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Abstract

Dynamic policy games feature a wide range of equilibria. This paper provides

a methodology for obtaining robust predictions. We focus on a model of sovereign

debt, although our methodology applies to other settings, such as models of mone-

tary policy or capital taxation. Our main result is a characterization of distributions

over outcomes that are consistent with a subgame perfect equilibrium conditional on

the observed history. We illustrate our main result by computing, conditional on an

observed history, bounds across all equilibria on: the maximum probability of a crisis,

means, variances, and covariances over debt prices.
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1 Introduction

Following Kydland and Prescott (1977) and Calvo (1978), the literature on optimal gov-
ernment policy without commitment formalized interactions between a large player (gov-
ernment) and a fringe of small players (households, lenders), dynamic policy games, by
building on the tools developed in the work of Abreu (1988) and Abreu et al. (1990) in the
literature of repeated games. This agenda has studied interesting applications for capital
taxation (e.g., Chari and Kehoe, 1990, Phelan and Stacchetti, 2001, Farhi et al., 2012), mon-
etary policy (e.g., Chang, 1998, Sleet, 2001, Waki et al. 2018) and sovereign debt (e.g., Eaton
and Gersovitz, 1981, Dovis, 2019) and helped us to understand the distortions introduced
by lack of commitment and the extent to which governments can rely on reputation to
achieve better outcomes.

One of the challenges in studying dynamic policy games is that these settings typically
feature a wide range of equilibria with different predictions over observable outcomes.
For example, there are “good” equilibria where the government may achieve, or come
close to achieving, the optimum with commitment, while there are “bad” equilibria where
this is far from the case, and the government may be playing the repeated static best
response. When studying dynamic policy games, which of these should we expect to be
played? Can we make general predictions given this pervasive equilibrium multiplicity?
One approach is imposing refinements, such as various renegotiation-proof notions, that
either select an equilibrium or significantly reduce the set of equilibria. Unfortunately, no
general consensus has emerged on the appropriate refinements.

Our goal is to overcome the challenge multiplicity raises by providing predictions
in dynamic policy games that hold across all equilibria; following the terminology of
Bergemann and Morris (2013), robust predictions. The approach we offer involves making
predictions for future play that depend on past, observed play. The key idea is that even
when little can be said about the unconditional path of play, quite a bit can be said once
we condition on past observations. To the best of our knowledge, this simple idea has
not been exploited as a way of deriving robust implications from the theory. Formally,
we introduce and study a concept which we term "equilibrium consistent outcomes":
outcomes of the game, after an observed history, that are consistent with some subgame
perfect equilibria (SPE) that on its path could have generated the observed history.

Although the notions we propose and the results we derive are general and apply to a
large class of dynamic policy games, for concreteness we first develop them for a specific
application, using a model of sovereign debt along the lines of Eaton and Gersovitz (1981).
In the model, a small open economy faces a stochastic stream of income. To smooth
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consumption, a benevolent government can borrow from international debt markets, but
lacks commitment to repay. If it defaults on its debt, the only punishment is permanent
exclusion from financial markets; it can never borrow again. There are two features of
this model that make it appealing to our work. First, this model has been widely adopted
and is a workhorse in international economics. Second, this policy game can feature
wide equilibrium multiplicity. On one end of the spectrum, in the worst equilibrium,
the government is in autarky, facing a price of zero for debt issuance, and consuming its
income. Meanwhile, in the best equilibrium, the government smooths consumption, and
there is no room for self-fulfilling crises.

Our main result, Proposition 1, following the classic approach to study correlated
equilibrium first proposed by Aumann (1987),1 characterizes probability distributions
over outcomes, what we term as equilibrium consistent distributions. Even though in the
model any equilibrium price can be realized after a particular equilibrium history, we show
that there are bounds on the probability distributions over these prices. For example, if
the country just repaid a high amount of debt, or did so under harsh economic conditions
(e.g., when output was low), then low price realizations are less likely. The choice to repay
under these conditions reveals an optimistic outlook for bond prices that narrows down
the set of possible equilibria for the continuation game. This optimistic outlook is the
expression of a dynamic revealed preference argument. What the government has left on the
table as a consequence of its past decisions, reveals its expectations over future play. In
equilibrium, these expectations must be correct, and hence they impose restrictions over
expected future outcomes, which form the basis of our predictions.

Building on the characterization of equilibrium consistent distributions, we next ex-
plore the predictions on all moments of observables that hold across all equilibria. In
particular, we focus on debt prices. First, in Proposition 2, we obtain bounds on the max-
imum probability of low prices; for example, a rollover debt crises (i.e., a price realization
of zero). Due to equilibrium multiplicity, rollover debt crises may occur on the equilib-
rium path for any realization of the fundamentals. However, the probability of a rollover
crisis, after a certain history, may be constrained. We derive these constraints, showing
that rollover crises are less likely if the borrower has recently made sacrifices to repay.
Second, we use our characterization to obtain bounds on moments of distributions over
outcomes. In particular, in Proposition 3, we characterize bounds over the expected value
of debt prices given a history for any equilibrium. Third, in Proposition 4, as in Berge-
mann et al. (2015), we characterize bounds on variances that hold across all equilibria. In

1More recently, this approach has been also adopted by the literature on information design. See Berge-
mann and Morris (2018) for a review.
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addition, as a Corollary of these three propositions, we propose a simple linear program
that characterizes all non-centered moments over observables. Finally, in Proposition 5,
we extend Proposition 1 for the case in which government policies are state contingent.
The importance of this case is that it allows us to study the joint behavior of government
policies, prices, and the driving forces of the model. For example, we can obtain bounds
on the maximal variance subject to a constraint on the co-variance of capital flows and
output.2

In the last section of the paper, Section 4, we show how our characterization of equi-
librium consistent outcomes extends to a more general class of dynamic policy games. In
particular, we provide a general model of credible government policies, which follows
the seminal contribution of Stokey (1991). The key features that the general setup tries
to capture are lack of commitment, a time inconsistency problem, an infinite horizon that
creates reputation concerns in the sense of trigger-strategy equilibria, and short run play-
ers that form expectations regarding government policies. After laying out the general
model, we show how the model of sovereign debt as in Eaton and Gersovitz (1981) and
the New Keynesian model as in Galí (2015) fit in this setup and we then discuss how
the main results of the paper, Proposition 1, extends into this general environment. In
addtion, in Section 4 we also study a variation of the model in which not all defaults
are punished with permanent reversion to autarky, in the spirit of Grossman and Huyck
(1989) and more recently in Dovis (2019). In particular, we discuss the extent that the
predictions of our paper are robust in the case in which not all defaults are punished with
permanent autarky.

Example and Main Results. We illustrate our main results in a simple two-period
example. Figure 1 depicts a two player game in which the government has the choice
of defaulting (choosing x = Default) and receiving a sure payoff of u, or repaying debt
(choosing x =Repay), and hence choosing to play a simultaneous move game G with
the investors. If the government chooses x = Repay, a public random variable ζ ∼
Uniform [0, 1] (a sunspot variable) is observed by both parties before the subgame to be
played between the government and the investors. The choices for the government (debt)
and the investors (debt prices) in the coordination game are (bh, bl) ∈ R2 and (qh, ql) ∈ R2

respectively. The parametric assumptions are that uh, ul, a, b > 0 and u ∈ (ul, uh).3

Equilibrium. The subgame following x = ”Repay" has two equilibria in pure strategies:

2We thank an anonymous referee for suggesting this extension.
3The game that we study in this example is slightly different to the one that we study in Section 2.

The coordination game in the second step of the game depicted in Figure 1 tries to illustrate the inherent
coordination over continuation play at the heart of repeated games, which is also the cause for the typical
equilibrium multiplicity present in these games.
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Repay Default

bh bl
qh uh, a 0, 0
ql 0, 0 ul , b

(u, v)

ζ ∼ U(0, 1)

Government

Investors

Figure 1: two period Example

(bl, ql) and (bh, qh), which we will call the low and high equilibria. We can summarize any
equilibrium outcome as a pair (x, Q), where x ∈ {Repay, Default} is the government’s
decision whether or not to play the coordination game or not, and Q = (Ql, Qh) is a
distribution over the low and high equilibrium; i.e., Qk = Pr (ζ : (bk, qk) is played) for k ∈
{l, h}, and Ql + Qh = 1. This class is a subset of the correlated equilibrium distributions
of Aumann (1987) for this static subgame.

Equilibrium Consistent Distributions. Our main result, Proposition 1, characterizes dis-
tributions over observables after observing a equilibrium history of play. Lets delve into
the intuition of this result. Suppose that we (as outsiders) observe that the government
has repaid debt. Both the high and low equilibrium are Nash equilibria of the static game.
However, not all distributions over the high and low equilibrium could have been gen-
erated by a SPE. Thus, the fact that some subgame perfect equilibria generated the history will
place bounds over outcomes. For example, there is no equilibrium that on its path generates
x = Repay and the government and the investors coordinate in the low equilibrium with
probability one. The reason is that x = Repay is not optimal for the government if they
expect the low equilibrium with probability one.

Following the same logic, we can dig deeper. In particular, the only equilibrium dis-
tributions consistent with x = Repay are those that would have made it optimal for the
government to plan x = Repay in the first node. Those distributions Ql ∈ [0, 1] are
characterized by the following condition:

uh(1 − Ql) + ulQl ≥ u. (1.1)
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Equation (1.1) in fact defines the set of all possible distributions over outcomes that are
equilibrium consistent with x = Repay. This sequential optimality of choices, is the main
insight of Proposition 1, which is the main result of the paper.

Aided by equation (1.1), we can obtain bounds over moments of distributions. Ob-
taining these bounds is not computationally costly because they solve a linear program.

Bounding Moments: Probability of Crisis. What is the maximum probability of the low
equilibrium after observing x = Repay? It is equal to the maximum Ql, such that (1.1)
holds. This value is equal to Ql := (uh − u) / (uh − ul) ∈ (0, 1). This bound is intuitive.
As the utility of the good equilibrium uh increases, Ql increases. As the utility of default
u increases, this probability decreases. We characterize this bound for the general model
in Proposition 2.

Expectations. We also can obtain price expectations. We denote by EQ (q) the expected
value of the price q for any equilibrium consistent outcome (x = In, Q). The upper bound,
the maximum expectation, is the one that corresponds to the largest probability of the
high equilibrium. This probability distribution sets Ql equal to zero, and has an associ-
ated expectation equal to qh. The lowest expectation solves the following program

EQ (q) = min
Ql

Qlql + (1 − Ql)qh

subject to (1.1). The solution of this program, and the fact that the largest expectation is qh,
defines a set of expected prices equal to

[
EQ (q) , qh

]
, with EQ (q) =

(
1 − Ql

)
qh + Qlql >

ql. We use the same argument in Proposition 3, where we obtain precise bounds over
expectations for the model of sovereign borrowing.

Variances. Once we know the set of all possible expected values of q across equilib-
ria, we also can bound second moments. In particular, we can map distributions over
prices q to pairs of expectations and variances (E(q), V (q)), where V(q) is the vari-
ance of q under some equilibrium distribution Q. In particular, given an expected price
µ = E (q) ∈

[
q, qh

]
, the maximum possible variance is

(
1 − Qµ

l

)
q2

h + Qµ
l q2

l − µ2, where

Qµ
l := (µ − ql) / (qh − ql). Again, this is the solution to a linear program, in which the

objective is the variance, and the constraint is, (1.1), and the fact that the mean of the
distribution is equal to µ. In Proposition 4, we show that for the model of sovereign bor-
rowing, the upper bound on variance always solves a linear programming problem as
well, and actually can always be implemented by a distribution with only two prices in
its support (even if q is a continuum).

Equilibrium Consistency vs. Forward Induction. It is important to distinguish equilibrium
consistency from Forward Induction. The game depicted in Figure 1 is also useful for that.
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For concreteness, suppose that there is no sunspot (i.e. ζ, is constant). In this game, the set
of subgame perfect equilibria with forward induction has only one equilibrium in pure
strategies (x = Repay, (bh, qh)). The subgame perfect equilibrium (x = Default, (bl, ql))

does not survive forward induction. But, because it is a subgame perfect equilibrium, it
is equilibrium consistent. This example illustrates the main difference between the two
solution concepts. Forward induction is a refinement on the set of equilibria; i.e., it shrinks
the set of subgame perfect equilibria. Equilibrium consistency, on the other hand, does
not shrink the set of equilibria, but rather introduces restrictions on observables.

Literature Review. Our paper relates to several strands of the literature. First, to the
literature on credible government policies. The seminal papers on optimal policy with-
out commitment are Kydland and Prescott (1977) and Calvo (1978).4 We believe that our
paper is closely related to Chari and Kehoe (1990), Stokey (1991), and Atkeson (1991).
The first two papers adapt the techniques developed in Abreu (1988) to characterize com-
pletely the set of equilibria in dynamic policy games. Atkeson (1991) extends the tech-
niques in Abreu et al. (1990) by allowing for a stochastic public state variable, in the
context of sovereign lending, finding properties of the best equilibrium. We study a re-
lated, yet different question. Instead of characterizing equilibria at the ex-ante stage of the
game in terms of sequences of observables, we provide a recursive characterization of the
set of continuation equilibria given an equilibrium history of play. This characterization
of continuation equilibria is the basis for obtaining predictions that are robust across all
equilibria. Our central assumption is that an equilibrium generates the history of play,
without appealing to any equilibrium refinement.

Second, to the literature on robust predictions. The papers that are more closely related
to our work are Angeletos and Pavan (2013), Bergemann and Morris (2013), and Berge-
mann et al. (2015). The first paper, Angeletos and Pavan (2013), obtains predictions that
hold across every equilibrium in a global game with an endogenous information struc-
ture. The second paper, Bergemann and Morris (2013), in a class of coordination games
with normal public and private signals about a payoff-relevant state variable, obtains re-
strictions over moments of observable endogenous variables that hold across every possi-
ble information structure. In a related paper, Bergemann et al. (2015) characterize bounds
on output volatility across all potential information structures in a static model where
agents face both idiosyncratic and aggregate shocks to productivity.

4Applications range from capital taxation as in Phelan and Stacchetti (2001); monetary policy as in Chang
(1998) and Waki et al. (2018); and sovereign debt as in Atkeson (1991), Arellano (2008), Aguiar and Gopinath
(2006), and more recently Dovis (2019).
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Our paper contributes to this literature by obtaining predictions that hold across all
equilibria in a dynamic game. Differently from Bergemann and Morris (2013), in our en-
vironment, there is no payoff relevant private information. However, this simplification
allows us to focus on a class of dynamic policy games with exogenous and endogenous
state variables. In the application we focus on this paper, we obtain restrictions over the
distribution of equilibrium debt prices, for any possible process of sunspots (potentially
non-stationary), by exploiting the dynamic implications that sequential rationality has
on the distribution of observables. These implications are the basis to obtain bounds on
first and second order conditional moments, across all possible sunspot processes, or fol-
lowing the terminology in Bergemann and Morris (2018), across all possible information
structures.

The literature of information design in dynamic games, where agents may have access
to private information about other players actions, was first formalized by Myerson (1986)
and Forges (1986), extending the concept of correlated equilibrium of Aumann (1987) to
extensive form games. As reviewed in Bergemann and Morris (2018), one can view the
problem of information design from two alternative points of view. In the first one, the
“literal interpretation”, an information designer sends signals to other parties, to influ-
ence their behavior in order to achieve some objective. A large literature has grown after
the contribution of Kamenica and Gentzkow (2011); see for example, on static environ-
ments, Gentzkow and Kamenica (2014), among others. In the second one, the “metaphor-
ical interpretation”, the designer is an abstraction that chooses among different informa-
tion structures to achieve some objective. For example, in Bergemann et al. (2015), the
“objective” of the designer is to maximize output volatility. The literature on robust pre-
dictions falls in this category; see for example Bergemann and Morris (2013). Our paper
belongs to the second interpretation.

Chahrour and Ulbricht (2020) use this approach while extending their results to dy-
namic linear macroeconomic environments, where agents have access to arbitrary dy-
namic information structures about fundamental shocks and prices. The authors also
obtain moment conditions on “wedges” that are akin to the results in Bergemann and
Morris (2013) and ours as well, which allows them to obtain testable implications. In our
paper, we instead focus on pure strategic uncertainty rather than payoff uncertainty. Also
related is De Oliveira and Lamba (2019), where the authors obtain testable implications
of Bayesian rationality over a single agent choosing sequentially, but where agents may
have access to an arbitrary dynamic information structures that could rationalize their
behavior. These bounds provide testable implications of the model, even in the presence
of both equilibrium multiplicity and uncertainty of the information structure agents have
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when making their decisions.
Third, sections 2 and 3 of this paper study robust predictions in a dynamic policy game

that builds on Eaton and Gersovitz (1981). This framework, and variations of it, have
been extensively used to study sovereign borrowing following the initial contributions
of Aguiar and Gopinath (2006) and Arellano (2008). The focus is usually on Markov
equilibria on payoff relevant state variables and hence defaults can only be a consequence
of bad fundamentals. Our paper shares with this strand of the literature the focus on a
model along the lines of Eaton and Gersovitz (1981), but rather than characterizing a
particular equilibrium, we study predictions across all equilibria.

Outline. The paper is structured as follows. We introduce the model in Section 2. In
Section 3 we discuss the characterization of equilibrium consistent outcomes. In Section
4, we present a general dynamic policy game and state the main results of the paper in
this more general setup. We conclude in Section 5.

2 A Dynamic Policy Game

Our model of sovereign debt follows Eaton and Gersovitz (1981). Time is discrete and
denoted by t ∈ {0, 1, 2, ....}. A small open economy receives a stochastic stream of income
denoted by yt. Income follows a Markov process with c.d.f. denoted by F(yt+1 | yt),
with finite moments. The c.d.f. F(yt+1 | yt) is non-atomic. There is a public random-
ization device, ζt ∼ U[0, 1], i.id. over time. The government is benevolent and seeks to
maximize the utility of the households. It does so by selling bonds, denoted by bt, in the
international bond market. The household evaluates consumption streams according to:

E

[
∞

∑
t=0

βtu(ct)

]
,

where β < 1 and u is increasing, strictly concave and bounded below.5 The sovereign
government issues short term debt at a price qt. The budget constraint is:

ct = yt − bt + qtbt+1.

There is limited enforcement of debt. Therefore, the government will repay only if it is
more convenient to do so. We assume that after a default the government remains in

5We introduce the assumption that the utility function is bounded to guarantee that the value function
is finite.
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autarky forever after but there are no direct output costs of default. Furthermore, we also
assume that the government cannot save:

bt+1 ≥ 0.

There is a competitive fringe of risk neutral investors that discount the future at a rate of
r > 0. This discount rate, and the possibility of default, imply that the price of the bond
is given by:

qt =
1 − δt

1 + r
, (2.1)

where δt if the default probability on bonds bt+1 issued at date t.6

Timing. In period t, the government enters with bt bonds that it needs to repay. Then
income yt is realized. The government then has the option to default dt ∈ {0, 1}. If
the government does not default, the government runs an auction of face value bt+1.
A sunspot variable ζt, which is common knowledge and independent of yt, is realized.
Then, the price of the bond qt is realized. Finally, consumption takes place, and is given
by ct = yt − bt + qtbt+1.7 If the government decides to default, then consumption is equal
to income, ct = yt. The same is true if the government has ever defaulted in the past.

Histories, Strategies, and Outcomes. A history is a vector ht = (h0, h1, ..., ht−1), where
ht = (yt, dt, bt+1, ζt, qt) is the outcome of observable variables of the stage game at time t.
A partial history is an initial history ht concatenated with a history of the stage game at
period t. For example, ht

g =
(
ht, yt

)
is a history after which the government must choose

policies (dt, bt+1). The set of all partial histories is denoted by H. We label as Hg ⊂ H
the partial histories where the government has to choose policies. Likewise, Hm,ζ ⊂ H is
the set of partial histories where the market plays; i.e., ht

m,ζ =
(
ht, yt, dt, bt+1, ζt

)
. We de-

note the histories where the market plays but the sunspot has not been realized by ht
m, so

ht
m,ζ =

(
ht

m, ζt
)
. A policy maker’s strategy is a function σg

(
ht, yt

)
=

(
dσg

t , bσg
t+1

)
for all his-

tories
(
ht, yt

)
∈ Hg. A strategy for the market is a pricing function qm

(
ht, yt, dt, bt+1, ζt

)

for all histories ht
m,ζ ∈ Hm. We denote by Σg and Σm the set of strategies for the gov-

ernment and the market. For a strategy profile σ =
(
σg, qm

)
, we write V (σ | h) for the

6This can be micro-founded by a fringe of strategic agents who decide to lend bt+1 dollars to maxi-
mize expected profits V = −qtbt+1 + (1 − δt)

1
1+r bt+1. If agents compete perfectly in the lending market,

equation 2.1 is derived as a non-arbitrage equilibrium condition. See for example Arellano (2008).
7If the realized price at the auction is such that the budget constraint does not hold, the government can

access funds to guarantee that consumption equals zero (i.e., such that the budget constraint holds ex-post).
However, due to accessing these special funds, in this case, utility is equal to −∞.
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ht =
(
ht−1, yt−1, dt−1, bt, qt−1

)
yt dt

bt+1 ζt qt ct

V A(yt)

Previous Play

Period t Period t+ 1

dt = 0

dt = 1

Figure 2: The figure summarizes the timing and the construction of histories in the case in which there is
a sunspot. Now, we introduce a sunspot ζt after the government has issued debt bt+1 and before the price
qt has been realized.

continuation expected utility, after history h, of the representative consumer if agents play
according to profile σ. For any strategy profile σ ∈ Σ := Σg × Σm, we define the continu-
ation at ht

g ∈ Hg:

V(σ | ht
g) = Et

{
∞

∑
s=t

βs−t [(1 − dt
s)u(ys − bs + qsbs+1) + dsu(ys)

]
}

,

where (ys, ds, bs+1, qs) are generated by the strategy profile σ.8

Equilibrium. A strategy profile σ =
(
σg, qm

)
constitutes a subgame perfect equilibrium

(SPE) if and only if, for all partial histories, ht
g ∈ Hg :

V(σ | ht
g) ≥ V(σ′

g, qm | ht
g) for all σ′

g ∈ Σg, (2.2)

and for all histories ht
m,ζ , it holds that:

qm

(
ht

m,ζ

)
=

1
1 + r

Et

(
1 − dσg(ht+1, yt+1)

)
. (2.3)

8Note that expectation is taken with respect to the probability distribution of the stochastic processes of
output and the sunspot, given the strategy for both the market and the government. We sometimes use
bs = b

σg
s and ds = d

σg
s for clarity.
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That is, the strategy of the government is optimal given the pricing strategy of the lenders
qm (·); likewise, qm (·) is consistent with the default policy generated by σg. The set of all
subgame perfect equilibria is denoted as Σ∗ ⊂ Σ. Given any history h ∈ H, we denote
Σ∗(yt, bt+1) as the set of all equilibrium strategies of the subgame starting at ht.9

Equilibrium Prices, Continuation Values. For any history ht
m, we define the highest

and lowest equilibrium prices as:

qE(ht
m) := max

qm∈Σ∗(ht
m)

qm

(
ht

m,ζ

)
(2.4)

qE(ht
m) := min

qm∈Σ∗(ht
m)

qm

(
ht

m,ζ

)
. (2.5)

The worst SPE price is zero (i.e., qE(ht
m) = 0) and the associated equilibrium payoff is

given by the utility level of autarky. The lowest price qE(ht
m) is attained by using a fixed

strategy for all histories (default after any history). The level of utility of autarky is given
by:

VA (yt) := u (yt) + βEyt+1|ytV
A(yt+1). (2.6)

Alternatively, the highest price qE(ht
m) is associated with a, different, fixed strategy for all

histories, is Markov in (bt, yt) conditional on no default so far, and delivers the highest
equilibrium level of utility for the government.10 We denote the best equilibrium price
as qE(ht

m) = q (yt, bt+1). The continuation utility (conditional on not defaulting) of the
choice bt+1 given bonds and output (bt, yt) in the best equilibrium is given by:

Vnd(bt, yt, bt+1) := u (yt − bt + q (yt, bt+1) bt+1) + βV (yt, bt+1) , (2.7)

where V(yt, bt+1) is defined as

V(yt, bt+1) := Eyt+1|yt

[
max

{
Vnd(bt+1, yt+1), VA(yt+1)

}]
, (2.8)

and Vnd
(bt, yt) := maxbt+1≥0 Vnd(bt, yt, bt+1). Aided with the previous definitions, the

best equilibrium price is defined as q (yt, bt+1) :=
Eyt+1|yt

[1−d(yt+1,bt+1)]

1+r where d(yt+1, bt+1)

9Note that, as is standard in dynamic games, the history preceding (yt, bt+1) does not restrict the set of
equilibria after that history.

10In the Online Appendix of Passadore and Xandri (2020) we describe necessary and sufficient conditions
for equilibrium multiplicity, and we show that the best SPE is characterized by (2.7) and (2.8) below. See
also Auclert and Rognlie (2016), Proposition 6, and Bloise et al. (2017), Section 6, for conditions under which
there is equilibrium multiplicity.
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is equal to zero if and only if Vnd(bt+1, yt+1) is greater than of equal to VA(yt+1). This
equilibrium that we just described is the one analyzed in the standard Eaton and Gerso-
vitz (1981) model.

Summing up. After the describing the environment, and the best and the worst SPE, in
the next Section we prove the main result of the paper: we characterize probability dis-
tributions on prices that can be a continuation equilibrium after an equilibrium history.
Note that any price in [0, q̄] can be realized (i.e.; is a SPE outcome) after the realization
of the sunspot. However, as we will show in Proposition 1, equilibrium histories of play
ht, will place restrictions on distributions of prices. For example, in one of our applica-
tions, Proposition 2, we characterize the maximum probability of obtaining low prices,
by exploiting the restrictions on distributions of prices that we obtain in Proposition 1. In
particular, we obtain formulas to compute:

max
Q∈ECD(ht)

PrQ (q ≤ q̂) , (2.9)

which is the maximum probability that debt prices are lower than q̂, after observing the
equilibrium history ht. Characterizing the set ECD

(
ht), which denotes the set of proba-

bility distributions that are consistent with an equilibrium history, is the main task for the
next section.

3 Equilibrium Consistency

We now introduce the concept of equilibrium consistency. Given a SPE profile σ =(
σg, qm

)
, we define its equilibrium path x (σ) as a sequence of measurable functions x (σ) =(

dσg
t
(
ζt−1, yt) , bσg

t+1

(
ζt−1, yt) , qqm

t
(
yt, ζt))

t∈N
that are generated by following the profile σ.

Definition 1. A history h ∈ H is equilibrium consistent if and only if it is on the support of
some equilibrium path x (σ), for some SPE profile σ.

3.1 Preliminaries

Before delving into the main result of the paper, we will define and characterize the best
equilibrium payoff after a history ht

m, which is a key input for Proposition 1. The max-
imum continuation value function v (yt, bt+1, qt) given an income realization yt, bonds
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bt+1, issued at an equilibrium price qt, is given by:

v (yt, bt+1, qt) := max
σ∈Σ∗(yt,bt+1)

V (σ | qt) .

Two remarks. First, note that because σ ∈ Σ∗ (yt, bt+1) , strategies for the government
and the market are equilibrium strategies. In particular, prices are consistent with default
policies for every history. For the case of dt+1 and qt, the default policies are consistent
with the realized price qt. In appendix B we characterize this payoff, using the stan-
dard approach of Abreu et al. (1990). Second, for this definition we are using the fact
that v

(
ht

m
)
= v (yt, bt+1, qt) . That is, the best continuation payoff after history ht

m only
depends on (yt, bt+1, qt). The next Lemma, provides the characterization and properties
of v, which will be useful to prove the main results in the paper. For Proposition 1, the
following Lemma will be useful:

Lemma 1. (a) v (yt, bt+1, qt) is non-increasing in bt+1, and non-decreasing and concave in
qt. (b) It can be computed as:

v (yt, bt+1, qt) = max
d(·)∈{0,1}Y

Eyt+1|yt

[
d (yt+1)VA (yt+1) + (1 − d (yt+1))Vnd

(bt+1, yt+1)
]

(3.1)
subject to

qt =
Eyt+1|yt (1 − d (yt+1))

1 + r
.

Proof. See appendix section B.

The fact that the function is non-increasing in bt+1 follows from the fact that the payoff
Vnd

(bt+1, yt+1) is non-increasing in bt+1, which is standard result in the literature that fol-
lows Eaton and Gersovitz (1981). The fact that the function is non-decreasing in qt follows
from two facts. First, higher prices are associated with better continuation equilibrium in
which the government default in less states of nature. Second, because bt+1 ≥ 0, contem-
poraneous consumption is higher when q is higher. Finally, concavity follows from the
fact that v (yt, bt+1, qt) solves a linear programming problem.11 We use these three prop-
erties of v (yt, bt+1, qt) to characterize the set of equilibrium consistent distributions and
to obtain testable predictions.12

11Note that because it is a linear program (linear objective and linear constraints), if there is an optimum,
it is in the boundaries. Thus, we can solve a relaxed version of the problem, in which dt ∈ [0, 1], instead of
dt ∈ {0, 1}. This relaxed problem has a convex feasible set. Thus, for q− = qλ := λq0 + (1 − λ) q1 it holds
that v (y−, b, qλ) ≥ G [dλ (·)] = λv (y−, b, q0) + (1 − λ) v (y−, b, q1) , where the inequality comes from the
fact that the combination of the optimal policies dλ =: λd0 + (1 − λ) d1 is feasible at qλ.

12We will use interchangeably the notation v (yt−1, bt, qt−1) or v (yt, bt+1, qt), depending on what is more
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Discussion. In the model that we discussed in Section 2, all defaults imply reversion to
permanent autarky, which is the worst equilibrium of the game. We do so to stay close to
the literature on sovereign debt which builds on Eaton and Gersovitz (1981). However, it
does not need to be the case that all defaults are followed by permanent autarky. For this
reason, in Section 4 we study a variation of the model in which debt is state contingent.
In this variation the worst subgame perfect equilibrium will still be autarky, but the best
continuation equilibrium value, v (yt, bt+1, qt), which we just characterized in equation
(3.1), will be different. As a result of this different best continuation equilibrium value,
as we will see in Proposition 1, the predictions across all equilibria will be quantitatively
altered by alternative assumptions of what happens after a default.

3.2 A Characterization

The main objective of the paper in characterizing equilibrium consistent policies and dis-
tributions over prices in t. Formally, a distribution of debt prices Qt ∈ ∆ (R+) is equi-
librium consistent with history ht

m if and only if for any Borel measurable set of prices
A ⊆ R+ we have that Qt (A) = Pr

(
ζt : qm

(
ht

m,ζ

)
∈ A

)
for some qm ∈ Σ∗

m (yt, bt+1).
Denote the set of equilibrium consistent price distributions as ECD

(
ht

m
)
. A triple (dt =

0, bt+1, Qt) is an equilibrium consistent outcome if and only if there exists an equilibrium
profile σ = (σg, qm) that generates on its path (dt = 0, bt+1) and the distribution of prices
Qt.13 Armed with these definitions we will now characterize the implications of equilib-
rium consistency on observables.

Proposition 1. Suppose that
(
ht, yt

)
, with no default so far, is equilibrium consistent. Then, the

triple (dt = 0, bt+1, Qt), where Qt ∈ ∆ (R+), is an equilibrium consistent outcome if and only if:
(a) Debt prices are SPE prices; i.e.,

Qt ∈ ∆ ([0, q (yt, bt+1)]) . (3.2)

(b) Incentive compatibility (IC) of the government:

∫ q(yt,bt+1)

0
[u (yt − bt + qtbt+1) + βv (yt, bt+1, qt)] dQt (qt) ≥ VA (yt) . (3.3)

convenient. Note that the set of equilibrium strategies given history ht, which we denote by Σ∗(ht), only
depends on the initial bonds, bt, and the seed value of income, yt−1. Thus, Σ∗(ht) = Σ∗ (yt−1, bt). Therefore
if σ ∈ Σ∗(yt, bt+1) conditional on qt, must satisfy the property that the goverment’s default choices are
consistent with the realized price qt.

13Following our focus on observable variables, the corresponding object to a pricing strategy qm(ht
m,ζ) is

a distribution Qt, which is why we treat it as an observable physical outcome.
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Proof. See Appendix A.1.

The main contribution of our paper is using condition (3.3) to derive restrictions on
equilibrium objects that are consistent across SPE of the policy game. Note that condition
(3.2) characterizes prices that are SPE outcomes. Debt prices are between zero, and the
best equilibrium price q (yt, bt+1). The idea is that, if we do not assume that the history ht

m

is generated by some SPE, then there are no restrictions over debt prices other than being
equilibrium prices.

The idea of the proof of Proposition 1 is as follows. For necessity, fix an equilibrium
consistent distribution Q after history ht

m. If we assume that ht
m is on the equilibrium

path of some SPE, then the government strategies, dt and bt+1, were optimal before the
realization of the sunspot ζt. This implies that the government ex-ante preferred to pay
the debt (i.e., dt = 0) and issue bonds (bt+1) rather than defaulting on the debt. If, after
these decisions the realized price is qt, the payoff for the government would be at most
u (yt − bt + qtbt+1) plus the best ex-post continuation value v (yt, bt+1, qt). However, the
government is uncertain over which price will be realized for the debt issued. So, the
government forms an expectation with respect to the “candidate” equilibrium consistent
distribution Q. This expectation, and its associated expected utility, has to be at least as
good as defaulting; if not, the government would have defaulted instead of repaying.
The left hand side of condition (3.3) is an upper bound on the utility of not defaulting at
history ht

m. Thus, (3.3) is necessary. In other words, if it was violated, then we could not
construct promises that rationalize the past history ht

m.14

The idea of sufficiency, which is the reason why we eliminate bt−1 and all the previ-
ous policies, stems from the fact that both the output and the sunspot are non-atomic.15

The particular history that followed ht−1
m when bt−1 was chosen, the one with the par-

ticular realization of ζt−1, had zero probability of occurring, because the sunspot has a
continuous distribution. Thus, it could always have been the case that the payoffs that
rationalized bt−1 and the previous policies were to be realized in a state that never mate-
rialized. Therefore, ECD (bt, yt, bt+1) = ECD

(
ht

m
)
.

There are two points that are worth noting regarding alternative assumptions of the
game and how robust the predictions are. First, in the model that we developed in Sec-
tion 2, by assumption, all defaults imply the reversion to the worst equilibrium, which
pins down the function v (yt, bt+1, qt), characterized in (3.1). In the case in which perma-

14One might wonder why we cannot rely on the best continuation payoff V(yt, bt+1). This is because
this payoff is associated with the best equilibrium price, and this price needs not to be realized. The best
possible payoff, after the price q is realized, is v (yt, bt+1, qt).

15Even if output was discrete, sunspots make shocks non-atomic, having the same effect as if we had
absolutely continuous output shocks.
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nent autarky is the worst equilibrium, alternative assumptions of what happens after a
default, will imply different characterization of the best continuation equilibrium (3.1),
and will affect predictions via (3.3). To clarify this case, in Section 4, we study the case
with excusable defaults as in Grossman and Huyck 1989, where on the equilibrium path
defaults do not trigger punishments.

Second, Proposition 1 can be specialized to obtain robust predictions over a certain
subset of subgame perfect equilibrium. For example, the result can be adapted for equi-
libria with limited equilibrium punishments. Namely, the same results would hold if
we replace the worst equilibrium of the game VA (y) by a higher equilibrium payoff
V > VA (y) in the characterization of the best continuation equilibrium in equation (3.1)
and on the right hand side of (3.3). An example is the case in which agents are punished
after every default with a fixed (or random number of periods) in autarky.

3.3 Bounding Certain Prices

Aided by Proposition 1, we can now further characterize moments over distributions
of debt prices. Before bounding moments over distributions of prices we characterize
the best continuation prices, for the case without sunspots; i.e., ζt is constant. We term
them certain equilibrium consistent prices. First, for each (bt, yt, bt+1), we define the lowest
(certain) equilibrium consistent price, q(bt, yt, bt+1), as the solution q to:

u
(

yt − bt + qbt+1

)
+ βv

(
yt, bt+1, q

)
= VA (yt) . (3.4)

Note that q(·) is a function that maps q(bt, yt, bt+1) : B ×Y × B →
[
0, 1

1+r

]
. Note also that

q is unique, due to the monotonicity of u(·) and v (yt, bt+1, ·). The lowest (certain) equi-
librium consistent price, q, is the lowest price for debt issued bt+1, given a debt payment
bt under an income realization yt, for which the government does not default. Second,
we can also define the highest equilibrium consistent price. It is given by q(yt, bt+1), and
is equal to the best equilibrium price defined in equation (2.4). The idea is that for any
equilibrium history, the best equilibrium is a possible continuation equilibrium. In fact,
if the best equilibrium is not a possible continuation, then the previous history cannot be
an equilibrium history. Next, we show some properties about these prices.

Corollary 1. Let q (bt, yt, bt+1) be the lowest (certain) equilibrium consistent price after history
ht

m. The following holds: (a) q (bt, yt, bt+1) is increasing in bt; (b) for every equilibrium consistent
history, −bt + q (bt, yt, bt+1) bt+1 ≤ 0; (c) if income is i.i.d., then q is decreasing in yt, and so is
the set of (certain) equilibrium consistent prices [q(bt, yt, bt+1), q(yt, bt+1)].
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Figure 3: This figure shows (certain) equilibrium consistent prices q and q. We describe the comparative
statistics after history ht

m. Thus, the relevant state variables are (bt, yt, bt+1).

Proof. See Appendix A.2.

The intuition for Corollary 1 follows. First, note that if the government just repaid a
large amount of debt (i.e., made an effort to repay the debt), then the past choices are ra-
tionalized by higher continuation prices, which is a result of the fact that the utility func-
tion is increasing in consumption and that the best continuation is increasing in prices.
Second, note that a positive capital inflow obtained at the lowest (certain) equilibrium
consistent prices would imply that u (yt) − u

(
yt − bt + q (bt, yt, bt+1) bt+1

)
is negative.

Intuitively, the country is not making any effort to repay the debt. Therefore, it need
not be the case that the country expects high prices for debt in the next period. Finally,
because there are no capital inflows at the lowest (certain) equilibrium consistent prices,
repaying debt at this price will become more costly for a lower realization of income yt;
this due to the concavity of the utility function. Mathematically, because of concavity,
u (yt)− u

(
yt − bt + q (bt, yt, bt+1) bt+1

)
is increasing as income decreases, and therefore,

the promise-keeping constraint tightens as income decreases.

A Quantitative Illustration. We now numerically solve for the (certain) equilibrium
consistent prices. The process for log output is given by log yt = µ + ρy log yt−1 + σyϵt

where µ = 0.75 , σy = 0.3025, ϵt is i.i.d. and ϵt ∼ N(0, 1), and ρy = 0.0945. The risk-free
interest rate is set to r = 0.017. The utility function is u(c) = c1−γ

1−γ , the coefficient of relative
risk aversion is γ = 2, and the discount factor β = 0.953. Figure 3 depicts the numerical
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results. As we discussed before, the best equilibrium, q, coincides with the equilibrium
usually studied in the quantitative literature of sovereign debt. We plot the best equilib-
rium consistent price in blue and the lowest in red. As shown in Figure 3, for low levels of
debt the best equilibrium is risk-free (default). As we increase the level of debt, the price
drops, and prices drop sharply, as it is in most models with short-term debt (prices are
volatile). The lowest (certain) equilibrium consistent prices q(bt, yt, bt+1) are computed
using equations (3.1) and (3.4). Note that the comparative statics that we specify in Corol-
lary 1 clearly emerge in Figure 3. First, in the left panel, when the government repays
debt bt = 0.5 and issues bt+1 = 0.75, the lowest (certain) equilibrium consistent prices de-
crease with the realization of income. In addition, as one would expect, when the amount
of debt repaid climbs to bt = 0.75 and the amount of debt issued is still bt+1 = 0.75, the
red dotted line dominates the red line. The lowest (certain) equilibrium consistent prices
are now higher. Finally, note that the best equilibrium price is constant through the real-
izations of income, because for those levels of debt, bt+1 = 0.75, default is not a concern.
Also, note that in the right panel, we observe that with debt repayment, bt, we obtain the
opposite: when the government repays a larger amount of debt, then the lowest (certain)
equilibrium consistent prices increases. This is the case for both (yt = 1, bt+1 = 0.50) and
(yt = 1, bt+1 = 0.75). The dotted line corresponds to a higher debt issuance, and as we
just discussed, given a larger capital inflow, the prices are expected to be lower.

3.4 Bounding Price Distributions

We now delve into the implications of Proposition 1 on distributions of debt prices. The
first set of implications are over the probability of low prices. In particular, we character-
ize the maximum probability that a crisis will occur. Second, we provide bounds across
all equilibria for the expectation of prices. Third, we also provide bounds across all equi-
libria for the variance of distributions over prices.16 Finally, we study the comparative
statistics for the set of equilibrium consistent distributions, ECD (bt, yt, bt+1).

Maximum Probability of Crises. We would like to infer the maximum probability (across
equilibria) that the government could assign to a price lower or equal to q̂ in any equilib-
rium after an equilibrium history ht

m. Formally, we define the function Q (q̂) as:

Q (q̂; bt, yt, bt+1) := max
Q∈ECD(bt,yt,bt+1)

PrQ (q ≤ q̂) (3.5)

16All of these bounds are independent of the nature of the sunspots (i.e. the distribution of sunspots, its
dimensionality, and so on), in the same way as the set of correlated equilibria does not depend on the actual
correlating devices.
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where PrQ (q ≤ q̂) :=
∫ q̂

0 dQ (q). Proposition 2 characterizes Q(·).

Proposition 2. Consider an equilibrium consistent history ht
m =

(
ht, yt, dt = 0, bt+1

)
. (a) For

any q̂ ≥ q (bt, yt, bt+1), Q (q̂; bt, yt, bt+1) = 1. (b) For any q̂ < q (bt, yt, bt+1) , it holds that:

Q (q̂; bt, yt, bt+1) =
Vnd(bt, yt, bt+1)− VA (yt)

Vnd(bt, yt, bt+1)− [u (yt − bt + q̂bt+1) + βv (yt, bt+1, q̂)]
. (3.6)

Proof. See Appendix A.3.

The idea of the proof is as follows. Lets us start with the case q̂ ≥ q (bt, yt, bt+1). The
reason why Q (q̂; bt, yt, bt+1) is equal to one is intuitive. A probability distribution that
places a probability equal to one on q (bt, yt, bt+1) is an equilibrium consistent distribution.
For this distribution, PrQ (q ≤ q̂) is going to be equal to one. Thus, the max PrQ (q ≤ q̂)
over the set of equilibrium consistent distributions is equal to one. The case in which
q̂ < q (bt, yt, bt+1) is not that simple. Proposition 2 finds the maximum ex-ante probability
(before ζt is realized) of observing a price qt, lower than q̂, and it is less than one. To relax
the IC constraint for the government, condition (3.3), as much as possible, we consider
distributions with binary support over {q̂, q}. For these distributions, when q is realized,
we assign the best continuation equilibria for the government, and when q̂ is realized,
we assign the best continuation equilibrium after q = q̂, which is given by v (yt, bt+1, q̂).
The expected value for the government under this distribution, which we label Q (q̂; ·),
needs to be as good as defaulting. When we equalize the value of issuing debt with the
distribution Q (q̂; ·) to the value of defaulting, we obtain an equation for Q (q̂; bt, yt, bt+1),
which is precisely given by (3.6).

Note that if the income realization is such that Vnd
(bt, yt) = VA (yt) (i.e., under

the best continuation equilibrium, the government is indifferent between defaulting or
not, and still does not default), then Q (q̂; bt, yt, bt+1) = 0 for any q̂ < q (bt, yt, bt+1) =

q (yt, bt+1). The idea is that for these income levels, only q = q (yt, bt+1) is an equilibrium
consistent price, and the only distribution that is equilibrium consistent places probabil-
ity one on that price. Note also that Q is a cumulative distribution function for q: it is a
non-increasing, right-continuous function with a range of [0, 1]; hence it implicitly defines
a probability measure for debt prices.

Figure 4 presents the function for the maximum probability of low prices, Q (q̂; bt, yt, bt+1),
for different states (bt, yt, bt+1). In the left panel, the two distributions differ on the in-
come realization under which the government repaid its debt. Lets start with the blue
line: the government repaid debt under an income realization (yt) of 1.36, repaid 0.5
units of debt (bt), and issued 0.5 units (bt+1). Q (0) is approximately 0.7; in other words,
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Figure 4: This figure plots Q (q) for different levels of output for our main calibrated parameters. The left
panel fixes bt+1and bt and shows the comparative statistics with respect to yt. The right panel fixes yt and
shows the comparative statistics with respect to bt.

the maximum probability of obtaining a price of zero is approximately 0.7. Any dis-
tribution where the probability of a price of zero is higher than 0.7, after the history
(bt, yt, bt+1) = (0.50, 1.36, 0.50), is not equilibrium consistent because it violates the IC
constraint of the government. Second, note that as the price q̂ increases, Q (q̂; bt, yt, bt+1)

also increases: the government is willing to accept a higher probability of obtaining low
prices (lower than q̂), because these prices are not that low. Third, as we should expect,
given our previous discussion, the function Q (q̂; bt, yt, bt+1) reaches 1 at a price equal
to q(bt, yt, bt+1) |(bt,yt,bt+1)=(0.50,1.36,0.50). Fourth, note that the function Q (q̂) shifts if the
government repays its debt under poor economic conditions (these conditions imply a
lower spot utility); for example, Q (0) is approximately 0.55 instead of 0.7, if income is
1.16 instead of 1.36, which is what one would expect in order not to violate the incentive
compatibility constraint, condition (3.3). Finally, the right hand side of the panel shows
the comparative statistics with respect to how much debt is repaid.

Bounding Expectations. One application that is of particular interest is bounding the
moments of distributions across all equilibria. We start with expected values. Let E (bt, yt, bt+1)

be the the set of all possible
∫

qdQ for Q ∈ ECD (bt, yt, bt+1). The following proposition
shows that E (bt, yt, bt+1) is identical to the set of (certain) equilibrium consistent prices
when there are no sunspots.
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Proposition 3. Suppose that history ht
m =

(
ht, yt, dt, bt+1

)
is equilibrium consistent. Then the

set of expected prices is equal to the set of certain equilibrium consistent prices (without sunspots);
i.e.,

E (bt, yt, bt+1) =
[
q (bt, yt, bt+1) , q (yt, bt+1)

]
.

Moreover, if bt+1 > 0, then the minimum expected value is uniquely achieved at the degenerate
distribution Q̂ which assigns probability one to q = q (bt, yt, bt+1).

Proof. See Appendix A.4.

The argument for the proof is based on two facts. First, the monotonicity and the
concavity, in q, of the best ex-post continuation value function, v (yt, bt+1, q). Second, that
q (·) is the minimum price, q, for which u (yt − bt + qbt+1) + βv (yt, bt+1, q) is equal to
VA (yt).17 From the second fact, note that the integrand in the left hand side of condition
(3.3) is larger than VA (yt) only when q is greater than or equal to q (bt, yt, bt+1). The
concavity of v (yt, bt+1, q) and Jensen’s inequality then imply that for any distribution Q ∈
ECD (bt, yt, bt+1), u

(
yt − bt + EQ (q) bt+1

)
+ βv

(
yt, bt+1, EQ (q)

)
has to be greater than

or equal to
∫
[u (yt − bt + qbt+1) + βv (yt, bt+1, q)] dQ (q). Because Q is an equilibrium

consistent distribution, condition (3.3) implies that the latter needs to be greater than or
equal to VA (yt). Thus, because of the monotonicity of v (yt, bt+1, q), we conclude that
EQ (qt) is greater than (or equal) to q (bt, yt, bt+1). The fact that EQ (qt) is less than or
equal to q (yt, bt+1) is immediate.

Bounding Variances. Next, we characterize bounds over variances. The importance of
this application comes not only from the fact that we can obtain dynamic implications
from equilibria; we can also know, ex-ante, how much volatility the model can generate.
Note that without any a-priori knowledge this can be a daunting task. Which equilib-
rium will yield the highest variance? In the next proposition, we can pin down how
much variance the model can generate, without trying every possible equilibrium. Take
any Q ∈ ECD(ht

m) with EQ (qt) = µ. Denote by S
(
ht

m, µ
)

the set of variances of these
distributions.

Proposition 4. Suppose that history ht
m =

(
ht, yt, dt, bt+1

)
is equilibrium consistent. Define

q∗ :=
[
1 − Q (0)

]
× q (yt, bt+1). If Q ∈ ECD(ht

m) and EQ (qt) = µ; then, S
(
ht

m, µ
)
=[

0, Var
(
ht

m, µ
)]

where Var
(
ht

m, µ
)

is defined as:

17The equality at q = q (·) follows from the strict monotonicity in q of equilibrium utility, that is given by
u (yt − bt + qbt+1) + βv (yt, bt+1, q). If the inequality were to be strict, then we could find a lower (certain)
equilibrium consistent prices, which contradicts the definition of q (·).
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Figure 5: This figure shows Var
(
ht

m, µ
)

for for different levels output and for our main calibrated pa-
rameters. The left panel fixes bt+1and bt and gives comparative statistics with respect to yt. The middle
panel fixes ytand bt and gives comparative statistics with respect to bt+1.The right panel fixes yt and gives
comparative statistics with respect to bt.

• If µ ≥ q∗, then Var
(
ht

m, µ
)
= µ (q − µ).

• If q (bt, yt, bt+1) ≤ µ < q∗ then Var
(
ht

m, µ
)
= µ

(
q + qµ − µ

)
− qµq, where qµ is the

unique solution to Q
(
qµ

)
qµ +

(
1 − Q

(
qµ

))
q = µ and Q (q) is defined in Proposition 2.

Proof. See Appendix A.5.

The idea of the proof is as follows. We know that any price distribution with sunspots
lies in the interval [0, q (yt, bt+1)]. We start from the observation that the maximum vari-
ance is achieved with a binary distribution. For the first case, we show that the no default
incentive constraint (3.3) is not binding if the expected prices are high enough; i.e., if
µ ≥ q∗. Then, the volatility of the candidate distribution (that has a mean µ, and is binary
over {0, q}), is given by Var

(
ht

m, µ
)
= µ (q − µ). For the second case, when µ < q∗, the

incentive constraint for no-default starts to be binding. The maximum variance is still
achieved by a binary distribution, but this binding constraint restricts how low the price
can be in the bad state. Thus, we fix qµ such that Pr

(
qµ

)
qµ +

(
1 − Pr

(
qµ

))
q is equal to

µ for some probability Pr
(
qµ

)
. In addition, we choose Pr

(
qµ

)
so that the incentive con-

straint (3.3) is binding for the candidate distribution. This probability is exactly Q
(
qµ

)
.

This is intuitive, because will make the probability of the low value as high as possible,
maximizing the variance.
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Figure 5 presents the bounds of the variances for the equilibrium consistent distribu-
tions given an expected value for prices. Each one of the panels and each of the two cases
in each panel are different because they display different values of (bt, yt, bt+1). First, it
is clear that in the three panels that the frontier of the mean and variance has kinks. All
these kinks occur when the expected price is equal to q∗. Second, note that in all of the
panels, both curves are the same up to the kink of the blue line. This result occurs because
q∗ is a function of (bt, yt, bt+1), which marks the kink for each one of the curves. If the ex-
pectation of prices, E(q), is higher than the maximum of both q∗ (that is a function of the
history), then the variances are identical and given by µ (q − µ).18 In the right panel, the
red line falls faster than the red line, because for the blue line the debt repayment is larger
(bt = 1.35 and bt = 1.2, respectively); thus, for a given mean the variance needs to be
smaller. Alternatively, in the middle panel the blue line falls faster. Because more debt is
issued in the history that corresponds to the red line, for a given mean, the government
tolerates higher variances of prices, without violating condition (3.3).

A General Characterization of Moments. We now formulate a simple linear program
that characterizes all non-centered moments. We denote by Mq(t) the moment generating
function of debt prices.19 We can characterize the maximum and minimum of the set of
moments as a solution to the linear programming problem. In particular, suppose that ht

m

is an equilibrium consistent history. Then, the maximum n-th non centered moment of q
solves the following linear program:

E(qn | ht
m) := max

Q

dn

dtn

(
EQ (

etq)) |t=0

subject to (3.2) and (3.3). The idea for the minimum non centered moment is analogous
when we replace the max operator with the min operator. Note that this is a linear pro-
gramming problem because we can interchange the expectation and the derivative. The
logic of this procedure extends Propositions 2, 4, and 3.

18It is worth noting that for values of E(q) that are higher than q∗, the blue and red lines do not need
to coincide. The reason why they coincide is because q(yt, bt+1) is flat for both variables in the range of
(yt, bt+1) in the plots.

19Recall that the moment generating function of the random variable q pins down all the non centered
moments (a standard result in mathematical statistics); in particular:

E(qn) =
dn

dtn

(
Mq(t)

)
|t=0 .
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Comparative Statics and Stochastic Dominance. We close this subsection by providing
the comparative statics over the set of distributions, ECD (bt, yt, bt+1).

Corollary 2. Suppose that ht
m, with no default so far, is equilibrium consistent. The following

comparative statistics hold: (a) The set of equilibrium price distributions ECD (bt, yt, bt+1) is
non-increasing (in a set order sense) with respect to bt and if income is i.i.d, it is non-decreasing
in yt. (b) Suppose that Q ∈ ECD (bt, yt, bt+1) and Q′ is a probability distribution for equilib-
rium prices; i.e. Q′ ∈ ∆ ([0, q (yt, bt+1)]). If Q′ first order stochastically dominates (FOSD)
Q, then Q′ ∈ ECD (bt, yt, bt+1). (c) Q ̸/∈ ECD (bt, yt, bt+1). Furthermore, for every Q ∈
ECD (bt, yt, bt+1) it holds that Q FOSD Q, and if Q′ is some other lower bound, then Q FOSD Q′.

Proof. See Appendix A.6.

The idea of the argument follows. First, the intuition of the first part of these compar-
ative statistics, again, stems from the revealed preference argument. If the government
repaid a larger amount of debt, then the distribution of the prices that they would expect
needs to shift towards higher prices. If the set does not change, then there will be a dis-
tribution that will be inconsistent with equilibrium because it will violate condition (3.3).
Second, the proposition shows that once a distribution is consistent with equilibrium, any
distribution that FOSD this distribution will be an equilibrium consistent distribution.
This is intuitive: higher prices lead to both higher consumption and higher continuation
equilibrium values for the government since both are weakly increasing in the debt price
qt. Finally, by its own definition, Q is the infimum over all possible distributions in ECD.
In addition, Q ̸/∈ ECD (bt, yt, bt+1) follows immediately from the fact that the support of

Q is
[
0, q (bt, yt, bt+1)

]
.

3.5 Bounding Moments: Prices and Policies

Up to now, in Section 3, the focus has been on predictions on prices and distributions
over prices given policies and output (stochastic driving variable). However, we can
also obtain predictions of the joint distribution of policies, output, and prices, which are
useful in applied settings. For example, for our model of sovereign debt, we compute
the maximum volatility of prices given that the covariance of capital flows and output is
negative. Note that in Proposition 4 we obtain the maximum variance given the mean
expected price. In Proposition 6, we add a constraint that depends on the joint behavior
of prices, policies and the stochastic driving force.

The first step is to extend Proposition 1 to a case that is useful to obtain restrictions
on both prices and of policies. For this, we focus on histories, ht, before income yt
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is realized, where the government policies (dt(y), bt+1(y)) are not certain. The triple
(dt(·), bt+1(·), Qt(·)) is an equilibrium consistent outcome if and only if for all y the triple
(dt(y), bt+1(y), Qt(y)) is an equilibrium consistent outcome.

Proposition 5. Suppose that ht, with no default so far, is equilibrium consistent. Then, the triple
(dt(·), bt+1(·), Qt(·)) where Qt(·) ∈ ∆ (R+) is an equilibrium consistent outcome if and only if
for all y ∈ Y the following hold: (a) Debt prices are SPE prices; i.e.,

Qt(y) ∈ ∆ ([0, q (y, bt+1(y))]) for y : dt(y) = 0. (3.7)

(b) IC of the government:

d(y)VA(y) + (1− d(y))
∫ q(y,bt+1(y))

0
[u (y − bt + q̂tbt+1(y)) + βv (y, q̂t, bt+1(y))] dQt(q̂t; y) ≥ VA(y).

(3.8)

(c) Consistency of the default decision:

Ey
[
1 − dt(y) | ht] = (1 + r)qt−1. (3.9)

Proof. See Appendix A.7.

As in the case of Proposition 1, price distributions and policies need to be equilibrium
consistent. However, now, they need to be equilibrium consistent contingent on each
realization of income yt, which is guaranteed by (3.7) and (3.8). In addition, we need to
add a consistency requirement of t − 1 prices, and t default policies, which is (3.9). The
idea of the proof follows closely the one of Proposition 1.

Second, aided with the result in Proposition 5, we will characterize bounds that these
conditions imply. To do so, we will obtain bounds on realized prices. Note that for low
enough values of bt+1, in the best equilibrium the debt prices are equal to (1 + r)−1. We
define B(bt, yt) as the highest bond issue for which the government is indifferent between
defaulting or not. By definition of q(·) and q(·), it holds that q(bt, yt, bt+1) = q(yt, bt+1)

when bt+1 = B(bt, yt). We denote this value of the price as qB(bt, yt) := q(yt, B(bt, yt)).
Note qB(bt, yt) is increasing in bt, because the worst continuation price, q, is increasing
in bt. Using Proposition 3, which bounded expected prices, we know that Eζ(qt | y) ∈[

qB(bt, y), 1
(1+r)

]
. Figure 3.5 depicts the bounds on bond issuance and expected prices.

Proposition 6 characterizes the bounds on price variance Var(qt | ht) given the covari-
ance constraint given by Cov(−bt + bt+1qt, yt | ht) ≤ −A. For a history ht, denote the set
of income realizations where the government does not default in the best equilibrium as
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Ynd
(ht). In particular, Ynd

(ht) :=
{

y ∈ Y : d(y | ht) = 0
}

where d(· | ht) is the default

rule that implements the best continuation equilibrium, v(yt−1, bt, qt−1), after history ht.20

The following holds.

Proposition 6. Suppose that the history ht is equilibrium consistent. Then, for any equilibrium
consistent outcome (dt(y), bt+1(y), Qt(y)), it holds that:

Var(qt | ht) ≤ min
{

1
4(1 + r)2 , q∗(h

t)

[
1

1 + r
− q∗(h

t)

]}
,

where q∗(·) is the lowest equilibrium consistent expected price after history ht. This price q∗(h
t)

is defined as the solution of the program:

q∗(h
t) := min

q(·)
Ey

[
q(y) | yt−1, y ∈ Ynd

(ht)
]

, (3.10)

subject to the constraints: (a) q(y) ∈
[
qB(bt, y), 1

(1+r)

]
; and (b),

Ey

[
q(y)B(bt, y)(y − E(y | ht)) | yt−1, y ∈ Ynd

(ht)
]
≥ A, (3.11)

where Ey(y | ht) := Ey

[
y | yt−1, y ∈ Ynd

(ht)
]
.

Proof. See Appendix A.8.

There are two main ideas that determine the maximum variance. First, the lowest
expected price after history ht, q∗(h

t), which is given by (3.10). Note that after history
ht, the set of possible expected prices, qt, is given by

[
qB(bt, y), 1

(1+r)

]
. The upper bound

is the best equilibrium price, and the lowest bound is the lowest equilibrium expected
price, which depends on the realization of output in t, which is not known at ht. The
expected price q∗(h

t) is the minimal price that we can expect, before the realization of
yt, on expectation, subject to the constraint that the price realization belongs to the set of
equilibrium prices, and that we meet the covariance constraint (3.11).21 Note that when
computing expectations, we integrate over Ynd

(ht), because those are the realizations of
output in which the country does not default in the best continuation.

Second, the maximum variance is the minimum of two terms. The first term of the
min is the maximum unconstrained variance. This is the case, for example, when the

20Recall that this function is given by (3.1). The default rule pins down default at t. We need to define this
set because the price is not defined if the government does not default. We use the default rule of the best
continuation equilibrium because we would like to obtain an upper bound on the variance.

21The covariance is one example of a constraint that we can accommodate.
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Figure 6: The x axis features different levels of debt issuance bt+1. The y axis features the possible re-
alizations of debt prices after history ht given yt for each value of bt+1, q(yt, bt+1) is the best equilibrium
price function. B(bt, yt) is the maximum debt issuance such that the government is indifferent between
defaulting and repaying. qB(bt, yt) is the lowest (certain) equilibrium consistent prices realization with no
default.

history has low debt bt. In this case, the government can support large variance in equi-
librium (and still repay the debt), so we can always find an equilibrium that rationalizes
the observed history. This large variance is the one that puts probability to a price of zero
and 1/(1 + r). The second term of the min kicks in for histories in which the government
enters time t with high values of debt. In this case, the government can tolerate lower
variances (because otherwise it would default). In the extreme case when debt reaches a
threshold, the variance due to sunspots needs to be equal to zero (but there is still funda-
mental variance).

4 A General Dynamic Policy Game

In this section, we show that the main result that we proved Section 3, Proposition 1,
extends to a more general class of policy games. This should not be surprising. The
main economic argument for Proposition 1 follows from revealed preference: what the
government leaves on the table bounds its expectations regarding future play. These
bounds place restrictions over outcomes or over distributions. Therefore, in this section
we do three things. First, we propose a general model of a dynamic policy game in the
spirit of Stokey (1991).22 Second, for this more general setup we provide an analog of

22To keep notation simple and the exposition more concrete, we focus on games in which the short run
players form an expectation regarding next period policy. There is a large class of models that share this
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Proposition 1. Finally, we apply the general model for the case which defaults are not
punished with permanent autarky.

Model. We follow the model notation in Stokey (1991). In our model, there are two types
of players: an infinitely long lived player (government) and short lived agents (market)
that set expectations according to a particular rule. In each period t, agents play an ex-
tensive form stage game with five sub periods (t, τi)i∈{1,5} . The payoff relevant states are
an exogenous random shock yt, and an endogenous state variable bt. The timeline of the
stage game is as follows:

• τ = τ1 : A publicly observable random variable yt ∈ Y ⊆ Rl is realized, that follows
a (controlled) Markov process: yt ∼ f (y | yt−1, bt).23

• τ = τ2 : The long-lived player (government) chooses a control dt ∈ D ⊆ Rd and a
next period state variable bt+1 ∈ B ⊂ Rb (where both D and B are compact sets).
We say that (dt, bt+1) is feasible if (dt, bt+1) ∈ Γ (bt, yt), where Γ : B × Y ⇒ D × B is
a non-empty, compact valued and continuous correspondence.

• τ = τ3 : A sunspot variable ζt is realized and distributed according to ζt ∼ U[0, 1].

• τ = τ4 : The agents determine their expectations about future play. This process is
modeled in reduced form, with the market choosing qt ∈ Rk to satisfy:

qt = Et

{
∞

∑
s=t

δs−tT (bs+1, ys+1, ds+1, bs+2)

}
,

where δ ∈ (0, 1) and T : B×Y × D× B → Rk is a continuous and bounded function.
The expectation is taken over future shocks {yt+s}∞

s=1 knowing the strategy profile
of the long lived player.

• τ = τ5 : the payoffs for the long lived player are realized and given by a continuous

timing. For sovereign debt, one class follows Eaton and Gersovitz (1981). For monetary policy, one class
is the New Keynesian model as in Galí (2015). There are policy games that focus on alternative timings.
For example, a class of games in which the decision of the long-lived player and the short-lived players
occurs sequentially, but in the same period. This timing has been used mainly for monetary policy, and
capital taxation. See for example Chari and Kehoe (1990). Our results can be extended to incorporate these
alternative timings.

23Sometimes, we say that y includes a sunspot if ∃ {y∗t , zt} such that (1) y∗t ⊥ zt for all t, (2) y∗t is a con-
trolled Markov process; i.e., y∗t ∼ g

(
y∗t | y∗t−1, bt

)
, and (3) zt ∼i.i.d Uniform [0, 1].
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utility function u (bt, yt, dt, bt+1, qt). Lifetime utility is then given by:

V0 := E0

{
∞

∑
t=0

βtu (bt, yt, dt, bt+1, qt)

}
,

where β ∈ (0, 1).

Example 1. This example is exactly the one studied in Section 2. In this model, yt is na-
tional income, bt ≥ 0 is the outstanding public debt to be repaid, dt ∈ {0, 1} is the default
decision and qt = E

(
1−dt+1

1+r | ht+1
)

is the risk neutral price set by lenders in equilibrium.
Flow utility is given by u (bt, yt, dt, bt+1, qt) = (1 − dt) u (yt − bt + qtbt+1) + dtu (yt), as-
suming that when the government defaults on its debt, it gets to consume its income and
is banned forever from international financial markets. Note that the feasibility corre-
spondence is given by Γ(yt, bt, bt+1, qt) = yt − bt + qtbt+1 ≥ 0.24

Example 2. A variant of our model is a model with excusable (or state contingent) debt.
In such a model, the only difference is that there are no constraints on the government’s
ability to issue new debt after a default. Formally, the government’s flow utility is now
u(bt, yt, dt, bt+1, qt) = u (yt − bt + dtbt + qtbt+1). If we allow for dt ∈ [0, 1] we generalize
the setting to one with partial excusable defaults, as in Grossman and Huyck (1989).

Example 3. Our model also incorporates New Keynesian (NK) models of monetary pol-
icy with no endogenous state variables (e.g., Galí, 2015, Athey et al., 2005, and Waki et al.,
2018). In the case of the NK model, the control variable is dt = πt where πt is inflation.
Agents set inflation expectations to match future inflation, as qt := πe

t = Et (πt+1). Infla-
tion and output are related according to a forward looking Phillips curve, xt = πt − βπe

t ,
where xt is the output gap. In addition, let π∗

t be a random variable that gives the optimal
natural level of inflation (absent an inflation gap). The random shocks are then yt = π∗

t ,
and the government is assumed to minimize the loss function:

L (π, πe, yt) =
χ

2
(πt − βπe

t )
2 +

1
2
(πt − yt)

2 ,

where the first term in the loss function is the output gap. In this example, the feasibility
constraint represents the fact that πt needs to be bounded.

Consistency. As we did in Section 2, it is useful to define the best ex-post continuation
payoff. We also define the set of equilibrium payoffs and the worst equilibrium payoff.

24Given that the market chooses after the government it can be the case that this constraint is ex-post
“violated”. In that case, the government has a technology available to generate resources such that the
budget constraint holds; in this case the government obtains utility of −∞.
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We denote as E (y−, b) as the set of equilibrium payoffs, and let Q (y−, b) ⊆ Rk be its projec-
tion over q.25 The best continuation value function gives the maximum equilibrium value
for the long lived player, if qt = q− is realized; i.e.,

v (y−, b, q−) := max
v∈R

v s.t. (q−, v) ∈E (y−, b). (4.1)

By following steps that are similar to the ones used in the Appendix, Section B, we can
also show that if E (y−, b) is convex valued and u (·) is concave in q, then v (y−, b, q−) is
also concave in q. The max-min value is the worst possible value that the long lived player
can obtain in any SPE , going forward. Formally,

U (y, b) := max
(d,b′)∈Γ(b,y)

{
min

(q,v)∈E(y,b′)
u
(
b, y, d, b′, q

)
+ βv

}
. (4.2)

In the sovereign debt model, U (y, b) is equal to VA (y).26 Finally, we informally state
a generalization of the main result presented in Section 3, Proposition 1, for the gen-
eral model that we just introduced. Suppose that ht

m is an equilibrium consistent history.
Then, Qt is an equilibrium consistent distribution if and only if: (a) SPE prices; i.e.,

Qt ∈ ∆ [Q (yt, bt+1)]

(b) incentive compatibility for the long lived player:

∫

q̂∈Q(yt,bt+1)
[u (bt, yt, dt, bt+1, q̂) + βv (yt, bt+1, q̂)] dQt (q̂) ≥ U (yt, bt) . (4.3)

State Contingent debt. We now study robust predictions for an extension of the Eaton
and Gersovitz (1981) in which not all defaults trigger permanent autarky. In the termi-
nology of Grossman and Huyck (1989) defaults that occur on the equilibrium path are
excusable.

As we did before, the initial step is to characterize the worst equilibrium and the best
continuation. First, the worst equilibrium of this alternative model is permanent autarky.
Second, we denote by vSC(yt, bt+1, qt) the best equilibrium payoff function after history

25We can characterize this set using the concept of self-generation and enforceability in Abreu (1988);
Abreu et al. (1990) and Atkeson (1991). It can be shown that if y is non-atomic and u is concave in q (for
example, risk aversion of the long lived player), then E (y−, b) is compact and convex valued. This is
satisfied by the three xamples discussed above.

26There are several papers that develop the techniques to solve for the set of equilibrium payoffs fol-
lowing the seminal contribution of Judd et al. (2003). Following Waki et al. (2018), it can be shown that
v (y−, b, q−) can be expressed as the unique fixed point of a contraction mapping, given U (y, b).
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(
ht, yt, bt+1, qt

)
, which is the analogue to the function v(yt, bt+1, qt) defined in (3.1). Ap-

plying the characterization of the v(·) function for the general model (see Appendix C,
which builds on Waki et al. 2018) to this environment, we obtain vSC(·) as the unique
solution to the following recursive equation:

vSC(y−, b, q−) := max
d(·),b′(·),q(·)

∫ [
u
(
y − b + d(y)b + b′(y)q(y)

)
+ βvSC(y, b′(y), q(y))

]
dF(y | y−)

(4.4)

subject to





Ey|y− (1−d(y))
1+r = q−

u (y − b + d(y)b + b′(y)q(y)) + βvSC(y, b′(y), q(y)) ≥ VA(y) for all y.

The best equilibrium price will be qSC(y, b′) =
Ey′ |y(1−dSC(y′,b′))

1+r , where dSC (y′, b′) is policy
that solves (4.4). As in the case with v(·) in our original model, is easy to show that vSC is
(a) strictly decreasing in b; and (b) increasing and concave in q−. We can also show that
vSC ≥ v.

The second step is finding the condition for equilibrium consistency. Following steps
analogous to Proposition 2, we can show that Qt is equilibrium consistent with (the equi-
librium consistent history) ht if and only if (a) Qt ∈ ∆

([
0, qSC(yt, bt+1)

])
and (b) the

incentive compatibility of the government holds; i.e.,

∫ qSC(yt,bt+1)

0

[
u (yt − bt + q̂bt+1) + βvSC(yt, bt+1, q̂)

]
dQt(q̂) ≥ VA(yt). (4.5)

Note that the difference with respect to our previous results is a different best continua-
tion vSC(yt, bt+1, q̂), and a different best equilibrium price qSC(yt, bt+1). In this particular
case of excusable defaults, the worst equilibrium payoff is again autarky. So, whether
predictions are weaker in the case of excusable defaults depends on how much larger
vSC(yt, bt+1, q̂) is with respect to the one we characterized in (3.1), and how qSC(yt, bt+1)

compares to q(yt, bt+1).

5 Conclusion

Dynamic policy games have been extensively studied in macroeconomic theory to in-
crease our understanding of how a lack of commitment restricts the outcomes that a
government can achieve. One of the challenges in studying dynamic policy games is
equilibrium multiplicity. Our paper acknowledges and embraces equilibrium multiplic-
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ity. For this reason, we focus on obtaining robust predictions: these are predictions that
hold across all equilibria; or, in the language of Bergemann and Morris (2018), across ev-
ery possible information structure. We obtain robust predictions by characterizing what
we term as equilibrium consistent outcomes. The basis of our predictions is a revealed pref-
erence argument, which is also exploited to obtain the testable implications of equilibria
in Jovanovic (1989). The idea of the revealed preference argument is that by taking a par-
ticular action, the government obtained some utility; and by doing so, incurred on some
opportunity cost. This implied opportunity cost places bounds on what the government
can receive in the future. Equilibrium consistency is a general principle. Even though we
focus on a model of sovereign debt that follows Eaton and Gersovitz (1981), our results
can be generalized to other dynamic policy games, as we show in the last section of the
paper.

Appendix

A Proofs

A.1 Proposition 1

Proof. Step 1: Necessity.(=⇒). Step 1.1. Incentive compatibility of no default. Let H (σ)

be the histories on the path of a strategy profile σ = (σg, qm). Suppose that there is an
equilibrium strategy σ such that ht

m ∈ H (σ) and that there is no default so far. The fact
that the government optimally decided not to default at period t implies:

∫ 1

0

[
u
(
yt − bt + qm

(
ht

m, ζt
)

bt+1
)
+ βVσ

(
ht

m, ζt
)]

dζt ≥ u (yt) + βEyt+1|ytV
A(yt+1). (A.1)

Step 1.2. Bounding equilibrium payoffs. We denote by E (yt, bt+1) the set of equilibrium
payoffs of the game.27 Since σ is an SPE, it holds that for all sunspot realizations ζt ∈ [0, 1]:(
Vσ

(
ht

m, ζt
)

, qσ
m
(
ht

m, ζt
))

∈ E (yt, bt+1) . The latter further implies:

a. qm
(
ht

m, ζt
)
∈ [0, q (yt, bt+1)] (i.e., it delivers equilibrium prices).

b. v
(
yt, bt+1, qm

(
ht

m, ζt
))

≥ Vσ
(
ht

m, ζt
)
. This occurs because v is the maximum possi-

ble continuation value given the price realization q = qm
(
ht

m, ζt
)
.

27In the Appendix Section B we define the equilibrium value correspondence and discuss how it can be
computed.
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Step 1.3 The distribution of prices. The price distribution implied by σ can be defined by a
measure Q over measurable sets A ⊆ R+. More precisely:

Q (A) ≡
∫ 1

0
1
{

qm
(
ht

m, ζt
)
∈ A

}
dζt = Pr

{
ζt : qm

(
ht

m, ζt
)
∈ A

}
.

Note that condition (a) shows that the support of the distribution is over equilibrium
prices; i.e., Supp (Q) ⊆ [0, q (yt, bt+1)]. Step 1.4. The necessary condition. By changing the
integration variables in (A.1), using the definitions above, and conditions (a) and (b), we
have that:
∫ q(yt ,bt+1)

0
[u (yt − bt + q̂bt+1) + βv (yt, bt+1, q̂)] dQ (q̂) ≥

∫ 1

0

[
u
(
yt − bt + qm

(
ht

m, ζt
)

bt+1
)
+ βVσ

(
ht

m, ζt
)]

dζt

≥ u (yt) + βEyt+1|yt
VA(yt+1),

which proves the desired result.
Step 2: Sufficiency (⇐=) Suppose that ht is an equilibrium consistent history and that

condition (3.3) is satisfied. Then, we need to construct an equilibrium strategy where at
time t bond prices are distributed according to Qt, there is no default, and bond issuance
is bt+1 (i.e., generates ht

m on its path). Step 2.1. Preliminaries. We denote by FQ the associ-
ated cumulative probability function for Q. We denote by σ∗ (yt, bt+1, q) the strategy that
achieves the continuation value v (yt, bt+1, q); i.e.,:

σ∗ (yt, bt+1, q) ∈ argmax
σ∈Σ∗(yt,bt+1)

Vσ
(

h0
)

s.t. q0 ≤ q .

As we show in the Appendix, Section B, the constraint in this problem, q0 ≤ q, is binding.
Step 2.2. Constructing the equilibrium strategy. Because ht is an equilibrium consistent his-
tory, we know there exists an equilibrium profile σ̂ = (σ̂g, q̂m) such that ht ∈ H (σ̂). For

histories hs successors of histories ht+1, which are hs ⪰ ht+1 =
(

ht, yt, dt, b̂t+1, ζt, q̂t

)
we

define the strategy profile σ for the government as:

σg (hs, ys) :=





σd (hs, ys) if dt = 1 or b̂t+1 ̸= bt+1 or q̂t /∈ [0, q (yt, bt+1)]

σ∗ (yt, bt+1, q̂t) (hs) otherwise.
(A.2)

For all hs ⪯ ht
m, or hs ⊀ ht

m or hs ⊁ ht
m, we define σg (hs) := σ̂g (hs) . This strategy, σg,

prescribes the best continuation equilibrium if the government follows (dt = 0, bt+1) and
the price that it obtains is an equilibrium price. Alternatively, if the government defaults,
chooses a debt level that is different than bt+1, or receives a price that is not an equilibrium
price, the government will play default forever after (will be in autarky). In addition, the
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strategy σg that we just defined generates the history ht
m on its path. Likewise, we define

the strategy profile for the market. For histories
(
ht

m, ζt
)
=

(
ht, yt, dt = 0, bt+1, ζt

)
, let:

qm
(
ht

m, ζt
)

:= F−1
Q (ζt) , (A.3)

where F−1
Q (ζ) = inf

{
q ∈ R : FQ (q) ≥ ζ

}
is its inverse. For hs ⪯ ht

m, or hs ⊀ ht
m or

hs ⊁ ht
m, we define qm (hs) := q̂m (hs) . For any other history, the market will choose a

price of zero. Step 2.3. Checking incentive compatibility. Now we need to check that dt = 0
and bt+1 is incentive compatible for the candidate strategy profile that we just constructed.
Before time t, incentive compatibility comes from the fact that ht

m is equilibrium consistent
(i.e., ht

m ∈ H(σ)). At history ht
m, for the candidate strategy σ, it will be optimal not to

default (if we follow strategy σ for all successor nodes) if:

∫ 1

0

[
u
(

yt − bt + F−1
Q (ζt) bt+1

)
+ βVσ

(
yt, bt+1, F−1

Q (ζt)
)]

dζt ≥ u (yt)+ βEyt+1|ytV
A(yt+1),

where Vσ (yt, bt+1, ζt) is the continuation payoff of strategy σ after (yt, bt+1, ζt). This con-
dition is equivalent (if and only if) to:

∫ q(yt,bt+1)

0
[u (yt − bt + q̂bt+1) + βv (yt, bt+1, q̂)] dQ (q̂) ≥ u (yt) + βEyt+1|ytV

A(yt+1),

(A.4)
where we use the fact that F−1

Q (ζt) =d Uniform [0, 1], and by construction Vσ (yt, bt+1, ζt) =

v (yt, bt+1, qt). Condition (A.4) is exactly (3.3) and thus satisfied by hypothesis. Therefore,
the government does not want to deviate at time t. For any other history, because σd and
σ∗ (yt, bt+1, q̂) are subgame perfect equilibrium profiles, the government does not want to
deviate. Therefore, σ (hs) defined in (A.2) and (A.3) is an SPE profile (since it is a Nash
equilibrium at every possible history) that generates ht

m and Q on its path.

A.2 Corollary 1

Proof. We define D (bt, yt, bt+1, qt) := u (yt − bt + qtbt+1) + βv (yt, bt+1, qt)− VA (yt). We
can rewrite equation (3.4) as the solution to the equation q̂ : D (bt, yt, bt+1, q̂) = 0 given
(bt, yt, bt+1). Note that D is strictly increasing in q when bt+1 > 0 and is a strictly decreas-
ing function of bt, and therefore the solution q is unique and increasing in bt, showing
(a). For (b), suppose h = (ht, yt, bt+1, dt) with dt = 0 is equilibrium consistent. Since
v(yt, bt+1, q) ≥ E

[
VA(yt+1) | yt

]
, the fact that q solves the equation D(bt, yt, bt+1, q) = 0

implies u
(

yt − bt + qbt+1

)
− u(yt) = β

{
E
[
VA (yt+1) | yt

]
− v

(
yt, bt+1, q

)}
≤ 0 which
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implies that yt − bt + qbt+1 ≤ yt. Finally, for (c) note that if income is i.i.d, it holds that
VA(yt) = u(yt)+ β 1

1−β E [u(y)] and also that v(·) is constant in yt (since it does not change
the expectation over next period output shocks). Therefore, the function D(bt, yt, bt+1, qt)

is differentiable with respect to yt and ∂D
∂yt

(bt, yt, bt+1, qt) = u′(yt − bt + qtbt+1) − u′(yt).
Using the fact that −bt + q(bt, yt, bt+1)bt+1 ≤ 0 and that u is a strictly concave function,
at q = q(bt, yt, bt+1) we have u′(yt − bt + q(bt, yt, bt+1)bt+1) > u′(yt) and hence D (·) is a
strictly increasing function of yt. This, together with the fact that D(·) is increasing in q
makes the solution q̂ : D(bt, yt, bt+1, q̂) = 0 decreasing in yt , as we wanted to show.

A.3 Proposition 2

Proof. Step 1: Determine the upper bound for the probability of q = 0. We denote by Q (q̂ = 0)
the largest probability of a price equal to zero across all equilibrium consistent distribu-
tions. To construct Q (q̂ = 0) after history ht

m, we can focus on probability distributions
Q that are binary and place positive probability only on q̂ = 0 and the best equilibrium
price. In this way, we relax the IC of the government as much as possible. Note that
1 − Q (q̂ = 0) is the (lowest) probability of the best equilibrium consistent price. The IC
constraint (3.3) needs to hold with equality for this distribution. Thus:

Q (q̂ = 0)
[
u (yt − bt) + βEyt+1|yy VA(yt+1)

]
+

(
1 − Q (q̂ = 0)

) [
Vnd

(bt, yt, bt+1)
]
= VA (yt) .

This implies that:

Q (q̂ = 0) =
∆nd (bt, yt, bt+1)

∆nd (bt, yt, bt+1) + u (yt)− u (yt − bt)
,

where ∆nd (·) denotes the maximum utility difference between not defaulting and default-
ing (under the best equilibrium), given by ∆nd (bt, yt, bt+1) := Vnd(bt, yt, bt+1)− VA (yt) .
Note further that Q (q̂ = 0) is bounded away from 1 from an ex-ante perspective (i.e., be-
fore the sunspot is realized, but after the government decision has been made) as long as
bt > 0.

Step 2: Determine the upper bound for q = q̂. Let p = Pr (ζt : q (ζt) ≤ q̂). With a reasoning
that is similar to the one in Step 1, we can conclude that by focusing on equilibria that have
support q (ζt) ∈ {q̂, q (yt, bt+1)} we relax the IC constraint (3.3) as much possible (i.e.,
focus on binary distributions). Thus, we consider equilibria that assigns the best continu-
ation equilibria when q (ζt) > q̂ (i.e q (ζt) = q (yt, bt+1) and v (ζt) = V (yt, bt+1)) and as-
signs v (y−, b, q̂) (the greatest continuation utility consistent with q ≤ q̂) when q (ζt) ≤ q̂.
The latter because v (y−, b, q̂) is increasing in q̂. Therefore, for any such distribution, (3.3)
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holds: p [u (yt − bt + q̂bt+1) + βv (yt, bt+1, q̂)] + (1 − p)Vnd (bt, yt, bt+1) ≥ VA (yt) . The
distribution Q (q̂; bt, yt, bt+1) is defined by the equality of the previous condition. That is:

Q (q̂; bt, yt, bt+1) =
∆nd (bt, yt, bt+1)

VA (yt)− [u (yt − bt + q̂bt+1) + βv (yt, bt+1, q̂)] + ∆nd (bt, yt, bt+1)
.

Note that distribution Q (q̂; bt, yt, bt+1) is less than 1, only when:

u (yt − bt + q̂bt+1) + βv (yt, bt+1, q̂) > VA (yt) .

And this happens only when q̂ > q (bt, yt, bt+1) , where the last inequality comes from the
(alternative) characterization of q (bt, yt, bt+1).

A.4 Proposition 3

Proof. We already know that max E (bt, yt, bt+1) = q (yt, bt+1) since the degenerate distri-
bution Q over q = q (yt, bt+1) is equilibrium consistent. In the same way, we also know
that the degenerate distribution Q̂ that assigns probability 1 to q = q (bt, yt, bt+1) is equi-
librium consistent; this distribution corresponds to a case where both investors and the
government ignore the realization of the correlating device, and q (·) is exactly the only
price that satisfies:

u
(

yt − bt + q (bt, yt, bt+1) bt+1

)
+ βv

(
yt, bt+1, q (bt, yt, bt+1)

)
= VA (yt) . (A.5)

In the Appendix, Section B, we show that v (y−, b, q) is a concave function in q, which
together with the fact that u is strictly concave and bt+1 > 0 implies that the function
H (q) := u (yt − bt + qbt+1) + βv (yt, bt+1, q), is strictly concave in q. For any distribution
Q ∈ ECD (bt, yt, bt+1), let EQ (q̂) =

∫
q̂dQ (q̂). Jensen’s inequality then implies that:

u
(
yt − bt + EQ (q) bt+1

)
+ βv

(
yt, bt+1, EQ (q)

)
≥︸︷︷︸
(1)

∫
[u (yt − bt + q̂bt+1) + βv (yt, bt+1, q̂)] dQ (q̂) ,

≥︸︷︷︸
(2)

VA (yt) ,

with strict inequality in (1) if Q is not a degenerate distribution. Then, the definition
of q(bt, yt, bt+1) implies that for any distribution Q ∈ ECD (bt, yt, bt+1) , we have that:
EQ (q) ≥ q (bt, yt, bt+1). Therefore, the minimum expected value is exactly q (bt, yt, bt+1),
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which is achieved uniquely at the degenerate distribution Q̂ (because of the strict con-
cavity of u (·)). Finally, knowing that E is naturally a convex set, we then obtain the
following:

E (bt, yt, bt+1) =

[
min

Q∈Q(bt,yt,bt+1)

∫
q̂dQ (q̂) , max

Q∈Q(bt,yt,bt+1)

∫
q̂dQ (q̂)

]
=

[
q (bt, yt, bt+1) , q (bt, yt, bt+1)

]
.

A.5 Proposition 4

Step 1: Bounds for General Random Variables. To show the bounds on the variance, we rely
on the fact that for any random variable X with support in [a, b] ⊆ R and mean E (X) = µ,
it holds that: Var (X) ≤ µ (b + a − µ)− ab. Moreover, this upper bound in the variance is
achieved by a binary distribution Qµ over {a, b}, with Qµ (a) = (b − µ) / (b − a), and of
course, Pµ (b) = (µ − a) / (b − a).

Step 2: Are these bounds Equilibrium Consistent? It depends. Since the price realiza-
tion must have support on [0, q(yt, bt+1)], after history ht

m, according to Proposition 1,
we know that if Q is such that EQ (qt) = µ then VQ (qt) ≤ µ (q(yt, bt+1)− µ). In ad-
dition, from step 1, we know that this bound is achieved by distribution Qµ with sup-
port at {0, q}, defined as Qµ (0) = q−µ

q . However, this particular distribution may not
be equilibrium consistent since it may violate the ex-ante IC for no default, condition
(3.3). Whether this constraint is violated or not will depend on the particular value of
µ ∈

[
q(bt, yt, bt+1), q(yt, bt+1)

]
. We define q∗ as q∗ := Q (0)× 0+

(
1 − Q (0)

)
q which will

be key in the next steps.
Step 3. We define the function D

(
ht

m, .
)

of prices qt as:

D
(
ht

m, qt
)

:= u (yt − bt + qtbt+1) + βv (yt, bt+1, qt)− VA (yt) .

According to condition (3.3), a distribution Q is equilibrium consistent in history hm
t if

EQD
(
ht

m, qt
)
≥0. From the previous propositions we know that the function D

(
ht

m, qt
)

is: (a) D
(
ht

m, 0
)
< 0 and D

(
ht

m, q
)
≥ 0; (b) D

(
ht

m, q
)

is strictly increasing and strictly
concave in q.

Step 4: Case I. EQ (qt) = µ ≥ q∗. From Steps 1 and 2 we know that we can focus on
distributions that put mass on {0, q}. Note that, for a binary distribution Q, we define the
function:

L(µ) := EQD
(
ht

m, qt; µ
)
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subject to EQ(q) = µ. Note that L(µ) is a strictly increasing function of µ. Thus, it is
sufficient to show that L(q∗) = 0.

We now show that L(q∗) = 0. Note that, by definition of q∗, the binary distribution
that yields EQ(q) = q∗ places probabilites {Q (0) , (1 − Q (0))} on {0, q}. Thus,

L(q∗) = E{Q(0),(1−Q(0))}D
(
ht

m, qt
)
= Q (0) D

(
ht

m, 0
)
+ (1 − Q (0))D

(
ht

m, q
)
= 0,

where the last equality follows from the characterization of Q (0) in Proposition 2.
Step 4: Case II. q(bt, yt, bt+1) ≤ EQ (qt) = µ < q∗. Case 2. Proposal Violates IC for a Low

Mean. In this case, because L(·) is strictly increasing we know that L(µ) < 0, and we
cannot use a discrete distribution with mean µ and support on {0, q}, because it is not
equilibrium consistent. However, we still know that the lower bound on the expectation
of D(ht, q) can always be achieved with binary support distributions. Therefore, we look
for distributions with support

{
qµ, q

}
such that:





λqµ + (1 − λ) q = µ

λD
(
ht

m, qµ

)
+ (1 − λ) D

(
ht

m, q
)
= 0,

where λ := Pr
(
qµ

)
. This gives a system of equations in (qµ, λ). See that the second

constraint (the no-default incentive constraint), given qµ is the definition of the infimum

distribution λ = Q
(
qµ

)
=

D(ht
m,q)

(D(ht
m,q)−D(ht

m,qµ))
, given in Proposition 2. Using this into the

first equation, we obtain one equation in the unknown qµ :

Q
(
qµ

)
qµ +

(
1 − Q

(
qµ

))
q = µ ⇐⇒ D

(
ht

m, q
)
− D

(
ht

m, qµ

)

q − qµ
=

D
(
ht

m, q
)

q − µ
. (A.6)

Because D
(
ht

m, q
)

is increasing in q, the solution qµ of equation A.6 is increasing in µ in
the region where µ < q∗.

A.6 Corollary 2

Proof. Step 1. First Order Stochastic Dominance. We define the function

U (Q; bt,yt, bt+1) :=
∫

{u (yt − bt + q̂bt+1) + βv (yt, bt+1, q̂)} dQ (q) .
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Note that this function is strictly increasing in yt and strictly decreasing in bt. Further-
more, the set Q (bt, yt, bt+1) can be rewritten as:

Q (bt, yt, bt+1) =
{

Q ∈ ∆ ([0, q]) : U (Q; bt,yt, bt+1) ≥ VA (yt)
}

.

The function H (q) := u (yt − bt + qbt+1)+ βv (yt, bt+1, q) is strictly increasing in q. There-
fore, if Q′ FOSD Q and Q ∈ Q (bt, yt, bt+1) then

∫
H (q) dQ′ ≥

∫
H (q) dQ ≥ VA (yt).

Step 2. Comparative statistics. This follows from the fact that U (Q; bt,yt, bt+1) − VA (yt)
is monotonic on yt (when income is i.i.d.) and on bt. Step 3. Q ̸/∈ ECD (bt, yt, bt+1).
Finally, we show that Q is not an equilibrium consistent distribution. By definition, equa-
tion 3.5 cannot be an equilibrium consistent price; this implies that the Lebesgue-Stjeljes
measure associated with Q (·) has the property that Supp (Q) =

[
0, q (bt, yt, bt+1)

]
and

Q (q = 0) = p0 > 0, which implies that:

∫ q(yt ,bt+1)

0
{u (yt − bt + q̂bt+1) + βv (yt, bt+1, q̂)} dQ (q̂) < u

(
yt − bt + q (·) bt+1

)
+ βv

(
yt, bt+1, q (·)

)
= VA (yt)

where the last equation comes from the definition of q (·) and the function H (q̂) is strictly
increasing in q̂.

A.7 Proposition 5

Proof. (Necessity): Suppose history ht is equilibrium consistent. Therefore, there exist
some SPE profile σ̂ = (σ̂g, q̂m) that generated history ht. We define the policies (dt(y), bt+1(y)) :=(

dσ̂g
t (ht, y), bσ̂g

t+1(h
t, y)

)
and the conditional price distribution defined as Qt(y)(A) = Pr

{
ζ ∈ [0, 1] : q̂m(ht, y, dt(y), bt+1(y), ζ) ∈ A

}
,

where A ⊆
[
0, (1 + r)−1] is a measurable set of debt prices. Since σ is an SPE and it is

equilibrium consistent, we know that the price qt−1 must be consistent with the default
rule at period t; i.e., Ey (1 − dt(y) | yt−1) = (1 + r)qt−1, which delivers condition (3.9). To
show (3.7) and (3.8), we first take the shocks y, such that dt(y) = 0. For this, define the
triple (dt, bt+1, Qt) = (0, bt+1(y), Qt(y)) and use it with Proposition 1, delivering condi-
tions (3.7) and (3.8). The case for the shocks dt(y) = 1 is immediate.

(Sufficiency): As we did in Proposition (1), since Qt(y) satisfies (3.7), we can define
for all ζ ∈ [0, 1] the price outcome qt(y, ζ) := F−1

Qt(y)
(ζ) (so its distribution coincides with

Qt(y)). We need then to find a SPE strategy profile σ̃ = (σ̃g, q̃m) : (1)
(

dσ̃g
t (ht, y), bσ̃g

t+1(h
t, y)

)
=

(dt(y), bt+1(y)) for all y ∈ Y and (2) q̃m(ht, y, dt(y), bt+1(y), ζt) = qt(y, ζt) for all (y, ζt).
Recall that because ht is equilibrium consistent, there is a strategy σ̂ that on its path gen-
erates ht. For each ht+1 ≻ ht define σ∗(· | ht+1) = (σ∗

g , q∗m)(· | ht+1) to be the strategy
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profile that achieves the value v (yt, bt+1, qt). We then define the following:

σ̃g(hk
g) :=





(dt(yt), bt+1(yt)) if hk
g = (ht, yt)

σ̂g(hk, yk) if k < t or k > t : hk
g ̸≻ ht

σ∗
g (hk, yk | ht) for hk

g ≻ (ht, yt, dt(yt), bt+1(yt), ζt, qt(yt, ζt))

σd(hk, yk | ht) = (1, 0) for hk
g ̸≻ (ht, yt, dt(yt), bt+1(yt), ζt, qt(yt, ζt))

and hk
g coincides with ht on first t periods,

q̃m(hk
m) =





qt(yt, ζt) if hk
m = (ht, yt, dt(yt), bt+1(yt), ζt)

q̂m(hk, yk, dk, bk+1, ζk) if k < t or k > t with hk ̸≻ ht

q∗m(hk, yk, dk, bk+1, ζk | ht) for hk
m ≻ (ht, y, dt(y), bt+1(y), ζt)

qd
m(hk, yk, dk, bk+1, ζk | ht) = 0 for hk

m ̸≻ (ht, y, dt(y), bt+1(y), ζt)

and hk
m coincides with ht on first t periods.

See that by construction, σ̃ satisfies conditions (1) and (2). Since the profiles σ̂ (the one
rationalizing ht), σ∗ and σd are all subgame perfect, σ̃ is a mutual best response for all
histories h ̸= ht. Condition (3.8) shows that σ̃g is optimal at ht

g. Using the definition of
qt(·) and condition (3.9) we have that q̃m(ht−1

g ) = qt−1 is the rational forecast given σ̃g,
finishing the proof.

A.8 Proposition 6

Proof. Step 1: Variance decomposition. For a given equilibrium outcome (dt(y), bt+1(y), Qt(y))
we can use the law of total variance to obtain the following:

Var(qt | ht) = Ey

[
VarQt(y)(qt | y, ht)

]
+ Vary

[
EQt(y)(qt | y, ht)

]
. (A.7)

For the first term, the term between brackets is the one which we characterized in Propo-
sition 4, and we know that VarQt(y)(qt | y, ht) ≤ q(y)

(
R−1 − q(y)

)
, where q(y) :=

EQt(y)
(
qt | y, ht). For the second term, by definition of variance, note that Vary

[
EQt(y)(qt | y, ht)

]
=

Ey
[
q2(y)

]
−

[
Ey (q(y))

]2. Using both results in equation (A.7), we get that:

Var(qt | ht) ≤Ey

[
q(y)

(
1

1 + r
− q(y)

)]
+ Ey

[
q2(y)

]
−

[
Ey (q(y))

]2

= Ey [q(y)]
(

1
(1 + r)

− Ey [q(y)]
)

. (A.8)
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Step 2: A simpler program. The problem is now reduced to look over all possible expected
values q = Ey [q(y)] to maximize (A.8) subject to the constraint Covy(−bt + qtbt+1, y |
ht) ≤ −A, for some outcome (dt(y), bt+1(y), Qt(y)). To do so, we define:

q∗ := min
d(·),bt+1(·),Qt(y)

Ey
[
q(y) | ht] ,

subject to Covy(bt − qtbt+1, y | ht) ≤ −A. Step 3: Solution to the original program. The
following holds: (a) if q∗ < (1 + r)−1/2, then we can attain the unconstrained maximum,
which is given by (1 + r)−2/4. (b) if q∗ ≥ (1 + r)−1/2, then the maximum variance is
attained at q∗ with a value for the variance equal to Var(qt | ht) ≤ q∗

(
1

(1+r) − q∗
)

. Step 4:
Rewriting the co-variance. For the final statement of the proposition, using the law of total
co-variance, we arrive at the desired result:

Covy,Q(bt − qtbt+1, y | ht) =− Ey,Q(qtbt+1(y)y | ht) + Ey,Q(qtbt+1(y))Ey
(
y | ht)

=− Ey
(
EQ (qtbt+1(y)y) | ht)+ Ey

(
EQ (qtbt+1(y)) | ht)Ey

(
y | ht)

=− Ey
(
bt+1(y)q(y)y | ht)+ Ey

(
bt+1(y)q(y) | ht)Ey

(
y | ht) .

B Characterization of v (y−, b, q−)

In this Appendix we show how to compute v (y−, b, q−) given the equilibrium value cor-
respondence E (y−, b).28 Note that in our model, the elements of the equilibrium value
correspondence for each (y−, b) consists in all the equilibrium pairs of utility of the gov-
ernment and prices of debt for investors, given an initial seed value y− (recall that income
follows a first order Markov process), and the government initially owes b bonds. The
best ex-post continuation value when the income realized is y− and b bonds are issued at
price q−, which is defined as:

v (y−, b, q−) := max
σ∈Σ∗(y−,b)

V (σ | y−, b, q−) .

The function v (y−, b, q−) yields the highest expected utility that a government can obtain
if given a realization of income y−, they issued b bonds, and the bonds were issued at a
equilibrium price q−. Note that v (y−, b, q−) is the Pareto frontier in the correspondence

28There are several techniques that characterize E (y−, b), which are now standard in the literature.
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of equilibrium values:

v (y−, b, q−) := max {v : ∃q̂ ≥ 0 such that (v, q̂) ∈ E (y−, b) and q̂ ≤ q−} . (B.1)

Note that we focus on a relaxed version of the problem, where we replace the equality
q̂ = q− by the inequality q̂ ≤ q−. Proposition 7 enables us to rewrite (B.1) as a linear
program. Proposition 8 enables us to compute v (y−, b, q−).

Proposition 7. For all q ∈ [0, q(y−, b)] the maximum continuation value v (y−, b, q−) solves

v (y−, b, q−) = max
d(·)∈{0,1}Y

Ey|y−
[
d (y)VA (y) + [1 − d (y)]Vnd

(b, y)
]

,

subject to:

q− =
Ey|y− [1 − d(y)]

1 + r
. (B.2)

Furthermore, v (y−, b, q−) is non-decreasing and concave in q−.

Proof. Step 1.1. Programming problem for an arbitrary ṽ. Take any ṽ such that:

ṽ ∈ {v : ∃q̂ ≥ 0 such that (v, q̂) ∈ E (y−, b) and q̂ ≤ q−} .

Because ṽ is an equilibrium value, there exists a policy
(
d̃ (·) , b̃ (·)

)
, such that:

ṽ = Ey|y−
[(

1 − d̃ (y)
) [

u(y − b + q̄(y, b′(y))b′(y)) + βV
(
y, b′ (y)

)]
+ d̃(y)VA(y)

]

(
d̃ (y) , b̃ (y)

)
∈ arg max

(d(y),b′(y))
(1 − d (y))

[
u(y − b + q̄(y, b′(y))b′(y)) + βV

(
y, b′ (y)

)]
+ d(y)VA(y).

Ey|y−
[
1 − d̃(y)

]

1 + r
≤ q−.

Step 1.2. For a given choice of b′(y), (d (y) , b′ (y)) is an equilibrium policy if and only if,
the following holds: d(y) = 0 implies Vnd

(b, y, b′(y)) ≥ VA(y). Step 1.3. The program for
the largest ṽ. Therefore, to maximize the arbitrary ṽ, the program is:

v (y−, b, q−) = max(d(·),b′(·)) Ey|y−
[
(1 − d (y))Vnd

(b, y, b′ (y)) + d(y)VA(y)
]

subject to
Vnd

(b, y, b′(y)) ≥ VA(y) for all y : d(y) = 0, (B.3)

q− ≥
Ey|y− [1 − d(y)]

1 + r
. (B.4)
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Step 1.4. Dropping one constraint. Note that we can relax the constraint (B.3) by choosing
the optimal b′(y) and we can increase the objective function. Therefore, we can substitute
Vnd

(b, y, b′(y)) by Vnd
(b, y) in (B.3). Furthermore, note that we can drop constraint (B.3),

because to maximize the function you never want to violate that constraint. Step 1.5. The
price constraint is binding (B.4). Note that if we remove the price constraint, the agent
will choose the default rule to obtain price q (y−, b) (the one associated with the best
equilibrium). Thus, for any q < q (y−, b) , this constraint must be binding. Thus, the
programming problem of the government is:

v (y−, b, q−) = maxd(·) Ey|y−
[
(1 − d (y))Vnd

(b, y) + d(y)VA(y)
]

, (B.5)

subject to q− =
Ey|y− [1−d(y)]

1+r . Step 1.6. Increasing in q−. Given this formulation of the prob-
lem, it is immediate that v (y−, b, q−) is weakly increasing in q−. Step 2. Concavity. Take
q0, q1 ∈ [0, q (y−, b)]. Let di (y) with i ∈ {0, 1} be one of the solutions for the program (B.5)
when q− = qi for i ∈ {0, 1}. Define: dλ (y) := λd0 (y) + (1 − λ) d1 (y). Clearly, this might
not be a feasible default policy for the program (B.5); dλ may belong to (0, 1). We solve a
relaxed version of the program where d ∈ [0, 1]. Note that because the program is linear,
the solution is in the boundaries and that dλ is feasible when q− = qλ := λq0 + (1 − λ) q1,

since:
Ey|y− (1−dλ(y))

1+r = λq0 + (1 − λ) q1 = qλ. Therefore, the optimal continuation value
at q− = qλ must be greater than the objective function evaluated at dλ. This is because
the optimum will be at a corner even in the relaxed problem. We define the functional as
follows:

G[d(·)] := Ey|y−
[
d (y)VA (y) + [1 − d (y)]Vnd

(b, y)
]

.

Using that G [d (·)] is an affine functional in d (·), and that both d0 (·) and d1 (·) are the
optimizers at q0 and q1, we can show that:

v (y−, b, qλ) ≥ G [dλ (·)] = λv (y−, b, q0) + (1 − λ) v (y−, b, q1) .

Proposition 8 solves the programming problem from Proposition 7 by reducing it to
solving a problem of one equation in one unknown.

Proposition 8. Given(y−, b, q−) there exists a constant γ = γ (y−, b, q−) such that:

v (y−, b, q−) = Ey|y−
[
d (y)VA (y) + (1 − d (y))Vnd

(b, y)
]

,
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where
d (y) = 0 ⇐⇒ Vnd

(b, y) ≥ VA (y) + γ (y−, b, q−) for all y ∈ Y (B.6)

and γ is the (maximum) solution for the single variable equation:

1
1 + r

Py|y−
{

y : Vnd
(b, y) ≥ VA (y) + γ (y−, b, q−)

}
= q−.

Proof. We solve a relaxed version of the programming problem in (B.5) where d (y) ∈
[0, 1]. Recall that the solution will be in the corners, because we are solving a linear pro-
gram. The Lagrangian is:

L = Ey|y−
[
(1 − d (y))Vnd

(b, y) + d (y)VA (y)
]
+ Ey|y−µ (y) [1 − d (y)]

[
Vnd

(b, y)− VA (y)
]

+ λ
(

q− (1 + r)− 1 + Ey|y−d (y)
)

.

The first order condition with respect to d (y) is given by:

∂L
∂ [d (y)]

=
[
−Vnd

(b, y) + Vd (y) + λ
]

dF (y | y−) ,

where dF (y | y−) denotes the conditional probability of state y. This implies that the
optimal default rule is d (·) with γ := λ, and we obtain the desired result, equation (B.6).

C v (y−, b, q−) with Restricted Punishments

In this section we study the case introduced in Section 4 where equilibrium values must be
greater than G (y−, b), where G (y−, b) is mapping that provides an equilibrium value for
every (y−, b). In particular, we are interested in finding the equivalent “best equilibrium
value” function when restricted to these punishments. The programming problem for vG

is given by:
vG (y−, b, q−) = max

(v,q)∈E(y−,,b):v≥G(y−,b)
v,

i.e., the best equilibrium value among all equilibrium pairs (v, q) that satisfy the lower
bound constraint. In the particular case where E (y−,, b) ≥ G (y−, b), this would corre-
spond to vG = v. The programming problem for UG (y, b) is given by:

UG (y, b) := max
(d,b′)∈Γ(b,y)

{
min

(q,v)∈E(y,b′):v≥G(y,b′)
u
(
b, y, d, b′, q

)
+ βv

}
.
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Generalizing the argument in Waki et al. (2018), we can link the problem of finding vG

to finding the fixed point of a contraction mapping. Namely, we will study the mapping
T : B (Y × B × R) → B (Y × B × R) defined as

T ( f ) (y−, b, q−) = sup
d(·),b′(·),q(·),w(·)

Ey
[
u
(
b, y, d (y) , b′ (y) , q (y)

)
+ βw (y) | b, y−

]
,

subject to: 



u (b, y, d (y) , b′ (y) , q (y)) + βw (y) ≥ UG (y, b) (a) ∀y

Ey [T (b, y, d(y), b′(y)) + δq (y)] = q− (b)

G(y, b′(y)) ≤ w (y) ≤ f (y, b′ (y) , q (y)) (c) ∀y

(q (y) , w (y)) ∈ E (y, b′(y)) (d) ∀y,

where (a) is the incentive constraint, (b) is the moment condition for q−, (c) are the
bounds for continuation value, that must be above G for all values of y and below the
candidate for best equilibrium value f (y−, b, q−), and (d) that q(·), w(·) are equilibrium
payoffs. It is easy to check that T satisfies Blackwell conditions (monotonicity and dis-
count) and is hence a contraction mapping with modulus β, and hence it has a fixed
point f ∗ (y−, b, q−). See that in in the sup program of T we will always have w (y) =

f (y, b′ (y) , q (y)) and then it is easy to see that the fixed point f ∗is self-generating (see
Waki et al., 2018 for an extended argument for this).
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