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1 Introduction

This paper studies the experimentation problem of a long-lived decision maker

who chooses alternatives of unknown correlated utility. The decision maker learns

the utility of her chosen alternative, which informs her future choices. To capture the

correlation, I model utility as a Brownian motion over a continuum of alternatives

such that similar alternatives yield similar utilities. Prior work on correlated utility,

including Jovanovic and Rob (1990) and Callander (2011), studies short-lived agents

who can exploit a better alternative based on past explorations. My innovation is to

study a long-lived decision maker who can also continue to explore.

The optimal experimentation strategy describes how quickly the decision maker

continuously explores unknown alternatives and when she stops to exploit the best

known one (Theorem 1). The speed of exploration depends on the drawdown, i.e.,

the utility difference between the best known alternative and the one being explored,

and the decision maker exploits the best alternative when the drawdown exceeds a

threshold.

The innovation of my analysis is the application of time change to the domain of

alternatives. A time change indexes a stochastic process by an increasing sequence of

stopping times. The experimentation literature on finitely many risky arms, such as

Karatzas (1984), Moscarini and Smith (2001), and Keller, Rady, and Cripps (2005),

performs time change in the domain of information that accumulates at a controlled

rate. The most up-to-date information is a sufficient statistic because it encompasses

past information. In my model, the decision maker controls the speed of exploring

new alternatives. The alternative being explored is not a sufficient statistic because

previously explored alternatives could be better. I show that the optimal strategy

also takes the best known alternative into account.

The tradeoff between the continuation value of exploration and the flow oppor-

tunity cost of exploitation implies faster exploration for more negative drawdowns

(Proposition 1). On the one hand, faster exploration acquires information more

quickly and realizes the continuation value sooner. When the drawdown becomes

more negative, the impatient decision maker finds it less pressing to realize the de-

creased continuation value. On the other hand, faster exploration shortens the du-
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ration of exploration as the flow opportunity cost of exploitation accrues. When the

drawdown is more negative, the increased flow opportunity cost prompts the decision

maker to explore in shorter time. I show that the opportunity cost incentive always

dominates the continuation value incentive. This is because the option to exploit par-

tially insures the decision maker from the drawdown, and so the continuation value

is less sensitive to the drawdown than the flow opportunity cost.

In the time series, i.e., how experimentation evolves over time, the speed’s mono-

tonicity with respect to drawdown implies that the speed of exploration increases over

time under conditions on model parameters (Corollary 1).

I study the comparative statics of the optimal strategy (Proposition 2). Intuitively,

the value of exploration increases when the decision maker is more patient, the cost

of exploration is lower, or the utility has higher on average. To realize the increased

value, the decision maker explores alternatives more quickly for any given drawdown

and tolerates more negative drawdowns, i.e., the drawdown threshold increases. The

comparative statics also hold when the utility is more volatile because of the option

value of exploitation.

My model applies to a firm that experiments on its firm size to maximize profits. I

interpret the log number of employees as a proxy for firm size and log profit as a proxy

for profitability. Under the Brownian specification, firm-size elasticity of profitability

is modeled to be independent and identically distributed over all firm sizes.

In the cross section, i.e., how experimentation differs across Brownian realizations,

I derive two results that correspond to predictions on firm dynamics. The first result

is that, as the decision maker explores more alternatives, the speed of exploration

converges asymptotically in distribution (Proposition 3). In terms of firm dynam-

ics, this translates to a conditional version of Gibrat’s law: among large firms, the

percentage change in firm size conditional on growth follows essentially the same dis-

tribution that is invariant to absolute firm size. The percentage change depends on

absolute size only through the extensive margin, i.e., firms that stop growing, but

not the intensive margin, i.e., firms that keep growing. By comparison, the original,

unconditional version of Gibrat’s law states that the distribution is invariant at both

the extensive margin and intensive margin.

The second result is that the exploited alternative and its utility are asymptotically
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linear (Proposition 4). In context of firm experimentation, this result means that

long-run profitability is proportional to long-run firm size among large firms. The

result highlights an endogenous selection effect: firms choose to operate at large sizes

because they experience increasing profits along the growth path. Therefore, the

regression of firm size on profits may overestimate average profit elasticity.

Related literature

My paper incorporates a long-lived decision maker into the experimentation prob-

lem where the utilities of unknown alternatives are modeled by a Brownian motion.

Jovanovic and Rob (1990) analyze such a problem with overlapping generations of

short-lived agents, each of which can learn the Brownian realization of one alternative

before choosing another for utility. Callander (2011) examines myopic agents who re-

veal the utility of an alternative to their choice. Garfagnini and Strulovici (2016)

extend Callander (2011) to agents who live for two periods.1 In these papers, the

agents acquire information at most once before exploitation and therefore do not in-

corporate the information value of continued exploration.2 By contrast, the long-lived

decision maker in my model can continue to explore. As a result, past exploration

becomes instrumental to future exploration, and the information value feeds back to

the decision maker’s experimentation strategy.

Urgun and Yariv (2025) considers a related search model in which an agent

searches continuously among alternatives of Brownian utility. The objective is to

maximize the expected utility of the best alternative subject to a search cost. As

in my model, their optimal strategy is to search continuously until the drawdown

reaches a threshold. The optimal speed of search is constant in order to minimize the

search cost per alternative. By contrast, the objective in my model is to maximize

the expected discounted flow utility from exploration and exploitation subject to a

1Garfagnini and Strulovici (2016) show that the agents may alternate between exploration and
exploitation. This is because the current agent’s remaining lifespan is non-stationary in their over-
lapping generations model.

2In Garfagnini and Strulovici (2016), the agents can in principle continue to explore in the second
period. However, it is weakly suboptimal to do so because, under their driftless Brownian specifi-
cation, the expected utility is maximized at some known alternative. Therefore, the experiment in
the first period depends on the marginal distribution of utilities only, but not the joint distribution.
Consequently, their optimal strategy can be derived from the Gittins index as in Weitzman (1979),
as if the alternatives were independent.
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learning cost. The interaction between the continuation value of exploration and the

flow opportunity cost of exploration generates the dynamics of exploration.

The time change enables me to derive the time-series and cross-sectional results

from the literature on Brownian motions that are stopped at a drawdown thresh-

old. Taylor (1975) and Lehoczky (1977) characterize the joint distribution of the

running maximum and the stopping time, for a Brownian motion whose drift and

volatility may depend on its value. However, their framework does not accommodate

my optimal strategy because both the drift and volatility in my case depend on the

drawdown. To leverage their results, I apply a time change to the Brownian utility,

transforming it from the time domain to the domain of alternatives. Because the

Brownian utility over alternatives has constant drift and volatility, their results can

be applied to this process, as the threshold strategy remains invariant under the time

change.

The remainder of the paper is organized as follows. Section 2 introduces the

experimentation problem. Section 3 derives the optimal experimentation strategy.

Section 4 studies the properties of optimal experimentation. Section 5 discusses key

modeling assumptions.

2 Experimentation problem

I study the experimentation problem of a forward-looking decision maker who

continuously explores new alternatives of unknown and correlated utility subject to

a learning cost.

I model utility as a Brownian motion with drift over the domain of alternatives

to capture their correlation. Let (Ω,F ,P) be a probability space that can support a

standard Brownian motion. The utility process follows

U(ω, x) := µx+ σB(ω, x)

for realization ω ∈ Ω and alternative x ∈ [0,∞), where µ ∈ (−∞,∞) is the drift,

σ > 0 the volatility, and B a standard Brownian motion.

An experimentation strategy specifies the choice of alternatives based on past ex-
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periments. In realization ω ∈ Ω, the decision maker chooses alternative xt(ω) at time

t ∈ [0,∞). As in Callander (2011) and Garfagnini and Strulovici (2016), the decision

maker learns the realized utility U(ω, x) upon her choice via learning-by-doing. There-

fore, her information at time t consists of the history of calendar time, the chosen

alternatives, and the corresponding utilities, i.e., Ft := Σ
(
{(η, xη(ω), U (ω, xη))}η≤t

)
,

where Σ(·) denotes the generated sigma-algebra. Let F denote the augmented filtra-

tion and r > 0 the decision maker’s discount rate. I define the strategy space as

follows.

Definition 1 An experimentation strategy, {xt(ω) : ω ∈ Ω, t ∈ [0,∞)} or simply

{xt}, is a stochastic process that satisfies:

� Initial condition: For each ω ∈ Ω, x0(ω) = 0.

� Continuous exploration condition:

For each ω ∈ Ω, the frontier Xt := supη∈[0,t] xη(ω) is absolutely continuous.

� Measurability condition:

{xt} is predictable with respect to the augmented filtration F.

� Growth condition:

There exists k1 ∈ (0, r) and k2 > 0 such that xt(ω) ≤ k2 exp(k1t) for all ω ∈ Ω

and t ∈ [0,∞).

An important and immediate consequence of the initial condition and the continuous

exploration condition is that the (closure of the) set of explored alternatives at time

t is the interval [0, Xt].

When the decision maker explores new alternatives, she incurs a flow learning cost

c(st), where st :=
d
dt
Xt is the speed of exploration. The cost function c : [0,∞) →

[0,∞) is twice continuously differentiable and strictly convex. It is assumed to satisfy

c(0) = 0, c′(∞) > µ+/r, and the Inada condition: lims→∞ c′(s)s − c(s) = ∞. Note

that the cost is increasing in the speed of exploration, and is zero when the speed is

zero, e.g., when the decision maker exploits a previously chosen alternative. Thus,

the flow learning cost can be interpreted as the utility loss incurred by the decision

maker when she first learns to extract utility from a given alternative.
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The forward-looking decision maker chooses an experimentation strategy to max-

imize the expected discounted Brownian utility from the chosen alternatives net of

the learning cost of exploration. Formally:

max
{xt}

E
[∫ ∞

0

re−rt (U (xt)− c(st)) dt

]
. (1)

I denote the value attained by strategy {xt} as V {xt}, and call {xt} an optimal

strategy if it solves the maximization problem (1).

Remark 1 (Key assumptions) I comment on the key assumptions in the model.

First, the utility process with stationary independent increments allows the recursive

formulation of the optimal strategy. In particular, the Brownian specification with

constant drift and volatility lends itself to the well-developed mathematics literature.

Second, on the strategy space, the continuous exploration condition permits jumps

to known alternatives and forbids jumps to unknown alternatives to the right of the

frontier. I argue in Section 5.1 that this condition is without loss of optimality for

convex learning costs. Third, the growth condition rules out strategies with explosive

explorations that attain infinite utility at infinite cost.

3 Optimal experimentation strategy

I derive the optimal experimentation strategy in three steps. First, I show that

the objective function is bounded. Second, I construct a candidate strategy based on

several conjectures. Third, I prove the optimality of this strategy through verifica-

tion. The primary departure from the standard argument is that the strategy {xt}
cannot be characterized by a stochastic differential equation due to the possibility of

exploitation.

3.1 Bounded objective function

Unlike myopic or short-lived agents, the long-lived decision maker might attain

infinite utility by exploring an arbitrarily large set of alternatives for an arbitrarily

good alternative. Because such a strategy would also incur an infinite learning cost,
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the objective function would be ill-defined as infinity minus infinity.3

The growth condition guarantees a bounded objective function by limiting explo-

ration in finite time. The decision maker can choose from an exponentially growing

but bounded set of alternatives whose running maximum increases at most expo-

nentially in expectation. The restriction on k1 in the condition guarantees that the

running maximum grows at a slower rate than the exponential discounting, leaving

the objective bounded from above.

Lemma 1 (Bounded objective function) Over the set of strategies that satisfy

the growth condition with fixed constants k1, k2, the objective function (1) is bounded

from above.

3.2 Verification argument

I construct a candidate strategy based on some conjectures, and then verify the

strategy’s optimality. The key observation is that, among the many explored alterna-

tives, the utility of the best known alternative and that of the frontier (i.e., rightmost

alternative) are state variables, due to the Markovian property of the Brownian utility.

I first claim that exploitation is a lookback option that gives the running maxi-

mum, Mt := maxx∈[0,Xt] U(x), when executed. A lookback option is an option with

a backward-looking and history-dependent payoff.4 Because exploitation does not

generate information or advance the frontier for future experiments, once the deci-

sion maker starts to exploit she will continue to do so by recalling the best known

alternative.

Together with the running maximum, the frontier utility, Wt := UXt , characterizes

the continuation value, i.e., Vt = V (Wt,Mt). This is because all unknown alternatives

are to the right of Xt. Conditional on available information, the utility distribution of

3The utility is unbounded only for µ ≥ 0. In such a case, an example strategy (which violates
the growth condition) is

xt =

{
2 exp(2rn) (t− (n− 1)) for t ∈ [n− 1, n− 1/2)

argmax{U(x) : x ∈ [0, exp(2rn)]} for t ∈ [n− 1/2, n) .

4See Conze and Viswanathan (1991) for a discussion of lookback options in finance.

7



unknown alternatives depends only on Wt due to the Markov property of Brownian

motion.

Next, I claim that the option value is a function of the drawdown. The option value

is the difference between the continuation value and the value of exploitation, i.e.,

vt := Vt−Mt, and the drawdown is the difference between the frontier utility and the

running maximum, i.e., yt := Wt−Mt. Note that the drawdown is weakly negative by

definition. Suppose that both the frontier utility and the running maximum increase

by the same constant. The utility distribution of unknown alternatives then shifts

up by the same amount due to the stationary independent increments of Brownian

utility. Therefore, both the value of exploration and the value of exploitation increase

by the same amount, leaving the option value unchanged. The option value function

can thus be written as vt = v(yt).

I derive the laws of the frontier utility, running maximum, and drawdown by

applying a time change to the utility process.

Lemma 2 (Time change) The frontier utility satisfies Wt := µXt + Zt where the

process Zt is a continuous square-integrable F-martingale with quadratic variation

σ2
∫ t

0
sqdη.

The drift and volatility of Wt are both linear in the speed of exploration because the

time change controls how quickly the frontier advances and experiences the variations

in the domain of alternatives. The Dambis–Dubins–Schwarz theorem further implies

that dZt = σ
√
stdB

′
t and therefore dWt = µstdt + σ

√
stdB

′
t, where B′

t is a standard

Brownian motion in a possibly enlarged probability space.5 As the time change is

continuous by the continuous exploration condition, the running maximum of explored

alternatives equals that of the frontier utility, i.e., Mt = maxη∈[0,t] Wη. When the

drawdown is strictly negative, the running maximum does not increase and therefore

the drawdown shares the same law as the frontier utility, i.e., dMt = 0 and dyt =

dWt = µstdt+ dZt for yt < 0.

The decision maker executes the option to exploit when the drawdown exceeds

a threshold, i.e., when the opportunity cost of exploitation exceeds the continuation

5I do not use this corollary of Lemma 2 because the optimal strategy it identifies may not be
adapted to the original probability space; i.e., the strategy may be a weak solution to the decision
maker’s problem.
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value of exploration. When the frontier utility decreases, the utility distribution

of unknown alternatives shifts down due to the stationary independent increments.

The continuation value therefore decreases. At the same time, the opportunity cost

increases. Therefore, there exists a threshold y < 0 such that it is optimal to exploit if

and only if y ≤ y. In addition, the stationary independent increments further implies

that the threshold does not depend on the frontier utility or the running maximum.

I denote by τ the exploitation time, i.e.,

τ = inf{t ≥ 0 : yt ≤ y} . (2)

I posit that, during exploration, the option value satisfies a Hamilton–Jacobi–

Bellman equation (HJB) that captures the opportunity cost of exploitation and the

flow value of exploration. To maximize the option value, the speed of exploration

must maximize the Hamiltonian, i.e.,

v = max
s

y − c(s) +
1

r
µv′s+

1

r

σ2

2
v′′s ∀y ∈ (y, 0) . (3)

The option value consists of three components. First, the drawdown, y < 0, cap-

tures the opportunity cost of exploring at the frontier instead of exploiting the best

known alternative. Second, the learning cost, c(s), increases with the speed of ex-

ploration. Third, the flow value of exploration characterizes how the option value

function changes with the drawdown. Because dyt = µstdt + dZt for yt < 0, the

variation in drawdown translates to the option value via the drift term 1
r
µv′s and

the Itô term 1
r
σ2

2
v′′s. These two terms are controlled by the speed of exploration by

Lemma 2.

The optimal speed of exploration maximizes the flow value of exploration subject

to the learning cost. As the speed controls how quickly the frontier advances in the

domain of alternatives over time, the impatient decision maker can reap the value

of exploration earlier in time by exploring at a higher speed subject to the convex

learning cost. The optimal speed therefore solves the first-order condition (FOC),

c′(s) =
1

r
µv′ +

1

r

σ2

2
v′′ , (4)
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which equates the marginal learning cost to the marginal value of exploration.

In addition to Equation (3), the option value function should satisfy three stan-

dard boundary conditions. First, the value-matching condition defines the drawdown

threshold by equalizing the opportunity cost and the value of exploration. The option

value function therefore vanishes at the threshold, i.e.,

v
(
y
)
= 0 . (5)

Second, the smooth-pasting condition characterizes the optimal execution of the

option to exploit. For y < y, the decision maker exploits immediately and so v(y) =

v′(y) = 0. If the marginal option value were positive at the threshold, i.e., v′(y) > 0,

the kink would imply a positive infinite flow value of exploration and so the decision

maker would explore more, and vice versa. Thus, optimal execution implies that

v′(y) = 0 . (6)

Third, the super-contact condition determines the marginal value of frontier utility

when the decision maker marks a new maximum. Because the running maximum

increases by the same amount as the frontier utility, so does the continuation value,

i.e.,

v′(0) = 1 . (7)

By constructing a candidate strategy that satisfies these conditions, I characterize

the value function and the unique optimal strategy by a verification argument.

Theorem 1 (Optimal experimentation)

� The continuation value satisfies Vt = V (Wt,Mt) = Mt+v(yt). The option value

function v is the unique solution to Equation (3) subject to boundary conditions

(5)–(7), with extension v(y) = 0 for y < y. Moreover, v is increasing and

convex.
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� The optimal experimentation strategy {x∗
t} is unique and is given by

x∗
t =


∫ t

0
s (yη) dη for t < τ

argmaxx≤Xτ
U(x) for t ≥ τ ,

where Equation (2) defines exploitation time τ , and Equation (4) defines speed

of exploration s.

4 Properties of optimal experimentation

I analyze how optimal experimentation evolves over time, depends on model pa-

rameters, and differs in the cross section.

4.1 Time-series properties

By analyzing two opposing incentives, I show that the more negative the draw-

down, the higher speed of exploration. The speed controls the drawdown, which in

turn determines the dynamics of exploration.

Proposition 1 The speed of exploration s is higher for the more negative drawdown

y.

Define g(s) := sc′(s) − c(s). It is continuously differentiable and strictly increasing,

and so is its inverse g−1 which exists. Plugging Equation (3) into Equation (4), I

write the speed of exploration as a function of v − y, i.e.,

s = g−1(v − y) . (8)

The function g−1 maps the sum of the option value and the opportunity cost (recall

that y < 0) to the optimal speed, subject to the convex learning cost. Note that

neither v′ or v′′ enters Equation (8). This is because the drift and volatility terms

in Equation (3) are both linear in the rate of time change, s, and therefore can be

substituted by Equation (4) simultaneously.
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The intertemporal tradeoff between the flow opportunity cost of exploitation and

the continuation value of exploration determines the optimal speed of exploration.

On the one hand, the decision maker incurs the flow opportunity cost, |y|, when she

explores new alternatives instead of exploiting the best known one. To avert the flow

cost, she would like to explore quickly over a short period of time, and more so for

more negative drawdowns when the opportunity cost is higher. On the other hand,

the impatient decision maker would like to realize the continuation value, v, sooner

by acquiring more information. For less negative drawdowns, the value is higher and

therefore prompts faster exploration.

The speed of exploration is higher for more negative drawdowns because the op-

portunity cost is more sensitive to the drawdown than the continuation value, i.e.,

v′ < 1. When the drawdown experiences a negative shock at frontier Xt, the utilities

of all alternatives to the right of Xt decrease while those to the left, including the

best alternative, remain unchanged. As a result, the flow opportunity cost increase

by the size of the shock.

However, the continuation value decreases by a smaller amount because the option

to exploit partially insures against the shock. Given optimal execution of the option

to exploit, the envelope theorem implies6 v′(yt) =
∫∞
t

re−r(η−t)Pt [xη ≥ Xt] dη ∈ [0, 1].

In words, the shock at the current frontier is relevant to the continuation value only

when the chosen alternative in the future, xη, lies to the right of Xt. If the frontier

utility reaches the drawdown threshold before marking a new maximum, the decision

maker will exploit the best alternative, which lies to the left of Xt, and therefore

insulates herself from the negative shock. Only when yt = 0, alternative Xt is the

best and so all future alternatives chosen during exploration and exploitation will lie

to its right. The negative shock at Xt factors in the decision maker’s flow utility

permanently, implying that v′(0) = 1.

I provide a sufficient condition for the speed of exploration to increase on average

in the time series.

Corollary 1 If µ ≤ 0 and sc′′(s) is decreasing over
[
s(0), s(y)

]
, then the speed of

exploration s(yt) is a submartingale over [0, τ).

6One can also show v′ < 1 from the super-contact condition (7) and the strict convexity of v.
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By Proposition 1, the negative drift in drawdown contributes to a higher speed of

exploration over time. The volatility also contributes to it via the Itô term because v

is convex. The condition on c guarantees that g−1 in Equation (8) is convex as well.7

Note that the change in the running maximum does not factor in the calculation

because s′(0) = 0 by the smooth pasting condition (6).

4.2 Comparative statics

I derive the comparative statics of the option value function, the speed of explo-

ration, and the drawdown threshold with respect to model parameters. I write that

c increases if c′(0) increases and c′′ increases pointwise, and that v and respectively

s increase if v and s increase pointwise. Moreover, a set of parameters is said to be

more favorable if either the drift µ is higher, the volatility σ2 is higher, the discount

rate r is lower, or the cost function c is lower.

Proposition 2 (Comparative statics) Option value v, speed of exploration s, and

drawdown threshold |y| are increasing in the drift µ and volatility σ2 of the utility

process, and are decreasing in the discount rate r and the learning cost function c.

0
Drawdown y

O
p
tion

valu
e
v

Favorable parameters
Unfavorable parameters

0
Drawdown y

S
p
eed

of
ex
p
loration

sFavorable parameters
Unfavorable parameters

Figure 1: An illustration of the option value functions and the speed of exploration
functions for two sets of parameters.

Intuitively, the decision maker derives higher value from exploration when it yields

higher utility, the decision maker is more patient, or learning is less costly (Figure 1).

7The function sc′′(s) is positive and attains 0 at s = 0, and therefore it is not decreasing
monotonically.
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As a result, she also tolerates a more negative drawdown threshold. Moreover, she is

motivated to explore at a higher speed at any given drawdown in order to realize the

increased value more quickly. The comparative statics holds when the utility process

is more volatile as well, because the option to exploit insures against negative shocks.

4.3 Cross-sectional properties

In the application of firm experimentation, a firm experiments on its size, x ∈
[0,∞), to maximize expected discounted profitability, U(x). I use the log number

of employees as a proxy for firm size and log profit for profitability. The Brownian

specification means that, over all firm sizes, the firm-size elasticity of profitability

is independent and identically distributed. I interpret the learning cost, c, as the

loss in profits when a firm first operating at a given firm size fails to allocate human

resources to maximize profit. Starting at the minimal firm size, the optimal strategy

is to grow continuously until the percentage drawdown, y, exceeds a threshold and

then to scale down to exploit the most profitable size in the long run. The percentage

growth rate, s, depends on the percentage drawdown.

Stochastic utility generates heterogeneous experimentation behaviors in the cross

section under the optimal strategy. In the context of firm experimentation, I obtain

two cross-sectional predictions on firm dynamics: the conditional version of Gibrat’s

law and the linear relation between long-run firm size and profitability.

First, I present the asymptotic convergence of the speed of exploration, which

corresponds to the conditional version of Gibrat’s law. With a slight abuse of notation,

I index the drawdown and speed of exploration by the alternative rather than calendar

time, i.e., yx := U(x)−max[0,x] U and sx := s(yx), by undoing the time change t 7→ Xt.

This is possible because whether the drawdown has exceeded the threshold is invariant

to the continuous time change, i.e., ys < y ∀s ≤ t ⇔ yx < y ∀x ≤ Xt.

Proposition 3 (Asymptotic convergence) As x → ∞, the speed of exploration

conditional on exploration, sx|Xτ > x, converges in distribution.

The proposition concerns the few firms that grow beyond a large size even when most

other firms have already stopped exploration. The growth rate of these remaining
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few firms follows a stable distribution regardless of absolute firm size. In other words,

the asymptotic convergence implies the conditional version of Gibrat’s law: among

large firms, the percentage growth in firm size conditioned on growth is essentially

invariant to absolute firm size.

The conditional version of Gibrat’s law can explain an empirical deviation from

the original law, which states that the percentage growth in firm size is (uncondition-

ally) invariant to absolute firm size. Daunfeldt and Elert (2013) reject the original,

unconditional version of Gibrat’s law on the aggregate level for Swedish firms during

1998–2004 because small firms on average grow more quickly than large firms. By

contrast, the conditional version of Gibrat’s law suggests that its deviation from the

original law derives from the extensive margin: large and old firms are more likely

to have stopped exploration and growth. Moreover, the conditional law weakens the

original law parsimoniously in that the intensive margin—the percentage growth in

firm size conditional on growth—is invariant.

The proof of Proposition 3 also implies that the decision maker quickly stops

exploring.

Corollary 2 (Short exploration) There exist K,α > 0 such that P [τ > t] ≤ Ke−αt

for all t ∈ [0,∞).

Corollary 2 states that the tail probability is subexponential; i.e., exploration stops

at least exponentially quickly.8 Most firms stop growing and maintain a fixed size

soon after establishment.

My second cross-sectional result is that the exploited alternative is linear in its

utility. This result corresponds to the linear relation between long-run firm size

and profitability. To present a stark contrast, I restrict attention to a driftless

utility process, i.e., µ = 0, which means that the average elasticity of profit is

zero. Denote the exploited alternative by x∞ := limt→∞ xt = xτ and its utility

by M∞ := limt→∞Mt = Mτ = Uxτ .

Proposition 4 (Linear relation) For µ = 0, the pair (x∞,M∞) satisfies the linear

8Therefore, the decision maker will eventually stop exploring, as Callander (2011) and Garfagnini
and Strulovici (2016) show in their models with short-lived agents.
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relation

E [M∞|x∞ > x] =
π2

8

σ2∣∣y∣∣x+ o(x) as x → ∞ .

Among large established firms, the average firm-size elasticity of profit is π2σ2/8
∣∣y∣∣,

which is positive.9

Proposition 4 highlights an endogenous selection effect: large firms choose to

operate at large sizes because they experience increasing profits along the growth

path. As a result, the näıve regression of profitability on firm size would estimate

a positive average elasticity despite the zero mean in the profit process, because the

estimation overlooks the selection bias. The proposition implies that the bias persists

even for very large firms.

5 Discussions on modeling assumptions

In this section, I discuss how my analysis depends on three modeling assumptions:

the continuous exploration condition, Inada condition, and learning cost.

5.1 Continuous exploration condition

The continuous exploration condition in Definition 1 is without loss of optimality

under convex learning costs. The idea is that, in continuous time, fast continuous

exploration approximates discontinuous jumps, and small but frequent jumps can

approximate continuous explorations.

Suppose that the decision maker can explore discontinuously subject to a discrete

learning cost C(Dt), where Dt is the distance of the chosen alternative from previous

explorations and C : [0,∞) → [0,∞) is the discrete cost function. I assume that

C(0) = 0 and that C is convex as in Garfagnini and Strulovici (2016). This formu-

lation is consistent with the flow learning cost of continuous exploration because the

9The proof of Proposition 4 establishes that M∞, x∞, and Xτ all exhibit exponential tails.
Moreover, the proof shows that all three variables satisfy pairwise linear relations, and thus implies
selection biases in the pairwise regressions in the long-run profitability, long-run firm size, and
historic maximum firm size in the context of firm experimentation.
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speed of exploration measures the infinitesimal distance from previous explorations.

I claim that the discrete cost function is effectively linear. Because C is convex, it

suffices to show subadditivity, i.e., C(D) ≤ C(D′) + C(D −D′) for D′ < D. Instead

of exploring an alternative at distance D in one step, the decision maker can first

explore the middle point at distance D′ and then explore the chosen alternative, now

at distance D − D′. Over an arbitrarily short time lapse, the two-step exploration

reveals additional information at the middle point while accumulating zero flow utility.

The cost C(D′)+C(D−D′) therefore bounds the effective learning cost from below.

The linearity of the discrete cost function implies the optimality of continuous

exploration. For the case c′(∞) ≤ C ′, the statement follows because the decision

maker can explore continuously at an arbitrarily high speed instead of discontinuously.

Such continuous exploration incurs strictly lower learning cost because of the Inada

condition. Now, let us consider the case c′(∞) > C ′. Instead of exploring continuously

at speed s > s := (c′)−1(C ′), the decision maker can mix or “chatter” between

exploring continuously at speed s and discontinuously in arbitrarily small steps.10

For the same distance per unit time, the mixed exploration incurs a flow cost of

c(s)+(s−s)C ′, which is lower than c(s). Because the utility process is continuous, the

mixed exploration provides essentially the same information as continuous exploration

when the step size vanishes. The effective flow learning cost function

cE(s) :=

c(s) for s ≤ s

c(s) + (s− s)C ′ for s > s

falls into the first case described above and so continuous exploration is weakly opti-

mal, but not necessarily strictly so because the effective cost function fails the Inada

condition.

Remark 2 The above argument fails if C is not convex. When the decision maker

explores discontinuously, the (closure of the) set of explored alternatives may no

longer be an interval. In addition to the utility at the rightmost alternative, the

decision maker also needs to take the utility at each boundary point into account.

The number of state variables grows with each discontinuous exploration, leaving the

10Moscarini and Smith (2001) make a related convexification argument and attribute it to Paul
Milgrom.
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recursive analysis intractable.

5.2 Inada condition

The Inada condition guarantees an interior solution to Equation (4). If the learn-

ing cost function c fails the condition, it may be optimal to explore at infinite speed.

Such instantaneous exploration realizes the continuation value immediately and there-

fore averts the flow opportunity cost. The decision maker does so over an interval

of alternatives until the drawdown reaches the threshold or becomes less negative

whereupon the optimal speed becomes finite again.11 Despite the more involved tech-

nicalities, such instantaneous explorations yield the same economic insights.

5.3 Learning cost

My analysis extends to the experimentation problem with an adjustment friction

in place of the learning cost. I model the adjustment friction by restricting the

chosen alternative to be continuous, with a given Lipschitz constant; in other words,

the speed of change is uniformly bounded. The key difference is that the decision

maker can no longer exploit the best known alternative instantaneously, but can only

take time to backtrack from the frontier.

I denote the highest value from backtracking from an given alternative by the

exploitation value. The exploitation value–frontier utility pair can be shown to be a

Markov process over the domain of alternatives.

Similar to the case with a learning cost, the optimal strategy is to explore until

the generalized drawdown—i.e., the difference between the exploitation value and the

frontier utility—exceeds a threshold, and then backtrack to exploit the alternative

that attains the exploitation value. While the maximum utility increases monoton-

ically during exploration, the exploitation value decreases at a rate proportional to

the generalized drawdown, reflecting the lower flow utility when backtracking from

the frontier. As a result, the exploited alternative may differ from the best one.

11Technically, the value is not attained; instead, it is approached by continuous exploration at an
arbitrarily high speed.
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A Proofs

A.1 Proof of Lemma 1

Proof. By the growth condition, the expectation of the running maximum of U

over [0, k2 exp(k1t)] is bounded from above, i.e.,

E

[
sup

[0,k2 exp(k1t)]

U

]
≤ µ+k2e

k1t +

√
2

π
σ2k2 exp

(
k1
2
t

)
,

where µ+k2e
k1t is the maximum cumulative drift and

√
2σ2k2/π exp (k1t/2) is the

expected running maximum of the driftless Brownian motion σB. Invoking the Fubini

theorem, I bound the objective function from above by

∫ ∞

0

e−rt

(
µ+k2e

k1t +

√
2

π
σ2k2 exp

(
k1
2
t

))
dt = µ+k2 (r − k1)

−1 +

√
2

π
σ2k2

(
r − k1

2

)−1

< ∞ .

A.2 Proof of Lemma 2

This lemma adapts Proposition 1.1.5 in Chapter V of Revuz and Yor (2013) to

my setting where F is defined over t instead of x. The time change may remind the

reader of the celebrated Dambis–Dubins–Schwarz theorem (see, for example, Theo-

rem 1.1.6 in Chapter V of Revuz and Yor (2013)). However, my model specifies a

standard Brownian motion Bx (and utility process Ux) as a primitive and then con-

structs its time-change Wt := UXt . By comparison, the theorem specifies a continuous

martingale and then shows the existence of a Brownian motion in a possibly enlarged

probability space such that the martingale is a time-change of that Brownian motion.

In particular, my lemma does not require such enlargement.

Proof. Define Z := W − µX. The process Z is continuous by composition and
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is adapted to F by the definition of F . For η ≥ t, its expectation satisfies

E [Zη|Ft] = E
[
Zη|FB

Xt

]
= Zt

where FB is the natural filtration of B. The first equality follows because x is pre-

dictable by the measurability condition. The second is due to the optional sampling

theorem because Ux−µx = σBx is a uniformly integrable FB-martingale on [0, k2e
k1η]

by the growth condition. Therefore, Z is an F -martingale.

The same argument shows that Z2−σ2X is a F -martingale, because (Ux−µx)2−
σ2x is a uniformly integrable FB-martingale on [0, k2e

k1η] for all η ≥ 0. Therefore, Z

is squared-integrable and its quadratic variation is σ2X by definition.

A.3 Proof of Theorem 1

Following the conjectures in the main text, I construct a candidate strategy

(Proposition 5 and Corollary 3) and then verify its optimality and uniqueness.

Proposition 5 There exist constants y < 0, v > 0, and a convex function v : [y, 0] →
[0,∞) with v(0) = v such that v satisfies HJB (3) and boundary conditions (5), (6),

and (7). For such v, the unique maximizer s∗(y) is given by FOC (4).

Proof. I prove the existence to the free boundary problem by the shooting method.

First, I transform the HJB to an autonomous ODE system by a change of vari-

ables. Second, I prove the existence to an initial value problem that omits the value

matching condition and the smooth pasting condition (Lemma 3). Third, I derive

the monotonicity (Lemma 4) and asymptotic properties (Lemma 5 and Lemma 6) of

such solutions. Fourth, I show the two omitted conditions hold for one such solution,

which therefore solves the free boundary problem (Lemma 7).

Consider the change of variables ϕ(y) := v(y) − y. By substituting the speed of

exploration (8) into HJB (3), I obtain

ϕ′′ +
µ

σ2/2
ϕ′ =

r

σ2/2
f(ϕ)− µ

σ2/2
(9)

on y ≤ 0, where f := c′ ◦ g−1 : [0,∞) → [c′(0), c′(∞)) is increasing. The boundary
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conditions translate to ϕ′(0) = 0, ϕ(y) = −y, and ϕ′(y) = −1.

Define v to be 0 for µ ≤ 0 and f−1(µ/r) for µ > 0. For v0 > v so that ϕ′′(0) > 0,

consider the initial value problem of ODE (9) with initial conditions ϕ(0) = v0 and

ϕ′(0) = 0. Such v0 exists because c′(∞) > µ+/r.

Lemma 3 There exists a unique solution ϕ to the initial value problem. Moreover,

ϕ′′ > 0.

Proof. By the Picard–Lindelöf theorem, there exists a unique solution to the initial

value problem on ϕ ≥ 0, where f(ϕ) is well-defined.

To show ϕ′′ > 0 by contradiction, I suppose ỹ := sup{y ∈ (−∞, 0) : ϕ′′(y) =

0} > −∞. For [ỹ, 0], I have ϕ ≥ 0 because ϕ′′ > 0 by continuity. The supremum

is attained also by continuity. Moreover, I have ϕ′(y) = 0 +
∫ y

0
ϕ′′ < 0 and thus

ϕ(y) = ϕ(0) +
∫ y

0
ϕ′ > ϕ(0). Differentiating ODE (9) at ỹ, I obtain

ϕ′′′ =
r

σ2/2
f ′(ϕ)ϕ′ − µ

σ2/2
ϕ′′ =

r

σ2/2
f ′(ϕ)ϕ′ < 0 .

Therefore, ϕ′′(ỹ + ϵ) < 0 for sufficiently small ϵ > 0, which is a contradiction.

Because ϕ′′ > 0 implies ϕ > 0, the solution exists and is unique on (−∞, 0].

Lemma 4 ϕ(y; v0) is continuously differentiable with respect to v0, and its v0-derivative

is positive and strictly decreasing in y.

Proof. Because f ∈ C1, the derivative of ϕ with respect to v0 is the solution to the

variational equation

z′′ +
µ

σ2/2
z′ =

r

σ2/2
f ′(ϕ)z

with initial conditions z(0) = 1 and z′(0) = 0. It then suffices to show that z′ < 0 on

(−∞, 0).

To obtain a contradiction, I suppose ỹ := sup {y < 0 : z′(y) = 0} > −∞. The

supremum is attained because z′′(0) = r
σ2/2

f ′(ϕ(0)) > 0. I have z′(y) < 0 for y ∈ (ỹ, 0)

and z(y) > 0 for y ∈ [ỹ, 0]. At ỹ, I have z′′ = (2r/σ2)f(ϕ)z − (2µ/σ2)z′ > 0 as

f(ϕ) > 0. Therefore, z′(ỹ + ϵ) > z′(ỹ) = 0 for sufficiently small ϵ > 0, which is a

contradiction.
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Lemma 5 For v0 sufficiently close to v, the solution ϕ(·; v0) intersects with the 45-

degree line, −y.

Proof. For the case of µ ≤ 0, I have v = 0. The initial conditions satisfy ϕ(0; 0) = 0

and ϕ′(0; 0) = 0 > −1. Moreover, ϕ′′(0; 0) = (2r/σ2)f(0) − (2µ/σ2) ≥ 0 and so ϕ

exists and is unique in a neighborhood of 0. I have ϕ(y; v) < −y for some y < 0 close

enough to zero.

For the case of µ > 0, I have v := f−1 (µ/r). The solution is the constant function

ϕ(·; v) = v. It satisfies ϕ(y; v) = v < −y for some y < −v.

In either case, I have ϕ(y; v) < −y for some y < 0. By the continuity of ϕ

with respect to v0, I have ϕ(y; v + ϵ) < −y for sufficiently small ϵ > 0. Because

ϕ(0; v + ϵ) ≥ ϵ > 0, ϕ(·; v + ϵ) intersects with −y by the intermediate value theorem.

Lemma 6 For sufficiently large v0, the solution ϕ(·; v0) does not intersect with the

45-degree line, −y.

Proof. For the case of µ ≤ 0, define

L := inf

{
l ∈ (0,∞) :

r

σ2/2
f(l)− µ

σ2/2
> l−1

}
.

The infimum is finite and strictly positive because the LHS of the inequality is in-

creasing, and the RHS is decreasing and spans (0,∞). For v0 > L, I have

ϕ′′ =
r

σ2/2
f(ϕ)− µ

σ2/2
− µ

σ2/2
ϕ′ >

r

σ2/2
f(v0)−

µ

σ2/2
> v−1

0 .

Therefore, ϕ′(−v0) =
∫ −v0
0

ϕ′′ <
∫ −v0
0

v−1
0 = −1. On [−v0, 0), I have ϕ > v0 > −y

since ϕ′′ > 0 and ϕ′(0) = 0; on (−∞,−v0), I also have ϕ > −y because ϕ′(−v0) < −1

and ϕ′′ > 0. The lemma therefore obtains.

For the case of µ > 0, define

L := inf

{
l ∈ (0,∞) :

r

σ2/2
f(l) > l−1

}
.
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As in the previous case, the infimum is finite and strictly positive. For v0 > L, I show

ϕ′(−v0) < −1 by contradiction. Suppose otherwise. I have

ϕ′′ =
r

σ2/2
f(ϕ)− µ

σ2/2
(ϕ′ + 1) >

r

σ2/2
f(v0) > v−1

0 .

Therefore, ϕ′(−v0) =
∫ −v0
0

ϕ′′ <
∫ −v0
0

v−1
0 = −1 which is a contradiction. On [−v0, 0],

I have ϕ > v0 ≥ −y; on (−∞,−v0), I have ϕ > −y because ϕ′(−v0) < −1. The

lemma therefore obtains.

Lemma 7 There exists v > v and y < 0 such that ϕ(y; v) ≥ −y on [y, 0] with equality

at y and ϕ′(y; v) = −1.

Proof. Let v be the supremum of initial values v0’s solutions of which intersect with

the 45-degree line. It exists by Lemma 5 and Lemma 6. Let ϕ := ϕ(·; v) denote the

corresponding solution. Let {vn : n ∈ N} denote a maximizing sequence. For each

n, let ϕn := ϕ(·; vn) denote the solution for vn, and yn := max{y : ϕn(y) = −y} < 0

denote the first intersection. The sequence {yn} is uniformly bounded by L by the

proof of Lemma 6 and therefore admits a converging subsequence. With a slight abuse

of notation, let {vn, yn} denote the converging subsequence. Define y := infn yn.

For all n, I have ϕ′
n(yn) ≥ −1 because ϕn intersects −y from above. {ϕ′

n} is

uniformly bounded from below by −1 on [y, 0], because ϕ′
n is increasing in the initial

value vn and decreasing in y by Lemma 4.

The first derivative {ϕ′
n} is uniformly bounded by [−1, 0] and so {ϕn} is uniformly

Lipschitz. Moreover, {ϕn} is uniformly bounded by L+ |y| on [y, 0] because ϕ′
n ≥ −1.

The Arzelà–Ascoli theorem therefore implies that the sequence admits a uniformly

converging subsequence. The uniqueness of the initial value problem further implies

that the limit is ϕ. Moreover, the uniform convergence implies ϕ(y) = limn ϕn(yn) =

limn −yn = −y; i.e., ϕ intersects with the 45-degree line. It also implies that ϕ(y) >

−y on (y, 0]

I show that {ϕ′′
n} is uniformly bounded on [y, 0]. For the case of µ ≤ 0, I have

ϕ′′
n =

r

σ2/2
f(ϕn)−

µ

σ2/2
− µ

σ2/2
ϕ′
n <

r

σ2/2
f(−y)− µ

σ2/2
.
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because ϕ′
n < 0. For the case of µ > 0, I have

ϕ′′
n =

r

σ2/2
f(ϕn)−

µ

σ2/2
(ϕ′

n + 1) ≤ r

σ2/2
f(−y)

because ϕ′
n is bounded from below by −1.

The uniformly bounded {ϕ′′
n} implies that {ϕ′

n} is uniformly Lipschitz. Because

the first derivative is uniformly bounded between [−1, 0], the Arzelà–Ascoli theorem

implies that {ϕ′
n} admits a uniformly converging subsequence. By the uniqueness of

the initial value problem, the limit is ϕ
′
. Moreover, the uniform convergence implies

ϕ
′
(y) = limn ϕ

′
n(yn) ≥ −1.

It remains to show ϕ
′
(y) ≤ −1. Suppose ϕ

′
(y) > −1. I have ϕ(y−δ) < −(y−δ) for

sufficiently small δ > 0. By the continuity of the initial value problem, ϕ(y−δ; v+ϵ) <

−(y − δ) so ϕ(·; v + ϵ) intersects the 45-degree line, which contradicts the fact that v

is the supremum.

Because ϕ(·; v) solves ODE (9) and the corresponding boundary conditions, I

obtain the desired function v by reverting the change of variables via v := ϕ− y.

Proposition 5 allows me to extend the construction from [y, 0] to (−∞, 0].

Corollary 3 Any function v defined in Proposition 5, with the extension of value 0

for y ∈ (−∞, y), solves HJB equation

max

{
max

s
−rv + ry − rc(s) + µv′s+

σ2

2
v′′s, 0

}
= 0 for y ∈ (−∞, 0]

subject to the super-contact condition v′(0) = 1.

Remark 3 When µ = 0, the solution to the free boundary problem can also be

characterized by

∫ v(y)+y

v(0)

(
2

∫ a

v(0)

2r

σ2
f−1(b)db

)− 1
2

da = −y ∀y ∈ (y, 0) .

This integral equation characterization is possible because the first-order derivative

vanishes in HJB (9).

Proof of Part 1 of Theorem 1. Define the candidate continuation value
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function as V (W,M) := M + v(W − M) for W ≤ M . Note that the function is

convex. Recall that Z := W − µX.

For any strategy {xt}, Itô’s lemma gives

e−rtV (Wt,Mt)

=V (W0,M0) +

∫ t

0

e−rη

(
−rV dη + µV WdXη +

1

2
V WWd ⟨Z⟩η + V WdZη + V MdMη

)
=V (W0,M0) +

∫ t

0

e−rη

((
−r (Mη + v) + µv′s+

σ2

2
v′′s

)
dη + v′dZη + (1− v′) dMη

)
=V (W0,M0) +

∫ t

0

e−rη

((
−r (Mη + v) + µv′s+

σ2

2
v′′s

)
dη + v′dZη

)
(10)

for any t ∈ R+. In the first equality, the Itô terms for M are zero because M is an

increasing process. The quadratic variation of Z in the second equality follows from

Lemma 2. In the third equality, the dMη term vanishes because both its components

are zero:∫ t

0

e−rη (1− v′) dMη =

∫ t

0

e−rη (1− v′)1Wη=MηdMη +

∫ t

0

e−rη (1− v′)1Wη<MηdMη .

The first component on the right-hand side is identically zero by the super contact

condition. The second component is also zero according to the Skorokhod equation;

i.e., the maximum of a continuous process does not increase when the process is away

from its maximum.

Taking expectation (over F) of Equation (10), I obtain

E0

[
e−rtV (Wt,Mt)

]
= V (W0,M0) + E0

[∫ t

0

e−rη

(
−r (Mη + v) +

1

2
sv′′
)
dη

]
.

The expectation of the dZη term vanishes because it is a martingale.

Including the flow utility and learning costs over [0, t] and taking expectations, I
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obtain

E0

[
e−rtV (Wt,Mt) +

∫ t

0

re−rη (U (xη)− c(sη)) dη

]
=V (W0,M0) + E0

[∫ t

0

e−rη

(
−rv + r (U(xη)−Mη)− rc(sη) + µv′sη +

σ2

2
v′′sη

)
dη

]
.

For sη > 0, the chosen alternative is at the frontier xη = Xη and so U(xη) = Wη.

In this case, Corollary 3 implies that the integrand is weakly negative. For sη = 0, I

have U(xη) ≤ Mη. The integrand is also weakly negative since v is weakly positive.

By construction, {x∗
t} attains the maximum integrand (at zero) over all s because

it satisfies the HJB equation in Corollary 3. For this strategy, the speed is bounded

and so the learning cost is uniformly integrable. As t → ∞, the terminal value,

e−rtV (Wt,Mt), vanishes and so the value of {x∗
t} is given by V {x∗

t} = V (W0,M0).

Consider an arbitrary strategy {xt}. The growth condition implies that e−rηU (xη)

is uniformly integrable. Fatou’s lemma gives

E0

[∫ ∞

0

re−rη (U (xη)− c(sη)) dη

]
≤V (W0,M0) + lim sup

t→∞
E0

[∫ t

0

e−rη

(
−rv + r (U(xη)−Mη)− rc(sη) + µv′sη +

σ2

2
v′′sη

)
dη

]
(11)

≤V (W0,M0)

where the second inequality follows from Corollary 3. Therefore, V = V and {x∗
t} is

an optimal strategy.

Proof of Part 2 of Theorem 1. For any optimal strategy, the integrand in

Equation (11) is zero t-almost everywhere with probability one. Within the threshold

Wt−Mt ∈ (y, 0], it is uniquely maximized by st = s∗ (Wt −Mt). Beyond the threshold

Wt − Mt < y, the integrand is maximized if and only if st = 0 and U(xt) = Mt.

Therefore, the process Xt =
∫ t

0
sηdη is unique. Within the threshold, xt = Xt and is

therefore unique. For the unique X, the threshold is reached only when t ≥ τ . Then,

xt ∈ argmax[0,Xt] U = argmax[0,Xτ ] U is unique almost surely.
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A.4 Proof of Proposition 2

The proof of Proposition 2 relies on two single-crossing lemmata about the so-

lution to initial value problem (9) with respect to model parameters (Lemma 9 and

Lemma 10). They imply the monotonicity of v and y (Corollary 4 and Corollary 5).

Given the monotonic endpoints, the single-crossing lemmata strengthen the mono-

tonicity results to the functions v (Lemma 11) and s point-wise (Lemma 12).

Consider two sets of parameters labeled by i = 1, 2 that are identical except either

r1 > r2, c1 > c2, µ1 < µ2, or σ
2
1 < σ2

2. Recall that f := c′ ◦ g−1.

Lemma 8 If c1 > c2, then f1 > f2 point-wise.

Proof. See the proof of Proposition 5 (c) in Moscarini and Smith (2001).

For i = 1, 2, let ϕi denote the solution to ODE (9) subject to initial condition

ϕi(0) = vi > vi and ϕ′
i(0) = 0 from y = 0 until ϕ′

i ≥ −1, for parameters i.

Lemma 9 (Single crossing, starting from 0)

� If v1 ≥ v2, then ϕ1 > ϕ2 and ϕ′
1 < ϕ′

2 for all y < 0.

� If v1 < v2, then there is at most one y < 0 such that ϕ1(y) = ϕ2(y). Moreover,

ϕ1 > ϕ2 and ϕ′
1 < ϕ′

2 for all y < y.

Proof. I first prove the lemma for either r1 > r2 or c1 > c2. By Lemma 8, r1f1 > r2f2

point-wise.

For the case of v1 ≥ v2, I prove ϕ1 > ϕ2 on (−∞, 0) by showing ϕ′
1 < ϕ′

2

there. Suppose on the contrary ỹ := sup{y < 0 : ϕ′
1(y) = ϕ′

2(y)} > −∞. It

is attained by continuity of ϕ′’s and ϕ′
1 < ϕ′

2 in the neighborhood of 0, because

ϕ′′
1(0) = (2r1/σ

2)f1(v1(0)) − 2µ/σ2 > (2r2/σ
2)f2(v2(0)) − 2µ/σ2 = ϕ′′

2(0). Moreover,

ϕ1 > ϕ2 on [ỹ, 0) because ϕ′
1 < ϕ′

2 there. At ỹ, I have

ϕ′′
1 =

r1
σ2/2

f1(ϕ1)−
µ

σ2/2
(1 + ϕ′

1) >
r2

σ2/2
f2(ϕ2)−

µ

σ2/2
(1 + ϕ′

2) = ϕ′′
2 .

Therefore, ϕ′
1(ỹ + ϵ) > ϕ′

2(ỹ + ϵ) which is a contradiction.
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For the case of v1 < v2, I show that ϕ1 and ϕ2 crosses at most once. Let y :=

max{y < 0 : ϕ1(y) = ϕ2(y)} denote the first crossing. Because ϕ1(0) < ϕ2(0), I have

ϕ′
1(y) ≤ ϕ′

2(y). Whenever ϕ′
1(y) = ϕ′

2(y), I have ϕ
′′
1(y) = (2r1/σ

2)f1(ϕ1)− (2µ/σ2)(1+

ϕ′
1) > (2r2/σ

2)f1(ϕ2) − (2µ/σ2)(1 + ϕ′
2) = ϕ′′

2(y), and so ϕ′
1(y − ϵ) < ϕ′

2(y − ϵ) for

sufficiently small ϵ > 0.12 I continue to show ϕ1 > ϕ2 for all y < y by showing ϕ′
1 < ϕ′

2

there. Suppose on the contrary ỹ := sup{y < y : ϕ′
1(y) = ϕ′

2(y)} > −∞. It is attained

by continuity of ϕ′’s. In addition, I have either ϕ′
1 < ϕ′

2, or ϕ′
1 = ϕ′

2 and ϕ′′
1 > ϕ′′

2.

Moreover, ϕ1 > ϕ2 on [ỹ, y) because ϕ′
1 < ϕ′

2 there. At ỹ, I have

ϕ′′
1 =

r1
σ2/2

f1(ϕ1)−
µ

σ2/2
(1 + ϕ′

1) >
r2

σ2/2
f2(ϕ2)−

µ

σ2/2
(1 + ϕ′

2) = ϕ′′
2 .

Therefore, ϕ′
1(ỹ + ϵ) > ϕ′

2(ỹ + ϵ) which is a contradiction.

The proofs for single crossing with respect to µ and σ2 are analogous—the only

difference lies on the derivation of the ordering between ϕ′′’s. For µ, I obtain the

ordering by noting ϕ′ > −1 and thus 1 + ϕ′ > 0 for all interior y. For σ2, I note

ϕ′′ > 0 and so rf(ϕ)− µ(1 + ϕ′) > 0.

Corollary 4 Let vi denote the option value at 0 for parameters i. Then v1 < v2.

Proof. Suppose otherwise. I have ϕ1 > ϕ2 by Lemma 9. Because ϕ2 touches the

45-degree line, the function ϕ1 will never intersect the line, which is a contradiction.

For i = 1, 2, let ϕi denote the solution to ODE (9) for parameters i from y = yi

until ϕ′
i ≤ 0, subject to initial condition ϕi(yi) = −yi and ϕ′

i(yi) = −1 where yi < 0.

The solution exists at least for yi = y
i
by construction in Proposition 5.

Lemma 10 (Single crossing, starting from yi)

� If |y1| ≥ |y2|, then ϕ1 > ϕ2 and ϕ′
1 > ϕ′

2 for y ∈ (y2, 0].

� If |y1| < |y2|, then there exists at most one y ∈ (y1, 0] such that ϕ1(y) = ϕ2(y).

Moreover, ϕ1 > ϕ2 and ϕ′
1 > ϕ′

2 for y ∈ (y, 0).

12If y is the left endpoint of one of the ϕ’s, then the lemma already obtains.
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Proof. The proof is analogous to Lemma 9. The only difference is the starting point

y’s instead of 0. For |y1| > |y2|, I have ϕ1(y2) > y2 = ϕ2(y2) and ϕ′
1(y2) > −1 = ϕ′

2(y2)

by the convexity of ϕ1. The reverse goes for |y1| < |y2|.

Corollary 5 Let y
i
denote the drawdown threshold for parameter i. Then |y

1
| < |y

2
|.

Proof. Suppose otherwise. I have 0 = ϕ′
1(0) > ϕ′

2(0) = 0, a contradiction.

Lemma 11 Let vi denote the option value for parameters i. Then v1 < v2 point-wise.

Proof. It suffices to show that ϕ1 < ϕ2 point-wise.

Suppose otherwise. There exists y < 0 such that ϕ1(y) = ϕ2(y) by the intermediate

value theorem. By Lemma 9, I have ϕ1 > ϕ2 and so ϕ1 does not intersect the 45-

degree line on [y
2
, 0]. Moreover, ϕ′

1(y2) < ϕ′
2(y1) = −1 and so the convex ϕ1 does not

intersect the 45-degree line on (−∞, y
2
). Therefore, ϕ1 does not intersect with the

45-degree line, which is a contradiction.

Lemma 12 Let si denote the speed of exploration for parameters i. Then s1 < s2

point-wise.

Proof. By Equation (8), the monotonicity of s with respect to µ, σ2, and r follows

directly from that of ϕ. With respect to c, Lemma 8 implies that g−1 and therefore

s = g−1(ϕ) are both decreasing point-wise.

A.5 Proof of Corollary 1

Define h := g−1. It is increasing because g is increasing. Moreover, elementry

calculus shows that h′ is decreasing whenever sc′′(s) is increasing.

Applying Itô’s lemma on Equation (8) gives

ds =h′ (v − y) (v′ − 1) dy +
1

2

(
h′′ (v − y) (v′ − 1)

2
+ h′ (v′ − y) v′′

)
d⟨y⟩

=

(
h′(v − y)(v′ − 1)µ+

σ2

2

(
h′′(v − y)(v′ − 1)2 + h′(v − y)v′′

))
sdt

− h′(v(0)− 0)(v′(0)− 1)dM + h′(v − y)(v′ − 1)dZ
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where the second equality follows from Lemma 2 and the fact that 1y<0dM = 0 by

the Skorokhod equation. The three dt terms are positive because (i) h is increasing,

v′ ≤ 1, and µ < 0; (ii) h′ is decreasing because sc′′(s) is increasing by the hypothesis;

(iii) v is convex. The dM term vanishes because v′(0) = 1 by the smooth pasting

condition (6). Therefore, the corollary obtains because Z is a martingale by Lemma 2.

A.6 Proof of Proposition 3

Lemma 13 Let z denote a Brownian motion with drift µ and volatility σ2 reflected

at z = 0. Then the pairs of processes (U−M,M) and (z, 2Lz(0)) share the same law,

where Lz(0) is the local time of z at 0.

Proof. See Peskir (2006).

Proof of Proposition 3. Lemma 13 implies that the measure P [yx ∈ ·, Xτ > x]

is absolutely continuous and its density p(t, ·) satisfies the Kolmogorov forward equa-

tion

∂xp =
σ2

2
∂2
yp− µ∂yp ∀t > 0, y ∈ (y, 0)

subject to boundary conditions p(x, y) = 0 and ∂yp(x, 0) = (2µ/σ2)p(x, 0) and initial

condition p(0, y) = δ0(y).

This diffusion-drift problem with absorption/reflection boundary conditions can

be solved by Fourier series. See Chapter 4 of Strauss (2007). The solution converges

asymptotically to the leading eigenfunction, denoted by q(y) ≥ 0, exponentially at

the rate of the leading eigenvalue, denoted by λ > 0.

I note that λ = π2σ2/8|y|2 for µ = 0.

A.7 Proof of Corollary 2

The proof of Proposition 3 implies that the distribution of Xτ decays to zero

exponentially at rate λ. Because Xτ =
∫ τ

0
stdt, I have Xτ/s(y) ≤ τ ≤ Xτ/s(0).

Therefore, the distribution of τ also decays to zero exponentially at rate λ.
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A.8 Proof of Proposition 4

Similar to Proposition 3, I index the utility process U by the alternatives instead

of time by undoing the time change Xt. Because the threshold strategy is invariant to

the continuous time change, the utility process is stopped at the alternative x = Xτ ,

where yx = y.

I prove Proposition 4 by establishing the linear relationship between Xτ and M∞,

and then translating the relationship from Xτ to x∞. I first approximate the tail

distribution of x∞ (Lemma 14). I continue to derive the expectation of x∞ conditional

on M∞, using that of Xτ conditional on M∞ (Lemma 15). I use this indirect method

because x∞ is not adapted to the natural filtration FB but Xτ is. Finally, I translate

the conditional expectation to M∞ conditional on x∞ by the marginal distribution of

x∞ approximated in Lemma 14 and the Markov inequality .

Lemma 14 Suppose µ = 0. Then x∞ has an exponential tail with exponent λ.

Proof. Proposition 3 implies that Xτ has an exponential tail, and so there exist

K1, K2 > 0 such that K1e
−λx ≤ P [Xτ > x] ≤ K2e

−λx. Because x∞ < Xτ , the tail

probability of x∞ is bounded from above by P [x∞ > x] ≤ K2e
−λx.

The difference z := Xτ − x∞ is independent of x∞ due to the strong Markov

property. Recall that Brownian motion near an extrema follows a Bessel-3 process

starting at zero. Therefore, z follows the distribution of hitting time at
∣∣y∣∣ /σ2 of that

process. Its density follows an exponential distribution asymptotically.13 Because the

stopping alternative is distributed as the hitting time at
∣∣y∣∣ /σ2 of a Bessel-1 process,

i.e., reflected Brownian motion, z has a thinner exponential tail than Xτ . Because

x∞ and z are independent and sum to Xτ , the exploited alternative x∞ must have a

tail at least as thick as Xτ ’s.

Lemma 15 Suppose µ = 0. Then x∞ and M∞ satisfy

E [x∞|M∞ > m] =
2

3

∣∣y∣∣
σ2

m+
2

3

y2

σ2
∀m ≥ 0 .

Proof. Because yx∞ = 0 by definition, Xτ − x∞ is independent of (x∞,M∞) due to

13See Formula 2.0.2, Chapter 4, Part II of Borodin and Salminen (2012) for the exact distribution.
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the strong Markov property of Brownian motion. Therefore, it suffices to compute

E [Xτ − x∞] and E [Xτ |M∞ > m].

First, I compute E [Xτ − x∞]. To simply notation, I will compute it under the

normalization σ2 = 1. For standard Brownian motion starting at y ∈ (z, 0), let H

denote the exit time from (z, 0). The expectation of e−βH conditional on exiting at

z is14 Ey

[
e−βH |BH = z

]
= z sinh

(
x
√
2β
)
/x sinh

(
z
√
2β
)
. Because H|BH = z has

finite expectation, the dominated convergence theorem applies and the conditional

expectation of H is given by Ey [H|BH = z] = −∂βEy

[
e−βH |BH = z

]
= 1

3
(z2 − y2).

Due to the quadratic variation of Brownian motion, the escape time converges

to Xτ − x∞ almost surely as y → 0. By the dominated convergence theorem, the

conditional expectation converges as well, i.e., E [Xτ − x∞] = limy→0 Ey [H|BH = z] =
1
3
z2.

Second, I compute E [Xτ |M∞ > m]. For a standard Brownian motion and β > 0,

the conditional Laplace transform satisfies

E
[
e−βXτ |LXτ (0) = l

]
=

z
√
2β

sinh
(
z
√
2β
) exp(− 1

2z

(
z
√

2β coth
(
z
√
2β
)
− 1
)
l

)
where LXτ (0) is the local time at zero.15 Because Xτ has finite expectation by

Proposition 3, the dominated convergence theorem implies that the conditional ex-

pectation of Xτ is E [Xτ |LXτ (0) = l] = −∂βE
[
e−βXτ |LXτ (0) = l

]∣∣
β→0

= zl/3 + z2/3.

Lemma 13 implies that the running maximum is twice the local time at zero, thus

E [Xτ |M∞ = m] = E [Xτ |LXτ (0) = 2m] = 2zm/3 + z2/3.

Lehoczky (1977) shows that M∞ is exponentially distributed with mean |y|. Using
his result, I obtain the tail conditional expectation ofXτ by integrating the conditional

expectation

E [Xτ |M∞ > m] =

∫∞
m

E [Xτ |M∞ = η]P [M∞ ∈ dη]∫∞
m

P [M∞ ∈ dη]
=

2

3
zm+ z2 .

Therefore, the tail conditional expectation of x∞ is E [x∞|M∞ > m] = E [Xτ |M∞ > m]−
14See Formula 3.0.4(b) and Formula 3.0.5(b), of Chapter 1, Part II in Borodin and Salminen

(2012).
15See Formula 2.3.4 together with Formula 2.3.2, of Chapter 3, Part II in Borodin and Salminen

(2012).
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E [Xτ − x∞] = 2zm/3 + 2z2/3.

For the utility process U with σ > 0, the Brownian scaling property implies that

the conditional expectation for volatility σ2 and threshold σz is

E [x∞|M∞ > σm′]|σ2,σz = E [x∞|M∞ > m′]|1,z =
2

3
zm′ +

2

3
z2 .

I obtain the desired equality by taking z =
∣∣y∣∣ /σ and m′ = m/σ.

Proof of Proposition 4. Note that the coefficient of x is in fact π2σ2/8|y| =∣∣y∣∣λ. See the proof of Proposition 3.

I first show E [M∞|x∞ > x] ≤
∣∣y∣∣λx + o(x). The Markov inequality applied to

Lemma 15 yields

xP [x∞ > x|M∞ > m] ≤ E [x∞|M∞ > m] =
2

3

∣∣y∣∣
σ2

m+
2

3

y2

σ2
∀x ≥ 0 .

Substituting the tail probability for M∞ from Lehoczky (1977), I obtain

P [M∞ > m|x∞ > x] ≤

(
2

3

∣∣y∣∣
σ2

m

x
+

2

3

y2

σ2

1

x

)
e
− m

|y|P [x∞ > x]−1 =: P (m) .

The integral over [0,∞) gives∫ ∞

0

P [M∞ > m|x∞ > x] dm ≤
∫ ∞

0

min{P (m), 1}dm .

As both sides are integrable, the boundary terms from the integration by parts vanish

−
∫ ∞

0

mdP [M∞ > m|x∞ > x] ≤ −
∫ ∞

m∗
mdP (m)

where m∗ is defined by

m∗ := sup {r : P (r) ≥ 1} =
∣∣y∣∣λx+ o(x) .

It is well-defined for sufficiently large x. The approximation is due to Lemma 14. The
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conditional expectation is therefore bounded by

E [M∞|x∞ > x] =−
∫ ∞

0

mdP [M∞ > m|x∞ > x]

≤−
∫ ∞

m∗
mdP (m)

=P [x∞ > x]−1

∫ ∞

m∗
m

(
2

3

1

σ2

m

x
+

2

3

∣∣y∣∣
σ2

1

x

)
e
− m

|y|dm

=P [x∞ > x]−1 e
−m∗

|y|

(
2

3

∣∣y∣∣
σ2

(m∗)2

x
+

1

x
o
(
(m∗)2

))
=P (m∗) (m∗ + o (m∗))

=
∣∣y∣∣λx+ o(x) .

I continue to show E [M∞|x∞ > x] ≥
∣∣y∣∣λx + o(x). For a standard Brownian

motion stopped at drawdown z > 0, the Laplace transform of Xτ conditional on M∞

satisfies16

E
[
e−βXτ |M∞ = m

]
=

z
√
2β

sinh
(
z
√
2β
) exp(− 1

4z

(
z
√
2β coth

(
z
√
2β
)
− 1
)
m

)
.

For the utility process with volatility σ2 stopped at |y|, I take β = x−2 to obtain

E
[
e−Xτ/x2 |M∞ = m

]
= 1− 1

6

|y|
σ

m

x2
+ o

(
1

x
+

m

x2

)
.

The independence between (x∞,M∞) and Xτ − x∞ implies

E[e−x∞/x2|M∞] = E[e−Xτ/x2|M∞]/E
[
e−(Xτ−x∞)/x2

]
= 1− 1

6
|y|m

x2
+ o

(
1

x
+

m

x2

)
.

The Markov inequality applied to e−x∞/x2
conditional onM∞ reads kP

[
e−x∞/x2

> k|M∞

]
≤

16See Formula 2.3.4 and Formula 2.3.2, of Chapter 3, Part II in Borodin and Salminen (2012).
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E
[
e−x∞/x2|M∞

]
. The tail probability is then bounded by

P [x∞ > x|M∞ ∈ dm] ≥ 1− e1/xE
[
e−x∞/x2|M∞ ∈ dm

]
=

1

6

∣∣y∣∣ m
x2

+ o

(
1

x
+

m

x2

)
dm .

Given the distribution of M∞ in Lehoczky (1977), the density of M∞ conditional

on x∞ > x is bounded by

P [M∞ ∈ dm|x∞ > x] ≥ P [x∞ > x]−1 1∣∣y∣∣e− m

|y|
(
1− e1/xE

[
e−x∞/x2 |M∞ ∈ dm

])
dm =: q(m)dm .

Define Q(m) :=
∫∞
m

q(m)dm and m̃ := Q−1(1) =
∣∣y∣∣λx + o(x). The integration by

parts yields

E [M∞|x∞ > x] ≥
∫ ∞

m̃

mq(m)dm = Q (m̃) (m̃+ o(m̃)) =
∣∣y∣∣λx+ o(x) .
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