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Abstract

A statistical decision rule is a mapping from data to actions induced by

statistical inference on the data. We characterize these rules for data that are

chosen strategically in persuasion environments. A designer wishes to persuade

a decision maker (DM) to take a particular action and decides how many

Bernoulli experiments about a parameter of interest the DM can obtain. After

obtaining these data and estimating the parameter value, the DM chooses to

take the action if the estimated value exceeds some threshold. We establish

that as the threshold changes, the resulting statistical decision rules in many

environments are either simple majority or reverse unanimity.
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1 Introduction

Interested parties often give decision makers (DMs) access to data in order to persuade

them to take a particular action. For example, sellers may allow buyers to experiment

with products prior to making a purchase. Similarly, lobbyists and think tanks often

commission public-opinion surveys in order to convince politicians to support certain

policy proposals. In both cases, the interested party decides how much data about

a parameter of interest — product quality or public support — the DM can obtain,

and the parameter value governs the distribution from which the data are generated.

This paper studies persuasion with these features.

An interested party (henceforth a designer) wishes to convince a DM to take a

particular action. The value of the action to the DM is governed by a parameter

with an unknown value. The designer has a prior belief on the parameter value and

decides how large a sample about it to provide to the DM. Each data point in the

sample is an independent Bernoulli experiment governed by the parameter value.

For example, in public-opinion surveys, the parameter may be the underlying public

support for a policy, and each experiment may correspond to the opinion of a single

survey respondent.

By choosing a sample size, the designer chooses an information structure, that

is, a collection of signal distributions corresponding to different parameter values.

This information structure satisfies what we call responsiveness : for any two pa-

rameter values, the signal distribution for the DM-preferred parameter value first-

order-stochastically dominates the distribution for the second parameter value, but

not the other way around. This property differs from the standard assumption in

Bayesian Persuasion (Kamenica (2019)) whereby the designer can assign the same

signal distribution to any two parameter values.

Responsiveness naturally arises in real-life settings. Public-opinion surveys aim

to be responsive to changes in the opinion of the public. Product experimentation

is sensitive to product quality. And in clinical trials, outcomes are governed by the
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effectiveness of the drug being tested. Surveys and clinical trials are used precisely

because they are responsive to the parameter of interest.

Unlike the designer, the DM in our model wishes to take the action only if its value,

which is governed by the payoff-relevant parameter, exceeds the value of the status

quo. The DM obtains the sample, estimates the parameter value using statistical

inference, and takes the action if the estimated value is sufficiently high.

We consider two approaches to statistical inference: the frequentist approach that

relies only on the sample and the Bayesian approach that starts with a prior belief

on the parameter value and Bayes-update it based on the sample. An advantage

of the frequentist approach is that it does not require prior knowledge and uses

only objective data. It thus fits environments in which the DM is less experienced,

less knowledgeable about fundamentals, or does not want prior beliefs to influence

decision making.1 An important subclass of frequentist inference, which we focus

on, is the class of unbiased inference procedures whereby the expected value of an

estimate (which is a distribution over parameter values) is identical to the sample

mean. Leading examples are maximum likelihood estimation and beta estimation.

Our analysis focuses on choice regularities that emerge as the status quo changes,

either across time for a single individual or across individuals in a population. To

summarize these regularities, we follow Wald (1949) and use the notion of a statis-

tical decision rule: A direct mapping from samples (n, k), where n is a sample size

chosen by the designer for some status-quo value and k is the number of successful

experiments, to binary choices between taking the action and keeping the status quo.

We identify two statistical decision rules that arise endogenously for unbiased

statistical inference. The first is the reverse-unanimity rule, whereby the DM takes

the action unless all the experiments fail. This rule summarizes choice behavior when

the designer’s prior on the parameter value is decreasing. To be sure, the DM is a

statistician who decides whether to take the action based on the estimated parameter

1The statistics literature has debated the merits of the two approaches for over a century. Efron
(2005) is a nice recent discussion.
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value. But the designer’s sample-size selection results in a rule that exhibits what may

seem like a “bias” in favor of taking the action. The second rule is simple majority,

whereby the DM takes the action if and only if a simple majority of experiments are

successful. This rule summarizes choice behavior when the designer’s prior is either

increasing and concave or symmetric, and the status-quo value exceeds 1/2.

The majority rule also summarizes the choice behavior of Bayesian DMs who

share the designer’s symmetric prior, although for a “compressed” interval of status-

quo values relative to unbiased inference. Figure 4 provides a graphical illustration.

The compression of the interval is perhaps expected because, for Bayesian DMs,

estimation gravitates toward the mean parameter value according to the prior. As

the strength of the prior decreases, Bayesian DMs rely increasingly on the data, and

thus their behavior converges to that of frequentist DMs.

We proceed as follows. Section 2 presents the model. Sections 3 and 4 analyze

unbiased and Bayesian inference, respectively. Section 5 discusses the related litera-

ture. Section 6 concludes with a discussion of costly data provision. The Appendix

contains proofs that do not appear in the main text.

2 Model

A decision maker (DM) has to decide whether to take an action or keep the status

quo. The value t ∈ (0, 1] of keeping the status quo is known to the DM and the

value q ∈ [0, 1] of taking the action is not. To make a decision, the DM estimates q

using data and statistical inference, and takes the action if the estimated value of q

is weakly larger than t.

The data are independent Bernoulli experiments with success probability q. That

is, the data are governed by the value of taking the action. A successful experimental

realization, or simply a success, is interpreted as a data point in favor of taking the

action. An unsuccessful realization is called a failure.
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The size of the data n ∈ N is decided by a designer who obtains a payoff of 1 if

the DM takes the action and 0 otherwise. The designer thus wishes to persuade the

DM to take the action regardless of the values of t and q. The designer knows t and

believes that q is drawn from an absolutely continuous distribution with density f .

The prior belief f is decreasing (increasing) if it (1) weakly decreases (increases) in

q on [0, 1] and (2) differs from the uniform prior on a non-zero measure. A prior f is

symmetric if f(1/2− q) = f(1/2 + q) for q ∈ [0, 1/2]. Data provision is costless.2

After the designer decides the data size, the Bernoulli experiments are carried

out by the DM or a third party, and the DM obtains their realizations. The DM’s

sample is the pair (n, k) where n is the number of experiments and k is the number

of successes. We will refer to n as the sample size and to k/n as the sample mean.

2.1 Statistical inference

An inference procedure describes how the DM makes inferences from samples.

Definition 1. (Salant and Cherry (2020)) An inference procedure G = {Gn,k}

assigns a cumulative distribution function (CDF) Gn,k, called an estimate, to every

sample (n, k) such that:

(i) the estimate Gn,k′ weakly first-order stochastically dominates the estimate Gn,k

when k′ > k, and

(ii) the estimate Gn,n first-order stochastically dominates the estimate Gn,0.
3

An inference procedure is the analogue of an estimator in the statistics literature.

It can be used to describe many forms of statistical inference. A focal example is

Bayesian inference.

Example 1 (Bayesian Inference). The DM has a non-degenerate prior belief on q

and uses Bayes rule to update it based on the sample.

2Section 6 discusses costly data provision.
3This definition is weaker than in Salant and Cherry (2020) as we require dominance in the strict

sense only for Gn,n and Gn,0.
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In addition to Bayesian inference, an inference procedure can also be used to

model frequentist inference procedures that do not rely on prior beliefs. Here are

three examples.

Example 2 (Maximum Likelihood Estimation (MLE)). The DM calculates the most

likely parameter q to have generated the sample. It is easy to verify that this parameter

is the sample mean. Thus, the resulting estimate is Gn,k(q) = 1{q≥k/n}.

Example 3 (Beta Estimation). The DM wishes to conduct Bayesian updating relying

as little as possible on prior beliefs. The DM starts with Haldane’s “prior” (Haldane

(1932)), which is the limit of the Beta(ϵ, ϵ) distribution as ϵ → 0. The DM’s posterior

belief after obtaining the sample (n, k) is the limit of the corresponding Bayesian

posteriors Beta(ϵ + k, ϵ + (n − k)), i.e., it is the Beta(k, n − k) distribution. Thus,

the DM’s estimates rely only on the sample.4

Example 4 (Dogmatic Views). The DM believes q is distributed either according to

the CDF F0 or the CDF F1 that first-order stochastically dominates F0. The DM

decides which distribution to use in decision making based on the sample. If k(n) or

more realizations are successes, the DM uses F1. Otherwise, the DM uses F0.

Frequentist inference procedures can be classified according to whether they are

unbiased.

Definition 2. An inference procedure G is unbiased if the expected value
∫ 1

0
qdGn,k

of any estimate Gn,k is equal to the sample mean k/n.

The MLE and Beta Estimation procedures are unbiased. The dogmatic views

procedure is not. Bayesian inference is also not unbiased because the expected value

of an estimate depends on both the prior and sample mean.

Following the estimation of q, the DM uses the estimate to calculate the expected

value of q, and takes the action if this value is weakly larger than t. For completeness,

we assume that a frequentist DM does not take the action if no data is provided.

4When the sample contains only failures or successes, the DM concentrates the estimate on 0 or
1 respectively.
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2.2 The persuasion probability

The designer’s payoff is equal to the expected probability that the DM takes the

action. To calculate this probability, we first denote by b(n, j, q) =
(
n
j

)
qj(1 − q)n−j

the probability of obtaining j successes in n Bernoulli experiments with success prob-

ability q and by

P (n, k, q) =
n∑

j=k

b(n, j, q)

the probability of obtaining k or more successes. We denote by

P (n, k) =

∫ 1

0

P (n, k, q)f(q)dq

the expected value of the probability P (n, k, q) according to the designer’s prior f .

By the first-order stochastic dominance property of an inference procedure, if the

DM takes the action after obtaining the sample (n, k), then the DM also takes the

action after obtaining a sample (n, j) with j > k. Thus the probability that a DM

with inference procedure G takes the action is P (n, k(n,G, t), q) where k(n,G, t) de-

notes the smallest number of successes after which the DM takes the action.5 We call

P (n, k(n,G, t), q) the persuasion probability, and refer to its expected value according

to the designer’s prior, P (n, k(n,G, t)), as the expected persuasion probability. When

clear from the context, we omit the dependence of k on its arguments.

For unbiased inference procedures, the focus of our analysis in Section 3, the

smallest number of successes that trigger the DM to take the action is k(n,G, t) =

⌈tn⌉. This number does not depend on the specifics of the inference procedure, and

so we can write the persuasion probability as:

P (n, ⌈tn⌉, q) =
n∑

j=⌈tn⌉

b(n, j, q). (1)

5There may be sample sizes for which the DM does not take the action regardless of the number
of successes. Such sample sizes are never optimal, and so we ignore them.
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2.3 The designer’s objective

The objective of the designer is to choose, for any value of the status quo t, a sample

size that maximizes the expected persuasion probability. That is, the designer solves

for

S(t) ≡ argmax
n∈N∪{0}

P (n, k(n,G, t)) (2)

where S(t) may include more than one sample size and sample size 0 corresponds to

the designer not providing any data to the DM.6

2.4 Statistical decision rules

The optimal sample size may change as the value of the status quo changes. As the

sample size and sample realizations change, so does the DM’s choice behavior. The

following definition, based on Wald (1949), is about the mapping from samples to

choices.

Definition 3. For an interval I ⊂ (0, 1] of status-quo values, a statistical decision

rule CI assigns an action CI(n, k) ∈ {a, s}, where a denotes taking the action and

s keeping the status quo, to any sample (n, k) where n ∈ S(t) for some t ∈ I and

0 ≤ k ≤ n.

The domain of a statistical decision rule is affected by the designer’s choice of

sample sizes. It is therefore a subset of the set of all possible samples. This do-

main may still be quite large (often countably infinite as we show below) because a

statistical decision rule allows for variation in the status-quo value.

Two ubiquitous statistical decision rules are discussed in the analysis to follow.

The first is reverse unanimity, whereby the DM takes the action unless all sample

realizations are failures. That is, C(0,1](n, k) = a if and only if k > 0. The second

statistical decision rule, for t > 1/2, is the simple-majority rule, whereby the DM

6Sample size 0 is only relevant for the analysis of Bayesian inference because a frequentist DM
would not take the action without obtaining data.

8



takes the action if and only if more than half of the sample realizations are successes.

That is, C( 1
2
,1](n, k) = a if and only if k > n/2.

3 Unbiased inference

We proceed to study the designer’s optimal sample sizes and the DM’s statistical

decision rules for unbiased statistical inference. The following property of the per-

suasion probability (proved in the Appendix) will be useful in the analysis.

Single crossing. For any two pairs (n′, k′) and (n, k) such that n′ < n and 0 < k′ <

k, there exists a cutoff q∗ > 0 such that P (n′, k′, q) > P (n, k, q) for q ∈ (0, q∗). If

n′ − k′ < n− k then q∗ < 1 and P (n, k, q) > P (n′, k′, q) for q ∈ (q∗, 1).

The single-crossing property can be used to rank persuasion probabilities. For a

given t, let k′ and k be the smallest number of successes after which the DM takes

the action for sample sizes n′ and n respectively. If k′ < k and n′ − k′ < n− k then

the persuasion probability P (n′, k′, q) crosses P (n, k, q) exactly once and from above

in (0, 1). Consequently, sample size n′ dominates sample size n for priors that put

a “large weight” on small values of q whereas sample size n dominates n′ for priors

that put a large weight on large values of q.

Figure 1 provides a graphical illustration. Suppose that t ∈ (1/2, 2/3]. For sample

size 1, a single success suffices for taking the action, and for sample size 3, at least

two successes are required. The conditions for an interior single crossing are thus

met, and P (1, 1, q) crosses P (3, 2, q) exactly once and from above in (0, 1).

3.1 Decreasing priors and reverse unanimity

The first class of designer priors we analyze is the class of decreasing priors. Recall

that a prior is decreasing if it weakly decreases in q on [0, 1] and differs from the

uniform prior on a non-zero measure.
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Figure 1: Persuasion probabilities P (1, 1, q) (solid) and P (3, 2, q) (dashed).

Theorem 1. For any decreasing prior and any value t of the status quo, the uniquely

optimal sample size is ⌊t−1⌋. Consequently, the DM’s statistical decision rule is re-

verse unanimity.

Theorem 1 says that any positive integer is a sample size chosen by the designer

for some interval of status-quo values. Consequently, with sufficient variation in the

status-quo, choice behavior can be observed for every feasible sample. This behavior,

although generated by unbiased statistical inference, is consistent with the reverse-

unanimity rule: the DM takes the action unless all experiments fail.

Theorem 1 also says that the optimal sample size increases as the status-quo

value decreases. This is perhaps expected because the status-quo value reflects the

intensity of the conflict between the DM and the designer. The DM wishes to take

the action only if its value exceeds that of the status quo whereas the designer wishes

the DM to take the action regardless of the status quo. The persuasion probability

corresponding to the optimal sample size, which is given by 1−(1− q)n, also increases

as the status quo decreases implying that persuasion is more likely when there is less

conflict.

Proving Theorem 1 amounts to showing that sample size n′ is uniquely optimal

10



for the interval In′ = ( 1
n′+1

, 1
n′ ] of status-quo values. Let’s fix this interval and focus

on samples of the form (n(k), k) with n(k) = k(n′ + 1) − 1. That is, n(k) is the

largest sample size n such that the sample (n, k) triggers taking the action for some

status-quo value in In′ .7 By definition, n(1) = n′, and the sample (n′, 1) triggers

taking the action for any status-quo value in In′ .

The first step in the proof of Theorem 1 below is to establish that expected

persuasion probabilities in the interval In′ are bounded from above by

max
k∈N

P (n(k), k).

Therefore, it suffices to show that P (n′, 1) dominates all other P (n(k), k)’s. In the

second step, we calculate the probabilities P (n(k), k) under the uniform prior and

show that they are equal. Finally, we observe that the transition from the uniform

prior to a decreasing one is an operation that “shifts mass” from higher values of q to

lower ones. Thus, by the single-crossing property, mass is shifted to values in which

P (n(1), 1, q) dominates all other P (n(k), k, q)’s, establishing the result.

Proof of Theorem 1. We show that sample size n′ is uniquely optimal for t ∈

In′ = ( 1
n′+1

, 1
n′ ].

We first assign to every positive integer k the sample size n(k) = k(n′ + 1) − 1.

Note that n(1) = n′.

Lemma 1. For any integer k ≥ 1, P (n(k), k) > P (n, k) for n < n(k).

Lemma 1 implies that it suffices to compare P (n′, 1) to other probabilities of the

form P (n(k), k) in order to prove the optimality of n′. Indeed, consider some sample

size n and let k be the smallest number of successes triggering the DM to take

the action for this sample size. That is, (k − 1)/n < t ≤ k/n. Coupled with the

inequality t > 1/(n′ + 1), we have that n ≤ k(n′ + 1) − 1 = n(k). By Lemma 1,

7Note that the sample (n(k), k) does not necessarily trigger taking the action for all status-quo
values in In′ .
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the expected persuasion probability P (n, k) is bounded from above by P (n(k), k).

Thus, if the expected persuasion probability P (n′, 1) exceeds P (n(k), k) for all k ≥ 2

then P (n′, 1) exceeds all the expected persuasion probabilities of the form P (n, k)

satisfying k
n
≥ t. Consequently, sample size n′ is optimal.

For the uniform prior, the probabilities P (n(k), k) are equal. This is because the

probability P (n, k, q) is the incomplete regularized Beta function, which in turn is the

CDF of the Beta(k, n−k+1) distribution with mean k
n+1

. Therefore, the probability

P (n, k), which for the uniform prior is the integral of the corresponding CDF, is equal

to 1− k
n+1

. Thus, for the uniform prior:

P (n(k), k) = 1− k/(n(k) + 1) = 1− 1/(n′ + 1) = P (n′, 1).

For decreasing priors, P (n(1), 1) exceeds P (n(k), k) for every k ≥ 2. This is

an implication of the single-crossing property because a decreasing prior intuitively

“shifts mass” from high values of q to lower ones relative to the uniform prior. The

following lemma formalizes this intuition and thus concludes the proof.

Lemma 2. If P (n′, 1) ≥ P (n(k), k) for the uniform prior, then P (n′, 1) > P (n(k), k)

for any decreasing prior.

3.2 Increasing or symmetric priors and simple majority

For increasing priors, we can obtain a lower bound on the optimal sample size.

Proposition 1. For any increasing prior and any value t of the status quo, the

optimal sample size is weakly larger than n(k′) = k′(n′ +1)− 1 where n′ = ⌊t−1⌋ and

k′ is the unique integer satisfying k′+1
n(k′+1)

< t ≤ k′

n(k′)
.

The proof of Proposition 1 follows similar ideas to those of Theorem 1 with two

modifications. First, the transition from a uniform prior to an increasing one shifts
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mass to higher values of q, which favor larger sample sizes of the form n(k). Second,

for a given status quo, the largest sample of the form (n(k), k) that triggers taking

the action is (n(k′), k′) where k′ is defined as in the statement of the proposition.

Sample size n(k′) is thus a lower bound on the optimal sample size.

For t ∈ (1/2, 1] = I1, we have that n′ = 1 in the statement of Proposition 1.

The smallest candidate for optimality is therefore the largest odd sample size 2k− 1

satisfying that a simple majority k of successes triggers taking the action. Theorem

2 shows that this candidate is indeed optimal when the prior is also concave.

Theorem 2. For any increasing and concave prior and any value t > 1/2 of the

status quo, the uniquely optimal sample size is the largest odd sample size weakly below

⌊(2t− 1)−1⌋. Consequently, the DM’s statistical decision rule is simple majority.

Theorem 2 says that for t > 1/2 any odd integer n is a uniquely optimal sample

size for some interval of status-quo values. The optimal sample size and the corre-

sponding persuasion probability decrease in the status-quo value, i.e., as the intensity

of conflict between the DM and the designer increases. Variation in the status quo

reveals a familiar choice pattern: behavior is consistent with the simple majority rule.

Theorem 2 can be extended to any prior that increases in q and decreases in the

ratio f(q)/q.8 Intuitively, when the ratio f(q)/q decreases in q, the prior assigns

sufficiently large mass to small values of q so that the sample sizes identified in

Proposition 1 as a lower bound for t > 1/2 are optimal. When this is not the case,

large sample sizes may dominate smaller ones and an optimal sample size may not

exist. To illustrate, consider a prior that assigns positive mass only to q’s above some

fixed q′ > 0. This prior may reflect the belief of a designer who is confident that the

DM’s value of taking the action is at least q′. For such an increasing prior, if the

status-quo value is below q′, the designer has an incentive to provide unlimited data

to the DM as providing an additional data point further increases the persuasion

probability for large sample sizes, and large sample sizes dominate small ones.

8The proof is essentially identical to the proof of Theorem 2 in the Appendix.
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Figure 2: Optimal sample sizes for monotone or symmetric priors.

A modified version of Theorem 2 also holds for symmetric priors.

Theorem 3. For any symmetric prior and any value t > 1/2 of the status quo,

all odd sample sizes weakly below ⌊(2t− 1)−1⌋ are optimal. Consequently, the DM’s

statistical decision rule is simple majority.

To prove Theorem 3, we first observe that expected persuasion probabilities in I1

are bounded from above by probabilities of the form P (2k − 1, k). The probabilities

P (2k − 1, k) are in turn equal for symmetric priors. This is because for any two

integers k and k′, the difference function ∆(q) = P (2k − 1, k, q) − P (2k′ − 1, k′, q)

satisfies ∆(q) = −∆(1− q). Thus, it suffices to focus on odd sample sizes satisfying

that a simple majority of successes triggers taking the action. For a given t > 1/2,

the largest sample size for which this happens is the one specified in the statement

of Theorem 3.

Figure 2 summarizes the results of Section 3. Decreasing priors provide the lower

envelope of the optimal sample sizes. For t > 1/2, increasing and concave priors

provide the upper envelope, and symmetric priors span the range of all odd sample
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sizes between the lower and upper envelopes.9

4 Bayesian inference

When the DM is a Bayesian statistician who shares the designer’s prior f rather than

a frequentist statistician, simple majority continues to be a relevant choice regularity.

To illustrate this point, we consider Beta(α, β) priors with the density

f(α, β) =
qα−1(1− q)β−1∫ 1

0
qα−1(1− q)β−1dq

where α and β are real numbers. We may think about α as measuring the “prior

number of successes”, or how confident the DM is — based on prior knowledge —

that q is large. Similarly, β is the “prior number of failures” measuring the DM’s

prior confidence that q is small.

Symmetric Beta priors are characterized by α = β. They have a variety of shapes

as α changes. As α increases from just above 0 to 1, the Beta(α, α) distribution has a

U -shape that gradually flattens until the distribution becomes uniform for α = 1. As

α increases above 1, the distribution transitions to a reverse U -shape before taking

a bell shape with an increasingly large mass around its mean. Figure 3 provides a

graphical illustration.

A DM with a Beta(α, α) prior who obtains the sample (n, k) Bayes-updates the

prior belief to the Beta(α+k, α+(n−k)) distribution.10 That is, the sample successes

are added to the prior number of successes, and sample failures are added to the prior

number of failures. The expected value of this Bayesian estimate is a weighted average

of the prior mean 1/2 and the sample mean k/n with weights corresponding to the

9The lower bound on the optimal sample size for symmetric priors, and in fact any prior, follows
from Lemma 1. By the Lemma, if t ∈ In′ then P (n′, 1) > P (n, 1) for n < n′.

10This is because the Beta(α, β) distribution is a conjugate prior for Bernoulli experiments.
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prior and sample relative strengths, 2α and n, respectively:

2α

2α+ n︸ ︷︷ ︸
prior weight

·

prior mean︷︸︸︷
1

2
+

n

2α+ n︸ ︷︷ ︸
sample weight

·

sample mean︷︸︸︷
k

n
.

Bayesian inference has two immediate implications for the analysis. First, if the

status-quo value is smaller than the prior mean 1/2, data provision is irrelevant:

the DM takes the action with probability 1 without obtaining any additional data.

Second, if the status-quo value is above α+1
2α+1

, which is the posterior mean after

observing the sample (1, 1), then sample size 1 cannot be optimal and the domain

of relevant sample sizes is smaller than for unbiased inference. To facilitate the

comparison of Bayesian inference to unbiased inference, we therefore focus on t ∈(
1/2, α+1

2α+1

]
= Iα where the domains of the designer’s maximization problem for

Bayesian and unbiased inference are identical.

Theorem 3B, where B stands for Bayesian, establishes that the DM’s choice be-

havior is consistent with simple majority in Iα. In fact, the entire structure of the

optimal sample sizes in Iα is identical to the structure characterized in Theorem 3

for unbiased inference in I1.

16



t

1,	
3,	
5

1
2

2
3

3
5

14
7

1≥ 2
U

n
b

ia
se

d
1, 3

t
1
2

α + 1
2α + 1

α + 2
2α + 3

1α + 3

2α + 5

≥ 2

B
ay

es
ia

n

1, 3 1No Data

Figure 4: Optimal sample sizes for Beta(α, α) priors.

Theorem 3B. For any Beta(α, α) prior and t ∈
(
1/2, α+1

2α+1

]
, all odd sample sizes

weakly below ⌊(2t− 1)−1 − 2α⌋ are optimal. Consequently, the DM’s statistical deci-

sion rule is simple majority.

Figure 4 provides a graphical illustration of how the optimal sample sizes compare

to those of unbiased inference. Sample size 2k − 1 is optimal for unbiased inference

when t ∈ (1/2, k
2k−1

]. The upper bound of this interval decreases to α+k
2α+(2k−1)

for

Bayesian inference. As α decreases, the upper bound of the interval for Bayesian

inference increases, and it converges to that for unbiased inference as α tends to 0.

This convergence holds because as α decreases, the strength of prior 2α decreases,

and Bayesian inference converges to the Beta estimation procedure in Example 3.

A focal example of a symmetric prior is the uniform distribution, which is the

Beta(1, 1) distribution. Because we can derive closed-form expressions of the ex-

pected persuasion probabilities in this case, we can solve for the optimal sample

size directly and derive the DM’s statistical decision rule for the entire interval of

status-quo values.
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t ∈ (2/3, 4/5].

Proposition 2. Let t ∈
(

n′

n′+1
, n

′+1
n′+2

]
for some positive integer n′. For the uniform

prior, sample size n is optimal if and only if n = k(n′ + 1) − 1 for some positive

integer k and the sample (n, kn′) triggers taking the action. Consequently, the DM’s

statistical decision rule is the n′

n′+1
-super majority rule.

Thus, for t ∈ (1/2, 2/3], the optimal sample sizes and the DM’s statistical decision

rule coincide with those of Theorem 3B: Simple majority is the required majority for

taking the action. For t ∈ (2/3, 3/4] the required super-majority is two thirds, for

t ∈ (3/4, 4/5] it is three quarters, and so on. Figure 5 depicts the corresponding

collection of optimal sample sizes.

5 Related literature

This paper is related to the literature that incorporates sampling (Osborne and Ru-

binstein (1998, 2003)) and statistical inference (Salant and Cherry (2020)) into games.

In Osborne and Rubinstein (1998)’s S(k)-equilibrium, players do not know the map-

ping from own actions to payoffs, sample the payoff of each action k times, and

choose the action with the highest sampled payoff. Osborne and Rubinstein (2003)

is a subsequent contribution in which players sample other players’ actions instead of
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own payoffs and best respond to sample averages. Salant and Cherry (2020) enrich

this framework by considering players who use statistical inference to estimate other

players’ actions and best respond to their estimates. Spiegler (2006a,b) studies com-

petition between firms that face consumers who sample a payoff-relevant parameter

once, and Sethi (2000, 2021) and Mantilla, Sethi and Cárdenas (2020) study stability

properties of S(1)-equilibria. This literature treats players’ sample size as a primitive

of their decision making procedure or a component of the solution concept. And with

the exception of Salant and Cherry (2020), the literature solves models with players

who obtain very small samples. The focus of the current paper is on an orthogonal

question. We treat the sample size as a design parameter and solve for the optimal

sample size.

As such, our paper contributes to the small literature on the design of experiments

in strategic environments. In Di Tillio, Ottaviani and Sørensen (2021), the DM

decides (1) the minimal sample size the designer collects on behalf of the DM, and

(2) whether to allow the designer to collect a larger sample at a cost and provide the

DM with a non-random selection from it. We consider a complementary setting in

which the designer decides the sample size without any constraints imposed by the

DM, and the DM obtains the entire sample. Other contributions to this literature

include Chassang, Padró i Miquel and Snowberg (2012) and Banerjee et al. (2020).

A third related literature is the literature on Bayesian persuasion (Kamenica and

Gentzkow (2011)). We depart from this literature in two ways. First, as discussed

in the Introduction, feasible information structures in our setup are responsive to

changes in the value of the relevant parameter. Second, we consider frequentist

inference procedures in addition to Bayesian inference. In this respect, the current

paper is also related to contributions on persuasion with non-Bayesian DMs (Glazer

and Rubinstein (2012), Galperti (2019), Eliaz, Spiegler and Thysen (2021), and Levy,

Moreno de Barreda and Razin (2022)).
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6 Conclusion

We considered a designer who wishes to persuade a DM to make a particular choice

and who controls how large a sample about a parameter of interest the DM can

obtain before choosing. Selecting a sample size results in an information structure

that is responsive to changes in the parameter value: the signal distribution increases

in first-order stochastic dominance sense as the parameter value increases.

The DM in our model is a statistician who uses data and statistical inference to

estimate the parameter. A large part of the analysis focused on frequentist statistical

inference that does not rely on prior beliefs. In addition to analytical tractability,

incorporating prior-free statistical inference into the study of strategic interactions is

relevant because of the increasing use of prior-free estimation methods and machine

learning techniques in real-life strategic settings.11

After estimating the parameter, the DM makes a choice based on the estimated

parameter value. A main focus of our analysis was to examine the resulting statistical

decision rules. We identified environments in which commonly observed decision rules

— simply majority and reverse unanimity — summarize the DM’s choice behavior

when sample sizes are chosen strategically by a designer to maximize the persuasion

probability.

In real-life settings, data provision may be costly to the designer. For example,

allowing consumers more experimentation with a product may carry an opportunity

cost or lead to wear and tear. The designer may take such a cost into account

when deciding how much experimentation to allow. We conclude by illustrating that

although the designer’s optimal sample sizes may change with costly data provision,

the DM’s statistical decision rule may not.

Consider a designer who faces a small cost c < P (1, 1) = Ef (q) of providing

an additional experiment to an unbiased statistician. Theorem 1C, where C stands

11Earlier contributions that incorporate the frequentist approach into economic theory include
Al-Najjar (2009) in the context of individual decision making and Salant and Cherry (2020) in the
context of multi-person decision making.

20



for costly, establishes that a modified Theorem 1 continues to hold with costly data

provision.

Theorem 1C. For any decreasing prior f and a positive cost c < Ef (q), there

exists n(c) ∈ N such that for any t, the optimal sample size is min{n(c), ⌊t−1⌋}.

Consequently, the DM’s statistical decision rule is reverse unanimity.

Thus, for status-quo values above 1/(n(c) + 1) the optimal sample sizes are iden-

tical to those with costless data provision whereas for smaller status-quo values, the

cost binds and the designer chooses sample size n(c). The domain of the statisti-

cal decision rule is therefore finite and it increases (in the set inclusion sense) as

c decreases. While the domain changes relative to costless experimentation, choice

behavior does not: It continues to be consistent with reverse unanimity.

An analogous result holds for increasing and concave priors.12

Theorem 2C. For any increasing and concave prior f and a positive cost c < Ef (q),

there exists n(c) ∈ N such that for any t > 1/2, the designer’s optimal sample size is

the largest odd sample size weakly below min{2n(c)− 1, ⌊(2t− 1)−1⌋}. Consequently,

the DM’s statistical decision rule is simple majority.

Thus, similarly to decreasing priors, the domain of the statistical decision rule

changes with the cost, but the decision rule itself remains identical to the one obtained

with costless data provision.

A Proofs

Proof of the single-crossing property. Consider the ratio function

r(q) ≡ P ′(n, k, q)

P ′(n′, k′, q)
=

k
(
n
k

)
k′
(
n′

k′

)q(k−k′)(1− q)(n−k−n′+k′)

12For symmetric priors and t > 1/2, the designer always chooses sample size 1 with costly data
provision.
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where P ′ is the derivative of P . The function r(q) is continuous, positive on (0, 1),

and, because k > k′, approaches 0 as q approaches 0. Thus, P (n′, k′, q) is above

P (n, k, q) in a neighborhood of 0.

To verify that P (n, k, q) crosses P (n′, k′, q) at most once in (0, 1), assume to the

contrary that there are two or more such crossings. Then, the difference function

∆(q) = P (n′, k′, q) − P (n, k, q) has at least three interior extremum points with

∆′(q) = 0 because ∆(0) = ∆(1) = 0. Because ∆′(q) = 0 for q ∈ (0, 1) if and only if

r(q) = 1, there are at least three interior points in which r(q) = 1. But r(q) has at

most two such points as we show below, implying that P (n, k, q) crosses P (n′, k′, q)

at most once in (0, 1).

Observe that r(q) has at least one point in which it is equal to 1. Otherwise,

r(q) < 1, and thus ∆′(q) < 0, for all q ∈ (0, 1). The latter inequality implies that

∆(1) < 0 in contradiction to ∆(1) = 0. To establish that there are at most two such

points, consider first the case in which n′ − k′ ≥ n − k. In this case, r(q) increases

in q. Therefore there is exactly one point in which r(q) is equal to 1 and q∗ = 1.

If, however, n − k > n′ − k′, then r(q) increases up to k−k′

n−n′ < 1 and then decreases.

Thus, there are exactly two interior points in which r(q) is equal to 1 implying that

q∗ < 1.

Proof of Lemma 1. Fix an integer k ≥ 1. It suffices to show that P (n(k), k, q) >

P (n, k, q) for q ∈ (0, 1). Using the binomial identity b(m, l, q) = qb(m− 1, l − 1, q) +

(1− q)b(m− 1, l, q) multiple times, we obtain that

P (n+ 1, k, q) = P (n, k, q) + qb(n, k − 1, q) > P (n, k, q) (1)

which in turn implies the desired inequality because n(k) > n.

Proof of Lemma 2. By single crossing, P (n′, 1, q) crosses P (n(k), k, q) from above

at some q∗ ∈ (0, 1). If f(q∗) = 0, then because f is decreasing, its support is nested

in [0, q∗] and P (n′, 1, q) dominates P (n(k), k, q) on the entire support of f .
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Suppose f(q∗) > 0 and consider the constant function h(q) = f(q∗). Because f is

decreasing, the function h either reduces the mass on q’s smaller than q∗ relative to f ,

i.e.,
∫ q∗

0
f(q)dq >

∫ q∗

0
h(q)dq, or h increases the mass on q’s larger than q∗. Thus, by

single crossing, if P (n′, 1) ≥ P (n(k), k) where the expectation is taken with respect

to h then a strict inequality holds with respect to f . Since h is a re-scaling of the

uniform distribution, P (n′, 1) ≥ P (n(k), k) for h if and only if P (n′, 1) ≥ P (n(k), k)

for the uniform prior. The result follows.

Proof of Proposition 1. Fix t ∈
(

k′+1
n(k′+1)

, k′

n(k′)

]
. For sample size n(k) with k ≤ k′,

the smallest number of successes that trigger taking the action is k. Therefore,

the corresponding expected persuasion probability is P (n(k), k). As in the proof

of Theorem 1, the probabilities P (n(k), k) are equal under the uniform prior, and

an argument mirroring Lemma 2 implies that P (n(k′), k′) dominates P (n(k), k) for

k < k′.

As for the remaining sample sizes, fix n < n(k′) and let k be the smallest number

of successes that trigger taking the action for this sample size. Since k
n
≥ t > 1

n′+1
, we

have that n < n(k). Thus, by Lemma 1, sample size n(k), which is strictly dominated

by sample size n(k′), dominates sample size n.

Proof of Theorem 2. Fix an integer m ≥ 1 and let t ∈
(

m+1
2m+1

, m
2m−1

]
. By Propo-

sition 1, it suffices to show that sample size 2m − 1 dominates larger sample sizes.

For any sample size n > 2m− 1, let

k[n] =

{
⌈nt⌉ | t ∈

(
m+ 1

2m+ 1
,

m

2m− 1

]}
(2)

denote the set of all integers k satisfying that there exists t in the relevant interval for

which k is the smallest integer such that the DM takes the action after obtaining the

sample (n, k). Let κ(n) denote the smallest integer in k[n]. By definition, k[2m− 1]

is a singleton with κ(2m− 1) = m, and κ(2m) = m+ 1.

Figure 6 illustrates construction of the set k[n] for n = 3, . . . , 13 and m = 2.
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Figure 6: Construction of k[n] and D in Theorem 2 for m = 2.
Note: Dots correspond to k/n’s. Circled dots correspond to k

n for k ∈ k[n]. Circled-striped dots

correspond κ(n)
n . Dots circumscribed by diamonds correspond to κ(n)

n for n ∈ D. Arrows point in
the direction of domination in the set D.

For m = 2, the relevant interval of t’s is (3/5, 2/3]. Dots in the figure (solid and

striped) correspond to k/n’s and they are circled when k ∈ k[n]. For example,

k[8] = {5, 6} and therefore the corresponding dots are circled, while 7 /∈ k[9] and

therefore the corresponding dot is not circled. Circled-striped dots correspond to

κ(n)
n

. For example, κ(8) = 5 and therefore the corresponding dot is striped.

We need to show that P (2m− 1,m) > P (n, k) for n > 2m− 1 and k ∈ k[n]. We

do so in two steps. The first step establishes that it suffices to examine the expected

persuasion probabilities with respect to the linear prior h(q) = 2q.

Step 1. If P (2m− 1,m) > P (n, k) for the linear prior then P (2m− 1,m) > P (n, k)

for an increasing and concave prior.

Proof. If m − 1 ≥ n − k, then single crossing implies the desired inequality holds

regardless of the prior because m < k. Otherwise, P (2m − 1,m, q) > P (n, k, q) for

q ∈ (0, q∗) and a reverse inequality holds for q ∈ (q∗, 1), where q∗ ∈ (0, 1). Consider

24



the linear function fh(q) =
f(q∗)
q∗

q = f(q∗)
2q∗

h(q) created by extending the secant between

(0, 0) and (q∗, f(q∗)) until q = 1. This function either reduces the mass on q < q∗ or

increases the mass on q > q∗ implying that if P (2m− 1,m) > P (n, k) for fh (which

is not necessarily a density), then P (2m − 1,m) > P (n, k) for f . Because fh is a

re-scaling of h, it suffices to prove the inequality for h.

The second step establishes the desired inequality with respect to h.

Step 2. For the linear prior, P (2m− 1,m) > P (n, k).

Proof. For any sample (n, k), we have:

P (n, k) = [P (n, k, q)q2]
1
q=0 −

∫ 1

0
P ′(n, k, q)q2dq

= 1− k(nk)
(k+2)(n+2

k+2)

∫ 1

0
P ′(n+ 2, k + 2, q)dq = 1− k(k+1)

(n+1)(n+2)

where the first equality follows from integration by parts, and the second equality

follows from P ′(n, k, q) = k
(
n
k

)
q(k−1)(1− q)(n−k).

To show that P (2m − 1,m) > P (n, k), we thus need to show that k(k+1)
(n+1)(n+2)

>

(m+1)
2(2m+1)

which holds if (i) k+1
n+1

> m+1
2m+1

, and (ii) k
n+2

≥ 1
2
.

Inequality (i) holds because k+1
n+1

≥ k
n
≥ t > m+1

2m+1
. To prove inequality (ii), it

suffices to consider whether (ii) holds for κ(n), and to do that, we consider the set D

of all sample sizes n satisfying that κ(n)
n

< κ(n1)
n1

for every n1 such that 2m−1 ≤ n1 < n.

In Figure 6, sample sizes 3, 8 and 13 belong to set D and the corresponding dots are

circumscribed by diamonds. If n ∈ D\{2m−1}, Lemma A1 (stated and proved below)

implies that n = (2m+1)l−2 for some integer l ≥ 2. By definition, κ(n) = (m+1)l−1.

Thus, κ(n)/(n + 2) ≥ 1/2. If n /∈ D, Lemma A2 (stated and proved below) implies

that there exists n1 ∈ D that satisfies n1 ≤ n and κ(n1)
n1

≤ κ(n)
n

. These two inequalities

imply that κ(n) ≥ κ(n1), which in turn implies that κ(n)/(n+2) ≥ κ(n1)/(n1 + 2) ≥

1/2.
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Lemma A1. Fix an integer m ≥ 1. If n ∈ D then n = (2m+1)l−2 for some l ∈ N .

Proof. Fix l ∈ N and consider sample sizes n1 = (2m + 1)l − 2 and n2 = (2m +

1)(l + 1) − 2. By definition, κ(n1) = (m + 1)l − 1 and κ(n2) = (m + 1)(l + 1) − 1.

Thus, κ(n2)
n2

< κ(n1)
n1

. To complete the proof, it suffices to show that κ(n1)
n1

≤ κ(n)
n

for

any n1 < n < n2.

Any such n satisfies κ(n) = (m + 1)l + j for some integer 0 ≤ j ≤ m because

κ(n) > κ(n1) (this follows from
κ(n1)
n1+1

≤ m+1
2m+1

) and κ(n) ≤ κ(n2). Fix j and consider

the set of all n’s with κ(n) = κ(j) = (m + 1)l + j. Since the ratio κ(n)
n

decreases in

n, it suffices to verify that κ(n1)
n1

≤ κ(n)
n

for the largest n in the set. We denote this

maximal n as n(j). Then n(j) = (2m + 1)l + 2j − 1 for 0 ≤ j ≤ m − 1 because

it satisfies the inequality κ(j)
n(j)+1

≤ m+1
2m+1

< κ(j)
n(j)

, and n(m) = n2 − 1. Verifying that

κ(n1)
n1

≤ κ(j)
n(j)

completes the proof.

Lemma A2. If n /∈ D, then there exists n1 ∈ D such that n1 ≤ n and κ(n1)
n1

≤ κ(n)
n

.

Proof. Fix n /∈ D and let n1 be the largest sample size in D that is smaller than n.

The proof of Lemma A1 implies that κ(n1)
n1

≤ κ(n)
n

.

Proof of Theorem 3. Fix an integer m ≥ 1. It suffices to show that sample sizes

in the set D = {1, 3, ..., 2m− 1} are optimal for t ∈
(

m+1
2m+1

, m
2m−1

]
.

For sample size n, the sample (n, k) triggers the DM to take the action for t

slightly above 1/2 if k
n
> 1

2
. Thus, the DM needs to obtain at least a simple majority

of successes in order to take the action in this case.

For an even sample size n and t in the relevant interval, P (n, ⌈nt⌉) is weakly

smaller than P (n, n+2
2
) because n+2

2
≤ ⌈nt⌉. The probability P (n, n+2

2
) is in turn

smaller than P (n + 1, n+2
2
) by identity (1) in the proof of Lemma 1. Thus, the

expected persuasion probability P (n, ⌈nt⌉) of an even sample size n is dominated by

the probability P (n+ 1, n+2
2
).

For an odd sample size n > 2m − 1 and t in the relevant interval, the expected

persuasion probability P (n, ⌈nt⌉) is smaller than P (n, n+1
2
) because n+1

2
< ⌈nt⌉ by
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the choice of n and t. Thus, to show that sample sizes in D are optimal, it suffices

to show that P (n, n+1
2
) is equal for all odd integers. This holds because for any

n = 2k − 1 and any symmetric distribution f , we have that

P (2k − 1, k) =
∫ 1/2

0
P (2k − 1, k, q)f(q)dq +

∫ 1

1/2
(1− P (2k − 1, k, 1− q))f(q)dq

=
∫ 1/2

0
P (2k − 1, k, q)f(q)dq +

∫ 1/2

0
(1− P (2k − 1, k, q))f(q)dq

=
∫ 1/2

0
f(q)dq = F (1/2)

where the first equality holds because P (2k − 1, k, q) = 1 − P (2k − 1, k, 1 − q) and

the second equality holds by the symmetry of f .

Proof of Theorem 3B. Fix a positive integer m and t ∈
(

α+m+1
2α+2m+1

, α+m
2α+2m−1

]
. It

suffices to show that sample sizes in the set D = {1, 3, ..., 2m− 1} are optimal.

For sample sizes in D, a simple majority of successes suffices for taking the action

as in unbiased inference. By the proof of Theorem 3, the corresponding expected

persuasion probabilities are equal. The expected persuasion probability for an even

sample size n is dominated by P (n + 1, n+2
2
) as in the proof of Theorem 3. Finally,

for an odd sample size n > 2m − 1, the smallest number of successes that triggers

taking the action is weakly larger than in the case of unbiased inference. Thus, by

the proof of Theorem 3, sample size n is dominated by sample sizes in the set D.

Proof of Proposition 2. Fix an integer n′ and t ∈
(

n′

n′+1
, n

′+1
n′+2

]
. Let n(k) = k(n′+

1)− 1. The sample (n(k), kn′) triggers the DM to take the action if kn′+1
n(k)+1

≥ t. The

left-hand side of this inequality decreases in k and converges to n′

n′+1
. Thus, there

exists k̄(t) such that a sample (n(k), kn′) triggers the DM to take the action if and

only if k ≤ k̄(t). Let D be the corresponding set of sample sizes. We need to show

that sample sizes in D are optimal.

Because t > n′

n′+1
, the expected persuasion probability for sample sizes smaller

than n′ is 0. Because the prior is uniform, the expected persuasion probability for

sample sizes in D is P (n(k), kn′) = 1− n′

n′+1
> 0. The expected persuasion probability
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for any sample size n(k) with k > k̄(t) is smaller because more than kn′ successes are

required for taking the action. For the remaining sample sizes, fix some sample size

n and let k′ be the largest integer such that the DM takes the action after obtaining

the sample (n, n − k′ + 1), i.e., n−k′+2
n+2

≥ t. Combined with the inequality t > n′

n′+1
,

we obtain that n > n(k′). Consequently, n−k′+1
n+1

> n(k′)−k′+1
n(k′)+1

= n′

n′+1
where the first

inequality holds because n > n(k′). The persuasion probability P (n, n − k′ + 1) =

1 − n−k′+1
n+1

is therefore dominated by the corresponding persuasion probabilities for

sample sizes in the set D.

Proof of Theorem 1C. We first identify n(c). Consider the function π(n) =

P (n, 1) − cn. The first term increases in n, is smaller than 1, and is concave in

n because P (n, 1, q)−P (n− 1, 1, q) = q(1− q)n−1 for all q ∈ (0, 1). The second term

is linear and tends to infinity as n tends to infinity. Therefore, the function π(n)

obtains its global maximum at some finite n, which we denote by n(c).13 It is larger

than 0 because c < P (1, 1).

Fix t and let n′ = ⌊t−1⌋. Theorem 1 states that sample sizes larger than n′ are

dominated by sample size n′ when data provision is costless. They continue to be

dominated with costly data provision. For sample sizes weakly smaller than n′, even

a single success triggers the DM to take the action, and thus the relevant function

for optimization is π(n). If n′ ≤ n(c), then π(n) increases till n′, which is the optimal

sample size. Otherwise, π(n) increases up to sample size n(c), after which it weakly

decreases. Thus, sample size n(c) is optimal.

Proof of Theorem 2C. We first identify n(c). Consider the function π(n) =

P (2n− 1, n)− (2n− 1)c. The first term is smaller than 1, and by Lemma A3 proved

below, it is concave and increasing in n. The second term is linear and tends to in-

finity as n tends to infinity. Therefore, the function π(n) obtains its global maximum

at some positive n, which we denote by n(c).

13If the maximum is obtained in two adjacent n’s, we use the smaller one.
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Fix t ∈
(

m+1
2m+1

, m
2m−1

]
. Then 2m− 1 is the largest odd sample size weakly smaller

than ⌊(2t− 1)−1⌋. Theorem 2 implies that sample sizes larger than 2m − 1 are

suboptimal. Any even sample size n < 2m − 1 is dominated by sample size n − 1

because the relevant persuasion probability for sample size n, P (n, n/2+1, q), satisfies

P (n, n/2 + 1, q) = P (n− 1, n/2, q)− (1− q)b(n− 1, n/2, q) where P (n− 1, n/2, q) is

the relevant probability for sample size n − 1. For the remaining sample sizes, the

proof is analogous to that of Theorem 1C.

Lemma A3. For any increasing prior, P (2n− 1, n) is concave and increasing in n.

Proof. Fix n ∈ N and let δn(q) = P (2n− 1, n, q)− P (2n− 3, n− 1, q). Then

δn(q) =

(
2n− 2

n− 1

)
qn−1(1− q)n−1

(
q − 1

2

)
.

To verify this equality, we observe that P (2n−1, n, q) = P (2n−2, n, q)+qb(2n−2, n−

1, q) by identity (1) in the proof of Lemma 1. Adding and subtracting (1− q)b(2n−

2, n−1, q) to the right-hand side, we obtain that P (2n−1, n, q) = P (2n−2, n−1, q)−

(1−q)b(2n−2, n−1, q). Identity (1) also implies that P (2n−3, n−2, q) = P (2n−2, n−

1, q)−qb(2n−3, n−2, q). Thus, δn(q) = qb(2n−3, n−2, q)− (1−q)b(2n−2, n−1, q)

and the above equality follows.

The function δn(q) is negative on (0, 1/2) and is an odd function around 1/2.

Therefore,
∫ 1

0
δn(q)dq = 0. Because an increasing prior shifts mass, relative to the

uniform prior, from (0, 1/2) to (1/2, 1), we obtain that ∆n > 0, where ∆n denotes the

expected value of δn with respect to the designer’s increasing prior. The probability

P (2n− 1, n) therefore increases in n.

The function δn(q) crosses the function δn+1(q) once and from below at q = 1/2.

This follows from the fact that δn+1(q) = 2q(1 − q)δn(q). Since an increasing prior

shifts mass to q’s in which δn dominates δn+1, ∆n+1 < ∆n and the concavity of

P (2n− 1, n) follows.
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