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Abstract

We characterize equilibria of oligopolistic markets where identical firms with

constant marginal cost compete a’ la Cournot. For given maximal willingness to

pay and maximal total demand, we first identify all combinations of equilibrium

consumer surplus and industry profit that can arise from arbitrary demand func-

tions. Then, as a further restriction, we fix the average willingness to pay above

marginal cost (i.e., first-best surplus) and identify all possible triples of consumer

surplus, industry profit and deadweight loss.
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1 Introduction

Antoine Augustin Cournot’s pioneering mathematical analysis of monopoly and oligopoly,

published in his Recherches sur les Principes Mathematiques de la Theorie des Richesses

(1838), has had an enormous influence in economics.1 Cournot’s model has been a

building block for a large number of seminal works in a variety of fields, including inter-

national trade (e.g., Brander and Krugman (1983), Atkeson and Burstein (2008)) the

study of market power in macroeconomics (Hart (1982)) and in industrial organization

(Bresnahan and Reiss (1990), Berry (1992)) and antitrust merger policy (Farrell and

Shapiro (1990)). After nearly two hundred years, countless papers have explored and

extended Cournot’s work, which remains a benchmark for theories of price formation in

the absence of perfect competition (Vives (1989)).

In this paper, we advance and systematize some of the existing literature by char-

acterizing all Cournot equilibrium outcomes as consumer demand varies. More precisely,

we consider an oligopolistic market where a fixed number of firms compete a’ la Cournot

and have the same constant marginal cost of production. Our main objective is to iden-

tify the set of those surplus divisions, between firms and a mass of consumers, which can

arise under some demand function. To this end, we identify those triples of consumer

surplus, industry profit and deadweight loss that can arise in an equilibrium outcome

under arbitrary demand functions with a given level of first-best surplus.

Let us explain our characterization result for the case when there is a unit mass

of consumers and the common marginal cost of production is zero. In this case, the

first-best surplus, s, associated with a market demand is simply the average willingness

to pay of consumers. We represent market outcomes as points on the positive quadrant

of a Cartesian plane, with industry profit on the x-axis and consumer surplus on the

y-axis, see Figure 1 for illustration. A priori, the only constraint that restricts surplus-

sharing is that the sum of industry profit and consumer surplus cannot exceed s, that

is, any equilibrium payoff profile must be below the y = s − x line. We show that the

set of implementable market outcomes is characterized by a triangular shape, described

by the points (Πs, s − Πs), (Π
s, 0), (s, 0) and represented by the dotted area on Figure

1. The value Πs is the minimum industry profit that can arise and this profit can only

occur in an efficient equilibrium, so the corresponding consumer surplus is s−Πs. If the

industry profit, Π, is between Πs(≥ Πs) and s, any value of consumer surplus between

1Treatment of those subjects remains almost unchanged to this day, to the point that contemporary

economics students would hardly notice if excerpts from the Recherches were to appear in textbooks.
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zero and s − Π can be induced by an appropriately chosen demand curve. In contrast,

when Π is between Πs and Πs, the equilibrium consumer surplus cannot be arbitrarily

small. We characterize the curve connecting (Πs, s−Πs) and (Πs, 0) which identifies the

minimum level of consumer surplus for each industry profit on this domain.

Figure 1: Implementable couples of consumer surplus and industry profit (dotted area).
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Remarkably, among all equilibria of all possible demand functions, the one that

maximizes consumer surplus is efficient and also minimizes industry profit. Moreover, if

n→∞ then Πs → 0 and Πs → s. Hence, the set of implementable outcomes converges

to the entire first-best Pareto frontier. To paraphrase this using a common jargon of

the literature, Cournot markets with constant marginal cost are quasi-competitive: all

consumers with value above the marginal cost will be served in the limit as the number

of firms increases. However, convergence to a competitive equilibrium is not guaranteed,

because price may not approach the marginal cost of production and industry profit may

remain positive.2

2As will be discussed in Section 4, the existing literature identifies convergence to a competitive

equilibrium in the case of strictly decreasing inverse demand functions where the minimal consumer

valuation is below the marginal cost.
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The if-parts of our proofs are constructive. For each achievable market outcome

(i.e., triple of consumer surplus, industry profit and deadweight loss) we present an

(inverse) demand function and a symmetric oligopoly equilibrium quantity that attains

it. Our construction relies on a set of demand functions that, in equilibrium, induce a

(common) residual demand that is unit-elastic with respect to profit, leaving firms in-

different between playing equilibrium and producing alternative quantities. Intuitively,

this property is crucial for our construction because, at any given profit level and equi-

librium price, demand can be raised to increase consumer surplus without altering firms’

incentives up until firms become indifferent between the current price and a higher price

they may induce by lowering the quantity produced.

Three papers are most closely related. First, Condorelli and Szentes (2020) iden-

tify the highest level of consumer surplus attainable in a monopolistic market, assuming

inverse demand generates a given mean consumer value. The maximum consumer sur-

plus is attained when the demand is unit-elastic (with respect to profit) and the price

is such that all consumers are served. Second, as shown in Neeman (2003) and Kremer

and Snyder (2018), it turns out that unit-elastic demand also generates the minimum

monopoly profit. Taken together, these results fully characterize the combinations of

producer and consumer surpluses achievable in a monopolistic market for some demand

with a given average consumer value. In our paper, we offer a characterization that

applies to an arbitrary number of firms competing a’ la Cournot.3

The papers mentioned above show that, in the monopoly case, a single demand

function can be used to span all achievable levels of consumer surplus for a given profit

level. To explain this, we note that since this demand is unit-elastic, the seller is in-

different between setting prices on a large range. When the largest of these prices is

set, consumer surplus is zero. At the lowest price, each consumer is served so the al-

location is efficient and consumer surplus is maximized. As discussed, unit-elasticity

also plays a role in our analysis. In particular, we demonstrate that, holding industry

profit fixed, consumer surplus is maximized by an inverse demand curve which induces

unit-elastic residual demand. However, the problem of identifying all achievable levels of

consumer surplus is a more subtle problem in the case of oligopoly. The inverse demand

which makes residual demands unit-elastic has, typically, a unique equilibrium quantity.

Hence, for any given total surplus, a different demand must be found to implement each

3Kremer and Snyder (2018) also compute tight bounds on deadweight loss for a market with ho-

mogeneous firms engaging in Cournot competition. In terms of our characterization, they identify the

point that generates no consumer surplus and minimizes profit (i.e., (Πs, 0) in Figure 1.)
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achievable combination of consumer and producer surplus. In fact, in the oligopoly case,

it is not possible to perfectly trade-off profit and consumer surplus at all profit-levels

without introducing deadweight loss. In particular, following the illustration in Figure

1, we have Πs < Πs and therefore the set of implementable industry profit / consumer

surplus pairs is not a right-triangle as in the monopoly case where Πs = Πs.

There is a small literature that seek to identify bounds on market outcomes in

Cournot oligopoly, based on specific properties of demand functions.4 Anderson and

Renault (2003) derive bounds on the ratios of deadweight loss and consumer surplus to

producer surplus based on the degree of curvature of the inverse demand function. They

show that the “more concave” is the demand, the larger the share of producer surplus

to overall surplus and the smaller is the consumer surplus relative to producer surplus.

Johari and Tsitsiklis (2005) establish a lower bound of 2/3 on the ratio between the sum

of consumer and producer surplus and first-best surplus, when the (inverse) demand

function is affine and firms are heterogeneous, with their cost function convex. Tsitsiklis

and Xu (2014) extend the previous paper by providing smaller lower bounds for general

convex (inverse) demand. Moreover, they show that arbitrary high efficiency losses are

possible if demand is allowed to be concave. In contrast to these papers, our bounds

do not rely on knowledge about the curvature of the demand function. Also, we obtain

a complete characterization of all consumer and producer surplus couples for any given

first-best surplus. However, we focus only on the case where firms are symmetric and

their cost function is linear.

Finally, there’s a large literature on Cournot oligopoly that focuses on issues of

existence, uniqueness and stability of equilibria and on comparative statics. We are

unable to survey the major contributions of this literature here but we refer to Vives

(2001).

The paper is organized as follows. After introducing the model, we study the case

where demand functions are bounded but there is no restriction on first-best surplus.

In section 4, which contains the main results of this paper, we impose the additional

restriction on the first-best surplus.

4A related problem, explored in Carvajal et al. (2013), consists in identifying revealed preference

tests for Cournot equilibrium.
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2 Model

A market is populated by a mass b > 0 of consumers and n ∈ N firms, all supplying a

homogeneous good at common marginal cost c ∈ (0,+∞). Consumers have unit-demand

and heterogeneous willingness to pay for the good. Firms compete a’ la Cournot: each

firm i decides the quantity qi ∈ [0,+∞) that it brings to the market and a non-negative

price is determined by the market-clearing condition. The maximal willingness-to-pay

among consumers is u (> c). Let P be the set of all admissible inverse demand functions.

That is, P consists of those functions, P : [0,∞)→ [0, u] which are left-continuous, non-

increasing and such that P (x) = 0 for x > b. Then, if the inverse demand function is P

and Q =
∑

i qi is the total supply, the market price is P (Q), firm i’s profit is (P (Q)−c)qi
and consumer surplus is

∫ Q
0
P (x)dx−QP (Q).

Without loss of generality, we focus on symmetric equilibria, where all firms pro-

duce the same quantity.5 We say that (q, . . . , q), or simply q, is a Cournot equilibrium

of P if

q = arg max
x≥0

[P ((n− 1)q + x)x− cx] ,

and in this case we write q ∈ E(P ).6

In this market, efficiency requires that a consumer is served if and only if his

willingness-to-pay is larger than the marginal cost of production. Therefore, for each

inverse demand curve P ∈ P , we define the first-best surplus, FB (P ), as follows:

FB(P ) =

∫ b

0

max{0, P (x)− c}dx.

Then, let CS(P, q) and Π(P, q) denote consumer surplus and the profit of a firm, respec-

tively, if the inverse demand curve is P and each firm produces q. Formally,

CS(P, q) =

∫ nq

0

P (x) dx− nqP (nq) and Π(P, q) = q (P (nq)− c) .

Finally, we define deadweight loss under P if each firm produces q, DWL (P, q), as

follows

DWL(P, q) = FB(P )− CS(P, q)− nΠ(P, q).
5We show in the Appendix that for any asymmetric equilibrium there exists a symmetric one where

the same total quantity is produced. Hence, consumer surplus and industry profit are the same in the

two equilibria.
6Following McManus (1964), a symmetric equilibrium exists under the stated assumptions. Equilib-

ria may exist for unbounded demand. However, no bound can be placed on market outcomes if demand

is unbounded and no further restriction is imposed, as we shall show toward the end of next section.
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3 Surplus Sharing with Arbitrary Demand

Our first goal is to characterize those combinations of consumer surplus and industry

profit which can arise in an equilibrium for some inverse demand in P . Preliminarily,

we identify with π the maximum feasible profit level for inverse demand functions in P .

That is π = b(u − c)/n, because the maximum symmetric profit level is achieved if all

consumers, a measure b, are served and the market price is the maximal willingness-to-

pay, u. This section is devoted to establishing the following result.

Proposition 1 There exists P ∈ P and q ∈ E(P ) such that Π(P, q) = π, CS(P, q) = v

if and only if π ∈ (0, π] and

v ∈
[
0, (n− 1) (π − π)− π log

(π
π

)]
.

Figure 2 illustrates the statement of Proposition 1 in three cases where b = u = 1

and c = 0 (i.e., limc↓0), so π = 1/n. The three curves plot the Pareto frontier of feasi-

ble payoff profiles, consumer surplus and total industry profit, for n = 1, 2 and 5. By

the proposition, any payoff profile weakly below these curves can arise in an equilib-

rium. As it is apparent from the picture, the set of feasible producer/consumer surplus

combinations expand as n grows and the market becomes more competitive. Without

additional hypotheses on the set of demand functions, equilibrium alone imposes very

few restrictions on how the surplus is shared in an oligopolistic market populated by a

large number of identical firms with constant marginal cost.

Let us explain the main steps of the proof of this proposition. The key to this

characterization result is to consider a parametric class of inverse demand functions and

to show that these functions induce any possible equilibrium payoff profiles. This set

is parameterized by the couple (π, q) and each generic element, denoted P(π,q), exhibits

the properties that q constitutes a symmetric equilibrium under P(π,q) and that the

corresponding profit of each firm is π. Our analysis consists of three steps. First, we

demonstrate that this parametric set of demand functions spans the Pareto frontier

of payoff profiles in the following sense. Fix any arbitrary inverse demand function

in P and its symmetric equilibrium in which the individual quantity is q while profit

of each firm is π. Then, the symmetric equilibrium where each firms produces q under

P(π,q) generates larger consumer surplus than the former equilibrium does, while industry

profit remains the same. Second, confining attention to the parameterized set of demand

functions
{
P(π,q)

}
q≤b/n, we can easily obtain an upper bound to consumer surplus for
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Figure 2: Achievable profit and surplus couples in P (b = u = 1, c = 0)

Consumer Surplus

Industry Profit

each possible profit level. This upper bound is achieved under demand function P(π,b/n).

Third, we show that for any given profit π, every consumer surplus level, from zero to

the upper bound, can be obtained as the symmetric equilibrium q of some P(π,q), as q

ranges between the minimal level compatible with individual profit π, π/(u − c), and

the maximal, b/n.

To begin with, we now define the aforementioned class of inverse demand functions.

Denote with q(π) the minimal quantity that can generate profit π, that is, q(π) =

π/(u− c). Then, for each π ∈ [0, π̄] and q ∈ [q(π), b/n], let

P(π,q)(Q) =


u if Q ∈ [0, q(π) + (n− 1)q]

π
Q−(n−1)q + c if Q ∈ (q(π) + (n− 1)q, b],

0 if Q > b.

Figure 3 below provides a graphical representation of a demand function in this class.

It is immediate to verify that P(π,q)(Q) is increasing in both π and q. We state this

useful property in the next lemma, without providing an explicit proof.

Lemma 1 P(π′,q) ≥ P(π,q) if π̄ ≥ π′ ≥ π ≥ 0 and P(π,q′) ≥ P(π,q) if b/n ≥ q′ ≥ q ≥ q(π).

The following lemma identifies an important property of our class of inverse de-

mand functions. It states that any feasible profit level π and quantity level q arises as

an equilibrium of the inverse demand curve P(π,q).
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Figure 3: Inverse demand function P(π,q)

demand

price

P(π,q)

𝑞 𝜋 + 𝑛 − 1 𝑞 𝑛𝑞

𝜋

𝑏 − 𝑛 − 1 𝑞
+ 𝑐

𝜋

𝑞
+ 𝑐

𝑢

𝑏

Lemma 2 For all π ∈ [0, π̄] and q ∈ [q(π), b/n], q ∈ E(P(π,q)) and Π(P(π,q), q) = π.

As will be shown in the proof, the demand function P(π,q) exhibits unit-elasticity

of the residual demand with respect to profit for quantities in (q(π), b− (n−1)q), when

all other firms supply q. In particular, for each individual firm, producing any quantity

in that interval is a best reply to the other firms producing q and it generates profit π.

Proof. Fix a π ∈ [0, π̄] and a q ∈ [q(π), b/n]. Note that P(π,q)(nq) = π/q + c, so

Π(P(π,q), q) = π. It remains to show that q ∈ E(P(π,q)). To this end, consider the residual

demand faced by i under demand P(π,q) when all other firms are producing q. This is

P(π,q)(qi + (n− 1)q) =


u if qi ∈ [0, q(π)]
π
qi

+ c if qi ∈ (q(π), b− (n− 1)q],

0 if qi > b− (n− 1)q.

Observe that any quantity in the interval [q(π), b− (n− 1)q] generates profit π and any

quantity outside of this interval induces profit less than π. To conclude the proof, we

argue that if q ∈ [q(π), b/n], then q ∈ [q(π), b − (n − 1)q]. This immediately follows

because q ≤ b/n implies q ≤ b− (n− 1)q.

Let us point out here a crucial difference between this result for monopoly versus

oligopoly. When n > 1 and q < b/n, we have P(π,q) 6= P(π,b/n). On the other hand, if

n = 1, then P(π,q) = P(π,b/n) for all q. So, in the case of monopoly, any q ∈ [q(π), b/n]
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is an equilibrium under P(π,b/n) and this inverse demand curve induces any consumer

surplus which is consistent with π.

Next, we provide a key building block of this paper. We show that the family

of inverse demand functions defined above Pareto-dominate other demand functions

in the following sense. Suppose that q is a symmetric equilibrium when demand is

determined by P and the profit of an individual firm is π. Then, the consumer surplus

in this equilibrium is smaller than in the symmetric equilibrium of P(π,q) where every

firm produces q and obtains profit π. When n = 1, this result is analogous to Lemma 1

in Condorelli and Szentes (2020).

Lemma 3 If P ∈ P and q ∈ E(P ) and Π(P, q) = π then P ≤ P(π,q), and CS(P(π,q), q) ≥
CS(P, q).

Let us explain the intuition behind the statement of this lemma. As mentioned

earlier, the identifying feature of the inverse demand curve P(π,q) is that the residual

demand curve faced by a firm, provided that every other firm produces q, is unit-elastic.

In particular, each firm is indifferent between producing a large range of quantities. This

means that when demand is determined by P(π,q), the consumers’ willingness-to-pay is

set to be as high as possible while still providing the firms with just enough incentive to

produce quantity q.

Proof. First, observe that if q is an equilibrium in P and each firm’s profit is π then

setting any other quantity x against (n− 1) q induces a payoff less than π, that is, for

any x ≥ 0,

π ≥ x [P (x+ (n− 1)q)− c] .

By denoting Q = x+ (n− 1)q and rearranging, it follows that, for Q ∈ [(n− 1)q,+∞),

P (Q) ≤ π

Q− (n− 1)q
+ c. (1)

Next, we show that P (Q) ≤ P(π,q)(Q) for Q ≥ 0. This immediately follows from

inequality (1) and the definition of P(π,q), for Q ≥ (n − 1)q. For Q < (n − 1)q ≤
(n − 1)q + π/(u − c) the inequality follows from the fact that P(π,q)(Q) = u, while

P (Q) ≤ u because the largest willingness-to-pay is u.

We now establish that P(π,q) generates (weakly) larger consumer surplus than P .

In particular

CS(P(π,q), q)− CS(P, q) =

∫ nq

0

(P(π,q)(x)− P (x))dx ≥ 0,
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because P(π,q) ≥ P, as argued above.

Building on the previous results, the following lemma identifies an upper bound on

consumer surplus for each profit level π. It establishes that there exists no symmetric

equilibrium under any demand function generating individual firm profit π that attains

a consumer surplus higher than the equilibrium of P(π,b/n) where all firms produce b/n.

Lemma 4 For any P ∈ P and q ∈ E(P ) with Π(P, q) = π, we have CS(P(π,b/n), b/n) ≥
CS(P, q).

Proof. Lemma 2 establishes that b/n is an equilibrium of P(π,b/n) and q is an equi-

librium of P(π,q). Lemma 3 establishes that CS(P(π,q), q) ≥ CS(P, q). To see that

CS(P(π,b/n), b/n) ≥ CS(P(π,q), q) recall the last displayed equation in the proof of Lemma

3 and observe that b/n ≥ q and, for each π ∈ [0, π̄] and q, q′ such that π/(u− c) ≤ q′ ≤
q ≤ b/n, we have P(π,q′)(Q) ≤ P(π,q)(Q) for Q ∈ [0,∞), by Lemma 1.

We are now ready to prove Proposition 1. To explain the remaining part of the

argument, recall that π = b(u − c)/n is the largest feasible profit. Furthermore, for

each π ∈ (0, π), the inverse demand curve P(π,b/n) maximizes consumer surplus across

all inverse demand functions which also generate profit π. But then the set of inverse

demand curves
{
P(π,q)

}b/n
q=q(π)

spans the whole range of consumer surpluses which are

consistent with profit π. The reason is that when the symmetric equilibrium quantity

is set to the smallest level which is consistent with profit π, that is q (π), the consumer

surplus is zero and the consumer surplus generated by P(π,q) is continuous in q.

Proof of Proposition 1. To prove the “only if” part, recall that we have already

argued that π̄ is the largest feasible equilibrium profit, so π must indeed be in the interval

(0, π̄]. Moreover, by Lemma 4, CS(P, q) ≤ CS(P(π,b/n), b/n), that is, v must be in the

interval
[
0, CS(P(π,b/n), b/n)

]
. Finally, a straightforward computation yields that

CS(P(π,b/n), b/n) = (n− 1)

[
b(u− c)

n
−π
]
− π log

(
nπ

b(u− c)

)
To argue the “if” part, for each π ∈ (0, π̄) and q ∈ [0, b/n], consider P(π,q) and recall

that q is an equilibrium in P(π,q) by Lemma 2. Furthermore, CS(P(π,q), q) is continuous

and strictly increasing in q, and CS(P(π,q(π)), q(π)) = 0.

Our previous results allow us to easily identify the maximum consumer surplus for

an equilibrium under an inverse demand function in P . In light of Lemma 4, finding an
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inverse demand function in P and an equilibrium that maximizes consumer surplus is

equivalent to maximizing CS(P(π,b/n), b/n) in π ∈ (0, π̄). The proof is omitted because

it involves a straightforward maximization problem.

Corollary 1 Let π∗ = nπ̄/en. Then, CS(P(π∗,b/n), b/n) = n(n−1)π̄+nπ̄/en ≥ CS(P, q)

for any P ∈ P, q ∈ E(P ).

To conclude this section, let us discuss two implications of Proposition 1. First, by

providing an explicit expression for CS(P(π,b/n), b/n), the proof of Proposition 1 shows

that no meaningful bound can be placed on the ratio of consumer to producer surplus.

In fact, lim
π→0

CS(P(π,b/n), b/n)/(nπ) =∞ and lim
π→π̄

CS(P(π,b/n), b/n)/(nπ) = 0. Second, we

observe that the bounds described by Proposition 1 can be used to identify restrictions

on the set of price-quantity pairs that can arise in any equilibrium, given the number of

firms operating in the market. To see this, use the bound we obtained above and the

fact that consumer surplus cannot exceed (u− P )Q in any equilibrium, where P and Q

are the equilibrium price and total quantity. For instance, consider the case of n = 1

depicted in Figure 2, where u = b = 1 and c = 0. In this case, 1/e is the maximum

achievable consumer surplus, which implies Q(1−P ) ≤ 1/e. This provides a restriction

on the attainable price-quantity pairs. An analogous exercise can be performed for

n > 1. However, as Figure 2 illustrates, when the number of firms grows large, the

maximum consumer surplus goes to one which makes the condition on consumer surplus

vacuous.

4 Surplus Sharing for given First-Best Surplus

The aim of this section is to provide a complete characterization of all possible triples of

consumer surplus, industry profit and deadweight loss which can arise in an equilibrium

for some inverse demand curve for a given first-best surplus. We accomplish this goal by

considering each feasible level of first-best surplus, s, and focusing attention on the set

of those demands which are consistent with that level of surplus. Then we characterize

those pairs of consumer surplus and industry profit which can occur in an equilibrium

under some inverse demand curve with first-best surplus equal to s. Of course, the

deadweight loss in each equilibrium can be computed as the difference between s and

the sum of consumer surplus and industry profit.
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As a preliminary step, note that the first-best surplus must be weakly positive

and can never exceed b(u − c) (= nπ). This latter surplus can be achieved only if the

willingness-to-pay of each consumer is u. That is, 0 ≤ FB(P ) ≤ b(u−c) for each P ∈ P .

For each s ∈ (0, b(u − c)] let Ps denote the set of those inverse demand curves which

generate surplus s, that is, Ps = {P ∈ P : FB(P ) = s}.
As mentioned above, we characterize those combinations of consumer and producer

surplus which can arise in an equilibrium under some inverse demand function in Ps.
Let us now explain the main steps of our arguments leading to this result and illustrate

them on Figure 4 for the case of n = 2, u = b = 1, c = 0 and s = 0.75. First, we pin

down the smallest possible equilibrium profit for an individual firm, πs, under Ps. In

the example of Figure 4, we have 2π.75 ≈ .18. Then, we identify the Pareto frontier of

the set of equilibrium payoff profiles under Ps. More precisely, for each π ∈ [πs, s/n], we

construct an inverse demand curve in Ps and an equilibrium such that industry profit

is nπ and consumer surplus is s− nπ, that is, the equilibrium is efficient. On Figure 4,

the set of efficient equilibrium payoffs correspond to the segment of the dashed red line

that overlaps with the blue line. The remaining piece of our characterization result is

to figure out how small the equilibrium consumer surplus can be for each π ∈ [πs, s/n].

Indeed, the final step is to show that for each surplus s, there is a threshold value

of individual profit, πs such that if π is above this value, or π ∈ [πs, s/n], then any

consumer surplus can arise in equilibrium between zero and s − nπ. In the numerical

example, 2π.75 ≈ .47. In contrast, if π is smaller than the threshold, π ∈ [πs, π
s], then

the consumer surplus is bounded away from zero. Indeed, our last proposition pins down

the smallest equilibrium value of consumer surplus for each such profit level. On Figure

4, the blue curve describes the smallest possible consumer surplus which can arise in

equilibrium for a given industry profit. Note that this curve is continuous, decreasing,

concave and reaches zero at 2π.75, a point where deadweight loss is maximal.

To begin our analysis, we now turn our attention to identifying the minimal equi-

librium profit which can arise if the first-best surplus is s. We define a profit level, πs,

for each s ∈ (0, nπ] and then show that the equilibrium profit of a firm is at least πs

if the inverse demand curve is in Ps. Let πs = 0 if s ∈ (0, (n− 1)π̄] and let πs be the

solution of s = FB(P(π,b/n)) in π, that is, s = FB(P(πs,b/n)) if s ∈ ((n− 1)π̄, nπ̄].

To see that πs is well-defined on ((n− 1)π̄, nπ̄] observe that for each π ∈ [0, π̄],

FB(P(π,b/n)) = CS(P(π,b/n), b/n) + nΠ(P(π,b/n), b/n) = π
[
1− log

(π
π̄

)]
+ (n− 1)π̄.

Note that the right-hand side is continuous, and strictly increasing in π, and its value is
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Figure 4: Achievable payoffs within blue curves, for n = 2, b = u = 1, c = 0 and s = 3/4

𝑛𝜋𝑠𝑛𝜋𝑠 𝜋𝑠 𝜋𝑠𝜋𝑠 = 𝜋𝑠

s

s=0.75

s

s s

(n− 1) π at zero and nπ at π. Then, by the Intermediate Value Theorem, the equation

s = FB(P(πs,b/n)) has a unique solution.7

In what follows, for each s ∈ (0, nπ], we construct an inverse demand curve Ps

and show that, under Ps, there is an equilibrium in which the profit of each firm is πs.

Moreover, the equilibrium profit under any demand in the set Ps is weakly larger than

πs. To this end, for each s ∈ ((n− 1)π̄, nπ̄] let Ps = P(πs,b/n), and for s ∈ [0, (n − 1)π̄]

let Ps be defined as

Ps(Q) =


sn

b(n−1) + c if Q ∈ [0, b(n− 1)/n]

c if Q ∈ (b(n− 1)/n, b],

0 if Q > b.

Next, we argue that FB(Ps) = s for all s ∈ (0, nπ], that is, Ps ∈ Ps. This is obvious if

s ∈ ((n− 1)π̄, nπ̄] because, on this domain, Ps = P(πs,b/n) and s = FB(P(πs,b/n)) by the

definition of πs. If s ∈ [0, (n− 1)π̄] then

FB(Ps) =
b (n− 1)

n

sn

b(n− 1)
s = s.

7If b = u = 1 and c = 0, πs = n−1−ns
nW−1(

n−1−ns
e )

for s > n−1
n . Here W−1 is the lower branch of the

Lambert W function. While it cannot be expressed in terms of elementary functions it is defined by

W−1(xex) = x for x ≤ −1.
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We also note that b/n is an equilibrium under Ps and Π(Ps, b/n) = πs.

We are now ready to prove that πs is the minimal equilibrium profit under any

inverse demand curve in Ps. In fact, the next Lemma states that the equilibrium b/n

under Ps does not only induce the smallest profit but also no deadweight loss and,

therefore, the largest consumer surplus across all equilibria under Ps.

Lemma 5 For each P ∈ Ps and q ∈ E(P )

(i) πs = Π(Ps, b/n) ≤ Π(P, q) and

(ii) s− nπs = CS(Ps, b/n) ≥ CS(P, q).

Proof. Consider first part (i). This statement is obvious for s ∈ (0, (n − 1)π̄] because

Π(Ps, b/n) = πs = 0. Therefore, we focus on s ∈ ((n−1)π̄, nπ̄]. By way of contradiction,

suppose that q is an equilibrium under some P ∈ Ps and Π (P, q) = π′ < πs. Consider

now the (efficient) equilibrium b/n under P(π′,b/n). By Lemmas 1 and 3,

P(π′,b/n) ≥ P(π′,q) ≥ P,

and hence, FB(P(π′,b/n)) ≥ FB(P ). Since FB(P(π,b/n)) is strictly increasing in π, πs > π′

implies s = FB(Ps) = FB(P(πs,b/n)) > FB(P(π′,b/n)) ≥ FB(P ) = s, a contradiction.

To see part (ii), note that

s− nπs = CS(Ps, b/n) ≥ s− nΠ(P, q) ≥ CS(P, q),

where the first inequality follows from part (i) and the second inequality holds because

the sum of the industry profit and the consumer surplus cannot exceed the first-best

surplus.

Our next goal is to characterize the set of efficient equilibrium payoff profiles for

each s. To state our objective more precisely, note first that the equilibrium profit of

a firm, Π(P, q), for any equilibrium q of any P ∈ Ps cannot exceed s/n and is weakly

larger than πs (by part (i) of Lemma 5). In what follows, we demonstrate that for each

π ∈ [πs, s/n] there exists an inverse demand curve in Ps and an efficient equilibrium

under it such that the profit of each firm is π and the consumer surplus is s − nπ. To

this end, we next introduce a new parametric class of demands and show that such

inverse demand curves lie in Ps.
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For each π ∈ (0, π̄], q ∈ [q(π), b/n] and k ∈ [q(π) + (n− 1)q, nq] let,

P k
π,q(Q) =


P(π,q)(k) if Q ∈ [0, k]

P(π,q)(Q) if Q ∈ (k, b],

0 if Q > b.

Observe that P k
π,q is a truncated version P(π,q) because P k

π,q(Q) = P(π,q)(Q) for Q ≥ k

and, below k, the value of P k
π,q is defined to be P(π,q)(k). Intuitively, P k

π,q is derived from

P(π,q) by setting equal to P(π,q)(k) the willingness-to-pay to of each consumer whose

valuation is higher than that. From the proof of Lemma 2, it follows that producing q

is an equilibrium under P k
π,q and it generates individual profit π.

Figure 5 depicts an example of a demand function P k
π,q for b = u = 1 and c = 0

and the division of the first-best surplus between consumer surplus (CS), industry profit

(nπ) and deadweight loss (DWL) in the q-equilibrium.

Figure 5: Example of a demands P k
π,q for b = u = 1 and c = 0

k

Pkπ,q

1

1

price

demand

P(π,q) (k)

P(π,q) (1)

nqπ+(n-1)q

DWLnπ

CS

We are now ready to state the following.

Proposition 2 For each s ∈ (0, nπ̄] and π ∈ [πs, s/n], there exists P ∈ Ps and q ∈ E(P )

such that Π(P, q) = π and CS(P, q) = s− nπ.

Let us explain the proof of this proposition. Recall that producing b/n is an

efficient equilibrium under P(π,b/n), that is, the consumer surplus under P(π,b/n) is just
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the difference between the first-best surplus and the industry profit. Of course, P(π,b/n)

generates too much surplus, that is, P(π,b/n) /∈ Ps. Hence, we modify it by truncating it

and show that there exists a k such that P k
π,b/n ∈ Ps. Since b/n is an efficient equilibrium

under P k
π,b/n which induces profit π to each firm, P = P k

π,b/n and q = b/n satisfy the

statement of the proposition.

Proof. Lemma 5 established the statement for π = πs. We now show that for each

π ∈ (πs, s/n] there exists (a unique) k0 such that FB(P k0

π,b/n) = s and therefore P k0

π,b/n ∈
Ps. To show the existence of k0, observe first that P

π/(u−c)+(n−1)b/n
π,b/n = P(π,b/n). Since

π > πs we must have FB(P(π,b/n)) > FB(P(πs,b/n)) = FB(Ps) = s. Also note that

FB(P b
π,b/n) = nπ ≤ s because π ≤ s/n. Since FB(P k

π,b/n) is continuous and strictly

decreasing in k, the Intermediate Value Theorem implies the existence of k0 at which

FB(P k0

π,b/n) = s. Finally, the proof is concluded by noting that in the equilibrium b/n

under P k0

π,b/n, the profit of each firm is π and consumer surplus is equal to FB(P k0

π,b/n)−
nΠ(P k0

π,b/n, b/n) = s− nπ.

In words, the result above says that, as long as the profit of each firm is at least

πs, any division of the first best surplus between consumers and producers is attained

by some demand function without incurring any deadweight loss, irrespective of the

number of firms in the market. Furthermore, when the number of firms is sufficiently

large, n > 1/(1− s), then πs = 0 and hence any such divisions are attainable.

To complete our characterization, we now also turn our attention to inefficient

equilibria. For each value of first-best surplus s, we define a threshold value of individual

firm profit, πs. Then, we show that if π is larger than πs, then consumer surplus can

be anything between zero and s− nπ. In contrast, when π is smaller than πs, consumer

surplus is bounded away from zero, and our last proposition characterizes this bound.

For each s ∈ (0, nπ], let πs ∈ [πs, s/n] be the solution to FB(P(πs,q(πs))) = s.

Recall that q(π) denotes the minimal quantity that can generate profit π, that is,

q(π) = π/(u − c). To see that πs is well-defined, note first that FB(P(πs,b/n)) = s

and therefore FB(P(πs,q(πs))) ≤ s because, by Lemma 1, P(πs,q(πs)) ≤ P(πs,b/n) and

P(πs,b/n) ≥ c. Second, note that FB(P(s/n,q(πs)) ≥ s as profit under P(s/n,q(πs)) is s/n

and FB(P(s/n,q(πs))) ≥ ns/n = s. Then, since FB(P(πs,q(πs))) is continuous and strictly

increasing, the Intermediate Value Theorem implies that the equation FB(P(π,q(π))) = s

has a unique solution in π.

Proposition 3 For every s ∈ (0, nπ̄], π ∈ [πs, s/n], and v ∈ [0, s − nπ] there exists
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P ∈ Ps and q ∈ E(P ) such that Π(P, q) = π and CS(P, q) = v.

This proposition states that for given s and profit level π above πs, any feasible

combination of consumer surplus and deadweight loss is achievable. To prove it, we

first show that zero consumer surplus can be achieved in equilibrium when π ∈ [πs, s/n]

using inverse demand P nq
π,q for some q. Note that such demand induces zero consumer

surplus as illustrated in Figure 6, where the equilibrium quantity is indicated with the

black dot, the profit is the blue shaded (clearer) area and deadweight loss (DWL) is the

gray (darker) area. Finally, once again we appeal to the Intermediate Value Theorem

to argue that any intermediate level of consumer surplus is also achievable.

Figure 6: Example of a demands P nq
π,q for b = u = 1 and c = 0

nq

Pnqπ,q

1

1

price

demand

P(π,q) (nq)

P(π,q) (1)

π+(n-1)q

nπ

DWL

Before proceeding with the proof, we find it useful to establish some properties of

the deadweight loss function, DWL(P, q) (= FB(P )− CS(P, q)− nΠ(P, q)) when re-

stricted to the domain
{
P k
π,q

}
.

Lemma 6 DWL(P k
π,q, q) is continuous, strictly decreasing in q and independent of k.

Proof. Since k < nq for q ∈ [q(π), b/n] and P k
π,q(x) = P(π,q)(x) for x ≥ nq ≥ π/(u −

c) + (n − 1)q, we have DWL(P k
π,q, q) =

∫ b
nq

(P k
π,q(x) − c)dx =

∫ b
nq

(P(π,q)(x) − c)dx =

π [− log(q) + log(b− (n− 1)q)] . See Figure 5 for a geometric intuition of the last part.
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Proof of Proposition 3. As a first step, for each s ∈ (0, (u−c)b] and π ∈ [πs, s/n], we

determine q such that FB(P nq
π,q) = s. Clearly, if such q exists, then in the equilibrium q

of this demand function consumer surplus is zero. In fact, it is immediate to verify that

CS(P nq
π,q, q) = 0 because P nq

π,q is constant between 0 and the equilibrium total quantity

nq (see Figure 6).

Hence, we show that for each s and π in the range identified by the statement, there

exists q(π) ≤ q ≤ b/n and demand P nq
π,q such that FB(P nq

π,q) = s. To see this, observe that

P
nq(π)

π,q(π) = P(π,q(π)) as π/(u−c)+(n−1)q(π) = nq(π) since q(π) = π/(u−c). Then note that

FB(P(π,q(π))) ≥ FB(P(πs,q(π))) = s, where the inequality follows from Lemma 1 observing

that π ≥ πs and q(π) ≥ q(πs), while the equality follows from the definition of πs.

Second, consider that FB(P b
π,b/n) = nπ ≤ s because P b

π,b/n(Q) = P(π,b/n)(b) = nπ/b + c

for Q ∈ [0, b] and π ≤ s/n. The result that such a q exists, call it q0(π, s), follows from

the Intermediate Value Theorem by varying q in FB(P nq
π,q) between q(π) and b/n.

To conclude the proof, we now show that, for π ∈ [πs, s/n], all intermediate levels

of consumer surplus between 0 and s−nπ can be achieved by some demand P k
π,q ∈ Ps. As

a preliminary step observe two facts: (i) DWL(P(π,q0(π,s)), q
0(π, s)) = s− nπ because by

the first part of this proposition DWL(P
nq0(π,s)

π,q0(π,s), q
0(π, s)) = s− nπ but deadweight loss

of P k
π,q does not depend on k (see Lemma 6); (ii) DWL(P(π,b/n), b/n) = 0 by definition.

Then, since DWL(P(π,q), q) is continuous and decreasing in q (see Lemma 6), then for any

x ∈ [0, s − nπ] there exists q̂ such that DWL(P(π,q̂), q̂) = x. Then, since DWL(P k
π,q, q)

does not depend on k (see Lemma 6) and since for any P we have DWL(P, q) =

FB(P ) − CS(P, q) − nΠ(P, q), we can establish our result if for all q ∈ [q0(π, s), b/n]

we find kq such that FB(P kq

π,q) = s. Existence of kq (where dependence on s and π is

omitted to simplify notation) is demonstrated in the remainder of the proof.

To see that for all q ≥ q0(π, s) there exists kq such that nq ≥ kq ≥ nq0(π, s)

and FB(P kq

π,q) = s we can use again the Intermediate Value Theorem after observing

the following two things. First, FB(P
nq0(π,s)

π,q0(π,s)) = s ≤ FB(P
nq0(π,s)
π,q ), for q ≥ q0(π, s),

because, for given k, by Lemma 1 P k
π,q ≥ P k

π,q0 for all q ≥ q0(π, s). Second, that

FB(P nq
π,q) ≤ s for q ≥ q0(π, s) because FB(P nq

π,q) = nπ + DWL(P nq
π,q, q) ≤ nπ +

DWL(P
nq0(π,s)

π,q0(π,s), q
0(π, s)) = FB(P

nq0(π,s)

π,q0(π,s)) = s, where the inequality follows since we

have DWL(P nq
π,q, q) ≤ DWL(P

nq0(π,s)

π,q0(π,s), q
0(π, s)) due to DWL(P k

π,q, q) being independent

of k and decreasing in q for given π (see Lemma 6).

Observe that if n = 1, then πs = πs as P(πs,q) = P(πs,b/n) for any q ∈ [π, b].

So, FB(P(π,q(π)) = FB(P(πs,b/n)) = FB(Ps). Hence, the above result completes the
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characterization for the monopoly. In this case, for any given s and π ∈ [πs, s], all surplus

and deadweight loss combinations are achieved as different equilibria of the demand Ps.

In particular, the highest consumer surplus s − nπ is achieved by the equilibrium b/n

(see Condorelli and Szentes (2020)) and the lowest, equal to 0, by q(π) = π/(u− c) (see

Kremer and Snyder (2018)), while all intermediate levels are achieved by equilibria where

quantity ranges from q(π) to b/n. The achievable set is a right-triangle defined by the

following three vertexes in the monopoly profit-consumer surplus plane: (nπs, s− nπs),
(s, 0) and (nπs, 0). See the first column of Figure 7 for an illustration.

To complete our analysis, we characterize next the possible levels of consumer

surplus for each π ∈ (πs, π
s]. To state our final result, we introduce one additional

piece of notation. For π ∈ [πs, π
s], let q̂(π, s) solve FB(P(π,q̂(π,s))) = s. To see that

q̂(π, s) is well-defined, note first that FB(P(πs,q(πs))) = s. Then, by Lemma 1, for each

π ≤ πs, FB(P(π,q(π))) ≤ s because q(π) ≤ q(πs). Furthermore, FB(P(π,b/n)) ≥ FB(Ps) =

s. Since, FB(P(π,q)) is continuous and strictly increasing in q, the Intermediate Value

Theorem implies the existence of the unique solution of FB(P(π,q̂(π,s))) = s.

Proposition 4 For s ∈ (0, nπ̄] and π ∈ [πs, π
s], there exists P ∈ Ps and q ∈ E(P ) such

that Π(P, q) = π and CS(P, q) = v if and only if v ∈ [CS(P(π,q̂(π,s)), q̂(π, s)), s− nπ].

Proof. Assume by way of contradiction P ∈ Ps and an equilibrium q of P exists such

that Π(P, q) = π ∈ [πs, π
s] and CS(P, q) < CS(P(π,q̂(π,s)), q̂(π, s)).

There are three possibilities, either q < q̂(π, s) or q = q̂(π, s) or q > q̂(π, s). First,

suppose q < q̂(π, s) and note that we must have P ≤ P(π,q) < P(π,q̂(π,s)), where the first

inequality follows by Lemma 3 and the second from Lemma 1. Recalling the definition

of FB, we must have FB(P ) ≤ FB(P(π,q)) < FB(P(π,q̂(π,s))) = s, which contradicts

P ∈ Ps.
Second, if q = q̂(π, s) then P(π,q) = P(π,q̂(π,s)). Hence, either P = P(π,q̂(π,s)) and

therefore CS(P, q) = CS(P(π,q̂(π,s)), q̂(π, s)), a contradiction, or P < P(π,q̂(π,s)) in an in-

terval with positive mass which gives FB(P ) < FB(P(π,q̂(π,s))) = s, also a contradiction.

Third, suppose that q > q̂(π, s). Define b̂(P ) = max{q : P (q) ≥ c} and note

it is well-defined because P is left-continuous and u > c. Observe Lemma 3 implies

P ≤ P(π,q) and therefore

DWL(P, q) =∫ b̂(P )

nq

(P (x)− c)dx ≤
∫ b̂(P )

nq

(P(π,q)(x)− c)dx+

∫ b

b̂(P )

(P(π,q)(x)− c)dx = DWL(P(π,q), q),

20



where the second inequality follows because P ≤ P(π,q) and P(π,q)(Q) ≥ c for Q ∈
[b̂(P ), b]. Then, recall from Lemma 6 that DWL(P(π,x), x) is strictly decreasing in x and

conclude that, because q > q̂(π, s), we must have

DWL(P, q) ≤ DWL(P(π,q), q) ≤ DWL(P(π,q̂(π,s)), q̂(π, s)).

To find a contradiction with the hypothesis that equilibrium q of P generates lower

consumer surplus it is then sufficient to observe that

CS(P(π,q̂(π,s)), q̂(π, s)) = s−nπ−DWL(P(π,q̂(π,s)), q̂(π, s)) ≤ s−nπ−DWL(P, q) = CS(P, q).

The proof that intermediate levels of consumer surplus can be attained is analogous

to the one presented in the previous proposition. In particular, DWL(P(π,q), q) is contin-

uous, strictly decreasing (by Lemma 6) and goes from s−nπ−CS(P(π,q̂(π,s)), q̂(π, s)) to 0

as x goes from q̂(π, s) to b/n. Hence, because DWL(P k
π,q, q) = DWL(P(π,q), q) for any k

(also by Lemma 6) and CS(P k
π,q, q) = s−nπ−DWL(P k

π,q, q) we can conclude the proof

if, for all π ∈ [πs, π
s], we can find kq such that FB(P kq

π,q) = s for all q ∈ [q̂(π, s), b/n].

Details are omitted.

Notably, it follows from proposition 4 and the fact that CS(P(π,q̂(π,s)), q̂(π, s)) is

concave in π ∈ [πs, π
s], that the maximal level of deadweight loss that can arise in any

equilibrium is s− nπs.
For a graphical illustration of Propositions 2,3 and 4, Figure 7 plots the possible

combinations of industry profit and consumer surplus for the case when b = u = 1,

c = 0 for various values of s and n. Note that, as expected, q̂(πs, s) = πs/(u − c) and

therefore CS(P(πs,q̂(πs,s)), q̂(π
s, s)) = 0. On the other hand, q̂(πs, s) = b/n and therefore

CS(P(πs,q̂(πs,s)), q̂(πs, s)) = CS(Pπs , b/n) = s − nπs. That is, as long as πs > πs (see

columns 2 and 3 of Figure 7), there is a unique achievable level of consumer surplus at

the minimal profit πs and the equilibrium is efficient.

Inspection of Figure 7 suggests that, as the number of firms increases, the maximal

industry profit and the minimal consumer surplus stay constant, the minimal industry

profit, nπs decreases in n, while the maximum consumer surplus s− nπs increases in n.

Importantly, for each fixed level of industry profit, the minimum consumer surplus level

achievable increases in n. These observations are stated formally below. We omit the

proof.

Remark 1 nπs is decreasing in n and lim
n→∞

nπs = 0; nπs is increasing in n and lim
n→∞

nπs =

s; and lim
n→∞

CS(P(π,q̂(π,s)), q̂(π, s)) = s− nπ for 0 ≤ π < s/n.
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The remark states that inefficiency disappears as competition increases. The fact

that inefficiency disappears in equilibrium implies that, as the number of firms grows

large, all consumers with value above marginal cost are served, no matter what the

demand function is. The property that, for a given demand function, the quantity

produced in equilibrium increases as the number of firm increases has been called quasi-

competitiveness. The literature has provided a number of conditions on demand and

cost function that imply quasi-competitiveness but less has been said about convergence

for large n. Notably, Amir and Lambson (2000) have shown that quasi-competitiveness

holds quite generally with constant marginal cost and strictly decreasing demand func-

tions. Our analysis contributes to this literature by showing that convergence to an

efficient outcome will occur with constant marginal costs, regardless of demand.

The remark also points out that, no matter how many firms produce on the market,

there always exist demands and equilibria such that the industry profit remains large.

The hypothesis that if the number of firms grows large then the price goes to marginal

cost and industry profit goes to zero was first put-forward by Cournot himself in 1838.

This property, called convergence to a competitive equilibrium in the literature, has been

explored in a number of past papers (e.g., Frank (1965) and Ruffin (1971)). While it

has been shown that increasing returns to scale may hinder convergence to competitive

equilibrium, the property has been observed to hold with constant marginal cost when

the demand is strictly decreasing and the lowest consumer valuation is equal or below

marginal cost. As our results emphasize, even with constant marginal costs, this property

is not guaranteed to hold in general.
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Figure 7: Achievable (nπ,CS) couples in Ps within blue curves, b = u = 1 and c = 0
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Appendix

We show that if there exists an asymmetric Cournot equilibrium, then there also exists a

symmetric equilibrium where the total amount produced, and therefore industry profit,

is the same. We illustrate this for the case of two firms, but the argument extends easily

to multiple firms.

Suppose there exists equilibrium (q1, q2) with Q = q1 + q2. The following inequali-

ties hold:

q1[P (Q)− c] ≥ q′[P (q′ + q2)− c] ∀q′

q2[P (Q)− c] ≥ q′′[P (q′′ + q1)− c] ∀q′′.

Now substitute q′ = Q/2 − q2 + q̂ and q′′ = Q/2 − q1 + ˆ̂q. We can rewrite the above

inequalities as

q1[P (Q)− c] ≥ (Q/2− q2 + q̂)[P (Q/2 + q̂)− c] ∀q̂
q2[P (Q)− c] ≥ (Q/2− q1 + ˆ̂q)[P (Q/2 + ˆ̂q)− c] ∀ˆ̂q.

Summing up the two sets of inequalities we know the following must hold

Q[P (Q)− c] ≥ (Q/2− q2 + q̂)[P (Q/2 + q̂)− c] + (Q/2− q1 + ˆ̂q)[P (Q/2 + ˆ̂q)− c] ∀q̂, ˆ̂q.

Since the above must hold for all q̂, ˆ̂q, fix q̂ = ˆ̂q. The set of inequalities below must also

hold

Q[P (Q)− c] ≥ (Q/2− q2 + q̂ +Q/2− q1 + q̂)[P (Q/2 + q̂)− c] ∀q̂.

Finally, noting that q1 + q2 = Q and dividing by two we get

Q/2[P (Q)− c] ≥ q̂[P (Q/2 + q̂)− c] ∀q̂

which implies that there exists a symmetric equilibrium where both firms produce quan-

tity Q/2.
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