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Pervasive signaling
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How does the increasing publicness of decisions (due, e.g., to social media) af-
fect the total costs of social signaling distortions? While pervasive signaling may
induce pervasive distortions, it may also permit people to signal while distort-
ing each choice to a smaller degree. Ironically, for a broad class of environments,
a sufficient increase in the number of signaling opportunities allows senders to
“live authentically,” that is, to signal their types at arbitrarily low overall cost. This
result survives when social networking technologies expand signaling opportuni-
ties and audience size in tandem, provided the returns to the latter are not too
great.
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1. Introduction

The last several decades have witnessed the emergence of information technologies
that “may make modern life completely visible and permeable to observers” (Froomkin
(2000)). This visibility is a consequence not only of the ways in which businesses and
governments use technology to monitor our activities, but also of the tendency to reveal
much of our lives online voluntarily. Because observation inevitably leads to inference,
pervasive observation leads to pervasive signaling opportunities. In this paper, we ask
whether the proliferation of these opportunities is socially helpful or harmful, that is,
whether it increases or decreases the aggregate waste from signaling distortions. On
the one hand, pervasive signaling leads to pervasive distortions. While the total waste
from signaling cannot exceed the benefits of information transmission (otherwise peo-
ple would not signal), it could in principle dissipate all of those benefits in the limit as
signaling activities become more numerous. On the other hand, signaling through mul-
tiple activities might prove more efficient, in which case the total waste from signaling
could decline in the limit. In principle, it could also remain unchanged.

We examine settings with multiple signaling actions in which the sender’s single-
dimensional type is drawn from a continuum of possibilities, and those perceived as
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higher types receive greater benefits. We assume in addition that the higher types have
higher bliss points for each action, a property that is natural for a wide range of appli-
cations.1 At the outset, we restrict attention to cases in which the sender’s direct utility
is additively separable and symmetric over the actions, but we also explore less restric-
tive settings. To study the effects of signal proliferation, we let the number of signals, N ,
grow without bound.

Ordinarily, we would not expect our model to yield a unique signaling equilibrium.
Indeed, we present a simple motivating example in which signaling waste disappears in
the limit for one type of separating equilibrium but remains undiminished for another.
We address the multiplicity of equilibria through two complementary approaches. For
the first approach, we propose a mild belief restriction that is weaker than, but similar
in spirit to, the Intuitive Criterion of Cho and Kreps (1987). We then prove a convergence
theorem that ensures the disappearance of aggregate signaling waste at the rate 1/

√
N

for all belief-restricted separating equilibria. For our second approach, we avoid impos-
ing belief restrictions, and instead provide an asymptotic bound on waste in symmetric
separating equilibria, which are analytically tractable. It follows immediately that the
same bound applies to the equilibria that reveal all private information with the least
aggregate waste. Specifically, for symmetric separating equilibria, we demonstrate that
aggregate waste disappears at the rate 1/N . We also provide conditions under which
the symmetric separating equilibrium is in fact waste-minimizing. We extend our main
findings by examining more general utility functions that allow for nonlinear aggrega-
tion across the sender’s activities, and we provide sufficient conditions under which our
main conclusions continue to hold.2 Thus, we conclude that, in the limit, senders fare
as well as with complete information. In effect, the proliferation of observable activities
enables each sender to “live authentically,” that is, to signal the truth about her type at
negligible overall cost.

Why do these convergence properties hold? To build intuition, focus only on the
symmetric options. A sufficient proliferation of actions causes the utility sacrificed when
choosing any given symmetric action other than the sender’s bliss point to exceed any
possible reputational gain. Therefore, choices in symmetric separating equilibria must
converge to bliss points. However, because the number of actions also serves as a mul-
tiplier that magnifies the remaining signaling waste in each individual action, the con-
vergence of equilibrium actions to bliss points does not by itself ensure that waste from
signaling disappears in the limit. To establish that result, one must show that the action
of each sender in the symmetric separating equilibrium converges to the sender’s bliss
point at a rate that is rapid enough to overcome the greater waste associated with the

1Signaling models with heterogeneous bliss points are widely employed in the literature. Examples in-
clude Spence (2002) on signaling with productive educational investments; Mailath (1989) on price signal-
ing; Banks (1990) on political competition; Miller and Rock (1985) on dividend signaling; Bernheim (1994)
on conformity; Bagwell and Bernheim (1986), Ireland (1994), and Corneo and Jeanne (1997) on conspicu-
ous consumption; Bernheim and Severinov (2016) on bequests; Bernheim and Andreoni (2009) on fairness;
and Bernheim and Bodoh-Creed (2020) on decisive leadership.

2Such a generalization is necessary to study applications such as conspicuous consumption, where the
sender’s utility is defined over bundles of goods that may be substitutes or complements for one another.
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rising number of actions. We show by way of example that, for models with homoge-
neous bliss points, the convergence of actions to bliss points can be too slow to ensure
the disappearance of signaling waste in the limit. However, heterogeneous bliss points
lead to more rapid convergence, and consequently allow us to establish our main result
under reasonably general conditions.

In some cases, the very same technological developments that proliferate signaling
opportunities also allow people to reach larger audiences. In particular, online social
networks (OSNs) such as Facebook, Twitter, Snapchat, and Weibo have become virtu-
ally ubiquitous components of social interaction.3 These platforms make it possible
for users to stay connected with family and friends while expanding their circle of ac-
quaintances, and to present all of these online contacts with richly textured depictions
of their lives. Any development that expands audiences also potentially increases the
reputational benefits from signaling, which may prevent total signaling waste from de-
clining. Modeling such phenomena therefore requires us to consider settings in which
increases in the number of visible actions are accompanied by increases in the scale of
signaling benefits.

We therefore consider an extension of our model that allows us to explore the in-
teraction between signal proliferation and audience augmentation, and to characterize
their joint effects on welfare. We reach two main conclusions. First, as long as the rela-
tionship between the potential benefits of signaling and the size of the audience exhibits
decreasing returns of sufficient magnitude, signal proliferation still drives the total cost
of signaling to zero in the limit. Second, even in cases where equilibrium signaling costs
do not vanish in the limit, they still dissipate a vanishing fraction of the informational
stakes, except in cases where there are weakly increasing returns to audience size.

In Section 2, we place our work within the existing literature. Section 3 introduces
our baseline model. Section 4 presents some examples that illustrate various aspects of
our analysis. Section 5 focuses on separating equilibria satisfying a belief refinement,
while Section 6 concerns the most efficient separating equilibria. Section 7 addresses
the simultaneous effects of signal proliferation and audience augmentation. Section 8
concludes. In Appendix A, we extend the analysis to more general settings with nonad-
ditive asymmetric aggregators. All proofs appear in Appendix B.

2. Related literature

Beginning with the seminal contribution of Spence (1973), the literature on signaling
has emphasized that incentive-compatible information transmission generally entails
inefficiencies (see, e.g., Spence (2002)). Exceptions to this principle have occasionally
surfaced, primarily in the literature on cheap talk.

3According to the 2016 General Social Survey, 88.6% of United States residents used at least one OSN;
for 18 to 35 year olds, the figure is 95.6%. These statistics reflect aggregate rates of usage in the previous 3
months for respondents with ages between 16 and 74 years. In Q3 of 2018, Facebook alone reported 185
million daily active users in the United States and 242 million monthly active users. Nearly three quar-
ters of those on Facebook use their accounts at least once a day, and more than half do so multiple times
(Smith and Anderson (2018)). Among OSN users between the ages of 18–49, this online activity consumes
an average of roughly 6.5 hours per week (Nielsen (2016)).
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A defining feature of the cheap talk framework is that signals are costless (Crawford
and Sobel (1982)). Consequently, inefficiencies arise when the transmitted information
is incomplete, rather than when the sender fails to select the action she would most pre-
fer in a setting with full information. A few papers in the cheap-talk literature identify
conditions under which senders can reveal all their private information through cost-
less statements. Battiglini (2002) shows that full revelation is possible in settings where
multiple senders compete with each other to influence the receiver. Chakraborty and
Harbaugh (2007, 2010) demonstrate that, if a sender seeks to influence multiple deci-
sions by a receiver, she can often make credible comparative statements across those
decisions (see also Lipnowski and Ravid (2020)). For example, although a professor may
have difficulty convincing potential employers of her students’ absolute abilities, she
may be able to convey a credible ranking. Furthermore, if the number of students is suf-
ficiently large, employers may be able to infer absolute ability from rank, in which case
full revelation is achieved asymptotically.

While the aforementioned papers are concerned with the same ultimate possibility
as our investigation—costless revelation of all private information—the mechanisms are
only distantly related. We can think of signaling models as differentiated with respect to
the magnitude of the loss the sender incurs when deviating from her first-best option.
Cheap-talk models lie at one extreme end of that spectrum inasmuch as the aforemen-
tioned loss is zero. In our setting, increasing the number of signals while preserving
the magnitude of the loss from any single deviation is much like increasing the cost of
deviations from the first-best action in settings with a single signal. (To be clear, while
these comparative statics are related, they are not equivalent, because the proliferation
of actions allows for asymmetric choices.) Our focus is therefore, in effect, on the oppo-
site end of the spectrum, where deviations from first-best choices lead to large losses.
Asymptotic efficiency obtains in our framework not because signaling reveals more in-
formation as the number of signals grows, but rather because fully revealing actions
converge sufficiently rapidly to first-best choices.

There is a closer formal connection between our work and that of Kartik (2009), who
studies single-action signaling models in which agents report private information but
incur costs if they lie (see also Kartik, Ottaviani, and Squintani (2007)). Applying the
intuition from the preceding paragraph (and keeping in mind the same formal qual-
ification concerning asymmetric choices), we see that increasing the costs of a single
potential lie is much like increasing the number of potential lies while preserving the
costs of each individual lie. Kartik (2009) shows that all statements converge to the truth
as the costs of lying rise, which is the analog of actions converging to bliss points as the
number of actions rise in our setting.4 However, he does not investigate the behavior of
total lying costs in the limit, and it is not clear from his analysis whether those costs fall
because people tell smaller lies, or rise because the cost of any given lie increases. Nor
do these papers make a connection to models with multiple signaling actions.

Our paper is also related to a branch of the theoretical biology literature concern-
ing the “Handicap Principle,” which holds that the credible transmission of information

4In his setting, an upper bound on the set of potential signals leads to pooling. He also shows that the
pool shrinks, and consequently that the equilibrium becomes more revealing, as lying costs rise.
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requires a costly signal (Zahavi (1979), Grafen (1990)). Follow-up papers focused atten-
tion on the fact that the credibility of a signal only requires out-of-equilibrium costs of
mimicry, which in turn led to the realization that successful signaling in settings with
discrete type spaces does not necessitate the use of costly signals in equilibrium (Hurd
(1995), Számado (1999, 2011)). However, this literature also suggests that, except for
knife-edge examples, costless signaling is typically impossible in settings where the type
space is a continuum (Lachmann, Számado, and Bergstrom (2001) and Bergstrom, Szá-
mado, and Lachmann (2001)).5 In contrast, in our setting, asymptotically costless sig-
naling is a robust phenomena.

With respect to the specific phenomenon of signaling through online social net-
works, there is also a small theoretical literature that examines the informational con-
tent of an individual’s network connections. Donath (2002) and Donath and Boyd (2004)
study social connections as a credible signal of identity in an otherwise anonymous vir-
tual community, and Donath (2008) draws out the implications of these ideas for net-
work design. None of these studies focuses on the fact that these technologies con-
tribute to the pervasiveness of signaling.

3. The basic model

We consider a signaling model in which a sender takes N publicly observable actions
simultaneously. Because our analysis concerns limiting outcomes as N grows without
bound, we will write the action vector as a = (a1, � � � , aN ) ∈ AN ⊂ R

N+ . The sender pos-
sesses private information (her “type” t ∈ [t, t] = T ⊂R) pertaining to the costs and ben-
efits of the action a. A second party, the receiver, observes a and draws inferences about
the sender’s type. The sender cares about those inferences, and consequently takes them
into account when choosing a. We will take both T and A to be compact intervals.

The sender’s direct utility from action a in the absence of any signaling incentive
(i.e., with complete information) is given by a continuous function πN (a, t ). For most of
our analysis, we will specialize to the case in which πN (a, t ) is additively separable and
symmetric across actions:

πN (a, t ) =
N∑
i=1

π(ai, t )

In Appendix A, we develop an extension to cases with nonseparable and/or asymmetric
utility.

We define the sender’s bliss point (or first-best action) as follows:

aBP(t ) = arg max
a

π(a, t ). (1)

5In an evolutionary context, preference parameters are endogenous, and evolutionary pressures may
drive them to knife-edge values that would otherwise appear nongeneric.
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In words, aBP(t ) = (aBP(t ), aBP(t ), � � � , aBP(t )) ∈ R
N+ is the action the sender would

choose if her type were publicly observed. If the agent takes an action a �= aBP(t ) in
equilibrium, then πN (a, t ) −πN (aBP(t ), t ) < 0 is the total waste from signaling.6

Having observed a, the receiver uses Bayes’s rule to form a posterior belief about the
sender’s type. We use δ(a) ∈ �(T ) to denote the belief of a receiver who observes action
a, where �(T ) is the set of Borel measures over T . We refer to δ ∈ �(T ) as the receiver’s
perception of the sender. In the case of fully separating equilibria, the receiver’s equi-
librium beliefs place probability 1 on the sender having the type t̂(a), which is derived
from the sender’s strategy. When convenient, we suppress the arguments of δ and t̂, and
refer to the sender as “choosing” the receiver’s perception.

Given the receiver’s perception (δ), the sender receives benefits B(t, δ).7 In many
signaling models, the receiver responds to the sender’s signal, and one can think of
B(t, δ) as a reduced form representation of the utility the sender derives from this re-
sponse. The sender’s total utility is

UN (a, δ, t ) = B(t, δ) +πN (a, t ). (2)

In cases where δ is a degenerate distribution that places all weight on some perception t̂,
with a slight abuse of notation we write the utility function as UN (a, t̂, t ) and the benefit
function as B(t, t̂ ).

We make several assumptions that are easily verified in applications.8 Our first as-
sumption, that each agent has a unique optimal choice under complete information,
simplifies our notation and some of the arguments.

Assumption 1. aBP(t ) exists, is unique, and is continuous in t.9

To analyze the costs of signaling when the equilibrium selection for type t ap-
proaches aBP(t ), we use Taylor series expansions of π(a, t ) around (aBP(t ), t ). Assump-
tion 2 enables us to employ third-order expansions and ensures that second-order ef-
fects dominate any higher-order effects for large N .10

6One can think of this model as describing a setting with M ≥N actions, N of which are public and M−N

of which are private. Because a type-t sender chooses aBP(t ) for each private action, the total payoff from
the private actions is fixed at (M − N )π(aBP(t ), t ), so they have no effect on the set of signaling equilibria.
In taking the limit as N → ∞, we must then either (i) take M = +∞ from the outset, which requires us
to normalize utility so that π(t, t ) = 0 in order to avoid unbounded sums, or (ii) allow M to grow along
with N . The latter alternative may at first seem somewhat unattractive because it brings new actions into
being as the scope of observability expands. It is therefore important to bear in mind that, in characterizing
limiting behavior, our object is to approximate behavior for large N and M . Because M ends up being
inconsequential, the analytical fiction of increasing M is innocuous.

7It is straightforward to allow for the possibility that B depends on the action a. In that case, we would
require the existence of first, second, and third derivatives with respect to the elements of a, as well as upper
bounds on the third derivatives.

8By convention, throughout this paper, any assumption that references a derivative assumes the exis-
tence of that derivative. We use subscripts to denote partial derivatives with respect to the subscripted
variable.

9Because π is continuous, uniqueness of aBP(t ) implies continuity of aBP(t ), so the continuity assump-
tion is redundant. We nevertheless spell it out explicitly to avoid subsequent confusion.

10Since we analyze actions in a neighborhood of the bliss point, first-order effects are absent as
πa(aBP(t ), t ) = 0.
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Assumption 2. πaa(a, t ) is continuous in t, and for all t ∈ T we have πaa(aBP(t ), t ) < 0.
Furthermore, there exists a finite number C > 0 such that |πaaa(a, t )| ≤C.

Our next assumption requires that first-order changes in type produce first-order
changes in bliss points.11

Assumption 3. There exists β > 0 such that for any t > t ′, we have aBP(t ) − aBP(t ′ ) ≥
β(t − t ′ ).

Our next two assumptions pertain to the properties of B, the signaling benefit func-
tion. Focusing on cases in which the receiver’s belief about the sender’s type is degener-
ate, Assumption 4 ensures that the sender’s benefit is increasing in her perceived type.
It also imposes a uniform bound on the rate of change.12 Assumption 5 bounds the
sender’s benefit when the receiver is not confident about the sender’s type, which may
occur even in a separating equilibrium following a deviation by the sender.

Assumption 4. There exists γ > 0 such that 0 ≤ Bt̂(t, t̂ ) ≤ γ.

Assumption 5. If the support of δ(a) is S , then max̂t∈S B(t, t̂ ) ≥ B(t, δ(a)) ≥
min̂t∈S B(t, t̂ ).

Together, Assumptions 4 and 5 imply that there exist finite values B and B such that
B(t, δ(a)) ∈ [B, B].

We define a separating equilibrium in the usual way, restricting attention to Perfect
Bayesian equilibria so that the support of beliefs, δ, always lies within T , even for uncho-
sen actions. We say that the equilibrium is symmetric if it employs the same mapping
from types to actions for every component choice.

The signaling structure of our model fits many applications. For instance, we can
interpret it as capturing settings with costs of lying, as in Kartik (2009). In that context,
each action ai consists of a statement concerning the sender’s type, t, and the bliss point
involves telling the truth (aBP(t ) = t). Under that interpretation, our analysis shows that,
if maintaining a falsehood requires a sufficiently large number of lies, the freedom to lie
becomes inconsequential.13As another example, we can interpret our model as describ-
ing conspicuous consumption, as in Ireland (1994), Bagwell and Bernheim (1986), and
Corneo and Jeanne (1997). In that context, each action ai involves some costly and vis-
ible purchase, which may serve to display the sender’s wealth. The bliss-point function

11When the first-order approach is applicable, implicit differentiation yields a′
BP(t ) = −πat (aBP(t ), t )/

πaa(aBP(t ), t ). In that case, Assumption 3 follows if πaa is strictly negative and uniformly bounded while
πat is strictly positive and uniformly bounded away from zero.

12The assumption requires the benefit function B to be differentiable in the public perception, t̂. In some
applications, B may be discontinuous, for example, if the receiver chooses from a finite set of responses.
For such settings, we can justify the differentiability assumption by positing a degree of uncertainty on the
part of the sender concerning the receiver’s objectives.

13To be clear, our analysis does not contemplate the possibility that telling many lies might desensitize
the sender to the cost of lying. By way of analogy to our analysis of audience size in Section 7, we would
expect the result to depend on the rate of desensitization.
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aBP(t ) captures the purchases the sender would make based solely on her intrinsic pref-
erences. Bliss points are increasing in t because wealthier people tend to prefer more
extravagant alternatives. Under that interpretation, our analysis shows that the perva-
sive observability of purchases renders signaling distortions unimportant not only for
individual purchases, but also in total.

4. Some examples

This section exhibits two examples, the purpose of which is to show that convergence to
costless revelation of private information obtains for some types of separating equilibria
in some models, but not universally. The examples help build intuition concerning the
prerequisites for the convergence property.

Our first example exploits the fact that the types of multidimensional signaling mod-
els described in Section 3 typically give rise to multiple separating equilibria. We exhibit
two types of equilibria. In one, the sender chooses a symmetric action that converges
to her bliss point, causing total signaling waste to disappear at the rate 1/N as N grows.
In the other, the sender chooses an asymmetric action with a component that does not
converge to her bliss point, leaving signaling waste undiminished as N grows. The con-
trast between these two outcomes focuses our subsequent attention on criteria for re-
fining the set of separating equilibria.

Example 1. Assume that B(t, t̂ ) = t̂ and π(a, t ) = −λ(a − t )2, and T = [0, 1]. The bliss
points are (obviously) aBP(t ) = t.

In any symmetric separating equilibrium with actions aSEP(t, N ), we can write the
equilibrium utility of a type-t agent who mimics the equilibrium action of a type-t̂ agent
as

V ( t̂, t ) = t̂ −Nλ
(
aSEP( t̂, N ) − t

)2

Because aSEP(t, N ) is the optimal choice for type t, this expression is maximized at t̂ = t.
The corresponding first-order condition for optimization over t̂ yields an ODE that de-
fines the symmetric separating equilibrium:

∂aSEP( t̂, N )
∂̂t

∣∣∣∣̂
t=t

= 1

2λN
(
aSEP(t, N ) − t

) . (3)

Treating N as fixed for the purpose of solving the ODE, we use the change of vari-
ables z(t ) = aSEP(t, N ) − t. Noting that z′(t ) = a′

SEP(t, N ) − 1, we can write dz/dt =
(1 − 2λNz)/2λNz, which in turn implies the inverse ODE, dt/dz = 2λNz/(1 − 2λNz).
Using the fact that 2λNz/(1 − 2λNz) = 1/(1 − 2λNz) − 1, we can solve by integrating

t = −
[
z + 1

2λN
ln

(
1

2λN
− z

)]
+C.

The initial condition z(0) = 0 implies

t = −
[
z + 1

2λN
ln(1 − 2λNz)

]
.
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Reversing our change of variables and rearranging, we find

aSEP(t, N ) − t = 1 − e−2λNaSEP(t,N )

2λN
.

The total signaling waste is then

Nλ
(
aSEP(t, N ) − t

)2 ≤Nλ

(
1

2Nλ

)2

= 1
4λN

,

which plainly converges to zero at the rate 1/N as N grows without bound.
Continuous-type models do not give rise to inefficient symmetric separating equi-

libria under the sufficient conditions identified in Mailath (1987) and Mailath and
von Thadden (2013), which this example satisfies. However, they can give rise to in-
efficient asymmetric separating equilibria. As an illustration, we will examine separat-
ing equilibria in which a type t sender selects (aBP(t ), � � � , aBP(t ), aASEP(t, N )). In other
words, for her first N − 1 actions, she chooses her bliss point, but for her Nth action, she
chooses aASEP(t, N ). Using the fact that the derivative of her utility with respect to the
first N − 1 actions is zero at her bliss point, we can convert her first-order condition for
optimization over t̂ into an ODE, exactly as before:

∂aASEP(t, N )
∂̂t

∣∣∣∣̂
t=t

= 1

2λ
(
aASEP(t, N ) − t

) .

This ODE is identical to equation (3), except there is no N in the denominator. It follows
that aASEP(t, N ) coincides with aSEP(t, 1) for all N .14 From this observation, we conclude
that the total signaling waste is fixed for these asymmetric equilibria, and consequently
does not vanish as N → ∞. ♦

From the contrast between the two equilibria described in Example 1, one might
conjecture that signaling waste disappears in the limit as long every component action
converges to the sender’s bliss point. However, that conjecture is incorrect. Because N

also serves as a multiplier that magnifies the remaining signaling waste in each individ-
ual action, waste does not vanish unless actions converge to bliss points rapidly enough
to overcome the expanding scope of signaling. Our next example illustrates this point
using a model involving a setting with homogeneous bliss points that otherwise satis-
fies our assumptions.15 Focusing on the (unique) symmetric separating equilibrium, we

14As long as λ is not too large, one obtains a Perfect Bayesian separating equilibrium by setting t̂(aN ) = t

for all unchosen aN .
15To be clear, there are conditions under which signaling costs can converge to zero as N → ∞ even with

homogeneous bliss points. Suppose there are two types, t ∈ {1, 2}, who share the bliss point a = 0, and that
the reputational benefits B depend only on the perceived type, t̂. It is then straightforward to verify that the
equilibrium costs of signaling converge to zero as N → ∞ iff lima→0(π(a, 2) −π(0, 2))/(π(a, 1) −π(0, 1)) =
0 (henceforth, condition L). The idea is that the equilibrium separating action, a∗, is determined by the
equation N[π(0, 1)−π(a∗, 1)] = B(2). Thus we have N[π(0, 2)−π(a∗, 2)] = [(π(0, 2)−π(a∗, 2))/(π(0, 1)−
π(a∗, 1))]B(2). Because limN→0 a

∗ = 0, the conclusion is immediate. The argument extends directly to
cases with finite type sets under the assumption that a condition analogous to L holds for all consecutive
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show that actions converge to bliss points at the rate 1/
√
N , which leaves the aggregate

waste from signaling unchanged. Thus, in contrast to the first equilibrium exhibited in
Example 1, the convergence of actions to bliss points is too slow to eliminate waste.

Example 2. Suppose B(t, t̂ ) = t̂, π(a, t ) = −a2/(t + γ) for some fixed γ > 0, and T =
[0, 1]. Notice that the bliss points are homogenous (aBP(t ) = 0 for all t), and that the
model satisfies the Spence–Mirrlees single-crossing property. The first-order condition
for optimization over t̂ yields an ODE that defines the symmetric separating equilibrium:

∂aSEP(̂t, N )
∂̂t

∣∣∣∣̂
t=t

= t + γ

2NaSEP(t, N )
.

We can write this equation in the following more convenient form:

2NaSEP(t, N )
∂aSEP(̂t, N )

∂̂t

∣∣∣∣̂
t=t

= t + γ.

Integrating both sides and using the initial condition that aSEP(0, N ) = 0 yields

NaSEP(t, N )2 = 1
2

(t + γ)2 − γ2

2
.

Thus, the total cost of signaling, NaSEP(t, N )2/(t+γ), is invariant with respect to N , even
though each action converges to the common bliss point at the rate 1/

√
N . ♦

To a limited extent, one can build intuition for our main results from the preced-
ing examples by considering settings in which the number of sender types is finite.
When bliss points are heterogeneous, it is easy to see that, with |T | <+∞, aBP(t ) (“truth
telling”) is always a separating equilibrium for N sufficiently large: finite reputational
gains eventually become insufficient to justify the costs of choosing a discretely higher
type’s bliss point. It follows that, for efficient separating equilibria, signaling waste dis-
appears entirely for large N .16 This reasoning obviously breaks down when bliss points
are homogeneous.

While instructive, these observations fall short of providing a helpful intuitive ac-
count of our main results. In particular, the finite-type case provides no insight as to
why, with heterogeneous bliss points and a continuum of types, the reduction in signal-
ing waste per action resulting from the convergence of actions to bliss points outpaces
the scale effect of increasing N . Even if we take the view that the number of types, |T |,
pairs of types. We suspect, but have not verified, that the argument also extends to cases with continuous
type sets. The function π(a, t ) = −at satisfies condition L, as well as the analogous condition for finite
type sets (provided t > 0). Because this function violates the single-crossing property, existence of a sep-
arating equilibrium is guaranteed only for sufficiently large N . While it is interesting that signaling costs
can in principle vanish as N → ∞ even with homogeneous bliss points, this outcome requires assumptions
that are not typical of the literature. In contrast, with heterogeneous bliss points, the result obtains under
standard assumptions.

16In finite-type models, there are also typically inefficient symmetric separating equilibria for which total
signaling costs need not disappear as N grows without bound.
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is actually finite (but large), studying cases with fixed |T | and N → ∞ could be mis-
leading. With large N and large |T |, truth telling is only an equilibrium in settings with
heterogeneous bliss points if N is large relative to |T |. If, on the contrary, |T | is large rel-
ative to N , the limiting (N → ∞) case of the continuous-type model likely does a better
job of capturing the signaling distortions that remain. In effect, our analysis establishes
that “truth telling” holds as an approximation for large |T | and N even when |T | is large
relative to N .

Together, Examples 1 and 2 show that the asymptotic magnitude of signaling waste
may depend on the class of equilibria considered. As noted in Section 1, we handle
this issue through two distinct approaches. For the first approach (Section 5), we prove
a convergence theorem that ensures the disappearance of aggregate signaling waste
at the rate 1/

√
N for all separating equilibria satisfying a mild belief restriction. For

our second approach, we avoid imposing belief restrictions, and prove a stronger con-
vergence result for symmetric separating equilibria, which in turn has implications for
waste-minimizing separating equilibria.

5. Signaling waste in equilibria satisfying a belief restriction

Our first approach to issues arising from the potential multiplicity of signaling equilibria
involves the imposition of a minimal “plausibility” restriction on equilibrium beliefs. We
characterize the signaling waste associated with all separating equilibria satisfying this
belief restriction.

We formulate the restriction as follows. For each action a, we say that sender type
t belongs to the plausible set P(a) if there is some pattern of conceivable receiver re-
actions (i.e., receiver beliefs about the sender) for which t would find a preferable to t’s
bliss point, aBP(t ). Formally,

P(a) ≡ {
t : B +πN

(
aBP(t ), t

) ≤ B +πN (a, t )
}

.

Imagine the receiver observes a sender choosing an out-of-equilibrium action a, and
that T ⊃ P(a) �= ∅. The receiver may try to rationalize the existence of this deviation by
attributing it to a misunderstanding on the part of the sender concerning the receiver’s
reactions (i.e., the sender may be wrong about t̂(ã) for certain ã ∈R

N+ ). By construction,
the sender’s misunderstanding could in principle justify the choice of a if t ∈ P(a), but
not if t /∈ P(a). Therefore, the receiver cannot reasonably attribute the choice of a to
any type outside of P(a).17 Through this reasoning, we arrive at the following belief
restriction.

Definition 1. The receiver’s beliefs satisfy the dominance refinement if, upon observ-
ing any a for which P(a) �= ∅, the receiver is certain that t ∈ P(a).

17Our dominance refinement is similar to the concept of “elimination of type-message pairs by domi-
nance” (ETMPD) proposed in Cho and Kreps (1987), although the notation we use to describe our games is
different (e.g., we do not explicitly model a reaction choice by the receiver). Since ETMPD is a weaker re-
finement than the Intuitive Criterion defined by Cho and Kreps (1987), our refinement is also weaker than
the Intuitive Criterion. For similar reasons, our refinement is also weaker than the Divinity refinement
proposed by Banks and Sobel (1987).
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Our interest lies in the properties of equilibria when they exist, rather than in the
conditions that ensure existence (a question addressed in other research). Accordingly,
we assume existence directly. We do not, however, insist on the existence of a separating
equilibrium satisfying regularity properties such as continuity or symmetry.

Assumption 6. A separating equilibrium satisfying the dominance refinement exists for
all N .

The main result for this section tells us that type t’s total waste from signaling in all
equilibria satisfying the dominance refinement converges to zero as the number of ac-
tivities grows without bound, and that this convergence is uniform for t ∈ T . Uniformity
is important because it implies that aggregate waste exhibits convergence at the same
rate.18

Theorem 1. Under Assumptions 1–6, there exists a finite constant K > 0 such that, for
sufficiently large N , the total waste from signaling in all separating equilibria satisfying
the dominance refinement, πN (aBP(t ), t ) − πN (a(t; N ), t ) (where a(t; N ) is the equilib-
rium signaling action function) is bounded above by K/

√
N for all types t ∈ T .

To build intuition for this result, start by thinking about type t’s first-best action,
aBP(t ). As N grows, there are fewer and fewer types t ′ who prefer aBP(t ) along with the
best possible inference to aBP(t ′ ) along with the worst possible inference. The plau-
sible set for aBP(t ) therefore lies within a shrinking neighborhood of t, which means
the associated inference, t̂(aBP(t )) converges to t. It follows that B( t̂(aBP(t )), t ) con-
verges to B(t, t ). Alternatively, type t’s equilibrium action, a(t, N ), leads to the inference
t̂(a(t, N )) = t, and hence to the signaling benefit B(t, t ). The total reputational gain from
choosing a(t, N ) rather than aBP(t ), that is, the difference B(t, t ) −B( t̂(aBP(t )), t ) there-
fore converges to zero. But incentive compatibility implies that this reputational gain is
an upper bound on the signaling waste, N[π(aBP(t ), t ) −π(a(t, N ), t )]. The total signal-
ing waste must therefore converge to zero as N grows without bound.

It is instructive to examine the implications of the dominance refinement in Exam-
ple 1 from Section 4. Consider the inefficient asymmetric separating equilibrium. As we
have just explained, the plausible set for aBP(t ) lies within a vanishing neighborhood of
t as N grows. Once this neighborhood becomes sufficiently small, a type t sender would
prefer to choose her bliss point, aBP(t ), and accept an inference about her type that may
be slightly less than t, rather than choose (aBP(t ), � � � , aBP(t ), aASEP(t )) and have others
recognize her type correctly. Consequently, these equilibria do not satisfy the domi-
nance refinement for sufficiently large N . The symmetric separating equilibria does not
suffer from this problem because the choice between, on the one hand, aBP(t ) along
with an inference about the sender’s type that is slightly below t, and on the other hand,
aSEP(t, N ) along with an inference that her type is t, does not tip toward the former as N
grows (because aSEP(t, N ) converges to aBP(t )).

18The proof of this result makes use of the upper bound on πaaa in Assumption 2, but not the lower
bound. We use both bounds in the proof of Theorem 2.
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Although reasonably general, the convergence property identified in Theorem 1 is
not universal. The following example shows that the total costs of signaling need not
shrink when the model violates the technical assumptions listed in Section 3.

Example 3. Let T = [0, 1]. Suppose

B(t, t̂ ) =
{√

t̂ − t for t̂ ≥ t

−∞ otherwise.

Also assume that there is some constant q > 0 such that

π(a, t ) =
{

−(a− t )2 for |a− t| ≤ q

−∞ otherwise.

Notice that this model entails heterogeneous bliss points. However, it violates our as-
sumptions about differentiability and boundedness.

We claim that, for all N , there exists a separating equilibrium such that a(t, N ) =
(t + q, t, � � � , t ), in which receivers attribute any off-path action ao to type to(ao ) =
maxi aoi −q. A deviation to any a′ (whether on-path or off-path) yields infinitely negative
direct utility for type t if a′

i > t + q for some i, and infinitely negative signaling benefits
for type t if all a′

i < t+q. The only remaining options entail a′
i ≤ t+q for all i, with equal-

ity for some i. But receivers would attribute any such action to type t, and consequently
the sender’s payoff would be no higher than in equilibrium. It is also easily verified that
this equilibrium satisfies the dominance refinement.19 Notice that the signaling waste
associated with these equilibria, q2, does not shrink with N . ♦

A prominent feature of our basic model is that utility is additive over actions. This
functional restriction may be reasonable in some settings but not in others. In Ap-
pendix A, we identify conditions under which Theorem 1 generalizes to settings with
nonadditive asymmetric utility aggregators.

6. Signaling waste in waste-minimizing separating equilibria

Our objective in this section is to evaluate the possibility of near-costless transmission of
all private information by bounding the signaling waste in the most efficient (i.e., waste-
minimizing) separating equilibria. As explained in Section 1, our strategy is to provide
an asymptotic bound on waste in symmetric separating equilibria, which are analyti-
cally tractable, and then to note that the same bound must apply to waste-minimizing
separating equilibria. We also provide conditions under which the symmetric separating

19If we follow the convention that t ∈ P(a) whenever B + πN (aBP(t ), t ) is −∞, even if B + NπN (a, t )
is also −∞, then P(ao ) = T for all off-path choices ao, from which it follows that all equilibria satisfy the
dominance refinement. If instead we follow the convention that t /∈ P(a) whenever B + NπN (a, t ) is −∞,
then for any off-path action ao, if maxi aoi − mini a

o
i ≤ 2q, we have to(ao ) ∈ P(ao ), and if maxi aoi − mini a

o
i >

2q, we have P(ao ) = ∅. In either case, the prescribed beliefs satisfy the dominance refinement.
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equilibrium is in fact waste-minimizing. It is worth noting that several leading refine-
ments direct our attention to the most efficient separating equilibria in broad classes of
signaling models (see, e.g., Cho and Kreps (1987), and Banks and Sobel (1987)).

If we imposed symmetry of actions as a restriction, the sender’s utility function
would become

ÛN (a, δ, t ) = B(t, δ) +Nπ(a, t ).

Interpreted as a setting with a single signal, the symmetry-restricted formulation falls
within the general frameworks studied by Mailath (1987) and Mailath and von Thad-
den (2013), and our assumptions are compatible with (but do not imply) the suffi-
cient conditions provided in those papers for existence and uniqueness of a sepa-
rating function aSEP(t, N ). Furthermore, when the symmetry restriction is removed,
we can construct a separating equilibrium based on the action function aSEP(t, N ) ≡
(aSEP(t, N ), � � � , aSEP(t, N )), where we extend beliefs to all action vectors aN so that any
such equilibrium remains an equilibrium; moreover, no new symmetric equilibria can
appear.20 It follows that we could in principle guarantee the existence and uniqueness
of a symmetric separating equilibrium by invoking sufficient conditions from the litera-
ture. Because that approach would potentially distract from the assumptions that most
directly drive our results and would also sacrifice some generality, we instead simply
assume existence, uniqueness, monotonicity, and continuity.

Assumption 7. There exists a unique symmetric separating equilibrium for the sym-
metry-constrained signaling game, aSEP(t, N ), that is increasing and continuous in t.

Our analysis of symmetric separating equilibria begins with the simple observation
that actions must converge to bliss points as N grows without bound. In the Appendix,
we formalize this observation as Lemma 1, which also provides a bound on the rate of
convergence (which we subsequently tighten in the proof of Theorem 2), and establishes
that convergence is uniform. The intuition for this result is straightforward: because N

multiplies the direct utility function π, a sufficient increase in N must cause the utility
sacrificed when choosing any given symmetric action other than the sender’s bliss point
to exceed any possible reputational gain.

To establish our main convergence result, we show that the action of each sender
in the symmetric separating equilibrium converges to the sender’s bliss point at a rate
that is rapid enough to overcome the greater waste associated with the rising number of
actions. Thus, the total waste from signaling converges to zero in the limit as the number

20The simplest way to extend beliefs is to let t̂(a) = t for all actions not chosen in equilibrium, that is,
a /∈ AN

e ≡ {a′ | a′ = aSEP(t, N ) for some t ∈ [t, t̄]}. Combining the fact that UN (a, t̂(a), t ) = UN (a, t, t ) ≤
UN (aBP(t ), t̂(aBP(t )), t ) for a /∈ AN

e with the incentive-compatibility condition for the symmetry-restricted
equilibrium, UN (aBP(t ), t̂(aBP(t )), t ) ≤ UN (aSEP(t, N ), t, t ), we have UN (a, t̂(a), t ) ≤ UN (aSEP(t, N ), t, t ),
which ensures incentive compatibility over the entire action space. Under the additional assumptions listed
in Theorem 3, one can establish the existence of another set of beliefs defined over the entire action space
that ensures incentive compatibility while satisfying the dominance refinement. To see that no new sym-
metric equilibria can appear, notice that any symmetric equilibrium of the unrestricted game remains an
equilibrium when asymmetric choices are disallowed.
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of actions grows, so that the equilibrium approximates the first-best outcome for large
N . Moreover, the convergence is uniform over t ∈ T .

Theorem 2. Under Assumptions 1–5 and 7, there exists a finite constant K > 0 such that,
for sufficiently large N , the total waste from signaling in the unique symmetric separating
equilibrium, N[π(aBP(t ), t ) − π(aSEP(t; N ), t )], is bounded above by K/N for all types
t ∈ T .

As with Theorem 1, uniformity is important because it implies that aggregate waste
converges to zero at least as rapidly as the uniform bound implies. It follows that per
capita waste in the waste-minimizing separating equilibrium is also bounded above by
K/N .

Although reasonably general, the convergence property identified in Theorem 2 is
not universal. As we now show by way of example, it may fail when the model violates
the technical assumptions listed in Section 3.

Example 4 (continued). Consider once again the model described in Example 3. We
claim that, for all N , there exists a symmetric separating equilibrium such that a(t, N ) =
t + q, in which receivers attribute any off-path action to type t. A deviation by type t

to a(t ′, n) for some t ′ > t yields infinitely negative direct utility, and any other deviation
yields infinitely negative signaling benefits. Notice that the signaling waste associated
with these equilibria, Nq2, grows without bound as N → ∞. Notice also that, regardless
of N , every symmetric separating function must assign a(t, N ) = t + q at any point t for
which a has a bounded derivative. Otherwise, type t’s marginal benefit from mimicking
some t̂ slightly greater than t, Bt̂(t, t ) = +∞, would exceed the associated marginal cost,
2λN(a(t, N ) − t ). ♦

We conclude this section by providing sufficient conditions under which the sym-
metric separating equilibrium is in fact waste-minimizing. Specifically, we have the fol-
lowing.

Condition (i). π(a, t ) is supermodular in (a, t ).

Condition (ii). For all t and a > aBP(t ), we have πa(a, t ) < 0.

Condition (iii). For all t, πat(a, t )/πa(a, t ) is increasing in a on {a | a > aBP(t )}.

Condition (iv). There exists some finite K > 0 such that for all t, t̂ ∈ T , and a ∈AN , we
have |UN

t (t, t̂, a)| <K.

Condition (v). There exists a ∈ A such that a > aBP(t ) and, for all t ∈ T , π(aBP(t ), t ) −
π(a, t ) >B −B.

Condition (i) is a form of single-crossing. Condition (ii) simply states that utility
is decreasing in a once a exceeds the bliss point for t. Condition (iii) implies that the
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marginal cost of a becomes more sensitive (in relative terms) to type as a increases.
Condition (iv) bounds the derivative of utility with respect to type. Condition (v) en-
sures that A includes large actions that no sender would be willing to take irrespective
of the resulting inference. The first four requirements are satisfied for common specifi-
cations such as π(a, t ) = −(a− t )2.21 For the same specification, the last condition only
requires the upper bound on A to be sufficiently large.

The following theorem establishes the efficiency of symmetric separating equilib-
rium under the aforementioned conditions.

Theorem 3. Under Assumption 7 and Conditions (i)–(v), for any fixed N , the symmet-
ric separating equilibrium maximizes the payoff for each type of sender relative to any
other separating equilibrium. Moreover, if ao(t, N ) is the action function for a separating
equilibrium such that ao(t, N ) �= aSEP(t, N ) for all t > t, then the equilibrium associated
with aSEP(t, N ) yields strictly higher payoffs than the one associated with ao(t, N ) on an
open-dense subset of T .22

7. Audience augmentation versus signal proliferation

At the outset of Section 1, we observed that technological developments have rendered
modern life pervasively observable, thereby creating pervasive signaling opportunities.
For instance, the typical user of a social networking platform such as Facebook or Insta-
gram has almost unlimited opportunities to shape the way friends, family, and acquain-
tances perceive them by proliferating postings to provide detailed accounts of their daily
experiences. The same principle applies to the professional sphere.23 As a general mat-
ter, people respond to these opportunities as signaling theory predicts, in that they per-
form a “balancing act between self-expression and self-promotion” (van Dijck (2013)).

The proliferation of signals is, however, only part of the story. The same technologi-
cal advances allow people to present richly textured depictions of their lives to substan-
tially larger audiences. For example, in 2014, the typical Facebook user had 338 “friends”
on the platform (Smith (2014)). Any development that expands audiences also poten-
tially increases the reputational benefits from signaling, which may prevent total signal-
ing waste from declining. Modeling such phenomena therefore requires us to consider
settings in which increases in N are accompanied by increases in the scale of B.

In this section, we explore the interaction between signal proliferation and audience
augmentation, and we characterize their joint effects on welfare. For this purpose, we
employ an extension of the additive model from Section 3, which we interpret as fol-
lows. We think of the sender as creating M independent experiences, in each instance

21For condition (iv), recall that T × T ×A is compact.
22We conjecture that aSEP(t, N ) yields strictly higher payoffs than the one associated with ao(t, N ) on all

T \ {t}. The challenge is to rule out the possibility that a discontinuity in ao(t, N ) appears at some t∗ such
that the difference in the utility type t∗ derives from the two equilibria is zero. We leave this small detail
unresolved.

23Indeed, OSNs also convey information about pertinent personality characteristics to potential employ-
ers (e.g., Buffardi and Campbell (2008), Kluemper and Rosen (2009)). Notably, 60% of employed Facebook
users are “friends” with coworkers (Drouin, O’Connor, Schmidt, and Miller (2015)).
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by taking an action a. The resulting direct utility is given by π(a, t ). If actions were pri-
vate, someone of type t would select aBP(t ) in each case. People consider higher values
of t more impressive, and those with larger t prefer higher actions when social repu-
tation is not at stake. For example, wealthier people like to take more expensive vaca-
tions and dine at fancier restaurants, more adventurous people like to engage in more
extreme leisure activities, and more popular people like to frequent more fashionable
parties. Because each day presents more opportunities for additional activities, M is a
large number.24

The observability of actions depends on the prevailing technology, τ. (For example,
we think of OSNs, collectively, as a single technology.) A technology τ provides oppor-
tunities for each person to make Nτ ≤ M of their actions visible to Fτ social contacts.25

We assume that the size of the audience potentially impacts the magnitude of signaling
benefits. In particular, the type-t sender’s utility function is

UN
F (a, δ, t ) = B(t, δ, F ) +

M∑
i=1

π(ai, t ).

We also make the following assumption concerning the signaling benefit function B.

Assumption 8. There is a function γ(F ) > 0 such that 0 ≤ Bt̂(t, t̂, F ) ≤ γ(F ).

As an example, suppose B(t, t̂, F ) = ζ(F )B(t, t̂ ). Then, for the bound γ(F ), we can
use ζ(F ) maxt, t̂∈T Bt̂(t, t̂ ). To the extent a larger audience provides greater incentives to
signal, we would expect γ to be increasing in F . Within the social sphere, γ(F ) may flat-
ten out rather quickly because people presumably derive most of the signaling benefits
from interactions with immediate friends and family. Similarly, within the professional
sphere, someone seeking a fixed number of discrete assignments (such as a job or a
portfolio of projects) may experience decreasing returns to audience size.26

We are interested in characterizing signaling outcomes for settings in which both Nτ

and Fτ are large due to the prevailing technology τ. We can think of any such setting

24For simplicity, we proceed as if all postings are simultaneous. In practice, the fact that OSN users post
their experiences sequentially may complicate the signaling problem. The proper approach to modeling
these dynamic considerations is, however, far from clear. The sequentiality of experience may be less ana-
lytically consequential for a user who curates a portfolio of postings to impress new viewers, or who cares
primarily about the “long-run” impression created by her cumulative postings. We leave questions about
signaling dynamics for future work.

25Technically, our model assumes that all Nτ actions are automatically visible. In applications involv-
ing online social networks, posting is voluntary. Arguably, it might therefore be appropriate to modify our
model to allow costless shrouding of each action. However, a close reading of Example 1 reveals that our
characterization of equilibria would be unaffected by this modification. If someone shrouds an action,
they presumably select their bliss point, which receivers can infer from other actions (in a separating equi-
librium). Thus, for every equilibrium with voluntarily shrouded actions in the modified model, there is an
equivalent equilibrium of the original model wherein all actions are visible and the signaling distortion is
confined to the other actions.

26For example, suppose each job offer includes a wage drawn from some fixed distribution, and that the
worker accepts the offer with the highest wage. In that case, the expected benefit of an additional offer
declines quickly with the number of offers.
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as a member of a sequence of signaling problems, the Nth of which involves N visible
actions and φτN audience members, where φτ ≡ Fτ/Nτ. We approximate behavior for
large-N settings in which the ratio of the audience size to the number of visible actions
equals the fixed number φτ .27 In that way we obtain an approximation for the Nτ-th
element of the series, which corresponds to technology τ.

For this modified model, a slight adjustment to the proof of Theorem 1 yields the
following conclusion: under Assumptions 1–6, there exists a finite constant K > 0 such
that, for sufficiently large N , the total waste from signaling in equilibria satisfying the
dominance refinement, πN (aBP(t ), t ) −πN (a(t; N ), t ) (where a(t; N ) is the equilibrium
signaling action function) is bounded above by K

√
γ(φτN )3/N for all types t ∈ T .28 For

the purpose of illustration, assume that γ(F ) = ξFσ . Then as long as σ < 1
3 , the aggre-

gate costs of signaling vanish in the limit as N → ∞. However, even when signaling
waste does not become vanishingly small, it may still represent a vanishing fraction of
the information stakes, which are proportional to γ(F ). In particular, the modified con-
vergence result implies that N[π(aBP(t ), t )−π(aSEP(t; N ), t )]/γ(φτN ) is bounded above
by K

√
γ(φτN )/N for large N . For the same functional form, this bound converges to

zero for all σ < 1 – in other words, any degree of decreasing returns to audience size
guarantees that signaling waste becomes negligible relative to the information stakes
for large N .

As one would expect, a slight adjustment to the proof of Theorem 2 yields the fol-
lowing conclusion: under Assumptions 1–5 and 7, there exists a finite constant K > 0
such that, for sufficiently large N , the total waste from signaling in the unique sym-
metric separating equilibrium, N[π(aBP(t ), t ) − π(aSEP(t; N ), t )], is bounded above by
Kγ(φτN )2/N for all types t ∈ T .29 For the case of γ(F ) = ξFσ , the aggregate costs of
signaling vanish in the limit as N → ∞ if and only if σ < 1/2. However, observe that
N[π(aBP(t ), t ) − π(aSEP(t; N ), t )]/γ(φτN ) is bounded above by γ(φτN )/N for large N .
It follows once again that, despite the slower rate of convergence, signaling waste be-
comes a vanishing small fraction of the information stakes as long as σ < 1 (i.e., for any
degree of decreasing returns to audience size).

Several core messages emerge from this analysis. First, as long as the relationship
between the potential benefits of signaling and the number of available signals exhibits
decreasing returns of sufficient magnitude, signal proliferation still drives the total cost
of signaling to zero in the limit. Second, even in cases where equilibrium signaling costs
do not vanish in the limit, they still dissipate a vanishing fraction of the informational
stakes, except in cases where there are weakly increasing returns to audience size.

27To understand how we impose the constraint N ≤M as N grows, see footnote 6.
28Consider equation (7) in the proof of Theorem 1. The claim follows once we replace γ with γ(F ), and

note that K1 = (2/β)
√

(B −B)/πaa ≤ (2/β)
√
γ(F )(t − t )/πaa by Assumption 8.

29Consider equation (14). Replacing γ with γ(F ) and B − B with γ(F )(t − t ), we obtain an expression
proportional to (γ(F )/λN )0.75. A third iteration of the argument yields an expression with a form similar
to equation (14) that is proportional to (γ(F )/λN )0.875, while a fourth iteration yields an expression pro-
portional to (γ(F )/N )0.9375, and so forth. Combining these observations with the Taylor approximation of
π(a, t ) in equation (12) yields the conclusion.
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8. Conclusion

This paper analyzes signaling games wherein a large collection of actions potentially
serve as a signal of an underlying characteristic. It is easy to see that as the number of
opportunities to send signals grows, the distortion of any single choice in a symmetric
separating equilibrium shrinks, vanishing in the limit. However, it is not clear whether
the total cost of the distortions aggregated over the growing number of actions shrinks,
remains constant, or grows, or whether significant waste persists in asymmetric equilib-
ria. We show that, for a broad class of signaling games, access to pervasive signaling op-
portunities leads to costless information revelation in the limit. The primary economic
assumption we require for this result is that different types of senders possess different
bliss points. We show by way of example that, with homogenous bliss points, the total
cost of signaling need not shrink.

Our results may be broadly relevant in light of technological developments, such as
the emergence of OSNs, that allow people to live their lives more publicly. A counter-
vailing consideration is that, as opportunities to signal have proliferated, audiences for
signals have also grown. While the former trend reduces signaling distortions, the latter
presumably increases them. We have examined the interaction between these trends,
and have identified conditions under which signaling distortions vanish, either in ab-
solute terms or relative to informational stakes. When these conditions hold, a publicly
visible life may allow one to “live authentically,” that is, to credibly reveal private infor-
mation at a negligible cost rather than suffer from the cumulative burden of pervasive
distortions.

Our findings may also shed light on specific signaling phenomena. First, signaling
is a natural explanation for conspicuous consumption (see Ireland (1994) and Bagwell
and Bernheim (1986)). The avenues for signaling affluence have expanded immensely
with the growth of OSNs. In the past, people could advertise their wealth through spe-
cific durable goods such as expensive cars, jewelry, and clothing. Now they can display
wealth through OSN posts describing a wide variety of experiences, such as high-end
vacations, expensive dinners, and premium seating at concerts. Thoumrungroje (2014)
finds that increased social media use is indeed correlated with an intensification of con-
spicuousness as a driver of consumption. According to other surveys, consumers are
spending an increasing fraction of their resources on live events, which are the sub-
ject of frequent OSN postings, particularly among younger users (Eventbrite and Harris
(2017)). While the expanding scope of conspicuous consumption would seem to indi-
cate greater wastefulness, our results suggest that this effect may be swamped by the
reduction in waste per conspicuous action. In other words, although we observe more
forms of conspicuous consumption, welfare may actually be greater because signaling
distorts the consumption of each good to a much smaller degree. A second applica-
tion involves signaling by politicians in lower office who hope to win either reelection
or higher office. Greater transparency in government and closer monitoring by news
media (which now include 24-hour news networks, specialized Twitter feeds, political
blogs, and the like) has the effect of increasing politicians’ opportunities to signal (see,
e.g., our analysis of “decisiveness” in Bernheim and Bodoh-Creed (2020)). Our findings
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suggest that signaling motives may distort politicians’ choices to a smaller degree as a
result of greater transparency. A third application involves job market signaling. A di-
rect application of our results implies that employers can reduce the cost of signaling by
evaluating potential employees holistically (according to many criteria), rather than on
the basis of a few criteria (such as college grades).

Finally, our results also have potential implications for applications that highlight
the importance of pooling equilibria. For example, Bernheim (1994) models social con-
formity as a partial pooling equilibrium wherein agents who value social esteem con-
verge on the preferred action of the most esteemed type. Banks (1990) studies a model
of political conformity wherein politicians’ political platforms converge on the median
voter’s preferred policy in order to signal more moderate outlooks. We conjecture that,
due to the types of considerations that arise in the current paper, the set of agents who
join a central pool will shrink as the number of observable actions increases. This ob-
servation raises the possibility that the proliferation of signals may erode conformity by
status seekers, leaving groups of conformists who are “true believers” in the norms they
practice.

Appendix A: Signaling waste in models with general aggregator functions

As before, we consider a sequence of models, the Nth of which allows the sender to
choose N actions. The utility of the sender is

UN (a, δ, t ) = B(t, δ) +πN (a, t ).

Throughout, we assume that the second- and third-order partial derivatives of πN exist
and are bounded and continuous. We define aNBP(t ) as follows:

aNBP(t ) ≡ arg max
a

πN (a, t ). (4)

The analysis of these general settings is challenging because, in principle, the sender
might choose to signal through all, some, or even just one activity. There is no reason
to think that signaling costs will vanish as the number of observable activities increases
unless senders actually use a rising number of activities as signals.

Many of the assumptions we make in this Appendix have straightforward analogs
to those used in Section 3. We have opted for assumptions that involve intuitive, easily
understood restrictions, rather than ones that deliver the greatest technical generality.

Our first assumption, which requires that bliss points are monotone increasing in all
dimensions, generalizes Assumption 3 of the additive model. Here, we also impose the
stronger requirement that the bliss point function is Lipschitz continuous.

Assumption 9. aNBP(t ) is the unique solution to (4). There exists scalars βH > βL > 0
such that for all N and any t > t ′, we have

βH

(
t − t ′

)
1N ≥ aNBP(t ) − aNBP

(
t ′
) ≥ βL

(
t − t ′

)
1N ,

where 1N = (1, 1, � � � , 1) ∈R
N .
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Next, we assume that as N grows, the cost of choosing any bliss point other than the
agent’s own bliss point grows as well. This assumption obviously holds in the additive
model.

Assumption 10. There exists a function g : Z → R with limN→∞ g(N ) = +∞ and a
strictly increasing function h : R→ R with h(0) = 0 such that for all N and t, t ′ ∈ T ,

πN
(
aNBP(t ), t

) −πN
(
aNBP

(
t ′
)
, t

)
> g(N )h

(∣∣t − t ′
∣∣).

Our next assumption bounds weighted averages of the second-order terms.

Assumption 11. There exists �< 0 such that for all N , t ∈ T , and (s1, � � � , sN ) such that
si ≥ 0 and

∑N
i=1 si = 1,

N∑
i=1

N∑
j=1

∂2πN
(
aNBP(t ), t

)
∂ai ∂aj

sisj < �.

Notice that s = (0, � � �0, 1, 0, � � � , 0) singles out the second derivative with respect to a
single action; thus, the assumption bounds each of these second derivatives away from
zero. It follows immediately that the additive model satisfies Assumption 11, and in-
deed one can think of it as a generalization of the requirement that πaa(aNBP(t ), t ) < 0 in
Assumption 2.

Our proof uses Taylor series expansions around the bliss points to identify which
types fall within the plausible set for each action. The assumption enables us to em-
ploy third-order expansions and ensures that second-order effects dominate any higher-
order effects for large N .

Assumption 12. Let

DN (a) =
N∑
i=1

N∑
j=1

N∑
k=1

max
{

0,
∂3πN (a, t )
∂ai ∂aj ∂ak

}
.

Then there exists a finite number D> 0 such that DN (a) <ND for all N and a ∈AN .

In the additive model, we have DN = ∑N
i=1 max{0, πaaa(a, t )}; according to Assump-

tion 2 (which requires πaaa(a, t ) < C), this term is bounded above by NC. Thus, in lim-
iting the aggregate importance of positive third derivatives, Assumption 12 generalizes
the analysis of previous sections. There are some additional cases where the assump-
tion obviously holds, such as when the third-order derivatives are all weakly negative.
Assumption 12 is also satisfied when (a) all of the third derivative terms individually re-
spect a common upper bound that is independent of N (i.e., πN

ijk(a, t ) < K for some
finite K), and (b) actions interact with each other (in the sense that cross-partial deriva-
tives are nonzero) only within groups of size no greater than some fixed M .30 One can
think of the additive model as an example of this class where M = 1.

30In that case, it is natural to treat N as indexing the number of groups, rather than the number of actions.
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In relaxing symmetry and additive separability, we sacrifice the ability to identify
a tractable class of reliably efficient separating equilibria. For that reason, we use the
approach employed in Section 5, where we proposed and applied the dominance re-
finement. As before, we show that the total cost of signaling must vanish by spelling out
the implications of the fact that the sender always has the option of deviating to her bliss
point. Since aBP(t ) is strictly increasing (by Assumption 9), the dominance refinement
ensures that, for large N , the receiver’s beliefs after observing aBP(t ) are close to t. The
restricted beliefs of the receiver imply a bound on the benefit of signaling one’s type in
equilibrium, which we convert into a bound on the waste from signaling. Assumption 10
ensures that this bound tightens as N → ∞.

Theorem 4. Under Assumptions 4, 5, and 9–12, there exists a finite constant K > 0 such
that, for sufficiently large N , the total waste from signaling in all separating equilibria
satisfying the dominance refinement, πN (aNBP(t ), t ) −πN (a(t; N ), t ) (where a(t; N ) is the
equilibrium separating action function) is bounded above by K/

√
N for all types t ∈ T .

One way to prove Theorem 1, the corresponding convergence result for the addi-
tively separable and symmetric formulation, is to demonstrate that the restricted model
satisfies Assumptions 9–12. This analytic strategy repositions the earlier result as a corol-
lary of Theorem 4. We have already noted that Assumptions 9, 11, and 12 have direct
counterparts in Section 3, which they generalize. The remaining step is to verify that the
restricted model satisfies Assumption 10, which has no direct counterpart in Section 3.
Appendix B instead includes a direct proof of Theorem 1 because its greater simplicity
makes the logic of the argument easier to follow.

Appendix B: Proofs

Proof of Theorem 1. The proof proceeds in two steps.
Step 1: There exists K1 > 0 such that, for all t ∈ T and t ′ ∈ P(aBP(t )), we have t − t ′ ≤

K1/
√
N .

For t ′ to lie in P(aBP(t )), we must have

Nπ
(
aBP

(
t ′
)
, t ′

) −Nπ
(
aBP(t ), t ′

) ≤ B −B. (5)

Our object is to establish a lower bound on the set of types satisfying (5).
First, we claim that, for all ε > 0, there exists N∗

ε such that if N > N∗
ε , then

|aBP(t ) − aBP(t ′ )| < ε for all t ∈ T and t ′ ∈ P(aBP(t )). Define �ε ≡ {(t, t ′ ) ∈ T 2 | |aBP(t ) −
aBP(t ′ )| ≥ ε}. Because because π and aBP are continuous, and because �ε is (therefore)
compact, we can define

d(ε) ≡ min
(t,t ′ )∈�ε

[
π

(
aBP

(
t ′
)
, t ′

) −π
(
aBP(t ), t ′

)]
.

In light of Assumptions 1 and 3 and the fact that t �= t ′ in �ε, we have d(ε) > 0 for all
ε > 0. Now let N∗

ε ≡ (B −B)/d(ε). Supposing N >N∗
ε , we have, by construction,

Nπ
(
aBP

(
t ′
)
, t ′

) −Nπ
(
aBP(t ), t ′

)
>B −B,
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for all (t, t ′ ) ∈ �ε, which means t ′ /∈ P(aBP(t )) by (5). But then |aBP(t ) − aBP(t ′ )| < ε for
all t ∈ T and t ′ ∈ P(aBP(t )), which establishes the claim.

Using a Taylor expansion, the left side of equation (5) is equal to

−1
2
Nπaa

(
aBP

(
t ′
)
, t ′

)(
aBP(t ) − aBP

(
t ′
))2 − 1

6
Nπaaa

(
ξ, t ′

)(
aBP(t ) − aBP

(
t ′
))3

, (6)

where ξ lies between aBP(t ′ ) and aBP(t ). Assumption 3 implies |aBP(t ) − aBP(t ′ )| ≥
β|t − t ′|. Noting that the left-hand side of equation (5) is strictly positive, we can then
write

β2

2
N

(
t − t ′

)2
[
−πaa

(
aBP

(
t ′
)
, t ′

) − 1
3
πaaa

(
ξ, t ′

)(
aBP(t ) − aBP

(
t ′
))] ≤ B −B.

Because αBP and πaa are continuous (Assumptions 1 and 2), πaa(aBP(t ′ ), t ′ ) achieves a
maximum, πaa < 0, for t ′ ∈ T . It follows that −πaa(aBP(t ′ ), t ′ ) ≥ −πaa. Using the fact
that πaaa(ξ, t ′ ) ≤ C for some finite C > 0 (Assumption 2), and focusing on t ′ < t (which
implies aBP(t ) > aBP(t ′ )), we then have

β2

2
N

(
t − t ′

)2
[
−πaa − 1

3
C

(
aBP(t ) − aBP

(
t ′
))] ≤ B −B.

Using our initial claim, we see that there exists N∗ such that, for N >N∗, the bracketed
term exceeds −πaa/2 for t ′ < t such that t ′ ∈ P(aBP(t )). It follows that, for all t ∈ T and

t ′ ∈ P(aBP(t )), we have t − t ′ ≤K1/
√
N for K1 = (2/β)

√
(B −B)/πaa, as desired.

Step 2: Proof of the theorem.
Suppose a sender with type t deviates from a(t, N ) to aBP(t ). If a type t ′ agent

chooses aBP(t ) as part of an equilibrium, then plainly we must have t ′ ∈ P(aBP(t )). If no
type chooses aBP(t ) as part of an equilibrium, then under the dominance refinement re-
ceivers are certain that any deviation to aBP(t ) is attributable to t ′ ∈ P(aBP(t )). In either
case, from Step 1, we know that any inference the receiver makes following an observa-
tion of aN = aBP(t ) is at least as favorable (from the sender’s perspective) as t −K1/

√
N .

Combined with Assumptions 4 and 5, this observation implies that the cost of choosing
a(t, N ) for a sender with type t satisfies

πN
(
aBP(t ), t

) −πN
(
a(t, N ), t

) ≤ B(t, t ) −B

(
t, t − K1√

N

)
≤ γK1√

N
. (7)

Taking K = γK1 completes the proof of the theorem.

Before proving Theorem 2, we first establish in the following lemma that actions con-
verge to bliss points.

Lemma 1. Under Assumptions 1, 2, 5, and 7, there exists a finite constant K > 0 such that,
for all t ∈ T , we have |aSEP(t, N ) − aBP(t )| ≤ K/

√
N as N → ∞.

Proof. Let aSEP(t, N ) be the unique symmetric separating equilibrium, the existence
of which Assumption 7 guarantees.
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First, we claim that actions converge to bliss points uniformly: for all ε > 0, there ex-
ists N∗

ε such that if N >N∗
ε , then |aSEP(t ) − aBP(t )| < ε for all t ∈ T . Define �ε ≡ {(a, t ) ∈

A × T | |a − aBP(t )| ≥ ε}. Because π and aBP are continuous, and because �ε is (there-
fore) compact, we can define

δ(ε) ≡ min
(a,t )∈�ε

[
π

(
aBP(t ), t

) −π(a, t )
]
.

In light of Assumption 1, we have δ(ε) > 0 for all ε > 0. Now let N∗
ε ≡ (B − B)/δ(ε).

Supposing N >N∗
ε , we have, by construction,

Nπ
(
aBP(t ), t

) −Nπ(a, t ) >B −B.

for all (t, a) ∈ �ε. But then, for all t, we must have (t, aSEP(t, N )) /∈ �ε, else aSEP(t, N )
would not be an equilibrium choice for type t. It follows immediately that, if N > N∗

ε ,
then for all t we have |aSEP(t, N ) − aBP(t )| < ε, as desired.

Before establishing the speed of convergence, we make two simple observations
about aSEP(t, N ).

Observation 1. aSEP(t, N ) = aBP(t ).

Suppose on the contrary that aSEP(t, N ) �= aBP(t ). In a Perfect Bayesian equilibrium,
t̂(aBP(t )) ≥ t. Thus, a deviation by type t to aBP(t ) would increase direct utility (π) with-
out reducing reputational utility (B), a contradiction.

Observation 2. aSEP(t, N ) ≥ aBP(t ) for all t ∈ T .

Suppose on the contrary that aSEP(t, N ) < aBP(t ). Recalling that aSEP(s, N ) is in-
creasing in s (Assumption 7), we know that aSEP(t, N ) > aBP(t ). Recalling that aBP(s)
is continuous in s (Assumption 1), and applying Observation 1, we have aSEP(t, N ) =
aBP(t ′ ) for some t ′ ∈ (0, t ). But then, in deviating from aSEP(t ′, N ) to aBP(t ′ ), type t ′ would
increase direct utility (π) without decreasing reputational utility (given Assumption 4
inasmuch as t > t ′), a contradiction.

To establish the speed of convergence, we derive a bound on aSEP(t, N )−aBP(t ) from
the following inequality, which must hold in equilibrium:

N
[
π

(
aBP(t ), t

) −π
(
aSEP(t, N ), t

)] ≤ B −B. (8)

The Taylor expansion of π(a, t ) around (aBP(t ), t ) yields

π
(
aBP(t ), t

) −π
(
aSEP(t, N ), t

) = −1
2
πaa

(
aBP(t ), t

)(
aSEP(t, N ) − aBP(t )

)2

− πaaa(ξ, t )
6

(
aSEP(t, N ) − aBP(t )

)3
, (9)

where ξ lies between aBP(t ) and aSEP(t, N ). Combining equations (8) and (9), we have

N
(
aSEP(t, N ) − aBP(t )

)2
[
−1

2
πaa

(
aBP(t ), t

) − πaaa(ξ, t )
6

(
aSEP(t, N ) − aBP(t )

)] ≤ B −B.
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As in the proof of Theorem 1, under Assumptions 2 and 7, the following quantity is well-
defined: πaa ≡ maxt∈T πaa(aBP(t ), t ) < 0. Plainly, we have −πaa(aBP(t ′ ), t ′ ) ≥ −πaa. Us-
ing the facts that πaaa(a, t ) ≤ C for some finite C > 0 (Assumption 2) and aSEP(t, N ) −
aBP(t ) ≥ 0 (Observation 2), we then have

1
2
N

(
aSEP(t, N ) − aBP(t )

)2
[
−πaa − 1

3
C

(
aSEP(t, N ) − aBP

(
t ′
))] ≤ B −B.

Our first claim implies that we can choose N∗ such that for all t ∈ T and N >N∗,

1
3
C

(
aSEP(t, N ) − aBP

(
t ′
)) ≤ −1

2
πaa.

It then follows that, for N >N∗, we have, for all t ∈ T ,

−1
4
πaa

(
aSEP(t, N ) − aBP(t )

)2 ≤ B −B

N
, (10)

which in turn yields

aSEP(t, N ) − aBP(t ) ≤ 1√
N

√
−4(B −B)

πaa
(11)

for all t ∈ T (provided N >N∗). Taking

K ≡
√

−4(B −B)
πaa

,

and remembering that aSEP(t, N ) ≥ aBP(t ) completes the proof.

Proof of Theorem 2. The arguments here reference Observations 1 and 2 from the
proof of Lemma 1.

Suppose aSEP(t, N ) > aBP(t ). Consider a deviation by agent t to from aSEP(t, N ) to
aBP(t ). Because aBP(t ) > aBP(t ) = aSEP(t, N ) (where the inequality follows from Assump-
tion 7 and the equality follows from Observation 1), and because aSEP(s, N ) is continu-
ous in s (Assumption 7), there exists a type t ′ < t such that aSEP(t ′, N ) = aBP(t ). Thus, in
equilibrium, we must have t̂(aBP(t )) = t ′. Applying equation (11), we can then infer that

aBP(t ) = aSEP
(
t ′, N

) ≤ aBP
(
t ′
) + 1√

N

√
−4(B −B)

πaa
.

From Assumption 3, we then have

β
(
t − t ′

) ≤ aBP(t ) − aBP
(
t ′
) ≤ 1√

N

√
−4(B −B)

πaa
,

so

t ′ ≥ t − 1

β
√
N

√
−4(B −B)

πaa
.
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From the preceding expression, we draw the following inference:

π
(
aBP(t ), t

) −π
(
aSEP(t ), t

) ≤ 1
N

[
B(t, t ) −B

(
t, t − 1

β
√
N

√
−4(B −B)

πaa

)]

≤ 1

N1.5

γ

β

√
−4(B −B)

πaa
,

where the first inequality follows from the fact that type t chooses aSEP(t, N ) over aBP(t )
in equilibrium, while the second follows from Assumption 4.

Using the same argument employed in the derivation of equation (10) (based on
Assumption 2) and then combining the result with the previous inequality yields:

−1
4
πaa

[
aSEP(t, N ) − aBP(t )

]2 ≤ π
(
aBP(t ), t

) −π
(
aSEP(t, N ), t

)
(12)

≤ 1

N1.5

γ

β

√
−4(B −B)

πaa
. (13)

Simplifying yields

aSEP(t ) − aBP(t ) ≤ 1

N3/4

√
γ

β

(
− 4
πaa

)3/4

(B −B)1/4. (14)

Iterating this argument L times yields

aSEP(t, N ) − aBP(t ) ≤ CL

N1−0.5L
,

where

CL =
(
γ

β

)0.5L−1(
− 4
πaa

)1−0.5L

(B −B)0.5L .

Because the inequality must hold for all L, we have, for any given N ,

aSEP(t, N ) − aBP(t ) ≤ lim
L→∞

CL

N1−0.5L
≡ C∞

N
,

where

C∞ = − 4
πaa

.

Using this expression in our Taylor expansion yields

π
(
aBP(t ), t

) −π
(
aSEP(t, N ), t

) = (
aSEP(t ) − aBP(t )

)2
(

−1
2
πaa

(
aBP(t ), t

)
− πaaa(ξ, t )

6

(
aSEP(t ) − aBP(t )

))

≤
(
C∞
N

)2(
−1

2
πaa

(
aBP(t ), t

) + C

6

(
C∞
N

))
,
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where C is the bound appearing in Assumption 2. Under Assumptions 2 and 7, we can
define πaa ≡ mint∈T πaa(aBP(t ), t ) < 0. We then have:

π
(
aBP(t ), t

) −π
(
aSEP(t, N ), t

) ≤
(

4
Nπaa

)2(
−1

2
πaa − 1

N

(
4C

6πaa

))
.

Let N∗ = 4C/3πaaπaa. Then for N >N∗, we have

π
(
aBP(t ), t

) −π
(
aSEP(t, N ), t

) ≤ −πaa

(
4

Nπaa

)2

.

It follows immediately that, for N >N∗, we have

N
[
π

(
aBP(t ), t

) −π
(
aSEP(t, N ), t

)] ≤ K

N

where the scaling factor, K ≡ −πaa(4/πaa )2, is independent of t.

Proof of Theorem 4. The proof parallels that of Theorem 1. It involves the same two
steps, and the proof of the second step is unchanged. Here, we provide a proof of Step 1
for the general case.

For t ′ to lie in P(aBP(t )), we must have

πN
(
aBP

(
t ′
)
, t ′

) −πN
(
aBP(t ), t ′

) ≤ B −B (15)

Our object is to establish bounds on the set of types satisfying (15).
First, we claim that, for all ε > 0, there exists N∗

ε such that if N >N∗
ε , then |t − t ′| < ε

for all t ∈ T and t ′ ∈ P(aBP(t )). Define �ε ≡ {(t, t ′ ) ∈ T 2 | |t − t ′| ≥ ε}. Let g and h be the
functions referenced in Assumption 10. Because h is strictly increasing and h(0) = 0, we
have h(ε) > 0. Moreover, because limN→∞ g(N ) = +∞, we can choose N∗

ε such that, for
all N >N∗

ε , we have g(N )h(ε) >B −B. But then, for all N >N∗
ε and (t, t ′ ) ∈�ε, we have

πN
(
aBP

(
t ′
)
, t ′

) −πN
(
aNBP(t ), t ′

)
> g(N )h

(∣∣t − t ′
∣∣) ≥ g(N )h(ε) >B −B,

where the first inequality follows from Assumption 10, the second follows from the fact
that h is strictly increasing and (t, t ′ ) ∈ �ε, while the third follows from the fact that
N >N∗

ε . In light of (15), we then have t ′ /∈ P(aBP(t )). But then |t − t ′|< ε for all t ∈ T and
t ′ ∈ P(aBP(t )), which establishes the claim.

Consider some t and t ′ < t. Define δi = aBP,i(t ) − aBP,i(t ′ ), and note that δNi > 0 by
Assumption 9. Using a Taylor expansion, the left side of equation (15) is equal to

−1
2

N∑
i=1

N∑
j=1

∂2πN
(
aBP

(
t ′
)
, t ′

)
∂ai ∂aj

δiδj − 1
6

N∑
i=1

N∑
j=1

N∑
k=1

∂3πN
(
ξ, t ′

)
∂ai ∂aj ∂ak

δiδjδk,

for some ξ satisfying aBP,i(t ′ ) ≤ ξi ≤ aBP,i(t ) for i = 1, � � � , N . Using Assumptions 9 and
11, we can write

−1
2

N∑
i=1

N∑
j=1

∂2πN
(
aBP

(
t ′
)
, t ′

)
∂ai ∂aj

δiδj = −‖δ‖2

2

N∑
i=1

N∑
j=1

∂2πN
(
aBP

(
t ′
)
, t ′

)
∂ai ∂aj

(
δi

‖δ‖
)(

δj

‖δ‖
)



190 Bernheim and Bodoh-Creed Theoretical Economics 18 (2023)

>−‖δ‖2

2
�≥ −Nβ2

L

(
t − t ′

)2
�

2
.

Assumptions 9 (which guarantees δi > 0) and 12 together imply:

−1
6

N∑
i=1

N∑
j=1

N∑
k=1

∂3πN (ξ, t )
∂ai ∂aj ∂ak

δiδjδk > −NDβH

(
t − t ′

)3

6
.

Therefore, we have

− 1
2

N∑
i=1

N∑
j=1

∂2πN
(
aBP

(
t ′
)
, t ′

)
∂ai ∂aj

δiδj − 1
6

N∑
i=1

N∑
j=1

N∑
k=1

∂3πN
(
ξ, t ′

)
∂ai ∂aj ∂ak

δiδjδk

≥N
(
t − t ′

)2
[
−β2

L�

2
− DβH

(
t − t ′

)
6

]
.

From our opening claim (and the fact that D, βH > 0 and � < 0), we know there exists
N∗ such that, if N >N∗, then for all t, t ′ with t > t ′ and t ′ ∈ P(aBP(t )), we have

DβH

(
t − t ′

)
6

<−β2
L�

4
.

From equation (5), it then follows that, for such N ,

−N
β2
L

(
t − t ′

)2
�

4
≤πN

(
aNBP

(
t ′
)
, t ′

) −πN
(
aNBP(t ), t ′

) ≤ B −B,

which in turn implies

t − t ′ ≤
√

−4(B −B)

Nβ2
L�

.

It follows that, for all t and t ′ ∈ P(aBP(t )), we have t − t ′ ≤ K1√
N

for K1 = (2/βL ) ×√
(B −B)/�, as desired.

Proof of Theorem 3. Suppose we have a separating equilibrium with action func-
tions a(t, N ) = (a1(t, N ), � � � , aN (t, N )). We are interested in determining type t’s total
payoff in equilibrium and comparing it to the payoff type t receives in the symmetric
separating equilibrium.

The first part of the proof establishes the following Claim (capitalized for clarity of
subsequent references): if it were the case for some t that either (a) πN (a(t, N ), t ) =
πN (aSEP(t, N ), t ) and a(t, N ) �= aSEP(t, N ), or (b) πN (a(t, N ), t ) > πN (aSEP(t, N ), t ),
then we would have πN

t (aSEP(t, N ), t ) > πN
t (a(t, N ), t ). (Ultimately, we will show that

case (b) cannot arise, but for the purpose of establishing the Claim we treat it as a possi-
bility.)
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We now prove the Claim. Suppose case (a) arises for some t > t. Define

am =
{
am(t, N ) if am(t, N ) ≥ aBP(t, N )

a≥ aBP(t ) such that π(a, t ) = π
(
am(t, N ), t

)
otherwise.

Existence of am follows from condition (v) and the continuity of π in a. In effect, this
step replaces am(t, N ) with an action am ≥ aBP(t ) that is equally costly for type t. Let
Q ≡ {m | aAm(t ) < aBP(t )}. Then from supermodularity (condition (i)) we have

πN
t (a, t ) −πN

t

(
a(t, N ), t

) =
∑
m∈Q

[
πt(am, t ) −πt

(
am(t, N ), t

)] ≥ 0, (16)

with strict inequality if Q is nonempty.
If aSEP(t ) = a, we are done. If not, then since πN (aSEP(t, N ), t ) = πN (a, t ) by con-

struction, by condition (ii) there must exist i and j such that ai > aSEP(t ) > aj . Define the
function ã(ai ) as follows: ãi(ai ) = ai, ãk(ai ) = ak for k �= i, j, and πN (ã(ai ), t ) = πN (a, t ).
In other words, ãj(ai ) indicates how aj must vary in response to changes in ai to keep the
value of πN constant at its equilibrium value for type t. Implicit differentiation reveals
that, as long as ai and ãj(ai ) exceed aBP(t ), we have

dãj

dai
= − πa(ai, t )

πa
(̃
aj(ai ), t

) < 0.

Plainly, there exists a unique value aei > aBP(t ) such that ãj(aei ) = aei . For ai ∈ (aei , ai ),
we have ai > ai > aei > ãj(ai ) > aj ≥ aBP(t ), as well as

d

dai
πN
t

(̃
a(ai ), t

) = d

dai

(
N∑
i=1

πt
(̃
ai(ai ), t

))

= πat(ai, t ) +πat
(̃
aj(ai ), t

)dãj
dai

= πat(ai, t ) −πat
(̃
aj(ai ), t

) πa(ai, t )

πa
(̃
aj(ai ), t

) ,

= πa(ai, t )

[
πat(ai, t )
πa(ai, t )

− πat
(̃
aj(ai ), t

)
πa

(̃
aj(ai ), t

) ]
< 0.

To understand the final inequality, first recall that we have ai > aBP(t ), which implies
πa(ai, t ) < 0 by condition (ii). Next, recall that ai > ãj(ai ) > aBP(t ), which implies that
the term in square brackets is positive by condition (iii).

Now imagine reducing ai from ai while increasing aj according to ãj(ai ) until ei-
ther ai = aSEP(t, n) or ãj(ai ) = aSEP(t, n), which must occur for some ai ∈ [aei , ai ). Call
the resulting vector of actions a(1). Because dπN

t (ã(ai ), t )/dai < 0 over this range, we
can infer that that πN

t (a(1), t ) > πN
t (a, t ). If a(1) = aSEP(t, N ), we are done. Other-

wise, because πN (a(1), t ) = πN (a, t ) = πN (aSEP(t, N ), t ), we know there must exist k
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and l such that a(1)
k > aSEP(t, N ) > a(1)

l . Iterating this step, we produce a sequence of
vectors, a(n), such that a(n) has at least n elements in common with aSEP(t, N ), and
πN
t (a(n), t ) > · · · > πN

t (a(1), t ) > πN
t (a, t ). Consequently, there exists n∗ ≤ N for which

a(n∗ ) = aSEP(t, N ). It follows that πN
t (aSEP(t, N ), t ) >πN

t (a, t ). Recalling expression (16),
we then have πN

t (aSEP(t, N ), t ) >πN
t (a(t, N ), t ), as desired.

Next, suppose case (b) arises for some t > t. Let a′ = (a′, � � � , a′ ) be a symmetric
vector with a′ ≥ aBP(t ) and πN (a′, t ) = πN (a(t, N ), t ). Existence of a′ follows from con-
dition (v) and the continuity of πN . By the same argument as for condition (a), we infer
πN
t (a′, t ) ≥ πN

t (a(t, N ), t ).31 Because πN (a(t, N ), t ) >πN (aSEP(t, N ), t ) by assumption,
we have aSEP(t, N ) > a′

m (by condition (ii)). From our assumption of supermodularity
(condition (i)), we have

πN
t

(
aSEP(t, N ), t

) −πN
t

(
a′, t

) =
N∑

m=1

πt
(
aSEP(t, N ), t

) −πt
(
a′
m, t

) ≥ 0.

It follows that πN
t (aSEP(t, N ), t ) >πN

t (a(t, N ), t ), as desired.
This concludes the proof of the Claim. We now use the Claim to establish the theo-

rem.
Let V N (t, t̂; a) denote the payoff a type t sender receives when choosing the action

assigned to type t̂:

V N (t, t̂; a) ≡ B(t, t̂ ) +πN
(
a(̂t, N ), t

)
. (17)

In equilibrium, type t chooses t̂ = t and receives a payoff of

vN (t; a) ≡ V N (t, t; a).

Condition (iv) implies that V N
t (t, t̂; a) exists and |V N

t (t, t̂; a)| <K for some finite K > 0.
We can therefore invoke the integral version of the envelope theorem (Milgrom and Se-
gal (2002, Theorem 2)), which implies

vN (t; a) − vN (t; a) =
∫ t

t
V N
t (s, s; a)ds.

Now we compare the payoffs received with the symmetric separating action func-
tion aSEP and any alternative separating action function a. For this purpose, define
�(t ) ≡ vN (t; aSEP ) − vN (t; a). Consider any t ′ ∈ [t, t ) such that �(t ′ ) = 0. (Note, e.g., that
�(t ) = 0.) Then

�(t ) = [
vN (t; aSEP ) − vN

(
t ′; aSEP

)] − [
vN (t; a) − vN

(
t ′; a

)]
=

∫ t

t ′

[
V N
t (s, s; aSEP ) − V N

t (s, s; a)
]
ds

=
∫ t

t ′

[
πN
t

(
aSEP(s, N ), s

) −πN
t

(
a(s, N ), s

)]
ds. (18)

31The inequality is weak because we include the possibility that a′ = a(t, N ).
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We will prove the theorem by showing that there exists no t ∈ T with �(t ) < 0. Sup-
pose on the contrary that such a t exists. Consider the set T ∗(t ) ≡ {t ′ < t | �(t ′ ) ≥ 0}. We
clearly have t ∈ T ∗(t ), so the set is nonempty. Because � is continuous, T ∗(t ) is com-
pact. Therefore, it contains a maximal element, t∗ < t; furthermore, the continuity of �
implies �(t∗ ) = 0. From equation (18), we then have

�(t ) =
∫ t

t∗

[
πN
t

(
aSEP(s, N ), s

) −πN
t

(
a(s, N ), s

)]
ds.

But, by the Claim, we have πN
t (aSEP(s, N ), s) − πN

t (a(s, N ), s) > 0 for all s ∈ [t∗, t]. It
follows that �(t ) > 0, which contradicts our hypothesis that �(t ) < 0.

Now we turn to the theorem’s final claim. Let T+ ≡ {t ∈ T | �(t ) > 0}. Because � is
continuous, T+ is open. Assume T+ is not dense in T . Then there exists a nondegen-
erate interval [tl, th] ⊂ T \ T+. The last part of the proof establishes that �(t ) = 0 for
t ∈ [tl, th]. From equation (18), we have

�(th ) =
∫ th

tl

[
πN
t

(
aSEP(s, N ), s

) −πN
t

(
a(s, N ), s

)]
ds.

But, by the Claim, since we have assumed aSEP(s, N ) �= a(s, N ) for t > t, we have
πN
t (aSEP(s, N ), s) − πN

t (a(s, N ), s) > 0 for all s ∈ [tl, th] (except for s = tl when tl = t).
It follows that �(th ) > 0, which contradicts our hypothesis. Thus, T+ is open-dense
in T .
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