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Sophisticated banking contracts and fragility when withdrawal
information is public

Xuesong Huang
Lingnan College, Sun Yat-sen University

I study whether self-fulfilling bank runs can occur when banks use sophisticated
contracts and withdrawal decisions are public information. In a finite-agent ver-
sion of Diamond and Dybvig (1983) with correlated types, I first present an exam-
ple in which a bank run perfect Bayesian equilibrium exists. However, its existence
relies on off-path beliefs that are unreasonable in terms of forward induction. To
discipline beliefs, I use forward induction equilibrium (Cho (1987)) as the solu-
tion concept. I show that, whenever the allocation rule is strictly incentive com-
patible, the truth-telling strategy is the unique forward induction equilibrium in
the withdrawal game, and no bank run occurs. Therefore, with forward induction,
sophisticated contracts can prevent bank runs when there is public information
about withdrawal decisions.
Keywords. Bank runs, sophisticated contracts, public information, forward in-
duction, correlated types.
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1. Introduction

In the modern financial system, intermediaries play a vital role in facilitating the flow
of resources toward more productive projects. Much like traditional commercial banks,
a wide range of intermediaries are in the business of maturity transformation, issuing
short-maturity debts to finance long-maturity investments. Such institutions include
structured investment vehicles (SIVs), money market funds (MMFs), open-end mutual
funds, etc. However, as observed in the past 15 years, those financial intermediaries
are susceptible to sudden increases in withdrawals that resemble a bank run, which can
strain the financial system and have repercussions in the entire economy.1 As a con-
sequence, how to make those financial intermediaries less fragile remains a timely and
essential question.
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In the seminal paper by Diamond and Dybvig (1983), the phenomenon of a bank
run is characterized as a Nash equilibrium outcome in the withdrawal game played by
depositors. In this framework, a bank run equilibrium is a coordination failure. If each
depositor fears that other depositors will rush to withdraw from the bank, it is in his
own best interest to rush to withdraw as well before the bank runs out of funds. Several
papers following Diamond and Dybvig propose a mechanism design approach to study
bank runs. Early works include Wallace (1988, 1990), Green and Lin (2003), and Peck and
Shell (2003). They explore whether the design of the banking contract could eliminate
bank runs as equilibrium outcomes. The banking contracts studied in this literature are
sophisticated in the sense that payments to depositors are dynamically adjusted con-
tingent on past withdrawals. Green and Lin (2003) show that, under certain conditions,
the use of such sophisticated banking contracts can prevent bank runs and implement
efficient allocations, while Ennis and Keister (2009) give conditions under which a bank
run equilibrium still exists.

A common criticism of this literature is that sophisticated banking contracts are rare
in reality. One reason for this may be moral hazard problems that arise when the bank
operator can adjust payments based on withdrawal demand that is not observed by de-
positors.2 However, with the advent of blockchain and its embedded smart-contract
technology, there is a natural solution to this problem. One can program a sophisticated
banking contract as a smart contract on a (public) blockchain, which will execute au-
tomatically without a third party like the bank operator.3 Furthermore, the irreversible
nature of blockchain guarantees that no one can tamper with the contract.

However, this solution of using smart contracts on a blockchain brings in a new is-
sue. That is, because of the information transparency inherent in a public blockchain,
any depositor’s transactions with the banking (smart) contract are public and, therefore,
fully observable by other depositors. In other words, withdrawal by a given depositor
will be observed by all other depositors, which sharply contrasts with the normal oper-
ations in traditional banks. These developments, therefore, raise a new research ques-
tion: Can sophisticated banking contracts eliminate bank runs when information about
withdrawals is publicly available?

I study this question in a finite-agent version of Diamond–Dybvig with correlated
liquidity types and a formal sequential service constraint as in Green and Lin (2000). The
banking contract asks each depositor to make a withdrawal decision, and the bank’s pay-
ment to each depositor is contingent on the withdrawal decisions of depositors earlier
in the line. Furthermore, each depositor’s withdrawal decision is perfectly observable by
other depositors. Therefore, given the banking contract and public information about
withdrawal decisions, depositors are playing a (sequential) full-information withdrawal
game, which shares some features of a signaling game. In particular, each depositor’s
withdrawal decision can serve as a signal of their private liquidity type for depositors
later in the sequence.

2See Andolfatto and Nosal (2008) for a more formal discussion on this point.
3A recent paper by Routledge and Zetlin-Jones (2022) provides a practical guide on GitHub that shows

how to program such contracts using the Solidity code on the Ethereum network.
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First, I show by an example that a bank run perfect Bayesian equilibrium can exist in
the full-information withdrawal game. Here, the assumption of correlated types is cru-
cial. To see why, first note that, in the full-information withdrawal game, each depositor
can update their belief about earlier depositors’ types after observing their withdrawal
decisions. When types are independent, each depositor’s updated belief about earlier
depositors’ types does not affect their inference about the remaining depositors’ types.
However, when types are correlated, each depositor’s updated belief about earlier de-
positors’ types does affect their inference about the remaining depositors’ types. As a
result, each depositor’s belief matters when types are correlated. Since perfect Bayesian
equilibrium does not restrict the choice of off-path beliefs, I can pick any off-path beliefs
that rationalize a bank run perfect Bayesian equilibrium.

However, in the example of a bank run perfect Bayesian equilibrium that I construct,
the choice of off-path beliefs is unreasonable in terms of forward induction. It is easy
to see why forward induction is a natural criterion in this environment. Any deposi-
tor who chooses not to withdraw immediately from the bank intends to consume later
on. However, a depositor of the impatient type wants to consume as early as possible
to meet his liquidity needs. Therefore, by forward induction, anyone who chooses not
to withdraw immediately from the bank cannot be of the impatient type. To formally
incorporate such a restriction on off-path beliefs, I use forward induction equilibrium
introduced in Cho (1987) as the equilibrium concept for the full-information withdrawal
game.4 The main result shows that, whenever the allocation/payment rule is strictly in-
centive compatible, there is a unique forward induction equilibrium in the associated
full-information withdrawal game, and no bank run occurs. Therefore, sophisticated
banking contracts can eliminate fragility when withdrawal decisions are publicly ob-
served.

Lastly, I consider two additional issues related to this result. First, I study under what
conditions efficient allocations are strictly incentive compatible. In particular, I iden-
tify an additional condition on the correlation structure across types such that the first-
best allocation rule is strictly incentive compatible, which provides a generalization of
Lemma 5 in Green and Lin (2003). Combined with the main result, this additional result
gives a sufficient condition for the first-best allocation to be uniquely implementable by
a sophisticated banking contract in this setting. Second, I use the indirect mechanism
studied in Andolfatto, Nosal, and Sultanum (2017) to illustrate that introducing indirect
mechanisms cannot weaken the strict incentive compatibility condition in the main re-
sult. Therefore, in contrast to the case when withdrawal decisions are not observed,
there appears to be no gain in considering indirect mechanisms in the environment
studied in this paper.

2. Related literature

This paper is most closely related to the mechanism design literature on bank runs fol-
lowing Green and Lin (2003). Table 1 provides a brief summary of the main results in

4In classical signaling games, forward induction equilibrium boils down to the “intuitive criterion” stud-
ied in Cho and Kreps (1987).



288 Xuesong Huang Theoretical Economics 19 (2024)

Table 1. Summary of main results in the existing literature.

Independent types Correlated types

No information There exists a bank run Bayes Nash equilibrium (Peck and Shell (2003))

Information about
position

No bank run exists as a Bayes Nash
equilibrium (Green and Lin (2003))

There exists a bank run Bayes
Nash equilibrium

(Ennis and Keister (2009))

Information about
position and
withdrawal decisions

No bank run
exists as a perfect Bayesian equilibrium
(Andolfatto, Nosal, and Wallace (2007))

No bank run exists as a
forward induction equilibrium

(this paper)

this literature and highlights how the existence of bank run equilibria depends on the
assumptions in the underlying environment.5 This paper makes two contributions to
this literature. First, parallel to the contributions in Ennis and Keister (2009), this pa-
per shows that, if one relaxed the assumption of independent types to allow correlated
types, there could exist a bank run perfect Bayesian equilibrium in the full-information
withdrawal game, in contrast to the no bank run result in Andolfatto, Nosal, and Wallace
(2007) with independent types. Second, as indicated in Table 1, this paper shows that,
with forward induction, the no bank run result can be reestablished even when types are
correlated.

The papers in Table 1 all focus on direct mechanisms in which depositors are asked
to report their types. Some recent papers instead study indirect mechanisms in which
depositors are asked to report additional messages, and they show that those indirect
mechanisms can prevent bank runs. For example, Andolfatto, Nosal, and Sultanum
(2017) study an indirect mechanism in which depositors are asked to report not only
their types but also their beliefs regarding whether there is a bank run going on. Another
paper by Payne and Weiss (2023) studies a different indirect mechanism in which each
depositor is allowed to ask to hold shares of the intermediary’s long-term assets. Caval-
canti and Monteiro (2016) study an indirect mechanism in which depositors are asked
to report their types twice, once before receiving consumption from the intermediary
and once after. In this paper, instead of asking for more information from depositors as
in those indirect mechanisms, I show that the intermediary can prevent bank runs by
providing more information to depositors.

In the Diamond–Dybvig framework, several papers have studied information reve-
lation about depositors’ withdrawal information. Nosal and Wallace (2009) study how
information revelation about depositors’ withdrawal decisions affects the set of imple-
mentable allocation rules. This paper, in contrast, takes as given that information about
withdrawal decisions is fully revealed, as would occur with smart contracts on a public
blockchain. I show that any allocation rule that is strictly incentive compatible in this
environment can be uniquely implemented by a sophisticated contract. Kinateder and
Kiss (2014) also study the full-information withdrawal game in a finite-agent version of
Diamond–Dybvig. They assume aggregate certainty, i.e., the total number of impatient

5See Ennis and Keister (2010) for a detailed survey on this literature.
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depositors is known, and show that there is a unique perfect Bayesian equilibrium in

the full-information withdrawal game. In contrast, this paper assumes aggregate un-

certainty, which is a more natural assumption with a finite number of depositors, and

shows that multiple perfect Bayesian equilibria could exist in the full-information with-

drawal game. Ennis and Keister (2016) study a different setup in which only decisions of

withdrawal are revealed to the bank and depositors. They show by examples that there

are bank run equilibria under the optimal banking contract. In comparison, this paper

focuses on the setup in which decisions of both withdrawal and no withdrawal are re-

vealed to the bank and depositors. I show that, under the optimal banking contract, no

bank run can occur as a forward induction equilibrium.

Lastly, this paper is related to the literature that applies forward induction reason-

ing to eliminate unreasonable equilibria in various settings such as advertising (Mil-

grom and Roberts (1986)), matching models of money (Nosal and Wallace (2007)), stable

matching under incomplete information (Pomatto (2022)), and credit market competi-

tion with monitoring (Goldstein, Huang, and Yang (2022)). This paper contributes to this

literature by identifying a new application of forward induction reasoning in a model of

bank runs.

The rest of the paper is organized as follows. The next section sets up the environ-

ment, the full-information withdrawal game, and the planner’s problem for the first-best

allocation rule. Section 4 introduces two examples with correlated types to illustrate the

signaling aspect of the full-information withdrawal game and the problem of allowing

arbitrary off-path beliefs in perfect Bayesian equilibrium. Section 5 defines forward in-

duction equilibrium and presents the main result. Section 6 discusses two issues related

to the main result: efficiency and indirect mechanisms. Section 7 concludes with a dis-

cussion of implications for asset-backed stablecoins and directions for future research.

3. The setup

In this section, I first introduce the environment, which is an extension of Green and

Lin (2003) to allow correlated types as in Ennis and Keister (2009). Next, I give a formal

description of the full-information withdrawal game played by depositors and define

perfect Bayesian equilibrium. Lastly, I set up the planner’s problem for the first-best

allocation rule and explain how the problem can be reduced to a dynamic programming

problem.

3.1 The environment

The economy consists of two time periods, indexed by t ∈ {0, 1}, a finite number of de-

positors, indexed by i ∈ I = {1, 2, � � � , I}, and a single consumption good that can be con-

sumed in both periods. Each depositor i learns his private type ωi ∈ � = {0, 1} in period
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0, and his preference is given by6

ui(ai, ωi ) =
{
v
(
a0
i

)
if ωi = 0

ρv
(
a0
i + a1

i

)
if ωi = 1,

(1)

where ai = (a0
i , a1

i ) denotes the consumption of depositor i in each period, ρ > 0, and
as in Diamond and Dybvig (1983), the function v : R+ → R is assumed to satisfy the
following properties.

Assumption 1. (i) v is strictly increasing, twice continuously differentiable and strictly
concave; (ii) v satisfies the Inada conditions where limc→0 v

′(c) = ∞ and limc→∞ v′(c) = 0;
and (iii) relative risk aversion of v is greater than or equal to 1 everywhere, i.e., for any
c ∈R++,

−cv"(c)
v′(c)

≥ 1.

If ωi = 0, the depositor is impatient and only values consumption in period 0. If
ωi = 1, the depositor is patient and values consumption in both periods. Denote ω =
(ω1, ω2, � � � , ωI ) ∈∏I

i=1 �i =∏I
i=1 � = �I as depositors’ type profile. Furthermore, let

ω1:i−1 = (ω1, � � � , ωi−1 ) ∈∏i−1
k=1 � = �i−1 and ωi+1:I = (ωi+1, � � � , ωI ) ∈∏I

k=i+1 � = �I−i.
The common prior P is given by

P(ω) = p
(
θ(ω)

)
C
(
I, θ(ω)

) ,

where C(I, θ) = I!
θ!(I−θ)! , p : {0, 1, � � � , I} → (0, 1] is an exogenous probability mass func-

tion satisfying
∑I

θ=0 p(θ) = 1, and θ(ω) =∑I
i=1 ωi is the total number of patient deposi-

tors in type profile ω. One can interpret this formulation as follows: Nature first chooses
the total number of patient depositors θ according to the probability mass function p(·).
Then θ depositors are chosen at random (with each depositor equally likely to be cho-
sen) and assigned to be patient. The remaining depositors are assigned to be impatient.
Under this approach, each depositor has the same ex ante probability of being patient.
Note that this formulation allows depositors’ types to be correlated. Furthermore, it in-
cludes independent types as a special case by letting the probability mass function p(·)
be a binomial distribution, i.e.,

p(θ) = C(I, θ)(1 −π )θπI−θ,

where π is the probability of each depositor being impatient.
There is an intermediary that allocates consumption goods to depositors. The inter-

mediary is endowed with I units of consumption goods in period 0, and has the access
to an investment technology transforming each unit of the good that is not consumed

6This formulation of preferences is exactly the same as in Diamond and Dybvig (1983). It reduces to the
formulation in Green and Lin (2003) by letting ρ = 1.
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in period 0 into R units of the good in period 1.7 Throughout the paper, I assume that
ρR > 1.8 As in Wallace (1988), depositors are isolated from each other and from the in-
termediary at the beginning of period 0, but each depositor has an opportunity to con-
tact the intermediary in each period in order to receive goods. Goods are nonstorable
and must be consumed immediately after contacting the intermediary.9 The (ex post)
allocation bundle a = (a1, a2, � � � , aI ) distributed by the intermediary must satisfy the
following feasibility condition:

I∑
i=1

(
a0
i + a1

i

R

)
≤ I.

In other words, the present value of total consumption goods the intermediary can allo-
cate should not exceed its initial endowment. Let A denote the set of all feasible alloca-
tions. As in Green and Lin (2003), I allow the intermediary to use sophisticated contracts
that allocate consumption goods contingent on depositors’ (reported) type profile. For-
mally, an allocation rule, denoted as α, maps any type profile in �I into a feasible allo-
cation in A. Let F= {α : �I →A} denote the set of allocation rules.

Lastly, the sequential service constraint requires depositors to contact the interme-
diary in a fixed order given by the index i, beginning with depositor 1 and ending with
depositor I.10 As a result, the intermediary must determine the period-0 consumption
of depositor i based on the partial history ω1:i = (ω1, � � � , ωi ) since the remaining depos-
itors have not contacted the intermediary yet. Formally, an allocation rule satisfies the
sequential service constraint if

α0
i (ω) = α0

i (ω̂) for all ω, ω̂ ∈ �I such that ω1:i = ω̂1:i. (2)

In other words, the sequential service constraint is a measurability condition on the
period-0 allocation rule. Consequently, the period-0 allocation rule for depositor i can
be simplified to a function mapping from �i to R+, i.e., α0

i (·) : �i → R+. Note that the
period-1 allocation is made after all reports have been made in period 0, and as a result,
the sequential service constraint does not apply to α1

i (·). Denote the set of allocation
rules that satisfy the sequential service constraint as

Fs = {α ∈ F| condition (2) holds for all i
}

.

7The intermediary’s endowment can also be interpreted as the total deposits from depositors, each of
whom is endowed with one unit of the good. This setup simplifies the exposition by starting the analysis
with these endowments already deposited in the intermediary. For analysis of depositors’ choice of whether
to deposit, see Peck and Setayesh (2023) and Shell and Zhang (2020).

8This is the assumption made in Diamond and Dybvig (1983). When ρ = 1, this condition reduces to
R> 1, which is the assumption in Green and Lin (2003).

9This assumption eliminates the possibility for trade among depositors after contacting the intermedi-
ary. See Jacklin (1987) and Wallace (1988) on this point.

10Green and Lin (2003) assume that depositors have imperfect knowledge about the order in which they
contact the intermediary. In this paper, I follow Green and Lin (2000) and Ennis and Keister (2009) in as-
suming that each depositor exactly knows their position in the sequence.
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3.2 Full-information withdrawal game

In the full-information withdrawal game, each depositor i reports a private type in pe-
riod 0, ri ∈ � = {0, 1}, which may or may not be his true type ωi, after observing the
report history before him, i.e., hi = (r1, r2, � � � , ri−1 ).11 Let Hi be the set of all possible
report histories prior to depositor i. A behavior (mixed) strategy for depositor i is de-
fined as σi : Hi × � → 
(�), where 
(�) is the set of all possible distributions over �.
A pure strategy for depositor i is defined as �i : Hi × � → �. In particular, �i is the be-
havior strategy σi satisfying σi(�i(hi, ωi )|hi, ωi ) = 1. Let σ = (σ1, σ2, � � � , σI ) be a behav-
ior strategy profile, and � = (�1, �2, � � � , �I ) be a pure strategy profile. The truth-telling
strategy (profile) is a pure strategy profile � in which �i(hi, ωi ) = ωi for any history hi

and type ωi. Following the literature, a (bank) run strategy (profile) is a behavior strat-
egy profile σ in which there exists a depositor i of the patient type, i.e., ωi = 1, and a
history hi such that σi(ri = 0|hi, ωi = 1) > 0.

Depositor i’s information sets are labeled by (hi, ωi ) ∈ Hi × �, and his belief at in-
formation set (hi, ωi ) is denoted as μi(·|hi, ωi ) ∈ 
(�i−1 ). In particular, μi(ω1:i−1|hi, ωi )
specifies depositor i’s belief about the probability of previous depositors’ true type pro-
file being ω1:i−1, after knowing his own true type ωi and observing the report history
prior to him hi. Let μ = (μ1, μ2, � � � , μI ) denote a system of beliefs. Then, under any be-
lief μi(·|hi, ωi ) ∈ 
(�i−1 ), depositor i’s induced probability of the remaining depositors’
true types being ωi+1:I = (ωi+1, � � � , ωI ) is given by

φ
μi
i (ωi+1:I|hi, ωi ) =

∑
ω′

1:i−1∈�i−1

P
(
ωi+1:I|ω′

1:i−1, ωi

)
μi

(
ω′

1:i−1|hi, ωi

)
. (3)

Remark 1. If depositors’ types are independent as in Andolfatto, Nosal, and Wallace
(2007), i.e., P(ωi+1:I|ω1:i−1, ωi ) = P(ωi+1:I ), it follows from (3) that

φ
μi
i (ωi+1:I|hi, ωi ) =

∑
ω′

1:i−1

P(ωi+1:I )μi

(
ω′

1:i−1|hi, ωi

)

= P(ωi+1:I )
∑
ω′

1:i−1

μi

(
ω′

1:i−1|hi, ωi

)= P(ωi+1:I ),

which is independent of hi and ωi. In words, with independent types, depositor i’s in-
duced probability distribution over the remaining depositors’ types is independent of
what previous i − 1 depositors have reported and of depositor i’s true type. However,
with correlated types, depositor i’s induced probability distribution over the remaining
depositors’ types does depend on his true type and his belief about previous depositors’
true types given their reports.

11Because of the structure of depositors’ preferences, in the full-information withdrawal game induced
by any efficient allocation rule, if a depositor reports to be impatient, he will receive consumption right
away in the early period. In other words, his report of being impatient is equivalent to the colloquial saying
of “withdraw from the bank.” If a depositor reports to be patient, he will only receive consumption in the
late period, and his report of being patient is equivalent to the colloquial saying of “not withdraw from the
bank.” I will use these terms interchangeably.
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Lastly, each depositor’s final payoff in the full-information withdrawal game is de-
termined by the allocation rule.12 Specifically, in the full-information withdrawal game
induced by the allocation rule α ∈ Fs , given hi and ωi, depositor i’s period-0 allocation
from reporting ri is α0

i (hi, ri ), and his period-1 allocation is α1
i (hi, ri, ri+1:I ), which de-

pends on the remaining depositors’ reports. Note that, given the remaining depositors’
behavior strategy profile σi+1:I = (σi+1, � � � , σI ), the remaining depositors’ reports are
dependent on hi, ri, and the realization of ωi+1:I . Therefore, given hi, ωi:I and σi+1:I , let

ui
(
α0
i (hi, ri ), α1

i

(
hi, ri, σi+1:I(hi, ri, ωi+1:I ), ωi

))
denote depositor i’s expected payoff of reporting ri. This expected utility can be written
as ∑

ri+1:I∈�I−i

ui
(
α0
i (hi, ri ), α1

i (hi, ri, ri+1:I ), ωi

)

× σi+1(ri+1|hi, ri, ωi+1 ) · · ·σI(rI|hi, ri, � � � , rI−1, ωI ).

As a result, given any strategy profile σ and any belief μi, depositor i’s expected payoff
of choosing σi at information set (hi, ωi ) is given by

U
μi
i (σi, σi+1:I|hi, ωi )

=
∑
ωi+1:I

[∑
ri∈�

σi(ri|hi, ωi )ui
(
α0
i (hi, ri ), α1

i

(
hi, ri, σi+1:I(hi, ri, ωi+1:I )

)
, ωi

)]

×φ
μi
i (ωi+1:I|hi, ωi ),

where φ
μi
i is determined by μi following (3). I say σi(·|hi, ωi ) is sequentially rational

under the belief μi(·|hi, ωi ) if

σi(·|hi, ωi ) ∈ argmax
σ ′
i∈
(�)

U
μi
i

(
σ ′
i , σi+1:I|hi, ωi

)
.

Remark 2. If ωi = 0, for any history hi and any belief μi, σi(ri = 0|hi, ωi = 0) = 1 is
sequentially rational under μi.

This remark is a direct consequence of the preferences in (1), since the impatient
type does not value consumption in period 1. In words, it says that if depositor i is truly
impatient he will always report truthfully.

Furthermore, a history hi = (r1, r2, � � � , ri−1 ) is on-path given strategy profile σ if for
each k= 1, 2, � � � , i− 1 there exists a ωk such that

σk(rk|r1, � � � , rk−1, ωk ) > 0.

12For the rest of the paper, to simplify the presentation, I only focus on allocation rules that satisfy the fol-
lowing properties: α0

i (hi, ri = 0) > 0, α0
i (hi, ri = 1) = 0, α1

i (hi , ri = 0, ri+1:I ) < α1
i (hi, ri = 1, ri+1:I ). Given the

structure of depositors’ preferences, these conditions are minimal requirements for any efficient allocation
to satisfy.
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Otherwise, a history hi is off-path given strategy profile σ . Next, I introduce the defini-
tion of perfect Bayesian equilibrium.

Definition 1. A strategy profile σ is a perfect Bayesian equilibrium (PBE) if there exists
a system of beliefs μ such that, for any i, any ωi, and any history hi = (r1, � � � , ri−1 ), the
following hold:

1. If hi is on-path given σ , then μi(·|hi, ωi ) ∈ 
(�i−1 ) satisfies Bayes’ rule: For any
ω1:i−1,

μi(ω1:i−1|hi, ωi ) =
P(ω1:i−1 )

i−1∏
j=1

σj(rj|r1, � � � , rj−1, ωj )

∑
ω̂1:i−1

P(ω̂1:i−1 )
i−1∏
j=1

σj(rj|r1, � � � , rj−1, ω̂j )

; (4)

2. σi(·|hi, ωi ) is sequentially rational under μi(·|hi, ωi ).

3.3 The first-best allocation rule

In this section, I focus on the first-best allocation rule with complete information, which
has served as the main benchmark in Diamond and Dybvig (1983) and its following lit-
erature.13 The first best allocation rule, denoted as a ∈ Fs, is the solution to the following
social welfare maximization problem:

max
α∈Fs

Eω

[∑
i∈I

ui
(
α0
i (ω1:i ), α1

i (ω), ωi

)]
. (5)

Note that, under the preferences in (1), the first-best allocation rule a must satisfy the
following: for any ω ∈ �,

a0
i (ω1:i ) = 0 if ωi = 1 and a1

i (ω) = 0 if ωi = 0. (6)

In other words, the first-best allocation rule a requires that impatient depositors only
consume in period 0 and patient depositors only consume in period 1. Furthermore,
since patient depositors are risk averse, the first-best allocation rule a requires that they
evenly divide the remaining resources in period 1, i.e., for any ω ∈�,

a1
i (ω) =

R

(
I −

I∑
i=1

a0
i (ω1:i )

)

θ(ω)
if ωi = 1. (7)

Then what is left to solve is the period-0 allocation of each depositor i if he is impatient,
a0
i (ω1:i ), as a function of the partial history ω1:i. By Lemma 1 in Ennis and Keister (2009),

13All examples in Section 4 also use the first-best allocation rule.
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these allocations can be found by using the results above to formulate (5) as a finite
dynamic programming problem, which can be solved recursively.14

4. Examples

In this section, I study two examples with correlated types. First, I reconsider the main
example in Ennis and Keister (2009), which studies the withdrawal game in which each
depositor only has information regarding his position in the sequence and no informa-
tion about earlier depositors’ reports. They show that there exist multiple Bayes–Nash
equilibria including a bank run equilibrium.15 Interestingly, I will show that, in their
example, the full-information withdrawal game has a unique perfect Bayesian equilib-
rium, and no bank run occurs. Here, the signaling aspect of the full-information with-
drawal game plays an important role of eliminating bank run equilibria. However, as
is usually the case with signaling games, the second example highlights the necessity
of imposing reasonable restrictions over off-equilibrium beliefs, which motivates the
introduction of forward induction equilibrium in Section 5.

Example 1 (Ennis and Keister (2009)). Consider a 4-depositor environment with CRRA
utility functions, i.e.,

v(x) = x1−γ

1 − γ
. (8)

Types are correlated and p(·) is defined as

p(2) = 1 − ε, p(θ) = ε

4
for θ = 0, 1, 3, 4, (9)

where p(θ) is the probability of the set of type profiles in which exactly θ depositors
are patient and set ε = 0.04%. Therefore, by (9), it is highly likely that there will be two
patient depositors in the economy. Other parameter values are ρ = 1, R = 2, and γ = 6.

Figure 1 depicts the possible period-0 consumption levels in the first-best allocation
rule for each depositor i if he is impatient. In the figure, the circles correspond to partial
histories in which depositor 1 is impatient, while the triangles correspond to histories
in which depositor 1 is patient. For example, there are two possible period-0 allocations
for impatient depositor 2, depending on depositor 1’s type. When depositor 1 is impa-
tient, the period-0 allocation for impatient depositor 2 (the circle) is almost the same as
the period-0 allocation for him when depositor 1 is patient (the triangle). Then for im-
patient depositor 3, there are four possible period-0 allocations depending on the first
two depositors’ types. Figure 1 shows that the period-0 allocation for impatient depos-
itor 3 is significantly lower following ω1:2 = (0, 0) than following other partial histories.
In general, there are 2i−1 possible period-0 allocations for impatient depositor i, each

14All examples in Section 4 use CRRA utility functions as in Ennis and Keister (2009). To accommodate
the introduction of ρ, I use a modified version of the recursive algorithm in their Proposition 1 to solve for
the period-0 allocation in the first-best allocation rule.

15In their withdrawal game, since depositors have no information about previous depositors’ reports,
the set of Bayes–Nash equilibria coincides with the set of perfect Bayesian equilibria.



296 Xuesong Huang Theoretical Economics 19 (2024)

Figure 1. Period-0 allocation in the first-best allocation rule.

corresponding to a specific realization of the types of depositors earlier in the sequence.

First, recall the bank run equilibrium in Ennis and Keister: The first two depositors
always report to be impatient while the last two depositors report truthfully.16 The rea-
son why the first two depositors choose to run is that (i) they expect the other to run and
(ii) they worry that the last two depositors might both be impatient, in which case there
will be more early withdrawals than expected (since p(2) ≈ 1) and the remaining payoffs
will be low.

In the full-information withdrawal game, depositor 2 can perfectly observe deposi-
tor 1’s report. What if depositor 2 observes that depositor 1 has reported to be patient?
Then he knows, if he also chooses to report to be patient, there will be no more than two
early withdrawals, in which case reporting “patient” is preferred. Formally, let us com-
pare patient depositor 2’s expected payoff of reporting 0 (“impatient”) and 1 (“patient”)
after history h2 = 1:17

Report 0: U
μ2
2 (r2 = 0, �3:4|h2 = 1, ω2 = 1) = v

(
a0

2(1, 0)
)= v(1.28);

Report 1: U
μ2
2 (r2 = 1, �3:4|h2 = 1, ω2 = 1) ≥ v

(
a1

2(1, 1, 0, 0)
)= v(1.44).

Here, a0
2(1, 0) is the period-0 allocation for patient depositor 2 if he reports “impatient”

given depositor 1’s report of being patient. If he reports “patient,” the inequality follows

16Under the first-best allocation rule, it is straightforward to show that the last two depositors always
choose to report truthfully.

17Since the last two depositors always report truthfully, �3(h3, ω3 ) = ω3 for all h3, ω3, and �4(h4, ω4 ) =
ω4 for all h4, ω4.



Theoretical Economics 19 (2024) Sophisticated banking contracts and fragility 297

from the fact that a1
2(1, 1, 0, 0) is patient depositor 2’s worst possible period-1 allocation,

i.e., when the last two depositors are both impatient. Note that this inequality holds for
any μ2. Therefore, patient depositor 2 always chooses to report truthfully after history
h2 = 1. Anticipating this, patient depositor 1 also wants to report to be patient. Since
depositor 1 reports truthfully, patient depositor 2 will believe that depositor 1’s report of
being impatient is made by the truly impatient type. As a consequence, he also chooses
to report truthfully after history h2 = 0. Therefore, the truth-telling strategy is the unique
PBE in the full-information withdrawal game. ♦

Discussion This example shows that, with public information about withdrawal deci-
sions, no bank runs can occur as a PBE equilibrium outcome in the withdrawal game.
Here, the key is that each depositor’s withdrawal decision has a signaling aspect. In par-
ticular, in this example, depositor 1 can “notify” depositor 2 that he is not withdrawing,
which he knows will affect depositor 2’s decision in a favorable way.

However, the unique PBE result in this example relies on the fact that patient depos-
itor 2’s belief after history h2 = 1 does not matter. This property is not true in general.
In particular, note that, in condition 1 of definition 1, Bayes’ rule is only relevant for on-
path histories to pin down depositor i’s beliefs about previous i − 1 depositors’ types.
It says nothing about depositor i’s beliefs at off-path histories. In fact, PBE allows any
belief for an off-path history. What if, at an off-path history, a depositor believes that
a report of being patient is actually a lie made by the truly impatient type? The next
example shows that this type of off-path belief can indeed rationalize a run PBE in the
full-information withdrawal game.18

Example 2 (A run PBE). Consider a 6-depositor environment with the CRRA utility
function in equation (8). Let ρ = 0.7, γ = 6, R= 1.5, and set

p(1) = 1 − ε

100
, p(4) = 4(1 − ε)

100
, p(5) = 95(1 − ε)

100
;

p(θ) = ε

4
, for θ = 0, 2, 3, 6,

(10)

where ε = 0.0004%. Here, similar to the “one-peak” feature in Example 1, the probabili-
ties in (10) imply that, with very high probability, there will be 5 patient depositors in the
economy. However, different from Example 1, there are also nonnegligible probabilities
that the economy has 1 or 4 patient depositors, which plays an important role in con-
structing a run PBE in this example. Figure 2 depicts the possible period-0 consumption
levels in the first-best allocation rule for each depositor i if he is impatient.

There are at least two PBE in the full-information withdrawal game induced by the
first-best allocation rule. First, it is straightforward to show that the truth-telling strategy

18Andolfatto, Nosal, and Wallace (2007) in their last section mention the possibility of constructing ex-
amples with a run PBE in the setup with correlated types. However, they do not provide such an example
due to the complexity of solving the constrained optimization problem for the second-best allocation rule.
Here, I circumvent their problem by focusing on the unconstrained optimization for the first-best allocation
rule and adopt the numerical algorithm developed in Ennis and Keister (2009).
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Figure 2. Period-0 allocation in the first-best allocation rule.

is a PBE. Second, I claim that the following run strategy is also a PBE:

�1(∅, ω1 ) = 0 for all ω1; �2(0, ω2 ) = ω2, �2(1, ω2 ) = 0 for all ω2;

�3(h3, ω3 ) =
{

0 if h3 = (1, 1)

ω3 if h3 
= (1, 1)
for all ω3;

�4(h4, ω4 ) =
{

0 if h4 = (1, 1, 1) or (1, 1, 0)

ω4 o.w.
for all ω4;

�5(h5, ω5 ) =ω5 for all h5 and ω5; �6(h6, ω6 ) = ω6 for all h6 and ω6.

(11)

In words, patient depositor 1 chooses to misreport, and misreporting behavior by the
remaining depositors only occur at some off-path histories. Therefore, the equilibrium
outcome of this run PBE is that only the first depositor runs while the remaining depos-
itors all report truthfully.

Next, I provide an informal discussion about why this run strategy is a PBE. Detailed
computations are delegated to Appendix A. First, it is straightforward to show that the
last two depositors always report truthfully. Then let us focus on patient depositor 4’s
off-path history h4 = (1, 1, 1). Choose μ4(·|h4 = (1, 1, 1), ω4 = 1) to be

μ4
(
ω1:3 = (0, 0, 0)|h4 = (1, 1, 1), ω4 = 1

)= 1. (12)

That is, patient depositor 4 believes that, when the first three depositors all report to be
patient, these reports are all lies and he is the only patient depositor among the first four.
With only two depositors left, for patient depositor 4, the maximal number of patient de-
positors in the economy can only be three. Note that, by the probabilities in (10), p(2)
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and p(3) are almost negligible compared to p(1). Therefore, patient depositor 4 believes

almost surely that he will be the only patient depositor in the economy and the remain-

ing two depositors should both be impatient, which corresponds to the period-1 allo-

cation a1
4(1, 1, 1, 1, 0, 0) = 1.27. However, if patient depositor 4 reports to be impatient,

he will receive a larger period-0 allocation a0
4(1, 1, 1, 0) = 1.37. Hence, it is sequentially

rational for patient depositor 4 to misreport at off-path history h4 = (1, 1, 1) under (12).

The same argument applies to patient depositor 4’s off-path history h4 = (1, 1, 0).

Then, at patient depositor 3’s off-path history h3 = (1, 1), pick μ3(·|h3 = (1, 1), ω3 =
1) to be

μ3
(
ω1:2 = (0, 0)|h3 = (1, 1), ω3 = 1

)= 1. (13)

Here, patient depositor 3 also believes that the report of being patient is a lie made by

the impatient type, which makes him believe that he is the only patient depositor among

the first three depositors. With three depositors left, for patient depositor 3, the maximal

number of patient depositors in the economy can only be 4. Note that by the probabil-

ities in (10), p(2) and p(3) are almost negligible compared to p(1) and p(4). Therefore,

patient depositor 3 believes almost surely that there will be two possible scenarios for

the remaining depositors: all of them are impatient or all of them are patient. Under

such belief, as shown in Appendix A, it is sequentially rational for patient depositor 3 to

misreport at off-path history h3 = (1, 1).

Similarly, at patient depositor 2’s off-path history h2 = 1, let μ2(ω1 = 0|h2 = 1, ω2 =
1) = 1. I show in Appendix A that it is sequentially rational for patient depositor 2 to

misreport at h2 = 1 given this belief. Lastly, anticipating misreporting behavior by the

remaining depositors if he reports to be patient, patient depositor 1 also chooses to mis-

report. Therefore, the run strategy in (11) is indeed a PBE. ♦

Discussion Example 2 relies on depositors believing that the observed reports of “pa-

tient” are lies made by the impatient type. However, since by Remark 2 impatient de-

positors always report truthfully, depositors should never believe that the report of be-

ing patient is a lie made by the impatient type. In this sense, the beliefs μi I pick for

off-path histories in Example 2 are not reasonable, which raises the following question:

Given any strategy profile σ , what is a reasonable way to pin down μi(·|hi, ωi ) for an off-

path history hi? The next section provides one answer to this question by introducing a

refinement of PBE called forward induction equilibrium.

5. Main results

In this section, I first introduce the formal definition of forward induction equilibrium

and explain why the run PBE in Example 2 fails to be a forward induction equilibrium.

Then I state the unique forward induction equilibrium result.
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5.1 Forward induction equilibrium

I adapt the general definition of forward induction equilibrium in Cho (1987) to the full-
information withdrawal game. First, I introduce the definition of introspectively consis-
tent belief and show that the off-path beliefs I pick in Example 2 are not introspectively
consistent.

Given any mixed strategy profile σ , I say ri is a bad deviation from σ for depositor i
at information set (hi, ωi ) if the following are true:

σi(ri|hi, ωi ) = 0 and max
σ̃i+1:I

U
μi
i (ri, σ̃i+1:I|hi, ωi ) <U

μi
i (σi, σi+1:I|hi, ωi ),

for any μi(·|hi, ωi ). In other words, ri is a bad deviation from σ at (hi, ωi ) if, first, ri is
indeed a deviation and, second, the best possible expected payoff of choosing ri is less
than the status quo payoff, i.e., the expected payoff of following the given strategy σ ,
under whatever belief depositor i has about previous depositors’ types.

For example, consider the bank run PBE � in Example 2. Choose any impatient de-
positor i, i.e., ωi = 0, and any history hi. First, note that ri = 1 is a deviation from � at in-
formation set (hi, ωi = 0). Then, by the preferences in (1) and the CRRA utility function
in equation (8), maxσ̃I

i+1
U

μi
i (ri = 1, σ̃i+1:I|hi, ωi ) = −∞ for any μi(·|hi, ωi ). As a conse-

quence, ri = 1 is a bad deviation from � at information set (hi, ωi = 0). In other words,
the report of being patient is a bad deviation for impatient depositor i from the given
run PBE. However, it is important to note that the same argument does not apply to the
report of being impatient for patient depositor i. This is due to the fact that, for patient
depositor i, there may be beliefs under which a report of being impatient yields a higher
expected payoff than the status quo payoff.

Next, given any strategy profile σ and any history hi = (r1, � � � , ri−1 ), define

B(hi|σ ) = {ω1:i−1 ∈�i−1| there exists a j ∈ {1, � � � , i− 1} such that rj is a bad deviation

from σ for depositor j at information set
(
hj = (r1, � � � , rj−1 ), ωj

)}
.

In words, B(hi|σ ) is the set of all previous i − 1 depositors’ type profiles such that hi

contains at least one bad deviation made by the first i − 1 depositors from the given
strategy profile σ . Again, consider the run strategy PBE � in Example 2 and history h4 =
(1, 1, 1). Then ω1:3 = (0, 0, 0) is in B(h4 = (1, 1, 1)|�) since there exists a j = 1 such that
r1 = 1 is a bad deviation from � for depositor 1 at information set (h1 = ∅, ω1 = 0). Also,
ω1:3 = (1, 1, 0) is in B(h4 = (1, 1, 1)|�) since there exists a j = 3 such that r3 = 1 is a bad
deviation from � for depositor 3 at information set (h3 = (1, 1), ω3 = 0). In fact, the only
ω1:3 that is not in B(h4 = (1, 1, 1)|�) is ω1:3 = (1, 1, 1).

To complete the definition of introspectively consistent belief, I need one more piece
of notation. Let �0 be the set of all completely mixed strategies that assign positive
probabilities to all reports at all histories, and define the set

�0 = {(σ , μ)|σ ∈�0, μ is defined via Bayes’ rule in (4)
}

.
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Definition 2. A system of beliefs μ is introspectively consistent with respect to a given
strategy profile σ if there exists a sequence {(σn, μn ) ∈ �0}∞n=1 satisfying

μn
i

(
B(hi|σ )|hi, ωi

)→ 0 as n → ∞, (14)

for any i, hi, ωi, and

lim
n→∞

(
σn, μn

)= (σ , μ). (15)

Given a strategy profile σ , an introspectively consistent belief μi puts zero probabil-
ity over any ω1:i−1 that involves bad deviations and is the limit of a sequence of beliefs
for completely mixed strategies that converge to σ .19 Consider the run PBE � in Exam-
ple 2 discussed above. Since only ω1:3 = (1, 1, 1) is not in B(h4 = (1, 1, 1)|�), it follows
from (14) that, at the off-path history h4 = (1, 1, 1), an introspectively consistent belief
with respect to � should put probability one over ω1:3 = (1, 1, 1). That is, depositor 4
should always believe that all previous reports of being patient are made by the truly
patient type. Therefore, the off-path beliefs I pick in Example 2 are not introspectively
consistent.

Now, I am ready to state the definition of forward induction equilibrium.

Definition 3. A strategy profile σ is a forward induction equilibrium (FIE) if there ex-
ists an introspectively consistent belief μ with respect to σ such that, for any i, any ωi

and any history hi, σi(·|hi, ωi ) is sequentially rational under μi(·|hi, ωi ).

In other words, a strategy profile σ fails to be a forward induction equilibrium if,
for any introspectively consistent belief μ with respect to σ , σ is not sequentially ratio-
nal, i.e., there exists an information set (hi, ωi ) of depositor i in which σi(·|hi, ωi ) is not
sequentially rational under μi(·|hi, ωi ). The run PBE � in Example 2 fails to be a FIE,
because when we restrict to introspectively consistent beliefs, the strategy profile is no
longer sequentially rational at some information sets that consist of off-path histories.

5.2 Unique forward induction equilibrium

Using forward induction equilibrium as the equilibrium concept, this section identifies
conditions on the allocation rule under which the truth-telling strategy is the unique FIE
in its induced full-information withdrawal game. It turns out that the key condition is a
notion of strict incentive compatibility.

First, I say that an allocation rule α is incentive compatible (IC) if and only if the
truth-telling strategy is a FIE in the full-information withdrawal game induced by α. The
following proposition provides a further characterization of incentive compatible allo-
cation rules.

19In an earlier version of this paper, I constructed examples showing that the introduction of a sequence
of completely mixed strategies is also necessary to exclude unreasonable off-path beliefs.



302 Xuesong Huang Theoretical Economics 19 (2024)

Proposition 1. An allocation rule α is IC if and only if the following are true: For any i

and ω1:i−1 ∈�i−1,

v
(
α0
i (ω1:i−1, 0)

)≤ ∑
ωi+1:I

v
(
α1
i (ω1:i−1, 1, ωi+1:I )

)
P(ωi+1:I|ω1:i−1, 1). (16)

The formal proof is in Appendix D. In words, (16) formalizes the idea that a patient
depositor should report his type truthfully if, first, he believes that all previous reports
are indeed truthful, and second, all remaining depositors will report truthfully.

Next, I present a stronger notion of incentive compatibility.

Definition 4. An allocation rule α is strictly incentive compatible (SIC) if and only if,
for any i and ω1:i−1 ∈�i−1,

v
(
α0
i (ω1:i−1, 0)

)
<
∑
ωi+1:I

v
(
α1
i (ω1:i−1, 1, ωi+1:I )

)
P(ωi+1:I|ω1:i−1, 1). (17)

Here, the only difference between inequality (17) and inequality (16) is that (17) has
a strict inequality. Note that, when types are independent, i.e., P(ωi+1:I|ω1:i−1, 1) =
P(ωi+1:I ), (17) reduces to the following: For any i and ω1:i−1,

v
(
α0
i (ω̂1:i−1, 0)

)
<
∑
ωi+1:I

v
(
α1
i (ω1:i−1, 1, ωi+1:I )

)
P(ωi+1:I ), (18)

which is exactly the inequality in Lemma 5 of Green and Lin (2003). Similarly, as ex-
plained by Green and Lin, (18) formalizes the idea that a patient depositor should
strictly prefer to report truthfully if all remaining depositors are going to report truth-
fully. Therefore, based on (18), Green and Lin use an argument similar to backward
induction reasoning to prove their unique equilibrium result.

When types are correlated, the issue becomes more complicated. In particular, as
illustrated in Example 2, if a patient depositor believes someone earlier in the sequence
has lied about their type, he might choose to lie as well despite the fact that all remaining
depositors will report truthfully. This is where forward induction reasoning kicks in. As
shown in the following theorem, forward induction reasoning could correctly align a
patient depositor’s (off-path) belief in a way that makes lying an inferior choice for him.

Theorem 1. For any allocation rule α that is SIC, the truth-telling strategy is the unique
FIE in the full-information withdrawal game induced by α.

In other words, when an allocation rule is SIC, there always exists a unique FIE in
its induced full-information withdrawal game, and bank runs do not occur. The proof,
which is presented in Appendix B, adopts an iterative deletion process that combines
elements of backward induction and forward induction. To illustrate this deletion pro-
cess, let us consider the simplest nontrivial case, where I = 3. To show the truth-telling
strategy is the unique FIE, I need to show that any strategy other than the truth-telling
strategy fails to be a FIE.
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First, since by Remark 2 impatient depositors never misreport, I can focus on all run
strategies.20 Denote the set of all run strategies as D0. Note for depositor 3, since he is
the last depositor, it follows from (17) that patient depositor 3 always chooses to report
truthfully at any history h3. Then any run strategy in D0 that has patient depositor 3
misreporting fails to be a FIE. Deleting those run strategies leaves us a subset of run
strategies in which misreporting only happens between the first two depositors. Denote
this subset of D0 as D1.

Going backward, next consider patient depositor 2 at history h2 = 1. A key observa-
tion is that, given any run strategy in D1, patient depositor 2’s introspectively consistent
belief at information set (h2 = 1, ω2 = 1) is unique and given by μ2(ω1 = 1|h2 = 1, ω2 =
1) = 1 (Lemma 1 in Appendix B). Under such a belief, patient depositor 2 believes that
depositor 1’s report of being patient is a truthful report. Since for any run strategy in D1

depositor 3 reports truthfully, it follows from (17) that it is sequentially rational for pa-
tient depositor 2 to report truthfully at history h2 = 1 (Lemma 3 in Appendix B). There-
fore, any run strategy in D1 that has patient depositor 2 misreporting at history h2 = 1
fails to be a FIE. Deleting those run strategies leaves us with a subset of run strategies in
which the only possible misreporting is by patient depositor 1 or by patient depositor 2
at history h2 = 0. Denote this subset of D1 as D2.

Next, given any run strategy in D2, since all remaining depositors report truthfully af-
ter r1 = 1, it follows from (17) that misreporting by patient depositor 1 is not sequentially
rational. Therefore, any run strategy in D2 that involves patient depositor 1 misreport-
ing fails to be a FIE. Deleting those run strategies leaves us with a subset of run strategies
in which only patient depositor 2 misreports at history h2 = 0. Denote this subset of D2

as D3.
Lastly, note that D3 only has run strategies in which misreporting occurs on patient

depositor 2 at history h2 = 0. Note that, given any run strategy in D3, patient depositor
2’s introspectively consistent belief at h2 = 0 can be uniquely pinned down by Bayes’ rule
and is given by μ2(ω1 = 0|h2 = 0, ω2 = 1) = 1 (Lemma 2 in Appendix B). In other words,
since depositor 1 would have reported truthfully if he were patient, his report of being
patient must also be truthful. Since depositor 3 will report truthfully, it follows from (17)
that it is sequentially rational for patient depositor 2 to report truthfully at history h2 = 0.
Therefore, any run strategy in D3 also fails to be a FIE. Then deleting those run strategies
leaves us with an empty set, meaning that no run strategy can be a FIE. This completes
the iterative deletion process.21

Remark 3. As illustrated above, the iterative deletion process starts with the last de-
positor, which resembles backward induction reasoning. Then forward induction rea-
soning is used to pin down beliefs. In particular, at the penultimate depositor’s history

20Recall that, in the full-information withdrawal game, a run strategy is a behavior strategy profile in
which some patient depositors choose to misreport with strictly positive probability at some of their infor-
mation sets.

21When I = 3, since the last depositor always reports truthfully, a full-information withdrawal game boils
down to a signaling game between the first two depositors, and FIE reduces to the “intuitive criterion”
studied in Cho and Kreps (1987). Andolfatto, Nosal, and Wallace (2007), in their last section, offer similar
informal arguments using the “intuitive criterion” with I = 3 when types are correlated.
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hI−1 = (1, � � � , 1), forward induction reasoning allows us to directly pin down the unique
introspectively consistent belief with respect to any run strategy.

Remark 4. The reason why SIC is needed is to break ties when a depositor is indifferent
between lying and telling the truth. An alternative approach that leads to the same out-
come is to use (weak) incentive compatibility and assume, as in Andolfatto, Nosal, and
Wallace (2007), that an indifferent depositor always reports truthfully.

Remark 5. In Example 2, it is straightforward to show that the first-best allocation rule a
is SIC. Therefore, by Theorem 1, the truth-telling strategy is not only a FIE but the unique
FIE in the full-information withdrawal game induced by a. In other words, under the
parameter values in Example 2, the first-best allocation rule is uniquely implementable
as a FIE outcome, and no bank runs occur.

6. Discussion

In this section, I discuss two issues related to the main result. First, I study under what
conditions the “efficient” allocation satisfies SIC, and hence, can be implemented as the
unique FIE. Second, I ask whether the use of indirect mechanisms can weaken the SIC
condition in the main result.

6.1 Efficiency

First, consider a benevolent planner/intermediary who wants to maximize the following
weighted welfare function:

Eω

[∑
i∈I

Wiui
(
α0
i (ω1:i ), α1

i (ω), ωi

)]
,

where Wi ∈ R++ is depositor i’s Pareto weight, subject to the following incentive con-
straints: ∑

ωi+1:I

v
(
α1
i (ω1:i−1, 1, ωi+1:I )

)
P(ωi+1:I|ω1:i−1, 1) − v

(
α0
i (ω1:i−1, 0)

)≥ δ

for all i and ω1:i−1,

where δ > 0.22 Let W = (W1, W2, � � � , WN ) denote the vector of depositors’ Pareto weights
and α∗(W , δ) = (α∗

0(W , δ), α∗
1(W , δ)) the solution to the above maximization problem.

Then, for any (W , δ) that admits a solution to the above maximization problem, it is
straightforward to see that α∗(W , δ) is SIC since it must satisfy inequality (17). As a re-
sult, it follows from Theorem 1 that, for any α∗(W , δ), the truth-telling strategy is the

22With equal Pareto weights for all depositors, Andolfatto, Nosal, and Sultanum (2017) study a similar
constrained welfare maximization problem. In their environment, since each depositor has no extra in-
formation besides their private type, the welfare maximization problem only has one incentive constraint
parametrized by δ. As a result, the maximum welfare in their problem can be higher than the problem
studied in this paper. See Sultanum (2022) for a concrete example illustrating this point.
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unique FIE in the full-information withdrawal game induced by α∗(W , δ). An important
observation based on this result is that the constrained efficient allocation, i.e., the solu-
tion to the above maximization problem with equal Pareto weights and δ = 0 can be ap-
proximately implemented. That is, for any ε > 0, there exists a uniquely implementable
allocation α∗(δ) with δ close to zero such that α∗(δ) is within ε of the constrained effi-
cient allocation.23

Next, I focus on the first-best allocation rule, the solution to the unconstrained wel-
fare maximization problem (5) with equal Pareto weights for all depositors, and study
the following question: Under what conditions on the underlying environment is the
first-best allocation rule SIC, i.e., satisfies inequality (17) and, therefore, implementable
as the unique FIE? When types are independent, Green and Lin (2003) show that, un-
der Assumption 1 and the following assumption, the first-best allocation rule satisfies
inequality (18), the independent-type version of inequality (17).

Assumption 2. Absolute risk aversion of v is nonincreasing everywhere, i.e., for any c ∈
R+,

d

dc

v"(c)
v′(c)

≥ 0.

When types are correlated, consider the benevolent intermediary’s optimization
problem (5). Suppose that it is depositor i’s turn to approach the intermediary and the
first i − 1 depositors’ types are ω̂1:i−1. Since types are correlated, for the intermediary’s
problem, the probability distribution over the remaining depositors’ types is dependent
on depositor i’s type. In particular, if depositor i is of the impatient type, the probability
distribution over the remaining depositors’ types is P(·|ω̂1:i−1, 0) ∈ 
I−i. If depositor i

is of the patient type, the probability distribution over the remaining depositors’ types
is P(·|ω̂1:i−1, 1) ∈ 
I−i. Note that, if P(·|ω̂1:i−1, 0) = P(·|ω̂1:i−1, 1), the problem is exactly
the same as in Green and Lin. However, when P(·|ω̂1:i−1, 0) 
= P(·|ω̂1:i−1, 1), the problem
is more complicated, and some sort of order needs to be established on P(·|ω̂1:i−1, 0)
and P(·|ω̂1:i−1, 1) for inequality (17) to hold. The following assumption provides a suffi-
cient condition.

Assumption 3. The function p : {0, 1, � � � , I} → [0, 1] satisfies a monotonicity condition,
i.e., for any k ∈ {0, 1, � � � , I − 2},

p(k)/C(I, k)
p(k+ 1)/C(I, k+ 1)

≥ p(k+ 1)/C(I, k+ 1)
p(k+ 2)/C(I, k+ 2)

. (19)

Or equivalently,

P
(
ω : θ(ω) = k

)
P
(
ω : θ(ω) = k+ 1

) ≥ P
(
ω : θ(ω) = k+ 1

)
P
(
ω : θ(ω) = k+ 2

) .

23This result is a direct consequence of applying Berge’s maximum theorem to the constrained welfare
maximization problem with equal Pareto weights and δ ≥ 0 being the parameter. One can state a similar
result for the maximum welfare as well.
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To better understand this assumption, let us consider two examples. First, con-
sider the case with independent types as in Green and Lin (2003). Let the probabil-
ity of being impatient be π. Then the total number of patient depositors in the econ-
omy follows the Binomial distribution, and its probability mass function is given by
p(k) = C(I, k)(1 − π )kπI−k for all k ∈ {0, 1, � � � , I}. It is straightforward to check that
Assumption 3 is satisfied with equality in this case.

Second, consider a special class of correlated types. Suppose that there is a finite
number of unobserved states in the economy indexed by κj ∈ K = {κ1, � � � , κm}, and na-
ture chooses state κj with probability pj . Conditional on the event that the state is κj ,
each depositor’s type is independently distributed, and the probability of being impa-
tient is πj . Here, depositors’ types are correlated because of those unobserved states.24

In this example, the probability mass function of the total number of patient depositors
in the economy is given by p(k) =∑m

j=1 C(I, k)(1 − πj )kπI−k
j pj , for all k ∈ {0, 1, � � � , I}.

The following proposition shows that this p(·) also satisfies Assumption 3. The formal
proof is delegated to Appendix D.

Proposition 2. Suppose that p(k) = ∑m
j=1 C(I, k)(1 − πj )kπI−k

j pj , for all k ∈ {0, 1,
� � � , I}. Then Assumption 3 holds.

As shown by Lemma 4 in Appendix C, the monotonicity condition in Assumption 3
yields a property that, if depositor i turns out to be patient, the remaining depositors
are more likely to be patient. As a consequence, a benevolent intermediary will allocate
more goods to patient depositors in period 1. Therefore, this property together with the
proof technique in Green and Lin’s Lemma 5 allow me to prove the following proposi-
tion.

Proposition 3. Suppose that Assumptions 1, 2, and 3 hold. Then the first-best alloca-
tion rule is SIC.

The formal proof of Proposition 3 is in Appendix C. The next theorem is a direct
consequence of Proposition 3 and Theorem 1.

Theorem 2. Suppose that Assumptions 1, 2, and 3 hold. The truth-telling strategy is the
unique FIE in the full-information withdrawal game induced by the first-best allocation
rule.

Therefore, when types are correlated, Assumption 3 is the extra sufficient condition
for the first-best allocation rule to be implementable as the unique FIE.25

24If there is only one state in the economy, i.e., K = {κ}, this example boils down to the case with inde-
pendent types.

25Assumption 3 is only a sufficient condition for the first-best allocation rule to be implementable as
the unique FIE. In Example 2, Assumption 3 is violated but the first-best allocation rule is still SIC and,
therefore, uniquely implementable.
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6.2 Indirect mechanisms

This paper so far focuses on direct mechanisms {M , α} with full information disclosure
where each depositor’s message space is their type space, i.e., M =�, and the allocation
rule is α ∈ Fs . Theorem 1 shows that the direct mechanism {M , α} with full information
disclosure admits a unique FIE whenever the allocation rule α is SIC. What if one consid-
ers indirect mechanisms with full information disclosure?26 Can the sufficient condition
for the unique FIE result be weakened to require only (weak) IC? Next, I want to use the
indirect mechanism studied in Andolfatto, Nosal, and Sultanum (2017) to illustrate how
indirect mechanisms also require the allocation rule to be SIC.

Following Andolfatto, Nosal, and Sultanum (2017), I construct an indirect mecha-
nism {M̂ , α̂} based on the direct mechanism {M , α} studied in the paper. In particular,
let M̂ = M ∪ {seg }, i.e., each depositor has one more possible choice of message, and
construct α̂ as follows. If depositor i reports ri = 0, then

α̂0
i (r1:i−1, 0) =

{
α0
i (r1:i−1, 0) if rj ∈ {0, 1} for all j < i

0 if rj = seg for some j < i,

and

α̂1
i (r1:i−1, 0, ri+1:I ) = 0.

If depositor i reports ri = seg , then

α̂0
i (r1:i−1, seg ) = 0 and α̂1

i (r1:i−1, seg , ri+1:I ) = α̂0
i (r1:i−1, 0) + ε,

where ε > 0 is an arbitrarily small number. Lastly, if depositor i reports ri = 1, then
α̂0
i (r1:i−1, 1) = 0 and

α̂1
i (r1:i−1, 1, ri+1:I ) =

R

[
I −

I∑
j=1

α̂0
j (r1:j )

]
−

I∑
j=1

α̂1
j (r1:i−1, 1, ri+1:I )1{rj=seg }

θ(r1:i−1, 1, ri+1:I )
,

where θ(r1:I ) denotes the number of depositors who reported r = 1 in r1:I .
On one hand, this indirect mechanism has the feature that it is a strictly dominated

action for a patient depositor to report 0, since reporting seg always gives a strictly higher
payoff. Therefore, with forward induction, if a depositor observed a report r = 0, he
should believe with probability 1 that such a report is made by a truly impatient deposi-
tor. In addition, since impatient depositors never report 1 or seg , if a depositor observed
a report r ∈ {1, seg }, he should believe with probability 1 that such a report is made by
a truly patient depositor. Therefore, in the full-information withdrawal game induced
by this indirect mechanism, beliefs are correctly aligned at all information sets under
forward induction.

26I would like to thank one referee for pointing out this direction.
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On the other hand, in the full-information withdrawal game induced by this indirect
mechanism, there are more possible previous report histories for each depositor i. Let
Hd

i denote the set of report histories made by the first i− 1 depositors that are the same
as in the full-information withdrawal game induced by the direct mechanism. For any
hi ∈ Hd

i , since beliefs are correctly aligned under forward induction, we can compare
patient depositor i’s payoff of reporting seg and 1:

Report seg : ρv
(
α̂0
i (hi, seg )

)= ρv
(
α0
i (hi, 0) + ε

)
; (20)

Report 1: Eωi+1:I

[
ρv
(
α1
i (ω1:i−1, 1, ωi+1:I )

)
|ω1:i−1 = hi, ωi = 1

]
.

To make reporting 1 sequentially rational for patient depositor i, I need the strict in-
equality in SIC because of the extra ε term in (20). If SIC was weakened to IC and IC
was satisfied with equality at hi, reporting seg would be more profitable than reporting
1 no matter how small ε is. In this case, truth-telling is no longer sequentially rational
for patient depositor i after history hi, which results in a bank run FIE.

Therefore, SIC cannot be weakened to IC for the full-information withdrawal game
induced by the indirect mechanism studied above to admit a unique FIE. Here, the key
observation is that SIC is necessary to show truth-telling at information sets that coin-
cide with the full-information withdrawal game induced by the direct mechanism. This
observation applies to other indirect mechanisms as well. Furthermore, another inter-
esting observation is that the unique FIE result relies on SIC more strongly under the
indirect mechanism studied above. Recall that, in Theorem 1, assuming SIC avoids the
discussion on tie-breaking rules for patient depositors. One can instead assume IC and
whenever a patient depositor is indifferent he always reports truthfully. Then the unique
FIE result in Theorem 1 still holds. However, under the indirect mechanism studied
above, even if one assumes the same tie-breaking rule, IC is not enough for the unique
FIE result because of the extra ε term in (20). Therefore, in this sense, instead of weak-
ening the sufficient condition in Theorem 1, using indirect mechanisms such as the one
studied above can in fact tighten it.

7. Conclusion

This paper shows that, with forward induction, sophisticated banking contracts can
implement efficient allocations while preventing bank runs when there is public in-
formation about withdrawal decisions. Therefore, using smart contracts on public
blockchains is a promising way to provide more stable and efficient intermediary ser-
vices that involve maturity transformation. One place where smart contracts seem par-
ticularly likely to be useful is for asset-backed stablecoins such as Tether and USDC,
which promise a stable conversion rate between a crypto currency and a fiat currency.27

When there is aggregate uncertainty, it is not feasible to keep the value of an intermedi-
ary’s liabilities fixed in all states of the world. Stablecoins nevertheless make this type of

27The recent collapse of the third largest stablecoin Terra in May 2022 brought (algorithmic)
stablecoins into the spotlight and raised general concerns for the potential instability of stable-
coins among market participants and regulators. For example, see https://www.ft.com/content/
48d82c7a-495f-4d5e-a87a-a56bea58e760.

https://www.ft.com/content/48d82c7a-495f-4d5e-a87a-a56bea58e760
https://www.ft.com/content/48d82c7a-495f-4d5e-a87a-a56bea58e760
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“promise” and leave it unspecified how they will meet the obligation in some states. This
type of setup seems prone to runs especially during the time of broader market stress.28

This paper suggests that runs can be prevented by instead taking advantage of smart
contracts to commit to a sophisticated payment schedule. This approach would deliver
a “run-proof coin,” which might be more desirable than a so-called stablecoin.

The emergence of distributed ledger system and its accompanied smart-contract
technology open up more possibilities to practically implement sophisticated contracts
that have only existed in theory in the past (Townsend (2020)). However, as pointed
out in Sultanum (2022), a downside of information transparency inherent in many dis-
tributed ledger systems is that it tends to tighten incentive compatibility constraints and
shrink the set of incentive compatible allocations. This paper instead highlights a posi-
tive side: Within the set of (strictly) incentive compatible allocations, information trans-
parency and forward induction imply that sophisticated contracts can eliminate bank
runs. Whether and how information transparency affects financial stability in other set-
tings is an interesting area for future research.

Appendix A: Omitted computations in Example 2

Example 2 (Continued). At patient depositor 4’s off-path history h4 = (1, 1, 0), pick
μ4(·|h4 = (1, 1, 0), ω4 = 1) to be

μ4
(
ω1:3 = (0, 0, 0)|h4 = (1, 1, 0), ω4 = 1

)= 1. (21)

That is, patient depositor 4, after observing history h4 = (1, 1, 0), believes that the report
of being patient is a lie made by the impatient type. Since ε is almost negligible, patient
depositor 4’s induced probability distribution over the remaining depositors’ types is

φ
μ4
4

(
ω5:6 = (0, 0)|h4 = (1, 1, 0), ω4 = 1

)= P
(
ω5:6 = (0, 0)|ω1:3 = (0, 0, 0), ω4 = 1

)≈ 1.

Compare patient depositor 4’s expected payoff of reporting 0 and 1 after h4 = (1, 1, 0):

Report 0: U
μ4
4

(
r4 = 0, �5:6|h4 = (1, 1, 0), ω4 = 1

)= ρv
(
a0

4(1, 1, 0, 0)
)= ρv(1.26);

Report 1: U
μ4
4

(
r4 = 1, �5:6|h4 = (1, 1, 0), ω4 = 1

)≈ ρv
(
a1

4(1, 1, 0, 1, 0, 0)
)

= ρv(1.13) < ρv(1.26).

Therefore, �4((1, 1, 0), 1) = 0 is sequentially rational under belief (21).
At patient depositor 3’s off-path history h3 = (1, 1), choose μ3(·|h3 = (1, 1), ω3 = 1)

to be

μ3
(
ω1:2 = (0, 0)|h3 = (1, 1), ω3 = 1

)= 1. (22)

That is, patient depositor 3 believes that the report of being patient is a lie made by the
impatient type. Since ε is almost negligible, patient depositor 3’s induced probability

28After the collapse of Terra, the largest stablecoin Tether depegged from $1 and tumbled as low as $0.94.
See https://www.cnbc.com/2022/05/12/tether-usdt-stablecoin-drops-below-1-peg.html.

https://www.cnbc.com/2022/05/12/tether-usdt-stablecoin-drops-below-1-peg.html
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distribution over the remaining depositors’ types is

φ
μ3
3

(
ω4:6 = (0, 0, 0)|h3 = (1, 1), ω3 = 1

)= P
(
ω4:6 = (0, 0, 0)|ω1:2 = (0, 0), ω3 = 1

)
≈ P(0, 0, 1, 0, 0, 0)

P(0, 0, 1, 0, 0, 0) +P(0, 0, 1, 1, 1, 1)

=
1
6
p(1)

1
6
p(1) + 1

15
p(4)

= 0.38;

φ
μ3
3

(
ω4:6 = (1, 1, 1)|h3 = (1, 1), ω3 = 1

)= P
(
ω4:6 = (1, 1, 1)|ω1:2 = (0, 0), ω3 = 1

)
≈ P(0, 0, 1, 1, 1, 1)

P(0, 0, 1, 0, 0, 0) +P(0, 0, 1, 1, 1, 1)

=
1

15
p(4)

1
6
p(1) + 1

15
p(4)

= 0.62.

Compare patient depositor 3’s expected payoff of reporting 0 and 1 after h3 = (1, 1):

Report 0: U
μ3
3

(
r3 = 0, �4:6|h3 = (1, 1), ω3 = 1

)= ρv
(
a0

3(1, 1, 0)
)= ρv(1.37) = −0.03;

Report 1: U
μ3
3

(
r3 = 1, �4:6|h3 = (1, 1), ω3 = 1

)
≈ 0.38ρv

(
a1

3(1, 1, 1, 0, 0, 0)
)+ 0.62ρv

(
a1

3(1, 1, 1, 0, 1, 1)
)︸ ︷︷ ︸

�4((1,1,1),1)=0

= 0.38ρv(1.13) + 0.62ρv(1.39) = −0.05 <−0.03.

Therefore, �3((1, 1), 1) = 0 is sequentially rational under belief (22). ♦

At patient depositor 2’s off-path history h2 = 1, choose μ2(·|h2 = 1, ω2 = 1) to be

μ2(ω1 = 0|h2 = 1, ω2 = 1) = 1. (23)

Following similar calculations, patient depositor 2’s induced probability distribution
over the remaining depositors’ types is

φ
μ2
2

(
ω3:6 = (0, 0, 0, 0)|h2 = 1, ω2 = 1

)= P
(
ω3:6 = (0, 0, 0, 0)|ω1 = 0, ω2 = 1

)≈ 0.01;

φ
μ2
2 (ω3:6|h2 = 1, ω2 = 1) = P(ω3:6|ω1 = 0, ω2 = 1) ≈ 0.015,

for any ω3:6 such that θ(ω3:6 ) = 3;

φ
μ2
2

(
ω3:6 = (1, 1, 1, 1)|h2 = 1, ω2 = 1

)= P
(
ω3:6 = (1, 1, 1, 1)|ω1 = 0, ω2 = 1

)≈ 0.93.

Compare patient depositor 2’s expected payoff of reporting 0 and 1 after h2 = 1:

Report 0: U
μ2
2 (r2 = 0, �3:6|h2 = 1, ω2 = 1) = ρv

(
a0

2(1, 0)
)= ρv(1.36);

Report 1: U
μ2
2 (r2 = 1, �3:6|h2 = 1, ω2 = 1)
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≈ 0.01ρv
(
a1

2(1, 1, 0, 0, 0, 0)
)+ 0.015ρv

(
a1

2(1, 1, 0, 0, 1, 0)
)︸ ︷︷ ︸

�3((1,1),1)=0&�4((1,1,0),1)=0

+ 0.015ρv
(
a1

2(1, 1, 0, 0, 0, 1)
)︸ ︷︷ ︸

�3((1,1),1)=0&�4((1,1,0),1)=0

+ 0.015ρv
(
a1

2(1, 1, 0, 0, 1, 1)
)︸ ︷︷ ︸

�3((1,1),1)=0&�4((1,1,0),1)=0

+0.015ρv
(
a1

2(1, 1, 0, 0, 1, 1)
)︸ ︷︷ ︸

�3((1,1),1)=0&�4((1,1,0),1)=0

+ 0.93ρv
(
a1

2(1, 1, 0, 0, 1, 1)
)︸ ︷︷ ︸

�3((1,1),1)=0&�4((1,1,0),1)=0

= 0.01ρv(1.01) + 0.015ρv(1.13) + 0.015ρv(1.17) + 0.96ρv(1.27)

< ρv(1.36).

Therefore, �2(1, 1) = 0 is sequentially rational under belief (23).
Lastly, for patient depositor 1, note that, for any ω2:6 such that θ(ω2:6 ) ≤ 3,

a1
1(1, ω2:6 ) < a0

1(0). Therefore, I will focus on the last nonnegligible case where θ(ω2:6 ) =
4. There are C(5, 4) = 5 possible realizations for θ(ω2:6 ) = 4, and all have the same
probability. Then compare patient depositor 1’s expected payoff of reporting 0 and 1:

Report 0: U1(r1 = 0, �2:6|h1 = ∅, ω1 = 1) = ρv
(
a0

1(0)
)= ρv(1.32) = −0.035;

Report 1: U1(r1 = 1, �2:6|h1 = ∅, ω1 = 1)

<
1
5
ρv
(
a1

1(1, 0, 1, 1, 1, 0)
)︸ ︷︷ ︸

�2(1,1)=0

+1
5
ρv
(
a1

1(1, 0, 1, 1, 0, 1)
)︸ ︷︷ ︸

�2(1,1)=0

+ 1
5
ρv
(
a1

1(1, 0, 1, 0, 1, 1)
)︸ ︷︷ ︸

�2(1,1)=0

+ 1
5
ρv
(
a1

1(1, 0, 0, 1, 1, 1)
)︸ ︷︷ ︸

�2(1,1)=0

+1
5
ρv
(
a1

1(1, 0, 1, 1, 1, 1)
)

= 1
5
ρv(1.27) + 1

5
ρv(1.27) + 1

5
ρv(1.27) + 1

5
ρv(1.33) + 1

5
ρv(1.39)

= −0.038 <−0.035.

Therefore, �1(∅, 1) = 0 is sequentially rational. To complete the proof, it is straightfor-
ward to check that the rest of strategies in (11) are indeed parts of a PBE.

Appendix B: Proof of Theorem 1

Proof of Theorem 1. Choose any allocation rule α that is SIC. To show the truth-
telling strategy is the unique FIE in the full-information withdrawal game induced by
α, it is equivalent to show that any strategy profile other than the truth-telling strategy
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fails to be a FIE. First, by Remark 2, an impatient type never report to be patient. There-
fore, any strategy profile that involves an impatient type misreporting fails to be a FIE.
As a result, I can focus on the set of all run strategies:

D0 = {σ|σi(0|hi, 0) = 1 for all i and hi & σi(0|hi, 1) > 0 for some i and hi

}
.

I will adopt an iterated procedure of eliminating run strategies in D0 and show that any
run strategy in D0 fails to be a FIE. First, I prove the following two lemmas which state
that, given any run strategy in D0, the introspectively consistent beliefs at some infor-
mation sets are unique and have the feature that depositors believe all previous reports
to be truthful.

Lemma 1. Given any run strategy σ ∈ D0 and any depositor i of type ωi, his introspec-
tively consistent belief at information set (hi = (1, � � � , 1), ωi ) with respect to σ is unique
and given by

μi

(
ω1:i−1 = (1, � � � , 1)|hi = (1, � � � , 1), ωi

)= 1. (24)

Proof. Choose any run strategy σ ∈ D0 and any depositor i of type ωi. The history
hi = (1, � � � , 1) can be either on-path or off-path given strategy σ . If it is on path, then
the strategy σ must satisfy the following: For any j ∈ {1, � � � , i− 1},

σj

(
1|hj = (1, � � � , 1), 1

)
> 0.

It follows fromσ ∈D0 that for any j ∈ {1, � � � , i−1}, σj(1|hj = (1, � � � , 1), 0) = 0. Therefore,
the introspectively consistent belief at information set (hi = (1, � � � , 1), ωi ) is uniquely
pinned down by Bayes’ rule in (4) and given by (24). Then consider the case when
hi = (1, � � � , 1) is off-path given σ . Since only ω1:i−1 = (1, � � � , 1) is not in B(hi|σ ), for
any sequence of {(σn, μn ) ∈ �0}∞n=1 satisfying limn→∞(σn, μn ) = (σ , μ), it follows from
(14) that the introspectively consistent belief at information set (hi = (1, � � � , 1), ωi ) is
uniquely given by (24), which completes the proof.

Lemma 2. Given any run strategy σ ∈D0, define

T (σ ) = {(j, hj )|j ∈ I, σj(1|hj , 1) = 1
}

.

If T (σ ) 
= ∅, then for any depositor i of type ωi and any history hi = (r1, � � � , ri−1 ) in
which, for any j ∈ {1, � � � , i − 1}, rj = 0 if and only if (j, (r1, � � � , rj−1 )) ∈ T (σ ), his intro-
spectively consistent belief at information set (hi, ωi ) with respect to σ is unique and
given by

μi(ω1:i−1 = hi|hi, ωi ) = 1. (25)

Proof. Choose any run strategy σ ∈ D0 such that T (σ ) 
= ∅, any depositor i of type ωi

and any history hi = (r1, � � � , ri−1 ) in which, for any j ∈ {1, � � � , j − 1}, rj = 0 if and only
if (j, (r1, � � � , rj−1 )) ∈ T (σ ). Note the history hi can either be on-path or off-path given
strategy σ .
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If it is on-path, then the strategy σ must also satisfy the following: For any j ∈
{1, � � � , i−1} such that rj = 1, σj(1|hj , 1) > 0 with hj being a partial history of hi. Then, for
any j ∈ {1, � � � , i− 1} such that rj = 0, (j, (r1, � � � , rj−1 )) ∈ T (σ ) implies that σj(1|hj , 1) = 1
with hj being a partial history of hi. Furthermore, it follows from σ ∈ D0 that, for any
j ∈ {1, � � � , i− 1}, σj(1|hj , 0) = 0 with hj being a partial history of hi. Therefore, the intro-
spectively consistent belief at hi is uniquely pinned down by Bayes’ rule in (4) and given
by (25).

If it is off-path, then

{ω1:i−1|ωj = 1 for any j ∈ {1, � � � , i− 1} such that rj = 1} � B(hi|σ ). (26)

Choose any sequence of {(σn, μn ) ∈ �0}∞n=1 satisfying limn→∞(σn, μn ) = (σ , μ). Since
rj = 0 if and only if (j, (r1, � � � , rj−1 )) ∈ T (σ ), together with (26) and (14), the introspec-
tively consistent belief at (hi, ωi ) is unique and given by (25).

The next lemma says that, if patient depositor i believes that all previous reports
are truthful reports and all remaining depositors will report truthfully, it is sequentially
rational for him to also report truthfully.

Lemma 3. For any patient depositor i, history hi and run strategy σ ∈ D0, suppose the
following hold:

1. μi(ω1:i−1 = hi|hi, ωi = 1) = 1;

2. For j ∈ {i+ 1, � � � , I}, σj(ωj|hj , ωj ) = 1 for all hj including (hi, 1) as a partial history.

Then �i(hi, 1) = 1 is sequentially rational under μi.

Proof. Choose any patient depositor i, history hi, and run strategy σ ∈ D0. It follows
from μi(ω1:i−1 = hi|hi, ωi = 1) = 1 that φ

μi
i (ωi+1:I|hi, ωi ) = P(ωi+1:I|ω1:i−1 = hi, ωi ).

Compare patient depositor i’s expected payoff of reporting 0 and 1 at history hi:

Report 0: U
μi
i (ri = 0, σi+1:I|hi, ωi = 1) = ρv

(
α0
i (hi, 0)

)
;

Report 1: U
μi
i (ri = 1, σi+1:I|hi, ωi = 1)

= Eωi+1:I

[
ρv
(
α1
i (ω1:i−1, 1, ωi+1:I )

)
|ω1:i−1 = hi, ωi = 1

]
,

where the equality follows from the condition that σj(ωj|hj , ωj ) = 1 for all j ∈ {i +
1, � � � , I} and all hj including (hi, 1) as a partial history. Since the allocation rule α is
SIC, i.e., satisfies inequality (17), �i(hi, 1) = 1 is sequentially rational under μi.

Now I will begin the iterative elimination process from the last depositor, depositor
I. Since the allocation rule α is SIC, depositor I always report truthfully at any history
hI . Therefore, any run strategy in D0 that has depositor I misreporting fails to be a FIE.
Eliminating those run strategies gives us

D1 = D0 \ {σ ∈D0|σI(0|hI , 1) > 0 for all hI

}
.
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Next, consider patient depositor I−1 after history hI−1 = (1, � � � , 1). By Lemma 1, for any
run strategy in D1 ⊆ D0, his introspectively consistent belief at information set (hI−1 =
(1, � � � , 1), ωI−1 = 1) is unique and given by

μI−1
(
ω1:I−2 = (1, � � � , 1)|hI−1 = (1, � � � , 1), ωI−1 = 1

)= 1.

Since for any run strategy in D1, σI(ωI|(1, � � � , 1), ωI ) = 1, it follows from Lemma 3 that,
after history hI−1 = (1, � � � , 1), �I−1(hI−1, 1) = 1 is sequentially rational under any intro-
spective consistent belief. Therefore, what is left to check is in the following subset of
D1:

D2 =D1 \ {σ ∈D1|σI−1
(
0|(1, � � � , 1), 1

)
> 0
}

.

Given any run strategy in D2, consider patient depositor I − 2 after history hI−2 =
(1, � � � , 1). Again, by Lemma 1, his introspectively consistent belief at information set

(hI−2 = (1, � � � , 1), ωI−2 = 1) is unique and given by

μI−2
(
ω1:I−3 = (1, � � � , 1)|hI−2 = (1, � � � , 1), ωI−2 = 1

)= 1.

Note that for any run strategy in D2, σj(ωj|hj , ωj ) = 1 for all hj including (hI−2 =
(1, � � � , 1), 1) as a partial history. Then it follows from Lemma 3 that, after history
hI−2 = (1, � � � , 1), �I−2(hI−2, 1) = 1 is sequentially rational under any introspective con-
sistent belief. Therefore, what is left to check is in the following subset of D2:

D3 =D2 \ {σ ∈D1|σI−2
(
0|(1, � � � , 1), 1

)
> 0
}

.

Given any run strategy in D3, before moving to depositor I−3, I need to check depositor
I − 1 at history hI−1 = (1, � � � , 1, 0). Here, at hI−1 = (1, � � � , 1, 0), rI−2 = 0, and for any
run strategy σ in D3, σI−2(1|hI−2 = (1, � � � , 1), 1) = 1, i.e., (j = I − 2, hI−2 = (1, � � � , 1)) ∈
T (σ ). Then by Lemma 2, his introspectively consistent belief at information set (hI−1 =
(1, � � � , 1, 0), ωI−1 = 1) is unique and given by

μI−1
(
ω1:I−2 = (1, � � � , 1, 0)|hI−1 = (1, � � � , 1, 0), ωI−1 = 1

)= 1.

Since for any run strategy in D3 ⊆D1, σI(ωI|(1, � � � , 1), ωI ) = 1, it follows from Lemma 3
that, after history hI−1 = (1, � � � , 1, 0), �I−1(hI−1, 1) = 1 is sequentially rational under
any introspective consistent belief. Therefore, what is left to check is in the following
subset of D3:

D4 =D3 \ {σ ∈D3|σI−1
(
0|(1, � � � , 1, 0), 1

)
> 0
}

.

Repeating this elimination procedure to go through the rest of histories leads to an
empty set, meaning that no run strategy in D0 can be a FIE. Therefore, the truth-telling
strategy is the unique FIE in the full-information withdrawal game.
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Appendix C: Proof of Proposition 3

Before proving Proposition 3, I first show the following lemma.

Lemma 4. Suppose that Assumption 3 holds. Then for any i ∈ I and k ∈ {0, 1, � � � , i− 2},

P
(
ωi = 1|θ(ω1:i−1 ) = k

)≤ P
(
ωi = 1|θ(ω1:i−1 ) = k+ 1

)
. (27)

Proof of Lemma 4. Suppose that Assumption 3 holds. First, I show by induction that

the following inequality holds for any N ∈ Z+:

N∑
i=0

C(N , i)P
(
ω : θ(ω) = k+ i

)
N∑
i=0

C(N , i)P
(
ω : θ(ω) = k+ 1 + i

) ≥

N∑
i=0

C(N , i)P
(
ω : θ(ω) = k+ 1 + i

)
N∑
i=0

C(N , i)P
(
ω : θ(ω) = k+ 2 + i

) . (28)

First, by (19), (28) holds for N = 0. Suppose (28) holds for N = n − 1. By the reduction

property of combinations, I have for any ai ∈R, i = 0, � � � , n,

n∑
i=0

C(n, i)ai =
n−1∑
i=0

C(n− 1, i)ai +
n∑

i=1

C(n− 1, i− 1)ai.

Therefore, it follows that

n∑
i=0

C(n, i)P
(
ω : θ(ω) = k+ i

)
n∑

i=0

C(n, i)P
(
ω : θ(ω) = k+ 1 + i

)

=

n−1∑
i=0

C(n− 1, i)P
(
ω : θ(ω) = k+ i

)+ n∑
i=1

C(n− 1, i− 1)P
(
ω : θ(ω) = k+ i

)
n−1∑
i=0

C(n− 1, i)P
(
ω : θ(ω) = k+ 1 + i

)+ n∑
i=1

C(n− 1, i− 1)P
(
ω : θ(ω) = k+ 1 + i

)

=

n−1∑
i=0

C(n− 1, i)P
(
ω : θ(ω) = k+ i

)+ n−1∑
i=0

C(n− 1, i)P
(
ω : θ(ω) = k+ 1 + i

)
n−1∑
i=0

C(n− 1, i)P
(
ω : θ(ω) = k+ 1 + i

)+ n−1∑
i=0

C(n− 1, i)P
(
ω : θ(ω) = k+ 2 + i

)
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=

1 +

n−1∑
i=0

C(n− 1, i)P
(
ω : θ(ω) = k+ i

)
n−1∑
i=0

C(n− 1, i)P
(
ω : θ(ω) = k+ 1 + i

)

1 +

n−1∑
i=0

C(n− 1, i)P
(
ω : θ(ω) = k+ 2 + i

)
n−1∑
i=0

C(n− 1, i)P
(
ω : θ(ω) = k+ 1 + i

)

,

where
∑n−1

i=0 C(n− 1, i)P(ω : θ(ω) = k+ 1 + i) =∑n
j=1 C(n− 1, j − 1)P(ω : θ(ω) = k+ j)

by letting j = i+1 and
∑n

i=1 C(n−1, i−1)P(ω : θ(ω) = k+1+ i) =∑n−1
j=0 C(n−1, j)P(ω :

θ(ω) = k+ 2 + j) by letting j = i− 1. Similarly,

n∑
i=0

C(n, i)P
(
ω : θ(ω) = k+ 1 + i

)
n∑

i=0

C(n, i)P
(
ω : θ(ω) = k+ 2 + i

) =

1 +

n−1∑
i=0

C(n− 1, i)P
(
ω : θ(ω) = k+ 1 + i

)
n−1∑
i=0

C(n− 1, i)P
(
ω : θ(ω) = k+ 2 + i

)

1 +

n−1∑
i=0

C(n− 1, i)P
(
ω : θ(ω) = k+ 3 + i

)
n−1∑
i=0

C(n− 1, i)P
(
ω : θ(ω) = k+ 2 + i

)

.

Since (28) holds for N = n− 1, it follows that

n∑
i=0

C(n, i)P
(
ω : θ(ω) = k+ i

)
n∑

i=0

C(n, i)P
(
ω : θ(ω) = k+ 1 + i

) ≥

n∑
i=0

C(n, i)P
(
ω : θ(ω) = k+ 1 + i

)
n∑

i=0

C(n, i)P
(
ω : θ(ω) = k+ 2 + i

) .

Therefore, (28) holds for N = n, which completes the induction proof. Next, choose any

i ∈ I and k ∈ {0, 1, � � � , i− 2}. Note that

P
(
ωi = 1|θ(ω1:i−1 ) = k

)=
∑
ωi+1:I

P(ω1:i−1, 1, ωi+1:I )

∑
ωi+1:I

P(ω1:i−1, 1, ωi+1:I ) +
∑
ωi+1:I

P(ω1:i−1, 0, ωi+1:I )
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= 1

1 +

∑
ωi+1:I

P(ω1:i−1, 0, ωi+1:I )

∑
ωi+1:I

P(ω1:i−1, 1, ωi+1:I )

,

where

∑
ωi+1:I

P(ω1:i−1, 0, ωi+1:I )

∑
ωi+1:I

P(ω1:i−1, 1, ωi+1:I )
=

I−i∑
j=0

C(I − i, j)P
(
ω : θ(ω) = k+ j

)
I−i∑
j=0

C(I − i, j)P
(
ω : θ(ω) = k+ 1 + j

) .

Similarly,

P
(
ωi = 1|θ(ω1:i−1 ) = k+ 1

)= 1

1 +

I−i∑
j=0

C(I − i, j)P
(
ω : θ(ω) = k+ 1 + j

)
I−i∑
j=0

C(I − i, j)P
(
ω : θ(ω) = k+ 2 + j

)

.

It follows from (28) by letting N = I − i that

P
(
ωi = 1|θ(ω1:i−1 ) = k

)≤ P
(
ωi = 1|θ(ω1:i−1 ) = k+ 1

)
,

which completes the proof.

Proof of Theorem 2. Suppose Assumptions 1, 2, and 3 hold. By Lemma 1 in Ennis
and Keister (2009), the problem of solving the period-0 allocation of each depositor i

if impatient in the first-best allocation rule can be formulated as a finite dynamic pro-
gramming problem. For any depositor i, write down the following Bellman equations:

V 0
i

(
θi, yi; π

I
i+1(θi )

)= max
a0
i

v
(
a0
i

)+πi+1(θi )V
1
i+1

(
θi, yi − a0

i ; πI
i+2(θi + 1)

)
+ (1 −πi+1(θi )

)
V 0
i+1

(
θi, yi − a0

i ; πI
i+2(θi )

)
,

and

V 1
i

(
θi, yi; π

I
i+1(θi + 1)

)= πi+1(θi + 1)V 1
i+1

(
θi + 1, yi; π

I
i+2(θi + 2)

)
+ (1 −πi+1(θi + 1)

)
V 0
i+1

(
θi + 1, yi; π

I
i+2(θi + 1)

)
.

Here, V 0
i is the value function conditional on depositor i being impatient, i.e., ωi = 0,

and V 1
i is the value function conditional on depositor i being patient, i.e., ωi = 1. θi

is the total number of patient depositors among the first i − 1 depositors, and yi is the
remaining resources. Also, πI

j (θ) = (πj(θ), πj+1(θ), πj+1(θ + 1), � � � , πI(θ), � � � , πI(θ +
I − j)), where πj(θ) = P(ωj = 1|θ(ω1:j−1 ) = θ). Next, I prove the following lemma.
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Lemma 5. For any depositor i, any θi and any yi, the following inequality holds:

∂V 1
i

(
θi, yi; π

I
i+1(θi + 1)

)
∂yi

≤ ∂V 0
i

(
θi, yi; π

I
i+1(θi )

)
∂yi

. (29)

Proof. The proof is by induction. First, consider the case when i = I. Then the Bellman
equation conditional on ωI = 0 is

V 0
I (θI , yI ) = max

a0
I

v
(
a0
I

)+ θIρv

(
R
(
yI − a0

I

)
θI

)
.

The first-order condition is

v′(a0
I

)= ρRv′
(
R(yI − aI )

θI

)
.

It follows from Assumption 1 and ρR> 1 that

yI − a0
I

θI
≤ a0

I ≤ R
(
yI − a0

I

)
θI

⇒ yI
θI + 1

≥ yI − a0
I

θI
. (30)

By the envelope theorem,

∂V 0
I (θI , yI )
∂yI

= ρRv′
(
R
(
yI − a0

I

)
θI

)
.

The Bellman equation conditional on ωI = 1 is

V 1
I (θI , yI ) = (θI + 1)ρv

(
RyI

θI + 1

)
.

Taking partial derivatives with respect to yI on both sides yields

∂V 1
I (θI , yI )
∂yI

= ρRv′
(

RyI
θI + 1

)
.

It follows from Assumption 1 and (30) that

∂V 1
I (θI , yI )
∂yI

≤ ∂V 0
I (θI , yI )
∂yI

.

Therefore, inequality (29) holds for i = I. Next, suppose that (29) holds for all i = k +
1, � � � , I. I need to show that (29) also holds for i = k. The Bellman equation conditional
on ωk = 0 is

V 0
k

(
θk, yk; πI

k+1(θk )
)= max

a0
k

v
(
a0
k

)+πk+1(θk )V 1
k+1

(
θk, yk − a0

k; πI
k+2(θk + 1)

)
+ (1 −πk+1(θk )

)
V 0
k+1

(
θk, yk − a0

k; πI
k+2(θk )

)
.
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The first-order condition is

v′(a0
k

)= πk+1(θk )
∂V 1

k+1

(
θk, yk − a0

k; πI
k+2(θk + 1)

)
∂yk+1

+ (1 −πk+1(θk )
)∂V 0

k+1

(
θk, yk − a0

k; πI
k+2(θk )

)
∂yk+1

.

Define the function

Hk

(
a0
k, πI

k+1(θk )
)= v

(
a0
k

)+πk+1(θk )V 1
k+1

(
θk, yk − a0

k; πI
k+2(θk + 1)

)
+ (1 −πk+1(θk )

)
V 0
k+1

(
θk, yk − a0

k; πI
k+2(θk )

)
.

Since (29) holds for all i = k + 1, � � � , I, the function Hk(a0
k, πI

k+1(θk )) has increasing
differences in (a0

k, πI
k+1(θk )). Therefore, it follows from Theorem 6.1 in Topkis (1978)

that a0
k(πI

k+1(θk )) ≤ a0
k(π̂I

k+1(θk )) whenever πI
k+1(θk ) ≤ π̂I

k+1(θk ). As a result, by the
first-order condition and the envelope theorem,

∂V 0
k

(
θk, yk; πI

k+1(θk )
)

∂yk
≥ ∂V 0

k

(
θk, yk; π̂I

k+1(θk )
)

∂yk
, (31)

whenever πI
k+1(θk ) ≤ π̂I

k+1(θk ). Note that the Bellman equation conditional on ωk = 1
is

V 1
k

(
θk, yk; πI

k+1(θk + 1)
) = πk+1(θk + 1)V 1

k+1

(
θk + 1, yk; πI

k+2(θk + 2)
)

+ (1 −πk+1(θk + 1)
)
V 0
k+1

(
θk + 1, yk; πI

k+2(θk + 1)
)
. (32)

Consider the following constructed Bellman equation conditional on ωi = 0:

V 0
k

(
θk, yk; πI

k+1(θk + 1)
) = max

a0
k

v
(
a0
k

)+πk+1(θk + 1)V 1
k+1

(
θk, yk − a0

k; πI
k+2(θk + 2)

)
+ (1 −πk+1(θk + 1)

)
V 0
k+1

(
θk, yk − a0

k; πI
k+2(θk + 1)

)
, (33)

which has the same transition probabilities as in (32). Then I can apply the proof tech-
nique of Lemma 5 in Green and Lin (2003) to the problem (33) and (32), and get

∂V 1
k

(
θk, yk; πI

k+1(θk + 1)
)

∂yk
≤ ∂V 0

k

(
θk, yk; πI

k+1(θk + 1)
)

∂yk
. (34)

Lastly, by Lemma 4, πI
k+1(θk + 1) ≥ πI

k+1(θk ). Then it follows from (31) that

∂V 0
k

(
θk, yk; πI

k+1(θk + 1)
)

∂yk
≤ ∂V 0

k

(
θk, yk; πI

k+1(θk )
)

∂yk
.

Combining with (34) leads to

∂V 1
k

(
θk, yk; πI

k+1(θk + 1)
)

∂yk
≤ ∂V 0

k

(
θk, yk; πI

k+1(θk )
)

∂yk
.

Therefore, (29) holds for i = k, which completes the induction argument.
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Then it follows from Lemma 5 and the envelope theorem that

Eωi+1:I

⎡
⎢⎢⎢⎢⎢⎣v

′

⎛
⎜⎜⎜⎜⎜⎝
R

(
y −

I∑
k=i

a0
k(ω1:i−1, 0, ωi+1:I )

)

θ(ω1:i−1 ) + θ(ωi+1:I )

⎞
⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
ω1:i−1, ωi = 0

⎤
⎥⎥⎥⎥⎥⎦

≥ Eωi+1:I

⎡
⎢⎢⎢⎢⎢⎣v

′

⎛
⎜⎜⎜⎜⎜⎝
R

(
y −

I∑
k=i+1

a0
k(ω1:i−1, 1, ωi+1:I )

)

θ(ω1:i−1 ) + 1 + θ(ωi+1:I )

⎞
⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
ω1:i−1, ωi = 1

⎤
⎥⎥⎥⎥⎥⎦ , (35)

for any depositor i, any ω1:i−1 and any y. Here, (35) is the correlated types analogue
of (A.7) in Green and Lin (2003) with different conditional expectations on each side.
The rest of the proof is exactly the same as in the proof of Lemma 5 in Green and Lin. By
ρR> 1, the first-order condition and the envelope theorem of the optimization problem
for ωi = 0, I have

v′(a0
i (ω1:i−1, 0)

)
> Eωi+1:I

⎡
⎢⎢⎢⎢⎢⎣v

′

⎛
⎜⎜⎜⎜⎜⎝
R

(
y −

I∑
k=i

a0
k(ω1:i−1, 0, ωi+1:I )

)

θ(ω1:i−1 ) + θ(ωi+1:I )

⎞
⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
ω1:i−1, ωi = 0

⎤
⎥⎥⎥⎥⎥⎦ .

It follows from (35) that

v′(a0
i (ω1:i−1, 0)

)
> Eωi+1:I

⎡
⎢⎢⎢⎢⎢⎣v

′

⎛
⎜⎜⎜⎜⎜⎝
R

(
y −

I∑
k=i+1

a0
k(ω1:i−1, 1, ωi+1:I )

)

θ(ω1:i−1 ) + 1 + θ(ωi+1:I )

⎞
⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
ω1:i−1, ωi = 1

⎤
⎥⎥⎥⎥⎥⎦ .

By Assumption 2, there exists a function μ : R→ R+ such that μ′ < 0, μ′′ > 0, and

v′(c) = μ
(
v(c)

)
.

Then it follows that

μ
(
v
(
a0
i (ω1:i−1, 0)

))

> Eωi+1:I

⎡
⎢⎢⎢⎢⎢⎣μ

⎛
⎜⎜⎜⎜⎜⎝v
⎛
⎜⎜⎜⎜⎜⎝
R

(
y −

I∑
k=i+1

a0
k(ω1:i−1, 1, ωi+1:I )

)

θ(ω1:i−1 ) + 1 + θ(ωi+1:I )

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
ω1:i−1, ωi = 1

⎤
⎥⎥⎥⎥⎥⎦
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>μ

⎛
⎜⎜⎜⎜⎜⎝Eωi+1:I

⎡
⎢⎢⎢⎢⎢⎣v
⎛
⎜⎜⎜⎜⎜⎝
R

(
y −

I∑
k=i+1

a0
k(ω1:i−1, 1, ωi+1:I )

)

θ(ω1:i−1 ) + 1 + θ(ωi+1:I )

⎞
⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
ω1:i−1, ωi = 1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

(By μ′′ > 0).

Since μ′ < 0,

v
(
a0
i (ω1:i−1, 0)

)
< Eωi+1:I

⎡
⎢⎢⎢⎢⎢⎣v

⎛
⎜⎜⎜⎜⎜⎝
R

(
y −

I∑
k=i+1

a0
k(ω1:i−1, 1, ωi+1:I )

)

θ(ω1:i−1 ) + 1 + θ(ωi+1:I )

⎞
⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
ω1:i−1, ωi = 1

⎤
⎥⎥⎥⎥⎥⎦

= Eωi+1:I

[
v
(
a1
i (ω1:i−1, 1, ωi+1:I )

)
|ω1:i−1, ωi = 1

]
,

which completes the proof.

Appendix D: Omitted proofs

Proof of Proposition 1. First, the “only if” part is straightforward. Next, for the “if”
part, suppose that (16) holds for any i and ω1:i−1 ∈ �i−1. Note that all histories are on-
path given the truth-telling strategy. Therefore, the system of beliefs given the truth-
telling strategy is uniquely pinned down by Bayes’ rule. In particular, choose any depos-
itor i and information set (hi, ωi ). It follows from (4) that

μi(ω1:i−1|hi, ωi ) =
{

1 if ω1:i−1 = hi

0 if ω1:i−1 
= hi.

Then by (3), φμi
i (·|hi, ωi ) is given by

φ
μi
i (ωi+1:I|hi, ωi ) =

∑
ω1:i−1

P(ωi+1:I|ω1:i−1, ωi )μi(ω1:i−1|hi ) = P(ωi+1:I|ω1:i−1 = hi, ωi ),

for any ωi+1:I . Since by Remark 2 impatient depositor i always reports truthfully, let us
consider patient depositor i’s problem. Given that all depositors after depositor i will
report truthfully, i.e., for any j ∈ {i + 1, � � � , I}, �j(hj , ωj ) = ωj , compare his payoff of
reporting 0 (lying) and 1 (truth-telling) at history hi under μi:

Report 0: U
μi
i (ri = 0, �i+1:I|hi, ωi ) = ρv

(
α0
i (hi, 0)

)
;

Report 1: U
μi
i (ri = 1, �i+1:I|hi, ωi ) = Eωi+1:I

[
ρv
(
α1
i (hi, 1, ωi+1:I )

)
|ω1:i−1 = hi, ωi = 1

]
.

Since hi ∈ �i−1, it follows from (16) that �i(hi, 1) = 1 is sequentially rational for pa-
tient depositor i at history hi. Therefore, the truth-telling strategy is a FIE in the full-
information withdrawal game induced by α, i.e., α is IC.
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Proof of Proposition 2. Choose any k ∈ {0, 1, � � � , I − 2}. To show Assumption 3
holds, it is equivalent to show the following:

[
m∑
j=1

(1 −πj )kπI−k
j pj

][
m∑
j=1

(1 −πj )k+2πI−k−2
j pj

]
−
[

m∑
j=1

(1 −πj )k+1πI−k−1
j pj

]2

≥ 0,

which can be rewritten as∑
i 
=j

[
(1 −πi )

kπI−k
i (1 −πj )k+2πI−k−2

j + (1 −πj )kπI−k
j (1 −πi )

k+2πI−k−2
i

]
pipj

≥
∑
i 
=j

[
2(1 −πi )

k+1πI−k−1
i (1 −πj )k+1πI−k−1

j

]
pipj . (36)

Note that for any i 
= j, the following is true:

{[
(1 −πi )

kπI−k
i (1 −πj )k+2πI−k−2

j

] 1
2 + [(1 −πj )kπI−k

j (1 −πi )
k+2πI−k−2

i

] 1
2
}2 ≥ 0.

Therefore, for any i 
= j,

(1 −πi )
kπI−k

i (1 −πj )k+2πI−k−2
j + (1 −πj )kπI−k

j (1 −πi )
k+2πI−k−2

i

≥ 2(1 −πi )
k+1πI−k−1

i (1 −πj )k+1πI−k−1
j .

Then it implies that (36) holds, which completes the proof.
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