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We present a new approach to studying equilibrium dynamics in a class of
stochastic games with a continuum of players with private types and strategic
complementarities. We introduce a suitable equilibrium concept, called Markov
Stationary Nash Distributional Equilibrium (MSNDE), prove its existence, and de-
termine comparative statics of equilibrium paths and the steady-state invariant
distributions to which they converge. Finally, we provide numerous applications
of our results including: dynamic models of growth with status concerns, social
distance, and paternalistic bequests with endogenous preferences for consump-
tion.
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1. Introduction

This paper presents a constructive method for characterizing and approximating
Markovian equilibria in a class of dynamic games with a continuum of players and
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Łukasz Woźny: lukasz.wozny@sgh.waw.pl
We thank the three anonymous referees for their helpful comments and suggestions. Moreover, we are
grateful to Rabah Amir, Eric Balder, Michael Greinecker, Martin Kaae Jensen, Ali Khan, Ed Prescott, Manuel
Santos, Yeneng Sun, as well as the participants of ANR Nuvo Tempo Workshop on Recursive Methods 2015
in Tempe, Arizona, 2015 SAET Conference in Cambridge, 2017 EWGET in Salamanca, 2017 UECE Lisbon
Meetings in Game Theory and Applications, Lancaster Game Theory Conference 2018, Stony Brook Game
Theory Conference 2019, and World Congress of the Econometric Society 2020 for valuable discussions
during the writing of this paper. This project was financed by NCN Grant UMO-2012/07/D/HS4/01393.

© 2022 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at https://econtheory.org. https://doi.org/10.3982/TE4624

https://econtheory.org/
mailto:l.balbus@wmie.uz.zgora.pl
mailto:P.K.Dziewulski@sussex.ac.uk
mailto:kevin.reffett@asu.edu
mailto:lukasz.wozny@sgh.waw.pl
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://econtheory.org
https://doi.org/10.3982/TE4624


726 Balbus, Dziewulski, Reffett, and Woźny Theoretical Economics 17 (2022)

strategic complementarities. Each player is endowed with a private type that evolves
stochastically over time. The type may be interpreted as the agent’s endowment, social
rank, payoff-relevant private information, behavioral traits, etc., depending on the eco-
nomic application at hand. An equilibrium is defined as a probability distribution over
types and actions of all players in the initial period, and a law of motion/belief regard-
ing future distributions of types and actions in the population. Our approach allows
for a unified study of both equilibrium transition paths and equilibrium comparative
dynamics from any initial state of the game, as well as associated long-run stochastic
steady states (i.e., invariant distributions) to which these equilibrium paths converge.

Large dynamic games with private information find numerous applications in di-
verse fields in economics, including models of equilibrium growth with heterogeneous
agents and endogenous social structure (Cole, Mailath, and Postlewaite (1992)), inequal-
ity with endogenous preference formation (Genicot and Ray (2017)), industry dynamics
with heterogeneous firms (Weintraub, Benkard, and Van Roy (2008)), dynamic network
formation (Mele (2017), Xu (2018)), economics of identity and social dissonance (Akerlof
and Kranton (2000), Bisin, Moro, and Topa (2011)), models of endogenous formation of
social norms (Acemoglu and Jackson (2017)), macroeconomic models with public or pri-
vate sunspots (Angeletos and Lian (2016)), or models of wealth distribution in the pres-
ence of incomplete markets (Cao (2020)).1 The principal objective of these papers is to
provide sufficient conditions for existence, characterization, computation, calibration,
and estimation of dynamic equilibria. However, the existing tools are typically applica-
ble only to the study of stochastic steady-state equilibria defied in terms of invariant dis-
tributions. In contrast, we provide a systematic method for studying global equilibrium
distribution transitional paths that converge to the stochastic steady states.

The theoretical literature on equilibrium dynamics in games is quite limited, even
in the context of games with finitely many players.2 This is because characterizing the
dynamics of sequential or Markovian equilibria becomes analytically intractable as the
number of players grows and the state space becomes large and complex. Additionally,
due to heterogeneity of private types, determining how players update their beliefs both
“on” and “off” equilibrium paths is nontrivial. Even providing sufficient conditions for
existence of sequential equilibria is challenging, let alone providing methods for approx-
imating and characterizing the evolution of types an actions over time.

Due to these complications, the literature has focused on equilibrium concepts that
simplify dynamic interactions. Two dominant methodological approaches have been
proposed in the existing literature. One exploits aggregative structures in games and re-
stricts players’ interactions to a statistic or an aggregate that summarizes the population
distribution, joint with some notion of a stochastic steady-state equilibrium. The other
(often used in conjunction with aggregation and restriction to steady states) simplifies

1See also Acemoglu and Jensen (2015, 2018) for a discussion on the relation between large dynamic
economies and large anonymous games.

2From a theoretical perspective, little is known about the nature of convergence of equilibrium tran-
sitional dynamics to stochastic steady states. This question is complicated by the presence of equilibrium
multiplicities and stability issues related to equilibrium transitional paths, thus making the counterfactuals
from these models difficult to implement and interpret.
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equilibrium interactions by imposing behavioral assumptions on how agents make their
decisions. This includes the recent work on oblivious equilibria (Lasry and Lions (2007),
Achdou, Buera, Lasry, Lions, and Moll (2014), Bertucci, Lasry, and Lions (2019), Light
and Weintraub (2021), Achdou, Han, Lasry, Lions, and Moll (2022)), mean-field equi-
libria (Weintraub, Benkard, and Van Roy (2008), Adlakha, Johari, and Weintraub (2015),
and Ifrach and Weintraub (2016)), or imagined-continuum equilibria (Kalai and Shmaya
(2018)), among others.3 We argue that such simplifications are not critical or necessary
in games with strategic complementarities.

Our results This paper tackles the above theoretical and computational questions
within a unified methodological framework of large anonymous stochastic games with
strategic complementarities4 and no aggregate risk.5 Exploiting the nature of games
with infinitely many agents, where individuals have negligible impact on actions of oth-
ers, and in the context of games with strategic complementarities, we provide sufficient
conditions for existence of a Markov stationary Nash distributional equilibrium (hence-
forth MSNDE). Our solution concept consists of a probability measure over types and
actions in the population of players and a law of motion that determines the equilibrium
evolution of such distributions. MSNDE is defined over a minimal set of state variables6

and resembles the notion of recursive competitive equilibrium that is extensively used
in macroeconomics. Our equilibrium concept is therefore inherently dynamic and en-
ables us to characterize and compare equilibrium transition paths. Notably, the results
hold without the need of restricting our analysis to an aggregative structure. In fact, in
our economic applications, players’ payoffs critically depend on the entire distribution
of types and actions in the population.7

Limiting our attention to games with strategic complementarities is indispensable
for our results. First of all, it allows us to formulate the evolution of (distributional) equi-
librium beliefs in a tractable way. Second, we develop a new order-theoretic approach
to characterize the order structure of (Markovian) Nash distributional equilibria. This
enables us to prove existence of a greatest and a least MSNDE (with respect to a well-
defined stochastic order). Third, by analyzing a measure space of agents, we avoid the
technical difficulties that can emerge in extensive-form supermodular games with a fi-
nite number of players and private information.8 Finally, our approach delivers novel

3See also Krusell and Smith (1998) where agents know only the moments of the random measure deter-
mining the distribution of idiosyncratic shocks and assets. See also Lacker (2020), Doncel, Gast, and Gaujal
(2016), Nutz (2018), Kwok and Ho (2019).

4See Topkis (1978), Vives (1990), Milgrom and Roberts (1990) and Milgrom and Shannon (1994) for early
contributions and motivations for studying games with strategic complementarities. See also Van Zandt
and Vives (2007) and Van Zandt (2010) for Bayesian games with strategic complementarities and finitely
many players.

5See Jovanovic and Rosenthal (1988), Bergin and Bernhardt (1992), Karatzas, Shubik, and Sudderth
(1994).

6By the minimal state space, we mean a domain that includes only the current individual type and the
distribution of types in the population.

7Equilibrium distributions are also important in econometric evaluations of heterogeneous agent mod-
els in macroeconomics. See, for example, Parra-Alvarez, Posch, and Wang (2020) and Auclert, Bardoczy,
Rognlie, and Straub (2021).

8See Echenique (2004), Vives (2009), and Mensch (2020) for a related discussion.
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results in constructing global equilibrium comparative statics/dynamics that apply to
monotone dynamic economies. This way, we extend the recent results on comparative
statics of stochastic steady-state equilibria as in Acemoglu and Jensen (2015) and Light
and Weintraub (2021).

We organize the paper as follows. In the remainder of this section, we present a mo-
tivating example to discuss the main issues that we tackle in our results. In Section 2,
we present the main model and prove equilibrium existence. The results on monotone
comparative statics/dynamics are discussed in Section 3. We present economic applica-
tions of our results in Section 4. Proofs, auxiliary results, and a glossary of mathematical
terminology are postponed until the Appendix.

A motivating example Consider a growth model in which individuals are concerned
with their relative social status. The society consists of a continuum of players. Each
time period n ∈ {1, 2, � � �}, a typical player is endowed with a (private) wealth/capital level
t ∈ T = [0, 1] that constitutes their type. This wealth can be transformed into consump-
tion c ∈ [0, 1] or investment a ∈A= [0, 1] using a one-to-one technology, thus introduc-
ing the constraint t = c + a. By investing a ∈ [0, t], the agent influences their wealth t ′
in the following period via a stochastic technology q. Whenever a units of wealth is be-
ing invested, the cumulative probability of attaining the capital t ′ is q(t ′|a). We assume
that higher investments make higher wealth more likely, that is, the distribution q(·|a)
increases in a in the sense of first-order stochastic dominance. Finally, we assume that
the realization of the future capital t ′ is independent across players. The discount factor,
common to all players, is denoted by β ∈ (0, 1).

The status of each agent is determined by both their current consumption c and
wealth t. In each period, every individual interacts randomly with one other member of
the society. If an agent with capital t consuming c encounters an individual of wealth
t̃ consuming c̃, the former receives U(c, c̃, t, t̃ ) = m(t − t̃ ) +w(c − c̃), where the func-
tions m and w are continuous, strictly increasing, and concave. Thus interacting with
individuals with lower wealth and consumption is preferable due to, say, the feeling of
superiority.

At the beginning of each period, before any interaction with other members of soci-
ety takes place, the individual determines their consumption c and investment a. In
order to do so, they first evaluate their beliefs about the current distribution μ over
capital-investments pairs ( t̃, ã) in the population, where ã = t̃ − c̃. Given a belief μ, their
expected payoff in this particular period is given by

r(t, a, μ) =
∫
A×T

[
m(t − t̃ ) +w(t − a− t̃ + ã)

]
μ(dã× dt̃ ).

Of particular importance is to notice that the payoffs of each player depends on
the entire distribution of type-actions in the population. Thus, this game is inherently
nonaggregative. Indeed, evaluating payoffs in each period requires the entire distribu-
tion μ of capital (types) and investments (actions) in the population. Simply replacing
the measure μ with a summary statistic is not enough to define the payoffs.
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We are interested in studying the dynamic distributional equilibrium of this game.
More generally, we investigate how the distributions of types and actions in the popu-
lation evolve and interact when (a) the evolution of types and actions is determined by
strategies of individuals and the stochastic transition q over private types, and (b) indi-
viduals form beliefs over future types and actions in the population consistent with the
law of motion governing the distribution of private types (i.e., capital levels), given the
joint strategy of all players.

Studying equilibria in games with infinitesimal players has one important advan-
tage. Since individual players have a negligible impact on the distribution of types and
actions in the population, each one of them faces a standard Markov decision prob-
lem (henceforth, MDP), conditional on the distributions of future types {τn} and types-
actions {μn}. Only private types are drawn (independently) each period and fluctuate
according to probability distribution q.

Importantly, the problem of each player admits a recursive formulation. To see that,
suppose the players share a macro belief �, that is, a transition function for capital-
investment distributions between periods, where μn+1 = �(μn ). Together with an ini-
tial distribution μ1, this allows players to conjecture a candidate equilibrium path of
the game and formulate their sequential problem recursively, with the value function v∗
satisfying

v∗(t, μ; �) = max
a∈[0,t]

{
(1 −β)r(t, a, μ) +β

∫
T
v∗(t ′, �(μ); �

)
q
(
dt ′|a

)}
.

An MSNDE consists of a measure μ∗ over type-actions in the population in the initial
period and a macrobelief transition �∗ such that, when treating those as given, almost
every player solves their MDP and the resulting distribution over types and actions co-
incides with μ∗. In particular, the marginal distribution of μ∗ over types (wealth/capital)
must be equal to the exogenously given initial distribution τ1. Moreover, the perceived
macro belief �∗, under rational expectations, is consistent with the actual transition q

and the initial distribution. In particular, under the exact law of large numbers, one can
associate probabilities q with distributions over types in T .

In addition, any equilibrium pair (μ∗, �∗ ) generates a sequence of equilibrium mea-
sures {μ∗

n}, where μ∗
1 = μ∗ and μ∗

n+1 = �∗(μ∗
n ). MSNDE is stationary in the sense that

the corresponding equilibrium strategies of players and their beliefs are independent of
time. However, our concept is inherently dynamic and allows us to evaluate and com-
pare the entire equilibrium paths of types and actions.

Our motivating example is a game with dynamic strategic complementarities. In this
game, it is optimal for every individual to increase their own wealth and consumption
as the distribution of wealth and consumption in the population increases stochasti-
cally. More importantly, such complementarities are present within and across periods.
In particular, anticipating (stochastically) higher distributions of capital tomorrow pro-
vides incentives for players to increase their own investment today at the expense of the
current consumption. Whether a game exhibits such complementarities depends crit-
ically on two reinforcing conditions: (i) increasing differences between the private type
(capital) and anticipated population distribution in the following period, and (ii) agents
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forming monotone beliefs, that is, expecting higher population distribution tomorrow
when faced with a higher distribution today.9 This example has both features. This is
in contrast to the complementarities that arise in stochastic steady-state or stationary
equilibria, which are essentially static by definition.

Finally, we can characterize the comparative statics/dynamics of equilibrium paths.
We show how changes in parameters of the game (e.g., discount factor, preference or
technology parameters, the initial distribution τ1 of types) affect paths of equilibrium
distributions {μ∗

n} (implied by equilibrium μ∗ and �∗), as well as the steady states to
which they converge. Since the measure μ∗

n is defined over the space of types and ac-
tions, it is crucial to provide a novel equilibrium comparative statics result for spaces of
multidimensional distributions, that extends the existing comparative statics results in
a nontrivial fashion.

2. Large stochastic games with complementarities

In this section, we formally define the model and our notion of equilibrium. A glossary
of basic mathematical definitions is provided in the Appendix.

Consider a stochastic game in discrete time with an infinite horizon. Let (�, L, λ) be
a probability space of players. It is critical to our analysis that this space is superatomless.
This formalization is necessary to show that the agents can form their beliefs about types
of other players by exploiting the exact law of large numbers.10 To fix ideas, one intuitive
example of such a space is the product measure space over [0, 1]I , where each factor is
endowed with Lebesgue measure and I is uncountable.

In each period n ∈ {1, 2, � � �}, a player is endowed with a private type t ∈ T ⊆R
p,

where T is compact and T denotes its Borel σ-algebra. Let A ⊆ R
k be a compact space

of all conceivable actions endowed with the Borel σ-algebra A. We endow T and A with
the natural product partial order ≥.11 Finally, let M be a set of probability measures on
T ⊗ A, and MT be the set of probability measures on T , where both spaces are ranked
with the corresponding first order stochastic dominance order and endowed with the
topology of weak convergence of measures.12

Given a distribution τ of types of all (other) players, a player of type t chooses an ac-
tion a ∈ Ã(t, τ) ⊆ A, where Ã : T ×MT ⇒A is the feasible action correspondence. The
player’s within-period payoff is determined by a bounded function r : T ×A×M →R

that takes values r(t, a, μ), given a private type t, an action a, and a probability measure
μ over types and actions of all players.

In this paper, we investigate dynamic games in which private types of players are
determined stochastically in each period. The transition probability is represented by a
function q : T ×A×M → MT that assigns a probability measure q(·|t, a, μ) over private
types in the following period to their current type t, action a, and the measure μ of types-
actions in the population.

9Hence, our work is related to recent work on characterizing single crossing in distributions (e.g., Quah
and Strulovici (2012) and Kartik, Lee, and Rappoport (2019)).

10See the Appendix for a formal definition and a comprehensive discussion on this notion.
11For any x, y ∈R

	, we say that x ≥ y if xi ≥ yi , for all i = 1, � � � , 	.
12See Remark A.1 in the Appendix for a discussion regarding the relationship between order topology

and weak convergence of measures.
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2.1 Players’ decision problem

In order to define the sequential decision problem for each player, we need to specify
how the individual is forming beliefs about future types of other players in the game,
based on the current distribution of types and strategies in the population. We begin
with some basic assumptions on the primitives of the game.13

Assumption 1. For all τ ∈MT and μ ∈ M:

(i) The correspondence t ⇒ Ã(t, τ) is measurable and compact-valued.

(ii) The function (a, t ) → q(·|t, a, μ) is Borel-measurable.

Given that the measure space of players is superatomless, Assumption 1 guaran-
tees that the (endogenous) transition of private types satisfies a no aggregate uncertainty
condition in each period (hence, it evolves deterministically).14 Formally, given the cur-
rent distribution μ of types and actions in the population, the future measure of players
with private types in a measurable set S is

φ(μ)(S) :=
∫
T×A

q(S|t, a, μ)μ(dt × da). (1)

Therefore, it is determined by the current distribution μ and the transition q. This no
aggregate uncertainty condition for a superatomless probability space of players follows
from results in Sun (2006) and Podczeck (2010). Such an appropriate exact law of large
numbers (ELLN) simplifies our analysis of large random populations by (i) allowing for
independent draws of types for a continuum of players; (ii) simplifying the dynamics
of the aggregate law of motion of distributions over types-actions in the population;
and (iii) allowing each agent to form beliefs using the law of large numbers, rather than
updating their beliefs on (the product of) types of other players. By ELLN and univer-
sality of rich Fubini extension as in Sun (2006), we show the no-aggregate-uncertainty
assumption holds in our setting. See Section A.1.2 in the Appendix for details.

Given the formulation of beliefs, we define the decision problem of a player in a
candidate Markov stationary Nash distributional equilibrium. Let H∞ be the set of all
histories {(tn, an, τn )}n∈N, where an ∈ Ã(tn, τn ). Let Hn be the set of histories up to time
n: that is, Hn := {(tj , aj , τj )nj=1 : aj ∈ Ã(tj , τj )}. A strategy is a sequence of functions
(σn )n∈N such that σn : Hn−1 × T × MT → A is Borel-measurable in (t1, t2, � � � , tn ) ∈ Tn

and σn(hn−1, tn, τn ) ∈ Ã(tn, τn ), where H0 = ∅ and the initial values of t1, τ1 are given. A
strategy (σn )n∈N is Markov if in each period n, we have σn : T ×MT →A, that is, the ac-
tion depends only on the current type t ∈ T and the current distribution of types τ ∈ MT .
Hence, it is history-independent. A Markov strategy is stationary if it is time-invariant,
that is, we have σn = σn′ , for any time periods n, n′.

13A glossary containing basic mathematical terminology, including the details regarding the dynamic
ELLN in the immediate sequel, is provided in the Appendix.

14Bergin and Bernhardt (1992, 1995) discuss the importance of this construction.
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Given an initial private type t, a public distribution of types τ, and a Markov strategy
σ ′ of other players, a Markov strategy σ induces the unique private measure Pσ ,σ ′

t,τ on
histories of the game. The sequential objective of a player is

R
(
t,

(
σ , σ ′), τ

)
:= (1 −β)Eσ ,σ ′

t,τ

[
r
(
t, σ1(t, τ), μ

σ ′
1

1

) +
∞∑
n=2

βn−1r
(
tn, σn(tn, τn ), μ

σ ′
n

n

)]
, (2)

where β ∈ (0, 1) is a discount factor, Eσ ,σ ′
t,τ is the expectation induced by Pσ ,σ ′

t,τ , and μ
σ ′
n

n =
τn(idT , σ ′

n(·, τn ))−1,15 where idT denotes the identity function over T . We impose the
following assumptions.16

Assumption 2 (Payoffs). The function r is (i) continuous in (t, a), (ii) monotone sup-
and inf-preserving in μ, (iii) increasing in t, (iv) supermodular in a; and (v) has increasing
differences in (a, (t, μ)) and (t, μ).

Assumption 3 (Transition probability). The transition kernel q(·|t, a, μ) is (i) contin-
uous in (t, a), (ii) monotone sup- and inf-preserving in μ, (iii) stochastically increasing
in (t, a, μ), (iv) stochastically supermodular in a, and (v) has stochastically increasing
differences in (a, (t, μ)) and (t, μ).

Assumption 4 (Feasible actions). The correspondence Ã : T × MT ⇒A is (i) continu-
ous; (ii) its values are compact sublattices of A; (iii) it is increasing with t in the sense of
set inclusion; (iv) increasing with t in the strong set order; and (v) it satisfies strict comple-
mentarities.

Most of these assumptions are standard in dynamic games with complementarities
(see Curtat (1996), Nowak (2007) and Balbus, Reffett, and Woźny (2014)) with the ex-
ception of some monotonicity requirements on payoffs and the transition function. As
shown later in the paper, these are indispensable to preserve strategic complementari-
ties across periods in the extensive formulation of the game under Markovian strategies.
Importantly, our framework encompasses many of the important linear social interac-
tion models studied in the econometric literature by Blume, Brock, Durlauf, and Jayara-
man (2015), Kline and Tamer (2020) and Kwok and Ho (2019).17

An example of a transition function q satisfying Assumption 3 is

q(·|t, a, μ) := g(t, a, μ)ρ(·) + (
1 − g(t, a, μ)

)
ν(·),

15We employ the standard notation where, for any measure ν, measurable function f , and a measurable
set S, we have νf−1(S) = ν({s : f (s) ∈ S}).

16We present the mathematical terminology in the Appendix.
17For example, the payoff function studied in Kwok and Ho (2019) satisfies our assumptions (see equa-

tion (1) in their paper). Our constructive monotone comparative statics/dynamics results presented in the
following section may be useful in developing and characterizing estimators to test equilibrium distribu-
tions in empirical models. See, for example, Echenique and Komunjer (2009, 2013), DePaula (2013), and
Uetake and Watanabe (2013).
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where g(t, a, μ) is supermodular in a; has increasing differences in (a, (t, μ)) and (t, μ);
and is increasing in (a, t, μ); while ρ, ν are probability distributions over T such that ρ
first order stochastically dominates ν. This class of transitions was introduced in Curtat
(1996) and Amir (2002), and has been successfully applied in the related literature.18

Remark 1. Assumption 3 implies that, in general, the transition cannot be determinis-
tic. Indeed, supermodularity and increasing differences of the integrand

∫
f (t ′ )q(dt ′|t,

a, μ) must hold for any integrable and monotone function f , which is generally not sat-
isfied for deterministic transitions.19 However, if A⊆R (an important special case in the
applied literature) then, for any continuous and increasing function g : A → T , the de-
terministic transition given by q(S|t, a, μ) = 1, if g(a) ∈ S, and q(S|t, a, μ) = 0 otherwise,
satisfies our assumption.

Remark 2. Whenever the action space A is one-dimensional and the transition func-
tion q depends only on action a, our results remain true even if the payoff function r

is not increasing in t and the correspondence Ã is not increasing in t in the set inclu-
sion order. This follows directly from our constructive argument in Section 2.3 and will
become clear in the remainder of the paper.

An important feature of our framework is that the sequential problem in (2) admits
a recursive representation. Let � : M → M determine the next period distribution �(μ)
over types and actions in the population, given the current distribution μ. By (1), the
marginal of �(μ) over types in T is φ(μ)(S) = ∫

T×A q(S|t, a, μ)μ(dt × da), for any mea-
surable set S. Denote μT := margT (μ), where margT (μ) returns the marginal of μ on
T . In the remainder of this section, we show that for any initial distribution μ and any
function �, the value corresponding to the problem (2) satisfies

v∗(t, μ; �) = max
a∈Ã(t,μT )

{
(1 −β)r(t, a, μ) +β

∫
T
v∗(t ′, �(μ); �

)
q
(
dt ′|t, a, μ

)}
.20 (3)

Given the initial distribution μ and the perceived law of motion �, the player’s prob-
lem is a MDP with uncertainty about the future private signal t only. Thus, under the
exact law of large numbers, the sequence of aggregate distributions {μn}n∈N is determin-
istic. Using standard arguments, we show that the best response correspondence of each
player is Markovian on the natural state space of current types t and measures μ. How-
ever, our definition of equilibrium requires consistency between such a policy and the
perceived law of motion �. Since � specifies beliefs of players on continuation paths of

18For example, see Balbus, Reffett, and Woźny (2013) for a discussion on the nature of these assumptions.
19Indeed, the (deterministic) transition q(S|t, a, μ) = 1 if g(t, a, μ) ∈ S, and q(S|t, a, μ) = 0 otherwise,

does not satisfy our assumption, even when g is increasing in all variables, supermodular in a, and has
increasing differences in (a, (t, μ)) and (t, μ). It is so, even when such a deterministic transition is ex-
tended by, for example, an i.d.d., multiplicative noise π over Z. In such case, the function

∫
T f (t ′′|t, a, μ) =∫

Z f (z′g(t, a, μ))π(dz′ ) does not have increasing differences between (a, t ), unless f is convex.
20Equivalently, one may use t, τ as state variables and construct μ by composing τ and a strategy σ :

T → A. In such a case, the strategy σ would have to be included as an additional parameter of the value
function.



734 Balbus, Dziewulski, Reffett, and Woźny Theoretical Economics 17 (2022)

the game, we write v∗(t, μ; �) to stress that the value function and the corresponding
policy depend on the beliefs.21

2.2 Markov stationary Nash distributional equilibria

We now define the notion of equilibrium we use in this paper.

Definition 1 (Markov stationary Nash distributional equilibrium). A pair (μ∗, �∗ )
with μ∗ ∈ M and �∗ : M → M is a Markov Stationary Nash Distribution Equilibrium
(MSNDE) whenever:

(i) there is a function v∗ such that, for any μ ∈ M and almost every t ∈ T ,

v∗(t, μ; �∗) = max
a∈Ã(t,μT )

{
(1 −β)r(t, a, μ) +β

∫
T
v∗(t ′, �∗(μ); �∗)q(

dt ′|t, a, μ
)}

;

(ii) there is a measurable selection σμ,�∗ of the correspondence �μ,�∗ : T ⇒A:

�μ,�∗(t ) := arg max
a∈Ã(t,μT )

{
(1 −β)r(t, a, μ) +β

∫
T
v∗(t ′, �∗(μ); �∗)q(

dt ′|t, a, μ
)}

,

μ∗ = μ∗
T (idT , σμ∗,�∗ )−1 and �∗(μ) = φ(μ)(idT , σ�∗(μ),�∗ )−1, for any μ ∈ M.

An MSNDE consists of an initial distribution μ∗ on types and actions, a Markov tran-
sition function �∗, and it involves an equilibrium policy σμ,�∗ : T →A. MSNDE is sta-
tionary in the sense that equilibrium strategies and beliefs of all players are time invari-
ant. Nevertheless, the continuation payoff v∗(·, �∗(μ∗ ); �∗ ) implies a dynamic interac-
tion of each player with the future distributions of types and actions in the population,
through the equilibrium law of motion �∗.

Condition (i) is a standard Bellman equation characterizing players’ best reply cor-
respondences. The second part of the definition imposes a two-fold consistency. First
of all, μ∗ = μ∗

T (idT , σμ∗,�∗ )−1 guarantees that the distribution of actions is generated by
the equilibrium strategy σμ∗,�∗ , given the initial distribution of types and the equilib-
rium law of motion. In addition, we require that �∗(μ) = φ(μ)(idT , σ�∗(μ),�∗ )−1. Thus
the perceived macro belief and the actual law of motion for aggregate distributions (i.e.,
generated by the best-response selection σ�∗(μ),�∗ ) must coincide.22 The Markov transi-
tion �∗ specifies common beliefs each player uses to determine future paths of equilib-
rium distributions. In macroeconomic literature on recursive equilibria, such beliefs are
often called rational. Since �∗(μ) =φ(μ)(idT , σ�∗(μ),�∗ )−1, for any μ ∈ M, the function
�∗ specifies beliefs “on” and “off” equilibrium paths.

To state our main result, we introduce one final piece of notation. Let

D := {
� : M → M : � is increasing and monotone

inf-preserving and margT
(
�(μ)

) =φ(μ), for any μ ∈ M
}

. (4)

21Compare with the equilibrium in Kalai and Shmaya (2018) for large but finite repeated games.
22Since we work with no aggregate uncertainty, we do not require that �∗ is measurable.
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Therefore, we restrict our attention to functions/beliefs � that are increasing and mono-
tone inf-preserving. We endow D with the pointwise order, that is, function �′ domi-
nates � if the probability measure �′(μ) first order stochastically dominates �′(μ), for
all μ ∈ M. We endow D with the topology of pointwise convergence.

Remark 3. Dually, let D′ := {� : M → M : � increasing and monotone sup-preserving
and margT (�(μ)) = φ(μ), for any μ ∈ M}. To save space, we focus on D, but all con-
structions and results have their counterpart in D′.

Consider the main result of this paper.

Theorem 1. Let Assumptions 1–4 be satisfied. Then any large stochastic game with com-
plementarities has a Markov Stationary Nash Distributional Equilibrium (MSNDE). In
particular, there exists a greatest MSNDE of the game in M×D and a least MSNDE of the
game in M×D′.

We postpone the proof until Section 2.3. The above theorem requires some com-
ment. First, apart from providing sufficient conditions for existence of an MSNDE, The-
orem 1 guarantees existence of a monotone MSNDE, consisting of monotone beliefs �∗
and monotone strategies σμ,�∗ . Moreover, the space of all MSNDE in M × D admits a
greatest element. Similarly, there exists a least MSNDE in the space M×D′. Finally, if the
set of maximizers to the optimization problem on the right-hand side in (3) is unique,
then the set of MSNDE is chain complete, that is, closed under monotone sequences of
equilibria in M× {D ∩D′}.

Remark 4. Any MSNDE induces a sequential distributional equilibrium as in Jovanovic
and Rosenthal (1988), that is, {μ∗

n}n∈N, where μ∗
1 = μ∗ and μ∗

n = �∗(μ∗
n−1 ). In fact, such

sequential distributional equilibrium can be constructed for any initial distribution τ1

of types of all players. Indeed, it is clear from Definition 1 that μ∗ can be constructed
using any distribution on types τ1 and a stationary equilibrium policy σ∗.23

A natural question is whether there is an invariant distribution induced by MSNDE
that would give rise to a stochastic stationary equilibrium—a fixed point of a global dis-
tributional equilibrium dynamics generated by an MSNDE.

Proposition 1 (Invariant distributions). Under Assumptions 1–4, there exists a stochas-
tic stationary equilibrium. In particular, there exists a greatest invariant distribution ν̄

induced by the greatest MSNDE (μ̄∗, �
∗

), that is, ν̄ =�
∗
(ν̄) and a least invariant distribu-

tion ν induced by the least MSNDE (μ∗, �∗ ).

We omit the proof. The existence of invariant distributions is guaranteed by mono-
tonicity of � and �, and the fact that the space of measures M is a chain complete
poset.24 By Proposition A.1 in the Appendix, both operators admit a greatest and a least

23See also our construction in equations (6) and (7).
24See, for example, Lemma 2 in Balbus, Dziewulski, Reffett, and Woźny (2019).
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fixed point (invariant distribution), and these extremal fixed points can be obtained
through successive iterations on the mappings �

∗
and �∗, respectively. Additionally, for

any MSNDE (μ∗, �∗ ), the pair (�∗(μ∗ ), �∗ ) is also an MSNDE. In fact, the pair (ν, �∗ ) is
a MSNDE as well, for any invariant distribution ν generated by �∗.25

We prove Theorem 1 in the following subsection. It is important to point out that our
argument is constructive and based upon order continuous successive approximation
techniques. In particular, we introduce an explicit iterative algorithm that approximates
the greatest equilibrium of the game. To present our construction, we require additional
notation. For any μ ∈ M, � ∈ D, and function v, let

�(t, μ, �; v) := arg max
a∈Ã(t,μT )

{
(1 −β)r(t, a, μ) +β

∫
T
v
(
t ′, �(μ), �

)
q
(
dt ′|t, a, μ

)}
, (5)

that is, the set of maximizers of the player’s MDP. Define a greatest element of the set
by γ(t, μ, �; v), if it exists. Let � be a binary operation between τ ∈ MT and the set of
measurable functions h : T → A returning probability measure on T ×A

τ � h := τ(idT , h)−1. (6)

Define the operator � mapping M×D into itself, where �(μ, �) = (μ′, �′ ) and

μ′ := μT � γ
(·, μ, �; v∗) and �′(μ) := φ(ν) � γ

(·, �(μ), �; v∗), (7)

for all μ ∈ M, where v∗ : T ×M×D → R is a function solving (3).

Proposition 2 (Bounds approximation). Let μ̄ and � be the greatest elements of M and
D, respectively. Under Assumptions 1–4, limn→∞ �

n
(μ̄, �) = (μ∗, �

∗
), where (μ∗, �

∗
) is

the greatest MSNDE.

An analogous approximation result holds for the least MSNDE. Our results con-
tribute to several strands of economics literature. First, we extend the results on exis-
tence of equilibria in large anonymous sequential games that date back to Jovanovic
and Rosenthal (1988), Bergin and Bernhardt (1992), and Karatzas, Shubik, and Sudderth
(1994). In particular, we prove existence of minimal state space stationary Markovian
distributional Nash equilibrium within the subclass of games that (in addition) possess
strategic complementarities. Second, we extend the class of games with strategic com-
plementarities (GSC) to a dynamic setting with a measure space of players. Following
Van Zandt (2010) and Van Zandt and Vives (2007), a few recent papers generalized the
class of supermodular games and GSC to normal-form games with complete and in-
complete information. See, for example, Balbus, Reffett, and Woźny (2015a), Balbus,
Dziewulski, Reffett, and Woźny (2015, 2019), and Bilancini and Boncinelli (2016), who
construct the necessary tools for a study of large static games with strategic comple-
mentarities. We extend these results to Markovian equilibria in large dynamic games.

25However, it must be that ν̄ is dominated by μ̄∗.
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The tools used in our paper extend significantly the ones in Balbus, Reffett, and
Woźny (2013, 2014), where the question under study is the existence and characteriza-
tion of Markovian equilibria in dynamic games with a finite number of players. Specif-
ically, within the context of a large game framework, the current paper relaxes some
strong geometrical assumptions on the (aggregate) transition function q required in
stochastic supermodular games with a finite number of players.26 Indeed, the context
of a large game allows us to avoid multiple issues related to extensive-form supermod-
ular games as discussed, for example, in Amir (2002), Echenique (2004), Vives (2009),
and Mensch (2020). Our assumptions guarantee that the stationary value functions in
each player’s decision problem has increasing differences in the private type and the
distribution over types and actions in the population. With this structure in place, our
large stochastic supermodular game remains extensive-form supermodular over the in-
finite horizon. This is critical for equilibrium comparative statics/dynamics. Given the
distributional specification of the game, we are able to avoid issues with characterizing
dynamic complementarities in actions across periods and beliefs, reported recently in
Mensch (2020) for dynamic Bayesian games with a finite number of players. Finally, as
in Balbus, Reffett, and Woźny (2014), the existence of the extremal MSNDEs is proven
constructively, by applying successive approximations starting from the greatest (resp.,
the lowest) strategies. In this sense, we provide the applied researchers with tools that
allow to approximate sequences of equilibrium distributions.

2.3 Construction of equilibria

We devote this subsection to the proof of Theorem 1. We present our argument via a
number of lemmas, each of which may be of individual interest. We prove existence of a
greatest MSNDE only. The argument for a least MSNDE is analogous.

Let Assumptions 1–4 be satisfied. We begin by showing that the problem in (2)
admits a recursive representation. In particular, for any Markov transition function
� ∈ D, there is a unique function v satisfying (3). Let V be the space of functions
v : T × M × D �→ R such that: (i) v is uniformly bounded by a value r̄ > 0, (ii) v(·, μ, �)
is increasing and continuous, for any (μ, �) ∈ M × D, (iii) v(t, ·, ·) is monotone inf-
preserving, for any t ∈ T , and (iv) v has increasing differences in (t, (μ, �)). We endow V
with the sup-norm topology ‖ · ‖∞.27

Lemma 1. V is a complete metric space.

Given that V is a subset of all bounded functions, it is a subset of a Banach space.
Hence, it suffices to show that the set is closed. Since continuity, monotonicity, and
increasing differences are preserved in the sup-norm convergence, the main difficulty is
to show that any limit of monotone inf-preserving functions preserves this property. We
prove this in the Appendix.

26See Assumption 1 in Balbus, Reffett, and Woźny (2013) and Assumption 2 in Balbus, Reffett, and Woźny
(2014), which are necessary to guarantee that equilibrium dynamics do not lead to an absorbing state.

27That is, we have ‖v‖∞ := sup(t,μ,�)∈T×M×D |v(t, μ; �)|.
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The next lemma provides an important feature of Markov transition functions �. It
follows immediately from Lemma A.2 in the Appendix.

Lemma 2. Let {μk}k∈N be a decreasing sequence in M that weakly converges to μ in M.
Let {�k}k∈N be a decreasing sequence in D that pointwise weakly converges to some � in
D. Then {�k(μk )}k∈N weakly converges to �(μ).

Define an operator B : V → V as

(Bv)(t, μ, �) := max
a∈Ã(t,μT )

{
(1 −β)r(t, a, μ) +β

∫
T
v
(
t ′, �(μ), �

)
q
(
dt ′|t, a, μ

)}
. (8)

Some basic properties of the operator B are provided below.

Lemma 3. For any v ∈ V , function (Bv) is continuous and increasing in t, jointly mono-
tone inf-preserving in (μ, �), and has increasing differences in (t, (μ, �)).

Denote the function within the brackets in (8) by

F(t, a, μ; v, �) := (1 −β)r(t, a, μ) +β

∫
T
v
(
t ′, �(μ), �

)
q
(
dt ′|t, a, μ

)
. (9)

Given Assumptions 2–4, F(t, a, μ; v, �) is increasing in t, jointly continuous in (t, a), and
has increasing differences in (a, (t, μ, �)) and (t, (μ, �)). We claim it is monotone inf-
preserving in (μ, �). Suppose that {(μn, �n )}k∈N is a decreasing sequence that converges
to (μ, �). By Lemma 2, we have �n(μn ) →�(μ). By Assumption 2 and the choice of the
set V , it must be that both r(t, a, μk ) → r(t, a, μ) and v(t, �k(μk ), μk ) → v(t, �(μ), μ).
Moreover, we have

∫
T v(t ′, �k(μk ), μk )q(dt ′|t, a, μk ) → ∫

T v(t ′, �(μ), μ)q(dt ′|t, a, μ),
which follows from Lemma A.3 in the Appendix. Hence, F is inf-preserving. We are
ready to prove Lemma 3.

Proof of Lemma 3. Continuity of (Bv) follows from Berge’s maximum theorem (see
Theorem 17.31 in Aliprantis and Border (2006)). Monotonicity of (Bv) in t is implied
by monotonicity of F and the fact that Ã increases in t with respect to set inclu-
sion. To show that it is monotone inf-preserving in (μ, �), take any decreasing se-
quence {(μk, �k )}k∈N that converges to some (μ, �). We know that F(t, ak, μk; v, �k ) →
F(t, a, μ; v, �) whenever ak → a. By Lemma A.4 in the Appendix, this suffices for
(Bv)(t, μk, �k ) → (Bv)(t, μ, �). Finally, we show that (Bv) has increasing differences in
(t, (μ, �)), for any v ∈ V . Equivalently, we claim that w(t, μ; v, �) = maxa∈Ã(t,μT ) F(t, a,
μ; v, �) has increasing differences in (t, (μ, �)), for any v. By Assumptions 2 and 3, the
function F(t, a, μ; v, �) is supermodular in a, has increasing differences in (a, (t, μ, �))
and in (t, (μ, �)). The rest follows from Lemma A.1 in the Appendix that generalizes
Lemma 1 in Hopenhayn and Prescott (1992).

Proposition 3. The operator B : V → V has a unique fixed point in V .
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Indeed, Lemma 3 guarantees that B is a well-defined operator that maps a complete
metric space V into itself (recall Lemmas 1 and 3). Therefore, it suffices to show that B
is a contraction mapping on V . This fact follows from Blackwell’s sufficient conditions
for contraction and can be shown using an argument analogous to the one supporting
Theorem 3.3 in Stokey, Lucas, and Prescott (1989).28 Thus B has a unique fixed point.
Finally, showing that the value coincides with the value of the original problem (2) can
be done using standard arguments.29

Given that the value function has increasing differences in both arguments (t, μ) and
the transition �∗ is monotone, we can guarantee that the current actions of players and
their beliefs regarding the future distribution of types and actions in the population are
complements. As a result, we are able to show existence of equilibrium by applying con-
structive order-theoretic tools (rather than purely topological constructions), and this
allows us to unify our existence results with our subsequent equilibrium comparative
dynamics results.

We proceed with the second-half of the argument where we prove existence of a
greatest MSNDE. Recall the definition of the correspondence � from (5), with its greatest
selection γ : T ×M×D →A. Consider the following lemma.

Lemma 4. For any v ∈ V , the greatest selection γ is a well-defined function, measurable
in t, increasing in (t, μ, �), and monotone inf-preserving.

Proof. For any v ∈ V , we have �(t, μ; v, �) = arg maxa∈Ã(t,μT ) F(t, a, μ; v, �). It is
straightforward to verify that F is supermodular and continuous in a. Since the
set Ã(t, μT ) is a complete sublattice of A, by Corollary 4.1 in Topkis (1978), the set
�(t, μ; v, �) is a complete sublattice of A. Therefore, it admits both a greatest and a least
element. We show that γ is measurable in the Appendix. Monotonicity follows from
increasing differences of F and Theorem 6.2 in Topkis (1978).30 To show that γ is mono-
tone inf-preserving, let {(μk, �k )}k∈N be a decreasing sequence converging to (μ, �).
By the previous argument, sequence {γ(t, μk, �k; v)}k∈N is decreasing. Suppose it con-
verges to some γ, and thus γ(t, μk, �k; v) ≥ γ, for all k ∈ N. Since F is continuous and
monotone inf-preserving, Lemma A.4 in the Appendix guarantees that γ ∈ �(t, μ; v, �).
Thus it must be that γ ≤ γ(t, μ, �; v), and so γ ≤ γ(t, μ, �; v) ≤ γ(t, μk, �k; v).

For the following lemma, recall the definition of the binary operation � in (6).

Lemma 5. For any measures τ, τ′ ∈ MT such that τ′ first order stochastically dominates
τ, and any increasing functions h, h′ : T ×A→ A such that h′ dominates h pointwise, the
measure (τ′ � h′ ) first order stochastically dominates (τ � h).

The proof of the above lemma is straightforward; hence, we omit it.

28Indeed, if v′ pointwise dominates v, then Bv′ pointwise dominates Bv. Moreover, for any v ∈ V and
constant a≥ 0, we have [B(v + a)](t, μ; �) ≤ (Bv)((t, μ; �) +βa.

29See, for example, Theorem 9.2 in Stokey, Lucas, and Prescott (1989).
30See the glossary in the Appendix.
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Lemma 6. Let {τk}k∈N be a decreasing sequence in MT converging to some τ, and let
{hk}k∈N be a (pointwise) decreasing sequence converging to some h, where hk : T ×A →A

are increasing and monotone inf-preserving functions. Then (τk � hk ) → (τ � h) in the
sense of weak convergence.

Proof. This follows from Lemma A.2 in the Appendix.31 We only need to show that τ �h
is inf-preserving in h. Take an arbitrary τ ∈ MT and let hk be a decreasing sequence of
Borel functions mapping T to A. Let h = limk→∞ hk. Then, for any measurable, contin-
uous, and bounded function f : T ×A→ R,

lim
k→∞

∫
T×A

f (t, a)(τ � hk )(dt × da) = lim
k→∞

∫
T
f
(
t, hk(t )

)
τ(dt )

=
∫
T
f
(
t, h(t )

)
τ(dt ) =

∫
T×A

f (t, a)(τ � h)(dt × da).

Hence, (τ � hk ) → (τ � h) weakly. This completes the proof.

Take the unique function v∗ that solves the equation (3). Define operator � as in
(7). Given monotonicity of γ(t, μ, �; v) and Lemma 5, we conclude that it is increasing.
Moreover, by Lemmas 4 and 6, it is also monotone inf-preserving. Before completing the
proof of Theorem 1, we require one more ancillary result.

Lemma 7. The set D is a lower chain complete poset.

Proof. Let {�j }j∈J be a chain in D and � := ∧
j∈J �j . It suffices to show that � is mono-

tone inf-preserving. Let {μk}k∈N be a decreasing sequence in M that converges to μ. For
any k, j, and an increasing, measurable function f : T ×A→ R,∫
T×A

f (t, a)(�μ)(dt × da) ≤
∫
T×A

f (t, a)(�μk )(dt × da) ≤
∫
T×A

f (t, a)(�jμk )(dt × da).

As k→ ∞, we obtain∫
T×A

f (t, a)(�μ)(dt × da) ≤ lim inf
k→∞

∫
T×A

f (t, a)(�μk )(dt × da)

≤ lim sup
k→∞

∫
T×A

f (t, a)(�μk )(dt × da)

=
∫
T×A

f (t, a)(�jμ)(dt × da).

We conclude by taking the infimum with respect to j on the right-hand side.

We proceed with the proof of Theorem 1.

31Here, the role of � plays MT , and the role of fk plays h �→ (τk � h).
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Proof of Theorem 1. It suffices to show that there is a greatest fixed point of � de-
fined in (7). Note that � is monotone in (μ, �). Indeed, by Lemma 4, γ(t, μ, �; v∗ ) is
jointly increasing in (t, μ, �). By Lemma 6, this implies monotonicity of μ′ in (7). By the
same argument �′ in (7) is increasing in μ and �. Moreover, by Lemmas 4 and 6, we
conclude that � is a monotone inf-preserving self-map on M × D. By applying Propo-
sition A.1 in the Appendix, we conclude that there exists a greatest MSNDE.32

3. Monotone equilibrium comparative dynamics

Here, we discuss the nature of constructive monotone equilibrium comparative dynam-
ics (see, e.g., Huggett (2003)) in the class of games studied in Section 2. To do this, we
parameterize primitives of our game with a parameter θ, that belongs to a poset (�, ≥� ),
and seek conditions under which MSNDEs are ordered with respect to θ. Given our def-
inition of equilibrium, this means that the selection θ → μ∗

θ and the equilibrium law of
motion θ → �∗

θ are increasing in the following sense: if θ′ ≥� θ, then μ∗
θ′ stochastically

dominates μ∗
θ, and the measure �∗

θ′(μ) stochastically dominates �∗
θ(μ), for all mea-

sures μ ∈ M. Since our notion of equilibrium is inherently dynamic, we use the term
monotone comparative dynamics rather than comparative statics. We define a positive
shock.33

Assumption 5 (Positive shock). Let � be a poset. (i) The payoff function r(t, a, μ; θ)
has increasing differences in (a, θ) and (t, θ); (ii) the transition kernel q(·|t, a, μ; θ) is in-
creasing in θ and has increasing differences in (a, θ) and (t, θ); (iii) the feasible action
correspondence Ã(t, μ; θ) has strict complementarities in (t, θ).

Theorem 2 (Monotone comparative distributional dynamics). Suppose that the pa-
rameterized mappings r(·, θ), q(·; θ), and Ã(·; θ) satisfy Assumptions 1–4, for all θ ∈�.
Under Assumption 5, both the greatest equilibrium (μ̄∗

θ, �
∗
θ ) and the least equilibrium

(μ∗
θ

, �∗
θ ) is increasing in θ.

Proof. We prove the case for the greatest equilibrium only. The proof for the lowest
equilibrium is analogous. Let �θ be the counterpart of the operator � in the parameter-
ized game with θ ∈ �. Similarly, we define φθ, �θ, and γθ, mutatis mutandis. Given that
q(·|t, a, μ; θ) is increasing in θ, it suffices to show that θ → γθ is increasing. Under our as-
sumptions, the objective (1 −β)r(t, a, μ, θ)+β

∫
T v∗(t ′, �θ(μ), �θ, θ)q(dt ′|t, a, μ, θ) has

increasing differences in (a, θ), and the function v∗(t ′, �θ(μ), �θ, θ) has increasing dif-
ferences in (t, θ), for any μ ∈ M (recall Lemma A.1 in the Appendix and the argument
in the second part of the proof to Lemma 3). By Theorem 6.2 in Topkis (1978) (see the

32Whenever the best response γ is single valued, it can be shown using Theorem 9 in Markowsky (1976)

that the fixed-point set of � =� is a chain complete poset.
33Our notion of a positive shock is consistent with the terminology of Acemoglu and Jensen (2015). How-

ever, we consider comparative equilibrium transitional dynamics. In this sense, our question is closely re-
lated to the issues studied in Huggett (1997). Recall, in Huggett (1997), monotone aggregate dynamics are
only available from initial distributions below the stochastic steady state. Here, our MSNDE dynamics are
globally monotone.



742 Balbus, Dziewulski, Reffett, and Woźny Theoretical Economics 17 (2022)

glossary in the Appendix), we conclude that γθ is increasing in θ. By Assumption 5, we
know that θ → φθ is increasing. By Lemma 5, the same property is inherited by �θ, that
is, for θ′ ≥ θ, �θ′(μ, �) = (μθ′ , �θ′ ) pointwise dominates �θ′(μ, �) = (μθ, �θ ). Equiv-
alently, μθ′ first order stochastically dominates μθ and the measure �θ′(μ) first order
stochastically dominates �θ(μ), for all μ ∈ M. As in the proof of Theorem 1, �θ is an
increasing operator, for any fixed θ. To complete the proof we apply Proposition A.2,
recalling that the poset of distributions and the poset of uniformly bounded functions
are chain complete.

An immediate corollary follows: Under Assumptions 1–4, the greatest equilibrium
increases in the initial distribution of types τ1.34 Indeed, if we let θ = τ1 and � = MT is
ordered in the stochastic sense, then Assumption 5 holds.

Our monotone comparative dynamics results both improve upon and complement
the results in the existing literature, including those found in Adlakha and Johari (2013),
Acemoglu and Jensen (2010, 2015), Light and Weintraub (2021). These papers discuss
comparative statics of stochastic steady-state equilibria or mean-field equilibria, rather
than MSNDE. In particular, they focus on (a) the set of equilibrium invariant and/or
steady-state distributions, and (b) games with an aggregative structure. In contrast, we
provide conditions under which (extremal) MSNDE equilibrium transition paths exist
and are increasing globally in the deep parameters. In our case, as the equilibrium distri-
bution μ∗

θ and the law of motion/belief �∗
θ increase in θ, so does the distribution �∗

θ(μ∗
θ )

in the following period, and so on.35 Therefore, the entire equilibrium path shifts with re-
spect to the parameter θ. Further, as these equilibrium paths converge to a steady state,
a greatest invariant distribution ν̄θ induced by the greatest equilibrium is also increasing
in θ.36

It bears mentioning that the assumptions in Acemoglu and Jensen (2015, 2018), and
Light and Weintraub (2021) are not sufficient for an analogous monotone comparative
dynamics result. The key difference between these works and ours is that, when study-
ing comparative statics of a steady-state equilibrium (or mean-field equilibrium), one
does not investigate dynamic complementarities between current actions and future
distributions of types and actions in the population. This is because stochastic steady-
state equilibria are inherently static, unlike our dynamic notion of MSNDE. For this rea-
son, we require extra assumptions to guarantee that the equilibrium dynamics of the
economy under study are sufficiently monotone. These assumptions are not vacuous,
as the literature includes many examples of dynamic economies that do not satisfy our
conditions. Indeed, the standard Bewley–Huggett–Aiyagari models of wealth distribu-
tion with infinitely lived agents and the presence of incomplete markets are, in general,
not monotone in the sense specified here. We address this in Section 4.6.

Our results apply to distributions over the multidimensional space R
n. In fact, the

multidimensionality is inherent if one studies distributions over types and actions (as

34Analogous comparative dynamics apply to the least MSNDE.
35This complements the approach to transitional dynamics in Huggett (1997).
36A similar argument applies to the least equilibrium global distributional dynamic path and the least

invariant distribution (or the least steady state).
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in our motivating example). Since spaces of measures over multidimensional spaces are
not lattices, we employ the alternative tool from Proposition A.2 in the Appendix, as the
well-known Tarski’s fixed-point theorem does not apply.37

Finally, our monotone comparative statics/dynamics results are constructive. We
characterize the chain of parameterized equilibria converging to the one of interest,
for a particular parameter θ. This is of utmost importance for applied economists who
calibrate moments of equilibrium invariant distributions, or econometrically estimate
equilibrium comparative statics/dynamics in the data (e.g., with quantile methods in
Echenique and Komunjer (2009, 2013)).38

4. Applications and examples

Here, we discuss some economic applications of our results.

4.1 Motivating example revisited

Recall the motivating example from the Introduction. In each period, the type of a player
is determined by their level of capital/wealth t ∈ T = [0, 1]. Their actions (investments)
a ∈A= [0, 1] are chosen from the feasible set Ã(t, τ) = [0, t]. Given the distribution μ of
types-actions of all players, the payoff in a single period is

r(t, a, τ, θ) :=
∫
A×T

[
θm(t − t̃ ) +w(t − a− t̃ + ã)

]
μ(dã× dt̃ ).

Here, we introduce a positive parameter θ with respect to the initial example.
Given an investment a, the cumulative probability distribution of the capital level t ′

in the following period is q(t ′|a). Thus, conditional on the macro belief �, the Bellman
equation determining the player’s value function is

v(t, μ; �) = max
a∈Ã(t,μT )

{
(1 −β)r(t, a, μ, θ) +β

∫
v
(
t ′, �(μ); �

)
q
(
dt ′|a

)}
.

This game satisfies Assumptions 1–4. Indeed, correspondence Ã is measurable, con-
tinuous, compact-valued, increasing in t, and satisfies strong complementarities. Given
that the functions m and w are continuous, increasing, and concave, the function r is
continuous over T × A, increasing over T , and has increasing differences in (a, (t, μ))
and (t, μ). The function is also (trivially) supermodular in a, and continuous in μ. As
long as the distribution q is continuous in a, the requirements of Theorem 1 for exis-
tence of a greatest MSNDE are satisfied.

As it was pointed out in Section 2, the equilibrium pair (μ∗, �∗ ) generates the entire
equilibrium path of distributions {μ∗

n}, where μ∗
1 = μ∗ and μn+1 = �∗(μn ), which allows

us to track the dynamics of the model. Moreover, the sequence converges to an invariant
distribution, allowing for the study of steady states.

37See also the discussion in Section 3 of Light and Weintraub (2021).
38See Cao, Luo, and Nie (2020) for a discussion regarding numerical methods related to the global dy-

namic equilibrium models such as ours.
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Apart from existence and approximation of equilibria, Theorem 2 allows us to
say more about its equilibrium comparative dynamics. In particular, the equilibrium
(μ∗, �∗ ) and the corresponding sequence {μ∗

n} increase as the initial distribution of
types τ1 increases in the first-order stochastic sense. That is, along an equilibrium
path that converges to a steady state, players invest more and have higher capital levels
(stochastically). In addition, the equilibrium changes monotonically with respect to the
parameter θ. One can easily verify that the return function r has increasing differences
in (a, θ) and (t, θ). As the correspondence Ã and transition kernel q are independent
of θ, this suffices for the equilibrium path to be increasing in θ. Thus, the higher the
weight of the wealth-driven status, the higher (stochastically) are the investments in the
population.

These results hold for a more general transition q(·|t, a, μ), that depends on the in-
vestment of each player, their type, and the distribution of wealth-investments in the
population. However, this requires Assumption 3 to hold.

4.2 Dynamics of social distance

Next, we analyze a dynamic model of social distance based on Akerlof (1997).39 Consider
a measure space of agents. Let T = [0, 1] be the set of all possible social positions in
the population. Each period an individual is characterized by an identity t ∈ T (private
type), which determines the social position to which the agent aspires. Each period
the agent chooses their own social position (action) a ∈ A := [0, 1]. The set of social
positions feasible to the agent with identity t is Ã(t, τ) := [a(t ), a(t )], where functions a,
a : T → A are increasing functions and satisfy a(t ) ≤ t ≤ a(t ), for all t ∈ T . Thus, limiting
social mobility.

When choosing social position, there is a trade-off between idealism and con-
formism. On one hand, the individual wants the social status a to be as close to their
identity t as possible. Specifically, given some continuous, decreasing, and concave
function m : [0, 1] → R, the agent wants to maximize m(|a − t|), that captures ideal-
ism. On the other hand, the player experiences discomfort when interacting with agents
that have different social position from theirs. Whenever an agent of a social position
a encounters an agent of a social position a′, they each receive utility w(|a − a′|), for
some continuous, decreasing, and concave function w : [0, 1] → R. This summarizes
conformism.

Suppose that ν(t ′|t ) is a cumulative probability distribution determining the like-
lihood of an agent with identity t meeting someone with identity t ′. We assume it is
continuous and first order stochastically increasing in t. It captures the idea that similar
minds think alike and players with similar identity are more likely to meet. Given the
distribution of types-actions μ, the within-period payoff of an agent of an identity t and

39The model is related to multiple strands of the social economics literature, including models of identity
and economic choice as in Akerlof and Kranton (2000), or models with endogenous social reference points,
including Bernheim (1994), Brock and Durlauf (2001), Bisin, Moro, and Topa (2011), and Blume et al. (2015).
This example extends the static model in Balbus et al. (2019).
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a social position a is

r(t, a, μ) := m
(|a− t|) +

∫
T

∫
A
w

(∣∣a− a′∣∣)μA

(
da′|t ′

)
ν
(
dt ′|t

)
,

where μA(·|t ′ ) is the distribution of actions of other players in the population, condi-
tional on t ′. Therefore, payoff of an agent in a single period is the sum of their idealistic
utility and expected payoff to conformity relative to their interactions with other agents.
Our specification implies that the social position cannot be contingent on the social sta-
tuses of other agents. It is chosen before any interaction occurs, highlighting the tension
between idealism and conformism.

Following the rule you become whom you pretend to be, we assume that the social
position in a current period has a direct impact on the identity in the following period.
Formally, the transition is governed by cumulative probability distribution q(t ′|a) that
determines the likelihood of the agent acquiring identity t ′ in the next period following
their choice of a at the current date. We assume that function a → q(·|a) is continuous
and stochastically increasing in a.

The above game admits a greatest (and a least) MSNDE. Indeed, function r satis-
fies conditions (i), (ii), and (iv), (v) from Assumption 2. Moreover, since the transition
kernel q depends only on a, it satisfies Assumption 3. Finally, as long as functions
a, a are continuous, in addition to the previously stated assumptions, correspondence
Ã(t, τ) = [a(t ), a(t )] is continuous, compact-valued, and satisfies strong complemen-
tarity. Finally, Assumption 1 holds as well.

Apart from equilibrium existence, one can determine equilibrium comparative tran-
sitional dynamics in the model. It is clear that, as the initial distribution of identities τ1

shifts in the first-order stochastic sense, the equilibrium pair (μ∗, �∗ ) and the entire
equilibrium transition path {μ∗

n} increase.
It is crucial that the transition function q depends only on action a. Following Re-

mark 2, this allows us to dispense of the assumption that the function r and the corre-
spondence Ã are increasing in t, which is critical for this application.

4.3 Parenting and endogenous dynastic preferences

We can apply our tools to dynamic games with short-lived agents, where individuals
make decisions in one period only, but their actions propel dynamics for future genera-
tions. This example is inspired by the literature on paternalistic bequests, keeping-up-
with-the-Joneses, and growth with endogenous preferences.40

Consider a society populated with a measure space of single-parent single-child
families. Each individual (a parent) lives for a single period and a parent-child sequence
forms a dynasty. The type of a parent is determined by their lifetime income y ∈ [0, 1]
and a parameter i ∈ [0, 1] that summarizes preferences of the individual toward con-
sumption, in a way that will be explained shortly. Therefore, in this setting, the types
t = (y, i) belong to T = [0, 1]2.

40See Cole, Mailath, and Postlewaite (1992), Doepke and Zilibotti (2017), and Genicot and Ray (2017).
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Each period, the income can be devoted to consumption c and investment (savings)
s, thus imposing the constraint y = c + s for each dynasty. Consumption yields immedi-
ate utility u(c, g), where the parameter g represents propensity to consume. We assume
that the function u is continuous and concave in c, and has increasing differences in
(c, g). That is, the marginal utility of consumption for the current generation increases
with g. Below, we specify how the variable g is related to the preference for consumption
determined by the type i.

We assume paternalistic preferences, that is, the parent evaluates the well-being of
their child with a function w(t ′, τ′ ), where t ′ = (y ′, i′ ) is the the future type of the child,
and τ′ is a distribution of types in the next period. We assume that w is increasing in
t = (y, i), thus the parent values high income and preference for consumption of the
child. Since the parent cares only about their immediate descendant, they want the
child to consume as much as possible. Moreover, let w have increasing differences in
(t ′, τ′ ), that is, the higher is the future distribution of types, the higher is the parent’s
incremental benefit of the child’s type.

Each parent devotes (e.g., educational) effort e ∈ E = [0, 1] to shape preferences of
their child (i.e., raise their aspiration level). The cost of effort is given by C(e, μE ), where
μE denotes the distribution of efforts in the population. We assume that the cost func-
tion is continuous and increasing with e, and has decreasing differences in (e, μE )—the
higher effort in the entire population, the easier it is for an individual to influence their
child.

Given our description, the action of an individual is a = (s, e) ∈ A := [0, 1]2. Savings
s and effort e affect both the future income and preferences of the child. Let the cumu-
lative distribution q(t ′|a) determine the probability of the future type of the child being
t ′ = (y ′, i′ ), where q is stochastically increasing in both arguments and is stochastically
supermodular in a = (s, e). Thus investment s and effort e are complements. Indeed,
from the parent’s perspective, higher effort (that skews preference of the child toward
consumption) makes marginal investment/bequest more valuable. The more future in-
come of the child is devoted to consumption, the more it pleases the paternalistic par-
ent.

Finally, the marginal propensity to consume g is generated endogenously for each
individual via keeping-up-with-the-Joneses effect. Formally, let g = θ�(t, μC ), for some
positive parameter θ and an increasing function � that depends both on the type t =
(y, i) of the player and the distribution μC over the current consumption levels in the
population. For example,

�(t, μC ) := inf
{
c ∈ [0, 1] : i ≤ μC

(
c′′ ≤ c

)}
, (10)

where t = (y, i). That is, � is the i’th quantile of consumption in the population.41

41This model is broadly related to Echenique and Komunjer (2009) and Doepke, Sorrenti, and Zilibotti
(2019) concerning endogenous transmission of preferences in dynastic models of a household. Our model
with quantile aspiration preferences and paternalism could be extended to altruistic dynastic choice, peer
effects, or locational concerns as in Agostinelli, Doepke, Sorrenti, and Zilibotti (2020).
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Given our description, the objective of a parent of type t = (y, i) is to maximize

u
(
y − s, θ�(t, μC )

) +
∫

[0,1]
w

(
t ′, �T (μ)

)
q
(
dt ′|s, e

) −C(e, μE ),

with respect to (s, e) ∈ Ã(t, τ) = [0, y] × [0, 1]. Here, the mapping �T (μ) is the projected
next-period distribution of types in the population. Notice that w is not a value function
as discussed in Section 2; rather, it is a paternalistic evaluation of the child’s welfare that
may be misaligned with preferences of the child.

To verify whether assumptions of our theorems are satisfied, consider an increas-
ing Markov strategy: σ : T → A, with σs and σe being its projections on both coordi-
nates. Then we have μC(Z ) = τ({t ∈ T : [y − σs(t )] ∈ Z}), μE(Z ) = τ({t : σe(t ) ∈ Z}),
and �T (μ)(Z ) = ∫

T q(Z|σs(t ), σe(t ))τ(dt ), for some measurable set Z. Pointwise higher
strategies σ imply a first-order stochastic dominance increase of μE and �T (μ), but
a first-order stochastic dominance decrease in μC .42 Increasing differences of u(c, g),
w(t ′, τ′ ), and −C(e, μE ), together with assumptions on q suffice to show that it is opti-
mal to play a strategy that is increasing in their private type. This suffices to show that
there exist a greatest MSNDE (μ∗, �∗ ), which can be approximated using successive it-
erations.

When considering ordered changes in the deep parameters of the model, we can ap-
ply our equilibrium comparative transitional dynamics and equilibrium approximation
to these types of models. In particular, one can show the greatest (and the least) MSNDE
is decreasing with respect to the parameter θ. These observations are true even though
the payoff function is not necessarily increasing in t, nor it has increasing differences
in (t, μ). In fact, whenever function � is specified as in (10), the latter does not hold.
Since the additional assumptions are required to show the particular properties of the
value function in the infinite horizon problem, they play no role in dynamic games with
short-lived agents.

4.4 Dynamic contests with coordination failures and learning

Consider a prototypical coordination game based on Angeletos and Lian (2016), with
applications to beauty contests, bank runs, riot games, or currency attacks.43 Here, we
focus on a simple dynamic beauty contest. In this large dynamic game, each player
receives a private signal t and chooses an action a every period. Action is costly and the
cost depends on the type t, which is summarized in the utility function u(t, a), where u

is increasing in t and has increasing differences in (t, a). In addition, the player’s payoff
depends on actions taken by other players, say

∫
A g(a, ã)μA(dã), where the function g

has increasing differences in (a, ã).
As is standard in global games and dynamic coordination games with complemen-

tarities, we focus on monotone equilibria in which players use an increasing strategy

42Indeed,
∫
C f (c)μ′

C (dc) = ∫
T f (y − σ ′

s(t ))τ(dt ) ≤ ∫
T f (y − σs(t ))τ(dt ) = ∫

C f (c)μC (dc), for any measur-
able and increasing function f : [0, 1] →R, where σ ′

s pointwise dominates σs .
43See Morris and Shin (2002) for an extensive discussion of this literature. See also Carmona, Delarue,

and Lacker (2017) for an application of mean-field methods to a related class of games.
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σ : T →A. The one-period payoff of an agent playing a is

r(t, a, μ) := u(t, a) +
∫
T
g
(
a, σ( t̃ )

)
μT (dt̃ ),

Such payoff satisfies assumptions required by Theorem 1, and so there exists a greatest
MSNDE, where each player is using an increasing strategy σ .44

The framework can be applied to dynamic riot games with private types, where

r(t, a, μ) := a

[∫
S

(t1 +L)1{R(μ)≥s̃}ν(ds̃) −L

]
− c(a, t2 ),

for some player type by t = (t1, t2 ) and a compact interval S ⊆ R. Thus, taking the risky
action a = 1 allows the player to win t1 if a sufficient number R(μ) := μ({(t, a) : a= 1}) of
players takes a risky (and costly) action, or lose L otherwise. The strength s of the police
is distributed according to some measure ν. Whenever the cost function is decreasing
in t2 and c(0, t2 ) = 0 (due to normalization), the dynamic game can be solved for a gen-
eral transition functions q(·|t, a, μ), thus allowing to model inertia, habit formation, or
dynamic social externalities. See also Morris and Yildiz (2019) applications.

4.5 Idiosyncratic risk under multidimensional production externalities and
technological dynamics

Our model can be applied to analyze dynamics of technological progress in large
economies where agents face uninsurable private productivity risk. This includes the
model of Romer (1986) in a Bewley–Huggett–Aiyagari type setting with ex-ante identical
agents and ex post heterogeneity in production and no borrowing.45

The economy is populated with a measure space of producers, each endowed with
capital t ∈ T = [0, 1], one unit of time, and a private technology f . The technology
transforms private inputs into finished outputs. Moreover, its productivity depends on
economy-wide externality summarized by the distribution of capital and labor in the
economy. Specifically, each agent with t units of capital and expending l ∈ L = [0, 1]
units of time is able to produce y = f (t, l, μT×L ) units of the finished output, where
μT×L is the distribution of capital-labor levels in the population. We assume that the
production function f is continuous and increasing with respect to all arguments, and
has increasing differences in (t, l), (t, μ), and (l, μ).46 In particular, the private tech-
nologies endowed to each agent need not be convex. In addition, our reduced form of
technology allows for nontrivial interactions with market leaders, closely related com-
panies, or a competitive fringe in both capital and labor dimensions.

The output can be devoted to consumption c or investment i; hence, c + i = y.
When c units of the output are consumed and labor supply is l, the agent receives utility

44We may dispense monotonicity of u with respect to t as long as the transition function q depends only
on the one-dimensional action a.

45See also Angeletos and Calvet (2005) for a related study.
46For example, function f (t, l, μT×L ) := ∫

T×L g(t, l, t̃, l̃)μT×L(dt̃ × dl̃) would satisfy such conditions as
long as g is supermodular in all arguments jointly.
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U(c, l) = u(c) + v(1 − l), where u, v : R→ R are smooth, concave, and strictly increasing.
Whenever i ∈ I := [0, 1] units of the good is invested, the capital in the next period is
determined stochastically with q(·|i).47

To preserve the complementarity structure to the value functions, we require some
known complementarity conditions for joint monotone controls (see Hopenhayn and
Prescott (1992) and Mirman, Morand, and Reffett (2008)). Along those lines, we assume
the standard condition −u′′/u′ ≤ f ′′

12/(f ′
1f

′
2 ). It requires that degree of complementar-

ity between private capital and labor is high relatively to the curvature of the utility
function. This suffices for payoffs to have increasing differences in (t, l). To guaran-
tee increasing differences in (t, μT×L ), we require that u′(f (t, l, μT×L ) − c)f ′

1(t, l, μT×L )
is increasing in μT×L.48 Analogous conditions guarantee increasing differences in
(l, μT×L ).49

The above conditions are sufficient for Theorem 1 to hold. Therefore, there exist
extremal MSNDEs for this large dynamic nonmarket economy (interpreted as a large
anonymous game). Moreover, the extremal equilibria can be approximated using itera-
tive methods. This example highlights the difference between our results and those in
the existing literature. Specifically, we consider Markov stationary transitional dynam-
ics and comparative dynamics results (in addition to comparative statics of the steady-
state). For example, Acemoglu and Jensen (2015) discuss stochastic steady-state equilib-
ria and the corresponding comparative statics given single dimensional aggregates that
summarize production externalities.50 Our conditions on the primitives, that guarantee
that each player’s value function has increasing differences in (t, μ), are not crucial for
their results.

4.6 OLG Bewley models

As assumed in Assumption 2 and pointed out in the discussion, our main result requires
that the within-period payoff function r has increasing differences in the private type
t and the measure μ. This condition implies that the value function v corresponding
to the decision problem of each player has increasing differences in (t, μ), and as a re-
sult, the equilibrium transition function �∗ is increasing over its domain. Unfortunately,

47Our methods allow to analyze two sector economies. A consumption good sector with technology f and
investment good sector with stochastic technology q(·|t, i, l, μT×L ). In the example, we consider a simple
version of q depending on investment i only.

48Whenever the externality can be summarized with some increasing aggregate G(μT×L ) ∈ R, where
y = f (t, l, G(μT×L )), the condition can be reduced to −u′′/u′ ≤ f ′′

13/(f ′
1f

′
3 ).

49Notice that, in our setting, the correspondence A(t, l, μT×L ) = [0, f (t, l, μT×L )]×L does not have strict
complementarities. To assure that the value function v∗ in (3) preserves increasing differences in (t, μ), we
need to use constructions of Mirman, Morand, and Reffett (2008) (Lemmas 11, 12 and Theorems 3 and 4).
They state assumptions on u, v, and f under which the value function has increasing differences in (t, μ).
This example is useful to compare our results with the results of Acemoglu and Jensen (2015). We require
increasing differences between controls and the aggregate distribution of assets to obtain the comparative
statics of the extremal MSNDEs.

50Acemoglu and Jensen (2015) identify positive shocks for a steady-state equilibrium. To preserve in-
creasing differences between individual states and shock parameters, more assumptions are needed than
those listed in their Lemma 1.
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in general, the typical infinite horizon Bewley–Huggett–Aiyagari models violate this as-
sumption.

For example, let the private type of each consumer in the economy be given by
t = (k, 	), where k is the capital/asset endowment and 	 is a random labor productivity
draw. Each period, the agent can consume c or invest (save) a ≥ 0 in the future capital,
subject to the budget constraint c + a = ρ(K)k + w(K)	, where ρ(K) and w(K) denote
the interest rate and the wage, respectively, that depend on the aggregate level of capital
K = ∫

kμK(dk), where μK is the marginal distribution over private capital levels in the
population. The within period utility of an individual is then given by

r(t, a, μ) = u
(
ρ(K)k+w(K) − a	

)
,

for some concave utility u. Whenever the price ρ(K) is a decreasing function, the payoff
r does not have increasing differences in (t, μ), since u(ρ(K)k + w(K)	 − a) need not
have increasing differences in ((k, 	), K). Thus, we cannot assure that the value function
corresponding to the dynamic problem has increasing differences in the investment a
and the mean future capital K′. As a result, the equilibrium operator �∗ need not be
monotone and our results do not apply.

However, our methods can be applied to a version of the Diamond OLG model with
idiosyncratic risk.51 Suppose that each period there is a measure space of representa-
tive young born, each endowed with a unit of free time and a (private) i.i.d. draw of
labor productivity 	. Each old is endowed with a private (saved) capital k. The lifetime
preferences for the young are

c
1−γ
1

1 − ρ
+β

c
1−γ
2

1 − γ
,

where γ ≥ 0, and c1, c2 denote consumption of the consumer when young and old, re-
spectively. Each young is supplying a unit of time inelastically and receives w(K) wage
per unit of efficiency. The problem of a young is then

max
a∈[0,w(K)	]

(
w(K)	− a

)1−γ

1 − γ
+β

∫ (
ρ
(
K′)k)1−γ

1 − γ
q(dk|a),

where K′ is the future mean capital. Letting �K(μ) be the distribution of capital levels in
the following period, as implied by transition function �, we have K′ = ∫

kd(�K(μ))(k).
The objective of each player has increasing differences in (a, w(K)	) and (k, K′ ), for a
decreasing ρ(K) and γ ≥ 1.52 Whenever the function q is increasing stochastically, the
equilibrium transition map � is monotone, and thus the key condition required for our
methods to work is satisfied.

51Here, we apply our methods to the study of short-lived players, as in Section 4.3.
52Preferences need not be power utility for our methods to be applied. For example, if the lifetime pref-

erences for the newly born young are given by U(c1, c2 ) = u(c1 ) + βv(c2 ), where u continuous, concave,
and v is C 2, then cv′′/v′ ≥ 1 will suffice. Critically, we require “income effect dominance” in interest rates,
which is a type of “gross complements” condition, which induces increasing differences between individual
investment choices and the distribution of assets.



Theoretical Economics 17 (2022) Markov distributional equilibrium dynamics 751

Appendix

A.1 Mathematical glossary

A.1.1 Lattices and supermodularity

Posets, lattices, and chains A partial order ≥X over a set X is a reflexive, transitive,
and antisymmetric binary relation. A partially ordered set, or a poset, is a pair (X , ≥X )
consisting of a set X and a partial order ≥X . When it causes no confusion, we denote
(X , ≥X ) with X .

For any x, x′ ∈ X , their infimum (the greatest lower bound) is denoted by x∧ x′, and
their supremum (the least upper bound) by x ∨ x′. The poset X is a lattice if for any x,
x′ ∈ X both x ∧ x′ and x ∨ x′ belong to X . Set A is a sublattice of X if A ⊆ X and A is a
lattice with the induced order, where x ∧ x′ and x ∨ x′ are defined with ≥X . A principle
example of a lattice is the Euclidean space (R	, ≥) endowed with the natural product
order ≥, where x′ ≥ x if x′

i ≥ xi, for all i = 1, � � � , 	. In this case, x∧ x′ and x∨ x′ are given
by (x∧ x′ )i = min{xi, x′

i} and (x∨ x′ )i = max{xi, x′
i}, for all i = 1, � � � , 	.

For any subset A of a poset X , we denote the supremum and infimum of A by ∨A
and ∧A, respectively. That is, ∨A is the least element in X such that ∨A≥ a, for all a ∈ A.
Clearly, by definition, we have x∨ x′ = ∨{x, x′}. We define ∧A analogously. A lattice X is
complete if both ∨A and ∧A belong to X for any A⊆X . We define a complete sublattice
analogously.

A chain is a totally ordered poset, that is, all of its elements are ordered. A poset
X is (countably) lower chain complete if any (countable) chain A ⊆ X has its infimum
in X . The poset is (countably) upper chain complete if any (countable) chain has its
supremum in X . The poset is (countably) chain complete if it is both upper and lower
(countably) chain complete.

Let (�, �) be a space of probability distributions over a compact subset of S ⊂ R
n,

endowed with the first-order stochastic dominance ordering �. That is, for any two prob-
ability measures μ, ν ∈ �, we have μ � ν in the first-order stochastic dominance sense,
if

∫
f (y )μ(dy ) ≥ ∫

f (y )ν(dy ), for any measurable, bounded function f : S → R that in-
creases over S with respect to the corresponding ordering. In particular, (�, �) is a poset
(see Kamae, Krengel, and O’Brien (1977)) but is not a lattice, unless S is a subset of R.
However, (�, �) is chain complete (see Lemma 2 in Balbus et al. (2015)).

Supermodularity Suppose that X is a lattice. A function f : X → R is supermodular in
x, if f (x∧ x′ ) + f (x∨ x′ ) ≥ f (x) + f (x′ ), for any x, x′ ∈X .

Suppose that X is a lattice and � is a space of probability distributions over a mea-
surable poset S. The function q : X → �, taking values q(·|x) ∈ �, is stochastically super-
modular in x if the function f (x) := ∫

S u(s)q(ds|x) is supermodular in x, for any mea-
surable, bounded, and increasing function u : S →R.

Increasing differences For arbitrary posets X and T , function f : X × T → R has in-
creasing differences in (x, t ) if, for any x′ ≥X x and t ′ ≥T t, we have f (x′, t ′ ) − f (x, t ′ ) ≥
f (x′, t ) − f (x, t ).

The function q : X × T → � has stochastically increasing differences in (x, t ) if
f (x, t ) := ∫

S u(s)q(ds|x, t ) has increasing differences in (x, t ), for any measurable,
bounded, and increasing function u : S →R.
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Monotone correspondences Let X be a poset and Y be an arbitrary set. The correspon-

dence � : X ⇒ Y is increasing with respect to set inclusion if x′ ≥X x implies �(x) ⊆ �(x′ ).

For any poset X and a lattice Y , the correspondence � : X ⇒ Y is increasing with

respect to the strong set order if, for any x′ ≥X x and y ∈ �(x), y ′ ∈ �(x′ ), we have y ∧ y ′ ∈
�(x) and y ∨ y ′ ∈ �(x′ ).

For any posets X , Z, and a lattice Y , the correspondence � : X × Z ⇒ Y satisfies

strict complementarities if for any x′ ≥X x, z′ ≥Z z, y ∈ �(x, z′ ), and y ′ ∈ �(x′, z), we have

y ∧ y ′ ∈ �(x, z) and y ∨ y ′ ∈ �(x′, z′ ). The following lemma is a generalization of Lemma 1

in Hopenhayn and Prescott (1992).

Lemma A.1. Take any posets X , Z and a lattice Y . Endow X ×Z with a product order. If

function f : Y ×X ×Z →R, taking values f (y, x, z), is supermodular in y, has increas-

ing differences in (y, (x, z)) and (x, z), and the correspondence � : X ×Z ⇒ Y satisfies

strict complementarities, then g(x, z) := supy∈�(x,z) f (y, x, z) has increasing differences in

(x, z).

Proof. Take any x′ ≥X x, z′ ≥Y z, and y ∈ �(x, z′ ), y ′ ∈ �(x′, z). Then

g(x, z) + g
(
x′, z′) ≥ f

(
y ∧ y ′, x, z

) + f
(
y ∨ y ′, x′, z′)

= f
(
y ∧ y ′, x, z

) − f
(
y ∧ y ′, x, z′) + f

(
y ∨ y ′, x′, z′) + f

(
y ∧ y ′, x, z′)

≥ f
(
y ∧ y ′, x, z

) − f
(
y ∧ y ′, x, z′) + f

(
y, x, z′) + f

(
y ′, x′, z′),

where the first inequality follows from the definition of g and strict complementarity of

�, and the second is implied by the fact that

f
(
y ∧ y ′, x, z′) + f

(
y ∨ y ′, x′, z′)

= [
f
(
y ∨ y ′, x′, z′) + f

(
y ∧ y ′, x′, z′)] − [

f
(
y ∧ y ′, x′, z′) − f

(
y ∧ y ′, x, z′)]

≥ [
f
(
y, x′, z′) + f

(
y ′, x′, z′)] − [

f
(
y, x′, z′) − f

(
y, x, z′)]

= f
(
y, x, z′) + f

(
y ′, x′, z′),

since f is supermodular in y (the first bracket) and has increasing differences in

(y, (x, z)) (the second bracket). Thus

g(x, z) + g
(
x′, z′) ≥ f

(
y ∧ y ′, x, z

) − f
(
y ∧ y ′, x, z′)

+ f
(
y, x, z′) + f

(
y ′, x′, z′) + f

(
y ′, x′, z

) − f
(
y ′, x′, z

)
= f

(
y, x, z′) + f

(
y ′, x′, z

) + [
f
(
y ′, x′, z′) − f

(
y ∧ y ′, x, z′)]

− [
f
(
y ′, x′, z

) − f
(
y ∧ y ′, x, z

)] ≥ f
(
y, x, z′) + f

(
y ′, x′, z

)
,
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since f has increasing differences in (y, (x, z)) and (x, z), thus in ((y, x), z).53 We con-
clude by taking the supremum over the right-hand side of this inequality.

Monotone comparative statics Theorem 6.1 in Topkis (1978) states that for any lattice
X and a poset Y , if the correspondence � : Y → X increases in the strong set order and
a function f : X × Y → R is supermodular in y and has increasing differences in (x, y ),
then the correspondence x⇒ arg maxy∈�(x) f (x, y ) is sublattice-valued and increasing in
the strong set order. Moreover, if f is continuous in y and � is compact-valued, then the
above correspondence is compact-valued and admits a greatest and a least selection,
both increasing in x. See Theorem 6.2 in Topkis (1978).

Fixed points We present two theorems that are critical for proving Theorems 1 and 2.
Given posets X and Y , a function f : X → Y is increasing if x′ ≥X x implies f (x′ ) ≥Y

f (x). Below, we generalize Theorem 9 in Markowsky (1976).

Proposition A.1. Let (X , ≥X ) be a lower chain complete poset with a greatest element.
The set of fixed points of an increasing function f : X → X is a nonempty lower chain
complete poset. Moreover, its greatest fixed point exists and is given by ∨{x ∈ X : f (x) ≥X

x}.54

Proof. Let x̄ be the greatest element of X . Let I be a set of ordinal numbers with
cardinality strictly greater than X . Define the following transfinite sequence with the
initial element x0 = x̄ and xi = ∧{f (xj ) : j < i}, for i ∈ I \ {0}. We claim that {xi} is a
well-defined decreasing sequence. Clearly, x1 = f (x0 ) ≤ x0. Suppose that {xj }j<i is well-
defined and decreasing for some i. Then {f (xj )}j<i is a decreasing sequence, that has
an infimum equal to xi. Consequently, xj is well-defined and decreasing on [0, i]. By
transfinite induction, the transfinite sequence {xi}i∈I is well-defined and decreasing.
Since I has the cardinality strictly greater than X , there is no one-to-one mapping be-
tween I and X . Consequently, take the least element ī in {i ∈ I : xi = xi+1}. Then
xī = xī+1 = f (xī ), and e∗ := xī is a fixed point of f . To show that e∗ = ∨{x ∈ X : f (x) ≥ x},
set X := {x ∈ X : f (x) ≥ x}. Obviously, we have e∗ ∈ X . For any other y ∈ X , we have
y ≤ x0. Suppose there is i ∈ I such that y ≤ xj , for any j < i. Since y ∈ X , by transfinite
induction, we have y ≤ f (y ) ≤ f (xj ). Thus y ≤ ∧{f (xj ) : j ≤ i} and y ≤ xi, for any i ∈ I ,
including ī.

Given posets X and Y , function f : X → Y is monotone sup-preserving if, for any
increasing sequence {xk}k∈N, we have f (∨{xk}k∈N ) = ∨{f (xk )}k∈N. It is monotone inf-
preserving if f (∧{xk}k∈N ) = ∧{f (xk )}k∈N, for any decreasing sequence {xk}k∈N. Below

53Indeed, take any y ′ ≥Y y , x′ ≥X x, and z′ ≥Z z. If f has increasing differences in (y, (x, z)),
then f (y ′, x′, z′ ) − f (y, x′, z′ ) ≥ f (y ′, x′, z) − f (y, x′, z), which is equivalent to f (y ′, x′, z′ ) − f (y ′, x′, z) ≥
f (y, x′, z′ ) − f (y, x′, z). Given that f has increasing differences in (x, z), we have f (y, x′, z′ ) − f (y, x′, z) ≥
f (y, x, z′ ) − f (y, x, z). Combining the two inequalities yields f (y ′, x′, z′ ) − f (y, x, z′ ) ≥ f (y ′, x′, z) −
f (y, x, z).

54There is an obvious order dual to this result for increasing functions defined on an upper chain com-
plete domain X that implies existence of the least fixed-point theorem.
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we extend the classic comparative statics results of Topkis (1998) to countably chain
complete posets. The result is an extension of the Tarski–Kantorovich theorem. See
Balbus, Reffett, and Woźny (2015b).55

Proposition A.2. Let X be a lower countably chain complete poset with the greatest
element ∨X , and let � be a poset. For any function f : X × � → X and θ ∈ � such that
f (·, θ) is increasing and monotone inf-preserving over X , the greatest fixed point of f (·, θ)
is given by ∧{f (∨X , θ)}n∈N.56 In addition, if f is increasing in the product order and f (·, θ)
is monotone inf-preserving, for all θ ∈ �, then the greatest fixed point is increasing over �.

We now discuss relations between order convergence in M and weak convergence
of measures.

Remark A.1. As in the main section, let M be a set of probability measures over a com-
pact subset of Rn endowed with the first order stochastic dominance relation �. Since
we operate on sequences that are either increasing or decreasing, the supremum or in-
fimum in M is the limit not only in the (interval) topology generated by open intervals,
but also in the weak topology on M (see Hopenhayn and Prescott (1992), pp. 1389–
1391). That is, if {μn} is a first order stochastically increasing sequence with the supre-
mum μ, then

lim
n→∞μn = μ=

∞∨
n=1

μn,

where the limit on the left is defined in the sense of weak convergence on M, and the
supremum on the right is defined with respect to (M, �). The same applies to the map-
pings � ∈ D. Recall that D includes inf-preserving mappings from M to itself. In fact,
a weakly continuous self-map on M is monotone sup-inf preserving, but the converse
does not hold.

A.1.2 The exact law of large numbers

Superatomless probability space Let (�, L, λ) be a probability space. For any E ∈ L
such that λ(E) > 0, let LE := {E ∩E′ : E′ ∈ L} and λE be the re-scaled measure from the
restriction of λ to LE . Let LE

λ be the set of equivalence classes of sets in LE such that
λE(E1�E2 ) = 0, for E1, E2 ∈ LE .57 We endow the space with metric dE : LE

λ × LE
λ → R

given by dE(E1, E2 ) := λE(E1�E2 ).

Definition A.1 (Superatomless space). A probability space (�, L, λ) is superatomless
if for any E ∈ L with λ(E) > 0, the space (LE

λ , dE ) is nonseparable.58

55There is a dual version of this theorem for the least fixed point of the monotone sup-preserving func-
tion defined over an upper countably chain complete domain X .

56By f n we denote the n’th composition of f , that is, f n = f ◦ f ◦ · · · ◦ f (n times).
57We denote E1�E2 := (E1 \E2 ) ∪ (E2 \E1 ).
58This definition is by Podczeck (2009, 2010). Equivalently, Hoover and Keisler (1984) and Keisler and

Yeneng (2009) dub such spaces ℵ1-atomless and rich, respectively.
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As shown by Podczeck (2009), any atomless Borel probability measure on a Polish
space can be extended to a superatomless probability measure.

Fubini extension For any set � and E ⊆ (�×�), we denote its sections by Eα := {ω ∈ � :
(α, ω) ∈ E} and Eω := {α ∈ � : (α, ω) ∈ E}, for any α ∈ � and ω ∈ �. Similarly, for any
function f defined over λ × �, let fα and fω denote the section of f for a fixed α, ω,
respectively. Consider the following definition.

Definition A.2 (Fubini extension). The probability space (� × �, L � F , λ � P ) is a
Fubini extension of the natural product of probability spaces (�, L, λ) and (�, F , P ) if:
(i) L�F includes all sets from L⊗F and (ii) for an arbitrary set E ∈ L�F and (λ⊗ P )-
almost every (α, ω) ∈ � × �, the sections Eα and Eω are F- and L-measurable, respec-
tively, while

(λ� P )(E) =
∫
�
λ(Eω )P(dω) =

∫
�
P(Eα )λ(dα).

Given a probability space (�, L, λ), a collection of random variables (Xα )α∈� is es-
sentially pairwise independent, if for (λ⊗ λ)-almost every (α, α′ ) ∈ � ×�, random vari-
ables Xα and Xα′ are independent. A Fubini extension is rich, if there is a (L � F )-
measurable function X : �×� → R such that the random variables (Xα )α∈� are essen-
tially pairwise independent and the random variable Xα has the uniform distribution
over [0, 1], for λ-almost every α ∈ �. Podczeck (2010) shows that there exists a rich Fu-
bini extension if and only if the space is superatomless. Moreover, without loss, one
may assume the random variables (Xα )α∈� to be independent, rather than pairwise-
independent.

The (exact) law of large numbers A process is a (L�F )-measurable function with values
in a Polish space. For any process f and set E ∈ L such that λ(E) > 0, we denote the
restriction of f to E × � by fE . Naturally, LE � F := {W ∈ L � F : W ⊆ E × �} and
(λE � P ) is a probability measure rescaled from the restriction of (λ � P ) to (LE � F ).
The following is due to Sun (2006).

Proposition A.3 (Law of large numbers). Let f be a process from a rich Fubini extension
(� × �, L� F , λ� P ) to some Polish space. Then, for all E ∈ L such that λ(E) > 0 and
P-almost every ω ∈�, we have λ(fEω )−1 = (λE � P )(fE )−1.

An iterative application of this proposition and universality of the rich Fubini exten-
sion imply the exact law of large numbers for the dynamic transition in equation (1).59

Indeed, given any distribution μ0, we can define (μn ) recursively,

μt+1 =
∫
T×A

q(t, a, μn )dμn

Then there exists an implied probability measure μ∞ on (T ×A)∞. Any random variable
h taking values in (T × A)∞ with distribution μ∞ is a Markov process with state space

59We thank the anonymous referee for suggesting this proof of the dynamic version of ELLN.
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T × A, initial distribution μ0 and transition probability q(t, a, μn ) from time n to time
n+ 1. Sun’s result on the universality of a rich Fubini extension on �×� says that there
is an essentially pairwise independent process F from � × � to (T × A)∞ such that for
each α ∈ �, Fα has the same distribution μ∞. Then Sun’s ELLN says that, for a.e. ω, Fω

has the same distribution μ∞, which means that the type-action distribution in the nth
period for all the agents is μn. See a related construction derived for a class of Bewley
models by Cao (2020).

A.2 Proofs

We begin with a few ancillary results.

Lemma A.2. Let (�, ≥) be a poset with its order topology, and {fk} be a sequence of in-
creasing and monotone inf-preserving functions fk : � → R. Whenever xk ↓ x in � and
fk ↓ f (pointwise), then fk(xk ) → f (x).

Proof. Let n ∈N. Since {fk} is a decreasing sequence of increasing functions and xk ↓ x,
then k ≥ n implies f (x) ≤ fk(xk ) ≤ fk(xn ). Thus we have f (x) ≤ lim infk→∞ fk(xk ) ≤
lim supk→∞ fk(xk ) ≤ f (xn ). To conclude, let n → ∞.

Lemma A.3. Let {νk} be a sequence of probability measures on a Polish space S, and {hk}
be a sequence of bounded, measurable functions hk : S → R. If νk ↓ ν (stochastically and
in weak topology) and hk ↓ h, then limk→∞

∫
hk dνk = ∫

hdν.

Proof. It is a consequence of Lemma A.2, where � is a space of bounded, measurable,
real valued functions on S, and fk(x) := ∫

S x(s)νk(ds), xk(s) = hk(s).

Lemma A.4. Let S1, S2 be topological spaces and f : S1 ×S2 �→R be a continuous function.
Let � : S1 ⇒ S2 be a continuous and compact-valued correspondence, and define �∗(x) :=
arg maxy∈�(x) f (x, y ). If xk → x in S1, yk → y in S2, and yk ∈ �∗(xk ), then y ∈ �∗(x).

Proof. Let y ′ ∈ �(x). By continuity of �, for any k ∈ N, there is y ′
k ∈ �(xk ) such that

y ′
k → y ′. Since yk ∈ �∗(xk ), we have f (xk, yk ) ≥ f (xk, y ′

k ), for all k ∈ N. By continuity of
f , this implies that f (x, y ) ≥ f (x, y ′ ). Since y ′ ∈ �(x) is arbitrary, we have y ∈ �∗(x).

We proceed with the proofs that were omitted in the main paper.

Proof of Lemma 1 Consider vn ∈ V , for all n ∈ N, and vn → v. Let (μk ) and (�k ) be a
collection of decreasing sequences in M and D, respectively, such that μk → μ (weakly)
and �k →� (pointwise). Take any t ∈ T and ε > 0. There is n0 ∈ N such that, for all k ∈N

and n ≥ n0, we have∣∣v(t, μk, �k ) − v(t, μ, �)
∣∣

≤ ∣∣v(t, μk, �k ) − vn(t, μk, �k )
∣∣ + ∣∣vn(t, μk, �k ) − vn(t, μ, �)

∣∣
+ ∣∣vn(t, μ, �) − v(t, μ, �)

∣∣ ≤ 2
3
ε+ ∣∣vn(t, μk, �k ) − vn(t, μ, �)

∣∣ (11)
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Take any n ∈ N satisfying (11). Since vn ∈ V , for large enough k, we have |vn(t, μk, �n ) −
vn(t, μ, �)| ≤ ε/3. Given (11), |v(t, μk, �k ) − v(t, μ, �)| < ε, for a large k. Hence, v is
monotone inf-preserving. Thus v ∈ V .

Continuation of the proof to Lemma 4 We prove (vi). Using Assumption 2, definition
of V , and Lemma A.4, one can show that F is a Carathéodory function in (t, a), that is,
measurable in t and continuous in a. Hence, by Assumption 1 and measurable max-
imum theorem (Theorem 18.19 in Aliprantis and Border (2006)) the correspondence
�(t, μ; v, �) is measurable in t; hence, weakly measurable.60 For each j = 1, 2, � � � , k, the
function πj(t ) := maxa∈�(t,μ;v,�) aj is measurable (again by the measurable maximum
theorem). Thus t → γ(t, μ, �; v) = (π1(t ), π2(t ), � � � , πk(t )) is measurable.
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Akerlof, George A. and Rachel E. Kranton (2000), “Economics and identity.” Quarterly
Journal of Economics, 115, 715–753. [726, 744]

Aliprantis, Charalambos D. and Kim C. Border (2006), Infinite Dimentional Analysis.
a Hitchhiker’s Guide. Springer Verlag: Heilbelberg. [738, 757]

Amir, Rabah (2002), “Complementarity and diagonal dominance in discounted stochas-
tic games.” Annals of Operations Research, 114, 39–56. [733, 737]

Angeletos, George-Marios and Laurent-Emmanuel Calvet (2005), “Incomplete-market
dynamics in a neoclassical production economy.” Journal of Mathematical Economics,
41, 407–438. [748]

Angeletos, George-Marios and Chen Lian (2016), “Incomplete information in macroe-
conomics: Accommodating frictions in coordination.” In Handbook of Macroeconomics,
Volume 2 (John B. Taylor and Harald Uhlig, eds.), 1065–1240, ScienceDirect. [726, 747]

Auclert, Adrien, Bence Bardoczy, Matthew Rognlie, and Ludwig Straub (2021), “Using the
sequence-space Jacobian to solve and estimate heterogeneous-agent models.” Econo-
metrica. 89, 2375–2408. [727]

Balbus, Łukasz, Paweł Dziewulski, Kevin Reffett, and Łukasz Woźny (2015), “Differen-
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