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We study the interaction of incentives to free-ride on information acquisition
and strategically delay irreversible investment in environments in which multi-
ple firms evaluate an investment opportunity. In our model, two firms decide
how quickly to privately obtain information about the profitability of a project
and when (if ever) to publicly invest in it. Multiple equilibria exist, differing with
respect to how much information firms acquire as well as how quickly they invest.
The equilibrium that maximizes aggregate payoffs features asymmetric play with
distinct leader and follower roles when firms are patient, but features symmetric
play when firms are impatient and information acquisition costs are sufficiently
high.
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1. Introduction

In many economic settings, decision makers may strategically delay irreversible action
so as to learn from the actions of others. For instance, oil firms can delay drilling on
leased tracts to learn from the drilling decisions of firms on nearby tracts,1 and venture
capitalists can delay investing in startups to learn from the funding decisions of other
investors.2 More generally, incentives for strategic delay arise whenever information
about payoffs is dispersed, opportunities are nonrival, and decision makers may freely
time their actions.

Our starting point is the observation that in many applications, a decision maker’s
private information is the result of costly information-acquisition activities. For in-
stance, oil firms conduct seismic surveys to estimate the extent of oil deposits on a tract,
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1See Hendricks and Kovenock (1989) for a discussion of incentives for social learning in offshore oil
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2Paul Graham, a prominent entrepreneur and venture capitalist, has discussed the importance of social
learning among venture capitalists: “The biggest component in most investors’ opinion of you is the opin-
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and venture capitalists perform due diligence to gauge the quality of a startup’s product
and management team. Strategic incentives then shape both how much information
is produced through private effort, as well as how much is aggregated through public
actions.

A key insight from the literature on experimentation in teams is that when infor-
mation acquisition is costly, decision makers tend to free-ride by inefficiently reducing
their rate of information acquisition. We build on that insight by assuming, in a depar-
ture from existing work, that learning is both private and imperfect, and that decision
makers reveal what they know only by irreversible action. These features create an in-
centive for players to strategically delay acting on good news in addition to, or instead
of, free-riding on the acquisition of news. Our model provides a tractable framework for
studying the equilibrium interplay of incentives for free-riding and strategic delay.

In our model, two firms have the opportunity to invest in a nonrival risky project.
Firms may dynamically exert variable costly effort, a process we call prospecting, for the
chance of receiving a binary signal that is informative about the project’s value. Each
firm can acquire at most one signal, and signals are conditionally independent. As a
result, aggregating signals from multiple firms yields information about the profitability
of investment beyond what any one firm could learn. Any information a firm acquires
through prospecting is private but investment is public.

We show that there are exactly three perfect Bayesian equilibria of our model. In
the unique symmetric equilibrium, each firm prospects as intensively as possible until a
cutoff time, after which it abandons prospecting forever if it has not seen investment by
the other firm. At any time before the cutoff, if a firm receives a positive signal, it invests
without delay. This equilibrium exhibits no free-riding or investment delay.

There are also two asymmetric “leader–follower” equilibria. In these equilibria, one
firm takes the role of a leader, prospecting until acquiring a signal and investing without
delay if the signal is positive. Meanwhile the remaining firm follows the leader by ei-
ther free-riding on the leader’s prospecting efforts, delaying investment after acquiring
a signal, or both. The mix of the two behaviors depends on the cost of prospecting: In-
vestment delay arises when costs are low, free-riding emerges when costs are high, and
for intermediate costs, delay is followed by eventual free-riding. In the low-cost regime,
not only is there no free-riding, but the follower spends more time prospecting than it
would have in the symmetric equilibrium.

In contrast to existing models of free-riding and investment delay, neither equilib-
rium generates unambiguously larger amounts of social learning. In general, the sym-
metric equilibrium produces more information early on, while the leader–follower equi-
librium produces more at later times. As a result, either equilibrium can generate higher
total payoffs, depending on model parameters. We show that when firms are patient,
the leader–follower equilibrium generates higher aggregate payoffs, while when firms
are impatient and prospecting costs are sufficiently high, the symmetric equilibrium is
superior.

The remainder of the paper is organized as follows. Section 1.1 surveys related liter-
ature. Section 2 describes the model. Section 3 characterizes the set of perfect Bayesian
equilibria of the model. Section 4 compares payoffs across equilibria. Section 5 con-
cludes.
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1.1 Related literature

Our paper is most closely connected to models of collective experimentation, in partic-

ular Bonatti and Hörner (2011, 2017), Bolton and Harris (1999), Keller, Rady, and Cripps

(2005), Keller and Rady (2010, 2015), and Dong (2021).3 These papers study environ-

ments in which effort simultaneously dictates both the production and the aggregation

of information. This linkage is a key feature of the canonical bandit experimentation

framework, in which players learn by monitoring the returns to incrementally investing

effort in a project. Our paper departs from this literature by separating learning from

the payoffs generated by a project. This separation allows us to make learning com-

pletely private, with information aggregation instead associated with a distinct decision

to collect payoffs.

Our model builds most directly on the work of Bonatti and Hörner (2011) (hereafter

BH), who study strategic experimentation with private effort and learning, in a setting

where signals arrive via a Poisson good news process with perfectly informative break-

throughs.4 A key dynamic in both their model and ours is a gradual deterioration of each

player’s beliefs due to continued inaction by another player, which is taken as a negative

signal about their private information. Methodologically, our model differs by modeling

negative signals as arriving discretely rather than continuously, simplifying equilibrium

characterizations by avoiding belief divergences following deviations from equilibrium

effort. Conceptually, it differs by assuming that good news is not perfectly revealing,

creating a motive for players to delay investment once they have obtained a positive

signal.

Several papers pursue related approaches to separating information production and

aggregation in collective experimentation. Heidhues, Rady, and Strack (2015) find that

in a classic bandit model, outcomes improve when payoffs are private and disclosed

with delay via a cheap-talk communication channel. Our paper more severely restricts

possibilities for communication, generating distinctive welfare implications from pri-

vate learning. Guo and Roesler (2018) augment the model of BH with discrete negative

signals, which can be signaled by irreversibly dropping out of the project. In their model

these signals are perfectly revealing, so that delay in dropping out is driven by free-riding

rather than social-learning concerns.

Our paper is also related to models of investment timing. One set of papers assumes

that players receive exogenous private signals of the state, either at time zero or dynam-

ically. Papers in this tradition include Chamley and Gale (1994), Gul and Lundholm

(1995), Chari and Kehoe (2004), Rosenberg, Solan, and Vieille (2007), and Murto and

Välimäki (2011, 2013). Aghamolla and Hashimoto (2020) endogenize the precision of

3See Hörner and Skrzypacz (2017) for an excellent survey of this literature.
4Formally, in their model breakthroughs are publicly observed and immediately accrue a common pay-

off to all players. Because breakthroughs are perfectly informative, their results would not change if break-
throughs were private and players publicly invested to collect a state-contingent payoff.
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a private signal received at the start of the game, but do not allow agents to dynami-
cally acquire information. A second strand of the literature abstracts from private in-
formation about the project and instead assumes that investment generates public sig-
nals of the project’s profitability. Papers in this tradition include Décamps and Mari-
otti (2004), Fajgelbaum, Schaal, and Taschereau-Dumouchel (2017), and Frick and Ishii
(2020). Klein and Wagner (2022) span the two sets of papers by endowing players with
time-zero private information and assuming that investment generates further public
information.

None of these papers features a trade-off between free-riding and investment delay,
a tension that plays a key role in our model. In addition, most of these papers focus on
symmetric play. One exception is Gul and Lundholm (1995), who find that asymmetric
play reduces delay and raises aggregate payoffs. In contrast, our analysis identifies a
nontrivial trade-off between the payoffs generated by symmetric and asymmetric play,
which can yield higher aggregate payoffs for either type of equilibrium depending on
model parameters.

Finally, our paper shares important features with work by Ali (2018) and Camp-
bell, Ederer, and Spinnewijn (2014). Ali (2018) endogenizes information acquisition in
a model where players invest in a predetermined sequence. It can, therefore, be viewed
as a fixed-move-order analog to our exercise of endogenizing information acquisition
when players invest flexibly. Campbell, Ederer, and Spinnewijn (2014) study a team
production problem in which production is private and separate from the decision to
disclose progress. This separation is analogous to the separation of learning and infor-
mation aggregation in our setting.

2. The model

Two firms have the opportunity to invest one unit of capital in a nonrival risky project
of unknown quality. The project has underlying type θ and is either good (θ = G) or bad
(θ = B). If θ = G, each unit of capital invested in the project generates cash flows with
a net present value of R, beginning at the time that unit of capital is invested; if θ = B,
the project generates no cash flows. We assume that R > 1, so that each unit of capital
invested in the project generates positive returns in the good state. Each firm is free to
invest in the project at any time t ∈ R+. Firms are risk-neutral with common discount
rate r > 0. Capital is indivisible, investment in the project is irreversible, and project
outcomes are observed only by players who invest.5

Both firms begin with a common prior belief π0 ∈ (0, 1) that the project is good. Each
firm i = 1, 2 can exert costly effort to privately search for an informative signal about the
project’s quality, an activity we will refer to as prospecting. The goal of prospecting is to
uncover a binary signal Si ∈ {H, L}, i.e., high or low, which is correlated with the state
of the project: Pr(Si = H|θ = G) = qH and Pr(Si = L|θ = B) = qL, with qH , qL ∈ (1/2, 1).
Any prospecting that a firm undertakes and any signal that results are observed only by

5A natural interpretation of the private observability of outcomes is that the project’s cash flows are real-
ized far in the future.
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the firm conducting the prospecting. Each firm can obtain at most one signal, and firms
observe conditionally independent, identically distributed signals.

Prospecting is a dynamic process unfolding in continuous time. Over every time
interval [t, t + dt], each firm i chooses a prospecting rate λit ≥ 0, which causes a signal
to arrive with probability λit dt while incurring an effort expense of C(λit )dt. Following
much of the literature on collective experimentation,6 we assume a linear cost structure

C(λ) =
{
cλ, λ ∈ [0, λ]

∞, λ ∈ (λ, ∞)

for some constant marginal cost c > 0 and maximum prospecting rate λ, both of which
are symmetric across firms. Conditional on prospecting rates, signal arrival times are
independent across firms and independent of the state of the project.

Firms cannot observe each other’s signals or prospecting intensities, or observe
whether another firm has received a signal or obtained a good outcome from invest-
ment. There are also no communication channels between firms. However, all invest-
ment decisions are public, introducing a channel for social learning.

2.1 Notation and assumptions

We will denote the posterior beliefs induced by one or more signals as follows: π+ and
π++ are the posteriors induced by one and two high signals, respectively; π− and π−−
are the posteriors induced by one and two low signals; π+− is the posterior induced by
one high and one low signal. (Exchangeability implies that posterior beliefs are inde-
pendent of the order of receipt of signals.) Given that high signals are more likely when
the state is good, and conversely for low signals when the state is bad, π++ > π+ > π0,
π+− > π− > π−−. Note that, in general, π+− �= π0, except in the special case when
qH = qL.

Suppose that a firm receives a signal when its current beliefs that θ = G are μ ∈ [0, 1].
Then the total probability that the signal is high is h(μ) ≡ qHμ+ (1 − qL )(1 − μ), while
the corresponding probability that the signal is low is l(μ) ≡ 1 − h(μ). The quanti-
ties h(μ) and l(μ) are the transition probabilities that a firm’s posterior belief jumps
up or down upon receiving a signal. Following acquisition of a signal, we will write
μ+ ≡ qHμ/h(μ) for the firm’s updated belief if the signal is high andμ− ≡ (1−qH )μ/l(μ)
if the signal is low.

We impose several bounds on prospecting costs and the payoff of a good project.

Assumption 1. The payoff of a good project satisfies 1/π+ <R< 1/π0.

Under this assumption, investment in the project is ex ante unprofitable, but be-
comes profitable conditional on observation of a high signal.7

6See Keller, Rady, and Cripps (2005) and BH for classic examples of team experimentation models as-
suming linear experimentation costs.

7The case R < 1/π+ is uninteresting, as the unique equilibrium involves no prospecting and no invest-
ment by either firm.
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Assumption 2. The payoff of a good project satisfies R< 1/π+−.

This assumption ensures that learning another firm’s signal is useful even after ac-
quisition of a high signal, since an additional low signal would push beliefs back below
the break-even threshold. This assumption in conjunction with Assumption 1 rules out
perfectly informative good news, as such signals correspond to π+ = π+− = 1, in which
case no R can simultaneously satisfy the bounds in both assumptions. These assump-
tions, therefore, distinguish our setting from classic experimentation models like Keller,
Rady, and Cripps (2005) and BH, where a single positive outcome is definitive.

Assumption 3. The cost of prospecting satisfies c ≤ c ≡ h(π+ )(π++R− 1) − (π+R− 1).

This assumption ensures that a second signal is at least potentially profitable to ac-
quire, in the sense that if it could be attained instantaneously, it would provide enough
information to be worth the cost. As with Assumption 2, this assumption focuses our
analysis on environments in which combining information from multiple signals is
strategically relevant. Note that Assumptions 1 and 2 ensure that c > 0.

2.2 Single-player benchmark

Consider a single firm prospecting and investing on its own, shutting down the social
learning channel of our model. The firm’s initial beliefs that the project is good will be
taken to be μ< 1/R. We will refer to this benchmark setting as autarky.

As long as the firm has acquired no signal, it learns nothing about the project and its
beliefs remain fixed at μ. An optimal prospecting strategy is, therefore, stationary. This
behavior differs from the cutoff strategies that are optimal when learning from Poisson
bandits, for instance as in BH. In Poisson bandit models, lack of arrival of a signal is
itself news about the underlying state, leading to belief updating. In our model, in con-
trast, lack of signal acquisition does not signal anything, positive or negative, about the
true project state; no news truly is no news until a signal arrives.8 Once the firm has
acquired a signal, no further information is available. It then faces a simple static choice
of whether or not to invest, which it resolves by comparing its posterior beliefs to the
investment threshold 1/R.

The optimal prospecting strategy depends on whether the firm’s initial beliefs μ lie
above a critical threshold, which we will denote πA and refer to as the autarky thresh-
old. It is formally characterized as the unique belief satisfying h(πA )(πA+R − 1) = c,
which equalizes the marginal flow gains and costs from a unit of prospecting. (Recall
our notational convention that πA+ = qHπA/h(πA ) are the posterior beliefs following
receipt of a high signal, when beliefs are πA prior to observing the signal.) If μ<πA, the
firm abandons prospecting immediately. On the other hand, if μ > πA, then the firm
prospects at the maximum rate λ until a signal is acquired. Note that πA is increasing in
the cost parameter c.

8A similar signal acquisition technology is employed in Akcigit and Liu (2016).
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Abandonment of prospecting if beliefs fall below πA occurs even with multiple firms:
If π0 lies below πA, then no prospecting or investing takes place in equilibrium, despite
the potential for social learning. Going forward we will assume that π0 >πA for all costs
below c, which the following lemma establishes is equivalent to assuming R is suffi-
ciently large.

Lemma 1. There exists a unique R0 ∈ (1/π+, 1/max{π+−, π0}) such that π0 > πA for ev-
ery c ≤ c if and only if R>R0.

Assumption 4. The payoff of a good project satisfies R>R0.

Lemma 1 ensures that this bound is compatible with the restrictions on R imposed
by Assumptions 1 and 2. The bound could be dispensed with, at the cost of a more
stringent upper bound on allowed prospecting costs. To streamline our analysis, we
maintain Assumption 4 going forward.

3. Equilibrium analysis

In this section, we characterize the set of perfect Bayesian equilibria of the model. Going
forward, we will use the term “equilibrium” without qualification to refer to elements of
this set. We find that our model has exactly three equilibria. One equilibrium is sym-
metric and exhibits no free-riding or investment delay, but leads both firms to even-
tually abandon prospecting for information about the project. The remaining leader–
follower equilibria feature distinct roles for the two firms, with one firm that takes the
lead in prospecting and investing while the other firm plays a passive follower role. In
general, this equilibrium features either free-riding, investment delay, or both by the
follower, with the mix shifting from investment delay toward free-riding as prospecting
costs rise.

This section is structured as follows. In Section 3.1, we describe each firm’s opti-
mal continuation strategy after observing investment by the other firm. In Sections 3.2
and 3.3, we characterize the symmetric and leader–follower equilibria and provide
intuition for their properties. In Section 3.4, we prove that no other equilibria ex-
ist.

3.1 Behavior after observing investment

In the spirit of backward induction, we first characterize a firm’s optimal continuation
strategy after observing the other firm invest. It can be shown that in any equilibrium,
the first firm to invest is always in possession of a high signal.9 The remaining firm,
therefore, finds itself in a stationary single-player environment analogous to the autarky
benchmark studied in Section 2.2. If the firm has already acquired a signal, its beliefs
are either π++ > 1/R or π+− < 1/R, and no further information can be acquired. The

9See Appendix A for a formal derivation of this result.
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firm, therefore, either invests immediately if its signal is high or abandons the project
otherwise.

On the other hand, if the firm has not yet acquired a signal, its beliefs are π+ > 1/R
and it has the opportunity to acquire a signal before investing. This additional signal is
pivotal, given that π+− < 1/R, and would be worth the cost of acquiring if not for time
discounting, given c ≤ c. Whether the signal is, in fact, worth acquiring depends on the
comparison between the gains from more information, mediated by R, and the cost and
delay of obtaining it, captured by c, r, and λ.

As R rises, the firm becomes less willing to acquire an additional signal, because the
downside of a bad project becomes less important relative to the upside of a good one.
The firm also becomes less willing to wait if prospecting or delay costs rise, i.e., if c or r
increase or λ decreases. Either acquiring an additional signal or investing immediately
can be optimal, depending on parameters. The following lemma formally states how
the optimal strategy changes with the discount rate r, a comparative static that will be
particularly useful for later results.10 (The proof is straightforward and so is omitted for
brevity.)

Lemma 2. There exists a threshold discount rate r∗ ≥ 0 such that in any equilibrium, sub-
sequent to investment by some firm, continuation play proceeds as follows:

• If r ≤ r∗, the remaining firm prospects at rate λ until acquiring a signal and invests
immediately if it acquires a high signal.

• If r > r∗, the remaining firm invests immediately if it has not yet acquired a low signal.

3.2 The symmetric equilibrium

We now characterize the unique symmetric equilibrium of the model. This equilibrium
exhibits no free-riding or investment delay, but does involve eventual abandonment of
prospecting by both firms.

To state the equilibrium, we define a time threshold at which a firm’s posterior be-
liefs reach πA, assuming the other firm never delays signal acquisition or investment.
Suppose that some firm i prospects at rate λ forever and invests immediately when-
ever it obtains a high signal. Let μλ(t ) denote the associated posterior beliefs of firm −i

that θ = G, conditional on observing no investment by firm i until time t. These beliefs
decline over time, converging to π− as t → ∞ and firm −i becomes sure that contin-
ued lack of investment implies that firm i has obtained a low signal. Since π+− < 1/R,
it must be that πA > π−, and so μλ(t ) crosses the autarky threshold πA at some finite
time, which we will denote TA ≡ (μλ )−1(πA ).

Proposition 1 (The symmetric equilibrium). There exists a symmetric equilibrium in
which, whenever no investment has occurred, each firm’s continuation play proceeds as
follows:

10An identical result holds with respect to 1/λ. Analogous results could also be stated for R and c, but
with some additional care needed to account for the boundary conditions on these parameters.
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• If a firm has not obtained a signal, it prospects at rate

λit =
{
λ, t ≤ TA

0, t > TA.

• If a firm has obtained a high signal, it invests immediately.

This equilibrium unfolds as follows. Absent observing investment by the other firm,
each firm prospects at rate λ until time TA. Afterward each firm stops prospecting for-
ever. If, at any time, a firm observes investment (before or after time TA), it follows the
optimal continuation strategy characterized in Lemma 2, and if, at any time, a firm is
in possession of a high signal (on or off the equilibrium path), it invests immediately.
Finally, no firm invests while in possession of no signal or a low signal.

One key feature of this equilibrium is that it exhibits neither free-riding nor invest-
ment delay. That is, at no point in time does a firm stop prospecting while its beliefs
are above πA; nor does any firm in possession of a high signal ever wait to invest. An-
other important feature is that both firms eventually abandon prospecting for informa-
tion about the project. If no firm has invested by time TA, both firms cease efforts to
acquire a signal forever afterward.11

The prospecting strategies arising in this equilibrium do not constitute unique best
replies for either firm. Indeed, subsequent to time TA, each firm is indifferent between
prospecting or not, as their beliefs remain fixed at πA forever afterward. However, aban-
doning prospecting is the unique continuation outcome that can be sustained as part
of an equilibrium. It is precisely the lack of information arriving after beliefs reach πA

that makes it optimal for firms to prospect at all times prior to TA. If some firm were to
continue prospecting, it would drive the other firm’s beliefs below πA in finite time, and
that firm would then no longer optimally prospect until time TA.

In the remainder of this subsection, we provide some intuition for the optimality of
each firm’s strategy in this equilibrium. First consider each firm’s investment strategy.
Because both firms quit prospecting at time TA, each firm’s beliefs are always at least
πA for all times, even absent a signal or any observed investment. This means that after
obtaining a high signal, each firm’s beliefs lie above 1/R forever. So by waiting to invest,
no firm ever obtains enough negative information to change its optimal investment de-
cision, meaning any delay in investing is suboptimal.

Now consider the equilibrium prospecting rule. At all times prior to TA, each firm’s
beliefs are above the autarky level, and so they would optimally prospect in a single-
player environment. However, in the presence of social learning, each firm faces a
trade-off between acquiring information today so as to invest more quickly or saving
on prospecting costs by waiting to see whether the other firm acts. Early on, beliefs
about the project are relatively good and the value of prospecting exceeds the value of
waiting. However, as firms approach time TA, both values converge to zero, since both

11This effect resembles the investment collapse phenomenon described in Chamley and Gale (1994).
In that paper, a collapse is precipitated by randomization over investment at early stages of the game. By
contrast, in our setting, abandonment of prospecting is induced by stochastic information acquisition.
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the single-player returns to prospecting as well as the probability that the other firm
eventually invests vanish.

The comparison between the value of prospecting and waiting at times close to TA

is mediated by the cost of prospecting. To see this, consider firm i’s choice of whether to
prospect an instant before TA. In a state of the world in which firm −i does not invest
by time TA, firm i’s beliefs at time TA − dt, conditioning on this extra information, are
exactly πA. In that case, its expected payoff at time TA − dt is zero whether or not it
prospects, and the net gain from prospecting is zero.

Meanwhile, in a state of the world in which firm −i does invest by time TA, firm i’s
expected payoff at time TA − dt is UFR = V if it free-rides, where

V = max
{
π+R− 1,

λ

λ+ r

(
h(π+ )(π++R− 1) − c

)}
is the larger of the values of investing immediately or obtaining another signal at time
TA. (Recall that the optimal continuation strategy depends on the sign of r − r∗, as
characterized in Lemma 2.) On the other hand, if it prospects, its expected payoff is

UP = V (1 − λdt ) + h(π+ )(π++R− 1)λdt − λc dt,

where the first term accounts for the possibility that i fails to acquire a signal by time
TA, in which case it follows its optimal continuation strategy upon seeing −i invest; the
second term accounts for the possibility that i acquires its own signal by time TA, in
which case it invests only if its own signal is positive; and the final term accounts for the
cost of prospecting.12 The net gain from prospecting an instant before TA in this state
of the world is, therefore,

UP −UFR = λ
(
h(π+ )(π++R− 1) − V − c

)
dt.

If r ≤ r∗, then the follower optimally acquires its own signal upon seeing the leader
invest. In this case the payoff of prospecting trivially dominates the payoff of free-
riding, since the follower expects to eventually acquire the signal anyway. On the other
hand, if r > r∗, then the gains from prospecting are nonnegative whenever c ≤ c =
h(π+ )(π++R − 1) − (π+R − 1), as imposed in Assumption 3. This condition ensures
that the improvement h(π+ )(π++R− 1) − (π+R− 1) to i’s investment decision from ac-
quiring an additional signal is larger than the cost c of acquiring it in the pivotal state of
the world in which i acquires a signal and sees −i invest in the next period. Note that the
condition c ≤ c does not involve the discount rate r, since firm i is not deciding whether
to delay investment after seeing −i act so as to acquire a signal, but rather is deciding
whether to “front-run” firm −i by acquiring a signal ahead of −i’s own action.

This calculation makes clear that each firm’s willingness to prospect until time TA is
closely linked to the information gained from a second signal. Were a single high signal
close to perfectly revealing, there would be no value to prospecting just before time TA,

12Our expressions for UFR and UP drop terms related to discounting, which are second order in dt when
computing UP −UFR.
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and free-riding would necessarily arise in equilibrium. Our assumption that signals are
noisy drives the distinction between our results and those of BH, who predict free-riding
in the symmetric equilibrium of a model with perfectly revealing good news.

3.3 The leader–follower equilibrium

We next characterize a pair of asymmetric equilibria in which firms adopt distinct leader
and follower roles. Unlike the symmetric equilibrium, prospecting is never abandoned
entirely: With probability 1, at least one firm eventually acquires a signal about the
project. However, these equilibria feature free-riding, investment delay, or both by the
follower. Throughout this section, we describe the equilibrium in which firm 1 is the
leader and firm 2 is the follower. By symmetry, another equilibrium exists with the roles
of the firms reversed.

Proposition 2 (The leader–follower equilibrium). There exists an equilibrium in
which, whenever no investment has occurred, firm 1’s continuation play proceeds as fol-
lows:

• If the firm has not obtained a signal, it prospects at rate λ1
t = λ.

• If the firm has obtained a high signal, it invests immediately.

This equilibrium is characterized by time thresholds TF , T ∗
F ∈ [0, ∞) such that, whenever

no investment has occurred, firm 2’s continuation play proceeds as follows:

• If the firm has not obtained a signal, it prospects at rate

λ2
t =

{
λ, t ≤ TF

0, t > TF .

• If the firm has obtained a high signal, it invests immediately if t ≤ T ∗
F , and waits to

invest otherwise.

These time thresholds are uniquely determined and satisfy min{TF , T ∗
F } < TA.

This equilibrium unfolds as follows. If either firm observes investment when not
in possession of a signal, it follows the optimal continuation strategy characterized in
Lemma 2. Prior to such an event, the leader prospects at rate λ until it obtains a signal.
If at any time, the leader is in possession of a high signal (on or off the equilibrium path),
it invests immediately. Meanwhile, the follower prospects only up until the threshold
time TF < ∞. If at any time t the follower is in possession of a high signal (on or off
the equilibrium path), it invests immediately if t < T ∗

F ; otherwise it waits for action by
the leader. The bound min{TF , T ∗

F } < TA implies that the follower becomes passive, i.e.,
ceases investing ahead of the leader on the equilibrium path, earlier than it would have
in the symmetric equilibrium.13

13Note that when T ∗
F > TF , firm 2 does not acquire a signal on the equilibrium path at times [TF , T ∗

F ]
unless firm 1 invests. Nonetheless, the threshold time T ∗

F is the unique continuation strategy consistent
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Unlike the symmetric equilibrium of Proposition 1, the leader–follower equilibrium
exhibits free-riding, investment delay, or a combination of the two. The following lemma
characterizes when each arises as a function of the cost of prospecting.

Lemma 3 (Comparison of thresholds). There exist cost thresholds c∗ and c∗ satisfying
c ≥ c∗ > c∗ > 0 such that the follower’s equilibrium strategy depends on c as follows:

• If c > c∗, then TF ≤ T ∗
F , while if c < c∗, then TF > T ∗

F .

• If c > c∗, then TF < TA, while if c < c∗, then TF > TA.

Further, if r is sufficiently small, then c > c∗.

This lemma establishes that equilibrium behavior moves through three distinct
regimes as prospecting costs rise. When costs are below c∗, the follower delays invest-
ment but never free-rides; that is, it prospects at least until its beliefs fall below the
autarky threshold. Meanwhile when costs are between c∗ and c∗, the follower initially
delays investment and eventually free-rides. Finally, when costs are above c∗, the fol-
lower free-rides but never delays investment.14 Thus, as prospecting costs rise, the mix
of free-riding and investment delay shifts toward the former and away from the latter.

Figure 1. The follower’s strategy as a function of time (horizontal axis) and c (vertical axis). In
region I, it remains active; in region II, it free-rides; in regions III and IV, it prospects, but delays
investment. In region IV, prospecting is unprofitable in the autarky benchmark.

with the requirements of perfect Bayesian equilibrium in the off-path information sets in which firm 2 has
acquired a signal.

14While the firm does eventually stop investing when in possession of a high signal, any such signal
must have been acquired due to a deviation from its equilibrium strategy. We describe a firm’s strategy as
exhibiting delay only when waiting arises on-path, consistent with the convention used in the investment
timing literature. (See, e.g., Chamley and Gale (1994).)
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The findings of Lemma 3 are depicted graphically in Figure 1. This diagram describes
the follower’s equilibrium strategy as a function of time (on the horizontal axis) and the
cost of prospecting (on the vertical axis). In region I, the follower prospects and invests
immediately upon acquisition of a positive signal.15 In region II, the follower free-rides
and does not obtain a signal on the equilibrium path. This region exists if costs are
sufficiently high; in particular, above the cost threshold c∗ defined by TF = TA.16 In
regions III and IV, the follower prospects, but delays investment if it obtains a positive
signal. This region exists if costs are sufficiently low, i.e., below the cost threshold c∗
defined by T ∗

F = TF . In region IV, the follower’s prospecting would be unprofitable in
the autarky benchmark, a phenomenon we analyze further below. This region is present
whenever costs are below c∗.

In the remainder of this subsection, we provide some intuition for the structure of
the leader–follower equilibrium. Each firm’s behavior can be understood by comparing
its incentives here and in the symmetric equilibrium. In the latter equilibrium, social
learning stops at time TA for each firm, providing incentives that are just strong enough
to remain active up to this time. By contrast, in the current setting the leader remains
active longer, weakening the follower’s incentives to prospect and invest. Hence, the
follower must become passive prior to time TA, as explained in more detail below. This
change in behavior in turn reinforces the leader’s desire to remain active, since it no
longer learns enough from the follower’s activities to push its beliefs below the autarky
threshold. Hence the follower’s behavior induces the leader to actively prospect and
invest at all times.

Given the opportunity for social learning provided by the leader’s continued activity
after time TA, at all times prior to TA, the follower’s continuation value must be strictly
positive. But since the return to actively prospecting and investing approaches zero for
times close to TA, it cannot be optimal for the follower to continue both of these ac-
tivities until TA. In other words, by time TA, at least one of (A) the follower’s value of
actively prospecting or (B) its value of investing following acquisition of a signal, must
fall below the option value of waiting to observe investment by the leader. The time at
which event (A) occurs is precisely TF , while the time of event (B) is T ∗

F .
It is not necessarily true that the value of prospecting is exhausted before the value

of investing, because obtaining a signal preemptively eliminates the delay involved in
obtaining a signal after seeing the leader invest. This “front-running” motive yields a
nonzero benefit from obtaining a signal even after T ∗

F . The comparison between T ∗
F

and TF hinges on the cost of prospecting. Intuitively, the follower’s decision to delay
investment is independent of c, since waiting to invest does not involve any expenditure
of prospecting costs. By contrast, the more costly prospecting becomes, the sooner the
follower prefers to free-ride. Hence, for low c, the follower begins delaying investment
before it stops prospecting, while for high c, the opposite is true. Strikingly, when c <

c∗, the follower prospects even after its beliefs fall below the autarky threshold. In this
regime, the front-running motive boosts the value of acquiring a signal compared to a
one-player environment, encouraging additional prospecting.

15This region need not exist for all model parameterizations. In particular, T ∗
F = 0 if r is sufficiently small.

16This region also disappears if c is sufficiently large that TA = 0. However, Assumption 4 ensures that
TA > 0 for all c ≤ c.
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3.4 Characterization of the equilibrium set

So far we have demonstrated the existence of three equilibria: a symmetric equilibrium
and two leader–follower equilibria (which are identical up to permutation of firms). We
now establish that these equilibria constitute the entire equilibrium set.17

Proposition 3. There exist no equilibria, in pure or mixed strategies, beyond those char-
acterized in Propositions 1 and 2.

The bulk of the proof involves showing that, up to some technicalities, all equilib-
ria must be in strategies analogous to those arising in Propositions 1 and 2: Each firm
i ∈ {1, 2} prospects at rate λ up to some threshold time T i and then stops prospecting
afterward; similarly, if it has received a high signal, it invests immediately up to a thresh-
old time T ∗

i and then waits to invest afterward. We call strategies of this form threshold
strategies.

The optimality of a threshold investing rule relies on an argument ruling out wait-
ing for a (possibly random) period and then investing. Such a strategy would merely
delay investment without conditioning it on the arrival of information in any useful
way. Therefore, once it becomes optimal to wait at all, any optimal strategy must in-
volve waiting until the other firm has invested. The optimality of a threshold prospect-
ing rule is more technical and requires studying the dynamics of the Hamilton–Jacobi–
Bellman (HJB) equation. Essentially, the proof establishes that the moment free-riding
becomes even weakly optimal, a firm’s value function must evolve in such a way that
free-riding remains strictly optimal forever afterward. As suggested by the discussion
following Proposition 1, the cost bound c ≤ c plays a key role in this argument.

Within the class of equilibria in threshold strategies, the equilibrium set can be nar-
rowed down by a straightforward classification argument. The symmetric equilibrium
can be characterized as the unique equilibrium in which both firms stop investing on-
path at the same time. Within this class, the only way that both firms can become
passive at the same time in equilibrium is if both firms’ beliefs reach πA at this time.
For if some firm’s terminal beliefs were any higher, that firm would prefer to continue
prospecting and investing afterward, and if its beliefs were any lower, it would prefer to
become passive sooner. Backward induction then pins down the symmetric equilibrium
as the unique behavior consistent with this outcome.

The leader–follower equilibrium can be characterized as the unique equilibrium in
the remaining case that some firm i remains active, that is, invests along the equilib-
rium path, longer than the other. Let T̂−i be the time at which firm −i becomes passive,
and call firm −i the follower. In this case, firm i, the leader, is effectively in autarky af-
ter time T̂−i, and prospects and invests immediately at all future times. To sustain an
equilibrium, it must then be a best response to the leader’s continuation strategy for the
follower to stop investing on-path at time T̂−i. This optimality condition uniquely pins
down T̂−i, which may be the time at which the follower either stops prospecting or stops

17More precisely, the proposition establishes essential uniqueness up to the usual continuous-time de-
generacies on sets of times and states of measure zero.
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investing, depending on model parameters. Once this time is pinned down, it can be
shown that the leader’s unique best response is to remain active prior to time T̂−i, which
uniquely determines the remainder of the equilibrium.

4. Comparing equilibrium payoffs

We have seen that our model has exactly two distinct equilibrium structures. In this
section we compare individual and aggregate payoffs across equilibria.

Let V S be the expected payoff of each firm in the symmetric equilibrium, and let V L

and V F be the expected payoffs to the leader and follower, respectively, in the leader–
follower equilibrium. Aggregate payoffs in the symmetric equilibrium are then 2V S ,
while in the leader–follower equilibrium they are V L + V F . The following proposition
examines how both individual and aggregate payoffs compare across the two equilibria.

Proposition 4. Equilibrium payoffs satisfy V F > V S ≥ V L. If r is sufficiently small, then
V L + V F > 2V S . There exists a c < c (independent of r) such that if c > c, then 2V S >

V L + V F for r sufficiently large.

The first result of the proposition is that the symmetric equilibrium generates lower
payoffs for each firm than the follower’s payoff, but (weakly) higher payoffs than the
leader’s payoff. Intuitively, the leader–follower equilibrium generates more information
from the leader but less from the follower than each firm would produce in the symmet-
ric equilibrium, and this change in social learning is reflected in the remaining firm’s
payoff.

Interestingly, the leader is not necessarily strictly worse off than it would be in the
symmetric equilibrium. This is because when the discount rate is low, each firm acquires
its own signal before investing, even after seeing the other firm invest. (See Lemma 2.)
In addition, in the symmetric equilibrium, neither firm waits for the other to invest once
they are in possession of a high signal. Social learning, therefore, turns out not to be
pivotal for investment in the symmetric equilibrium at low discount rates, and so the
additional information generated does not raise payoffs.

This second result of the proposition is that when firms are patient, the leader–
follower equilibrium yields higher total firm profits than the symmetric one, while when
firms are impatient (and costs are not too low), the symmetric equilibrium is superior. If
the discount rate is low enough that V L = V S , this result is an immediate consequence
of the individual payoff ranking. However, if V L < V S , comparing aggregate payoffs re-
quires a balancing of higher payoffs generated by the symmetric equilibrium early on
against higher payoffs generated by the leader–follower equilibrium later. Consequently,
the comparison between the two equilibria turns on the discount rate.

More precisely, in the symmetric equilibrium, both firms contribute to social learn-
ing by actively prospecting and investing until the time TA. By contrast, in the leader–
follower equilibrium the leader remains active forever, while the follower remains active
only up to some time T̂F < TA. Comparing welfare therefore amounts to comparing
aggregate social learning in each equilibrium, taking into account time discounting.
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In the symmetric equilibrium, more social learning occurs during the time interval
[T̂F , TA] than in the leader–follower equilibrium, while the latter equilibrium features
more social learning during the time interval [TA, ∞). When firms are patient, the long
duration of social learning in the leader–follower equilibrium is the most important fac-
tor determining welfare, and so aggregate payoffs are higher in this equilibrium. By con-
trast, when firms are impatient, the additional social learning generated early on in the
symmetric equilibrium becomes important.

The subtlety in this argument is that T̂F approaches TA as the discount rate grows
large, requiring a careful calculation of total gains in the limit as r → ∞. It turns out that,
under an appropriate normalization, the limiting gains from additional social learning
early in the symmetric equilibrium are strictly positive and increasing in c. Thus when r

and c are sufficiently large, these normalized gains outweigh the normalized losses from
reduced social learning later on, yielding higher aggregate payoffs than in the leader–
follower equilibrium.18

The ambiguity of this payoff comparison stands in contrast to the findings of pre-
vious work on investment timing and collective experimentation. A classic example in
the investment timing literature is Gul and Lundholm (1995), who find that asymmetric
equilibria eliminate the war of attrition inherent in symmetric play and reveal private
information more quickly, improving aggregate welfare. By contrast, since information
acquisition is endogenous in our model, asymmetric play generates an additional profit
loss by reducing the incentives for the second mover to produce and reveal informa-
tion. The relative performance of symmetric and asymmetric play then becomes a horse
race between the war of attrition of the symmetric equilibrium and the free-riding of
the asymmetric equilibrium. This finding demonstrates the importance of modeling in-
centives for information acquisition alongside investment timing when both effects are
present in applications.

Meanwhile in the collective experimentation literature, BH find that asymmetric
play increases aggregate payoffs versus symmetric play. Specifically, in the two-player
version of their model, they characterize a continuum of asymmetric equilibria indexed
by the time at which the follower stops free-riding and begins exerting effort. They show
that aggregate payoffs are increasing in the amount of time the follower spends free-
riding. Key to their result is the fact that the more players are actively exerting effort, the
less total effort is exerted. By contrast, in our setting asymmetric play has an ambiguous
effect on total effort: Effort early on is lower than in the symmetric equilibrium, while
effort at later times is higher. Our contrasting welfare results are, therefore, driven by
important differences in behavior across the two models in both symmetric and asym-
metric equilibria.

5. Conclusion

We study a model of strategic investment timing with endogenous information acquisi-
tion, with the aim of understanding the interplay of incentives for free-riding and invest-
ment delay. We find that the extent and mix of free-riding and investment delay varies

18The cost bound c need not be very stringent. In particular, it can be shown that c = 0 when positive
and negative signals are both sufficiently informative.
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across equilibria as well as with the cost of acquiring information. We further find that
the equilibrium that maximizes aggregate payoffs varies with model parameters, the dis-
count rate in particular. These results are closely linked to our central assumption that
positive signals are imperfectly informative, revealing new economic forces that are ab-
sent in models of strategic experimentation with observable or perfectly revealing sig-
nals.

One limitation of our current analysis is its focus on a two-player setting. Extend-
ing our work to accommodate many players would bring it closer to applications as
well as permit a richer study of the possibilities of asymmetric play. In particular, with
many players, there might exist additional asymmetric equilibria featuring multiple ac-
tive players. Comparing aggregate payoffs across different asymmetric configurations
could reveal novel trade-offs that further illuminate when and how asymmetric play
boosts payoffs.

Our analysis also restricts attention to environments in which investment represents
a pure information externality. In some applications, investment may additionally gen-
erate payoff externalities. For instance, early-stage startups may exhibit increasing re-
turns to scale and generate higher profits, or a greater probability of success, when they
are better funded. In that case, investment by one firm would raise the return on invest-
ment by another, strengthening incentives for strategic delay. Extending our model to
incorporate increasing returns to scale would enhance its realism in such applications
and allow informational and payoff externalities to be compared as sources of strategic
delay.

Appendix A: Regular strategies

In this appendix, we establish that in any perfect Bayesian equilibrium, lack of invest-
ment is (weakly) bad news about the state, while investment signals that the investing
firm has received a high signal.

Definition A.1. A firm’s strategy is regular if the following conditions hold:

• Investment never occurs after receipt of a low signal

• Investment without a signal occurs only in histories in which the other firm has
invested.

The following lemma establishes that all firms choose regular strategies in equilib-
rium. We shall invoke this fact repeatedly in what follows to focus our analysis on a firm’s
best response to play of a regular strategy by its rival.

Lemma A.1. In any equilibrium, each firm’s strategy is regular.

Proof. Fix an equilibrium. First consider a firm that has obtained a low signal. Then
regardless of its beliefs about the content of any signal obtained by the other firm, its
posterior belief that the state is good cannot be higher than π+−. As π+−R − 1 < 0 by
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assumption, investment in such a history is unprofitable. Thus, in any equilibrium, no
firm invests in such a history.

Now consider a firm i that has obtained no signal by time t. If i believes that −i, when
following its equilibrium strategy, would have invested with probability strictly less than
1 by time t, then this history is on-path. Firm i may then use Bayes’ rule to update its
beliefs about firm −i’s signal, and as −i does not invest when in receipt of a low signal,
lack of investment by time t is weakly negative news about S−i and, therefore, about θ.
Thus, firm i’s posterior beliefs that θ = G are no higher than π0, and investment in such
a history is unprofitable. Thus, in any equilibrium, no firm invests in such a history.

The remaining possibility is that firm i has obtained no signal and is in a history at
which firm −i’s strategy called for investment with probability 1 prior to time t. Such
histories are off-path, and firm i is then free to choose its beliefs about S−i arbitrarily.
To complete the proof, we argue that such off-path histories cannot arise in any equilib-
rium. Let ρi(t ) be the cumulative time-t probability that each firm, under its equilibrium
strategy, invests prior to time t absent observing investment by its rival. Each ρi is weakly
increasing and left-continuous. Off-path histories correspond to ρi(t ) = 1.

Let t∗ ≡ inf{t : max{ρ1(t ), ρ2(t )} = 1}, and suppose by way of contradiction that
t∗ < ∞. Prior to time t∗, histories are on-path, and so no firm invests when in posses-
sion of no or a low signal. As a result, it must be that ρi(t ) ≤ (1 −exp(−λt ))h(π0 ) for each
t < t∗ and firm i, since each firm’s prospecting rate is bounded above by λ. Thus, by left-
continuity, ρ1(t∗ ), ρ2(t∗ ) < 1. Then also at time t∗, histories involving lack of investment
are on-path for both firms, meaning no firm invests when in possession of a low signal.
But also by definition there exists a firm i for which ρi(t ) = 1 for arbitrarily small t > t∗,
meaning that firm i must invest with strictly positive probability when in possession of
no signal at time t∗. This is a contradiction, and so t∗ = ∞, meaning all histories are
on-path.

Appendix B: Belief updating identities

In this appendix, we derive several useful identities involving posterior beliefs about the
state in the event no investment by the other firm has been observed.

Fix a firm i and a pure strategy for firm −i which is regular (as defined in Appendix A)
and invests when in possession of a high signal if and only if t < T−i for some T−i ∈
R+ ∪ {∞}. We will let μi(t ) denote firm i’s time-t belief that the state is good, supposing
it has obtained no signal and observed no investment. Additionally, we will let νi(t )
denote firm i’s time-t belief that firm −i has not yet obtained a signal, given that it has
not yet invested.

Lemma B.1. The posterior belief path μi is absolutely continuous and satisfies

μ̇i(t ) = −1
{
t < T−i

}
νi(t )λ−i(t )h(π0 )

(
π+ −μi(t )

)
almost everywhere.
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Proof. For all times t > T−i, firm i is in autarky with fixed beliefs, in which case μi(t )
is trivially absolutely continuous and satisfies the stated identity. So consider times
t ≤ T−i. Then firm −i invests at variable Poisson rate νi(t )λ−i(t )h(π0 ), and arrival of
investment causes beliefs to jump from μi(t ) to π+. It follows that μi(t ) is absolutely
continuous and satisfies the Bayes plausibility condition that the average rate of change
of beliefs must be zero, i.e.,

νi(t )λ−i(t )h(π0 )
(
π+ −μi(t )

) + μ̇i(t ) = 0,

which is the desired identity.

Lemma B.2. The posterior belief path μi satisfies

μ̇i(t ) = −1
{
t < T−i

}
λ−i(t )

μi(t ) −π−
π+ −π−

(
π+ −μi(t )

)
almost everywhere.

Proof. For all times t ≥ T−i, firm i is in autarky with fixed beliefs, in which case the
identity trivially holds. So assume t < T−i. Define

�−i(t ) = exp
(

−
∫ t

0
λ−i(s)ds

)
to be the cumulative probability that firm −i has not obtained a signal by time t. By
Bayes’ rule,

μi(t ) =
(
�−i(t ) + (

1 −�−i(t )
)(

1 − qH
))
π0

�−i(t ) + (
1 −�−i(t )

)
l(π0 )

= �−i(t )π0 + (
1 −�−i(t )

)
l(π0 )π−

�−i(t ) + (
1 −�−i(t )

)
l(π0 )

.

Solving this identity for �−i(t ) yields

�−i(t ) = l(π0 )
h(π0 )

μi(t ) −π−
π+ −μi(t )

.

Taking the log of both sides, differentiating, and using the identity d
dt log�−i(t ) =

−λ−i(t ) yields the desired relationship.

Appendix C: Value functions and the HJB equation

In this appendix, we describe properties of a given firm i’s continuation value function in
several important classes of histories, supposing that firm −i uses a pure strategy which
is regular (as defined in Appendix A) and invests when in possession of a high signal if
and only if t < T−i for some T−i ∈ R+ ∪ {∞}.

We will use the following notation for value functions in different histories: V i(t ) will
denote firm i’s time-t continuation value function given no signal and no investment by
firm −i; V will denote i’s continuation value upon seeing firm −i invest (note that V is in-
dependent of i and t); V i+(t ) will denote firm i’s time-t continuation value function given
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a high signal and no investment by firm −i. Finally, Ṽ i(t ) will denote firm i’s expected
time-t continuation value after obtaining a signal, given no investment by firm −i. Since
obtaining a low signal leads to no investment, it follows that Ṽ i(t ) = h(μi(t ))V i+(t ).

Pre-signal/investment

By standard arguments, V i is the unique bounded, absolutely continuous function sat-
isfying the HJB equation

rV i(t ) = λ
(
Ṽ i(t ) − c − V i(t )

)
+ + 1

{
t < T−i

}
νi(t )λ−i(t )h(π0 )

(
V − V i(t )

) + V̇ i(t ),

where νi(t ) is firm i’s time-t belief that firm −i has not yet obtained a signal given that it
has not yet invested. Using Lemma B.1, the second term on the right-hand side may be
rewritten in terms of μi(t ), firm i’s posterior belief that the state is good:

rV i(t ) =λ
(
Ṽ i(t ) − c − V i(t )

)
+ − μ̇i(t )

π+ −μi(t )

(
V − V i(t )

) + V̇ i(t ).

Note that the sign of Ṽ i(t )−c−V i(t ) determines firm i’s optimal prospecting rule: When
it is positive, the firm optimally prospects at rate λ; when it is negative, the firm optimally
prospects at rate 0; when it is zero, any prospecting rate is optimal.

At various points in our analysis, it will be useful to express the HJB equation as
Fi(V i, t ) = 0, where

Fi(w, t ) ≡ rw(t ) − λ
(
Ṽ i(t ) − c −w(t )

)
+ + μ̇λ(t )

π+ −μλ(t )

(
V −w(t )

) − ẇ(t )

is a functional that may be applied to arbitrary test functions w to compute the remain-
der of the HJB equation evaluated at w.

Post-investment

The continuation value V solves a simple single-agent problem analogous to the autarky
case of Section 2.2, but with a choice between prospecting and immediate investment
rather than between prospecting and free-riding given that π+ > 1/R. The term V may
be characterized explicitly as

V = max
{
π+R− 1,

λ

λ+ r

(
h(π+ )(π++R− 1) − c

)}
.

Recall from Lemma 2 that r∗ is defined as the minimal discount rate at which firm i

invests immediately after seeing firm −i invest. Thus, r∗ corresponds to the smallest r
such that the first argument of the max operator dominates.
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Post-signal

Following observation of a high signal, firm i’s continuation payoff Ṽ i(t ) is bounded
below by the payoff of investing immediately if the signal is high and never investing
otherwise. Thus, Ṽ i(t ) ≥ h(μi(t ))(μi+(t )R−1). Some algebra yields the useful associated
identity

h(μ)(μ+R− 1) − c =K(μ−πA ),

where K ≡ qH(R− 1) + (1 −qL ) > 0. Thus, Ṽ i(t ) − c ≥K(μi(t ) −πA ), and the inequality
holds with equality if firm i optimally invests immediately upon obtaining a high signal
at time t.

Lemma C.1. The post-investment continuation value satisfies V ≤K(π+ −πA ).

Proof. If r ≤ r∗, then V = λ
λ+r

K(π+ − πA ), in which case V < K(π+ − πA ). Otherwise,

V = π+R− 1, and so by Assumption 3, V ≤K(π+ −πA ).

Appendix D: Proofs

D.1 Proof of Lemma 1

The requirement that π0 >πA for every c ≤ c is equivalent to the condition h(π0 )(π+R−
c) > c. By the law of total probability,

π+R− 1 = h(π+ )(π++R− 1) + l(π+ )(π+−R− 1),

so that c = −l(π+ )(π+−R − 1) and the desired condition may be stated as φ(R) > 0,
where

φ(R) ≡ h(π0 )(π+R− 1) + l(π+ )(π+−R− 1).

Note that φ(R) is strictly increasing in R, and φ(1/π+ ) = l(π+ )(π+−/π+ − 1) < 0 while
φ(1/π+− ) = h(π0 )(π+/π+− − 1) > 0. Further, for any R< 1/π+−,

l(π+ )(π+−R− 1) > l(π0 )(π+−R− 1) > l(π0 )(π−R− 1),

in which case φ(1/π0 ) > π0R − 1. So if 1/π0 < 1/π+−, we have φ(1/π0 ) > 0. Thus,
φ(1/max{π0, π+−}) > 0. It follows that there exists a unique R0, bounded between 1/π+
and 1/max{π0, π+−}, at which φ crosses zero, as desired.

D.2 Proof of Proposition 1

Fix a firm i and suppose firm −i follows its equilibrium strategy. We first show that firm
i’s equilibrium investment policy is a best response. By Lemma D.10, firm i’s optimal
policy must be a threshold rule, so it remains only to argue that T ∗

i = ∞ is the optimal
threshold. Consider any time t > TA and history in which firm i has obtained a high
signal. Because μi(t ) = πA and h(πA )(πA+R − 1) > 0, it follows that μi+(t ) > 1/R. So
investing immediately when in possession of a high signal at any time, which yields a
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payoff of μi+(t )R − 1 > 0, dominates waiting until firm −i invests, which yields a payoff
of 0 (because firm −i never invests). As this argument holds for arbitrary large t > TA, it
must be that T ∗

i = ∞ is optimal.
It remains to verify that firm i’s optimal prospecting policy prior to obtaining a sig-

nal is a threshold policy with T i = TA. Subsequent to the cutoff time TA, the firm is in
autarky with beliefs πA, so λi(t ) = 0 is trivially an optimal strategy from this point on-
ward. So consider times prior to TA. Let V †(t ) ≡ K(μλ(t ) − πA ), where K is as defined
in Appendix C. Inserting V † into the function Fi defined in Appendix C and using the
fact that Ṽ i(t ) = V †(t ) + c for all t given that μi = μλ and T ∗

i = ∞, we have

Fi
(
V †, t

) = rV †(t ) + μ̇λ(t )

π+ −μλ(t )

(
V −K(π+ −πA )

)
.

Note that for t < TA, V †(t ) > 0 and μ̇λ(t ) < 0. Meanwhile Lemma C.1 in Appendix C
establishes the bound V ≤K(π+ −πA ). So Fi(V †, t ) > 0 for times t < TA.

Now note that V †(TA ) = 0 by definition of TA, while also V i(TA ) = 0 given that
firm i is in autarky with beliefs πA subsequent to TA. Therefore, V †(TA ) = V i(TA ).
This boundary condition, combined with the fact that Fi(V †, t ) > Fi(V i, t ) = 0 for all
t < TA, implies by a standard result regarding supersolutions of ordinary differential
equations that V †(t ) > V i(t ) for all t ∈ [0, TA]. Then as Ṽ i(t ) ≥ V †(t ) + c, prospecting at
the maximum rate prior to TA is an optimal strategy.

D.3 Proof of Proposition 2

We first characterize the follower’s best response to the leader. This characterization is
built around a pair of belief thresholds that pin down the times at which the follower
stops prospecting and investing.

Let

	I(μ) ≡ μ+ −π+−
π++ −π+−

λ

λ+ r
(π++R− 1) − (μ+R− 1).

As will be shown later, 	I represents the difference in payoffs between waiting and in-
vesting immediately following receipt of a high signal when current beliefs are μ.

Lemma D.1. The difference 	I is a strictly decreasing function of μ, and 	I(π− ) > 0. Also,

	I(π0 ) = λ

λ+ r
h(π+ )(π++R− 1) − (π+R− 1).

In particular, 	I(π0 ) > 0 whenever r ≤ r∗.

Proof. Differentiating 	I yields

	′
I(μ) =

(
1

π++ −π+−
λ

λ+ r
(π++R− 1) −R

)
dμ+
dμ

.
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By assumption, π+− < 1/R < π++, so

	′(μ) <− r

λ+ r
R
dμ+
dμ

< 0.

Further, 	I(π− ) = −(π+−R − 1) > 0. Finally, to simplify 	I(π0 ), use the law of total
probability to write π+ = h(π+ )π++ + (1 − h(π+ ))π+− or, equivalently, π+ − π+− =
h(π+ )(π++ −π+− ). This identity may be used to write 	I(π0 ) in the desired form.

In light of the previous lemma, define the investment belief threshold μ∗ ∈ (π−, π0]
as

μ∗ ≡
{
π0, 	I(π0 ) ≥ 0,

	−1
I (0), 	I(π0 ) < 0.

Define the associated investment time threshold T ∗
F ≡ (μλ )−1(μ∗ ). This threshold is

uniquely defined given that μλ is a strictly decreasing function satisfying μλ(0) = π0

and μλ(∞) = π−.
Next, define

	P (μ) ≡ μ−π−
π+ −π−

λ

λ+ r
V − (

V̌ (μ) − c
)
,

where

V̌ (μ) ≡ h(μ) max
{
μ+R− 1,

μ+ −π+−
π++ −π+−

λ

λ+ r
(π++R− 1)

}
.

We will see later that 	P represents the difference in payoffs between prospecting or not
when current beliefs are μ, and V̌ (μ) represents the average continuation value after
obtaining a signal at beliefs μ.

We note two important properties of V̌ . First, the argument of the max operator that
dominates depends on the size of μ relative to μ∗, with the first argument dominating
when μ > μ∗, while otherwise the second argument dominates. (When 	(π0 ) ≤ 0, the
two branches are equal when μ = μ∗. Otherwise, the second argument dominates when
μ = μ∗.) Second, V̌ (μ) can be rewritten using Lemma D.2 as

V̌ (μ) ≡ max
{
h(μ)(μ+R− 1),

μ−π−
π+ −π−

λ

λ+ r
h(π+ )(π++R− 1)

}
,

a form that will be convenient for various proofs.

Lemma D.2. For every μ ∈ [π−, π+],

h(π+ )
μ−π−
π+ −π−

= h(μ)
μ+ −π+−
π++ −π+−

.

Proof. Note that both the left- and right-hand sides of the identity in the lemma state-
ment are affine functions of μ. (The left-hand side is immediate, while the numerator
of the right-hand side may be rewritten qHμ − π+−h(μ), which is affine in μ given that
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h(μ) is.) It is, therefore, enough to show that they coincide at two distinct values of μ.
Note that when μ = π−, both sides vanish, while when μ = π+, both sides reduce to
h(π+ ), as desired.

Lemma D.3. The payoff gap 	P is a strictly decreasing function and 	P (π− ) > 0.

Proof. Let

	̂(μ) ≡ μ−π−
π+ −π−

λ

λ+ r

(
V − h(π+ )(π++R− 1)

) + c.

Differentiate 	̂ to obtain

	̂′(μ) = 1
π+ −π−

λ

λ+ r

(
V − h(π+ )(π++R− 1)

)
.

By Lemma C.1, V ≤ K(π+ − πA ), i.e., V − h(π+ )(π++R − 1) ≤ −c, and so 	̂′(μ) < 0 for
all μ.

Clearly 	P (μ) = 	̂(μ) and therefore 	′
P (μ) < 0 for μ ≤ μ∗. Meanwhile 	P (μ) ≤ 	̂(μ)

for μ>μ∗. Since 	P is continuous at μ∗ and an affine function of μ on [μ∗, π0], to ensure
	P ≤ 	̂, it must be that 	′

P (μ) = 	′
P (μ∗+ ) ≤ 	̂′(μ∗ ) < 0 for μ ∈ (μ∗, π0]. Hence, 	P is a

strictly decreasing function. Finally, note that 	P (π− ) = c > 0.

In light of the previous lemma, define the prospecting belief threshold μ ∈ (π−, π0]
by

μ ≡
{
π0, 	P (π0 ) ≥ 0,

	−1
P (0), 	P (π0 ) < 0.

Define the associated prospecting time threshold TF ≡ (μλ )−1(μ).
We now show that the follower’s strategy is a best response to the leader’s strategy.

We further show that the best response is unique, which will be important for proving
Proposition 3.

Lemma D.4. Suppose firm −i chooses the threshold strategy T ∗
−i = T−i = ∞. Then firm i’s

unique best response is the threshold strategy characterized by T ∗
i = T ∗

F and T i = TF .

Proof. Given firm −i’s strategy, firm i’s posterior beliefs satisfy μi(t ) = μλ(t ) for all
time. Consider first firm i’s optimal investment policy. Lemma D.10 establishes that
an optimal policy must be a threshold rule, and so at each point in time, either V i+(t ) =
W †(t ) ≡ μλ+(t )R− 1 or else V i+(t ) =W ‡(t ), where W ‡(t ) is the value of investing immedi-
ately after the leader invests. The follower’s investment cutoff time is determined by the
first time at which W †(t ) falls below W ‡(t ).

The value W ‡(t ) may be calculated explicitly as

W ‡(t ) = νλ+(t )
λ

λ+ r
h(π+ )(π++R− 1),
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where νλ+(t ) is firm i’s posterior belief that firm −i has not yet received a signal, given that
−i has not yet invested and firm i’s signal is high, and the remainder of the expression is
the expected discounted value of waiting for firm −i to acquire a signal and invest. This
argument additionally establishes that Ṽ i(t ) = h(μλ(t ))V i+(t ) = V̌ (μλ(t )) for all t.

Variants of Lemmas B.1 and B.2 applied to an environment with initial beliefs π+
can be used to obtain two expressions for μ̇λ(t ); equating these two expressions yields
νλ+(t ) = (μλ+(t ) − π+− )/(h(π+ )(π++ − π+− )). Comparing W ‡(t ) −W †(t ) with 	I(μ), we

see that W †(t ) falls below W ‡(t ) when μλ(t ) = μ∗. So T ∗
i = T ∗

F is firm i’s unique optimal
investment threshold.

We now derive firm i’s optimal prospecting strategy. Recall that in Appendix C, we
showed that the HJB equation satisfied by firm i’s continuation value function V i may be

expressed as Fi(V i, t ) = 0. We first consider times t ≥ T . Let V †(t ) ≡ μλ(t )−π−
π+−π−

λ
λ+r

V . For

all times t ≥ TF , μλ(t ) ≤ μ and so 	P (μλ(t )) = V †(t ) − V̌ (μλ(t )) + c ≥ 0. Since Ṽ i(t ) =
V̌ (μλ(t )) for all time, we therefore have V †(t ) ≥ Ṽ i(t ) − c for all t ≥ TF . Inserting V † into
Fi therefore yields

Fi
(
V †, t

) =
(
μλ(t ) −π−
π+ −π−

λ+ μ̇λ(t )

π+ −μλ(t )

)
r

λ+ r
V

for t ≥ TF . Using Lemma B.2 to eliminate μ̇λ(t ) yields Fi(V †, t ) = 0. As V † is a
bounded, absolutely continuous function, it follows by a standard verification argu-
ment that V i(t ) = V †(t ) for t ≥ TF . It follows immediately that for times t > TF , we
have 	P (μλ(t )) = V †(t ) − V̌ (μλ(t )) + c = V i(t ) − Ṽ i(t ) + c > 0, meaning that λi(t ) = 0 is
firm i’s unique optimal prospecting policy for times t > TF .

Now consider times t < TF . If μ = π0, then this time interval is empty, so assume
μ<π0. Let V ‡(t ) ≡ V̌ (μλ(t )) − c. We will show that Fi(V ‡, t ) > 0 for all t < TF , where Fi

is as defined in Appendix C.
Note first that Ṽ i(t ) = V̌ (μλ(t )) implies that V ‡(t ) = Ṽ i(t ) − c, an identity that will

prove useful for evaluating Fi(V ‡, t ). Also, 	P (μλ(TF )) = 0 implies that V ‡(TF ) =
V †(TF ). In particular, since V †(TF ) > 0 and V ‡(t ) is strictly decreasing in t, we have
V ‡(t ) > 0 for t < TF .

Suppose t ≤ T̂F ≡ min{TF , T ∗
F }. On this time range, V̌ (μλ(t )) − c = K(μλ(t ) − πA ),

and so Fi(V ‡, t ) evaluates to

Fi
(
V ‡, t

) = rV ‡(t ) + μ̇λ(t )

π+ −μλ(t )

(
V −K(π+ −πA )

)
.

By Lemma C.1, V ≤ K(π+ − πA ). Further, we established above that V ‡(t ) > 0. Thus,
Fi(V ‡, t ) > 0.

If μ ≥ μ∗, then there are no further times to check, so suppose instead that μ < μ∗
and t ∈ (T ∗

F , TF ). For such times,

V̌
(
μλ(t )

) = μλ(t ) −π−
π+ −π−

λ

λ+ r
h(π+ )(π++R− 1) = μλ(t ) −π−

π+ −π−
λ

λ+ r

(
K(π+ −πA ) + c

)
.
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This expression, combined with the identity derived in Lemma B.2, allows us to evaluate
Fi(V ‡, t ) as

Fi
(
V ‡, t

) = −λ
μλ(t ) −π−
π+ −π−

(
V −K(π+ −πA )

) − rc.

Now μλ(t ) ∈ (μ, μ∗ ) for t ∈ (T ∗
F , TF ) and, therefore,

	P

(
μλ(t )

) = μλ(t ) −π−
π+ −π−

λ

λ+ r

(
V −K(π+ −πA ) − c

) + c < 0

or, equivalently,

−λ
μλ(t ) −π−
π+ −π−

(
V −K(π+ −πA )

) ≥ (λ+ r )c − μλ(t ) −π−
π+ −π−

λc > rc.

So Fi(V ‡, t ) > 0 for t ∈ (T ∗
F , TF ).

We have established that Fi(V ‡, t ) > 0 for all T < TF , and further that V ‡(TF ) =
V †(TF ). Recall that we earlier established V ‡(t ) = V i(t ) for all times t ≥ TF , so V ‡(TF ) =
V i(TF ). Then as Fi(V i, t ) = 0 for all t ≤ TF , a standard result regarding supersolutions of
ordinary differential equations implies that V ‡(t ) > V i(t ) for all t < T . Then the identity
V ‡(t ) = Ṽ i(t ) − c implies that λi(t ) = λ is uniquely optimal for t ≤ TF .

We now establish that the leader’s strategy is a best reply to the follower’s.

Lemma D.5. Suppose that firm −i employs a threshold strategy satisfying μλ(T̂−i ) > πA,
where T̂i ≡ min{T ∗

−i, T−i}. Then firm i’s unique best reply is the threshold strategy T ∗
i =

T i = ∞.

Proof. Subsequent to time T̂−i, firm i is in autarky with beliefs μi(t ) = μλ(T̂−i ) > πA.
Thus, its unique optimal policy for times t ≥ T̂−i is to prospect at rate λ and invest imme-
diately. By Lemma D.10, it follows that firm i’s unique optimal investment strategy is the
threshold rule T ∗

i = ∞. It remains only to characterize i’s optimal prospecting behavior

prior to time T̂−i. Note that for such times, μi(t ) = μλ(t ).
Define V †(t ) ≡ K(μλ(t ) −πA ). Since T ∗

i = ∞, it must be that Ṽ i(t ) − c = V †(t ) for all
times. Then inserting V † into the functional Fi defined in Appendix C yields

Fi
(
V †, t

) = rV †(t ) + μ̇λ(t )

π+ −μλ(t )

(
V −K(π+ −πA )

)
.

Note that V ≤ K(π+ − πA ) by Lemma C.1, so the second term on the right-hand side is
nonnegative. Meanwhile, μλ(t ) >πA for t ≤ T̂−i, meaning V †(t ) > 0. So Fi(V †, t ) > 0 for
all such t ≤ T̂−i.

Now note that as firm i is in autarky at time T̂−i, its value function at this point
is V i(T̂−i ) = λ

λ+r
V †(T̂−i ) < V †(T̂−i ). This boundary condition, combined with the fact

that Fi(V †, t ) > 0 while Fi(V i, t ) = 0 for all t < T̂i, implies by a standard result regard-
ing supersolutions of ordinary differential equations that V †(t ) > V i(t ) for all t ∈ [0, T̂i].
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Then the fact that Ṽ i(t ) − c = V †(t ) implies that λ−i(t ) = λ is firm −i’s unique optimal
prospecting policy for times t < T̂i.

Combining this result with the following lemma establishes that the leader’s strategy
is a best response to the follower’s and completes the proof.

Lemma D.6. The inequality max{μ, μ∗} >πA holds.

Proof. If μ = π0, then the result is automatic. So assume μ < π0, in which case μ is
pinned down by the condition 	P (μ) = 0. If μ ≥ μ∗, then 	P (μ) = 0 may be written

μ−π−
π+ −π−

λ

λ+ r
V −K(μ−πA ) = 0.

As μ > π−, it must be that μ > πA for this equality to hold. If instead μ∗ > μ, then
	P (μ∗ ) < 0, which is equivalently

μ∗ −π−
π+ −π−

λ

λ+ r
V −K

(
μ∗ −πA

)
< 0.

As μ∗ >π−, it must be that μ∗ >πA for this equality to hold.

D.4 Proof of Lemma 3

Note that 	P , μ, T ∗
F πA, TA, and V are each functions of c, while 	I , μ∗, and TF are

independent of c. Wherever a parameter depends on c, we will make that dependence
explicit throughout this proof.

We begin with a series of auxiliary lemmas.

Lemma D.7. The threshold belief μ is nondecreasing in c, and is increasing whenever
μ(c) <π0.

Proof. Recall that

	P (μ, c) = μ−π−
π+ −π−

λ

λ+ r
V − V̌ (μ) + c,

where V̌ (μ) is not a function of c. When r > r∗, V is independent of c and so ∂	P/∂c =
1 > 0. Otherwise, ∂V /∂c = − λ

λ+r
, so that

∂	P

∂c
= − μ−π−

π+ −π−

(
λ

λ+ r

)2

+ 1 > 0.

In either case, 	P is strictly increasing in c for every μ. Since 	P is strictly decreasing in
μ, the lemma statement follows.

Lemma D.8. The inequality μ(c) < min{μ∗, πA(c)} holds whenever c is sufficiently small.



1168 Kirpalani and Madsen Theoretical Economics 18 (2023)

Proof. Note that 	P (μ∗, c) may be written

	P

(
μ∗, c

) = μ∗ −π−
π+ −π−

λ

λ+ r

(
V (c) − h(π+ )(π++R− 1)

) + c.

For all c, we have V (c) ≤ max{π+R−1, λ
λ+r

h(π+ )(π++R−1)} <h(π+ )(π++R−1). There-
fore, the first term in the previous expression for 	P (μ∗, c) is bounded below zero for all
c, while the second term vanishes as c → 0. It follows that 	P (μ∗, c) < 0 for sufficiently
small c, in which case μ(c) <μ∗.

Next, note that when c = 0, πA(c) satisfies h(πA(c))(πA+(c)R−1) = 0, i.e., πA+(c) =
1/R. Hence, πA+(c) >π− given that π+− < 1/R. Additionally, using the fact that V̌ (μ) ≥
μ−π−
π+−π−

λ
λ+r

h(π+ )(π++R− 1) for all μ, we must have

	P

(
πA(c), c

) ≤ πA(c) −π−
π+ −π−

λ

λ+ r

(
V (c) − h(π+ )(π++R− 1)

) + c.

Given that πA(0) > π−, an argument very similar to the one in the previous paragraph
shows that this upper bound is negative for sufficiently small c, implying that μ(c) <
πA(c) for such costs.

Lemma D.9. If r is sufficiently small, then μ(c) = π0 for costs sufficiently close to c.

Proof. Note that for sufficiently small r, 	I(π0 ) > 0 and μ∗ = π0. For such a choice of
r, we have

	P (π0, c) = π0 −π−
π+ −π−

λ

λ+ r

(
V (c) − h(π+ )(π++R− 1)

) + c.

Since V (c) ≥ π+R− 1, this expression is bounded below as

	P (π0, c) ≥ c − π0 −π−
π+ −π−

λ

λ+ r
c.

When c = c, this bound is positive, implying μ(c) = π0, as desired.

We now establish existence of a cost threshold c∗ with the stated properties.
Lemma D.7 implies that TF (c) is nonincreasing in c and is decreasing whenever it is
positive. Further, Lemma D.8 implies that TF (c) > T ∗

F when c is sufficiently small. Then
either there exists a c∗ ∈ (0, c) below which TF (c) > T ∗

F and above which TF (c) ≤ T ∗
F

(with the inequality possibly weak if T ∗
F = 0) or else TF (c) > T ∗

F for every c ≤ c. Letting
c∗ = c in the latter case, this choice of c∗ satisfies the properties claimed in the lemma.
Further, Lemma D.9 establishes that when r is sufficiently small, TF (c) = 0 for c suf-
ficiently close to c. But then, for such c, it is automatically the case that TF (c) ≤ T ∗

F ,
meaning that c∗ < c.

We next establish existence of a cost threshold c∗ with the stated properties. For this
result, it is sufficient to show that the function 	P (πA(c), c) is negative for sufficiently
small c, positive for c ∈ [c∗, c], and crosses zero exactly once on the interval (0, c∗ ); for
then the crossing point c∗ will satisfy the desired properties.
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Lemma D.8 implies that 	P (πA(c), c) < 0 for c sufficiently small. In addition, if c∗ <
c, then when c ≥ c∗, we have μ(c) ≥ μ∗. However, by Lemma D.6, max{μ, μ∗} > πA(c),
so we must have μ(c) > πA(c), i.e., 	P (πA(c), c) > 0. On the other hand, if c∗ = c, then
μF (c) ≤ μ∗ and Lemma D.6 requires that μ∗ >πA(c), in which case

	P

(
πA(c), c

) = πA(c) −π−
π+ −π−

λ

λ+ r

(
V (c) − h(π+ )(π++R− 1)

) + c.

Using the lower bound V (c) ≥ π+R− 1, we can bound 	P (πA(c), c) below as

	P

(
πA(c), c

) ≥ c

(
1 − πA(c) −π−

π+ −π−
λ

λ+ r

)
> 0,

ensuring that 	P (πA(c∗ ), c∗ ) > 0 in all cases.
It remains only to show that 	P (πA(c), c) satisfies single crossing on (0, c∗ ). On this

interval, we have μ(c) < μ∗ by definition of c∗, and so also μ∗ > πA(c) by Lemma D.6.
Thus,

	P

(
πA(c), c

) = c − πA(c) −π−
π+ −π−

λ

λ+ r

(
h(π+ )(π++R− 1) − V (c)

)
for c ∈ (0, c∗ ). Define the threshold c ≥ 0 to be the smallest c for which V (c) = π+R − 1
in case this cost threshold is positive; otherwise set c = 0. Then for c ∈ (0, c∗ ), we may
write

	P

(
πA(c), c

) =
{
χ(c), c < c

χ(c), c ≥ c,

where

χ(c) ≡ c − πA(c) −π−
π+ −π−

λ

λ+ r

(
h(π+ )(π++R− 1) − λ

λ+ r

(
h(π+ )(π++R− 1) − c

))
and

χ(c) ≡ c − πA(c) −π−
π+ −π−

λ

λ+ r
c.

As 	P (πA(c), c) is continuous across the interface c = c, it is sufficient to establish that
each of χ(c) and χ(c) crosses zero at most once on (0, c∗ ), and that any such crossing is
from below.

Recall that πA(c) is the solution to h(μ)(μ+R − 1) = c. This is a linear equation for
μ and its solution is affine in c. Hence, χ(c) is also affine in c. Further, χ(0) < 0 while
χ(c) > 0. So χ(c) is an increasing affine function on [0, c], ensuring that it crosses zero
at most once on (0, c∗ ) from below.

Meanwhile χ(c) is a concave quadratic in c that satisfies χ(0) < 0. If we can find

some c† > c∗ such that χ(c† ) > 0, then χ(c) is assured to cross 0 at most once on (0, c∗ )
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from below. Choosing c† = h(π+ )(π++R− 1), which satisfies c† > c ≥ c∗, we have

χ
(
c†) =

(
1 − πA

(
c†) −π−

π+ −π−
λ

λ+ r

)
h(π+ )(π++R− 1).

Now, by definition of πA(c), we have πA(c† ) = π+. Therefore, χ(c† ) > 0 as desired.

D.5 Proof of Proposition 3

Throughout this proof, fix an equilibrium strategy profile. For each firm i, define the
time thresholds tAi ≡ inf{t : μi(t ) ≤ πA}, t+,0

i ≡ inf{t : μi+(t ) ≤ 1/R}, and t+,00
i ≡ inf{t :

μi+(t ) < 1/R}. In other words, tAi is the first time firm i’s beliefs reach the autarky thresh-
old, t+,0

i is the first time its beliefs reach the threshold 1/R, and t+,00
i is the first time its

beliefs fall below 1/R. Note that in general t+,00
i ≥ t+,0

i , and the inequality is strict if and
only if i’s beliefs remain constant at 1/R over some time interval. We begin by establish-
ing that, up to a technicality, each firm must use a threshold rule for investment.

Lemma D.10. Suppose that firm i has obtained a high signal.

• If t+,00
i < ∞, there exists a cutoff time T ∗

i ≤ t+,0
i such that firm i invests immediately

if t < T ∗
i and invests only after seeing firm −i invest if t > T ∗

i .

• If t+,00
i = ∞, firm i invests immediately if t < t+,0

i .

Proof. Fix any firm i and time t ≤ t+,0
i . Suppose that given firm −i’s strategy, there ex-

ists a best reply for firm i that involves investing immediately at time t, supposing the
firm has not invested yet or observed the other firm invest. Then there must be a best
reply that, beginning at any time t ′ < t, involves waiting no longer than time t to invest.
However, the payoff of such a strategy is just a discounted version of the payoff of in-
vesting at time t ′, as the investment happens regardless of any information gained from
firm −i between times t ′ and t. Since t ′ < t+,0

i , this payoff is strictly positive, and so it
must be suboptimal to delay beyond time t ′. So firm i’s strategy must involve immediate
investing at every time t ′ < t.

Meanwhile, it is trivially suboptimal for the firm to invest at any time t > t+,00
i prior

to observing investment. If additionally t+,00
i < ∞, it must also be suboptimal for the

firm to invest at any time t ∈ [t+,0
i , t+,00

i ], since at break-even beliefs the firm makes no
profits from investing immediately, but makes positive profits with positive probability
by waiting to see if firm −i invests.

Therefore, if t+,00
i < ∞, letting T ∗

i be the supremum of times at which investing im-
mediately is a best reply for firm i, it must be that T ∗

i ≤ t+,0
i , and firm i must invest im-

mediately at all times prior to T ∗
i , while it must never invest prior to seeing investment

subsequent to time T ∗
i .

On the other hand, if t+,00
i = ∞, it must be a best reply for firm i to invest immedi-

ately at any time t ≥ t+,0
i , since beliefs remain at the break-even level forever subsequent

to this time. Thus, if t+,0
i < ∞, then firm i’s strategy must involve immediate investing

at every time t < t+,0
i . If t+,0

i = ∞, then investment is strictly profitable at all times no
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matter what information arrives, and so any delay is suboptimal. Thus, again firm i’s
strategy must involve immediate investing prior to t+,0

i = ∞.

This lemma ensures that firms’ investment policies must take the form of thresh-
old rules, except in the case that t0

i < t00
i = ∞. However, multiplicity of best replies in

that case impacts outcomes only off the equilibrium path, as on-path the firm either
obtained a high signal prior to t0

i and invested immediately or else obtained no signal
prior to t0

i , after which a signal is valueless and the firm does not optimally acquire one.
Therefore, any choice of a non-threshold investment policy in this case has no impact
on equilibrium outcomes.

Our proof will proceed by restricting attention to equilibria in threshold invest-
ment strategies, with each firm’s investment threshold denoted by T ∗

i . This analysis will
characterize all possible equilibrium paths and, in particular, will establish that either
t00
i < ∞ or else t0

i = ∞ in any equilibrium, proving that all equilibria involve threshold
investment policies.

Now, assume that both players use pure prospecting strategies. We will maintain
this assumption until the end of the proof, when we verify that no equilibria with mixed
prospecting strategies can exist.

We next establish an important technical result about the dynamics of the value
of effort prior to time tAi . This result will be critical to establishing that firms fol-
low a threshold prospecting rule in any equilibrium. For each firm i, define fi(t ) ≡
V i(t ) −K(μi(t ) −πA ). Note that fi(t ) ≥ V i(t ) − Ṽ i(t ) + c, with equality for all t < T ∗

i .

Lemma D.11. Fix any firm i. Then for almost every t ∈ [0, min{T ∗
i , tAi }], either fi(t ) < 0 or

f ′
i (t ) > 0.

Proof. Fix a firm i. Suppose first that T ∗
−i ≤ t < tAi . Then at time t, firm i is in autarky

with beliefs μi(t ) > πA, meaning its continuation value is V i(t ) = λ
λ+r

K(μi(t ) − πA ) <

K(μi(t ) −πA ). Thus, fi(t ) < 0 for all such times. So it is sufficient to establish the result
for t < min{tAi , T ∗

i , T ∗
−i}.

Note that whenever t < T ∗
i , we have fi(t ) = V i(t ) − Ṽ i(t ) + c. Then for almost every

t < min{T ∗
i , T ∗

−i} such that fi(t ) ≥ 0, V i(t ) must satisfy the HJB equation

rV i(t ) = λ−i(t )
μi(t ) −π−
π+ −π−

(
V − V i(t )

) + V̇ i(t ).

This may be rewritten in terms of f and f ′ as

f ′
i (t ) = rK

(
μi(t ) −πA

) − λ−i(t )
μi(t ) −π−
π+ −π−

(
V −K(π+ −πA ) − fi(t )

) + rfi(t ).

The first term on the right-hand side of this expression is strictly positive for every t < tAi .
Further, by Lemma C.1, V ≤ K(π+ − πA ). Finally, the coefficient on fi(t ) on the right-
hand side is always nonnegative. Thus, whenever fi(t ) ≥ 0, we must have f ′

i (t ) > 0.
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We proceed by splitting the analysis into two cases: Either T ∗
i < ∞ for some firm i, or

else T ∗
1 = T ∗

2 = ∞. We will show that in the first case, the only permissible equilibrium
behavior is the leader–follower strategy profile, while in the second case, the only per-
missible behavior is the symmetric equilibrium profile. Consider first the T ∗

i < ∞ case.
The following lemma establishes that the remaining firm −i must employ the leader
strategy in any equilibrium.

Lemma D.12. Suppose that T ∗
i <∞ for some firm i. Then firm −i must follow the thresh-

old strategy T−i = T ∗
−i = ∞.

To establish this result, we first prove an auxiliary lemma that restricts the permis-
sible scope of equilibrium behavior and beliefs in response to a firm using a threshold
investment rule with T ∗

i < ∞.

Lemma D.13. Suppose that T ∗
i < ∞ for some firm i. Then T ∗

−i = ∞ and μ−i(T ∗
i ) >πA.

Proof. Suppose by way of contradiction that μ−i(T ∗
i ) < πA. Then beginning at time

T ∗
i , firm −i is in autarky with beliefs below the autarky threshold, implying that it does

not invest on the equilibrium path after time T ∗
i . Further, on the interval (tA−i, T

∗
i ], we

have V −i(t ) ≥ 0 >K(μi(t ) − πA ). Then at all such times, it cannot be optimal for firm i

to both prospect and invest immediately upon acquiring a signal. Therefore, firm −i is
in autarky beginning at time tA−i.

However, since tA−i < T ∗
i by continuity of μ−i, the fact that it is optimal for firm i to

invest immediately at times in [tA−i, T
∗
i ) but wait after T ∗

i implies that μi+(tA−i ) = μi+(T ∗
i ) =

1/R. Therefore, μi(tA−i ) < πA, so λi(t ) = 0 for all t ≥ tA−i. But then, on the equilibrium
path, firm i does not invest first after tA−i, implying firm −i is in autarky with constant
beliefs μ−i(t ) = μ−i(tA−i ) = πA for all times t > tA−i. This contradicts μ−i(T ∗

i ) < πA, so it
must be that μ−i(T ∗

i ) ≥ πA and, in particular, T ∗
i ≥ tAi .

Subsequent to time T ∗
i , firm −i is in autarky with fixed beliefs no lower than the

autarky threshold. Therefore, μ−i+ (t ) > 1/R for all t ≥ T ∗
i , in which case immediate in-

vesting is strictly superior to waiting forever for every t ≥ T ∗
i . Thus, firm −i must choose

T ∗
−i = ∞.

Now suppose by way of contradiction that μ−i(T ∗
i ) = πA, in which case tA−i ≤ T ∗

i .
As firm −i’s beliefs do not change over the interval [tA−i, T

∗
i ], it must be in autarky with

constant beliefs πA from time tA−i onward, implying V −i(t ) = 0.
Note that V −i(tA−i ) = 0 and μ−i(tA−i ) = πA imply f−i(tA−i ) = 0. But by Lemma D.11,

for almost every t ∈ [0, tA−i], either f−i(t ) < 0 or f ′
−i(t ) > 0. These conditions imply that

if f−i(t ) = 0 for some t < tA−i, then f−i(t ) > 0 for all t ′ ∈ (t, tA−i]. Hence, f−i(t ) < 0 for all
t < tA−i, implying that for all such times, the value of waiting is less than the value of
prospecting and investing immediately upon obtaining a high signal. Since this invest-
ment strategy is a lower bound on the value of prospecting, it must be that λ−i(t ) = λ

a.e. on [0, tA−i].
This prospecting policy, combined with T ∗

−i = ∞, implies that μi(t ) ≤ μ−i(t ) for
t ∈ [0, tA−i] and, therefore, tAi ≤ tA−i. If tAi < tA−i, then for every t ∈ (tAi , tA−i ), firm −i’s
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prospecting and investment policies imply that μi(t ) < πA, meaning it cannot be op-
timal for firm i to both prospect and invest immediately upon obtaining a signal at any
such time. Thus, firm i does not invest on the equilibrium path on this time interval, im-
plying μ−i is constant on the interval, contradicting the definition of tA−i. So tA1 = tA2 = tA

for some tA, which can only hold if T ∗
i ≥ tA and λi(t ) = λ for almost every t ∈ [0, tA].

If V i(tA ) > 0, then given continuity of V i and μi, for sufficiently large t < tA it would
be the case that V i(t ) >K(μi(t ) − πA ). But then it cannot be optimal for firm i to both
prospect and invest immediately at such times, a contradiction. So V i(tA ) = 0. But as
T ∗

−i = ∞, this can be true only if λ−i(t ) = 0 for a.e. t > tA. But then subsequent to time
TA, firm i is in autarky with beliefs μi(t ) = πA, contradicting the optimality T ∗

1 < ∞. So
μ−i(T ∗

i ) >πA, as desired.

Proof of Lemma D.12. Lemma D.13 established that T ∗
−i = ∞ and μ−i(T ∗

i ) >πA. The
latter inequality implies that for t > T ∗

i , firm −i is in autarky with beliefs above the au-
tarky threshold, meaning −i’s unique optimal prospecting policy subsequent to T ∗

i is
λ−i(t ) = λ. It remains only to pin down firm −i’s optimal prospecting behavior prior to
T ∗
i .

Define V †
−i(t ) ≡K(μi(t ) −πA ). Since T ∗

−i = ∞, it must be that Ṽ −i(t ) − c = V †
−i(t ) for

all times. Then inserting V †
−i into the functional F−i defined in Appendix C yields

F−i
(
V †

−i, t
) = rV †

−i(t ) + μ̇−i(t )

π+ −μ−i(t )

(
V −K(π+ −πA )

)
.

Note that V ≤ K(π+ − πA ) by Lemma C.1, so the second term on the right-hand side
is nonnegative. Meanwhile for t ≤ T ∗

i , μ−i(t ) > πA and, therefore, V †
−i(t ) > 0. Thus,

F−i(V †
−i, t ) > 0 for all times t ≤ T ∗

i .
Now note that as firm −i is in autarky at time T ∗

i , its value function at this point

is V −i(T ∗
i ) = λ

λ+r
V †

−i(T
∗
i ) < V †

−i(T
∗
i ). This boundary condition, combined with the fact

that F−i(V †
−i, t ) > 0 while F−i(V −i, t ) = 0 for all t ∈ [0, T ∗

i ], implies by a standard result

regarding supersolutions of ordinary differential equations that V †
−i(t ) > V −i(t ) for all

t ≤ T ∗
i . Then as V †

−i(t ) = Ṽ −i(t ) − c, firm −i’s unique optimal prospecting strategy prior
to T ∗

i is λ−i(t ) = λ.

Lemma D.12 establishes that in any equilibrium in threshold investment strategies
in which some T ∗

i < ∞, the other firm must follow the leader’s strategy. Meanwhile
Lemma D.4 establishes that the follower’s strategy is a unique best reply to the leader’s
strategy. So there exists a unique equilibrium in threshold investment strategies with
some T ∗

i <∞, namely, the leader–follower equilibrium.
The following lemma treats the remaining case in which T ∗

1 = T ∗
2 = ∞. It establishes

that the symmetric equilibrium strategies are the only ones consistent with equilibrium
in this case.

Lemma D.14. Suppose T ∗
1 = T ∗

2 = ∞. Then both firms follow threshold prospecting poli-
cies with T 1 = T 2 = TA.
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Proof. Note that when T ∗
1 = T ∗

2 = ∞, we have fi(t ) = V i(t ) − Ṽ i(t ) + c for every i and
t, and so a firm’s optimal prospecting rate depends only on the sign of fi(t ). Further,
fi(t ) ≥ 0 whenever t ≥ tAi , and the inequality is strict if either μi(t ) < πA or V i(t ) > 0.
Also, by Lemma D.11, for each firm i and almost every t < tAi , either fi(t ) < 0 or f ′

i (t ) > 0.
Suppose first that tAi < tA−i for some firm i. Define tAA

i ≡ inf{t : μi(t ) < πA}. If tAA
i is

finite, then for each time t ∈ (tAi , tAA
i ] firm i expects firm −i to invest at some point in the

future with positive probability, meaning V i(t ) > 0, and for each time t > tAA
i , we have

μi(t ) < πA. Thus, for all times t > tAi , we must have fi(t ) > 0 and λi(t ) = 0. In this case,
firm −i is in autarky with beliefs strictly above its autarky threshold beginning at time
tAi , meaning λ−i(t ) = λ going forward. But then eventually firm i’s posterior beliefs must
drop below μ∗, at which point it cannot be optimal for firm i to invest immediately after
obtaining a signal, a contradiction of T ∗

i = ∞. So it must be that tAA
i = ∞, i.e., λ−i(t ) = 0

for all t > tAi .
In that case V i(tAi ) = 0 and, thus, fi(tAi ) = 0. Now, if fi(t ) ≥ 0 on some positive-

measure subset of [0, tAi ], then for some t ′ < tAi , we must have fi(t ′ ) ≥ 0 and fi(t ′ ) > 0,
meaning that fi(t ) > 0 for t > t ′ sufficiently small. But for fi to decline back to zero by
time tAi , there must be a positive-measure set of times at which fi is both positive and
has a negative derivative, a contradiction. So it must be that fi(t ) < 0 a.e. on [0, tAi ], i.e.,
λi(t ) = λ for all such times. But then firm i prospects at the maximum rate at all times
prior to tAi , meaning that μ−i(t ) ≤ μi(t ) for such times, a contradiction of tAi < tA−i. We
conclude that tA1 = tA2 . Let tA be this common time.

Suppose first that tA = ∞. Then each firm i must prospect at less than full intensity
on a positive-measure set of times, meaning there exists a time t ′i at which fi(t ′i ) ≥ 0 and
f ′
i (t ) > 0. Thus, fi(t ) > 0 for t > t ′i sufficiently small, and by reasoning similar to the

previous paragraph, fi(t ) > 0 for all t > t ′i . Thus, λi(t ) = 0 for t > t ′i , meaning firm −i is in
autarky with beliefs strictly above the autarky threshold. It therefore sets λ−i(t ) = λ for
t > t ′i , contradicting tAi = tA = ∞. So it must be that tA <∞.

Next, suppose that fi(tA ) > 0 for some i. Then also fi(t ) > 0 for t sufficiently close
to tA, meaning λi(t ) = 0 for such times. But then μ−i(t ) is constant on this interval,
contradicting tA−i = tA. So fi(tA ) = 0 for each firm i. By now-familiar arguments, it must,
therefore, be that fi(t ) < 0 for almost all t < tA, i.e., λi(t ) = λ for each i and a.e. t < tA.
Therefore, tA = TA. Further, fi(tA ) = 0 implies V i(tA ) = 0, so λ−i(t ) = 0 for all t > tA.
Thus, each firm must use the threshold prospecting strategy T i = TA.

We complete the proof by ruling out mixed prospecting rules in equilibrium. This is
accomplished by the following lemma, which establishes that any equilibrium involv-
ing randomization over prospecting implies existence of a pure-strategy equilibrium in-
volving interior prospecting. As no pure-strategy equilibria exhibit such behavior, no
mixed-strategy equilibria exist.

Lemma D.15. Fix any equilibrium in threshold investment strategies. Then there exists
a payoff-equivalent equilibrium in pure strategies, exhibiting interior prospecting when-
ever some firm randomized over prospecting rates in the original equilibrium.
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Proof. Fix an equilibrium involved randomized prospecting and fix a firm i. After time
T ∗
i , firm i’s prospecting rule does not affect firm −i’s payoffs or incentives; thus, λi may

be replaced with any pure strategy maximizing i’s payoffs subsequent to time T ∗
i without

disturbing the equilibrium. So consider times t < T ∗
i .

Let

�i(t ) ≡ E

[
exp

(
−

∫ t

0
λi(s)ds

)]
be the ex ante probability that firm i has obtained no signal by time t. Define a new
pure-strategy prospecting rule λ̃i by letting λ̃i(t ) = − d

dt log�i(t ) for all times (with the
prospecting rule arbitrary at any point of non-differentiability of �i). By construction,
λi and λ̃i induce the same distribution of investment times by firm i conditional on θ,
and, thus, the same posterior beliefs for firm −i conditional on observing no investment.
Therefore, firm −i’s incentives are unchanged by replacing λi with λ̃i.

It remains to check that λ̃i is feasible and optimal for firm i. Note that

λ̃i(t ) = 1

�i(t )
E

[
λi(t ) exp

(
−

∫ t

0
λi(s)ds

)]
.

The second factor on the right-hand side is bounded above by λ�i(t ) and below by zero,
hence, λ̃i(t ) ∈ [0, λ], ensuring feasibility. As for optimality, suppose first that at time t,
the action λi(t ) is strictly optimal for firm i. Then it must be non-random, in which case
the previous expression for λ̃i(t ) collapses to λ̃i(t ) = λi(t ). So at any times for which ran-
domization is not optimal for firm i, the modified prospecting rule specifies the same
prospecting intensity as the original rule. Additionally, at all other times, any prospect-
ing intensity is optimal; thus, in particular, the intensity specified by λ̃i is optimal. So λ̃i

is an optimal prospecting rule.
This argument shows that firm i’s randomized prospecting rule may be replaced by

a non-random one that is also optimal for firm i, without disturbing firm −i’s payoffs
or incentives. This procedure may be performed for both firms, yielding a pure-strategy
equilibrium.

Finally, for any time t at which λi(t ) is not deterministic, it must be that Pr(λi(t ) >
0) > 0 and Pr(λi(t ) < λ) > 0, in which case the previous expression for λ̃i implies λ̃i(t ) ∈
(0, λ). So randomization in the original equilibrium implies an interior prospecting rate
in the new equilibrium.

D.6 Proof of Proposition 4

To prove the small-r result, we show that whenever r ≤ r∗, welfare under the leader–
follower equilibrium exceeds welfare in the symmetric equilibrium. Let V A(t ) ≡
λ

λ+r
K(μλ(t ) − πA ) be the autarky payoff under beliefs μλ(t ). We first show that in the

symmetric equilibrium, V i(t ) = V A(t ) for each i and all t ≤ TA. First note that for all
such times, μi(t ) = μλ(t ). Then trivially V i(TA ) = V A(TA ), as at time TA, each firm
is in autarky with beliefs μλ(TA ). So evaluate the functional Fi defined in Appendix C
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at V A for any time t ≤ TA. Using the identity V = λ
λ+r

K(π+ − πA ), which holds when-

ever r ≤ r∗, as well as the identity Ṽ i(t ) − c = K(μλ(t ) − πA ), which holds given that
T ∗
i = ∞, yields Fi(V A, t ) = 0. Then a standard verification argument establishes that

V A(0) = V S .
Now consider the leader–follower equilibrium. Recall that when r ≤ r∗, Lemma D.1

implies that T ∗
F = 0. Hence, the leader is in autarky for all times and V L = V A(0). So

consider the follower’s strategy. Suppose firm i is the follower. Note that μi(t ) = μλ(t ) for
all time and that Ṽ i(t ) − c >K(μλ(t ) −πA ) for all time given that investing immediately
is strictly dominated by waiting at all times. Hence, Fi(V A, t ) < 0 for all time. Then
as V A is a bounded function, a standard verification argument establishes that V A is
bounded strictly above by the payoff of the threshold strategy T i = T ∗

i = ∞. Since V F is
an upper bound on the payoff of any strategy followed by firm i, it must be that V F >

V A(0). Thus, V L + V F > 2V A(0) = 2V S , as claimed.
We now prove the large-r result. Going forward, we will assume that r > r∗. We first

establish that V F > V S > V L. Write V F (t ), V S(t ), and V L(t ) for the time-t continuation
value of each firm in each equilibrium given no signal and no investment by the other
firm. Let T̂F ≡ min{TF , T ∗

F } be the time at which the follower becomes passive in the

leader–follower equilibrium. The leader’s beliefs equal μλ(T̂F ) at time T̂F and, further,
the leader is in autarky going forward. It follows that V L(T̂F ) = V A(T̂F ).

Meanwhile, a firm in the symmetric equilibrium possesses posterior beliefs μλ(T̂F )
at time T̂F given that T̂F < TA (as established in Proposition 2). Further, the autarky
strategy is feasible but not optimal for that firm in the continuation after time T̂F . This
is because when r > r∗, investing following observation of investment by the other
firm improves on the autarky strategy of ignoring the other firm’s actions and contin-
uing to prospect. Additionally, since T̂F < TA, each firm invests with positive proba-
bility subsequent to time T̂F in the symmetric equilibrium. It must, therefore, be that
V S(T̂F ) > V A(T̂F ) > V L(T̂F ).

Next observe that the follower could achieve the symmetric equilibrium continu-
ation value at time T̂F by following the strategy of prospecting until time TA, invest-
ing immediately if it has obtained a signal or observed investment, and then halting all
prospecting and investment subsequent to time TA, regardless of what it sees the other
firm do. However, this strategy cannot be optimal, since the leader invests with posi-
tive probability after time TA, and the follower’s payoff would be improved by investing
in such histories whenever it has not yet obtained a signal. It must, therefore, be that
V F (T̂F ) > V S(T̂F ).

To complete the argument, we show that V F (T̂F ) > V S(T̂F ) > V L(T̂F ) implies that
V F > V S > V L. Note that no firm in either equilibrium delays investment prior to time
T̂F , and posterior beliefs for all firms equal μλ(t ) for all times prior to T̂F . It follows
that Fi(·, t ) (as defined in Appendix C) is the same for a leader, follower, or firm in the
symmetric equilibrium prior to T̂F . Then since V F (T̂F ) > V S(T̂F ) > V L(T̂F ), a standard
comparison result implies that V F > V S > V L.

To complete the proof, we perform a limiting payoff comparison as r → ∞. For the
remainder of the proof, we will make the dependence of variables on r explicit. Note in
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particular that μ(r ) and μ∗(r ) are both functions of r, while πA is independent of r. We
begin with two auxiliary lemmas.

Lemma D.16. For sufficiently large r, the inequality max{μ∗(r ), πA} <μ(r ) <π0 holds.
Further, limr→∞ μ(r ) = πA.

Proof. Note that as r → ∞, 	I(μ, r ) converges uniformly to −(μ+R − 1) for all μ ∈
[π−, π0] and, thus, μ∗(r ) approaches μ, where μ solves μ+R− 1 = 0. Since πA+R− 1 > 0
and π+R− 1 > 0, it must, therefore, be that μ∗(r ) < min{π0, πA} for large r. In particular,
μ∗(r ) <π0 implies that

	P

(
μ∗(r ), r

) = μ∗(r ) −π−
π+ −π−

λ

λ+ r
(π+R− 1) −K

(
μ∗(r ) −πA

)
.

As the first term approaches zero for large r while μ∗(r ) < πA for large r, we must have
	P (μ∗(r ), r ) > 0, i.e., μ(r ) > μ∗(r ). Lemma D.6 then further implies that μ(r ) > πA for
such r. Further, for large r and μ > μ∗(r ), 	P (μ, r ) converges uniformly to −K(μ − πA )
and, thus, μ(r ) converges to πA. Since πA < π0, we therefore have μ(r ) < π0 for r suffi-
ciently large.

Lemma D.17. The limit limr→∞ r(TA − TF (r )) = π+R−1
h(π+ )(π++R−1)−c holds.

Proof. Recall that TA = (μλ )−1(πA ) while TF (r ) = (μλ )−1(μ(r )). So to first order,

TA − TF (r ) = − 1

μ̇λ
(
TA

)(
μ(r ) −πA

) +O
((
μ(r ) −πA

)2)
.

For large r, μ(r ) ∈ (μ∗, π0 ) and so μ(r ) solves

μ−π−
π+ −π−

λ

λ+ r
(π+R− 1) =K(μ−πA ).

The solution to this equation may be written to first order in r−1 as

μ(r ) = πA +K−1λ(πA −π− )
π+ −π−

(π+R− 1)r−1 +O
(
r−2).

Thus,

TA − TF (r ) = −K−1 λ(πA −π− )

μ̇λ
(
TA

)
(π+ −π− )

(π+R− 1)r−1 +O
(
r−2).

Using Lemma B.2 to eliminate μ̇λ(TA ) yields

TA − TF (r ) = π+R− 1
K(π+ −πA )

r−1 +O
(
r−2) = π+R− 1

h(π+ )(π++R− 1) − c
r−1 +O

(
r−2).

Multiplying through by r and taking r → ∞ yields the desired identity.
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In light of Lemma D.16, going forward we will assume that r is sufficiently large
that TF (r ) < T ∗

F (r ), TA. Fix a strategy profile in which both firms play the leader’s strat-

egy. Let νλ(t ) be the associated time-t probability that a firm’s opponent has obtained
no signal, supposing it has not invested yet. Further let πP (t ) ≡ λK(μλ(t ) − πA ) and
πO(t ) ≡ νλ(t )h(π0 )(π+R−1) be each firm’s time-t flow profits from prospecting and ob-
serving investment, respectively, conditional on having obtained no signal and having
observed no investment. (Note that when r > r∗, each firm optimally invests immedi-
ately following observation of investment.) Finally, let δ(t ) ≡ 1 − (1 − e−λt )h(π0 ) be a
firm’s probability of reaching time t without having observed investment.

Each firm’s profits in each equilibrium may be written using this notation. Symmet-
ric equilibrium profits are

V S(r ) =
∫ TA

0
e−(r+λ)tδ(t )

(
πP (t ) +πO(t )

)
dt,

where the upper limit of integration accounts for the termination of flow profits at time
TA supposing no firm has acquired a signal or invested by that time. Meanwhile, the
leader’s profits are

V L(r ) =
∫ TF (r )

0
e−(r+λ)tδ(t )

(
πP (t ) +πO(t )

)
dt + e−(r+λ)TF (r )δ

(
TF (r )

)πP

(
TF (r )

)
λ+ r

,

where the final term accounts for the transition to autarky supposing no firm has ac-
quired a signal or invested by time TF (r ). (Recall that TF (r ) < T ∗

F (r ), so TF (r ) is the time
of transition to autarky.) Finally, the follower’s profits are

V L(r ) =
∫ TF (r )

0
e−(r+λ)tδ(t )

(
πP (t ) +πO(t )

)
dt +

∫ ∞

TF (r )
e−rte−λTF (r )δ(t )πO(t )dt,

where the final term accounts for the termination of prospecting at time TF (r ).
Define 	V (r ) ≡ rerTR(r )(2V S(r ) − V L(r ) − V F (r )). This expression may be written

explicitly as

	V (r ) = 2
∫ TA

TF (r )
re−r(t−TF (r ))e−λtδ(t )

(
πP (t ) +πO(t )

)
dt

−
∫ ∞

TF (r )
re−r(t−TF (r ))e−λTF (r )δ(t )πO(t )dt

− r

λ+ r
e−λTF (r )δ

(
TF (r )

)
πP

(
TF (r )

)
.

We now take the limit r → ∞. Recall that limr→∞ TF (r ) = TA and πP (TA ) = 0. Thus,
the final term vanishes in the limit. To evaluate the integrals, make the substitu-
tion t ′ = r(t − TF (r )). As πP , πO , and δ are bounded functions, the resulting inte-
grands are uniformly bounded for all t ′ and r, and the bounded convergence the-
orem may be used to evaluate each integral in the limit. The first converges to
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2(1 − exp(− limr→∞ r(TA −TF (r ))))e−λTA
δ(TA )πO(TA ), while the second converges to

−e−λTA
δ(TA )πO(TA ). Combining these calculations and invoking Lemma D.17 yields

lim
r→∞	V (r ) =

(
1 − 2 exp

(
− π+R− 1
h(π+ )(π++R− 1) − c

))
e−λTA

δ
(
TA

)
πO

(
TA

)
.

The sign of 2V S(r ) − V L(r ) − V F (r ) for large r must be the same as the sign of
limr→∞	V (r ). Hence, it is strictly positive whenever c > c ≡ h(π+ )(π++R− 1) − (π+R−
1)/ log 2. Note that c is independent of r and c < c given that log 2 < 1, as claimed in the
proposition statement.
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