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Monologues, dialogues, and common priors
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The main purpose of this paper is to provide a simple criterion enabling to con-
clude that two agents do not share a common prior. The criterion is simple, as it
does not require information about the agents’ knowledge and beliefs, but rather
only the record of a dialogue between the agents. In each stage of the dialogue,
the agents tell each other the probability they ascribe to a fixed event and update
their beliefs about the event. To characterize dialogues consistent with a common
prior, we first study monologues, which are sequences of probabilities assigned by
a single agent to a given event in an exogenous learning process. A dialogue is con-
sistent with a common prior if and only if each selection sequence from the two
monologues comprising the dialogue is itself a monologue.

Keywords. Learning processes, Bayesian dialogue, Bayesian monologue, ratio
variation, joint fluctuation, agreement.
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Two monologues do not make a dialogue.

De Nevers’ Law of Debate

1. Introduction

Theoretical arguments against the common prior assumption were raised most notably
by Morris (1995) and Gul (1998). This paper offers a simple criterion for showing that
two agents do not have a common prior (CP).

We consider a learning process in which two agents exchange information about the
probability they ascribe to a given event E. In the first stage of this process, the agents
truthfully and simultaneously report to each other their initial probabilities. This means
that these probabilities become common knowledge. Acquiring this information, each
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of the agents updates the probability she ascribes to E. In the second stage, they again
make their updated probabilities common knowledge, and so on.1 We assume that in
each stage the conditional probability of E given the new information is well-defined.
That is, the event on which the probability is conditioned has a positive probability.
If, moreover, the cumulative information when the process is completed has a positive
probability, we say that the process is positive. To easily meet the positivity conditions,
we assume that the state space is countable.2

A pair of sequences of probability numbers generated in such a learning process,
one for each agent, is called a dialogue. We provide a necessary and sufficient condition
for a pair of sequences to be a dialogue in a positive learning process, where the agents
have a CP. This condition does not prove the existence of a CP, it only guarantees that
there is a knowledge-belief structure with a CP in which the dialogue can be realized.
However, failure of this condition proves that the agents do not have a CP.

To describe our condition for dialogues, we first study learning processes of a single
agent who sequentially acquires new information. In such a process, the information
acquired by the agent is exogenously, given as opposed to the information in a dialogue
which is endogenously generated by the agents. The sequence of the probabilities as-
cribed by the agent to a given event E along such a process is called a monologue. Obvi-
ously, a dialogue consists in particular of two monologues.

We first characterize sequences of numbers that are monologues. This characteri-
zation is made in terms of the fluctuation of the sequence. It is known that a positive
monologue must have bounded variation. This condition, however, is not sufficient. We
introduce a stronger notion of fluctuation, named bounded ratio variation. This condi-
tion is necessary and sufficient for a sequence to be a positive monologue.

The condition for dialogues reflects an intuitive understanding of priors and com-
mon prior. The prior characterizes an agent. Information can change, and with it the
posterior beliefs. But it is the prior that remains constant. Now, if agents have a com-
mon prior it means that in a sense they are the same, but for informational differences.
Therefore, we could possibly think of a dialogue of agents with a CP to be a monologue
of one agent, which is characterized by the CP. How can this be formalized?

Imagine that we listen to a dialogue as follows. At some points in time, we hear only
the report of agent 1, and in the rest of the times we hear only agent 2. For example,
we may listen to 1 at odd periods and to 2 at even periods. This way we observe only
one sequence of probability numbers which is a selection from the two monologues that
comprise the dialogue. If two agents with a CP are essentially two faces of one agent,
we can expect this selection to be a monologue of this single agent. We show indeed

1We assume that the agents report truthfully the probability of E in each stage. This would be the case
if each is facing a decision problem whose result depends only on whether E is the case or not. Since the
agents do not compete, it is the interest of both to truthfully share the information about E. For this reason,
they exchange their views of the probability of E. This leads them of course to generate a dialogue. In each
stage, it is the interest of each to report her true probability, because the rest of the process depends on her
report. If she reports a different probability, the information she receives in later stages will be also flawed.

2Our results hold for finite spaces and also for uncountable measurable spaces with countable or finite
partitions.
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that a necessary and sufficient condition for two sequences to be a positive dialogue of
agents that have a CP is that any selection of the two sequences is a positive monologue.
The requirement that any selection of the two sequences should be a positive mono-
logue seems at first glance highly demanding, as it involves a continuum of selection
sequences. We show, however, that it suffices to check only the boundedness of three
sequences.

Our result seems to be a formal rendering of the claim of the motto, known as De
Nevers’ law of debate. If agents share a CP, then not every pair of monologues makes
a dialogue. However, we show that every pair of monologues is a dialogue if we do not
require that the agents share a CP. In that case, the dialogue sounds much like dialogues
in the theater of the absurd.

Literature contribution

We are bringing here together dialogues, monologues, and a necessary and sufficient
condition for the existence of a common prior. Each of these three topics is discussed in
the literature. We compare this literature to the results in this work.

Necessary and sufficient condition for the existence of a CP There are several works that
provide, like this work, a necessary and sufficient condition for the existence of a CP. The
most conspicuous ones are no-trade theorems (Morris (1994), Feinberg (2000), Samet
(1998a), Lehrer and Samet (2014)). In such theorems, CP does not exist if and only if
there is a state-contingent zero-sum trade, which the agents commonly know to yield
each of them positive gains. Heifetz (2006) provided a condition analogous to the no-
trade condition in syntactic terms. Samet (1998b) provided yet another condition in
terms of iterated expectations. Common to all these conditions is their dependence on
the state space. More specifically, to refute the existence of a CP one needs to know
the knowledge-belief space, or equivalently, know everything about the knowledge and
belief of the agents. In contrast, in this paper all that one needs to know in order to refute
the existence of a CP is a pair of sequences of probability numbers.

Dialogues Dialogues of the type studied here were first delineated in the last paragraph
of Aumann (1976). He describes a simultaneous dialogue concerning the probability of
a coin falling on H after each of the individuals made a number of observations known
only to her. A dialogue is simultaneous when at each stage both posteriors become com-
mon knowledge, as in our paper. In light of the agreement theorem proved in Aumann
(1976), common knowledge of the posteriors of an event implies that the two posteri-
ors coincide. Aumann therefore concluded that the dialogue must end with the same
posterior.

Geanakoplos and Polemarchakis (1982) proved formally that any serial dialogue in
a finite model must end with the same probability ascribed by both individuals to the
given event. A dialogue is serial when in each period only one of the individuals informs
the other of his posterior. They showed, moreover, that in all but the last period, the in-
dividuals can repeat each the same probability, and only in the last period an agreement
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is reached which is commonly known. Polemarchakis (2016), which inspired our pa-
per, showed that any two finite, internal sequences can be obtained as a serial dialogue
in a finite model with a common prior. Hart and Taumann (2004) showed in a similar
model, but with communication replaced by observation of the market, that behavior in
the market can remain constant for several periods, and then crash. In contrast to our
work, the analysis in these papers is made locally. That is, a state is fixed and the updat-
ing of the knowledge of the players is followed in this state. All of these papers assumed
finite partitions, which guarantees that common knowledge of the posterior probability
of the event is reached in finite time.

Nielsen (1984) extended both Aumann (1976) and Geanakoplos and Polemarchakis
(1982) by allowing knowledge structures given by sigma algebras rather than finite par-
titions. He formulated and proved Aumann’s agreement theorem for such knowledge
structures and showed that dialogues, simultaneous and sequential, that may be infi-
nite, converge almost surely to the same probability. His analysis, like ours, is global: in
each period, the knowledge of the individuals is described in all states by specifying a
knowledge structure in each period.3

To show that a dialogue is inconsistent with a CP, we need to examine the infinite
dialogue. Any finite part of the dialogue is consistent with a CP. An analogous result was
presented by Lipman (2003), who showed that any finite set of descriptions of a player’s
beliefs is consistent with a CP.

Monologues The sequence of probabilities of one individual in a dialogue is a mono-
logue, which is simply the result of a learning process of one agent. The literature on in-
dividual learning processes dealt with such sequences. Burkholder (1966) showed that
an L1-bounded martingale sequence is of bounded variation almost surely on every
atom of the basic probability space. A simpler proof was given in Tsuchikura and Ya-
masaki (1976). We prove a stronger result: for our martingales, the sequence must be of
bounded ratio variation. Moreover, we show that every sequence can be realized when
the prior of a state is 0. Recently, Shaiderman (2021) has shown that any L2-bounded
martingale, when conditioned on a positive probability event, has bounded variation.
This is typically false when the martingale is only L1-bounded.

2. Monologues

A monologue is the sequence of conditional probabilities assigned to a fixed event along
a learning process. Formally, a learning process is a tuple (�, μ, E, (πk )k≥1 ) where (�, μ)
is a countable or finite probability space, E ⊆� is an event, and (πk )k≥1 is a a sequence
of partitions of � which is a filtration, that is, πk+1 refines πk.

Let Pk be the set of ω’s such that μ(πk(ω)) > 0, where πk(ω) is the element of πk

containing ω. By the countability of �, it follows that μ(Pk ) = 1. Define P = ⋂
k Pk, then

μ(P ) = 1. For ω ∈ P , we call the sequence (pk(ω))k = (μ(E | πk(ω)))k, the monologue
at ω. We say that the monologue at ω is positive if μ(

⋂
k πk(ω)) > 0. Clearly, if the

monologue at a state is not positive, then the probability of that state is zero. Thus,

3Bacharach (1979) looked at dialogues when information is normally distributed.
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monologues are positive with probability one. A sequence of numbers (pk ) is a (positive)
monologue if it is a (positive) monologue at some state in a learning process.

Example 1. Independent trials are conducted sequentially to find out whether a ma-
chine can fail. The probability of success in the kth trial is qk > 0, so the probability
that all trials are successful is

∏∞
k=1 qk. After each trial, the probability that the ma-

chine is infallible is announced. The states of the world are 1, 2, � � � , n, � � � , ∞, where
state n means that trials 1, � � � , n − 1 were successful and trial n failed. Obviously, for
n < ∞, μ(n) = (

∏n−1
k=1 qk )(1 − qn ), and μ(∞) = ∏∞

k=1 qk. The first partition, π1, re-
flects the knowledge before the trials, and it is the trivial partition. At that point, it is
not clear if the machine will ever fail, and if it fails at what time it happens. At time
k + 1, it is known if the machine failed at any time before k + 1, but if it did not fail,
it is not known if it ever fails or at what time after k it will fail. Thus the partition is
πk+1 = {{1}, {2}, � � � , {k}, {k + 1, � � � , ∞}}. Let E = {∞} be the event that the machine is
infallible. The announcement sequence pk(∞) = μ(E | πk(∞)) = ∏∞

n=k qn, k = 1, 2, � � � ,
is the monologue at state ∞. ♦

Not every sequence in the interval [0, 1] is a monologue. For example, the bound-
aries of the unit interval are absorbing for monologues, that is, if pk = 0 or pk = 1 for
some k, then pn = pk for all n > k. Thus any sequence that hits a boundary and is not
absorbed there is not a monologue. Using the techniques presented below, it is easy to
show that every sequence that is absorbed in one of the boundaries is a monologue in
some learning process. This is why in what follows we consider only sequences lying in
the open interval (0, 1), which we call internal. In particular, we are interested in char-
acterizing internal sequences that are positive monologues, which are the monologues
observed with probability one.

Our characterization involves a condition restricting the fluctuation of the se-
quences. Let (pk ) be an internal sequence and define p̄k = 1 − pk for every k. We
define the ratio variation of the sequence as

∑
k

max
{
pk+1

pk
− 1,

p̄k+1

p̄k
− 1

}
(1)

and say that the ratio variation is bounded if the sum is finite.
The logic behind the definition of ratio variation is as follows. If the sequence (pk ) is

the monologue concerning an event E, then the sequence (p̄k ) is the monologue con-
cerning the complement Ē of E. The ratios pk+1/pk and p̄k+1/p̄k measure the change
in the agent’s beliefs at stage k. The closer they are to 1, the smaller is the change. Thus,
the sums of |pk+1/pk − 1| or |p̄k+1/p̄k − 1| measure the total change in the agent’s belief
along the learning process. The ratio variation picks at each k one of |pk+1/pk − 1| and
|p̄k+1/p̄k − 1| according to the following reasoning. When pk+1 >pk, the information at
stage k confirms E, that is, it increases the probability of E. In this case p̄k+1 < p̄k, which
means that Ē is disconfirmed. The ratio variation picks up the change in the probability
of the confirmed event E; namely, |pk+1/pk − 1| = pk+1/pk − 1. When p̄k+1 > p̄k, the
event Ē is confirmed, while E is disconfirmed. In this case, |p̄k+1/p̄k − 1| = p̄k+1/p̄k − 1
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measures the change. Note that pk+1/pk − 1 and p̄k+1/p̄k − 1 are of opposite sign,
and the maximum in the definition of ratio variation yields the choice we have just de-
scribed.

Theorem 1. An internal sequence is a positive monologue if and only if it has bounded
ratio variation.

We discuss later (after Corollary 1 below) the connection between positiveness of the
process and boundedness of the ratio variation.

Variation and ratio variation Our novel notion of ratio variation measures fluctuation
of a sequence (pk ) by comparing the ratios pk+1/pk and p̄k+1/p̄k to 1. A more standard
measure of fluctuation, which compares the differences pk+1 − pk to 0, is the variation
of the sequence,

∑
k |pk+1 − pk|. In this case, it does not matter if we use pk or p̄k to

measure fluctuation, as |pk+1 − pk| = |p̄k+1 − p̄k|. Given this equality, we can rewrite
the ratio variation in terms of differences as follows:∑

k

|pk+1 −pk|/rk, (2)

where rk = pk when pk+1 ≥ pk and rk = p̄k when pk ≥ pk+1.4 Since rk ≤ 1 for every k,
we immediately obtain the following.

Observation 1. Bounded ratio variation implies bounded variation.

Thus, bounded variation is a necessary condition for a sequence to be a positive
monologue, but it is the stronger notion of bounded ratio variation that turns out to be
the necessary and sufficient condition. The next example shows that the two notions
are not equivalent.

Example 2. Consider the sequence x, y, x/2, y/2, � � � , x/2n, y/2n, x/2n+1, � � � , where y >

x > 0. The variation of this sequence is
∑∞

n=1 |x/2n − y/2n| + ∑∞
n=1 |y/2n − x/2n+1|. Each

of the two sums is a geometric series with quotient 1/2, hence it converges. Thus, the
variation is bounded. But, for each n, y/2n > x/2n, hence the ratio variation contains
the sum

∑
n |x/2n − y/2n|/(x/2n ). Since each term in this sum is |1 − y/x| > 0, the ratio

variation is unbounded. ♦

We note that bounded variation of a sequence implies that the sequence is Cauchy,
and hence converges.5 Thus, by Observation 1 and Theorem 1 we obtain the following.

Corollary 1. Positive monologues are converging sequences.

4We can equally define ratio variation in terms of the ratios pk/pk+1 rather than pk+1/pk, by max{1 −
pk/pk+1, 1 − p̄k/p̄k+1}. In this case, rk in equation (2) is defined as pk+1 when pk+1 ≥ pk and p̄k+1 when
pk+1 ≤ pk. Our results hold also for this definition of ratio variation.

5The converse of this claim is not true. For example, the internal sequence pk = ∑k
n=1(−1)n+1/(n + 1)

converges to 1 − ln 2, but its variation is
∑∞

n=3 1/n, which is unbounded.
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This claim can be easily verified also directly. Given a learning process (�, μ, E,
(πk )k≥1 ), for every state ω the sequence of events (πk(ω))k≥1 is decreasing and con-
verges to

⋂
k πk(ω). Thus, if the learning process is positive at ω, then the sequence

(pk(ω))k≥1 converges to μ(E | ⋂k πk(ω)).
Corollary 1 and the discussion thereafter gives an intuitive appeal to the connection

between positiveness of the process and the boundedness of the ratio variation of the
monologue. The basic intuition is that the steps in a journey cover a finite distance if
and only if the journey reaches a final destination. Analogously, and more abstractly,
it stands to reason that an incremental process reaches a terminal point if and only if
the sum of the increments is finite. Positiveness of the learning process means that it
reaches a terminal point. That is, it converges to the probability of E given everything
that is learned in the process. The increments of the learning process are given by the
terms in equation (1), as argued before. Theorem 1 states that the sum of the incre-
ments is finite, that is, the ratio variation is bounded, if and only if the process reaches a
terminal point, that is, it is positive.

While bounded ratio variation is strictly stronger than bounded variation, there are
cases in which the two notions are equivalent. Call a sequence strictly internal if for
some 0 < ε< 1 the sequence lies in the interval (ε, 1 − ε).

Observation 2. In the following two cases, bounded variation is equivalent to bounded
ratio variation:

(i) the sequence is strictly internal;

(ii) the sequence is internal and converges monotonically to zero or to one.

Thus, for the two cases listed in Observation 2, the equivalence in Theorem 1 can be
stated in terms of bounded variation.

Corollary 2. Fix a sequence that is either strictly internal, or internal and monotoni-
cally converging to zero or one. The sequence is a positive monologue if and only if it has
bounded variation.

The following example exhibits a family of sequences guaranteed by Theorem 1 to
be positive monologues, and constructs a learning process in which this is satisfied.

Example 3. Consider a decreasing (and hence converging) internal sequence (pk ). The
sequence converges and its variation, p1 − limpk, is bounded. The sequence also has
bounded ratio variation. This follows from Observation 2(i) if the limit is positive (and
hence the sequence is strictly internal) and from Observation 2(ii) if the limit is 0. Thus,
by Theorem 1, there exists a learning process in which the sequence is a positive mono-
logue. To construct such a process, let � = {ω1, ω2, ω3, � � � , ω} and E = � \ {ω}. Also,
let (πk )k≥1 be a filtration such that for every k, πk(ω) = {ωk, ωk+1, � � � , ω}. We con-
struct the unique probability μ that makes (pk ) a monologue at ω, and show that the
monologue is positive. Since for each k, μ(ωk ) = μ(πk(ω)) − μ(πk+1(ω)), and μ(ω) =
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limk μ(πk(ω)), it is enough that we define μ(πk(ω)) for each k. Let ak = μ(πk(ω)), and
bk = μ(E ∩πk(ω)). Then bk − bk+1 = ak − ak+1 = μ(ωk ). If (pk ) is the monologue at ω,
then for each k, bk = pkak. Subtracting from this equality the equality bk+1 = pk+1ak+1

yields pkak − pk+1ak+1 = ak − ak+1, or equivalently, ak+1 = akp̄k/p̄k+1. Given that
a1 = 1, we have ak+1 = ∏k

n=2 p̄n/p̄n+1 = (1−p2 )/(1−pk+1 ). Thus, μ(∩πk(ω)) = limak =
(1 −p2 )/(1 − limpk ) > 0 and the monologue is positive. ♦

Giving up positivity We conclude this section by showing that if we do not require pos-
itivity, then there is nothing that prevents a sequence from being a monologue.

Proposition 1. Every internal sequence is a monologue.

To illustrate Proposition 1, we consider in the following example an internal se-
quence with unbounded variation. By Theorem 1 and Observation 1, the sequence is
not a positive monologue. Yet, we construct a learning process in which the sequence is
a monologue, the existence of which is guaranteed by Proposition 1.

Example 4. Consider the alternating sequence 2/3, 1/3, 2/3, 1/3, � � � . Obviously, this
sequence does not converge, and hence does not have bounded variation. We construct
a learning process in which the sequence is a monologue at some state. Let � and (πk )
be as in Example 3, but now let E = {ω1, ω3, ω5, � � �}. Also, let μ(ωk ) = 2−k and μ(ω) = 0,
so that the monologue at ω is not positive. Then, for odd k, μ(E ∩ πk(ω)) = 2−k+2/3,
while for even k, μ(E ∩ πk(ω)) = 2−k+1/3, and for each k, μ(πk(ω)) = 2−k+1. Thus, for
odd k, μ(E | πk(ω)) = 2/3, while for even k, μ(E | πk(ω)) = 1/3. ♦

3. Dialogues and common priors

A dialogue is the pair of monologues generated by a joint learning processes where in
each stage two agents simultaneously tell each other the probability they assign to a
fixed event. By telling each other these probabilities, the agents make them not only
known to both, but also commonly known.

Formally, a joint learning process is a tuple(
�, μ1, μ2, E,

(
π1
k

)
k≥1,

(
π2
k

)
k≥1

)
,

such that (�, μ1, E, (π1
k )k≥1 ) and (�, μ2, E, (π2

k )k≥1 ) are learning processes in the same
countable space �, and the probabilities μ1 and μ2 have the same support.

Starting with the partitions π1
1 and π2

1 that are exogenously given, the remaining
partitions are defined endogenously by induction. Let k ≥ 1 and suppose that π1

k and
π2
k are defined. The partitions π1

k+1 and π2
k+1 should describe the agents’ knowledge

after the pair of posteriors

pk(ω) = (
p1
k(ω), p2

k(ω)
) = (

μ
(
E | π1

k(ω)
)
, μ

(
E | π2

k(ω)
))

becomes commonly known. First, we describe the set of states in which this pair is well-
defined. For i = 1, 2, let Pi

k be the set of ω’s such that μ(πi
k(ω)) > 0, and let Pk = P1

k ∩P2
k.
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Thus, pk(ω) is well-defined in all the states of Pk. Now, for each i, μi(Pi
k ) = 1, and since

μ1 and μ2 have the same support, it follows that μ1(Pk ) = μ2(Pk ) = 1. Let π ′
k be the

partition of Pk induced by pk, that is, π ′
k(ω) consists of all states ω′ such that pk(ω′ ) =

pk(ω). We extend π ′
k to a partition π̂k of � by adding the complement of Pk, that is,

π̂k = π ′
k ∪ {P̄k}. For the agents to commonly know pk(ω) in stage k + 1 means that for

ω ∈ Pk, the event π̂k(ω) is commonly known at ω. For this, the partition πi
k+1 is defined

as the common refinement of πi
k and π̂k, for each i. Note that for ω ∈ Pk, π̂k(ω) is a

union of elements of π1
k+1 and also a union of elements of π2

k+1. Since pk(ω) is the pair
of posteriors at all the states in π̂k(ω), it is commonly known at ω. This completes the
definition of the filtrations (π1

k ) and (π2
k ).

Let P = ⋂
Pk. Then for i = 1, 2, μi(P ) = 1, (�, μi, E, (πi

k )k≥1 ) is a learning process,
and for each ω ∈ P , the sequence (pi

k(ω))k is the monologue at ω. For each state ω ∈ P ,
we call the pair of monologues ((p1

k(ω)), (p2
k(ω))), the dialogue at ω. We say that the

dialogue is positive if both monologues are positive. When μ1 = μ2 = μ, we say that the
dialogue has a common prior. A pair of sequences ((p1

k ), (p2
k )) is a (positive) dialogue

(with a common prior) if it is a (positive) dialogue (with a common prior) at some state
in a joint learning process.

The next theorem characterizes pairs of sequences that are positive dialogues with
a common prior. The characterization involves sequences obtained as selections from
the two monologues. Formally, we say that a sequence (pk ) is a selection from two se-
quences (p1

k ) and (p2
k ) if pk ∈ {p1

k, p2
k} for each k. Note that, in particular, each of the

sequences (p1
k ) and (p2

k ) is a selection from the two sequences.

Theorem 2. (i) If a pair of internal sequences is a positive dialogue with a common
prior, then every selection from the two sequences is a positive monologue.

(ii) If every selection from a pair of strictly internal sequences is a positive monologue,
then the pair of sequences is a positive dialogue with a common prior.

By Theorem 1 and Observations 1 and 2(i), Theorem 2 can be stated equivalently as
follows.

Theorem 2*. (i) If a pair of internal sequences is a positive dialogue with a common
prior, then every selection from the two sequences has bounded ratio variation.

(ii) If every selection from a pair of strictly internal sequences has bounded variation,
then the pair of sequences is a positive dialogue with a common prior.

Of the two parts of the theorem, part (i) delivers the main purpose of this paper,
which is to provide a criterion to falsify the existence of a common prior. If the condi-
tion in this part fails, then we can answer with a definite “No” to the question whether
agents have a CP. In contrast, the condition in part (ii) does not enable us to answer
with a definite “Yes.” The condition only asserts that some joint learning process with a
common prior yields the positive dialogue. But the dialogue might also arise in a joint
learning process without a CP.
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Unlike part (i), part (ii) of Theorem 2 assumes strictly internal sequences. We con-
jecture that part (ii) holds also for just internal sequences, but our construction of the
learning process required the assumption of strictness. Obviously, part (i) holds in par-
ticular when the sequence is strictly internal. Thus, Theorem 2 provides a necessary
and sufficient condition for strictly internal sequences to be a positive dialogue with a
common prior.

The following example presents a pair of strictly internal sequences that satisfy the
condition on selections and, therefore, by Theorem 2(ii), is a positive monologue with a
common prior.

Example 5. Let (pk ) be a sequence that is a strictly internal positive monologue. Con-
sider the pair of sequences (p1

k ) = (p2
k ) = (pk ). All selections from these two sequences

are (pk ), which is a positive monologue. Thus, by Theorem 2(ii), these two sequences
form a positive dialogue with a common prior. In this example, the agents always agree
with each other, and yet, due to the dialogue they conduct, they learn from each other;
along the process, they change their beliefs about E. ♦

The next example presents a pair of internal sequences that does not satisfy the con-
dition on selections and, therefore, by Theorem 2(i), is not a positive dialogue with a
common prior.

Example 6. The following two internal sequences do not satisfy the condition on selec-
tions. Let xk = ∑k

n=1(−1)n+1/(n+ 1). Define(
p1
k

) = (x1, x1, x3, x3, x5, x5, � � �),

and (
p2
k

) = (x0, x2, x2, x4, x4, � � �),

where x0 is an arbitrary number in (0, x1 ). Now, (xk ) = (p1
1, p2

2, p1
3, p2

4, � � �), and hence
it is a selection from (p1

k ) and (p2
k ). But the variation of (xk ) is 1/3 + 1/4 + 1/5 + · · · ,

which is unbounded, and thus, by Observation 1 (xk ) does not have bounded ratio vari-
ation. Thus, the two sequences violate the condition on selections in Theorem 2(i) and,
therefore, the pair of monologues ((p1

k ), (p2
k )) is not a positive dialogue with a CP. ♦

Giving up positivity or common prior Theorem 2 concerns positive dialogues with a
common prior. The proposition below characterizes dialogues where either positivity
or the common prior property is omitted.

Proposition 2. (i) Any pair of internal sequences is a dialogue with a common prior.

(ii) Any pair of strictly internal positive monologues is a positive dialogue.

Similar to Proposition 1, part (i) of Proposition 2 shows that omitting positivity
makes any pair of internal sequences a dialogue with a common prior. As part (ii) shows,
omitting the common prior property while keeping positivity makes positivity of a pair
of monologues—which holds by definition when the two monologues form a positive
dialogue—a sufficient condition for them to form a positive dialogue.
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When two monologues make a dialogue Theorem 2 provides a necessary and sufficient
condition for a pair of strictly internal sequences to be a positive dialogue with a com-
mon prior. Our third main result, Theorem 3 below, gives a simple necessary and suffi-
cient condition for a pair of strictly internal monologues to be a positive dialogue with a
common prior—addressing directly De Nevers’ law of debate, the motto of this paper.

On our way to the result, we first strengthen Theorem 2(ii) by weakening the as-
sumption that all selection sequences have bounded variation. As Proposition 3 below
shows, to establish bounded variation of all selection sequences it suffices to check the
bounded variation of only three sequences. Given two sequences (p1

k ) and (p2
k ) in the

interval (0, 1), consider the following three sequences:

(a) (p1
1, p2

2, p1
3, p2

4, � � �),

(b) (p2
1, p1

2, p2
3, p1

4, � � �),

(c) (p1
k −p2

k ).

The sequence (a) is the selection sequence whose elements are selected alternately from
the two sequences starting from (p1

k ). The sequence (b) is an alternating selection start-
ing with (p2

k ). The sequence (c) is not a selection, but the difference of the two se-
quences.

Proposition 3. Let (p1
k ) and (p2

k ) be strictly internal sequences. Then the following four
conditions are equivalent:

(i) All the selections from (p1
k ) and (p2

k ) have bounded variation;

(ii) The three sequences (p1
k ), (p2

k ), and (a) have bounded variation;

(iii) The three sequences (p1
k ), (p2

k ), and (b) have bounded variation;

(iv) The sequences (p1
k ), (p2

k ) have bounded variation, and the series defined by (c) ab-
solutely converges, that is,

∑
k |p1

k −p2
k|< ∞.

Suppose now that each of two strictly internal sequences (p1
k ) and (p2

k ) is a posi-
tive monologue. Then, by Theorem 1 and Observation 2(ii), these two sequences have
bounded variation. By Theorem 2 and Proposition 3, to guarantee that the pair of se-
quences is a positive dialogue with a common prior it is sufficient that one of the se-
quences (a), (b) has bounded variation or that the series defined by (c) absolutely con-
verges. Thus, the following theorem, which explicitly assumes that (p1

k ) and (p2
k ) are

positive monologues, follows directly from Theorem 2 and Proposition 3.

Theorem 3. A pair of strictly internal positive monologues (p1
k ) and (p2

k ) is a positive
dialogue with a common prior if and only if

∑
k |p1

k −p2
k| <∞.

Example 7. Consider the pair of sequences in Example 6. We claim that each sequence
is a strictly internal positive monologue. Both sequences are strictly internal, as they
lie in (x0, x1 ). The sequence (p1

k ) is weakly decreasing, while (p2
k ) is weakly increasing,
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hence they both have bounded variation. Being strictly internal, by Observation 2(i) they
also have bounded ratio variation. Thus, by Theorem 1, each of the two sequences is a
positive monologue. But, as we have shown, they do not form a positive dialogue with a
common prior. Theorem 3 implies that the difference between the sequences does not
have bounded variation. Of course, this can be also checked directly. ♦

Eventual agreement Consider two internal sequences forming a positive dialogue with
a common prior. By Theorem 2(i), every selection from the two sequences is a posi-
tive monologue and hence, by Theorem 1, it must converge. This implies that the two
sequences converge to the same limit. Thus, we obtain the following.

Corollary 3. If two internal monologues form a positive dialogue with a common prior,
then they converge to the same limit.

We remark that if for each k and i, πi
k = πi

k+1, then the claim in Corollary 3 is the
agreement theorem of Aumann (1976). In fact, we can prove Corollary 3 without using
Theorem 2, in a way that resembles the proof in Aumann (1976). Let πk be the meet
of the partitions π1

k and π2
k. Since the sequences πi

k are ordered by refinement, so is
the sequence πk. In particular, πk+1(ω) ⊆ πk(ω). Let ω ∈ P , and Qi

k(ω) be the set of
states ω′ in πk(ω) such that μ(E | πi

k(ω′ )) = μ(E | πi
k(ω)) = pi

k. Since πk(ω) is a union
of elements of πi

k, it follows that μ(E | Qi
k(ω)) = pi

k. By definition, Qi
k(ω) ⊆ πi

k(ω). As
πk+1(ω) is a union of elements of πi

k+1, and since πk+1(ω) ⊆ πk(ω), it follows by the def-
inition of the partition πk+1 that πi

k+1(ω) ⊆ Qi
k(ω). Therefore,

⋂
kQ

i
k(ω) = ⋂

k πk(ω).
Hence, pi

k → μ(E | ⋂
kQ

i
k(ω)) = μ(E | ⋂

k πk(ω)). This shows that the two sequences
pi
k converge to the same limit.

4. Proofs—monologues

The condition of bounded ratio variation of a sequence (pk ) is given in terms of sums
of ratios of the pk’s. In Claim 1, we characterize this condition in terms of products of
ratios of the pk’s. We use the following lemma to establish a connection between sums
and products.

Lemma 1. Let (εk ) be a nonnegative sequence. Then limn
∏n

k=1(1 + εk ) < ∞ if and only
if limn

∑n
k=1 εk <∞.

Proof. For the “only if” direction, observe that
∏n

k=1(1+εk ) ≥ 1+∑n
k=1 εk. For the “if”

direction, note that limn
∑n

k=1 εk ≥ limn
∑n

k=1 ln(1 + εk ), and limn
∑n

k=1 ln(1 + εk ) < ∞,
if and only if limn

∏n
k=1(1 + εk ) <∞.

Using Lemma 1, we describe bounded ratio variation in terms of products rather
than sums.

Claim 1. An internal sequence (pk ) has bounded ratio variation if and only if

lim
n

n∏
k=1

max
{
pk+1

pk
,
p̄k+1

p̄k

}
<∞. (3)
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Proof. Note that

max
{
pk+1

pk
,
p̄k+1

p̄k

}
= 1 + max

{
pk+1

pk
− 1,

p̄k+1

p̄k
− 1

}
. (4)

Setting εk = max{pk+1/pk−1, p̄k+1/p̄k−1}, it follows from Lemma 1 that (3) holds if and
only if limn

∑n
k=1 max{pk+1/pk − 1, p̄k+1/p̄k − 1} < ∞, namely that (pk ) has bounded

ratio variation.

Let (�, μ, (πk )k≥1 ) be a learning process, E ⊆ � and ω ∈ �. Denote for brevity Qk =
πk(ω) and ak = μ(Qk ). The sequence pk = μ(E |Qk ) is a monologue.

The following claim characterizes positivity of a monologue in terms of the product
of ratios of the ak’s.

Claim 2. The following statements are equivalent:

(i) (pk ) is a positive monologue;

(ii) limn an > 0;

(iii)

lim
n

n∏
k=1

ak
ak+1

< ∞. (5)

Proof. The finite products (up to n) in (5) are equal to a1/an+1. They converge if
and only if limn an > 0. This is equivalent to saying that the monologue is positive as
μ(

⋂
Qk ) = limn an.

The next claim relates ratios of pk’s with ratios of ak’s, which enables us, using
Claim 1 and Claim 2, to tie together bounded ratio variation with positivity of a mono-
logue.

Claim 3. For each k,

ak
ak+1

≥ max
{
pk+1

pk
,
p̄k+1

p̄k

}
. (6)

Proof. Observe that inequality (6) holds if and only if ak/ak+1 ≥ pk+1/pk and ak/

ak+1 ≥ p̄k+1/p̄k. These two inequalities hold if and only if

0 ≤ pkak −pk+1ak+1 ≤ ak − ak+1. (7)

But (7) holds because μ(E∩ (Qk \Qk+1 )) = μ(E∩Qk )−μ(E∩Qk+1 ) = pkak−pk+1ak+1,
and 0 ≤ μ(E ∩ (Qk \Qk+1 )) ≤ μ(Qk \Qk+1 ) = ak − ak+1.

For the proof of Theorem 1 and Proposition 1, we use the same learning process
(�, μ, E, (πk )k≥1 ), which we call the basic learning process. In the basic learning pro-
cess, � = {ω1, η1, ω2, η2, � � � , η, ω}. Thus, � consists of infinitely many states ωk and ηk
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and a pair of states η and ω. We set E = {ω1, ω2, � � � , ω}. The partitions are defined by
π1 = {�} and for k> 1,

πk = {
{ω1}, {η1}, � � � , {ωk−1}, {ηk−1}, {ωk, ηk, � � � , η, ω}

}
.

We are interested in the monologue atω. As before, we define Qk = πk(ω) = {ωk, ηk, � � � ,
η, ω} for brevity.

Proof of Theorem 1. We start by showing that every internal positive monologue has
bounded ratio variation. Using the notation above, assume that pk = μ(E | Qk ) is a
positive monologue. Then, by Claim 2, (5) holds. Therefore, the inequality (6) implies
the inequality (3). Thus, by Claim 1, (pk ) has bounded ratio variation.

Next, we prove that every internal sequence (pk ) with bounded ratio variation is
a positive monologue in the basic learning process at ω. For this, we need to define
the probability measure μ such that pk = μ(E | Qk ), and μ(

⋂
kQk ) > 0, which means

that the process is positive. Note that μ(Qk ) −μ(Qk+1 ) = μ({ωk, ηk}), and limk μ(Qk ) =
μ({ω, η}). Thus, it is enough to define for each k ≥ 1, μ(Qk ), and μ(ωk ) and also μ(ω).

Let a1 = 1 and define by induction a sequence ak that satisfies for every k,

ak
ak+1

= max
{
pk+1

pk
,
p̄k+1

p̄k

}
. (8)

Note that (8) is obtained by replacing the inequality in (6) by an equality. The right-
hand side of (8) is at least 1, hence the sequence (ak ) is weakly decreasing. There-
fore, for the decreasing sequence of events Qk, we can define μ(Qk ) = ak, and thus
μ(Qk \ Qk+1 ) = μ({ωk, ηk}) = ak − ak+1. Since (6) is equivalent to (7), it follows that
we can define μ(ωk ) = pkak − pk+1ak+1, which is nonnegative and does not exceed
μ(Qk \Qk+1 ).

Let a = limak. By Observation 1, (pk ) has bounded variation, and hence it con-
verges. Let p = limpk. We define μ(ω) = pa. This completes the definition of μ. Now,
μ(E ∩Qk ) = (

∑
i≥k piai −pi+1ai+1 ) +pa. As piai converges to pa, this sum is pkak, im-

plying that μ(E | Qk ) = pk, which means that (pk ) is the monologue at ω. To show that
the monologue is positive, we note that by Claim 1, (3) holds since (pk ) has bounded ra-
tio variation. In virtue of (8), Claim 2 implies that a > 0 and as μ(

⋂
kQk ) = a, this means

that the monologue is positive.

Note that in the proof of Theorem 1, the sequence ak = μ(Qk ) can be weakly de-
creasing. Indeed, when pk = pk+1, the right-hand side of (8) is 1, and thus, ak = ak+1. In
the proof of Theorem 2, we need to define a positive monologue on the basic learning
process with a strictly decreasing sequence ak. We show here that this is possible.

Lemma 2. An internal sequence with bounded ratio variation is a positive monologue in
the basic learning process at ω with a strictly decreasing sequence (μ(πk(ω))).
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Proof. Let βk be a sequence such that for each k, βk > 1 and limn
∏n

k=1 βk <∞. In the
proof of Theorem 1, define the sequence ak by

ak
ak+1

= max
{
pk+1

pk
,
p̄k+1

p̄k

}
βk (9)

rather than by (8). Obviously, ak is strictly decreasing. Since (9) implies the inequality
(6), the proof holds verbatim up to the point where we need to show that (5) holds in
order to prove that the monologue is positive. This follows from (9), (3), and the bound-
edness of the product of the β’s.

Proof of Observation 2. For (i), we note that if (pk ) is in (ξ, 1 − ξ) for some ξ > 0,
then |pk+1 −pk|/rk < |pk+1 −pk|/ξ. For (ii), assume that (pk ) converges monotonically
to 0. We can assume that pk ≤ 1/2 for all k. The ratio variation of pk is

∑
k(p̄k+1 −

p̄k )/p̄k ≤ 2
∑

k(p̄k+1 − p̄k ). If (pk ) converges monotonically to 1, we can assume that
pk ≥ 1/2 for all k. The ratio variation of pk is

∑
k(pk+1 −pk )/pk ≤ 2

∑
k(pk+1 −pk ).

Proof of Proposition 1. Let (pk ) be an internal sequence. If (pk ) has bounded ra-
tio variation, the result follows from Theorem 1. So we assume that (pk ) does not have
bounded ratio variation. We show that (pk ) is the monologue in the basic learning pro-
cess at ω. We define μ for all Qk and ωk as in the proof of Theorem 1. Since (pk ) does
not have bounded ratio variation, it follows from (8) and Claims 1 and 2 that limak = 0.
Therefore, μ({η, ω}) = 0. Thus, μ(E ∩ Qk ) = ∑

i≥k(piai − pi+1ai+1 ) = pkak, implying
that μ(E |Qk ) = pk.

5. Proofs—dialogues

Before proving Theorem 2 and Proposition 2, we consider three auxiliary subjects:

• Proposition 3 which belongs to the theory of variation of sequences;

• Some basic lemmas concerning the probabilities of disjoint events and their inter-
section with another event;

• A basic joint learning process which is used in both Theorem 2 and Proposition 2.

Selection sequences and bounded variation

In the proof of part (ii) of Theorem 2, we use the equivalence of (i) and (iv) in Proposi-
tion 3. Therefore, we first prove this proposition.

Proof of Proposition 3. Suppose that all the selections from the sequences (p1
k ) and

(p2
k ) have bounded variation. Then in particular the two sequences (p1

k ) and (p2
k ) and

the sequences (a) and (b) have bounded variation in virtue of being selections from (p1
k )

and (p2
k ). Since |p1

k −p2
k| ≤ |p1

k −p1
k+1|+ |p1

k+1 −p2
k|, it follows that the series defined by

(c) absolutely converges, because (p1
k ) and (b) have bounded variation. Thus, (i) implies

each of (ii), (iii), and (iv).
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We now show that (ii), (iii), and (iv) are equivalent. Suppose first that (p1
k ), (p2

k ), and
(a) have each bounded variation. Since |p2

k −p1
k| ≤ |p2

k −p2
k+1| + |p2

k+1 −p1
k|, it follows

that the series defined by (c) absolutely converges. Thus, (ii) implies (iv) and similarly
(iii) implies (iv). If (iv) holds, then since |p2

k+1 − p1
k| ≤ |p2

k+1 − p2
k| + |p2

k − p1
k| it follows

that (a) has bounded variation and in a similar way also (b). Thus, (iv) implies (ii) and
(iii).

Finally, it is enough to show that (ii) and (iii) imply (i). Observe that any summand
in a selection from (p1

k ), (p2
k ) appears in the variation of either (p1

k ), (p2
k ), (a) or (b).

This shows that if these four sequences have bounded variation, then all selections have
bounded variation.

Three lemmas concerning the probabilities of three events

In the first two lemmas, we study a function that we have already met in the definition
of ratio variation. For every x, y ∈ (0, 1), we denote

ϕ(x, y ) = max
{
y

x
− 1,

ȳ

x̄
− 1

}
.

Note that whenever ξ ≤ x, y ≤ 1 − ξ, for some ξ > 0,

ϕ(x, y ) ≤ |x− y|/ξ. (10)

Lemma 3. Let x, y ∈ (0, 1), (�, μ) be a measurable space, A, B ⊆ � be two disjoint events,
and E ⊆ � be an event such that (a) μ(A) > 0, (b) μ(B) = 2ϕ(x, y )μ(A); (c) μ(E | A) = y;
and (d) μ(E ∩B) = (x+ 1x>y )ϕ(x, y )μ(A). Then μ(E | A∪B) = x.

Proof. Suppose first that x > y. Then

μ(E | A∪B) = μ(A)
(
xϕ(x, y ) +ϕ(x, y ) + y

)
μ(A)

(
2ϕ(x, y ) + 1

)
= (x− y )(1 + x) + y(1 − x)

2(x− y ) + 1 − x
= x(x− 2y + 1)

x− 2y + 1
= x.

Now suppose that x≤ y. Then

μ(E | A∪B) = μ(A)
(
xϕ(x, y ) + y

)
μ(A)

(
2ϕ(x, y ) + 1

) = (y − x+ y )x
2(y − x) + x

= x.

Lemma 3 is of great importance for the constructive proofs that follow. Suppose
that the probability of an event A, say μ(A), and the conditional probability μ(E | A)
have already been defined. We would like to add another event B, disjoint from A, such
that (i) the probability of B is μ(B) = 2ϕ(x, y )μ(A), and (ii) the conditional probability
of E given the union A ∪ B is equal to x. Is this possible, and if so, what should be
the probability of E within B? Lemma 3 provides sufficient conditions for when this is
possible. Furthermore, if

μ(E ∩B) = (x+ 1x>y )2ϕ(x, y )μ(A), (11)
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then μ(E | A ∪ B) = x. The case where x = y requires a special treatment. When x = y,
ϕ(x, y ) = 0, which would make μ(B) = 0. In this case, ϕ(x, y ) is replaced by ε > 0. We set
μ(B) = 2εμ(A) and μ(E ∩B) = x · 2εμ(A). In this case, the conditional probability of E
given the union A ∪ B is equal to x. We give a name for the fixing of B and E in a way
that gives rise to the result of Lemma 3.

When we set μ(B) = 2ϕ(x, y )μ(A) and μ(E ∩ B) = (x + 1x>y )ϕ(x, y )μ(A), we say that we
apply the (x; μ(A), y )-scheme on B.

Suppose that μ(A) > 0 and μ(E |A) = y. If we apply the (x; μ(A), y )-scheme on B, then
Lemma 3 states that μ(E | B ∪A) = x. In the construction below, we apply (x; μ(A), y )-
schemes only to events A whose probability is positive.

Lemma 4. Let x, y ∈ (0, 1), (�, μ) be a measurable space, A, B ⊆ � two disjoint events,
and E ⊆ � an event such that (a) μ(A) > 0, (b) μ(B) ≥ 2ϕ(x, y )μ(A); (c) μ(E | A) = y.
There exists a number z such that if μ(E ∩B) = z, then μ(E | A∪B) = x.

Proof. In case μ(B) = 0, the result is trivial. Assume then that μ(B) > 0 and let

z = μ(B)x+μ(A)(x− y )
μ(B)

.

We show first that z ≥ 0. It is clear when x ≥ y. If x < y, then ϕ(x, y ) = (y − x)/x and
μ(B)x+μ(A)(x− y ) ≥ ((y − x)/x)x+μ(A)(x− y ) = (1 −μ(A))(y − x) ≥ 0. Thus, z ≥ 0.
We now show that z ≤ 1. In case x ≤ y, this is clear. When x > y, μ(B) ≥ 2ϕ(x, y )μ(A) ≥
μ(A)(x− y )/(1 − x). Therefore, z = x+μ(A)(x− y )/μ(B) ≤ x+ 1 − x = 1. To complete
the proof, assume that μ(E | B) = z. Then

μ(E |A∪B) = μ(B)μ(E | B) +μ(A)μ(E | A)
μ(B) +μ(A)

= μ(B)x+μ(A)(x− y ) +μ(A)y
μ(B) +μ(A)

= x.

The next lemma will be used for estimating the growth in the total weight during the
induction process.

Lemma 5. Let D = D1 ∪ D2 and E be events with D1 ∩ D2 = ∅ and let μ be a measure.
Suppose that μ(E | D1 ) = p, μ(E |D2 ) = z and μ(E |D) = q. Then, for every p′,

μ(D1 |D)
∣∣p−p′∣∣ +μ(D2 | D)

∣∣z −p′∣∣ ≤ ∣∣p−p′∣∣ + |q−p|.

Proof. By assumption, q = μ(D1 | D)p + μ(D2 | D)z = (1 − μ(D2 | D))p + μ(D2 | D)z.
Thus, μ(D2 | D)z = q+μ(D2 |D)p−p. Hence,

μ(D1 |D)
∣∣p−p′∣∣ +μ(D2 | D)

∣∣z −p′∣∣
= μ(D1 | D)

∣∣p−p′∣∣ + ∣∣q+μ(D2 |D)p−p−μ(D2 | D)p′∣∣
≤ μ(D1 |D)

∣∣p−p′∣∣ + |q−p| +μ(D2 |D)
∣∣p−p′∣∣ = ∣∣p−p′∣∣ + |q−p|.
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The basic joint learning process

We consider a joint learning process (�, μ1, μ2, E, (π1
k )k≥1, (π2

k )k≥1 ) defined as follows.
The state space is � = {ωi,j , ηi,j | i, j ∈ [1, � � � , ∞]}. We call the events Ci,j = {ωi,j , ηi,j }
cells. Define, Ei,j = {ηi,j } and set E = ⋃

i,j Ei,j . Thus, ηi,j is the only common state to E

and Ci,j . We denote Row(m, �k) = ⋃
j≥k Cm,j and call it the k-truncated m-row. Similarly,

the k-truncated m-column is Col( �k, m) = ⋃
i≥k Ci,m. We set ω = ω∞,∞, and study the

dialogue at ω. We assume that the agents have a CP, that is, μ1 = μ2 = μ.
We assume that for two sequences (p1

k ) and (p1
k ) the CP μ satisfies the following

conditions. For every k= 1, 2, � � � and for every i, j ∈ [k+ 1, ∞],

μ
(
E | Row(i, �k)

) = p1
k and μ

(
E | Col( �k, j)

) = p2
k, (12)

and

μ
(
E | Row(k, �k)

) = p1
k and μ

(
E | Col( �k, k)

) = p2
k. (13)

Note that (12) can be equivalently written in a different order of quantification: for i =
1, 2, � � � and for every k≤ i− 1, μ(E | Row(i, �k)) = p1

k, and similarly for agent 2.
The initial partition of player 1, π1

1 , consists of all the 1-truncated rows Row(i, �1) for
i ∈ [1, � � � , ∞]. For player 2, π2

1 consists of all the 1-truncated columns Col(�1, j) for j ∈
[1, � � � , ∞]. The rest of the partitions are defined endogenously as described in Section 3.
In stage k ≥ 1, Row(i, �k)) for i ≥ k are elements of the partition π1

k, and Col( �k, j) for j ≥ k

are elements of π2
k. By equations (12) and (13), the event that the pair of posteriors is

(p1
k(ω), p2

k(ω)) is

π̂k(ω) =
( ⋃
i≥k+1

Row(i, �k)

)
∩

( ⋃
j≥k+1

Col( �k, j)

)

=
⋃

i≥k+1

Row(i,
−−−→
k+ 1)

=
⋃

j≥k+1

Col(
−−−→
k+ 1, j).

Thus, Row(i,
−−−→
k+ 1) for i ≥ k+ 1 are elements of the partition π1

k+1 and Col(
−−−→
k+ 1, j) for

j ≥ k+ 1 are elements of the partition π2
k+1. It is common knowledge in π̂k(ω) that the

posteriors at stage k are (p1
k(ω), p2

k(ω)). Stage k of the process is depicted in Figure 1.

Proof of Theorem 2

We start with the short proof of part (i) of the theorem.

Proof of part (i) of Theorem 2. Suppose that the pair (p1
k ) and (p2

k ) forms a dia-
logue at ω with a common prior μ. We show that every selection of these sequences
has bounded ratio variation. Consider a sequence i(k) of names in {1, 2}. We define a
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Figure 1. The basic joint learning process in stage k. The truncated rows Row(i, �k) and
columns Col( �k, j), for i, j ≥ k, are elements of the partitions π1

k and π2
k, respectively. The condi-

tional probability of E is p1
k in all these truncated rows, but the first, and p2

k in all these truncated
columns, but the first. Thus, the posterior probabilities of E are (p1

k, p2
k ) in all the states of π̂k(ω),

which consists of the cells Ci,j with i, j ≥ k + 1. When π̂k(ω) becomes common knowledge, the

truncated rows Row(i,
−−−→
k+ 1) and columns Col(

−−−→
k+ 1, j), for i, j ≥ k+1, become elements of π1

k+1
and π2

k+1, respectively. The sequence (p1
k, p2

k ) is the dialogue at ω= ω∞,∞.

decreasing sequence of events Qk such that Qk ⊆ πk(ω), where πk(ω) is the element of
the meet of π1

k and π2
k that contains ω. We define Qk as follows:

Qk = {
ω | πi(k)

k (ω) ⊆ πk(ω) and μ
(
E | πi(k)

k

) = pi(k)
k

}
.

In other words, the event Qk is the union of all the elements of the partition πi(k)
k

contained in πk(ω) in which agent i(k) assigns probability pi(k)
k to E. Since Qk+1 ⊆

πk+1(ω) ⊆ Qk, it follows that the sequence Qk is decreasing. Thus, the sequence pi(k)
k

is the monologue at ω generated by the sequence Qk and the common prior μ. By
construction,

⋂
k πk+1(ω) ⊆ ⋂

kQk. Since the dialogue is positive, μ(
⋂

k πk+1(ω)) > 0.
Thus, the monologue pi(k)

k is positive as well. By Theorem 1 and Observation 2, the

sequence pi(k)
k has bounded ratio variation.

Proof of part (ii) of Theorem 2. Assume that two strictly internal sequences (p1
k )

and (p2
k ) satisfy the condition in part (ii) of the theorem. The sequences are strictly

internal, and thus one can find ξ > 0 such that ξ < pi
k < 1 − ξ for every k and i = 1, 2.

We use the basic joint learning process and construct the CP μ such that the two se-
quences form a positive dialogue at ω. In view of Proposition 3, we can assume that∑∞

k=0 |p1
k −p2

k|< ∞.
A sketch of the construction of μ. We construct the probabilities backward. Define

Hi,j = ⋃
Rowk≥i(k,

−→
j ). This is the bottom-right corner whose top-left cell is Ci,j . Sup-

pose that all the probabilities of Ci,j and Ei,j in Hk+1,k+1 have been defined. We want to
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extend the definition to Hk,k. This is done is Steps 4–6 below. We first define the prob-

abilities on the kth column, Col(
−−−→
k+ 1, k). By doing it, we ensure that the conditional

probability of E on every row Row(i,
−→
k ) is p1

k, i ≥ k+ 1. We then define the probability

of the cells on Row(k,
−−−→
k+ 1). This is done in a way that makes the probability of the

event E conditional on every column starting at Ck,j , j ≥ k+ 1 equal to p2
k.

Finally, the probability on the Ck,k is defined. The objective here is to make the

probability of E conditional on the row Row(k,
−→
k ) different from p1

k, and at the same

time the probability of E conditional on the column Col(
−→
k , k) different from p2

k. This

point in the construction guarantees, for instance, that when agent 1 announces p1
k at

time k, agent 2 knows that the event related to the row Row(k,
−→
k ) did not occur and he

updates his belief accordingly.

An important issue in the construction is to control the size of Col(
−−−→
k+ 1, k),

Row(k,
−→
k ), and Ck,k added in the induction process. It should not grow too fast, the

reason being that when we define the measure on these events, we add a weight to each

and by the end of the process, we normalize the measure obtained. If the added weight

is too large, the normalized probabilities at the end of the process might be very small

and eventually vanish.

The bounded variation of the sequences involved is the property that ensures that

the normalizing factors are uniformly bounded. The probabilities in the limit, including
the conditional ones, are therefore well-defined.

The construction of μ. We proceed in two stages. In the first stage, we define for

every integer � a measure μ� on �. It will not necessarily be a probability measure. The

measure μ� will be defined inductively in Steps 0–6 below. At each stage, the measure of

more cells will be introduced. The added measure will be called also the weight or size

added.

The idea of the construction is to add inductively weight to more and more cells

without taking care of the total weight. Only at the end of the inductive process μ� is nor-

malized in order to obtain a probability measure μ�. Note that the conditional measures
do not change after normalization. In the second stage, a measure μ will be defined as a

limit of the sequence (μ� ). One of the objectives of the construction is to make sure that

the the sequence (μ� ) is not vanishing in the limit. That is, μ is indeed a measure.

Stage 1: Defining the measure μ�. Fix an integer �. During the construction we are

going to define a few arrays of weights, not necessarily probabilities, and conditional

probabilities:

c�i,j := μ�(Ci,j ) = μ�(ωi,j , ηi,j );

α�
i,j := μ�(E | Ci,j ) = μ�(ηi,j )/μ�(ωi,j , ηi,j );

d�i,j := μ�
(
Col(

−→
i , j)

)
;

γ�
i,j := μ�

(
E | Col(

−→
i , j)

)
;
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r�i,j := μ�
(
Row(i,

−→
j )

)
;

ρ�i,j := μ�
(
E | Row(i,

−→
j )

)
.

During the construction, for every i, j < ∞, we will take care to keep c�i,j (across �) away
from 0. The reason is that in the second stage a converging subsequence (as � goes to
infinity) will define μ, and we want to make sure that limit lim�→∞ c�i,j does not vanish.
This, in turn, will guarantee that the conditional probabilities are well-defined.

Step 0: Defining the probabilities on the margins. We start with the weights on
the right margin, Col(

−→
1 , ∞): (α�

i,∞ ) and (c�i,∞ ), i = 1, � � � , ∞. By assumption, (p2
k ) is

a positive monologue. That is, one can find a sequence of decreasing events (Qk ), an
event E and a measure ν2 such that ν2(

⋂
kQk ) > 0 and (p2

k ) = (ν2(E | Qk )).
Define c∞,∞ = ν2(

⋂
kQk ) and α�(η∞,∞ ) = (μ�(η∞,∞ ))/(μ�(η∞,∞, ω∞,∞ )) =

limk p
2
k. This takes care of the limit cell in which the conditional probability is limk p

2
k.

Next, define, ck,∞ = ν2(Qk \ Qk+1 ) and μ�(ηk,∞ )) = ν2(E ∩ (Qk \ Qk+1 )) (i.e., α�
k,∞ =

ν2(E ∩ (Qk \Qk+1 )) · ck,∞). By Lemma 2, ck,∞ > 0 for every k = 1, 2, � � � .

We turn to the probabilities defined on the bottom margin, Row(∞,
−→
1 ): (α�

∞,j ) and

(c�∞,j ). As (p1
k ) is a positive monologue, we can find a sequence of decreasing events

(Q′
k ), an event E′ and a measure ν1 such that ν1(

⋂
kQ

′
k ) > 0 and (p1

k ) = (ν1(E | Q′
k )) is a

monologue concerning E′ with respect to (Q′
k ). Without loss of generality,6 ν1(

⋂
kQ

′
k ) =

ν2(
⋂

kQk ). We now define probabilities on the bottom margin in a manner similar to
that of the right margin. These definitions guarantee that (a) c∞,k > 0 for every k =
1, 2, � � � and (b) (12) holds for i, j = ∞.

Note that the weights on the last row and column do not depend on �. Denote by M

their total size, that is, M := r�∞,1 + d�1,∞ − c�∞,∞.
We proceed with the other cells. For any � + 1 ≤ i, j < ∞, set c�i,j = α�

i,j = 0. That
is, the bottom-right corner H�+1,�+1, excluding the right and bottom margins, gets total
weight 0. Steps 1–3 define the probabilities over H�,�. For the following definitions, recall
the definition of the scheme introduced above.

Step 1: Defining the measure on the truncated column Col(
−−→
�+ 1, �). Fix i ≥ � + 1.

Apply the (p1
� ; r�i,�+1, ρ�i,�+1 )-scheme on Ci,�.

What is the total size of the �th column just added? From Step 0, we deduce
that r�i,�+1 = c�i,∞ and ρ�i,�+1 = α�

i,∞. The scheme dictates that the size of Ci,� is
2ϕ(p1

� , α�
i,∞ )r�i,�+1. This is bounded by 2r�i+1,�/ξ (recall that ξ < p1

� < 1 − ξ). Thus, the
total weight added (due to all the cells Ci,�, i ≥ �+ 1) is bounded by 2M/ξ.

Step 2: Defining the measure on the truncated row Row(�,
−−→
�+ 1). Fix j ≥ �+ 1 and

apply the (p2
� ; d��+1,j , γ

�
�+1,j )-scheme on the cell C�,j . Again, the total added weight is

bounded by 2M/ξ.
Step 3: Defining the measure on the diagonal cell C�,�. The diagonal cell requires

a special treatment. We have to define the probabilities μ�(C�,� ) and μ�(E ∩ C�,� ) in a
way that (a) ρ�i,�+1 is close to p1

� ; and (b) (13) holds for k = �. That is, ρ��,� should be

6This is so because otherwise we can assume, without loss of generality, that ν1(
⋂

k Q
′
k ) >

ν2(
⋂

k Qk ). By redefining the conditional probabilities (ν1(E | Q′
k )), actually by multiplying them all by

ν2(
⋂

k Qk )/ν1(
⋂

k Q
′
k ), one can make their limit equal to ν2(

⋂
k Qk ).
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different from p1
� and γ�

�,� should be different from p2
� . Here, we choose ρ��,� and γ�

�,� to
be bounded away (across different �’s), respectively, from p1

� and p2
� .7

Let (ε� ) be a sequence of positive numbers such that
∑

� ε� < ∞ and ε� < ξ/2 for
every �. Let q̃�� be in the interval [p1

� + ε�, p1
� + 2ε�]. Its precise value will be determined

shortly. Note that since ε� < ξ/2, we have 0 < q̃�� < 1). Let

μ�(C�,� ) = max
{

2ϕ
(
q̃��; r��,�+1, ρ��,�+1

)
, ε�

}
.

We now use Lemma 4 with A= Row(�,
−−→
�+ 1), y = ρ��,�+1 and B = C�,�. The lemma states

that there is z such that if μ�(ε�,� )/μ�(C�,� ) = z, then ρ��,� = q̃��.

The probability μ�(C�,� ) induces also the conditional probability on Col(
−→
� , �). Our

goal is to have it different from p2
k by at least ε2

� . Since μ�(C�,� ) is at least ε� = q̃�� when
we choose q̃�� in the interval [p2

� + ε�, p2
� + 2ε�] and move from one end of the interval to

the other, the probability of E conditional on Col(
−→
� , �) is changing by at least ε2

� (one ε�
for the size of μ�(C�,� ) and the other because the size of the interval is ε�). We conclude
that by a proper choice of q̃�� we have that |ρ�,� −p1

� | ≥ ε� and |γ�,� −p2
� | ≥ ε2

�/2.
The added weight in this step is μ�(C�,� ), which is bounded by max{2ϕ(q̃��, ρ��,�+1 ) ×

r��,�+1, ε�}. By Step 1, r��,� ≤ 2M/ξ and, therefore, 2ϕ(q̃��; ρ��,�+1, r��,�+1 ) ≤ 4M/(ξ2 ). Thus,
the added weight in Step 3 is bounded by max{4M/ξ2, ε�}. Since the sequence (εk ) is
bounded, we obtain that the total weight added in Steps 0–3 is bounded by M1 (which
does not depend on �). That is,

M + 4M/ξ+ max
{

4M/ξ2, ε�
} ≤M1. (14)

To summarize, on H�,� the conditional probabilities satisfy ρ�i,� = p1
� for i ≥ � + 1,

γ�
�,j = p2

� for j ≥ � + 1, ρ�(�, �) = q̃�� ≥ p1
� + ε� and |γ�

�,� − p1
� | ≥ (ε� )2. The conditional

probability of E given H�,� is a convex combination of p2
� and q̃�� and we denote it by q��.

We now continue the definitions of μ� on all other cells by a backward induction.
Suppose that all c�i,j and α�

i,j , k + 1 ≤ i, j, have been defined. The inductive procedure
has three steps that are analogous to Steps 1–3.

Step 4: Defining the measure on the truncated column Col(
−−−→
k+ 1, k). For each i ≥

k+ 1, apply the (p1
k; r�i,k+1, ρ�i,k+1 )-scheme on Ci,k.

Step 5: Defining the measure the truncated row Row(k,
−−−→
k+ 1). For each j ≥ k + 1,

apply the (p2
k; d�k+1,j , γ

�
k+1,j )-scheme on Ck,j .

Step 6: Defining the measure on the diagonal cell Ck,k. We iterate the construction
in Step 3. The weights μ�(Ck,k ) and μ�(Ek,k ) are defined in such a way that (a) ρ�i,k+1

is close, but not equal to p1
k; and (b) γ�

k,k is different from p2
k. That is, (13) holds for k.

Moreover, we choose the measures so that ρ�k,k and γ�
k,k are bounded away across differ-

ent �’s, respectively, from p1
k and p2

k. This will avoid a coincidence as � goes to infinity.
We choose q̃�k in the interval [p1

k + εk, p1
k + 2εk]. Its precise value will be determined

shortly. Note that since εk < ξ/2, we have 0 < q̃�k < 1. Let

μ�(Ck,k ) = max
{

2ϕ
(
q̃�k; r�k,k+1, ρ�k,k+1

)
, εk

} · r�k,k+1. (15)

7The reason is that in stage 2, at the end of this proof, we let � go to infinity. This makes sure that the
probabilities in the limit are still different.
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We now use Lemma 4 with A = Row(k,
−−−→
k+ 1), y = ρ�k,k+1 and B = Ck,k. The lemma

states that there is z such that if μ�(Ek,k | Ck,k ) = z, then ρ�k,k = q̃�k.

When setting μ�(Ck,k ), the induced conditional probability of E given Col(
−→
k , k) is

determined as well. Our goal is to have it different from p2
k by at least ε2

k. Since μ�(Ck,k )
is at least εk · r�k,k+1 when we choose q̃�� in the interval [p1

k + εk, p1
k + 2εk] and move

from one end of the interval to the other, the probability of E given Col(
−→
k , k) (recall it is

denoted γ�
k,k) is changing by at least ε2

� (as is Step 3, one εk for the size of μ�(Ck,k ) and

the other because the size of the interval is εk). We obtain that by a proper choice of q̃�k
we have ∣∣ρ�k,k −p1

k

∣∣ ≥ εk, and,
∣∣γ�

k,k −p2
k

∣∣ ≥ ε2
k/2. (16)

It is important to note that the bounds in (16) are independent of �. This implies that
when we take the limits as � → ∞, these bounds stay untouched.

Due to Steps 4 and 6, the conditional probability of E given Hk,k is a convex com-
bination of p1

k and q̃�k and we denote it by q�k. Since |q̃�k − p1
k| ≤ 2εk, we obtain that

|q�k −p1
k| ≤ 2εk.

By how much has the total weight increased? We start by estimating the weight

increase due to Step 4, which takes care of Col(
−−−→
k+ 2, k) and of Ck+1,k. We start with

the estimation of the weight of Col(
−−−→
k+ 2, k). For this purpose, we use Lemma 5 with

D = Hk+1,k+1, D1 = Hk+2,k+1 and D2 = Row(k + 1,
−−−→
k+ 1). Using the notation of this

lemma, we have p= p1
k+1, z = ρ�k+1,k+1 and q = q�k+1. Letting p′ = p1

k, we obtain

μ�(D1 | D)
∣∣p1

k+1 −p1
k

∣∣ +μ�(D2 | D)
∣∣z −p1

k

∣∣
≤ ∣∣p1

k+1 −p1
k

∣∣ + ∣∣q�k+1 −p1
k+1

∣∣. (17)

In the inductive construction, ρi,k+1 = p1
k+1 when i ≥ k + 2. Step 4 states that the cell

Ci,k should have the size 2ϕ(p1
k, p1

k+1 )r�i,k+1. Therefore, the total size of Col(
−−−→
k+ 2, k) is

μ�(D1 ) · 2ϕ(p1
k, p1

k+1 ). The cell Ck+1,k is also defined in Step 4. Its size, μ�(Ck+1,k ), is
μ�(D2 ) · 2ϕ(p1

k, z).
We conclude that the total weight added in Step 4 is

μ�(D1 ) · 2ϕ
(
p1
k, p1

k+1

) +μ�(D2 ) · 2ϕ
(
p1
k, z

)
≤ 2μ�(D)

[
μ�(D1 | D)

∣∣p1
k+1 −p1

k

∣∣ +μ�(D2 | D)
∣∣z −p1

k

∣∣]/ξ
≤ 2μ�(D)

[∣∣p1
k+1 −p1

k

∣∣ + ∣∣q�k+1 −p1
k+1

∣∣]/ξ
= 2μ�(Hk+1,k+1 )

[∣∣p1
k+1 −p1

k

∣∣ + ∣∣q�k+1 −p1
k+1

∣∣]/ξ. (18)

The first inequality holds by (10) and the second inequality is by (17).
We apply a similar calculation to determine the growth of μ� due to Step 5. We obtain

that this growth is bounded by

2μ�(Hk+1,k+1 )
[∣∣p2

k+1 −p2
k

∣∣ + ∣∣q�k+1 −p2
k+1

∣∣]/ξ. (19)
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Recall that we defined the weight of the cell Ck,k in (15). In case 2ϕ(q̃�k; r�k,k+1,

ρ�k,k+1 ) ≥ εk, we define D = Hk,k+1, D1 = Hk+1,k+1 and D2 = Row(k,
−−−→
k+ 1). We get

p = q�k+1, z = γ�
k,k+1 and q = p2

k. Thus, by Lemma 5

μ�(D2 ) · 2ϕ
(
q̃�k, z

) ≤ 2μ�(D)μ�(D2 | D)
∣∣z − q̃�k

∣∣/ξ
≤ 2μ�(D)

[
μ�(D1 |D)

∣∣q�k+1 − q̃�k
∣∣ +μ�(D2 | D)

∣∣z − q̃�k
∣∣]/ξ

≤ 2μ�(D)
[∣∣q�k+1 − q̃�k

∣∣ + ∣∣q�k+1 −p2
k

∣∣]/ξ
= 2μ�(Hk+1,k+1 )

[∣∣q�k+1 − q̃�k
∣∣ + ∣∣q�k+1 −p2

k

∣∣]/ξ. (20)

In the other case where 2ϕ(q̃�k; r�k,k+1, ρ�k,k+1 ) < εk, we employ the estimation related to
Step 5. This bound is given by (19). We see that the added weight in step 6 is bounded by

2μ�(Hk+1,k+1 ) max
{[∣∣q�k+1 − q̃�k

∣∣ + ∣∣q�k+1 −p2
k

∣∣],
[∣∣p2

k+1 −p2
k

∣∣ + ∣∣q�k+1 −p2
k+1

∣∣]}/ξ. (21)

To summarize, the total weight defined in Steps 4–6 is bounded from above by total
weights added in (18), (19), and (21), which is

2μ�(Hk+1,k+1 )
([∣∣p1

k+1 −p1
k

∣∣ + ∣∣q�k+1 −p1
k+1

∣∣] + [∣∣p2
k+1 −p2

k

∣∣ + ∣∣q�k+1 −p2
k+1

∣∣]
+ max

{[∣∣q�k+1 − q̃�k
∣∣ + ∣∣q�k+1 −p2

k

∣∣],
[∣∣p2

k+1 −p2
k

∣∣ + ∣∣q�k+1 −p2
k+1

∣∣]})/ξ. (22)

When we start with Steps 0–3 and add up the their added weights, we obtain that the
total weight added in all Steps 0–6 is bounded from above by

M1

�∏
k=1

(
1 + ([∣∣p1

k+1 −p1
k

∣∣ + ∣∣q�k+1 −p1
k+1

∣∣] + [∣∣p2
k+1 −p2

k

∣∣ + ∣∣q�k+1 −p2
k+1

∣∣]
+ max

{[∣∣q�k+1 − q̃�k
∣∣ + ∣∣q�k+1 −p2

k

∣∣],
[∣∣p2

k+1 −p2
k

∣∣ + ∣∣q�k+1 −p2
k+1

∣∣]})/ξ)
. (23)

We show that these products have a uniform bound. In other words, there is a constant
W such that the quantity in (23) is bounded by W , for every �. We do it by using Lemma 1
and showing that each of the sequences involved in (23) has bounded variation, which
is independent of �.

In order to verify it, we have to check only the total variation of the following se-
quences:∣∣q�k+1 −p1

k+1

∣∣ ≤ 2εk+1,∣∣q�k+1 −p2
k+1

∣∣ ≤ ∣∣q�k+1 −p1
k+1

∣∣ + ∣∣p1
k+1 −p2

k+1

∣∣ ≤ 2εk+1 + ∣∣p1
k+1 −p2

k+1

∣∣,∣∣q�k+1 − q̃�k
∣∣ ≤ ∣∣q�k+1 −p1

k+1

∣∣ + ∣∣p1
k+1 −p1

k

∣∣ + ∣∣p1
k − q̃�k

∣∣ ≤ 4εk+1 + ∣∣p1
k+1 −p1

k

∣∣,∣∣q�k+1 −p2
k

∣∣ ≤ ∣∣q�k+1 −p2
k+1

∣∣ + ∣∣p2
k+1 −p2

k

∣∣ ≤ 2εk+1 + ∣∣p1
k+1 −p2

k+1

∣∣ + ∣∣p2
k+1 −p2

k

∣∣.
Note that the right-hand sides of all these inequalities do not depend on �. Moreover,
by the assumptions of (ii) of Theorem 2, the sequences on the right-hand sides have
bounded variation. Thus, there is a universal constant W , which bounds from above
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the quantity in (23) for every �. One can therefore normalize the measure μ� to obtain a

probability measure on � that satisfies (12), (13), and (16) for any k ≤ �. We denote the

normalized measure by μ�.

Stage 2: Taking a limit of μ�. In order to define the measure μ, we take a converging

subsequence of 8 μ� and denote it by μ. It is important to note that over the margins

the measure μ� does not depend on �: it was defined in Step 0 once and for all. More-

over, the μ�-measure of every cell in the margins is positive. After normalization, since

the normalizing factors across � are smaller than W , the μ�-probability of every cell in

the margins is bounded away from zero. Hence, the μ-probability of every cell in the

margins is strictly positive. Since the μ-measures of the cells in the margins are all pos-

itive, the conditional probabilities discussed above are all well-defined. In particular,

all the conditional probabilities in (12) are well-defined and, moreover, the equalities in

(12) are satisfied by μ. Furthermore, due to (16), the conditional probabilities on the

diagonal cells are kept bounded away from their respective probabilities. Therefore, the

inequalities in (13) are also satisfied by μ.

It may be the case that the limit measure μ is not a probability measure. However,

since the margin cells have a positive measure, μ is not zero. We can now normalize μ,

if needed, in order to obtain a probability measure. This completes the proof.

Proof of Proposition 2. In order to prove part (i), let (p1
k ) and (p2

k ) be two internal

sequences. We use the basic joint learning process and construct the CP μ such that the

two sequences form a positive dialogue at ω.

In this construction, we use the term center to denote the set of diagonal cells Ci,i

and the cells adjacent to the diagonal. Thus, the off center cells are those Ci,j with i, j in

[0, ∞] such that either i > j + 1 or j > i + 1. The construction of μ is carried out in four

steps.

In Step 1, μ(Ci,j ) will be defined for all cells Ci,j . In Step 2, we define μ(Ei,j ) for all

cells off center. In Step 3, we fix n < ∞ and define a probability μn that agrees with μ

off center and generates a dialogue that agrees with the given sequences in the first n

stages. In Step 4, we define μ to be limit of the probabilities μn.

Step 1: Defining μ on all cells. For each k< ∞, let

ek = (
max

{
1/p1

k, 1/p̄1
k, 1/p2

k, 1/p̄2
k

})−1
,

and εk = min{e0, � � � , ek}/3. Define for each i, j < ∞, μ(Ci,j ) = W ε
j
jε

i
i, μ(C∞,j ) = W ε

2j
j ,

μ(Ci,∞ ) = W ε2i
i , and finally μ(C∞,∞ ) = 0. The constant W is chosen to normalize the

sum of these numbers.

The only property of μ needed in the following steps is described in the next claim.

8Each of the probability measures μ� is defined on a countable space, �, and so the sequence has a
converging subsequence.
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Claim 4. Let aik = μ(Row(i, �k)) and b
j
k = μ(Col(j, �k)). Then, for all i, j in [1, ∞] and

k< ∞ such that i, j ≥ k+ 1,

aik

aik+1

≥ max
{

1

p1
k

,
1

p̄1
k

}
and

b
j
k

b
j
k+1

≥ max
{

1

p2
k

,
1

p̄2
k

}
. (24)

Indeed, consider first a pair (i, k) where k + 1 ≤ i < ∞. The ratio aik/a
i
k+1 is

(
∑

j≥k ε
i
iε

j
j + ε2i

i )/(
∑

j≥k+1 ε
i
iε

j
j + ε2i

i ). After canceling εii, this ratio becomes (
∑

j≥k ε
j
j +

εii )/(
∑

j≥k+1 ε
j
j + εii ). The numerator exceeds εkk. We increase the denominator by re-

placing each ε
j
j in the infinite sum by ε

j
k. This results in a geometric series whose sum is

smaller than 2εk+1
k . Now, we further increase the denominator by replacing εii with εk+1

k

(εii > εk+1
k because 1 > εi > εk and i < k). Thus, the ratio is bigger than

εkk/
(
3εk+1

k

) = 1/ek ≥ max
{

1/p1
k, 1/p̄1

k

}
.

This proves the first part of (24) for i < ∞.
Next, consider the pair (∞, k). The ratio ak∞/ak+1∞ is equal to

∑
j≥k ε

2j
j /

∑
j≥k+1 ε

2j
j .

The numerator exceeds ε2k
k . We increase the denominator by replacing each ε

2j
j by ε

2j
k ,

getting
∑∞

j=k+1 ε
2j
k = ε2k+2

k (1 − ε2
k ) ≤ 2ε2k+2

k . Thus, the ratio is greater than 1/(2ε2
k ) ≥

1/(2εk ) ≥ 1/((2/3)ek ) ≥ max{1/p1
k, 1/p̄1

k}. This proves the first part of (24) for i = ∞.
The proof for individual 2 is similar.

Step 2: Defining μ(Ei,j ) off center. For k < ∞ and i ≥ k+ 2, we let μ(Ei,k ) = p1
ka

i
k −

p1
k+1a

i
k+1. To justify this definition, we need to show that this difference falls between

0 and μ(Ci,k ). Note that max{1/p1
k, 1/p̄1

k} ≥ max{p1
k+1/p

1
k, p̄1

k+1/p̄
1
k}. Thus, (24) and the

equivalence between (6) and (7) imply that μ(Ei,j ) falls in the required range. Similarly,
for k< ∞ and j ≥ k+ 2 we let μ(Ek,j ) = p2

kb
i
k −p2

k+1b
i
k+1.

Observe that if for i > k, μ(E | Row(i, �k)) = pk, then by the definition of μ(Ei,k−1 ) it

follows that μ(E | Row(i,
−−−→
k− 1)) = p1

k−1. Thus, in order to show that (12) holds in row i

it is enough to show that μ(E | Row(i,
−−→
i− 1)) = p1

i−1, and similarly for the second agent.
This is done in the next step.

Step 3: Constructing probabilities in the center. It remains to define μ(Ei,j ) for the
cells in the center. This is done as follows. For a fixed n > 1, we define μ(Ei,j ) for center
cells such that (12) and (13) hold for all i, j ≤ n. We denote the resulting probability by
μn. Obviously, all measures μn coincide off center. The construction of μn is carried out
by induction on k= n+ 1, � � � , 1.

For k = n + 1, we define arbitrarily μn(En+1,n+1 ), μn(En+2,n+1 ), and μn(En+1,n+2 ).
Suppose the construction was carried out for k+ 1. We construct μn(Ek,k ), μn(Ek+1,k ),
and μn(Ek,k+1 ).

We start with μ(Ek+1,k ). Denote p = μ(E | Row(k+1,
−−−→
k+ 1)) and define μ(Ek+1,k ) =

p1
ka

k+1
k − pak+1

k+1. As max{1/p1
k, 1/p̄1

k} ≥ max{p/p1
k, p̄/p̄1

k}, it follows from (24) and the
equivalence between (6) and (7) that μ(Ei,j ) falls between 0 and μ(Ek+1,k ), and thus the



Theoretical Economics 17 (2022) Monologues, dialogues, and common priors 613

definition is valid. Moreover, μ(E | Row(k+ 1, �k) = p1
k. Thus, (12) holds in row k+ 1. We

similarly define μ(Ek,k+1 ).
We need to define μn(Ek,k ) so that (13) is satisfied. Since we want to keep the in-

equality in the limit of μn, we need p̂1
k and p̂1

k to be bounded away from p1
k and p2

k, re-

spectively, uniformly for all n. Let M1 = μn(E ∩ Row(k,
−−−→
k+ 1)) and K1 = μn(Row(k, �k)).

We similarly define M2 and K2 for agent 2.
If we set μn(Ek,k ) = 0, then μn(E | Row(k, �k)) = M1/K1 and μn(E | Col( �k, k)) =

M2/K2. If we set μn(Ek,k ) = μn(Ck,k ) = ε2k
k , then μn(E | Row(k,

−−−→
k+ 1)) = (ε2(k)

k +
M1 )/K1 and μn(E | Col(

−−−→
k+ 1, k)) = (ε2k

k + M2 )/K2. Thus, we can choose the pair
(p̂1

k, p̂2
k ) in such a way that p̂1

k is in the interval (M1/K1, (ε2k
k + M1 )/K1 ) and p̂2

k ∈
(M2/K2, (ε2k

k +M2 )/K2 ). Note that the lengths of these intervals are ε2k
k /K1 and ε2k

k /K2,
which depend only on the definition of μ(Ci,j ) (i.e., neither on the definition of μ(Ei,j )
nor on n).

Thus, we can find sufficiently small ρk > 0 and a pair (p̂1
k, p̂2

k ) (in the respective in-
tervals), such that |p̂1

k −p1
k| ≥ ρk and |p̂2

k −p2
k| ≥ ρk. The choice of the pair p̂1

k, p̂2
k may

depend on n, but ρk will be the same for all n.
Step 4: Taking the limit. Let I be the set of all the center cells indices. The set

[0, 1]I with the product topology is compact. For each n, (μn(Ei,j ))(i,j)∈I is an element
of this set. Thus, there exists a limit point xi,j of this sequence. Obviously, for each
(i, j) ∈ I, 0 ≤ xi,j ≤ μ(Ci,j ). We can therefore extend μ to Ei,j in the center by defining
μ(Ei,j ) = xi,j .

We need to show that μ satisfies (12) and (13). Each equation for i and k in (12) is
a linear equation in the three numbers μn(Ei,i−1 ), μn(Ei,i ), and μn(Ei,i+1 ), where the
coefficients are the same for all n. Thus, the equation holds also in the limit, that is,
for μ.

For (13), μn(Row(k, �k)) is a linear expression in μn(Ei,i ), and μn(Ei,i+1 ) where
the coefficients are independent of n. Thus, μn(Row(k, �k)) →n μ(Row(k, �k)). Since,
|μn(Row(k, �k)) −p1

k| ≥ ρk > 0 for all n, it follows that μ(Row(k, �k)) = p1
k. The argument

for agent 2 is the same, which completes the proof of part (i).
We now proceed to proving part (ii) of Proposition 2. For this purpose, we use twice

part (ii) of the theorem. In the construction, we use the same space twice, but each time
assign different probabilities to the same cells.

In the first step, we construct a dialogue in which both agents have the sequence
p1
k. That is, we construct a dialogue generating p1

k and p̃2
k, where p̃2

k = p1
k. Here, the

two sequences coincide. Since p1
k is a positive monologue, these two sequences satisfy

the conditions of Theorem 2(ii). The construction of Theorem 2(ii) yields a space, a
sequence of partitions and a measure μ1, with respect to which p1

k and p̃2
k is a positive

dialogue. The measure μ1 is defined to be the prior of agent 1.
In the second step, we construct a dialogue generating the sequences p̃1

k = p2
k and

p2
k. The space and the sequence of partitions are the same as in the first step. The

measure μ2 might differ from μ1. The measure μ2 is defined to be the prior of indi-
vidual 2.
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