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Abstract

I study the efficient design of a queue to dynamically allocate a scarce re-
source to long-lived agents. Agents can be served multiple times, and their val-
uations fluctuate over time with some persistence. Each agent privately learns
whether his prevailing valuation is high or low only when served. An agent
can decide anytime whether to either join a queue of his choice or renege. I
show that it is efficient to elicit agents’ private information by offering a simple
binary menu (i.e., two customer classes): a first-come, first-served queue, to
attract low-value agents, and one in random order, to attract high-value agents.
When queueing is costly, offering a single queue may be optimal because of the
tradeoff between allocative efficiency and the cost of screening.

Keywords: Queues; Experimentation; Reneging; Congestion; Mechanism Design.
JEL Codes: C73, D47, D82

1 Introduction

This paper studies the efficient design of a queue to allocate a resource flow. Ex-
amples of rationing by waiting are plentiful: the allocation of subsidized credit and
public housing, assignment of homeless shelters, provision of health and sanitation
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services, allocation of donated organs, and sharing of processing power in a capacity-
constrained computing system. I study the design of a queue to maximize efficiency
when strategic agents require service repeatedly and learn their valuation only when
served.

Consider the following stylized examples of which the model is suggestive. A
microfinance institution allocates short-term loans to entrepreneurs to fund small-
scale projects, such as starting a business in a developing country or increasing crop
production. The profitability of each entrepreneur’s project depends on market con-
ditions and fluctuates over time. Each entrepreneur is uncertain about the prospects
of his project and can assess its profitability only when allocated funds to invest; in
this sense, agents learn their valuations when they are served. Because the loans are
small and short-term, the same entrepreneur requests loans repeatedly to operate his
business when it is profitable for him to do so.

Intuitively, the objective of the designer is twofold: maximizing allocative ef-
ficiency and minimizing congestion, that is, allocating the scarce resource to agents
with the highest expected valuation (in the microfinance example, entrepreneurs with
the most profitable investment opportunities) and reducing the queue length (the av-
erage time to obtain a loan).

On the face of it, a single first-come first-served queue is inefficient because agents
joining the queue impose a negative externality on future arrivals by increasing the
time it takes for future agents to be served, and arriving agents may have a higher
expected valuation. Serving agents in a single service-in-random-order queue deters
agents from joining the queue when their prevailing expected valuation is low, al-
leviating the externality problem. In the microfinance example, if the expected net
return from a loan is negative, an entrepreneur would postpone their application until
prospects improve if there is a chance of receiving the loan without delay.

More subtly, because agents are served repeatedly and learn about their valuation
when they are served, the service discipline also affects the equilibrium length of the
queue, or, to put it differently, the proportion of time that agents allocate to costly
queueing. If loans are granted to entrepreneurs who are on average more optimistic
about their return prospects, a larger fraction of them are likely to resubmit an
application right away, exacerbating future congestion.

The contribution of this paper is to propose a parsimonious model to investigate
these tradeoffs and to examine rationing by queueing in the absence of monetary

2



transfers while considering the possibility of reneging.1 The optimal queueing mecha-
nism is remarkably simple and involves well-known queueing disciplines: it is a menu
of at most two queues, service is rendered in a first-come, first-served manner in one
queue and in random order in the other.

In the model, a constant flow of a resource is to be allocated to a continuum
of forward-looking agents. Capacity is limited: over any interval of time, only a
fixed mass of agents can be served. At each moment in time, agents decide whether
and when to engage in (possibly) costly queueing to be served, and each of them
can be served multiple times. Valuations fluctuate independently across agents, and
each agent faces an experimentation problem because the lump-sum payoff collected
at each service reveals the prevailing valuation, which can be high or low. Rivalry
generates an externality problem, because agents ignore the fact that their actions
affect overall congestion.

The setup presents a few methodological challenges. First, because of reneging,
the revelation principle does not apply. Second, even if the underlying valuation is
binary, because of learning, an agent’s type belongs to a continuum. Third, the lack
of transfers prevents the use of standard methods based on the envelope theorem to
elicit private information.

I overcome these challenges by showing that without loss of generality, one can
restrict attention to queues that provide the agents incentives not to renege. This
observation, which may be useful in other contexts, relies solely on the assumption
that agents acquire information about their valuation only when they are served.
Further, I prove that as long as agents’ expected valuations evolve monotonically over
time—a condition automatically satisfied in the case of binary underlying valuations—
attention can be restricted to binary menus.

I then show that as far as payoffs are concerned, each queue in the menu can
be summarized by a pair of sufficient statistics. This pair determines whether a
queueing discipline or menu of queueing disciplines is feasible, that is, whether the
induced service rate does not exceed capacity. The idea is that both payoff and service
rate depend only on the amount of time an agent expects to queue between two
consecutive services and on the probability of having a high valuation when served.
A version of the familiar single-crossing property of preferences holds. Specifically,

1Following the operations research terminology, I use the term reneging to describe the act of
leaving a queue before being served.
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the risk attitude of an agent (i.e, his preference towards a more or less risky queueing
discipline) depends on his belief about his current valuation.

Having characterized the optimal menu, I then derive a set of comparative statics
results. When waiting is costless or the resource is relatively abundant, it is efficient
to serve agents in two queues. In contrast, when waiting is particularly wasteful, it
is optimal to offer a single first-come, first-served queue, because it minimizes queue
length.2

Related Literature. This paper is related to several strands of literature. First,
it belongs to the literature on strategic behavior in queues.3 The idea that in a first-
come, first-served (FCFS) queue rational agents adopt suboptimal behavior dates
back to Naor (1969). In that framework, Hassin (1985) shows that a last-come,
first-served (LCFS) queueing discipline achieves the social optimum without the need
for transfers (see also Scarsini and Shmaya, 2024). Platz and Østerdal (2017) find
that in a concert queueing game, FCFS and LCFS achieve the minimal and maximal
aggregate equilibrium payoff among all queueing disciplines, respectively. In their
environment, as in mine, FCFS provides incentives to join the queue early, which
in the end hurts all agents in equilibrium. The results in Hassin (1985) and Platz
and Østerdal (2017), however, rely on the designer’s ability to prevent restarting. In
contrast, the designer in my model cannot detect or punish reneging and restarting,
and LCFS cannot be part of an equilibrium.

Second, the dynamic allocation of objects to agents arriving over time through
waiting lists has been studied in the context of public housing and organ transplants.
Both Leshno (2022) and Bloch and Cantala (2017) consider the problem of allocating
a sequence of heterogeneous items that are sequentially offered to agents on a waiting
list. Both papers assume that the flow of agents joining the pool is exogenous, so
maximizing welfare is equivalent to maximizing allocative efficiency; consequently,
the tradeoff between allocative efficiency and congestion is absent in these models.
Bloch and Cantala (2017) assume that agents’ valuations evolve over time indepen-

2The result resonates with the anecdotal evidence that inspired Milner and Olsen (2008). The
authors report that a call center was offering differentiated services to its two types of customers
(those with and without a service-level agreement requiring a given percentage of customers to be
served within a given time) only in off-peak hours.

3The motivation and modeling choices of my paper are close to those of Bassamboo and Randhawa
(2015), who study scheduling policies in a queueing system with reneging customers, abstracting from
strategic considerations.
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dently across periods, and show that service in a first-come, first-served order always
outperforms service in random order. Leshno (2022) assumes that agents’ valuations
are constant over time and shows that service in random order increases welfare, as
compared to first-come, first-served order, by partially shielding agents from random
fluctuations in waiting time. Recently, Che and Tercieux (2023) assume that the
designer chooses both the queueing discipline and the information available to the
agents,4 and show that it is optimal to provide no information about queue length
and serve agents according to a first-come, first-served rule.

Third, the paper contributes to the literature on dynamic mechanism design with
unobservable arrival. With the exception of a few papers—among others, in the con-
text of dynamic mechanism design with transfers, Garrett (2016) and Bergemann and
Strack (2022)—most of the literature on dynamic mechanism design assumes that the
designer observes agents’ arrival. The case of unobservable arrival is natural in the
context of queues: while the designer observes agents joining the queue, she may
be unable to detect when an agent has balked and rejoined the queue, presumably
disguised as a new agent. Hence, the designer is unable to condition on an agent’s
past history of allocation so that neither quota mechanisms as in Jackson and Son-
nenschein (2007) nor a “quantified entitlement” mechanism as in Guo and Hörner
(2020) is feasible. As a result, the designer elicits private information by leveraging
agents’ preferences about the distribution of service time, that is, their intertemporal
preferences.

Last, the interaction between agents who engage in individual experimentation
has been studied by the strategic experimentation literature. However, most of it has
focused on information externalities, which are absent in my model. An exception
is Thomas (2021), who analyzes congestion externalities. Cripps and Thomas (2019)
investigate the interaction between information externalities and congestion external-
ities in a queueing model. Their paper is, however, only tangentially related to mine.
In their model, agents arrive over time and there is a common source of uncertainty,
the service rate of a server. Observational learning arises because queue length and
other agents’ reneging decisions reveal the agents’ private information.

4In my model, information design would not help: because of the continuum of agents and the
assumption that the queue is unobservable, agents do not need to infer the distribution of the residual
waiting time from the amount they have been waiting.
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The rest of the paper is organized as follows. Section 2 introduces the model.
Section 3 sets up the designer’s problem and simplifies it in three steps. In Sec-
tion 4, I solve the designer’s problem and characterize the optimal menu of queueing
disciplines. Section 5 concludes the paper.

2 Setup

Time is continuous, indexed by t ≥ 0, and the horizon is infinite. A designer (she)
wishes to allocate a perishable and indivisible good to a unit mass of long-lived agents
indexed by i ∈ [0, 1]. Units of the good arrive at rate λ, so a mass λ (t′′ − t′) is to be
assigned over any interval of time [t′, t′′], t′ < t′′.

Let N i
t denote the total number of times agent i ∈ [0, 1] has been allocated the

good in the time interval [0, t] (formally, N i
t is a counting process); feasibility requires

that for all t′ ≥ 0 and all t′ < t′′,5

∫ 1

0

(∫ t′′

t′
dN i

t

)
di ≤ λ (t′′ − t′) . (1)

The designer aims to maximize aggregate payoffs in some equilibrium of the game,
as defined below.

Designer’s Choice. There are no transfers, and the good is allocated via a queue-
ing system. Informally, the designer commits to a menu of queues; at all times, each
agent chooses whether to queue and which queue to join. Queues may differ in their
capacity, i.e., in the amount of resource allocated to them, and in their queueing
discipline. The discipline dictates how the good is allocated across the agents in the
queue based on their individual waiting time. Common examples of queueing disci-
plines are first-come, first-served (FCSF), last-come, first-served (LCFS), and service
in random order (SIRO).

A menu of queues defines an anonymous sequential game between agents (Jo-
vanovic and Rosenthal, 1988). I focus on steady-state equilibria. Owing to the law of
large numbers, in the steady state, each agent faces a single-agent decision problem.

5To deal with essentially pairwise independent processes
(
N i

t

)
t≥0

, one needs to work with an
enrichment of the usual product probability space (see Sun, 2006). While the explicit construction
is omitted, I rely on Sun’s law of large numbers for a continuum of random variables.
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The behavior of the other agents is relevant only inasmuch as it affects the waiting
time before service. Hence, I formalize the choice of the designer as a choice of a
collection of (steady-state) waiting-time distributions.

More precisely, a menu is a collection of queues Q with generic element q. At any
time t, an agent can either be queueing or not; hence, I describe agent i’s action by
qit ∈ Q̂ := Q ∪ {∅}, with the interpretation that qit = ∅ when the agent does not
queue and qit ∈ Q when he is waiting at some queue.

In light of the discussion above, the designer chooses a collection of (steady-state)
waiting-time distributions, {Hq}q∈Q for each q ∈ Q, with Hq ∈ H, as defined below.6

Definition 1. The set H is the set of cumulative distribution functions, H : R+ →
[0, 1], such that H(0) = 0 and

∫
t dH(t) < ∞.

Each waiting-time distribution Hq is the distribution of the time an agent waits
before being served, provided that he does not abandon the queue before service, in
steady state. The requirement that Hq should not have atoms at 0 guarantees that
the allocation is well defined for all strategy profiles of the agents. As will become
clear (see Lemma 1), there is no loss in restricting attention to distributions having
finite mean.

To understand the relationship between queueing disciplines and waiting-time
distributions, note that if a queue operates in a first-come, first-served manner and
agents do not renege, in steady state, all agents wait the same deterministic amount of
time before being served. In other words, the waiting-time distribution is degenerate.
Similarly, in a service-in-random-order queue, each agent in line, irrespectively of the
amount of time he has been waiting, has the same probability of being served in the
next instant. As a result, the waiting time is exponentially distributed. For ease
of exposition, I restate the relationship between some waiting-time distributions and
queueing disciplines in the following definitions.

Definition 2.

(i) Agents are served according to a first-come, first-served discipline if the waiting-
time distribution H is a degenerate distribution.

6Formulating the designer’s problem as a choice of waiting-time distributions circumvents the
need to formalize the anonymous sequential game and the issues arising from having a continuum of
independent continuous-time Markov processes. As will become clear, it amounts to restating the
designer’s problem as a static mechanism design problem.
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(ii) Agents are served according to a service-in-random-order discipline if the
waiting-time distribution H is an exponential distribution with support [0,∞).

(iii) Agents are served according to a service-in-random-order discipline with a min-
imum waiting-time requirement if the waiting-time distribution has a constant
hazard rate and support [t,∞), for some t > 0.

Two remarks are in order. First, the designer’s choice is not restricted to the classes
of waiting-time distributions in the definition above, see Definition 2. Second, while
the service-in-random-order discipline with a minimum waiting-time requirement is a
generalization of the service-in-random-order discipline, distinguishing between them
is convenient because the latter plays a more crucial role in the optimal menu char-
acterization.

Agents’ Actions. Arriving agents do not observe agents already waiting (i.e.,
queue length). An agent’s strategy specifies when to join and leave a queue. Be-
cause time is continuous, the formal definition requires some care. In particular, an
agent who leaves a queue at time t, either because he reneges or because he is served
at t, may want to restart queueing with no delay.

Informally, if the agent is not queueing, a (pure) strategy dictates the time at
which he joins a queue and which one. If the agent is queueing, a (pure) strategy
specifies the time at which the agent reneges, i.e., leaves the queue if by that time
he has not been served. In this case, the strategy prescribes the action to be taken
when reneging: rejoining a queue or not. Finally, a strategy also prescribes whether
to rejoin a queue with no delay after being served.

Let the time-in-queue process (wi
t)t≥0 describe the amount of time elapsed since

the agent last joined the queue he is currently in whenever the agent is queueing;
set the time-in-queue process equal to 0 when the agent is not queueing. An agent’s
strategy is an impulse control for the processes (qit)t≥0 and (wi

t)t≥0.
7

If the agent does not intervene, the processes evolve exogenously as follows. While
an agent is queueing, the time-in-queue grows linearly over time until the agent is
served, when the time-in-queue jumps to 0. At any service time, the queue process
jumps to ∅. In other words, unless the agent reneges, the agent leaves the queue as
soon as he is served.

7The formal definition of strategies as impulse control policies is relegated to the Appendix.
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At any time t, the agent can intervene and induce (qit, w
i
t) to jump to either

(∅, 0) or (q, 0), for some q ∈ Q. Intuitively, if a queueing agent leaves a queue—
either because he reneges or because he is served—and does not rejoin the queue
immediately, the process (qit, wi

t) jumps to (∅, 0). If the agent either joins a queue or
jockeys between queues, the process (qit, w

i
t) jumps to (q, 0), for some q ∈ Q.

Payoffs. When allocated the good, agent i receives a lump-sum payoff equal to
some state θi, which can take two possible values, θ0 and θ1, with θ0 < 0 < θ1. Agent
i’s state evolves unbeknown to him according to a continuous-time Markov chain
(θit)t≥0, with state space {θ0, θ1}, transition matrix ((−ρ0, ρ0) , (ρ1,−ρ1)), and initial
probability of state θ1 given by ρ0/ (ρ0 + ρ1). The individual state processes of any
pair of agents is assumed to be independent.

Given some integrable queue process (qit)t≥0, the realization of the state process
(θit)t≥0, and the individual allocation process (N i

t )t≥0, the realized payoff of agent i is
given by the long-run average,

lim sup
T→∞

1

T

(∫ T

0

θit dN
i
t −

∫ T

0

c1qit ̸=∅ dt

)
.

This payoff has two components: the sum of lump-sum payoffs collected at each
consumption experience and the total cost borne by the agent while queueing. Note
the absence of discounting.

Strategies and Equilibrium. Given a menu, each agent faces a single-agent
Markov decision problem. I introduce a state variable to describe an agent’s in-
formation about his current valuation. Let pit be the belief that agent i attaches to
his valuation being equal to θ1. As long as the agent is not served, his belief about
this valuation evolves according to (the first-order)

dpit =
((
1− pit

)
ρ0 − pitρ1

)
dt.

Specifically, for all t′ ≥ 0 and all t′ < t′′, such that no service occurs from t′ to t′′,

pit′′ = e−(ρ0+ρ1)(t′′−t′)pit′ +
(
1− e−(ρ0+ρ1)(t′′−t′)

) ρ0
ρ0 + ρ1

. (2)

9



Equation (2) makes it plain that the belief of agent i is a convex combination of his
past belief pit′ and the invariant probability of θ1, ρ0/(ρ0 + ρ1). Along the history with
no service, the posterior belief that the state is θ1 converges to ρ0/(ρ0 + ρ1). As soon
as the agent is served, his belief about his valuation jumps to 1 or 0.

It is without loss of generality to assume that agents’ strategies are Markov in cal-
endar time, posterior belief, current queue, and time-in-queue (t, pit, q

i
t, w

i
t). Abusing

notation, I denote by Σ the set of stationary Markov strategies, which are those that
do not condition on calendar time.

As explained above, the agent’s problem is formalized as an impulse control: the
agent chooses the (random) dates at which he intervenes and adjusts his action, that
is, the dates at which he joins or leaves a queue, in addition to choosing whether
to rejoin a queue immediately after reneging or being served. Notice that, given an
initial state (p, q, w), unless the agent adjusts his action by joining or leaving a queue,
the evolution of the belief p is a sufficient statistic for the time-in-queue evolution.
Hence, there is no loss of generality in focusing on impulse-control policies that are
Markov in the belief.

I focus on symmetric steady-state equilibria. In a steady state, each agent i ∈ [0, 1]

chooses his strategy σi to maximize

V (σi, {Hq}q∈Q) := Eσi,{Hq}q∈Q

[
lim sup
T→∞

1

T

(∫ T

0

θit dN
i
t −

∫ T

0

c1qit ̸=∅ dt

)]
. (3)

Definition 3. A symmetric steady-state equilibrium is a pair (σ, {Hq}q∈Q), σ ∈ Σ

such that the strategy σ ∈ Sigma is optimal given {Hq}q∈Q ⊂ H.

The designer’s goal is to choose a queueing menu to maximize aggregate payoffs in
some equilibrium of the game. More precisely, she chooses a symmetric steady-state
equilibrium (σ, {Hq}q∈Q) to maximize aggregate payoffs. Because, by definition, the
equilibrium is symmetric, each agent achieves the same realized payoff (3). Hence, the
aggregate payoff equals the payoff of a representative agent, denoted by i hereafter.

The designer faces the aggregate capacity constraint (1). In the spirit of the law
of large numbers, I state the capacity constraint as a bound on the average (long-run)
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service rate,8

∫ 1

0

(
S(σi, {Hq}q∈Q)

)
di ≤ λ, where S(σi, {Hq}q∈Q) :=

1

t
N i

t

where the limit inside the integrand is understood in the sense of almost sure conver-
gence.9,10 For notational convenience, I drop the superscript i hereafter.

3 Designer’s Problem

I simplify the designer’s problem in two steps. First, I show that even if an agent’s
type (i.e., his belief at each point in time) belongs to a continuum, attention can
be restricted to binary menus. Second, I show that the problem can be cast into a
lower-dimensional space of sufficient statistics.

3.1 Binary Menus Suffice

Depending on the waiting-time distribution, an agent may benefit from leaving the
queue before being served. For example, consider a waiting-time distribution with a
piecewise constant hazard rate exhibiting one downward jump at some t > 0. If the
agent were to renege and immediately rejoin the queue whenever his time-in-queue
reaches t, he would effectively be served according to an exponential distribution with
a rate equal to the hazard rate before t. This reasoning hinges on the fact that the
designer is unable to detect restarting (the combined action of reneging and rejoining).
Even if reneging is optimal, any best reply satisfies a few desirable properties.

Proposition 1. If σ ∈ Σ maximizes V (σ, {Hq}q∈Q), and V (σ, {Hq}q∈Q) > 0, then,
on path, if qt = ∅ and wt− > 0, pt = 0. That is, the agent stops queueing only when
he realizes a lump sum θ0.

8Note that the law of the counting process N i
t is jointly determined by {Hq}q∈Q and σi, but for

notational simplicity, I keep such dependence implicit.
9In Section A.2.1, I show that for any {Hq}q∈Q and any best reply σ, the long-run service rate

converges to a constant almost surely.
10As I will show, the solution to the designer’s problem involves waiting-time distributions, which

are easily implementable with well-known queueing disciplines. As a result, it is not necessary to
argue that for any equilibrium (σ, {Hq}q∈Q) ∈ Σ×HQ such that S(σ, {Hq}q∈Q) ≤ λ, it is possible
to find a collection of queueing disciplines implementing it. This is a collection of allocation rules
such that the induced anonymous sequential game between agents has a symmetric equilibrium in
which each player adopts the strategy σ and the collection of waiting-time distributions is {Hq}q∈Q.
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To put it differently, regardless of whether and when an agent reneges, starting
from the time when he first joins a queue, he queues uninterruptedly until he realizes
a lump sum θ0, possibly jockeying between different queues in the intervening time.
Roughly, there are two reasons why an agent may join a queue: he may want to
be served as soon as possible or at some point in the future. In the first case, it is
intuitive that reneging and spending any amount of time balking before rejoining the
queue is suboptimal. In the second case, if the agent found it optimal to renege and
wait before rejoining the queue, it would not have been optimal for him to join the
queue so early.

Proposition 1 has two implications. First, when best-replying, if the agent reneges,
he rejoins the queue with no delay. Second, the agent rejoins the queue immediately
after realizing a high lump-sum payoff. As a result, a menu of queueing disciplines
can be understood as a set of possible induced distributions. We can distinguish
two types of agents (“low type” and “high type”), depending on the realized payoff at
the last service (θ0 and θ1) and hence on whether their belief is below or above the
invariant probability of state θ1, ρ0/(ρ0 + ρ1). Faced with a menu, each type of agent
selects the preferred waiting-time distribution from those that can be “engineered” by
repeatedly leaving and joining (potentially) different queues over time.

When the agent plays the strategy σ, the distribution of the amount of time he
spends in queue between two consecutive services is either Ĥσ

0 or Ĥσ
1 , depending

on the realized payoff at the last service. To formally define these distributions,
let {Tn}n=1,2,... := {t ∈ [0,∞) | dNt > 0} be the sequence of service times. The two
induced distributions are:

Ĥσ
0 (t) := Prσ,{Hq}q∈Q

[
Tn+1 − τ ≤ t | Tn ≤ τ < T i

n+1, pτ = pσ
]
,

Ĥσ
1 (t) := Prσ,{Hq}q∈Q

[Tn+1 − Tn ≤ t | pTn = 1] ,
(4)

where pσ is the lowest belief at which the agent joins the queue when playing σ,
pσ := lim inft→∞ {pt : qt ̸= ∅}.

Combining these observations, it follows that it is without loss of generality to
restrict attention to binary menus and non-reneging strategies. The next lemma, the
proof of which is in the spirit of the revelation principle, states this formally. Let
ΣNR ⊂ Σ be the set of non-reneging strategies.
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Lemma 1. If σ ∈ Σ is optimal given {Hq}q∈Q, then there exists a binary menu
{H0, H1} ⊂ H and a strategy σ′ ∈ ΣNR such that

(i) σ′ is optimal within Σ given {H0, H1};
(ii) under σ′, for any t ≥ 0, qt = 1 if and only if pt = 1; and
(iii) (σ′, {H0, H1}) and (σ, {Hq}q∈Q) yield the same payoffs and the same service rate,

i.e., V (σ, {Hq}q∈Q) = V (σ′, {H0, H1}) and S(σ, {Hq}q∈Q) = S(σ′, {H0, H1}).

Proof. Set H0 = Ĥσ
0 , and H1 = Ĥσ

1 . If when offered the menu {Ĥσ
0 , Ĥ

σ
1 }, the agent

uses the best non-reneging strategy that prescribes choosing Ĥσ
1 at check-in when his

belief of his valuation is 1 and Ĥσ
0 otherwise, his payoff is unchanged. Moreover, any

other strategy is suboptimal. In fact, when faced with the original menu, the agent
is able to induce the waiting-time distributions Ĥσ

0 and Ĥσ
1 and hence any possible

convolution of truncations thereof, but he finds it optimal to induce the distributions
Ĥσ

0 and Ĥσ
1 . Hence, he has a best reply σ′ ∈ ΣNR satisfying (ii).

Property (ii) is an incentive-compatibility condition: when checking in, each agent
finds it optimal to join the queue designed for his type. Given Lemma 1, the designer’s
problem can be restated as

supV (σ, {H0, H1})(M)

over binary menus {H0, H1} ⊂ H and strategies σ ∈ ΣNR, subject to

σ ∈ argmax
σi∈Σ

V (σi, {H0, H1}) , (5)

S(σ, {H0, H1}) ≤ λ, (C)

(Ĥσ
0 , Ĥ

σ
1 ) = (H0, H1). (IC)

Restricting the designer to non-reneging strategies is without loss of generality. In
fact, the designer’s problem is reminiscent of a static delegation problem and could
be stated as a choice between pairs of induced waiting-time distributions. The chosen
pair would then correspond to an equivalence class of strategies: the constraint (IC)
provides the criterion for selecting one strategy from this class. Additionally, even if
the designer is constrained to non-reneging strategies, each agent, when best-replying,
is not restricted to this class, as is clear from the incentive compatibility constraint
(5).
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3.2 Non-Reneging Constraint

It might appear that requiring the designer to select σ ∈ ΣNR makes the incentive
problem more difficult: she must provide incentives to play threshold strategies, and
agents’ incentives to do so depend on fine details of the distributions H0 and H1.
However, the following proposition shows that it is sufficient to restrict attention to
the class of new-better-than-used-in-expectation (NBUE) distributions, which I define
next.

Definition 4. A distribution H ∈ H is called NBUE (new better than used in expec-
tation) if for all t > 0,

∫∞
t

(1−H(s)) ds

1−H(t)
≤
∫ ∞

0

(1−H(s)) ds. (6)

Let HNBUE ⊂ H denote the set of NBUE distributions.11 In reliability theory,
NBUE distributions are used to describe the lifetime of a non-repairable component.12

In the context of queues, if a queue is characterized by an NBUE waiting-time distri-
bution, an agent in that queue expects to wait an amount of time (the left-hand side
of (6)) no longer than the expected waiting time of an agent who has just joined the
queue (the right-hand side of (6)). Intuitively, restarting the queue cannot reduce
the residual expected waiting time when the waiting-time distribution belongs to the
NBUE class.

Clearly, degenerate distributions and exponential distributions belong to the
NBUE class. In fact, when the discipline is first-come, first-served, restarting the
queue strictly increases the residual expected waiting time, whereas the residual ex-
pected waiting time is constant if agents are served in random order. Additionally, it
is a well-known result in reliability theory that any NBUE distribution is less variable
than an exponential distribution with the same mean in the following sense: a waiting-
time distribution is NBUE if and only if it second-order stochastically dominates an
exponential distribution with the same mean (Ross, 1995, Proposition 9.6.1).

Proposition 2.
11Strictly speaking, the concept of NBUE (see Shaked and Shanthikumar, 2007) is defined for any

nonnegative distribution with finite mean, while H excludes distributions with atoms at 0.
12In economics, Gershkov and Moldovanu (2010) (see also Chapter 2 in Gershkov and Moldovanu,

2014) leverage the properties of the class of NBUE distributions to bound the efficient policy in a
sequential allocation problem with incomplete information.

14



(i) Restricting attention to NBUE distributions, it is without loss to assume that
the agent is restricted to the class of non-reneging strategies. That is, if σ ∈ ΣNR

is optimal within ΣNR given {H0, H1} ⊂ HNBUE, then there exists {H ′
0, H

′
1} ⊂

HNBUE such that

(a) σ is optimal within Σ given {H ′
0, H

′
1};

(b) (σ, {H ′
0, H

′
1}) and (σ, {H0, H1}) induce the same payoffs and the same ser-

vice rate.
(ii) (a) A binary menu is incentive compatible only if the distribution H1 is NBUE.

That is, if σ ∈ ΣNR is optimal within Σ given {H0, H1} ⊂ H and satisfies
(IC), then H1 ⊂ HNBUE.

(b) A binary menu is optimal only if the distribution H0 is NBUE. That is, if
{H0, H1} ⊂ H together with σ ∈ ΣNR solves (M), then H0 ⊂ HNBUE.

The first part of the proposition states that when focusing on the class of NBUE
distribution, the designer does not need to worry about reneging. For any menu
{H0, H1} ⊂ HNBUE and any non-reneging strategy σ ∈ ΣNR, one can find a pair
of “payoff and service rate equivalent” NBUE distributions {H ′

0, H
′
1} ⊂ HNBUE that

provide incentives not to renege.
The second part shows that without loss of optimality, the designer can restrict

attention to the class of NBUE distributions. First, as explained above, an NBUE
waiting-time distribution has the property that an agent, when queueing, faces an
expected residual waiting time no longer than the average waiting time of newcomers.
As a consequence, agents who are becoming pessimistic about their individual state
find it optimal to restart the queue whenever the waiting-time distribution does not
satisfy the NBUE property and, H1 ∈ HNBUE is a necessary condition for agents to
have an incentive not to renege.

One cannot use the same argument for agents who are becoming optimistic about
their individual valuation, as they may not want to be served as soon as possible. As
I shall explain in Section 4, “low types” dislike randomness in their service time, while
the opposite is true for “high types”. Intuitively, in light of the characterization of
NBUE distributions in terms of second-order stochastic dominance and the fact that
H1 ∈ HNBUE, it follows that choosing a distribution H0 /∈ HNBUE cannot be beneficial
for screening purposes and is suboptimal.
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3.3 Finite-Dimensional Problem

Even restricting attention to NBUE distribution, solving for the optimal binary menu
of waiting-time distributions remains an infinite-dimensional problem. In this section,
I show that given a menu, the payoff and the service rate from any stationary Markov
strategy can be written as a function of a few sufficient statistics, and the designer’s
problem can be cast in the finite-dimensional space of sufficient statistics.

As discussed in Section 2, there is no loss of generality in focusing on impulse-
control policies that are Markov in the belief. Strictly speaking, this description
of strategies (in terms of the posterior belief only) does not specify the behavior
of an agent following off-path histories.13 However, with respect to payoffs, this is
innocuous in my environment. Even if the agent were to start the game with an
arbitrary posterior belief, the transient component of the payoff (that is, the payoff
collected before reaching the recurrent path) would not affect the (long-run average)
payoff.14

Sufficient Statistics. Fix a best reply σ ∈ Σ. The payoff process induced by σ can
be expressed as a function of the belief process. This follows from two observations.
First, as discussed above, without loss, the action is only a function of the belief, and
so is the flow cost incurred by the agent. Second, the times at which the belief jumps
coincide with the times at which the agent collects lump sums. Because when the
agent is served, the belief takes extreme values, to compute the payoff and the service
rate from the strategy σ, we can focus on the two-state Markov renewal process with
state space {0, 1} one obtains by sampling the belief process at the service times, as
illustrated in Figure 1.

We can use this two-state representation to compute the payoff by assuming that
at each visit to state s = 0, 1, the agent collects a reward equal to θs − c µ̂σ,s where
µ̂σ
s ,

µ̂σ
s := Eσ,{Hq}q∈Q

[∫ Tn+1

Tn

1qt ̸=∅ dt | pTn = s

]
, s = 0, 1

13That is, the strategy does not specify the behavior after one’s own deviation.
14There is a small caveat: there exist strategies such that given an initial belief p0, the recurrent

path is never reached. I discuss these “absorbing” strategies at the end of the proof of Lemma 2,
in the Appendix. Absorbing strategies cannot be part of an equilibrium, and hereafter, I focus on
non-absorbing strategies.
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Figure 1: Markov Renewal Process. The expression in brackets represents the tran-
sition probability and the average sojourn time. The computation of these variables
can be found in the proof of Lemma 2.

is the expected time that an agent spends in queue before the next service, starting
from the moment the belief reaches s.15

By the definition of induced waiting-time distribution, (4), the expected time the
agent spends in queue before the next service starting from the moment the belief
reaches 0 and 1 is, respectively,

µ̂σ
0 =

∫
t dĤσ

0 (t), µ̂σ
1 =

∫
t dĤσ

1 (t).

The sojourn times and the transition probabilities of the Markov renewal process
are determined by the strategy σ and the menu of waiting-time distributions via two
pairs of statistics, defined next. Define, for s = 0, 1,

υσ
s := Eσ,{Hq}q∈Q

[Tn+1 − Tn | pTn = s] ,

δ̂σs , := Eσ,{Hq}q∈Q

[
e−(ρ0+ρ1)(Tn+1−Tn) | pTn = s

]
.

The first statistic, vσs , is the expected amount of time between two consecutive
services. Because time enters the evolution of the posterior belief of an agent ex-
ponentially, see (2), it is not surprising that the second statistic, δ̂σσ , is the moment
generation function evaluated at −(ρ0+ρ1). The probability that the Markov renewal
process transitions from state s to state 1 is equal to the probability that, after being
served at time Tn, at the next service, which occurs at Tn+1, the agent realizes a

15Recall that {Tn}n=1,2,... := {t ∈ [0,∞) | dNt > 0} denote the service times.
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payoff of θ1, that is

Eσ,{Hq}q∈Q

[
e−(ρ0+ρ1)(Tn+1−Tn) | pTn = s

]
s

+
(
1− Eσ,{Hq}q∈Q

[
e−(ρ0+ρ1)(Tn+1−Tn) | pTn = s

]) ρ0
ρ0 + ρ1

.
(7)

The weight attached to the initial belief in the convex combination is the expectation
of the exponential function that appears in (2) and, by definition, is equal to δ̂σs .

The following identities make it plain that the statistics depend on the strategy
σ and the menu of waiting-time distributions only through the induced waiting-time
distributions and the lowest belief at which the agent join the queue:

δ̂σ1 =

∫
e−(ρ0+ρ1)t dĤσ

1 (t), δ̂σ0 = ϱ
(
pσ
) ∫

e−(ρ0+ρ1)t dĤσ
0 (t),

υσ
1 = µ̂σ

1 , vσ0 = − ln ϱ
(
pσ
)
/(ρ0 + ρ1) + µ̂σ

0 ,

where

ϱ(p) =

∣∣∣∣1−
p

ρ0/(ρ0 + ρ1)

∣∣∣∣ , (8)

is a function of the time required for the belief to increase from 0 to p.
Once the transition and reward structure of the Markov renewal process induced

by a strategy σ are defined, the computation of payoffs is standard. Lemma 2 sum-
marizes the result. The proof is in the Appendix.

Lemma 2. Fix {Hq}q∈Q ⊂ H, and σ ∈ Σ. Then, V (σ, {Hq}q∈Q) and S(σ, {Hq}q∈Q)
are a function of υσ

s , δ̂σσ,s, µ̂σ
s , s = 0, 1, only.

Feasible Statistics. As shown above, the relevant statistics are a function of the
induced waiting-time distribution, that ultimately will be equal to the offered waiting-
time distribution. Hence, it is convenient to define, for any distribution H, the
following summary statistics:

µH :=

∫ ∞

0

t dH(t) , δH :=

∫ ∞

0

e−(ρ0+ρ1)t dH(t) .
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Figure 2: On the left panel, the sets Γ and ΓNBUE. On the right panel, summary
statistics for the optimal menu {H∗

0 , H
∗
1} and for the best disciplines within the SIRO

and FCFS classes. Solid lines depict the agent’s indifference curves; utility is increas-
ing in the southeast direction. (θ1, θ0, c, ρ0, ρ1, λ) = (1,−3/4, 0, 1, 1, 2).

To identify for which pairs (δ, µ) there exists a distribution H ∈ H (H ∈ HNBUE) such
that (δ, µ) =

(
δH , µH

)
, I use Lemma 3. Its proof, statistical in nature, is relegated to

the Appendix.

Lemma 3. The following are equivalent:
(i) There exists a distribution H ∈ H (H ∈ HNBUE) such that δH = δ and µH = µ;
(ii) it holds that (δ, µ) ∈ Γ ((δ, µ) ∈ ΓNBUE), where

Γ :=
{
(δ, µ) ∈ (0, 1)× (0,∞) | e−(ρ0+ρ1)µ ≤ δ ≤ 1

}
,

ΓNBUE :=
{
(δ, µ) ∈ (0, 1)× (0,∞) | e−(ρ0+ρ1)µ ≤ δ ≤ E

[
e−(ρ0+ρ1)Exp(µ)

]}
,

and Exp(µ) is an exponential random variable with mean µ.

The sets Γ and ΓNBUE are depicted in the left panel of Figure 2. Recall that
for any waiting-time distribution H, the two statistics (δH , µH) are, respectively, the
moment generating function evaluated at −(ρ0 + ρ1) and the expected waiting time.
Because the function t 7→ e−(ρ0+ρ1)t is convex, the southwestern boundary of the
sets corresponds to degenerate distributions, that is, those assigning probability 1

to some µ ∈ (0,∞). The northeastern boundary of ΓNBUE corresponds to the set of
exponential distributions, which are, as mentioned above, “extreme” within the NBUE
family. From the perspective of incentives, when the waiting time is exponentially
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distributed, the non-reneging constraint is binding at all times: agents are served at
a constant rate, independent of their arrival time in the queue.

A noteworthy consequence of Lemma 3 is that the classes of waiting-time dis-
tributions corresponding to the three classes of queueing disciplines in Definition 2
span the set ΓNBUE. If agents are served according to a first-come, first-served disci-
pline, the pair of summary statistics lies on the western boundary of ΓNBUE. If agents
are served according to a service-in-random-order discipline, the pair of summary
statistics lies on the eastern boundary of ΓNBUE. Finally, each point in the interior
of ΓNBUE is achieved by a shifted exponential distribution that can be generated by
serving agents in random order with a minimum waiting-time requirement t > 0.

Notice, however, that the characterization in Lemma 3 does not account for the
capacity constraint. On the one hand, if the designer offers a single queue and does
not discard any of the available resource flow, the expected waiting time does not
exceed 1/λ. On the other hand, as I shall explain in the next section, identifying
the best feasible first-come-first-served queue, for example, is not merely a statistical
problem as it requires analyzing the agent’s best reply.

4 Optimal Menu

Since the designer maximizes the aggregate payoff and each agent achieves the same
payoff in equilibrium, the designer’s preferences coincide with each agent’s preferences.
However, there is scope for the intervention by a designer because agents do not
internalize the externality generated by their actions. To shed light on the problem
faced by the designer, I now present a payoff decomposition that highlights the source
of the externality. (The formal derivation can be found in the Appendix.)

Fix a pair of waiting-time distributions {H0, H1} ⊂ H and a strategy σ ∈ ΣNR

that satisfies (IC). The payoff can be written as

V (σi, {H0, H1}) = S(σi, {H0, H1}) ·
[
m(δH0 , δH1 , pσ)

(
θ1 − c µH1

)

+
(
1−m(δH0 , δH1 , pσ)

) (
θ0 − c µH0

) ]
,

(9)
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where m(δH0 , δH1 , pσ) is the long-run frequency with which a service yields a lump
sum θ1, and

S(σi, {H0, H1}) =
1

m(δH0 , δH1 , pσ)µ1 +
(
1−m(δH0 , δH1 , pσ)

)(
µ0 − ln ϱ

(
pσ
)
/(ρ0 + ρ1)

)

is the induced service rate.
According to (9), the payoff from the strategy σ is the product of the rate at which

the agent is served and the expected total payoff he collects between service times.
The latter is a function of m(δH0 , δH1 , pσ), the probability of being served when the
state is θ1. The relationship between m(δH0 , δH1 , pσ) and S(σi, {H0, H1}) is easy to
understand. From the elementary renewal theorem, the expected service rate equals
the inverse of the average time between services. When joining the queue, the agent
expects to wait an amount of time equal to either µH0 or µH1 , depending on the payoff
he realized at the last service. Moreover, after being served, he waits an amount of
time − ln ϱ

(
pσ
)
/(ρ0+ρ1) before joining the queue whenever the realized payoff is θ0,

which occurs a proportion 1−m(δH0 , δH1 , pσ) of the time.
The cutoff pσ affects the rate at which an agent is served. This is a manifestation

of the congestion externality, reminiscent of a “tragedy of the commons”. The designer
must guarantee through an appropriate choice of distributions that the service rate
induced by the agents’ best reply does not exceed the capacity λ. Ideally, the designer
would like to minimize wasteful wait and persuade the agents with a low belief to
delay as long as possible before joining the queue.

The cutoff pσ also affects the rate of arrival of the high types, or to put it differently,
the representative agent’s probability of realizing a high lump-sum payoff when served.
The longer the agent waits before joining the queue after realizing a lump sum payoff
of θ0, the larger rate of arrival of the high types. At the same time, by Proposition 1,
an agent rejoins the queue with no delay as soon as he collects a high lump-sum payoff,
so a larger rate of arrival of the high types may increase the aggregate queueing cost.

4.1 A Special Case: Costless Queueing

I start by characterizing the optimal menu when queueing is costless, to highlight the
tradeoff stemming from the dynamic externality problem. When queueing is costless,
the negative externality that an agent imposes on another agent is not related to
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the cost of queuing but rather to the rivalry between agents. Agents’ desire to be
served can be due to an exploration or exploitation motive: agents who want to
explore, because they are growing increasingly optimistic about their valuation, do
not internalize the fact that they may curtail other agents’ ability to exploit, that is,
to be served when their expected valuation is the highest.

To develop some intuition regarding the optimal menu, notice that when queueing
is costless, serving agents in a single service-in-random-order queue yields a higher
payoff compared to serving them in a single first-come, first-served queue. When
agents are served in random order, they may be served immediately after realizing
a high lump-sum payoff when their expected valuation is the highest, which never
happens when serving them in order of arrival. The right panel of Figure 2 plots the
summary statistics for the best feasible service-in-random-order queue and the best
feasible first-come, first-served queue: serving agents in random order may involve
a longer wait compared to serving them in order of arrival, but because queueing is
costless, the former is welfare-improving.

Now, observe that the designer could achieve the same payoff and service rate as
a service in random order queue while having agents queue at all times by offering a
binary menu consisting of a service-in-random-order queue and a service-in-random-
order queue with a minimum waiting-time requirement. To put it differently, when
c = 0, the designer does not need to try and persuade agents with a low belief to
delay joining the queue, and without loss of generality, we can assume that in the
optimal menu, agents queue at all times.

Next, I argue that a version of the familiar single-crossing property of preferences
holds: from the law of motion of beliefs (7), an agent’s attitude toward uncertainty
in the service time—whether he is risk-seeking or risk-averse over time lotteries—
depends on whether he is growing optimistic or pessimistic about his valuation. An
agent with a belief below the invariant probability dislikes randomness in his service
time, while the opposite is true for agents with a belief above the invariant probability.

Naturally, one of the incentive constraints must bind; for otherwise, the designer
could decrease the wait at the service-in-random-order queue and increase the wait
at the first-come, first-served queue and increase payoffs, without violating any con-
straint. In the optimal menu, the incentive constraint of the agent joining with a low
belief binds. As a result, the optimal menu is payoff-equivalent to serving agents in
a single service-in-random-order queue. Of course, to achieve the same payoff with a
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single service-in-random-order queue, the designer would need a larger capacity than
λ: the wait at the service-in-random-order queue in the menu is shorter than the wait
at the best feasible service-in-random-order queue (see the right panel of Figure 2).

Theorem 1. Suppose c = 0. An optimal menu is one such that µH∗
1 ≥ µH∗

0 , δH∗
0 ≥

δH
∗
1 , the capacity constraint (C) is binding, and
(i) (FCFS/SIRO menu) H∗

0 is degenerate and H∗
1 is exponential;

(ii) (low-type IC binds) any best reply to {H∗
1 , H

∗
1} yields the same payoff as

(σ, {H∗
0 , H

∗
1}); and

(iii) (agents queue at all times) pσ = 0.

Agents are offered a choice between two queues: one with a first-come, first-served
discipline and the other with a random-order discipline. The agents joining the queue
with a high belief, that is, immediately after receiving a positive lump-sum payoff,
are served in random order, the “riskiest” discipline that provides incentives not to
renege. The agents joining immediately after receiving a negative lump-sum payoff
are served according to a first-come, first-served queueing discipline; hence, they are
exposed to minimal risk.

4.2 The General Case

When c > 0, considerations about queue length cannot be ignored. The trade-off
between allocative efficiency and congestion is more subtle, and pooling different
types of agents by offering a single queue is sometimes optimal.

Theorem 2. There exists a solution (σ, {H∗
0 , H

∗
1}) to the designer’s problem (M). It

is such that µH∗
1 ≥ µH∗

1 , δH∗
1 ≥ δH

∗
1 , the capacity constraint (C) is binding, and one

of the following holds:
(i) (pooling menu) H∗

0 = H∗
1 = H∗ for some H∗ ∈ HNBUE,

(ii) (separating menu) H∗
0 ̸= H∗

1 , and

(a) (FCFS/SIRO menu) H∗
0 is degenerate and H∗

1 is exponential;
(b) (low-type IC binds) any best reply to {H∗

1 , H
∗
1} yields the same payoff as

(σ, {H∗
0 , H

∗
1}); and

(c) (agents queue at all times) pσ = 0.
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The optimal menu can be of two types: pooling or separating. Intuitively, in the
absence of monetary transfers, queueing is not only a byproduct of scarcity but also
serves as a costly signaling device. A screening menu requires agents to engage in
wasteful queueing to signal their type and allocates dedicated capacity to the “high
types.” As in Condorelli (2012), sometimes the designer finds it optimal not to extract
agents’ private information and instead offers a single queue.

When the optimal menu is pooling, the optimal service discipline is either first-
come, first-served or service in random order with or without a minimum waiting-time
requirement. As shown below, both first-come, first-served and service-in-random-
order (with an arbitrary waiting-time requirement t > 0) disciplines can emerge as
optimal for some sets of parameters (θ1, θ0, ρ0, ρ1, λ).

A separating optimal menu coincides with the one in Theorem 1. The value of
the information acquired at each service is maximized: learning is so valuable that
agents queue at all times, even if queueing is costly. From the perspective of the
individual experimentation problem, this does not mean that exploring is valuable
at every belief. Joining the queue has an option value: it guarantees the right to be
served at some point in the future when the belief will be higher. An agent joins the
queue at a belief of 0 because he is certain that he will not engage in exploration for
some time.

4.3 Discussion: Comparative Statics

As mentioned before, when c > 0, considerations about queue length cannot be
ignored. In fact, the separating menu, if optimal, maximizes queue length. To the
other extreme, if the waiting cost is high enough,16 the designer finds it optimal to
offer a single first-come, first-served queue, even if this implies forgoing the possibility
to serve returning agents as soon as they rejoin the queue.

Lemma 4. Fix any admissible set of parameters (θ1, θ0, ρ0, ρ1, λ).
(i) There exists a c such that for c > c, neither the separating menu nor the pooling

service-in-random order queue is optimal.
16Because rescaling (θ1, θ0, c) amounts to rescaling payoffs but does not affect the implementable

set Γ, increasing c is equivalent to decreasing the gain from targeting the high types θ1 − θ0.
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Figure 3: Comparative statics for (θ1, θ0, c) = (1,−3/4, 1/4) and ρ0 = ρ1 = ρ. The
shading indicates the features of the optimal queueing discipline.

(ii) If offering a single first-come, first-served queue is optimal, then it minimizes
the average waiting time µ (equivalently, the queue length) among all feasible
disciplines.

Part (i) formalizes the idea that the benefit from serving agents who are likely to
have a high prevailing valuation does not pay off for the increased congestion when
the queueing cost is high, while part (ii) lays bare the fact that the benefit from a
first-come, first-served queueing discipline comes from shortening the queue.

The comparative statics with respect to λ are summarized in Lemma 5 and Fig-
ure 3. When the resource is scarce, it is optimal to offer a single queue. A first-come,
first-served queue is suboptimal for a high enough λ.

Lemma 5. Fix any admissible set of parameters (θ1, θ0, ρ0, ρ1).
(i) There exists a λ such that for λ < λ, the separating menu is not optimal.
(ii) There exists a λ such that offering a single first-come, first-served queue is

suboptimal for any λ ≥ λ.

The role of persistence is less clear-cut. On the one hand, the informational
value from being served increases with persistence, making screening more valuable.
On the other hand, the cost of not serving returning agents as soon as they join the
queue decreases with persistence. In the extreme case, if the state becomes arbitrarily

25



persistent, all non-reneging single-queue service disciplines perform equally well. The
ambiguous impact of persistence is shown in Figure 3, where for simplicity, I set
ρ0 = ρ1 = ρ. As shown in the right panel, for some set of parameters, offering
two queues is optimal only for an intermediate range of the persistence parameter ρ.
While analytical results are difficult to obtain, numeral simulations suggest that the
patterns identified in Figure 3 are the rule.

Although the solution may be different for different objective functions, the analysis
provides the tools to study the queueing discipline that minimizes waiting time or
maximizes the expected return from service.

In the working paper (Margaria, 2021), I show that the optimal menu can be virtu-
ally implemented, in the sense that it is possible to implement an outcome arbitrarily
close to it with a single queueing discipline by taking advantage of reneging.

5 Concluding Remarks

I study the optimal design of a queue to allocate a resource to agents with heteroge-
neous preferences. In this setup, a menu to screen agents takes the form of multiple
queues (or customer classes), with agents being served in a different order within each
of them. The optimal menu is (at most) binary and has a simple structure. When it
is optimal to offer two distinct queues, agents are served in a first-come, first-served
manner in one queue and in random order in the other queue. When pooling is op-
timal, the single queue is either first-come, first-served or service in random order,
possibly with a minimum waiting-time requirement.

The analysis rests on three main assumptions: anonymity, no transfers, and learn-
ing. It can be shown that if any of the first two assumptions is dropped, it is possible
to restore the first best, that is, to achieve a total payoff arbitrarily close to λθ1.17

If agents observe the evolution of their state, the ranking of queueing disciplines is
unambiguous: the service-in-random-order discipline dominates any other queueing
discipline. If the designer is able to detect reneging, the optimal menu may involve
a discipline that exposes the high-valuation agents to maximal variability in waiting
time by serving at each point in time some of the newly arrived (as in a last-come,

17Each of these extensions is examined in the working paper, Margaria (2021).
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first-served queue) and some of the agents who have been waiting the longest (as in
a first-come, first-served queue).

The model is stylized in many respects. Some assumptions are for convenience.
For instance, the optimal menu is binary even if the valuation takes more than two
values, provided that the expected valuation E [θit | θit = θj] evolves monotonically
over time. The assumption of a continuum of agents makes it possible to formulate
the best-reply problem as a simple Markov decision problem. A model with a finite
number of agents would allow for a finer analysis of the strategic interaction between
them, beyond the general-equilibrium effect captured by the current model. However,
to the extent that the problem reduces to a “two-level” optimization problem, I believe
that the main insights would not be overturned in a setting with a large but finite
number of agents.

Allowing for variable capacity would be useful to study the welfare implications
of congestion in an environment with fluctuations.18 More broadly, because of the
stationarity of the environment and the independence assumption, important aspects
of queueing and learning via experimentation are missing from the current model.19

For example, correlation in agents’ valuations would introduce the possibility of ob-
servational learning.

18Interestingly, the peer-to-peer lending platform Zopa, a two-tier queueing mechanism to allocate
lenders’ funds to borrowing opportunities, prioritizes returning lenders. However, one may expect
economic fluctuations to play a key role in this environment.

19Similarly, the assumption of a deterministic capacity, allows to abstract away from exogenous
randomness in the service time, as would be the case if units of the good arrived stochastically.
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A Proofs

A.1 Preliminaries

This section contains the formal definition of strategies as impulse control policies.
Fix a menu {Hq : q ∈ Q} and let (F i

t )t≥0 be the filtration corresponding to the
information of agent i. A strategy for agent i, i ∈ [0, 1], is a sequence of random times
and random variables, (intervention times and impulses at these times, respectively),

σ = {(τk, ςk)}∞k=1 ,

where

(i) 0 ≤ τ1 < τ2 < . . . ,

(ii) for any k ∈ N,

τk = min
{{

t > τk−1 : dN
i
t > 0

}
, τ̃k
}
,

where τ̃k is a predictable stopping time adapted to the filtration (F i
t )t≥0 (pre-

dictability enforces the informational restriction that, when queueing at t, an
agent chooses the stopping time τ at which he reneges conditional on the event
{inf {t′ > t : dN i

t′ > 0} ≥ τ}),

(iii) for any k ∈ N, ςk ∈ Q̂ is a F i
τk

-measurable random variables, and

(iv) for any k ∈ N, if ςk = ∅, then ςk+1 ̸= ∅ a.s.

The strategy defines the action process (qit, w
i
t)t≥0 taking values in Q̂×R, where

(qit)t≥0 is piecewise constant, qiτk = ςk, and wi
t := (t− supτk≤t τk)1qit ̸=∅.

A.2 Proofs for Section 3

I first show that the payoff and the service rate from any stationary Markov strategy
can be written as a function of a few sufficient statistics and prove the characterization
of feasible statistics in Lemma 3, as stated in Section 3.3. Then, I prove the results
in Section 3.1 and Section 3.2.
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A.2.1 Proof of Lemma 2

The transition matrix of the semi-Markov chain in Figure 1 is

(
ρ1

ρ0+ρ1
+ ρ0

ρ0+ρ1
δ̂σ0

ρ0
ρ0+ρ1

(1− δ̂σ0 )
ρ1

ρ0+ρ1
(1− δ̂σ1 )

ρ1
ρ0+ρ1

+ ρ0
ρ0+ρ1

δ̂σ1

)
.

The chain is positive recurrent and irreducible. The unique stationary distribution is

(
1−m

m

)
:=




ρ1
ρ0+ρ1

(1− δ̂σ1 )

ρ1
ρ0+ρ1

(1− δ̂σ1 ) +
ρ0

ρ0+ρ1
(1− δ̂σ0 )

ρ0
ρ0+ρ1

(1− δ̂σ0 )

ρ1
ρ0+ρ1

(1− δ̂σ1 ) +
ρ0

ρ0+ρ1
(1− δ̂σ0 )




.

First, assume νσ
s < ∞, s = 0, 1. Because any H ∈ H has no atoms at 0, there exist

ε > 0 and ε′ > 0, such that Pr [Tn − Tn−1 ≤ ε] ≤ 1−ε. Moreover the transition matrix
is unichain. Consequently, the long-run average payoff can be computed using the
evaluation equations (by Puterman, 1994, Th. 11.4.2, Ch. 11). The long-run average
payoff equals

m (θ1 − c µ̂σ
1 ) + (1−m) (θ0 − c µ̂σ

0 )

mνσ
1 + (1−m) νσ

0

=

ρ0
ρ0+ρ1

(1− δ̂σ0 ) (θ1 − c µ̂σ
1 ) +

ρ1
ρ0+ρ1

(1− δ̂σ1 ) (θ0 − c µ̂σ
0 )

ρ0
ρ0+ρ1

(1− δ̂σ0 ) ν
σ
1 + ρ1

ρ0+ρ1
(1− δ̂σ1 ) ν

σ
0

. (10)

The time between Tn and Tn+1, for some n ∈ N, is independent of n. Hence,
the average number of upward jumps per unit of time converges almost surely to the
inverse of the mean inter-arrival time (see for example Asmussen, 2003, Chapter V,
Proposition 1.4), that is, the service rate converges almost surely to a constant. From
direct inspection of (10), the rate at which the agent collects lump sums converges
almost surely to

lim
t→∞

1

t
Nt =

1

mνσ
1 + (1−m) νσ

0

=

ρ1
ρ0+ρ1

(1− δ̂σ1 ) +
ρ0

ρ0+ρ1
(1− δ̂σ0 )

ρ0
ρ0+ρ1

(1− δ̂σ0 ) ν
σ
1 + ρ1

ρ0+ρ1
(1− δ̂σ1 ) ν

σ
0

. (11)
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Because the game is symmetric and I analyze the steady state, the long-run frac-
tion of time for which the agent is queueing coincides with the length of the queue in
steady state and is equal to

mµ̂σ,1 + (1−m) µ̂σ
0

mνσ
1 + (1−m) νσ

0

=

ρ0
ρ0+ρ1

(1− δ̂σ0 )µ̂
σ
1 +

ρ1
ρ0+ρ1

(1− δ̂σ1 )µ̂
σ
0

ρ0
ρ0+ρ1

(1− δ̂σ0 ) ν
σ
1 + ρ1

ρ0+ρ1
(1− δ̂σ1 ) ν

σ
0

.

Second, assume νσ
s = ∞ for some s ∈ {0, 1}. In this case, the expected long-run

average payoff is either −∞ or 0, depending on

lim
T→∞

Eσ,{Hq}q∈Q

[∫ T

0

1qt ̸=∅ dt

]
≧ 0.

If the previous limit is 0, the long-run average payoff is 0; it diverges to −∞ otherwise.
In both cases, the service rate converges almost surely to zero.

A.2.2 Proof of Lemma 3

Notice that the function x 7→ e−(ρ0+ρ1)x is convex. Thus, given a mean µ > 0,
the minimum value for the other statistics is achieved by the random variable that
is degenerate at µ. This, together with e−(ρ0+ρ1)x < 1, proves that for any H ∈
H, (δ, µ) ∈ Γ. For the other direction, let (δ, µ) ∈ Γ, δ ̸= e−(ρ0+ρ1)µ. Consider
a distribution H that randomizes between {ε/π, (µ − ε)/(1 − π)}, with probability
(π, 1− π), where 0 < ε < µ and π > 0 are chosen to satisfy

π e−(ρ0+ρ1)ε/π + (1− π) e−(ρ0+ρ1)(µ−ε)/(1−π) = δ.

If ε was 0, the previous equation would have a unique root π ∈ (0, 1). Because the
left-hand side is continuous in ε, there exist an ε > 0 and a π ∈ (0, 1) such that
the equality is satisfied. Clearly, H ∈ H, and by construction, (δH , µH) = (δ, µ). If
instead δ = e−(ρ0+ρ1)µ, the statistics of the random variable degenerate at µ are (δ, µ).

To show the other equivalence, let H ∈ HNBUE. Any NBUE random variable with
mean µ is smaller than Exp[µ] in the convex stochastic order,20 where Exp[µ] is the

20The random variable X is said to be smaller than Y in the convex order if

E [ϕ(X)] ≤ E [ϕ(Y )] for all convex functions ϕ : R → R,

provided the expectation exists.

30



exponential random variable with the mean µ (see Shaked and Shanthikumar, 2007,
Chap. 3, Th. A.55). Because the function x 7→ e−(ρ0+ρ1)x is convex, it follows that
any H ∈ HNBUE satisfies

δH ≤ E
[
e−(ρ0+ρ1)Exp(µ)

]
=

1

1 + (ρ0 + ρ1)µ
.

Consequently, any H ∈ HNBUE,
(
δH , µH

)
∈ ΓNBUE. To show the converse, let (δ, µ) ∈

ΓNBUE. Note that any degenerate distribution belongs to HNBUE. For µ > 0, let D(µ)
denote the random variable degenerate at µ. Then, by the properties of the moment
generating function,

E
[
e−(ρ0+ρ1)(αD(µ)+(1−α)Exp(µ))

]
= e−(ρ0+ρ1)αµ

1

1 + (ρ0 + ρ1) (1− α)µ
.

Let α be such that

e−(ρ0+ρ1)αµ
1

1 + (ρ0 + ρ1) (1− α)µ
= δ. (12)

Because δ ∈
[
e−(ρ0+ρ1)µ, 1

1+(ρ0+ρ1)µ

]
and the left-hand side is decreasing in α, for

α ∈ [0, 1], there exists a unique root α to (12) in [0, 1]. This shows that one can
find a random variable H that is a convolution of a degenerate distribution and an
exponential distribution such that (δ, µ) =

(
δH , µH

)
. Because convolutions of IHR

distributions are IHR, the random variable αD(µ)+ (1−α)Exp(µ) is IHR, and hence
it is an NBUE random variable. Because µ < ∞, and neither D(µ), nor 0 < Exp(µ)

have atoms at 0, H ∈ HNBUE.

A.2.3 Proof of Proposition 1

In the proof, I assume that {Hq}q∈Q is such that the agent has a best reply that
yields strictly positive payoffs. (In light of Lemma 11, this assumption is without
loss of generality.) As argued, a strategy σ ∈ Σ can be described in terms of one
state variable only, the posterior belief. I now introduce some notation to describe
stationary Markov strategies in a way that exploits this recursivity. Fix a (pure)
strategy σ ∈ Σ. For any p ∈ [0, 1], define qσ : [0, 1] → Q̂ to be such that, along the
path induced by σ, qσ(pt) = qt a.s. Additionally, define τσ : [0, 1] → R+ so that, a.s,
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along the path induced by σ,

τσ(p) :=

{
inf
τ≥0

| wt+τ − wt+τ− ̸= 0 or qt+τ ̸= qt− | pt = p, dNt+τ = 0

}
.

The maps τσ and qσ completely characterize the strategy σ ∈ Σ: for any starting
belief p and action (on the recurrent path induced by σ), the agent adjusts his action
either after an interval of time τσ(p), or when his belief jumps, whichever occurs first.

Note that, the time it takes for the belief to go from p to p′, in the absence of
jumps, whenever either p < p′ < ρ/(ρ0 + ρ1) or p > p′ > ρ/(ρ0 + ρ1) is

(ln ϱ(p)− ln ϱ(p′)) /(ρ0 + ρ1)

where the function ϱ : [0, 1] → R was defined in (8).

Overview of the proof. The proof proceeds by contradiction and is divided into
two steps. Assume that σ ∈ Σ is optimal given {Hq}q∈Q. First, I show that for any
p ∈ [ρ0/(ρ0 + ρ1)), 1] on the recurrent path induced by σ, qσ(p) ̸= ∅, that is, the
agent rejoins the queue immediately after realizing a high lump-sum payoff and if he
reneges, he immediately restarts the queue. Then, I show that qσ(p) ̸= ∅ whenever
p ∈ [p0σ, ρ0/(ρ0 + ρ1)).

No abandoning at p ≥ ρ0/(ρ0 + ρ1). Assume by contradiction that qσ(p) = ∅
for some p ∈ [ρ0/(ρ0 + ρ1), 1) on the recurrent path. Let p′ := sup {p | qσ(p) = ∅}
and p′′ := sup {p < p′ | qσ(p) ̸= ∅}. Because the best reply yields a strictly positive
payoff, ρ0/(ρ0 + ρ1) < p′′ ≤ p′ ≤ 1, and by the initial assumption, p′′ < p′.

Define the strategy σ̃ ∈ Σ such that

τσ̃(p) =





τσ(p) p < ρ0/(ρ0 + ρ1),

τσ

(
ϱ(p)
ϱ(p′)

(
p′′ − ρ0

ρ0+ρ1

)
+ ρ0

ρ0+ρ1

)
ρ0/(ρ0 + ρ1) ≤ p ≤ p′,

τσ(p) p′ < p,

qσ̃(p) =





qσ(p) p < ρ0/(ρ0 + ρ1),

qσ

(
ϱ(p)
ϱ(p′)

(
p′′ − ρ0

ρ0+ρ1

)
+ ρ0

ρ0+ρ1

)
ρ0/(ρ0 + ρ1) ≤ p ≤ p′,

qσ(p) p′ < p.
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According to the strategy σ̃, the agents rejoins the queue at p′, and his behavior from
then on coincides with the behavior of an agent who joined at p′′ and followed the
strategy σ.

From (10), the payoff is strictly decreasing in νσ
1 and µ̂σ

1 and strictly increas-
ing in δ̂σ1 . Clearly, ν σ̃

0 = νσ
0 , µ̂σ̃

0 = µ̂σ
0 , and δ̂σ0 = δ̂σ̃0 . Notice that ν σ̃

1 =

νσ
1 − (ln ϱ(p′)− ln ϱ(p′′)) /(ρ0 + ρ1) and µ̂σ̃

1 = µ̂σ
1 . Also, because along the path in-

duced by σ, p′ is visited with positive probability, it can be checked that δ̂σ1 < δ̂σ̃1

contradicting the optimality of σ.

No abandoning at p < ρ0/(ρ0+ρ1). Towards a contradiction, assume that qσ(p) =
∅ for some p > pσ which is reached with positive probability on the induced path.
From (10), the payoff is strictly decreasing in νσ

0 , µ̂σ
0 , and δ̂σ0 . Let p′ := inf{p > pσ |

qσ(p) = ∅} and p′′ := inf{p > p′ | qσ(p) ̸= ∅}. By the initial assumption, p′ < p′′,
and because the best reply yields a strictly positive payoff, p′′ < ρ0/(ρ0 + ρ1).

I now consider a class of strategies that includes σ and show that σ is suboptimal
within this class. Specifically, each strategy in this class is characterized by a pair of
beliefs, (p†, p̃′′) such that (i) 0 ≤ p† < p̃′′ < ρ0/(ρ0 + ρ1), and (ii) ϱ(p′)

ϱ(pσ)

(
p† − ρ0

ρ0+ρ1

)
+

ρ0
ρ0+ρ1

≤ p̃′′. For a pair of beliefs
(
p†, p̃′′

)
satisfying these restrictions, let σp†,p̃′′ be the

strategy such that

τσ
p†,p̃′′

(p) =





(
ln ϱ(p)− ln ϱ(p†)

)
/(ρ0 + ρ1) p < p†

τσ

(
ϱ(p)
ϱ(p†)

(
pσ − ρ0

ρ0+ρ1

)
+ ρ0

ρ0+ρ1

)
p† ≤ p ≤ ϱ(p′)

ϱ(pσ)

(
p† − ρ0

ρ0+ρ1

)
+ ρ0

ρ0+ρ1
,

(ln ϱ(p)− ln ϱ(p̃′′)) /(ρ0 + ρ1)
ϱ(p′)
ϱ(pσ)

(
p† − ρ0

ρ0+ρ1

)
+ ρ0

ρ0+ρ1
< p < p̃′′,

τσ

(
ϱ(p)
ϱ(p̃′′)

(
p′′ − ρ0

ρ0+ρ1

)
+ ρ0

ρ0+ρ1

)
p̃′′ ≤ p ≤ ρ0/(ρ0 + ρ1),

τσ(p) ρ0/(ρ0 + ρ1) < p,

qσ
p†,p̃′′

(p) =





∅ p < p† and
ϱ(p′)
ϱ(pσ)

(
p† − ρ0

ρ0+ρ1

)
+ ρ0

ρ0+ρ1
< p < p̃′′

,

qσ

(
ϱ(p)
ϱ(p†)

(
pσ − ρ0

ρ0+ρ1

)
+ ρ0

ρ0+ρ1

)
p† ≤ p ≤ ϱ(p′)

ϱ(pσ)

(
p† − ρ0

ρ0+ρ1

)
+ ρ0

ρ0+ρ1
,

qσ

(
ϱ(p)
ϱ(p̃′′)

(
p′′ − ρ0

ρ0+ρ1

)
+ ρ0

ρ0+ρ1

)
p̃′′ ≤ p ≤ ρ0/(ρ0 + ρ1)

qσ(p) ρ0/(ρ0 + ρ1) < p.

33



In words, according to the strategy σp†,p̃′′ , starting from a belief of 0, the agent joins
the queue as soon as the belief reaches p†. After joining, the agent behaves “as
if” he had joined at pσ. Because σ involves reneging at p′, according to σp†,p̃′′ , the
agent reneges at

(
ϱ(p′)/ϱ(pσ)

) (
p† − ρ0/(ρ0 + ρ1)

)
+ ρ0/(ρ0 + ρ1). Note that this is

not necessarily the first time the agent reneges after joining: σ may involve jockeying
between queues multiple times, as would σp†,p̃′′ . The second parameter p̃′′ is the belief
at which the agent rejoins: according to σp†,p̃′′ , the agent rejoins at p̃′′ and thereafter
follows the path of actions prescribed by σ after p′′.

By construction, µ̂
σ
p†,p̃′′

0 = µ̂σ
0 , µ̂

σ
p†,p̃′′

1 = µ̂σ
1 , ν

σ
p†,p̃′′

1 = νσ
1 and

ν
σ
p†,p̃′′

0 =Prσ,{Hq}q∈Q
[Tn+1 < − ln (ϱ(p′)) /(ρ0 + ρ1) | pTn = 0]

(
Eσ,{Hq}q∈Q

[Tn+1 − Tn | pTn = 0, Tn+1 < − ln (ϱ(p′)) /(ρ0 + ρ1)]

+
(
ln ϱ(pσ)− ln ϱ(p†)

)
/(ρ0 + ρ1)

)

+ Prσ,{Hq}q∈Q
[Tn+1 ≥ − ln (ϱ(p′)) /(ρ0 + ρ1) | pTn = 0]

(
Eσ,{Hq}q∈Q

[Tn+1 − Tn | pTn = 0, Tn+1 ≥ − ln (ϱ(p′)) /(ρ0 + ρ1)]

+ (ln ϱ(p′′)− ln ϱ(p̃′′)) /(ρ0 + ρ1)

)
,

(13)

and

δ̂
σ
p†,p̃′′

0

= Prσ,{Hq}q∈Q
[Tn+1 < − ln (ϱ(p′)) /(ρ0 + ρ1) | pTn = 0]

ϱ
(
p†
)

ϱ
(
pσ
)

· Eσ,{Hq}q∈Q

[
e−(ρ0+ρ1)(Tn+1−Tn) | pTn = 0, Tn+1 < − ln (ϱ(p′)) /(ρ0 + ρ1)

]

+ Prσ,{Hq}q∈Q
[Tn+1 ≥ − ln (ϱ(p′)) /(ρ0 + ρ1) | pTn = 0]

ϱ (p̃′′)

ϱ (p′′)

· Eσ,{Hq}q∈Q

[
e−(ρ0+ρ1)(Tn+1−Tn) | pTn = 0, Tn+1 ≥ − ln (ϱ(p′)) /(ρ0 + ρ1)

]
.

(14)

The choice of the optimal strategy within this class can be formulated as a choice
over pairs

(
ϱ
(
p†
)
/ϱ
(
pσ
)
, ϱ (p̃′′)/ϱ (p′′)

)
subject to suitable feasibility constraints.
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Specifically, constraint (i) and (ii) imply that the following constraint must hold:




ϱ
(
p†
)

ϱ
(
pσ
) ≤ ϱ (0)

ϱ
(
pσ
)

ϱ (p̃′′)

ϱ (p′′)
≤ ϱ (p′)

ϱ (p′′)

ϱ
(
p†
)

ϱ
(
pσ
) (15)

I conclude the proof by showing that the optimal pair must satisfy (15) with
equality. Proceeding by contradiction, suppose that the optimal pair is interior. Then,
using the fact that the payoff is strictly monotonic in the sufficient statistics,

∂ν
σ
p†,p̃′′

0

∂
(
ϱ
(
p†
)
/ϱ
(
pσ
))

∂ν
σ
p†,p̃′′

0

∂ (ϱ (p̃′′)/ϱ (p′′))

=

∂δ̂
σ
p†,p̃′′

0

∂
(
ϱ
(
p†
)
/ϱ
(
pσ
))

∂δ̂
σ
p†,p̃′′

0

∂ (ϱ (p̃′′)/ϱ (p′′))

. (16)

However, from (13) and (14), this is impossible, because

ϱ(p†)
ϱ(pσ)

Eσ,{Hq}q∈Q

[
e−(ρ0+ρ1)(Tn+1−Tn) | pTn = 0, Tn+1 < − ln (ϱ(p′)) /(ρ0 + ρ1)

]

ϱ(p̃′′)
ϱ(p′′)Eσ,{Hq}q∈Q

[e−(ρ0+ρ1)(Tn+1−Tn) | pTn = 0, Tn+1 ≥ − ln (ϱ(p′)) /(ρ0 + ρ1)]
> 1,

whereas (16) holds true only if this ratio equals 1. Because the constraint (15) is slack
when evaluated at σ (as p′ < p′′), this concludes the proof that any optimal strategy
must satisfy the properties in Proposition 1.

A.2.4 Proof of Proposition 2

Proof of (i)

If H0 ×H1 ∈ HNBUE ×HNBUE, by Lemma 3, (δH0 , µH0 , δH1 , µH1) ∈ ΓNBUE × ΓNBUE.
As shown in the proof of Lemma 3, there exists a pair of convolutions of an exponen-
tial distribution and a degenerate distribution H ′

0 and H ′
θ1

such that (δH
′
θ0 , µH′

0) =

(δH0 , µH0) and (δH
′
θ1 , µH′

1) = (δH1 , µH1). In other words, H ′
θ0

and H ′
θ1

are either de-
generate distributions or shifted (to the right) exponential distributions. Clearly, in
the first case, agents have no incentives to renege, as they are served in order of ar-
rival. In the second case, reneging and rejoining is dominated because it introduces
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“gaps” in the induced waiting-time distribution (see the proof of Proposition 1). Con-
sequently, the optimal strategy within Σ given {H ′

θ0
, H ′

θ1
} is a non-reneging strategy.

In addition, since the optimal non-reneging strategy is a function of the two pairs
of summary statistics only, σ is optimal given {H0, H1}. Similarly, by the results in
Section 3.3, the service rate is unchanged because it is a function of σ and summary
statistics only.

Proof of (ii)(a).

I first state and prove a lemma which is used later.

Lemma 6. If (H0, H1) is incentive compatible and H1 has unbounded support, then

lim supt→∞

∫∞
t

1−H1(s) ds

1−H1(t)
≤
∫ ∞

0

1−H1(t) dt. (17)

Proof. Assume by contradiction, that

lim supt→∞

∫∞
t

1−H1(s) ds

1−H1(t)
−
∫ ∞

0

1−H1(t) dt > 0.

For {tn}n≥1, tn → ∞ consider the strategy that prescribes joining the queue H1 after
realizing a high-lump sum payoff and restarting it (once only) at tn. The induced
changed in the two statistics are, respectively,

∫ tn

0

e−(ρ0+ρ1)s dH1(s) + (1−H1(tn))e
−(ρ0+ρ1)tn

(∫ ∞

0

e−(ρ0+ρ1)(s) dH1(s)

)

−
∫ ∞

0

e−(ρ0+ρ1)s dH1(s) = o(1−H1(tn))

0 > H1(tn)

∫ tn

0

1− H1(s)

H1(tn)
ds+ (1−H1(tn))

(
tn +

∫ ∞

0

(1−H1(s)) ds

)

−
∫ ∞

0

1−H1(s) ds

= (1−H1(tn))

∫ ∞

0

1−H1(s) ds−
∫ ∞

tn

1−H1(s) ds = O(1−H1(tn))

Because the payoff is strictly decreasing in µĤσ
1 , the agent would benefit from deviating

to this strategy for some tn sufficiently large, contradicting incentive compatibility.
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To prove part 2 of the Proposition 2, assume by contradiction that H1 /∈ HNBUE

and (H0, H1) is incentive compatible. First, by Lemma 6, either H1 has a bounded
support or (17) holds. Therefore, by Lemma 7 and Lemma 8, there exists a t > 0

such that
(∫∞

t
e−(ρ0+ρ1)(s−t) dH1(s)

1−H1(t)
,

∫∞
t

1−H1(s) ds

1−H1(t)

)
∈ ΓNBUE,

∫ ∞

0

1−H1(s) ds ≤
∫∞
t

1−H1(s) ds

1−H1(t)
.

The strategy σ that prescribes joining the queue H1 after realizing a high lump-
sum payoff and restarting (reneging and immediately rejoining H1, arbitrarily many
times) at t if he has not being served by then, by Lemma 9, induces the following
statistics

(δĤ
σ
1 , µĤσ

1 ) =

(
H1(t)

1− (1−H1(t))e−(ρ0+ρ1)t

∫ t

0
e−(ρ0+ρ)s dH1(s)

H1(t)
,

∫ t

0
1−H1(s) ds

H1(t)

)
,

and δH1 < δĤ
σ
1 , µĤσ

1 ≤ µH1 . Because the payoff is increasing in δĤ
σ
1 and decreasing

in µĤσ
1 , the agent benefits from such a deviation, contradicting the optimality of the

menu (H0, H1).
Part (ii)(b) is proved as a step in the proof of Lemma 12 (see Claim 4).

A.2.5 Complements to the Proof of Proposition 2

For convenience, I report a few standard results from statistics.

Definition 5. Let X be a non-negative random variable with distribution function H

and a finite mean. The mean residual life of X at t is defined as

MRL(t) =





E[X − t | t] for t < t̄,

0 otherwise,

where t̄ := sup{t | 1−H(t) > 0}.
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Note that because X is almost surely positive, MRL(0) = E[X], and

MRL(t) =

∫∞
t

1−H(s) ds

1−H(t)
.

Theorem 3 (Guess and Proschan, 1988, Th. 2.1). A function MRL is the mean
residual life function of a non-degenerate at 0 life distribution if and only if it satisfies
the following properties:

(i) MRL: [0,∞) → [0,∞).

(ii) MRL(0) > 0.

(iii) MRL is right-continuous (not necessarily continuous).

(iv) MRL(t) + t is increasing on [0,∞).

(v) when there exists t0 such that MRL(t−0 ) := limt→t−0
MRL(t) = 0, then MRL(t) =

0 holds for t ∈ [t0,∞). Otherwise, when there does not exist such a t0 with
MRL(t−0 ) = 0, then

∫∞
0

1/MRL(u) du = ∞ holds.

In addition, the mean residual life function has no downward jumps because

lim
ε→0+

MRL(t)−MRL(t− ε) =
H(t)−H(t− ε)

1−H(t− ε)
MRL(t)−

∫ t

t−ε

1−H(s)

1−H(t− ε)
ds ≥ 0

Lemma 7. Let X be a nonnegative random variable with a finite mean and a bounded
support that is non-degenerate at 0. Then, there exists t > 0 in the interior of
supp(X) such that the random variable [X − t | X > t] belongs to the NBUE family
and E[X − t | X > t] ≥ E[X].

Proof. Let t̄ = max supp(X). Because MRL(t̄) = 0, t† := max{t | MRL(t) ≥ µ} < t̄.
By the properties of the MRL function, MRL(t†) ≥ µ. Consequently, [X−t† | X > t†]

belongs to the NBUE family.

Lemma 8. Let X be a nonnegative random variable with a finite mean and an un-
bounded support that is non-degenerate at 0. Then, if lim supt→∞MRL(t) < µ, there
exists a t > 0 such that the random variable [X − t | X > t] belongs to the NBUE
family.
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Proof. Let t† := sup{t | MRL(t) ≥ µ}. By assumption t† < ∞ and by the properties
of the MRL function, MRL(t†) ≥ µ. Hence, [X − t† | X > t†] belongs to the NBUE
family.

The following result is immediate and stated without proof.

Lemma 9. Let {Xj, j = 1, 2, . . . } be a sequence of nonnegative independent and
identically distributed random variables with finite mean and distribution function H.
For t > 0, let

Y = J · t+XJ , J = inf{j | Xj < t}.

Then

E[Y ] =

∫ t

0
1−H(s) ds

H(t)
,

E[e−(ρ0+ρ1)Y ] =
H(t)

1− (1−H(t))e−(ρ0+ρ1)t
E[e−(ρ0+ρ1)X | X < t].

A.3 Proofs for Section 4

A.3.1 Preliminaries

From the proof of Lemma 2 (see Section A.2.1), the payoff from a strategy
σ ∈ Σ satisfying the properties in Proposition 1 equals (with abuse of notation)
V (δĤ

σ
0 , µĤσ

0 , δĤ
σ
1 , µĤσ

1 , pσ), where

V (δ0, µ0, δ1, µ1, p) :=

(
(1− δ0)

ρ0
ρ0+ρ1

+ δ0p
)
(θ1 − µ1c) + (1− δ1)

ρ1
ρ0+ρ1

(θ0 − µ0c)
(
(1− δ0)

ρ0
ρ0+ρ1

+ δ0p
)
µ1 + (1− δ1)

ρ1
ρ0+ρ1

(
µ0 +

1
ρ0+ρ1

ln
(

ρ0
(1−p)ρ0−pρ1

)),

and the (a.s. limit of the) long-run service rate induced by σ is equal to (with abuse
of notation) limt→∞

1
t
Nt = S

(
δĤ

σ
0 , µĤσ

0 , δĤ
σ
1 , µĤσ

1 , pσ
)
, where

S (δ0, µ0, δ1, µ1, p) :=
δ0p+ (1− δ0)

ρ0
ρ0+ρ1

+ (1− δ1)
ρ1

ρ0+ρ1(
δ0p+ (1− δ0)

ρ0
ρ0+ρ1

)
µ1 + (1− δ1)

ρ1
ρ0+ρ1

(
µ0 +

1
ρ0+ρ1

ln
(

ρ0
(1−p)ρ0−pρ1

)) .
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For later purposes, notice that the following identities hold (the decomposition in (9)
is a special case of these identities):

V (δ0, µ0, δ1, µ1, p) =

S(δ0, µ0, δ1, µ1, p) (m (δ0, δ1, p) (θ1 − µ1c) + (1−m (δ0, δ1, p)) (θ0 − µ0c)) ,
(18)

S(δ0, µ0, δ1, µ1, p) =
1

m (δ0, δ1, p)µ1 + (1−m (δ0, δ1, p)) (µ0 + t(p))
, (19)

where

m (δ0, δ1, p) :=
(1− δ0)

ρ0
ρ0+ρ1

+ δ0p

(1− δ0)
ρ0

ρ0+ρ1
+ δ0p+ (1− δ1)

ρ1
ρ1+ρ0

. (20)

The next lemma shows that for any tuple of summary statistics, (δ0, µ0, δ1, µ1),
there exists a unique optimal cutoff strategy within the class of non-reneging strate-
gies. Let p∗ : Γ× Γ → [0, ρ0/(ρ0 + ρ1)] be defined as

p∗ (δ0, µ0, δ1, µ1)

:=





0 if β (δ0, µ0, δ1, µ1) ≤ α (µ0, µ1)− 1 < −1 ,

ρ0
ρ0+ρ1

if β (δ0, µ0, δ1, µ1) ≥ 0, or α (µ0, µ1) > 0,

ρ0
ρ0+ρ1

(
1− β(δ0,µ0,δ1,µ1)

W−1(e−1+α(µ0,µ1)β(δ0,µ0,δ1,µ1))

)
otherwise,

where W−1 is the (negative branch of the) Lambert function and

α (µ0, µ1) = −(ρ0 + ρ1)
θ1µ0 − θ0µ1

θ1 − cµ1

,

β (δ0, µ0, δ1, µ1) = −ρ0 (θ1 − cµ1) + (1− δ1) ρ1 (θ0 − cµ0)

δ0ρ0 (θ1 − cµ1)
.

(21)

The proof of Lemma 10 is a matter of tedious algebra and omitted.

Lemma 10. Given (δ0, µ0, δ1, µ1) ∈ Γ× Γ, there exists a unique p ∈ [0, ρ0/(ρ0 + ρ1)]

that solves maxp∈[0,ρ0/(ρ0+ρ1)] V (δ0, µ0, δ1, µ1, p). It equals p∗ (δ0, µ0, δ1, µ1).

Let V ∗ (δ0, µ0, δ1, µ1) := V (δ0, µ0, δ1, µ1, p
∗ (δ0, µ0, δ1, µ1)) and S∗ (δ0, µ0, δ1, µ1) :=

S (δ0, µ0, δ1, µ1, p
∗ (δ0, µ0, δ1, µ1)). It is easy to see that the function V ∗ is Gateaux

differentiable in (δ0, µ0, δ1, µ1) whenever V ∗ (δ0, µ0, δ1, µ1) is strictly positive. A similar
remark holds for p∗ (δ0, µ0, δ1, µ1) whenever interior, because it is a composition of
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Gateaux differentiable functions. The following fact assembles some technical results
to be used later:

Fact 1. Let (δ0, µ0, δ1, µ1) ∈ Γ × Γ and p ∈ [0, ρ0/(ρ0 + ρ1)) be such that
V (δ0, µ0, δ1, µ1, p) > 0.

(i) V (δ0, µ0, δ1, µ1, p) is strictly decreasing in µ0, µ1 and δ0, and strictly increasing
in δ1.

(ii) p∗(δ0, µ0, δ1, µ1) is increasing in µ0 and µ1, increasing in δ0 (strictly if interior),
and decreasing in δ1.

Lemma 10 has an immediate important consequence: the designer can always
guarantee that the aggregate payoff is strictly positive by offering a single service-in-
random-order queue. The result is formalized in the following lemma whose proof is
omitted.

Lemma 11. For any set of admissible parameters (θ1, θ0, c, ρ0, ρ1, λ) ∈ R++×R++×
R+ × R++ × R++, there exists an equilibrium (σ,H) ∈ Σ × H that yields a strictly
positive payoff.

A.3.2 Proof of Theorem 2

Whenever the cutoff belief in Lemma 10 is interior, it satisfies the first-order condition

V (δ0, µ0, δ1, µ1, p) =
θ1 − cµ1

µ1 +
ρ1

ρ0+ρ1

1−δ1
δ0

1
(1−p)ρ0−pρ1

. (22)

For convenience, let

κ (δ0, µ0, δ1, µ1) :=
1− δ1
δ0

1

(1− p∗ (δ0, µ0, δ1, µ1)) ρ0 − p∗ (δ0, µ0, δ1, µ1) ρ1
, (23)

so that, when the optimal cutoff is interior, the following identity holds:

m (δ0, δ1, p
∗ (δ0, µ0, δ1, µ1)) =

1
1−δ1

ρ0
ρ0+ρ1

− 1
(ρ0+ρ1)κ(δ0,µ0,δ1,µ1)

1
1−δ1

ρ0
ρ0+ρ1

+ ρ1
ρ1+ρ0

− 1
(ρ0+ρ1)κ(δ0,µ0,δ1,µ1)

. (24)

I shall refer to these three equalities several times in the remainder of the proof, in
addition to the payoff decomposition in (18) and to Fact 1.
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Relaxed problem. I start by solving the relaxed program

maxV ∗ (δH0 , µH0 , δH1 , µH1
)

(RP)

over (δH0 , µH0) ∈ Γ and (δH1 , µH1) ∈ ΓNBUE subject to

V ∗ (δH0 , µH0 , δH1 , µH1
)
≥ V ∗ (δH1 , µH1 , δH1 , µH1

)
, (IC-θ0)

V ∗ (δH0 , µH0 , δH1 , µH1
)
≥ V ∗ (δH0 , µH0 , δH0 , µH0

)
, (IC-θ1)

S∗ (δH0 , µH0 , δH1 , µH1
)
≤ λ. (C)

I first state the solution of the program (RP), then conclude the proof of Theorem 2,
and finally present the proof of the maximization.

Lemma 12. There exists a solution to (RP). It is such that (C) binds and either of
the following holds:

(i) δH0 = δH1 and µH0 = µH1;

(ii) δH0 = e−(ρ0+ρ1)µ
H0 , µH0 > µH1, and δH1 = 1/(1 + (ρ0 + ρ1)µ

H1), and (IC-θ0) is
binding.

Conclusion of the proof of Theorem 2. It remains to prove that in the case
of a separating menu, agents have no incentives to renege. Since H0 is degenerate,
restarting is suboptimal. The distribution H1 is memoryless; hence, no agent can
strictly benefit from restarting. Because µH1 ≤ µH1 and δH0 < δH1 , any agent with a
belief above the invariant probability prefers H1 to H0; thus, even along an arbitrarily
long history with no service, the high type does not find it optimal to leave his queue
and join the queue H0.

Proof of Lemma 12 First, I formulate the domain restrictions (δH0 , µH0) ∈ Γ and
(δH1 , µH1) ∈ ΓNBUE as explicit constraints:

e−(ρ0+ρ1)µ
H1 − δH1 ≤ 0, (WB-1)

e−(ρ0+ρ1)µ
H0 − δH0 ≤ 0, (WB-0)

δH1 − 1

1 + (ρ0 + ρ1)µH1
≤ 0. (EB-1)

42



Define the Lagrangian function as

L
(
δH0 , µH0 , δH1 , µH1 ,η

)
= V ∗ (δH0 , µH0 , δH1 , µH1

)
+ η1

(
λ− S∗ (δH0 , µH0 , δH1 , µH1

))

+ η2
(
V ∗ (δH0 , µH0 , δH1 , µH1

)
− V ∗ (δH1 , µH1 , δH1 , µH1

))

+ η3
(
V ∗ (δH0 , µH0 , δH1 , µH1

)
− V ∗ (δH0 , µH0 , δH0 , µH0

))

+ η4

(
δH0 − e−(ρ0+ρ1)µ

H0
)
+ η5

(
1

1 + (ρ0 + ρ1)µH1
− δH1

)

+ η6

(
δH1 − e−(ρ0+ρ1)µ

H1
)
,

where η ∈ R6
+ is a vector of multiplier. If (δ∗0, µ∗

0, δ
∗
1, µ

∗
1) ∈ (0, 1) × (0,∞) × (0, 1) ×

(0,∞) and η∗ ≥ 0, η∗ ̸= 0 are such that

(i) the constraints (IC-θ1), (IC-θ0),(C), (WB-1), (WB-0), (EB-1) and the comple-
mentary slackness conditions are satisfied;

(ii) L (δH0
∗ , µH0

∗ , δH1
∗ , µH1

∗ ,η∗) ≥ L (δH0 , µH0 , δH1 , µH1 ,η∗), for any
(δH0 , µH0 , δH1 , µH1) ∈ (0, 1)× (0,∞)× (0, 1)× (0,∞),

then (δH0
∗ , µH0

∗ , δH1
∗ , µH1

∗ ) is optimal. In the following, I first derive qualitative prop-
erties of any (δH0 , µH0 , δH1 , µH1) ∈ (0, 1) × (0,∞) × (0, 1) × (0,∞) satisfying (i) and
(ii). It is then easy to show that for any set of parameters, such a pair exists and the
optimal (δH0 , µH0 , δH1 , µH1) must satisfy the conditions in the statement of Lemma 12.

First, assume, throughout the following claims, that (δH0 , µH0 , δH1 , µH1) ∈ (0, 1)×
(0,∞)× (0, 1)× (0,∞).

Claim 1. If (δH0 , µH0 , δH1 , µH1) satisfies (IC-θ0) and (IC-θ1), δH0 ≤ δH1.

Proof. By the average cost optimality equations, there exists a unique (up to an
additive constant) map u : {0, 1} → R and a unique V ∗ ∈ R such that

u(0) = max
(δ,µ)

{
− V ∗µ− cµ+

(
δ p∗(δH0 , µH0 , δH1 , µH1) + (1− δ)

ρ0
ρ0 + ρ1

)
(θ1 + u(1)− θ0 − u(0))

+ θ0 + u(0)

}
,

u(1) = max
(δ,µ)

{
−V ∗µ− cµ+

(
δ + (1− δ)

ρ0
ρ0 + ρ1

)
(θ1 + u(1)− θ0 − u(0)) + θ0 + u(0)

}
,

where the maxima are taken over (δ, µ) ∈ {(δH0 , µH0), (δH1 , µH1)}. Clearly, u(0) <

u(1). It is easy to check that, for (IC-θ0) and (IC-θ1) to be satisfied, δH0 ≤ δH1 .
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Claim 2. If (δH0 , µH0 , δH1 , µH1) satisfies (IC-θ0), δH0 < δH1, µH1 ≤ µH0, and
S∗ (δH0 , µH0 , δH1 , µH1) < S∗ (δH1 , µH1 , δH1 , µH1), then p∗(δH0 , µH0 , δH1 , µH1) = 0.

Proof. Proceeding by contradiction, assume that p∗ (δH0 , µH0 , δH1 , µH1) > 0. First,
I show that this implies p∗ (δH1 , µH1 , δH1 , µH1) > 0. In fact, because the right-
hand side of (22) is strictly increasing in δH0 and strictly decreasing in p, for any
h =

(
hδH0 , hµH0 , 0, 0

)
, hδH0 > 0 and hµ0

≤ 0 such that ∇V ∗ (δH0 , µH0 , δH1 , µH1) ·
h ≤ 0, ∇p∗ (δH0 , µH0 , δH1 , µH1) · h > 0. As a result, (IC-θ0) implies that if
p∗ (δH0 , µH0 , δH1 , µH1) > 0, p∗ (δH1 , µH1 , δH1 , µH1) > 0.

Second, by (22), (IC-θ0) implies

κ
(
δH0 , µH0 , δH1 , µH1

)
≤ κ

(
δH1 , µH1 , δH1 , µH1

)

m
(
δH0 , δH1 , p∗

(
δH0 , µH0 , δH1 , µH1

))
≤ m

(
δH1 , δH1 , p∗

(
δH1 , µH1 , δH1 , µH1

))
.

Since µH1 ≤ µH0 , it follows that S∗ (δH1 , µH1 , δH1 , µH1) ≤ S∗ (δH0 , µH0 , δH1 , µH1), a
contradiction.

Claim 3. If (δH0 , µH0 , δH1 , µH1) solves (RP) and µH0 < µH1, then
p∗(δH0 , µH0 , δH1 , µH1) = 0.

Proof. First notice that µH0 < µH1 and (IC-θ1) imply that (IC-θ0) is slack. Assume
that p∗ (δH0 , µH0 , δH1 , µH1) > 0, so that the first-order conditions hold. Consider a
change along a direction h =

(
0, hµH0 , 0, hµH1

)
, hµ0

> 0, hµ1
< 0 such that

m(δH0 , δH1 , p∗(δH0 , µH0 , δH1 , µH1))hµH1

+ (1−m(δH0 , δH1 , p∗(δH0 , µH0 , δ1, µ
H1)))hµH0 = 0

If ∇V ∗ (δH0 , µH0 , δH1 , µH1) · h ≤ 0, (22) implies ∇κ (δH0 , µH0 , δH1 , µH1) · h > 0 and
∇p (δH0 , µH0 , δH1 , µH1) · h > 0. Hence, ∇S∗ (δH0 , µH0 , δH1 , µH1) · h < 0. As a result,
one can find h′

µH1
such that

∇S∗ (δH0 , µH0 , δH1 , µH1
)
·
(
0, hµH0 , 0, h

′
µH1

)
= 0,

∇V ∗ (δH0 , µH0 , δH1 , µH1
)
·
(
0, hµH0 , 0, h

′
µH1

)
> 0.

If instead ∇S∗ (δH0 , µH0 , δH1 , µH1) · h > 0, let h′
µH0

> hµH0 be such

that ∇S∗ (δH0 , µH0 , δH1 , µH1) ·
(
0, h′

µH0
, 0, hµH1

)
= 0. By the first part of
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the proof, ∇V ∗ (δH0 , µH0 , δH1 , µH1) · h > 0, contradicting the optimality of
(δH0 , µH0 , δH1 , µH1).

Claim 4. If (δH0 , µH0 , δH1 , µH1) solves (RP), (δH0 , µH0) ̸= (δH1 , µH1), and
p∗ (δH0 , µH0 , δH1 , µH1) = 0, then (WB-0) and (EB-1) are binding.

Proof. Suppose first that (WB-0) is slack. In this case,

∂S∗ (δH0 , µH0 , δH1 , µH1)

∂δ0

= −
(µH0 − µH1) ρ0

(1− δH0) ρ0 + (1− δH1) ρ1

∂S∗ (δH0 , µH0 , δH1 , µH1)

∂µ0

,

(25)

and

∂V ∗ (δH0 , µH0 , δH1 , µH1)

∂δ0

= −
(µH0θ1 − µH1θ0) ρ0

(1− δH0) ρ0θ1 + (1− δH1) ρ1θ0

∂V ∗ (δH0 , µH0 , δH1 , µH1)

∂µ0

.

(26)

Because θ0 < 0 < θ1,21

(µH0 − µH1) ρ0

(1− δH0) ρ0 + (1− δH1) ρ1
<

(µH0θ1 − µH1θ0) ρ0

(1− δH0) ρ0θ1 + (1− δH1) ρ1θ0
. (27)

Since

∂V ∗ (δH0 , µH0 , δH1 , µH1)

∂µ0

< 0,
∂S∗ (δH0 , µH0 , δH1 , µH1)

∂µ0

< 0,

there exists a direction h =
(
hδH0 , hµH0 , 0, 0

)
, hδH0 < 0, hµ0

> 0, along which

∇S∗ (δH0 , µH0 , δH1 , µH1
)
· h ≤ 0, ∇V ∗ (δH0 , µH0 , δH1 , µH1

)
· h > 0.

21In light of the definition of G(δH0 , µH0 , δH1 , µH1 , p), for any candidate optimal tuple
(δH0 , µH0 , δH1 , µH1), the denominator of the term on the right-hand side of equation (27) is strictly
positive. For otherwise, the aggregate payoffs would be strictly negative, for any strategy that
prescribes queueing with positive probability.
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Because along the direction h all other constraints are either unchanged or relaxed,
at the optimum, (WB-0) must bind. Assume next that (EB-1) is slack. Since,

∂S∗ (δH0 , µH0 , δH1 , µH1)

∂δ1

=
(µH0 − µH1) ρ1

(1− δH0) ρ0 + (1− δH1) ρ1

∂S∗ (δH0 , µH0 , δH1 , µH1)

∂µ1

,

∂V ∗ (δH0 , µH0 , δH1 , µH1)

∂δ1

=
(µH0θ1 − µH1θ0) ρ1

(1− δH0) ρ0θ1 + (1− δH1) ρ1θ0

∂V ∗ (δH0 , µH0 , δH1 , µH1))

∂µ1

,

by (27), there exists a direction h =
(
0, 0, hδH1 , hµH1

)
, hδH1 > 0 and hµ1

> 0, along
which all constraints are relaxed or unchanged and the objective function is increased.
Hence, (EB-1) must bind at the optimum.

Claim 5. If (δH0 , µH0 , δH1 , µH1) solves (RP), p∗(δH0 , µH0 , δH1 , µH1) = 0, and (WB-1)
is slack, (IC-θ0) binds.

Proof. Assume by contradiction that (IC-θ0) is slack. Let h =
(
hδH0 , hµH0 , 0, 0

)
,

hδH0 < 0, hµ0
> 0 be a direction such that22

hδH0 + (ρ0 + ρ1)e
−(ρ0+ρ1)µ0hµ0

= 0. (28)

Assume first that ∇V ∗(δH0 , µH0 , δH1 , µH1) · h < 0. Then, by (25)–(27),
∇S∗(δH0 , µH0 , δH1 , µH1) · h < 0. Let then hµH1 < 0 be such that
∇S∗(δH0 , µH0 , δH1 , µH1) ·

(
hδH0 , hµH0 , 0, hµH1

)
= 0. Because ∂m (δH0 , δH1 , p)/∂δH0 < 0,

if ∇S∗ (δH0 , µH0 , δH1 , µH1) · h = 0, ∇V ∗ (δH0 , µH0 , δH1 , µH1) · h > 0. As no constraint
is violated along that direction, this contradicts the optimality of (δH0 , µH0 , δH1 , µH1).
Assume next that ∇V ∗(δH0 , µH0 , δH1 , µH1) · h > 0. Again, by (25)–(27), it is pos-
sible to find a direction h′ =

(
h′
δH0

, h′
µH0

, 0, 0
)

that does not violate (WB-0) and
such that ∇S∗(δH0 , µH0 , δH1 , µH1) · h = 0 and ∇V ∗(δH0 , µH0 , δH1 , µH1) · h > 0. As
no constraint is violated along that direction, this contradicts the optimality of
(δH0 , µH0 , δH1 , µH1).

22The restriction (28) takes care of (WB-0).
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Claim 2 and Claim 3 imply that at any optimal (δH0 , µH0 , δH1 , µH1), (δH0 , µH0) ̸=
(δH1 , µH1), p∗(δH0 , µH0 , δH1 , µH1) = 0. Hence, by Claim 4, at any optimal such a
(δH0 , µH0 , δH1 , µH1),(WB-0) and (EB-1) are binding. As when (EB-1) is binding,
(WB-1) is slack, Claim 5 implies that (IC-θ0) binds, which implies µH0 > µH1 . It
remains to prove that (C) binds at any such optimal (δH0 , µH0 , δH1 , µH1).

Claim 6. If (δH0 , µH0 , δH1 , µH1) is optimal, p∗(δH0 , µH0 , δH1 , µH1) = 0, δH0 < δH1, and
(IC-θ0) binds, the constraint (C) binds.

Proof. Consider a direction h =
(
hδH0 , hµH0 , 0, 0

)
, hδH0 > 0 and hµ0

< 0 such that
hδH0 + (ρ0 + ρ1)δ

H0hµ0
= 0. It can be checked that

∂V ∗ (δH0 , µH0 , δH1 , µH1)

∂δ0

=
(µH0θ1 − µH1θ0) ρ0

(1− δH0) ρ0θ1 + (1− δH1) ρ1θ0

∂V ∗ (δH0 , µH0 , δH1 , µH1)

∂µ0

< 0.

Since p∗(δH0 , µH0 , δH1 , µH1) = 0,

(µH0θ1 − µH1θ0) ρ0
(1− δH0) ρ0θ1 + (1− δH1) ρ1θ0

<
1

(ρ0 + ρ1)δH0
.

As a result, ∇V ∗ (δH0 , µH0 , δH1 , µH1) · h > 0. If (C) does not bind, no constraint is
violated along the direction h, contradicting the optimality of (δH0 , µH0 , δH1 , δH1).

Claim 7. If (δ, µ, δ, µ) is optimal, (C) binds.

Proof. Assume (C) does not bind. If e−(ρ0+ρ1)µ < δ, so that (WB-1) and (WB-0) are
slack, consider a direction h = (0, hµ, 0, hµ), hµ < 0. The fact that ∇V ∗(δ, µ, δ, µ) ·
h > 0 contradicts the optimality of (δ, µ, δ, µ). Consider next the case in which
δ = e−(ρ0+ρ1)µ and consider a direction h = (hδ, 0, hδ, 0), hδ > 0. It is verified that

∂m (δ, δ, p∗ (δ, µ, δ, µ))

∂δ0
+

∂m (δ, δ, p∗ (δ, µ, δ, µ))

∂δ1
> 0

∂Λ (δ, µ, δ, µ, p∗ (δ, µ, δ, µ))

∂δ0
+

∂Λ (δ, µ, δ, µ, p∗ (δ, µ, δ, µ))

∂δ1
> 0.

Since the change p∗ (δ, µ, δ, µ) can be neglected (as follows from the envelope theorem),
∇V ∗(δ, µ, δ, µ) · h > 0, yielding the desired contradiction.
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A.3.3 Proof of Theorem 1

First, I show when c = 0, service-in-random-order is the best discipline when the
designer is constrained to offer a single non-reneging queueing discipline. Second,
I show that there exist a menu that outperforms the best service-in-random-order
discipline.

Let (δ, µ) ∈ ΓNBUE and h = (hδ, hµ, hδ, hµ) ∈ R4
++ be a direction such that

∇V ∗ (δ, µ, δ, µ) · h = 0. There are two cases. If ρ0θ1 + ρ1θ0 > 0, the optimal cut-
off p(v, µ, δ, µ) is strictly increasing in δ and µ. Since for fixed p,∇m(δ, δ, p) · h > 0

and m(δ, δ, p) is strictly increasing in p

∇m (δ, δ, p∗(δ, µ, δ, µ)) · h+
∂m (δ, δ, p∗ (δ, µ, δ, µ))

∂p
(∇p∗ (δ, µ, δ, µ) · h) > 0. (29)

By (18), ∇V ∗ (δ, µ, δ, µ) · h = 0 only if ∇S∗ ( δ, µ, δ, µ) · h < 0. Next, I show that
even if ρ0θ1 + ρ1θ0 ≤ 0, (29) holds. To do so, I rewrite the agent’s best reply problem
in Lemma 10 as a choice over m instead of a choice over optimal cutoffs p. That is,
given (δ, µ) ∈ Γ, there exists a unique m ∈ (0, 1) that solves

max
m∈[ρ0/(ρ0+ρ1),ρ0/(ρ0+(1−δ)ρ1))

1

µ+ (1−m) 1
ρ0+ρ1

ln
(

(1−m)δρ0
(1−m)ρ0−(1−δ)mρ1

) (mθ1 + (1−m)θ0) .

The first-order conditions read

(1− δ) (mθ1 + (1−m)θ0)
ρ1

ρ0 + ρ1

−
(
(θ1 − θ0)µ+

θ1
ρ0 + ρ1

ln

(
(1−m)δρ0

(1−m)ρ0 − (1− δ)mρ1

))
((1−m)ρ0 − (1− δ)mρ1) = 0.

It can be shown that the left hand side the equation above is decreasing in δ and
µ, and, using the assumption ρ0θ1 + ρ1θ0 ≤ 0, it is increasing in m. Hence, by the
implicit function theorem, along a direction h = (hδ, hµ, hδ, hµ) ∈ R4

++, (29) must
hold, and again, by (18), ∇V ∗ (δ, µ, δ, µ) · h = 0 only if ∇S∗ ( δ, µ, δ, µ) · h < 0.

As a result, the optimal pair (δ, µ) ∈ ΓNBUE must lie at the east boundary of
the set ΓNBUE. Otherwise, one could increase welfare by increasing δ and µ without
violating the capacity constraint.
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To find the first-come first-served/service-in-random-order menu that outperforms
the best single service-in-random-order queue, I show that the following system, which
identifies a candidate optimal menu, has a solution:

(1− δ0)
ρ0

ρ0+ρ1
θ1 + (1− δ1)

ρ1
ρ0+ρ1

θ0

(1− δ0)
ρ0

ρ0+ρ1

1−δ1
(ρ0+ρ1)δ1

+ (1− δ1)
ρ1

ρ0+ρ1

ln(1/δ0)

ρ0+ρ1

=
δ1θ1

1−δ1
ρ0+ρ1

+ ρ1
ρ0+ρ1

1−δ1

ρ0−(ρ0+ρ1)p∗
(

1−δ1
(ρ0+ρ1)δ1

,δ1,
1−δ1

(ρ0+ρ1)δ1
,δ1

) ,
(30)

(1− δ0)
ρ0

ρ0+ρ1
+ (1− δ1)

ρ1
ρ0+ρ1

(1− δ0)
ρ0

ρ0+ρ1

1−δ1
(ρ0+ρ1)δ1

+ (1− δ1)
ρ1

ρ0+ρ1

ln(1/δ0)

ρ0+ρ1

= λ, (31)

0 ≤ (1− δ0)
ρ0

ρ0 + ρ1
θ1

+ (1− δ1)
ρ1

ρ0 + ρ1
θ0 − ρ0δ0

(
θ1

ln (1/δ0)

ρ0 + ρ1
− θ0

1− δ1
(ρ0 + ρ1)δ1

). (32)

For a fixed δ0 ∈ (0, 1), the left-hand side of (31) is increasing in δ1, tends to infinity
as δ1 → 1, and to 0 as δ1 → 0. As a result, there exists a continuous curve C ⊂ (0, 1)2,
the first and second coordinates corresponding to δ0 and δ1, respectively, that is a
solution to (31). It is easy to see that {(0, 1), (1, 0)} ⊂ C.

For a fixed δ1 ∈ (0, 1) the left-hand side of (32) is decreasing in δ0; let D0 ∈ (0, 1)2

be the set of points that satisfy (32) as equality. Denote by D0 the set of points lying
on or above the curve D0. The left-hand side of (30) is increasing in δ0 if and only
if (δ0, δ1) ∈ D0. Hence, there exists a continuous curve D ⊂ D0 that solves (30).
Because {(0, 0), (1, 1)} ⊂ D, by the intermediate value theorem, the two curves D
and C cross and (δ0, δ1) ∈ C ∩ D ⊂ D0 solves the system of (30)–(32).

Any solution to the system describes an incentive-compatible and feasible menu
such that agents have incentive to join the first-come first-served queue as soon as
their belief jumps to zero. By Lemma 13, for any (δ0, δ1) ∈ C ∩ D,

m

(
δ0, δ1, p

∗
(
δ1,

1− δ1
(ρ0 + ρ1)δ1

, δ1,
1− δ1

(ρ0 + ρ1)δ1

))
< m (δ0, δ1, 0) ,
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which implies that

S∗

(
δ0,

ln (1/δ0)

ρ0 + ρ1
, δ1,

1− δ1
(ρ0 + ρ1)δ1

)
< S∗

(
δ1,

1− δ1
(ρ0 + ρ1)δ1

, δ1,
1− δ1

(ρ0 + ρ1)δ1

)
.

That is, the service-in-random-order discipline which yields the same payoff as a
candidate menu is unfeasible. Consequently, the best feasible service-in-random-order
discipline is outperformed by any candidate menu that solves (30)–(32).

Lemma 13. Suppose δ0 ∈ (0, 1) and δ1 ∈ (0, 1) solves (30)–(32) and
V ∗ (δ,ln (1/δ0)/(ρ0 + ρ1), δ1, 1− δ1/((ρ0 + ρ1)δ1)) > 0. Then,

m∗
(
δ1, δ1, p

∗
(
δ1,

1− δ1
(ρ0 + ρ1)δ1

, δ1,
1− δ1

(ρ0 + ρ1)δ1

))
< m (δ0, δ1, 0) .

Proof. One can check that for any δ1 ∈ (0, 1),
p∗ (δ1, 1− δ1/((ρ0 + ρ1)δ1), δ1, 1− δ1/((ρ0 + ρ1)δ1)) > 0 and, by assumption,
p∗ (1− δ1/((ρ0 + ρ1)δ1), δ1, 1− δ1/((ρ0 + ρ1)δ1), δ1) < ρ0/(ρ0 + ρ1), so the first-order
condition holds. Hence,

δ0 ·
ρ0

ρ0 + ρ1
< δ1

(
ρ0

ρ0 + ρ1
− p∗

(
1− δ1

(ρ0 + ρ1)δ1
, δ1,

1− δ1
(ρ0 + ρ1)δ1

, δ1

))

The result follows from the definition of m (δ0, δ1, p).

A.3.4 Proof of Lemma 4

Proof of (i). First, When the candidate menu is optimal, the total payoff is
bounded above by λθ1 − c, which is negative for c > λθ1. However, as shown af-
ter Fact 1, the designer can always guarantee that the aggregate payoff is strictly
positive by offering a single service- in-random-order queue. Hence, the separating
menu cannot be optimal for sufficiently high c.

Second, I show that for sufficiently high c, service-in-random-order is not optimal
even if the designer is constrained to a single non-reneging queue.
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Let (δSIRO
c , µSIRO

c ) be the statistics of the best feasible service-in-random-order
queue when the queueing cost is c. That is,

S∗ (δSIRO
c , µSIRO

c , δSIRO
c , µSIRO

c

)
= λ, µSIRO

c =
1− δSIRO

c

(ρ0 + ρ1)δSIRO
c

.

(By Lemma 11, this system has a solution for any c > 0.)

Claim 8. The following hold:

(i) limc→∞ δSIRO
c = 1;

(ii) limc→∞ p∗ (δSIRO
c , µSIRO

c , δSIRO
c , µSIRO

c ) = ρ0/(ρ0 + ρ1).

Proof. First, Λ (δ, µ, δ, µ, p) is strictly decreasing in p when evaluated at p∗(δ, µ) and

Λ (δ, (1− δ)/((ρ0 + ρ1)δ), δ, (1− δ)/((ρ0 + ρ1)δ), p)

is strictly increasing in δ. Second, for a fixed (δ, µ), the function p∗(δ, µ, δ, µ) is
increasing in c and

p∗ (δ, (1− δ)/((ρ0 + ρ1)δ), δ, (1− δ)/((ρ0 + ρ1)δ))

is decreasing in δ, in both cases strictly if the cutoff belief is interior.
Additionally, p∗ (δSIRO

c , µSIRO
c , δSIRO

c , µSIRO
c ) > 0 (see proof of Lemma 11).

Hence, (i) follows by the implicit function theorem. To show (ii), no-
tice that as c → ∞, S∗ (δSIRO

c , µSIRO
c , δSIRO

c , µSIRO
c ) is bounded only if

− ln ϱ (p∗ (δSIRO
c , µSIRO

c , δSIRO
c , µSIRO

c )) → ∞, i.e., if p∗ (δSIRO
c , µSIRO

c , δSIRO
c , µSIRO

c ) →
ρ0/(ρ0 + ρ1).

For any c, let h = (hc
δ, h

c
µ, h

c
δ, h

c
µ) ∈ R4

+ be a direction such that
∇V ∗ (δSIRO

c , µSIRO
c , δSIRO

c , µSIRO
c ) · hc = 0, and without loss of generality, set hc

δ = 1. I
shall show that limc→∞ ∇S∗ (δSIRO

c , µSIRO
c , δSIRO

c , µSIRO
c ) · hc > 0, which contradicts the

optimality of the service-in-random-order queue. Since

sgn
(
∇S∗ (δSIRO

c , µSIRO
c , δSIRO

c , µSIRO
c

)
· hc
)

= sgn

(
− hc

µ −
ln ϱ (p∗ (δSIRO

c , µSIRO
c , δSIRO

c , µSIRO
c ))

ρ0 + ρ1

·
(
∂m (δ, δ, p∗ (δ, µ, δ, µ))

∂δ0
+

∂m (δ, δ, p∗ (δ, µ, δ, µ))

∂δ1

))
,
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reasoning by contradiction, if lim infc→∞ ∇S∗ (δSIRO
c , µSIRO

c , δSIRO
c , µSIRO

c ) · hc ≤
0, lim supc→∞ hc

µ = ∞, as − ln ϱ (p∗ (δSIRO
c , µSIRO

c , δSIRO
c , µSIRO

c )) → ∞, and
the last two terms are bounded. But then, by the decomposition (19),
∇V ∗ (δSIRO

c , µSIRO
c , δSIRO

c , µSIRO
c ) · hc < 0, contradicting (3). It follows that

lim infc→∞ ∇S∗ (δSIRO
c , µSIRO

c , δSIRO
c , µSIRO

c ) · hc > 0.

Proof of (ii). It can be checked that V ∗
2 (δ, µ, δ, µ) + V ∗

4 (δ, µ, δ, µ) < 0 and
V ∗
1 (δ, µ, δ, µ) + V ∗

3 (δ, µ, δ, µ) > 0. Hence, if the optimal pair of feasible statistics
(δ∗, µ∗, δ∗, µ∗) in ΓNBUE lies on its west boundary, any pair of statistics (δ, µ) ∈ ΓNBUE

such that µ < µ∗ (which implies δ∗ < δ) must violate the feasibility constraint. As
for any queueing discipline inducing no-reneging, the queue length is equal to µ/λ,
the result follows.

A.3.5 Proof of Lemma 5

Let (δFCFS
λ , µFCFS

λ ) be the statistics of the best feasible first-come-first-served queue
when the service capacity is λ, if it exists. That is, S∗ (δFCFS

λ , µFCFS
λ , δFCFS

λ , µFCFS
λ ) = λ

and δFCFS
λ = e−(ρ0+ρ1)µ

FCFS
λ . If such a discipline does not exists, the statement trivially

holds. So, I shall focus on the case in which (δFCFS
λ , µFCFS

λ ) exists along a sequence
λ → ∞. Notice that by Little’s law, µFCFS

λ < 1/λ. Hence, limλ→∞ µFCFS
λ = 0.

Additionally, there exists a µ > 0 such that

β
(
µ, e−(ρ0+ρ1)µ

)
− α (µ) + 1 < 0,

and hence p∗
(
µ, e−(ρ0+ρ1)µ, µ, e−(ρ0+ρ1)µ

)
= 0 for for 0 < µ < µ. Hence,

p∗ (δFCFS
λ , µFCFS

λ , δFCFS
λ , µFCFS

λ ) = 0 for λ > λ. But then, for any (δ, µ) such that
p∗(δ, µ, δ, µ) = 0 and any h = (hδ, hµ) ∈ R2

+, and in particular for h = (hδ, hµ, hδ, hµ) ∈
R2

+ such that ∇V ∗ (δ, µ, δ, µ) · h > 0, ∇S∗ (δ, µ, δ, µ) · h < 0. Consequently,
(δFCFS

λ , µFCFS
λ ) is suboptimal, even if the designer is constrained to a single non-

reneging queue.
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