,x=x(ω)pω )x∈X and consider the allocation [(Xf (�))f∈F , q] in the exchange
economy. By construction, we have pω ≤ qx(ω) for eachω /∈� and pω = qx(ω) forω ∈�.
Thus,

�f ∈Df (p) ⇒ Xf (�) ∈ D̃f (q,Xf )

and [(Xf (�))f∈F , q] is an equilibrium of the exchange economy.
For the second part, let [Y , p] be an equilibrium of the exchange economy. Define

q := (px(ω) )ω∈� and consider the set of trades�⊆� defined by

� := {
ω ∈� : x(ω) ∈ Yb(ω) ∩Xs(ω)

}
.

By construction, we have

Yf ∈ D̃f (p,Xf ) ⇒ �f ∈Df (q).

Therefore, [�, q] is an equilibrium of the induced trading network.

Proposition 2 and the previous results for trading networks imply the following.
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Corollary 3. Let (ũ, (Xf )f∈F ) be an exchange economy such that objects are gross sub-
stitutes for agents and the law of aggregate demand holds.

(i) Lattice theorem: Let p, p′ ∈RX+ be equilibrium prices. Then the price vectors p̄, p ∈
RX+ defined by

p̄x := max
{
px, p′

x

}
, p

x
:= min

{
px, p′

x

}
,

are equilibrium equilibrium prices.

(ii) Rural hospitals theorem: Let p, p′ be equilibrium prices. For each equilibrium
[Y , p], there exists an assignment Y ′ such that for each f ∈ F |Yf | = |Y ′

f |, that is, f
consumes the same number of objects in Y and Y ′.

(iii) Existence of extremal equilibria: There exist equilibrium price vectors p̄, p ∈ RX+ ,

such that for each equilibrium price vector p ∈RX+ and x ∈X we have

p
x

≤ px ≤ p̄x.

Remark 9. Throughout this section, we have made the assumption that utility depends
on the total amount of the divisible good, but not on how transfers of the divisible good
are obtained through different trades. For the induced trading network, this means that
utility satisfies the no frictions assumption. Frictions for individual trades in the trading
network can lead to nonuniform pricing. Suppose, for example, that an agent is en-
dowed with an object and faces different transactions costs depending on whom he is
selling the object to. In this case, he might have an incentive to sell the object to a buyer
who is offering a lower price, if transaction costs with this buyer are lower than with
other buyers who offer a higher price. Thus, Proposition 2 can fail to hold in the presence
of frictions. A slightly more general version of the proposition can be obtained, where
it is assumed that utility is symmetric in transfers from different trades with the same
objects, but transfers from trades with different objects can enter the utility asymmet-
rically. In this case, trades in different objects can contain different frictions, however,
trades of the same objects are perfect substitutes for each other.

Appendix A: Proofs for Section 2.1

A.1 Proof of Lemma 2

Proof. First, we show the first and second part of the lemma. Let p, p′ ∈ R�f such
that pω = p′

ω for ω ∈ �f→ and pω ≤ p′
ω for ω ∈ �→f . Let �′ ∈Df (p′ ). By upper hemi-

continuity, there exists an ε > 0 such that for ‖p − q‖ < ε we have Df (q) ⊆ Df (p). By
NIB, there is a q′ with ‖q′ − p′‖ < ε/2 and Df (q′ ) = {�′}. Let q := p + q′ − p′. By
construction, ‖q − p‖ = ‖q′ − p′‖ < ε/2 < ε and, therefore, Df (q) ⊆ Df (p). By up-
per hemicontinuity, there exists an ε′ > 0 such that for r ′ with ‖r ′ − q′‖ < ε′ we have
Df (r ′ ) = {�′} =Df (q′ ). We may choose ε′ < ε/2. By the second part of Lemma 1, there
exists a p̃ ∈ R�f with ‖p̃ − q‖ < ε′ such that demand is single-valued, Df (p̃) = {�} for
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a � ⊆ �f . As ‖p̃ − p‖ ≤ ‖p̃ − q‖ + ‖p − q‖ < ε′ + ε/2 < ε, we have � ∈ Df (p). Let
p̃′ := q′ + p̃ − q. As ‖p̃′ − q′‖ = ‖p̃ − q‖ < ε′, we have Df (p̃′ ) = {�′}. By construction,
we have p̃′ = q′ + p̃− q = q′ + p̃− (p+ q′ − p′ ) = p′ + p̃− p and p̃= p+ p̃− p. Since
pω = p′

ω for ω ∈�f→ and pω ≤ p′
ω for ω ∈�→f , this implies p̃ω = p̃′

ω for ω ∈�f→ and
p̃ω ≤ p̃′

ω for ω ∈ �→f . By weak FS applied to the vectors p̃ and p̃′ and the fact that
demand at both price vectors is single-valued with Df (p̃) = {�} and Df (p̃′ ) = {�′}, we
obtain {

ω ∈�→f : pω = p′
ω

} ⊆�′
→f , �′

f→ ⊆�f→.

If, moreover, weak LAD holds, then

|�→f | − |�f→| ≥ ∣∣�′
→f

∣∣ − ∣∣�′
f→

∣∣.
A completely analogous argument shows the second part of the FS, respectively, the LAS.

To show the third part of the lemma, let p ∈ R�f and � ∈Df (p). We show that for
each ε > 0 there is a q ∈ R�f with ‖p − q‖ < ε such that Df (q) = {�}. Let ε > 0. First,
consider a vector ε̃ ∈ R�f with ‖ε̃‖< ε such that ε̃ω > 0 for ω ∈�→f \�, ε̃ω < 0 for ω ∈
�f→ \�, and ε̃ω = 0 for ω ∈�. By monotonicity of uf , for each �⊆�f with ��� we
have uf (�, p+ ε̃)< uf (�, p), and we have uf (�, p+ ε̃) = uf (�, p). Thus, Df (p+ ε̃) ⊆
2� and � ∈Df (p+ ε̃). By upper hemicontinuity, there is a ε′ > 0 such that for q ∈ R�f

with ‖q− (p+ ε̃)‖< ε′ we have Df (q) ⊆Df (p+ ε̃). We may choose ε′ < ε− ‖ε̃‖. By the
second part of Lemma 1, there is a q ∈ R�f with ‖q− (p+ ε)‖< ε′ such that demand is
single-valued, |Df (q)| = 1, and we may choose it such that qω ≤ pω + ε̃ω for ω ∈ �→f

and qω ≥ pω + ε̃ω for ω ∈ �f→. We show that for the unique � ⊆ �f with Df (q) = {�}
we have �f→ =�f→. An analogous argument shows that �→f =�→f .

Let r ∈ R�f with rω = qω for ω ∈ �→f and rω = pω + ε̃ω for ω ∈ �f→. By the first
part of the CSC condition applied to vectors p+ ε̃ (in the role of p′) and r (in the role of
p), there is a 	 ∈Df (r ) such that �f→ ⊆	f→. Since ‖r − (p+ ε̃)‖ ≤ ‖q− (p+ ε̃)‖< ε′,
we have Df (r ) ⊆ Df (p + ε̃) ⊆ 2�. Thus, 	 ⊆ � and, by the previous observation that
�f→ ⊆	f→, we have	f→ =�f→. By LAS applied to prices r (in the role of p′) and q (in
the role of p), we have

|�f→| − |�→f | ≥ |	f→| − |	→f |. (4)

Since ‖q − (p + ε̃)‖ < ε′, we have Df (q) ⊆ Df (p + ε̃) ⊆ 2�. Thus, � ⊆ � and, by the
previous observation that �f→ =	f→, we have |�f→| ≤ |�f→| = |	f→|. Together with
inequality (4), this implies |�→f | ≤ |	→f |. By the second part of the CSC condition ap-
plied to prices r (in the role of p′) and q (in the role of p), we have	→f ⊆�→f . Together
with the previous inequality, this implies 	→f = �→f . Furthermore, together with in-
equality (4), this implies |�f→| ≥ |	f→|, and as 	f→ = �f→, we have |�f→| ≥ |�f→|.
As observed previously, � ⊆ �. Together with the previous inequality, this implies
�f→ =�f→.
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A.2 Proof of Proposition 1

The proof uses the following lemma, which will also be useful subsequently.

Lemma 6. Let uf be a continuous and monotonic utility function inducing a demand
correspondence Df . For each p, p′ ∈ R�f and �′ ⊆�f with pω ≤ p′

ω for ω ∈�f→ \�′
f→,

pω ≥ p′
ω for ω ∈�′

f→, pω ≥ p′
ω for ω ∈�→f \�′

→f and pω ≤ p′
ω for ω ∈�′

→f :

(i) If Df satisfies weak FS, weak LAD, and weak LAS, then Df (p′ ) = {�′} implies �′ ∈
Df (p).

(ii) IfDf satisfies FS, LAD, and LAS, then�′ ∈Df (p′ ) implies�′ ∈Df (p).

Proof. We first prove the first part. Let Df satisfy weak FS, weak LAD, and weak LAS
and Df (p′ ) = {�′}. By monotonicity of uf , it is without loss of generality to assume that
p′
ω = pω for ω ∈ �f \ �′ (replacing p′

ω with pω for ω ∈ �f \ �′ does not change the
utility for trades �′ while it weakly decreases the utility for any other set of trades). By
upper hemicontinuity ofDf , it suffices to show that for each ε > 0 there is a q ∈R�f with
‖p− q‖ < ε such that �′ ∈Df (q). Let ε > 0. By upper hemicontinuity of Df there is a
ε′ > 0 such that for q′ ∈ R�f with ‖p′ − q′‖< ε′ we have Df (q′ ) = {�′} =Df (p′ ). Define
p̃ ∈R�f such that

p̃ω :=
{
p′
ω, ifω ∈�f→
pω, ifω ∈�→f .

By the second part of Lemma 1, there is a r ∈R�f with ‖r− p̃‖<min{ ε2 , ε
′

2 } and a �̃⊆�f
such that Df (r ) = {�̃}. By upper hemicontinuity of Df , there is a ε̃ > 0 such that for
‖q̃− r‖< ε̃ we have Df (q̃) = {�̃} =Df (r ). We may choose ε̃ <min{ ε2 , ε

′
2 }. By the second

part of Lemma 1, there is a q ∈ R�f with ‖(p + (r − p̃)) − q‖ < ε̃ and a � ⊆ �f such
that Df (q) = {�}. Let q̃ := p̃ + q − p and q′ := p′ + q − p. By construction, we have
‖q′ − p′‖ = ‖q − p‖ ≤ ‖(p+ (r − p̃)) − q‖ + ‖r − p̃‖ < ε̃+ min{ ε2 , ε

′
2 } <min{ε, ε′}. Thus,

Df (q′ ) = {�′}. By construction, we have ‖r − q̃‖ = ‖r − (p̃+ q− p)‖< ε̃ and, therefore,
Df (q̃) = {�̃} =Df (r ). Applying the weak CSC condition to vectors q̃ and q′ (note that by
construction we have q′

ω = q̃ω for ω ∈ �f→), we have �′
f→ ⊆ �̃f→. Applying the weak

SSS condition to vectors q̃ and q′ (recall that we have WLOG assumed that p′
ω = pω for

ω ∈ �f \�′ and, therefore, have p′
ω = p̃ω = pω and q′

ω = q̃ω = qω for ω ∈ �f \�′), we
have �̃→f ⊆�′

→f . Applying the weak LAD to vectors q̃ and q′, it follows that �̃=�′.
Applying the weak CSC, condition to vectors q and q̃ (note that by construction we

have qω = q̃ω for ω ∈ �→f ), we have �̃→f ⊆�→f . Applying the weak SSS condition to
vectors q and q̃ (recall that we have q′

ω = q̃ω = qω forω ∈�f \�′ =�f \ �̃) we, moreover,
have�f→ ⊆ �̃f→. Applying the weak LAS to vectors q and q̃, it follows that �̃=�.

The second part of the lemma follows from the first as follows: By Lemma 2, there is
for each ε > 0 a q′ ∈ R�f with ‖p′ − q′‖ < ε such that Df (q′ ) = {�′}. By the first part of
the lemma applied to vectors q′ and q := p+ q′ −p′, we have�′ ∈Df (q). Thus, for each
ε > 0, there is a q ∈ R�f with ‖p−q‖< ε and�′ ∈Df (q). Thus, by upper hemicontinuity,
�′ ∈Df (p).
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Proof. We first define the demand D̃f and show that it is a selection from Df . Then
we rationalize it by a continuous and monotonic utility function that induces the same
indirect utility. Afterwards, we show that it satisfies FS, LAD, and LAS.

For each �⊆�f , consider the (possibly empty) set of price vectors p such that � is
the unique demanded bundle at p:

P� := {
p ∈R�f :Df (p) = {�}

}
.

Let P̄� be the (topological) closure of P�. We let

D̃f (p) := {�⊆�f : p ∈ P̄�}.

By upper hemicontinuity of Df , for each �⊆�f and p ∈ P̄� we have � ∈Df (p). Thus,
D̃f (p) ⊆Df (p) for each p ∈R�f .

Claim 1. For each � ⊆ �f , let Ppr� := {(pω )ω∈� : p ∈ P�} be the projection of P� to R�

and Ppr� its (topological) closure. Then there is a continuous and monotonic utility func-
tion ũf (�, ·) such that

ũf (�, p) = uf (�, p), if p ∈ Ppr� , (5)

ũf (�, p)< uf (�, p), if p /∈ Ppr� . (6)

Proof of Claim 1. Denote for eachp ∈R� by d(p, Ppr� ) := infq∈Ppr� ‖p−q‖ the distance

from p to Ppr� . We define

ũf (�, p) =
{
uf (�, p) − d(p, Ppr�

)
, if P� �= ∅,

−∞, if P� = ∅.

Suppose P� �= ∅. The function ũf (�, ·) is continuous since uf (�, ·) is continuous and
the distance to a set in R� is continuous. Moreover, d(p, Ppr� ) ≥ 0 with equality if and

only if p ∈ Ppr� . Thus, (5) and (6) hold. It remains to show that ũf (�, ·) is monotonic.
Let p, p′ ∈ R� with p �= p′ such that p′

ω = pω for ω ∈ �f→ and pω ≤ p′
ω for ω ∈ �→f

(an analogous argument works for downstream trades). For each ε > 0, there is q′ ∈ Ppr�
such that |‖p′ − q′‖ −d(p′, Ppr� )| < ε. Let r′ ∈ Pψ such that r′|� = q′. Let q := p− (p′ − q′ )
and define r ∈ R�f by rω = qω for ω ∈� and rω = r ′ω for ω /∈�. Since r ′ ∈ P�, we have
Df (r ′ ) = {�}, and thus, by the first part of Lemma 6, we have� ∈Df (r ). More generally,
by upper hemi-continuity of Df there is a ε′ > 0, such that for each s′ ∈ R�f with ‖s′ −
r′‖ < ε′ we have Df (s′ ) = {�}. Thus, by the first part of Lemma 6, for each s ∈ R�f with
‖s − r‖ < ε′ we have � ∈ Df (s). By the second part of Lemma 1, this implies that for

each ε̃ > 0 there is a s ∈ P� with ‖s − r‖ < ε̃. Therefore, q = r|� ∈ (P̄� )pr ⊆ P
pr
� . Thus,

d(p, Ppr� ) = d(p, Ppr� ) ≤ ‖p − q‖ = ‖p′ − q′‖ < d(p′, Ppr� ) + ε. Since this holds for any
ε > 0, we have d(p, Ppr� ) ≤ d(p′, Ppr� ). Thus, ũf (�, p)> ũf (�, p′ ).
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Claim 2 implies that D̃f can be rationalized by a continuous and monotonic utility
function that induces the same indirect utility: By the second part of Lemma 1, for each

p ∈ R�f there is a � ∈ Df (p) with p ∈ P̄�. Since p ∈ P̄�, we have p|� ∈ (P̄� )pr ⊆ P
pr
�

and, therefore, ṽf (p) = ũf (�, p) = uf (�, p) = vf (p). Next, we show that ũf ratio-
nalizes D̃f by showing that ũf (�, p) = ṽf (p) for � ∈ D̃f (p) and ũf (�, p) < ṽf (p) for
� /∈ D̃f (p). Let � ⊆ �f . If � ∈ D̃f (p), then p ∈ P̄� and � ∈ Df (p). Since p ∈ P̄�, we

have p|� ∈ (P̄� )pr ⊆ P
pr
� , and thus ũf (�, p) = uf (�, p) = vf (p) = ṽf (p). If � /∈ D̃f (p)

and � /∈Df (p), then ũf (�, p) ≤ uf (�, p) < vf (p) = ṽf (p). If � ∈Df (p) \ D̃f (p), then

we show p|� /∈ Ppr� , and thus ũf (�, p)< uf (�, p) = vf (p) = ṽf (p): By definition of D̃f ,
we havep /∈ P̄�. Thus, there is a ε > 0 such that for each q ∈R�f with ‖p−q‖< εwe have
q /∈ P̄�. Let q ∈R�f such that ‖p−q‖< ε andpω = qω forω ∈�,pω > qω forω ∈�f→ \�
and pω < qω for ω ∈�→f \�. Since � ∈Df (p) and uf is monotonic, we have Df (q) ⊆
2�. By Lemma 1, we can find a ε − ‖p − q‖ > ε̃ > 0 such that for ‖r − q‖ < ε̃ we have

Df (r ) ⊆ Df (q) ⊆ 2�. Now suppose for the sake of contradiction that p|� = q|� ∈ Ppr� .
Then there is a r ∈ P� such that ‖p|� − r|�‖< ε̃. Since r ∈ P�, we haveDf (r ) = {�}, and
thus, in particular, uf (�, r )> uf (�̃, r ) for each �̃��. Now define r̃ ∈R�f by r̃ω = rω for
ω ∈� and r̃ω = qω for ω /∈�. By construction, we have ‖r̃ − q‖ = ‖r|� −p|�‖< ε̃. Thus,
Df ( r̃ ) ⊆ 2�. Moreover, uf (�, r̃ ) = uf (�, r )> uf (�̃, r ) = uf (�̃, r̃ ) for each �̃��. Thus,
Df ( r̃ ) = {�} and r̃ ∈ P�. However, ‖p − r̃‖ ≤ ‖p − q‖ + ‖q − r̃‖ < ‖p − q‖ + ε̃ < ε and,
therefore, r̃ /∈ P̄�, a contradiction.

Next, we show that that D̃f satisfies FS, LAD, and LAS. By Lemma 2, it suffices to
show that D̃f satisfies NIB, weak FS, weak LAD, and weak LAS. Let �⊆�f . Since P̄� is
the closure of P� there is for each p ∈ P̄� and ε > 0 a q ∈ P� with ‖p− q‖< ε. By defini-
tion of P� and D̃f , we have D̃f (q) =Df (q) = {�}. Thus, D̃f satisfies NIB. For the other
properties, recall thatDf satisfies weak FS, weak LAD, and weak LAS. Thus, it suffices to
show that for each p ∈ R�f we have |D̃f (p)| = 1 if and only if |Df (p)| = 1. Let � ⊆ �f
with p ∈ P̄�. If p ∈ P�, then D̃f (p) = Df (p) = {�}. If p ∈ P̄� \ P�, then p is on the
boundary of P� and for each ε > 0 there is a q ∈R�f \ P̄� with ‖p−q‖< ε. By the second
part of Lemma 1, we may choose q such that |Df (q)| = 1. Since � is finite, this implies
that there is a �̃ �=� such that for each ε > 0 there is a q ∈ R�f \ P̄� with ‖p− q‖< ε and
Df (q) = {�̃}. Thus, p ∈ P̄�̃ for �̃ �=�. Hence |D̃f (p)| > 1. Thus, |D̃f (p)| = 1 if and only
if |Df (p)| = 1 as desired.

Appendix B: Proofs for Section 3

Proof of Lemma 3

Proof. By Lemma 1, there exists an ε0 > 0 such that for eachp ∈ P and every qwith ‖q−
p‖ < ε0 we have Df (q) ⊆Df (p). Let P = {p1, � � � , pn}. By Lemma 1, there is a ε1 ∈ R�f

with ‖ε1‖< ε0 such that |Df (p1 + ε1 )| = 1 and � ∈Df (p1 ) for the unique � ∈Df (p1 +
ε1 ). Consider P1 := {p1 + ε1, � � � , pn + ε1}. For each i = 1, � � � , n, we have Df (pi + ε1 ) ⊆
Df (pi ). By Lemma 1, there exists an ε1 > 0 such that for each p ∈ P1 and every q with
‖q−p‖< ε1 we haveDf (q) ⊆Df (p). By Lemma 1, there is a ε2 ∈R�f with ‖ε2‖< ε1 such
that |Df (p2 + ε1 + ε2 )| = 1 and � ∈Df (p2 + ε2 ) for the unique � ∈Df (p2 + ε1 ). Next,
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consider P2 := {p1 +ε1 +ε2, � � � , pn+ε1 +ε2}. For each i= 1, � � � , n, we haveDf (pi+ε1 +
ε2 ) ⊆Df (pi+ε1 ) ⊆Df (pi ) and so on. Iterating in this way, we obtain ε1, � � � , εn such that
for each i= 1, � � � , n, we have |Df (pi+∑n

j=1 ε
j )| = 1 and�i ∈Df (pi ) for the unique�i ∈

Df (pi + ∑n
j=1 ε

j ) ⊆Df (pi ). We define D̃f (pi ) =�i. By construction, D̃f (pi ) ∈Df (pi ).

Moreover, as all price vectors are translated by the same vector
∑n
j=1 ε

j , FS, LAD, and

LAS follow from weak FS, weak LAD, and weak LAS forDf .

Proof of Lemma 4

Proof. By Lemma 1, there exists an ε > 0 such that for each q ∈ {p, p′, p̄, p} and every q̃

with ‖q̃− q‖< ε we have Df (q̃) ⊆Df (q). Let ε0 > 0 such that ε0 <minω∈�f :p′
ω �=pω |p′

ω −
pω| and ε0

√
|�f | < ε. Define ε′ ∈R�f by

ε′ω =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε0, ifω ∈�′
f→ and p′

ω �= pω,

−ε0, ifω ∈�f→ \�′ and p′
ω �= pω,

−ε0, ifω ∈�′
→f and p′

ω �= pω,

ε0, ifω ∈�→f \�′ and p′
ω �= pω,

0, if p′
ω = pω.

Note that by construction we have ‖ε′‖ =
√
ε2

0|{ω ∈�f : pω �= p′
ω}| ≤ ε0

√
|�f | < ε, and

thusDf (p′ + ε′ ) ⊆Df (p′ ). First, we prove the following claim.

Claim 2. For each � ∈Df (p′ + ε′ ), we have {ω ∈�′ : p′
ω �= pω} ⊆ � and {ω /∈�′ : p′

ω �=
pω} ∩�= ∅.

Proof. First, we show that for each � ∈ Df (p′ + ε′ ) we have {ω ∈ �′ : p′
ω �= pω} ⊆ �.

Suppose not, and there is a� ∈Df (p′ + ε′ ) and a ω̃ ∈ {ω ∈�′ : p′
ω �= pω} \�. Let p̃ ∈R�f

with p̃ω̃ = p′
ω̃ and p̃ω = p′

ω + ε′ω for ω �= ω̃. By the second part of Lemma 6, we have
�′ ∈ Df (p̃). Thus, by monotonicity, we have uf (�, p′ + ε′ ) = uf (�, p̃) ≤ uf (�′, p̃) <
uf (�′, p′ + ε′ ) contradicting the assumption that � ∈Df (p′ + ε′ ).

Next, we show that for each � ∈ Df (p′ + ε′ ) we have {ω /∈ �′ : p′
ω �= pω} ∩ � = ∅.

Suppose not, and there is a� ∈Df (p′ + ε′ ) and a ω̃ ∈ {ω /∈�′ : p′
ω �= pω} ∩�. Let p̃ ∈R�f

with p̃ω̃ = p′
ω̃ and p̃ω = p′

ω + ε′ω for ω �= ω̃. By the second part of Lemma 6, we have
�′ ∈ Df (p̃). Thus, by monotonicity, we have uf (�, p′ + ε′ ) < uf (�, p̃) ≤ uf (�′, p̃) =
uf (�′, p′ + ε′ ) contradicting the assumption that � ∈Df (p′ + ε′ ).

By Lemma 1, there exists ε1 > 0 such that for every q′ with ‖q′ − (p′ + ε′ )‖ < ε1 we
have Df (q′ ) ⊆Df (p′ + ε′ ). We may choose ε1 < ε− ‖ε′‖. By the third part of Lemma 2,
there is a q ∈R�f with ‖p− q‖< ε1 such thatDf (q) = {�}. Define q′ := p′ + ε′ + (q−p).
Define q̄ as the pairwise maximum of q and q′, that is, q̄ω = max{qω, q′

ω}, and q as the
pairwise minimum of q and q′, that is, q

ω
= min{qω, q′

ω}.
By construction, we have qω < q′

ω if and only if pω < p′
ω, qω > q′

ω if and only if
pω > p

′
ω, and qω = q′

ω if and only if pω = p′
ω. Moreover, we have Df (q′ ) ⊆Df (p′ + ε′ ) ⊆
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Df (p′ ), we have ‖q̄− p̄‖ ≤ ‖ε′‖+ ε1 < ε, and thusDf (q̄) ⊆Df (p̄), and we have ‖q−p‖ ≤
‖ε′‖ + ε1 < ε, and thus Df (q) ⊆Df (p). Let P := {q̃ ∈ R�f : q̃ω ∈ {qω, q′

ω} for allω ∈ �f }.

By Lemma 3, there is a single-valued selection D̃f : P → 2�f from Df satisfying FS,
LAD, and LAS. Let �̄ := D̃f (q̄), � := D̃f (q) and �′′ := D̃f (q′ ). As Df (q) = {�}, we have

D̃f (q) =�. First, we show that{
ω ∈�→f : pω ≥ p′

ω

} ∪ {
ω ∈�′

→f : p′
ω > pω

} ⊆ �̄→f .

For q̃ ∈ P , such that q̃ω = q̄ω for ω ∈ �→f and q̃ω = qω for ω ∈ �f→, let �̃ := D̃f (q̃). By
CSC for D̃f , we have �̃→f ⊆ �̄→f . By SSS for D̃f , we have {ω ∈�→f : qω = q̄ω ≥ q′

ω} ⊆
�̃→f and, therefore, {ω ∈ �→f : qω = q̄ω ≥ q′

ω} ⊆ �̄→f . Similarly, for q̃ ∈ P such that
q̃ω = q̄ω for ω ∈ �→f and q̃ω = q′

ω for ω ∈�f→ let �̃ := D̃f (q̃). By CSC for D̃f , we have
�̃→f ⊆ �̄→f . By SSS for D̃f , we have {ω ∈�′′

→f : q′
ω = q̄ω ≥ qω} ⊆ �̃→f and, therefore,

{ω ∈�′′
→f : q′

ω > qω} ⊆ {ω ∈�′′
→f : q′

ω = q̄ω ≥ qω} ⊆ �̄→f . Moreover, by Claim 2 and as

�′′ ∈ Df (q′ ) ∈ Df (p′ + ε′ ), we have {ω ∈ �′ : p′
ω �= pω} ⊆ �′′ and {ω /∈ �′ : p′

ω �= pω} ∩
�′′ = ∅. Therefore,{

ω ∈�→f : pω ≥ p′
ω

} ∪ {
ω ∈�′

→f : p′
ω > pω

}
⊆ {
ω ∈�→f : qω ≥ q′

ω

} ∪ {
ω ∈�′′

→f : q′
ω > qω

} ⊆ �̄→f .

Next, we show that

�̄f→ ⊆ {
ω ∈�f→ : pω ≥ p′

ω

} ∪ {
ω ∈�′

f→ : p′
ω > pω

}
.

Let ω̄ ∈ �̄f→. We consider two cases. Either p̄ω̄ = pω̄ or p̄ω̄ = p′
ω̄ > pω̄. In the first case,

consider q̃ ∈ P with q̃ω = q̄ω for ω ∈�→f and q̃ω = qω for ω ∈�f→. Let �̃ := D̃f (q̃). By
SSS of D̃f , we have ω̄ ∈ �̃f→. By CSC of D̃f , we have �̃f→ ⊆�f→, and hence ω̄ ∈�f→.
Similarly, if p̄ω̄ = p′

ω̄ > pω̄, consider q̃ ∈ P with q̃ω = q̄ω for ω ∈ �→f and q̃ω = q′
ω for

ω ∈ �f→. Let �̃ := D̃f (q̃). By SSS of D̃f , we have ω̄ ∈ �̃f→. By CSC of D̃f , we have
�̃f→ ⊆�′′

f→, and hence ω̄ ∈�′′
f→. Since {ω /∈�′ : p′

ω �= pω} ∩�′′ = ∅ and p′
ω̄ �= pω̄, this

implies ω̄ ∈�′
f→.

Finally, let q̃ ∈ P such that q̃ω = q̄ω for ω ∈�→f and q̃ω = qω for ω ∈�f→ and �̃ :=
D̃f (q̃). By LAD for D̃f at q and q̃ and LAS for D̃f at q̃ and q̄, we have

|�→f | − |�f→| ≥ |�̃→f | − |�̃f→| ≥ |�̄→f | − |�̄f→|.
A completely dual proof shows that� has the desired properties.

Proof of Theorem 1

Proof. Let� ∈ E(u, p) and�′ ∈ E(u, p′ ). First, we show that for the pairwise minimum
p ∈ E(u). For each firm f ∈ F , there is by Lemma 4 applied to �f ∈ Df (p) and �′

f ∈
Df (p′ ) a�f ∈Df (p) with

�→f ⊆ {
ω ∈�→f : p′

ω ≥ pω
} ∪ {

ω ∈�′
→f : pω >p′

ω

}
, (7)
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{
ω ∈�f→ : p′

ω ≥ pω
} ∪ {

ω ∈�′
f→ : pω >p′

ω

} ⊆�f→ (8)

and

|�→f | − |�f→| ≥ |�→f | − |�f→|. (9)

Taking the union over all firms of (7) and (8), we have⋃
f∈F

�→f ⊆ {
ω ∈� : p′

ω ≥ pω
} ∪ {

ω ∈�′ : pω >p′
ω

} ⊆
⋃
f∈F

�f→, (10)

and summing inequality (9) over all firms∑
f∈F

(|�→f | − |�f→|) ≥
∑
f∈F

(|�→f | − |�f→|) = 0. (11)

This implies
∑
f∈F |�→f | ≥ ∑

f∈F |�f→|, which together with (10) implies
⋃
f∈F �f→ =⋃

f∈F �→f =: � and [�, p] is an equilibrium. Moreover, since
⋃
f∈F �f→ = ⋃

f∈F �→f ,
the left-hand side of inequality (11) is also equal to 0 and the inequality holds with equal-
ity. This implies that for each f ∈ F , inequality (9) holds with equality as well and we
have

|�→f | − |�f→| = |�→f | − |�f→|.
A completely dual argument shows that there is a �̄ ∈ E(u, p̄) with

|�→f | − |�f→| = |�̄→f | − |�̄f→|.

The same argument as before with �̄ in the role of �, and p̄ in the role of p establishes
(note that the pairwise minimum of p̄ and p′ is again p′) that there is a �⊆� such that
[�, p′] is an equilibrium, and for each f ∈ F we have

|�→f | − |�f→| = |�→f | − |�f→|.

Since

|�→f | − |�f→| = |�→f | − |�f→|,
this concludes the proof.

Proof of Theorem 2

Proof. Following an idea of Kelso and Crawford (1982), we can characterize competi-
tive equilibria by a zero-surplus condition. Define a surplus function Z : R� →R by

Z(p) := min
�⊆�

max
f∈F

max
�′⊆�f

uf
(
�′, p

) − uf (�, p).

By definition, for each f ∈ F , we have Df (p) = argmax�′⊆�f u
f (�′, p). Thus, for each

arrangement [�, p], we have maxf∈F max�′⊆�f u
f (�′, p) − uf (�, p) ≥ 0 with equality if
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and only if � ∈ E(u, p). Thus, p ∈ E(u) if and only if Z(p) = 0. The surplus function
is continuous, as uf (�′, p) − uf (�, p) is continuous in p and the maximum, respec-
tively, minimum of finitely many continuous functions is continuous. Thus, E(u) is a
closed set, as it is the preimage of the closed set {0} under the continuous function Z.

By BWP, there is a K > 0 such that for all f ∈ F , p ∈ R�f and � ∈Df (p) if ω ∈�→f ,
then pω < K and if ω ∈ �f→, then pω > −K. Let E ′(u) := E(u) ∩ [−K,K]�. By BWP,
for each p ∈ E(u), the vector p′ ∈ R� defined by p′

ω = pω for −K < pω < K, p′
ω = K

for pω > K, and p′
ω = −K for pω < −K is an equilibrium price vector p′ ∈ E ′(u) with

vf (p′ ) = vf (p) for each f ∈ F . By Corollary 2 in Fleiner et al. (2019) (as indicated in Foot-
note 10, under BWP the choice-language version of weak FS used by Fleiner et al. (2019)
is equivalent to the demand-language version), E(u) is nonempty, and hence E ′(u) is
nonempty. As E(u) is closed, E ′(u) is compact. From Theorem 1, and observing that the
pairwise maximum (minimum) of two vectors in [−K,K]� is an element of [−K,K]�,
we conclude that E ′(u) is a nonempty, compact sublattice of R�. This implies that E ′(u)
has a maximal element p̄ and a minimal element p. By monotonicity and the previ-

ous observation that for each p ∈ E(u), there is a p′ ∈ E ′(u) with vf (p′ ) = vf (p) for each
f ∈ F , for each terminal seller f and p ∈ E(u) we have vf (p̄) ≥ vf (p). Thus, p̄ is a ter-
minal seller optimal equilibrium. Similarly, p is a terminal buyer optimal equilibrium p

under u.

Proof of Theorem 3

Proof. Let F ′ ⊆ F be the set of terminal buyers. Let U =×f∈FUf where for f ∈ F ′ the
set Uf is the set of unit demand and BWP utility functions and for each f ∈ F \ F ′ the set
Uf is the set of BWP, FS, LAD, and LAD utility functions. In the following for ũf , ûf ∈ Uf ,

etc. we denote the induced demand by D̃f , D̂f , etc.
Let M : U → A be a buyer-optimal mechanism. First, we establish that M is immune

to truncation strategies.

Claim 3. Let f ∈ F ′. Let u, ũ ∈ U with ũ−f = u−f , and let [�, p] be a buyer-optimal equi-
librium under u. If �f �= ∅, ũf (ω, ·) = uf (ω, ·) for each ω ∈ �→f and ũf (∅) > ũf (�, p),
then for each equilibrium [�̃, p̃] under ũ, we have �̃f = ∅.

Proof. Suppose not. Then �̃f �= ∅. Let �̃f = {ω̃}. Note that also {ω̃} ∈ Df (p̃). Thus,
[�̃, p̃] is an equilibrium under u. But since

uf (ω̃, p̃ω̃ ) = ũf (ω̃, p̃ω̃ ) ≥ ũf (∅)> ũf (�, p) = uf (�, p)

this contradicts the buyer optimality of [�, p].

Second, we establish that M is immune to certain strategies where a single termi-
nal buyer changes the utility function for one trade so that it becomes more attractive
relative to the other trades. The claim can be interpreted as an adaption of Lemma 1
of Hatfield et al. (2009) to the setting with transfers.
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Claim 4. Let f ∈ F ′. Let u, û ∈ U with û−f = u−f such that there is a ω̂ ∈ �→f with
ûf (ω, ·) = uf (ω, ·) for ω �= ω̂ and ûf (∅) = uf (∅). Let [�̄, p̄] be a buyer-optimal equilib-
rium under u. If for all pω̂ ∈R, we have

uf (ω̂, pω̂ ) ≤ uf (�̄, p̄) ⇒ ûf (ω̂, pω̂ ) = uf (ω̂, pω̂ ),

uf (ω̂, pω̂ ) ≥ uf (�̄, p̄) ⇒ ûf (ω̂, pω̂ ) ≥ uf (ω̂, pω̂ ),

then [�̄, p̄] is a buyer-optimal equilibrium under û.

Proof. Let [�̂, p̂] be a buyer-optimal equilibrium under û. If uf (ω̂, p̂ω̂ ) ≤ uf (�̄, p̄),
then we have Df (p̂) = D̂f (p̂) and [�̂, p̂] is an equilibrium under u. Moreover, ûf (ω̂,
p̄ω̂ ) = uf (ω̂, p̄ω̂ ) and, therefore, [�̄, p̄] is an equilibrium under û. By buyer-optimality
of [�̄, p̄] under u, we have ûf

′
(�̂, p̂) = uf ′

(�̂, p̂) ≤ uf ′
(�̄, p̄) = ûf ′

(�̄, p̄) for each f ′ ∈ F ′.
Thus, [�̄, p̄] is a buyer-optimal equilibrium under û. It remains to consider the case that
uf (ω̂, p̂ω̂ )> uf (�̄, p̄). In this case, consider the two subcases that �̂f = {ω̂} or �̂f �= {ω̂}.

If �̂f �= {ω̂}, we can show that [�̂, p̂] is an equilibrium under u. Suppose not. Then,

as �̂f /∈ Df (p̂) and uf (ω, p̂ω ) = ûf (ω, p̂ω ) for ω �= ω̂, we have uf (ω̂, p̂ω̂ ) > uf (�̂, p̂).

Thus, ûf (ω̂, p̂ω̂ ) ≥ uf (ω̂, p̂ω̂ ) > uf (�̂, p̂) = ûf (�̂, p̂) and, therefore, �̂f /∈ D̂f (p̂). This

contradicts the assumption that [�̂, p̂] is an equilibrium under û. Thus, [�̂, p̂] is an
equilibrium under u and by the same reasoning as above, [�̄, p̄] is a buyer-optimal equi-
librium under û.

If �̂f = {ω̂}, consider the utility function ũf obtained from uf by truncating as fol-
lows: ũf (ω, ·) = uf (ω, ·) for all ω ∈�→f and uf (�̄, p̄)< ũf (∅)< uf (ω̂, p̂ω̂ ). By Claim 3,
for each equilibrium [�, p] under ũ := (ũf , u−f ) we have�f = ∅. Define the utility func-

tion ũf∗ by ũf∗(ω̂, ·) = ũf (ω̂, ·) = uf (ω̂, ·), by ũf∗(ω, ·) = −∞ for each ω �= ω̂, and ũf∗(∅) =
ũf (∅). As for each equilibrium [�, p] under ũ, we have�f = ∅, we have E(ũ) ⊆ E(ũ∗ ) for

ũ∗ := (ũ
f
∗ , u−f ), and in particular, there is an equilibrium [�̃, p̃] under ũ∗ with �̃f = ∅.

Observe however that ũf∗(ω̂, p̂ω̂ ) = ũf (ω̂, p̂ω̂ ) = u(ω̂, p̂ω̂ ) > ũ
f
∗(∅). Thus, D̃f∗(p̂) = {{ω̂}}

and [�̂, p̂] is an equilibrium under ũ∗ with ũf∗(�̂, p̂)> ũ
f
∗(∅). This contradicts the rural

hospitals theorem (the second part of Theorem 1).

With the claim, we can prove the result. Suppose there are profiles u, ũ ∈ U such that
ũ−F ′ = u−F ′

and for each f ∈ F ′, we have uf (M(ũ))> uf (M(u)). Let M(u) = (�̄, p̄) and
M(ũ) = (�̃, p̃).

We define for each f ∈ F ′, a ûf ∈ Uf as follows: Note that �̃f �= ∅ as uf (�̃, p̃) >
uf (�̄, p̄) ≥ uf (∅). Let ω̃ ∈ �̃ be the unique trade in �̃ such that b(ω̃) = f . We let
ûf (ω, ·) = uf (ω, ·) forω �= ω̃ and we let ûf (∅) = uf (∅). To construct ûf (ω̃, ·), we proceed
as follows: Define ûf (ω̃, pω̃ ) := uf (ω̃, pω̃ ) for each pω̃ ∈ R with uf (ω̃, pω̃ ) ≤ uf (�̄, p̄).
Define

ûf (ω̃, p̃ω̃ ) := max
ω∈�→f

uf (ω, p̃ω ).

Note that

ûf (ω̃, p̃ω̃ ) ≥ uf (ω̃, p̃ω̃ )> uf (�̄, p̄) = ûf (�̄, p̄).
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For prices pω̃ �= p̃ω̃ with uf (ω̃, pω̃ ) ≥ uf (�̄, p̄), we can choose any continuous and
monotonic extension such that ûf (ω̃, pω̃ ) ≥ uf (ω̃, pω̃ ). By Claim 4, [�̄, p̄] is a buyer-
optimal equilibrium for (ûf , u−f ). Iterating for all f ∈ F ′, [�̄, p̄] is a buyer-optimal equi-
librium under û := (ûF

′
, u−F ). Note however that by construction of û, for each f ∈ F ′,

we have �̃f ∈ D̂f (p̃). Thus, [�̃, p̃] is an equilibrium under û with ûf (�̃, p̃) > ûf (�̄, p̄)
for each f ∈ F ′. This contradicts the buyer-optimality of [�̄, p̄] under (ûF

′
, u−F ).

Appendix C: Proofs for Section 4

Proof of Lemma 5

Proof. First, we show the result for nonnegative prices. Let p, p′ ∈ R
�f
+ . Define q, q′ ∈

RX+ by

qx :=

⎧⎪⎨
⎪⎩

min
ω∈�→f :x(ω)=x

pω, for x /∈Xf ,

max
ω∈�f→:x(ω)=x

pω, for x ∈Xf ,
q′
x :=

⎧⎪⎨
⎪⎩

min
ω∈�→f :x(ω)=x

p′
ω, for x /∈Xf ,

max
ω∈�f→:x(ω)=x

p′
ω, for x ∈Xf .

By construction, we have

Df (p) = {
�⊆�f :Xf (�) ∈ D̃f (q), pω = qx(ω) forω ∈�}

,

Df
(
p′) = {

�′ ⊆�f :Xf
(
�′) ∈ D̃f (q′), p′

ω = q′
x(ω) forω ∈�′}.

If pω = p′
ω for ω ∈ �f→ and pω ≤ p′

ω for ω ∈ �→f , then for �′ ∈Df (p′ ) there is, by
gross substitutability aY ∈ D̃f (q) with {x ∈ Y : q′

x = qx} ⊆Xf (�′ ). Thus, if x ∈ Y \Xf and
q′
x = qx, then x ∈ Xf (�′ ), and if x ∈ Xf \Xf (�′ ), then as q′

x = qx, we have x ∈ Xf \ Y .
Therefore, there is a� ∈Df (p) with{

ω ∈�→f : p′
ω = q′

x(ω) = qx(ω) = pω
} ⊆�′

→f , �′
f→ ⊆�f→.

Similarly, by the law of aggregate demand, there is a Y ∈ D̃f (q) such that |Y | ≥ |Xf (�′ )|.
Then there is a� ∈Df (p) with Y =Xf (�). But then

|�→f | − |�f→| = |Y \Xf | − |Xf \Y | = |Y | − |Xf |
≥ ∣∣Xf (�′)∣∣ − |Xf | =

∣∣Xf (�′) \Xf
∣∣ − ∣∣Xf \Xf

(
�′)∣∣ = ∣∣�′

→f

∣∣ − |�f→|.

An analogous argument shows thatDf satisfies the second part of the SSS condition,
the second part of the CSC condition, and LAS.

Next, we establish FS and LAD/LAS on R�f . Let p, p′ ∈ R�f , and define q, q′ ∈ RX

as previously. Moreover, define p0 := (max{pω, 0}ω∈� ) ∈ R�f and (p′ )0 := (max{p′
ω,

0}ω∈� ) ∈ R�f . By construction of uf and the assumption that ũf (Y , t ) ≤ ũf (Y ′, t ) for
Y ⊆ Y ′, we have

Df (p) = {
� ∈Df (p0) : {x ∈X : qx < 0} ⊆Xf (�), pω = qx(ω) forω ∈�}

,

Df
(
p′) = {

�′ ∈Df ((p′)0)
:
{
x ∈X : q′

x < 0
} ⊆Xf

(
�′), p′

ω = q′
x(ω) forω ∈�′}.
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In particular, for �′ ∈Df (p′ ) we have �′ ∈Df ((p′ )0 ) and by FS for nonnegative prices,
there is a �̃ ∈Df (p0 ) with

{
ω ∈ �̃→f :

(
p′)0

ω
= p0

ω

} ⊆�′
→f , �′

f→ ⊆ �̃f→.

We can find a � ∈ Df (p), such that {ω ∈ �̃ : qx(ω) = q′
x(ω)} ⊆ �. Now let ω ∈ �→f and

p′
ω = pω. Then q′

x(ω) = p′
ω = pω = qx(ω) andω ∈ �̃. Moreover, (p′ )0

ω = p0
ω and, therefore,

ω ∈�′
→f . Similarly, for all ω ∈�f→ we have p′

ω = pω. If pω = p′
ω < q

′
x(ω) = qx(ω), then

ω /∈� andω /∈�′. Ifpω = p′
ω = q′

x(ω) = qx(ω), thenω /∈�→f impliesω /∈ �̃→f . Moreover,
(p′ )0

ω = p0
ω and, therefore, ω /∈�′

→f .

To establish LAD, let �′ ∈Df (p′ ). Since �′ ∈Df ((p′ )0 ) and by LAD for nonnegative
price vectors, there is a �̃ ∈Df (p0 ), and hence a � ∈Df (p) with Xf (�) =Xf (�̃) ∪ {x ∈
X : qx < 0} such that

|�→f | − |�f→| = ∣∣Xf (�) \Xf
∣∣ − ∣∣Xf \Xf (�)

∣∣ ≥ |�̃→f | − |�̃f→| ≥ ∣∣�′
→f

∣∣ − ∣∣�′
f→

∣∣.
An analogous argument shows thatDf satisfies the second part of the SSS condition,

the second part of the CSC condition, and LAS.

Proof of Corollary 3

Proof. For the first part, consider price vectors in the induces trading network q, q′ ∈
R�+ defined by qω := px(ω) and q′

ω := p′
x(ω) for each ω ∈ �. By Proposition 2, q and q′

are equilibrium prices in the induced trading network. By Lemma 5, utility functions in
the induced trading network satisfy FS, LAD, and LAS. Thus, by Theorem 1, price vectors
q̄, q ∈R�+ with

q̄ω = max
{
qω, q′

ω

}
, q

ω
= min

{
qω, q′

ω

}
,

are equilibrium prices in the trading network. By construction of q and q′, for each
ω,ω′ ∈� with x(ω) = x(ω′ ) we have qω = px(ω) = qω′ and q′

ω = p′
x(ω) = q′

ω′ . Therefore,

p̄x = max
ω∈�,x=x(ω)

q̄ω and p
x

= max
ω∈�,x=x(ω)

q
ω

,

and, by Proposition 2, p̄ and p are equilibrium price vectors.
For the second part, define q and q′ as before and let

� := {
ω ∈� : x(ω) ∈ Yb(ω) ∩Xs(ω)

}
.

As shown in the proof of Proposition 2, [�, q] is an equilibrium of the trading network.
By the second part of Theorem 1, there is a�′ ⊆� such that [�′, q′] is an equilibrium of
the trading network with

|�→f | − |�f→| = ∣∣�′
→f

∣∣ − ∣∣�′
f→

∣∣.
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Let Y ′ = (Y ′
f )f∈F with Y ′

f :=Xf (�′ ). As shown in the proof of Proposition 2, [Y ′, p′]
is an equilibrium of the exchange economy. Moreover,

|Yf | = |Yf \Xf | − |Xf \Yf | + |Xf | = |�→f | − |�f→| + |Xf |
= ∣∣�′

→f

∣∣ − ∣∣�′
f→

∣∣ + |Xf | =
∣∣Y ′
f \Xf

∣∣ − ∣∣Xf \Y ′
f

∣∣ + |Xf | =
∣∣Y ′
f

∣∣.
For the third part, we first show that the set of equilibrium price vectors in the in-

duced trading network, E(u) is compact. The same argument as in the proof of Theo-
rem 2 establishes that the surplus function Z : R�+ → R is continuous, and hence E(u) ⊆
R�+ is closed. To show that E(u) is bounded, note that by the full range assumption there
exists a K > 0 such that for each f ∈ F and Y ⊆X we have ũf (Y , −K) < ũf (Xf , 0). For
each equilibrium [�, p] in the trading network and each f ∈ F , we have

uf (�, p) = ũf (Xf (�), pf (�)
) ≥ ũf (Xf , 0) = uf (∅),

and, therefore, by monotonicity of utility in transfers pf (�) > −K. Moreover,∑
f∈F pf (�) = 0. Thus, pf (�) < |F| · K for each f ∈ F . By the full range assumption,

there is a K̃ > 0 such that for each f ∈ F and Y ⊆X , we have ũf (∅, K̃) > ũf (Y , |F| ·K).
Note that for each equilibrium [�, p] of the trading network, each f ∈ F and each
�′ ⊆�f withXf (�′ ) = ∅, we have

ũf
(

∅,
∑
ω∈�′

pω

)
= uf

(
�′, p

) ≤ uf (�, p) = ũf (Xf (�), pf (�)
)

< ũf
(
Xf (�), |F | ·K)

< ũf (∅, K̃).

Thus,
∑
ω∈�′ pω < K̃ and, as pω ≥ 0 for each ω ∈ �, we have 0 ≤ pω < K̃ for each ω ∈

�′. Now note that for each ω ∈ �, there exists a �′ ⊆ �s(ω) with X(�′ ) = ∅ and ω ∈�′.
Thus, for each ω ∈ � we have 0 ≤ pω < K̃. Thus, E(u) is compact and by Proposition 2
nonempty. Moreover, by Theorem 1, E(u) is a sublattice of R�. Since E(u) is a nonempty,
compact sublattice of R�, there exist p̄, p ∈ E(u) such that for each p ∈ E(u) we have

p
ω

≤ pω ≤ p̄ω for each ω ∈ �. By the first part of Proposition 2, the vectors q, q̄ ∈ RX+
defined by

q
x

:= max
ω∈�,x=x(ω)

p
ω

, q̄x := max
ω∈�,x=x(ω)

p̄ω

are equilibrium price vectors in the exchange economy. Now let q ∈ RX+ be an equi-
librium price vector in the exchange economy. By the second part of Proposition 2, the
price vectorp ∈R�+ defined bypω := px(ω) for eachω ∈�, is in E(u). Let x ∈X . Letω ∈�
with x= x(ω) and q

x
= p

ω
. Then q

x
= p

ω
≤ pω = qx. Similarly, let ω ∈� with x= x(ω)

and q̄x = p̄ω. Then q̄x = p̄ω ≥ pω = px. Thus, q̄, q are the desired price vectors.
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