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Abstract

We study a model in which two players with opposing interests try to alter a status
quo through instability-generating actions. We show that instability can be used
to secure longer-term durable changes, even if it is costly to generate and does
not generate short-term gains. In equilibrium, instability generated by a player
decreases when the status quo favors them more. Equilibrium always exhibits a
region of stable states in which the status quo persists. As players’ threat power
increases, this region shrinks, ultimately collapsing to a single stable state that is
supported via a deterrence mechanism. There is long-run path-dependency and
inequity: although instability eventually leads to a stable state, it typically selects
the least favorable one for the initially disadvantaged player.
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Instability is an essential component of con�icts. Two political parties in a continuous competi-
tion for voters’ support can stir unpredictable changes by leaking rumors or taking outrageous
stances that will prompt controversy. Two countries �ghting over disputed territories can adopt
high-risk strategies that are often as likely to succeed as to back�re: instigating internal rebel-
lions, launching propaganda campaigns or appealing to international organizations. Rebellious
groups often seek to create agitation in the hope that they can pro�t from a volatile situation.
Sometimes actions have no predictable e�ect other than to increase uncertainty, and instabil-
ity itself becomes a means to an end: groups with diametrically opposed interests can generate
instability strategically to advance their agenda.

In this paper, we study the strategic implications of using instability as an instrument in situ-
ations of con�ict. We consider a model in which two forward-looking players accrue bounded
constant-sum gross �ow payo�s. At any moment, players can pay a cost to increase the volatil-
ity of a process that determines the status quo division of payo�s. In particular, instability has
a symmetric e�ect everywhere but at the extreme states, where it can only re�ect the process
towards less extreme states.

We show instability is an e�ective device in such situations. If the only thing a player can do is
to destabilize the status quo in a way that change is equally likely to be favorable or unfavorable,
instability cannot o�er any advantage in the short-term. Furthermore, even if instability were
to lead to a more favorable situation for the player, it could be met with additional instability
by others with opposing views, further depressing the incentives to take action. But when a
player has nothing to lose, instability seems like a natural instrument to oppose an excessively
unfavorable status quo. We show how a lower bound on the negative consequences of creating
instability provides option value that can be exploited by patient players, even when gains and
losses are equally likely in the short run.

We identify two key properties of players’ optimal (Markovian) behavior. First, an optimal volatil-
ity strategy in response to any strategy of the opponent is characterized by a threshold mecha-
nism: players continuously generate positive volatility at situations less favorable than a target
“satis�cing” state, and no instability at more favorable ones. Second, best responses to monotone
strategies are monotone, creating more instability at less favorable states. Because gains over the
status quo are driven by the option value conferred by the lower bound on how unfavorable the
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state can be, at a more favorable status quo, this option value decreases, and players become more
conservative as they stand to lose more.

We then prove existence and provide a complete constructive characterization of the set of equi-
libria. An intuitive decoupling argument lies at the heart of this characterization: at most one
player creates instability at any given moment. As instability yields no short-term gains on the
status quo and players have diametrically opposed interests, they cannot both expect to bene�t
from it. As a result, equilibria are completely characterized by two thresholds, de�ning two re-
gions of instability, and a stable region wherein the status quo prevails. Instability arises in the
most extreme states, and the player who least favors the status quo creates instability to strive
for change. Instability is used as a tool to push back against an extreme status quo, and more
extreme states foster greater instability. In contrast, in the stable region — corresponding to rel-
atively more moderate states — neither player sees advantage in destabilizing the status quo.

While equilibrium stable states always exist, these can be either the expression of accommodating
equilibrium behavior, or of a balance-of-power mechanism. In the former, players never push
back against instability triggered by their opponent and so each player pursues gains on the
status quo by generating instability exactly as if they faced no opposition. Such accommodating
behavior occurs when impatience and costs to instability are high enough, which, owing to the
threshold structure of best responses, supports a unique equilibrium. This unique equilibrium
generically features a continuum of stable states: those that are satisfactory to both players and,
if perturbed, would not trigger any instability. The situation fully reverses when players are
patient and costs to instability are low enough: multiple equilibria arise, and each is characterized
by a unique stable state. Further, this unique stable status quo emerges as resulting from players
actively pushing back against their opponent’s attempts to advance their prospects. Equilibrium
behavior is then characterized as a balance-of-power mechanism at the stable status quo: the
knowledge that the opponent will trigger social instability if the status quo is perturbed to their
detriment deters the player from pursuing further improvements.

Equilibria also exhibit clear monotone comparative statics. We �nd that lowering a player’s costs
to creating instability shifts the set of stable states in a strong set order sense toward states the
player prefers, as the player is willing to generate more instability to pursue their goals.
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Finally, we discuss the dynamics of instability in our model. We show that, regardless of the
starting point, the process converges almost surely to an equilibrium stable state. Nevertheless,
we note a form of path dependency: if the process starts in a player’s instability region, it will
converge to that player’s least favorable stable state.

Our paper contributes to the literature studying theoretical models of con�ict. Paraphrasing
Fearon (1995, p. 387), con�ict is “a gamble whose outcome may be determined by random or oth-
erwise unforeseeable events.” This observation motivated the modeling of con�ict using contests,
that is, situations in which players exert costly e�ort to a�ect their relative likelihood of obtaining
a more favorable outcome. Starting with the seminal work of Tullock (1980) in studying political
party competition, several papers use this modeling device to study issues related to con�ict and
competition, including con�ict over the appropriation of rents (Besley and Persson 2011; Powell
2013), lobbying (Baye et al. 1993; Che and Gale 1998), territorial expansion (Bueno de Mesquita
2020; Dziubiński et al. 2021), and how inequality a�ects the intensity of social con�ict (Esteban
and Ray 1999, 2011). Closer in spirit to this paper, Fang and Noe (2016); Fang and Noe (2022)
study risk-taking behavior in contest settings under a mean-performance constraint. Our main
contribution relative to the existing literature on con�ict is to introduce a novel instability mech-
anism and relate it to key concepts and phenomena in the dynamics of con�ict. Our model gives
qualitatively reasonable predictions for the dynamics of instability and, in doing so, highlights
that instability need not be a purely exogenous byproduct, but rather a powerful and important
instrument in situations of con�ict.

Instability gives rise to two phenomena typically present in other models of con�ict. First, the fact
that the disadvantaged player is the one who triggers instability is reminiscent of the idea that
excessively unequal outcomes will trigger con�ict (Fearon 1995) and that laggards choose more
risky strategy in R&D or sports (Cabral 2003; Anderson and Cabral 2007), and, more broadly,
consistent with the idea of “gambling for resurrection” (Kräkel et al. 2014; Calveras et al. 2004).
Second, although modeled in a di�erent manner in either Jackson and Morelli (2009) or Chassang
and Padró i Miquel (2010), the common theme of deterrence appears in our model in instances
where a single state emerges as stable in equilibrium, and its stability is supported only by the
fact that each of the two players with opposing interests would escalate con�ict were the status
quo a�ected.
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Another related strand of the literature pertains to tug-of-war models and wars of attrition.
In Moscarini and Smith’s (2011) continuous-time analogue of the model by Harris and Vickers
(1987), players with antagonistic preferences exert e�ort to increase the probability a state moves
toward their preferred outcome, controlling the drift rather than the volatility of the process.
Agastya and McAfee (2006) consider a related model with drift control and absorbing bound-
aries, in which stability obtains at intermediate states in draw equilibria because drift controls
cancel each other. Gul and Pesendorfer (2012) and Gieczewski (2020) consider war of attrition
settings where players e�ectively control variance by choosing when to stop the payo� process.
Since in these models payo�s are accrued only when con�ict stops and the extreme states are
absorbing, close enough to the boundary, the winning side strives for a de�nitive victory and the
losing side concedes, leading to stability; at intermediate states, there is con�ict (hence instabil-
ity) to determine to which side the scale will tip. This prediction reverses in our setting because
there is no de�nitive victory. Since the losing side has much less and the winning side more to
lose, instability becomes a potent tool at extreme states, but too risky at intermediate ones.

Lastly, our paper contributes to a growing literature on games in continuous time. Although the
use of di�erential methods for zero-sum games dates back to the seminal work of Isaacs (1965),
a number of recent contributions have e�ectively used stochastic calculus and di�erential equa-
tions techniques in continuous time games.1 As other recent papers in economics (e.g. Faingold
and Sannikov 2011; Kaplan et al. 2018; Achdou et al. 2021; Lester 2020; Kuvalekar and Lipnowski
2020; Escudé and Sinander 2023) and a wealth of applications in �nance,2 we rely on viscosity
solutions to solve a non-smooth optimal control problem. Building on Lions (1986), this paper
provides a technical contribution to this literature by proving existence and uniqueness of opti-
mal control of volatility of a re�ecting process under relaxed regularity conditions. We hope that
the present paper also serves to illustrate the usefulness of this approach for obtaining precise
characterizations in economic applications while imposing minimal assumptions.

The remainder of the paper is organized as follows: Section 1 introduces the model. In Section 2,
we give a detailed characterization of optimal instability strategies by studying the best response
to a �xed opponent strategy; we pay particular attention the benchmark case when the opponent
is inactive and a single player controls the volatility. We use these results in Section 3 to construct

1See Sannikov (2007) for applications to repeated games, or Daley and Green (2012; 2020) and Ortner (2019) for
applications to bargaining with a continuous in�ow of news and evolving bargaining power.

2See the monographs by Fleming and Soner (2006) or Pham (2009) for more detail.
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and characterize equilibria, and, in Section 4, we discuss the equilibrium dynamics of the status
quo: namely, convergence towards a stable state. Section 5 discusses some natural variations of
our model.

1. The Model
We now introduce our model. Time is continuous and indexed by t ∈ R+. The state at time t is
given by X t ∈ [0,1], corresponding to a status quo; players A and B have opposing preferences
over the status quo captured by constant-sum �ow payo�s. Player A strictly prefers higher values
of the status quo, whereas B favors lower ones, and we remove any intrinsic incentive to generate
instability by considering risk-neutral preferences. Given these assumptions, it is without loss to
normalize player A’s gross payo� at time t to be given by X t and player B’s by 1− X t.

The state evolves randomly and continuously over time according to the following stochastic
di�erential equation with re�ection:

dX t =
√

2(αt +βt)dBt −dK t,

where Bt is a standard Brownian motion, αt ≥ 0 and βt ≥ 0 are non-negative adapted processes
controlled by players A and B respectively, and K t denotes the regulator process that re�ects the
process within [0,1] when it hits either bound and is inactive in the interior — i.e. if X t ∈ (0,1)

we have dK t = 0.3

This captures the idea that instability has a symmetric e�ect everywhere but at the boundary.
Over a small time interval, the change in the status quo is exclusively driven by instability: at
any instant, X t goes either up or down with equal probability, except at the boundaries (0 and 1),
where it simply cannot become more extreme. Everywhere in the interior, the status quo changes
in a purely noisy manner.

A key assumption is that no player can get a negative �ow payo� — intuitively, in sharing a
�nite resource, one cannot have less than “nothing” (nor more than “everything”). The re�ecting
boundaries express the fact that even when some player reaches the lower bound of their payo�s,

3The presence of the regulator process K t is purely a technical device used to de�ne a process whose in�nitesimal
variations essentially follows dX t =

√
2(αt +βt)dBt but where an inward push compensates every variation that

would push the process outside of the bounded domain [0,1]; K t precisely de�nes this compensation to ensure that
we have de�ned a process over [0,1]. We give more technical details on the de�nition of the process in Appendix A.
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the game does not terminate. This contrasts with models with absorbing boundaries4 where the
game stops upon reaching an extreme point. Those are more likely to be applicable to situations
with a clear end-point (an election, a patent race, a sports match) and terminal payo�, whereas
our model is more adequately describing situations of repeated interaction without a de�nite
ending where payo�s continuously accrue (competition between political parties, long-lasting
dispute over territories between countries, protracted wars and rebellions). Although continuity
of the process is essential in capturing the desired intuition — because over a small time interval
the probability of hitting either bounds is zero, a form of local symmetry is ensured — the fact
that players control the level of instability means that the state can change extremely quickly, or
not at all.

Players A and B respectively control αt and βt — how much e�ort each puts into destabiliz-
ing the status quo. Total instability e�ort αt +βt is aggregated additively and corresponds to
scaling the volatility of the Brownian motion, which is captured by the square root transforma-
tion

√
2(αt +βt) (the factor of 2 is just a convenient normalization without loss). Instantaneous

volatility here is the continuous-time analogue of increasing variance in a discrete-time setting.
In other words, players are always able to escalate instability, but they cannot decrease instability
triggered by the opponent.

Observe that instability here is entirely endogenous: players can remain at the current status quo
forever if they choose not to increase volatility (αt = βt = 0), but each player has the ability to
unilaterally generate instability. In this sense, a state X t at which no player has an incentive to
generate instability corresponds to a stable status quo. We focus on the stylized case in which all
instability is endogenous to clearly identify its idiosyncratic e�ects.

Creating instability is costly. We assume the cost of instability e�ort is convex and adopt a
quadratic speci�cation for simplicity. The instantaneous (net) payo�s of A and B are respec-
tively:

ua(X t,αt) := X t −
ca

2
α2

t , ub(X t,βt) := (1− X t)−
cb

2
β2

t ,

where ca, cb ∈R++ are idiosyncratic cost parameters for each player.

4As those discussed above, e.g. Gul and Pesendorfer (2012); Gieczewski (2020); Moscarini and Smith (2001); Agastya
and McAfee (2006).
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Because creating instability is costly, this is not a zero-sum game. At a given instant, instability
requires a pure destruction of surplus which can only be warranted by the hope of obtaining a
durably better situation in some appropriate sense.

Each player chooses its instability e�ort over an in�nite horizon. Players have discount factors
ra and rb respectively; �ow payo�s are normalized by the discount factors. Expected utilities as
a function of strategies and the status quo (the initial point of the process X0 = x) are given by

Ua(α,β | x) := E
[∫ ∞

0
rae−ra tua(X t,αt)dt

]
, Ub(α,β | x) := E

[∫ ∞

0
rbe−rb tub(X t,βt)dt

]
.

We restrict attention to Markov-perfect equilibria (Maskin and Tirole 2001) in continuous strate-
gies. We then denote strategies as αt = a(X t), βt = b(X t), where a and b are continuous functions
from [0,1] to R+. Formally, strategies belong to the class of X t-adapted progressively measurable
processes, which we denote by A . The restriction to Markov-perfect equilibria is common in the
literature, due in part to well-known issues in de�ning o�-path behavior in continuous time (see
Simon and Stinchcombe 1989). Continuity is partly a technical assumption, albeit a natural one
in our setup. It is also minimal in that it requires little regularity to ensure that the underlying
objects are properly de�ned. We formally de�ne our equilibrium concept:

De�nition 1. An equilibrium is a pair of continuous functions (a,b) from [0,1] to R+ such that:

(i) The process α∗
t = a(X t) solves the control problem for player A given b:

α∗ ∈ argmax
α∈A

E

[∫ ∞

0
rae−ra t

(
X t −

ca

2
α2

t

)
dt

]
s.t. dX t =

√
2(αt +b(X t))dBt −dK t, X0 = x.

(ii) The process β∗
t = b(X t) solves the control problem for player B given a:

β∗ ∈ argmax
β∈A

E

[∫ ∞

0
rbe−rb t

(
(1− X t)−

cb

2
β2

t

)
dt

]
s.t. dX t =

√
2(a(X t)+βt)dBt −dK t, X0 = x.

In the next section, we study the control problem in detail for a �xed strategy of the opponent so as
to characterize best responses in this game. In doing so, we will verify that the previous de�nition
of equilibrium is appropriate; in particular, optimal strategies are well-de�ned and continuous.
This also allows us to identify relevant properties of best responses, which will prove useful to
provide a direct construction of equilibria in Section 3.
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2. Characterizing Best Responses
In this section, we study the properties of players’ best responses through its di�erential char-
acterization. We consider the control problem of one player, holding �xed the strategy of the
opponent. Since the individual problems of the players are symmetric by de�nition when re-
placing X t by 1− X t in the �ow payo�, we will consider player A’s problem. All results extend
symmetrically to player B’s problem. As we focus on player A’s problem, throughout this section
we will omit the a subscripts on parameters ra, ca and instead write r, c to alleviate notation.

To formally de�ne the control problem that we study in this section, let (Ω,F , (Ft),P) denote a
complete �ltered probability space equipped with a one-dimensional Brownian motion Bt. Fix
b : [0,1]→R+ a continuous function. The control problem of the player is given by:

va(x)= sup
α∈A

E

[∫ ∞

0
re−rt

(
X t −

c
2
α2

t

)
dt

]
s.t. dX t =

√
2
(
αt +b(X t)

)
dBt −dK t, X0 = x,

where X t,K t solve the re�ection problem i.e X t ∈ [0,1].

The following subsection introduces the approach used to solve the control problem: a di�erential
characterization of the problem and the theory of viscosity solutions.

2.1. Di�erential Characterization: Existence and Uniqueness

The value function of the control problem (and therefore the optimal control) is fully charac-
terized as the solution to a second-order di�erential equation — the Hamilton–Jacobi–Bellman
(HJB) equation — with re�ective boundary conditions, which capture the fact that the status quo
is re�ected on a closed interval.

To state the main result of this subsection, denote the positive part of y ∈ R by the subscript +,
y+ :=max{y,0}, and let n(x) denote the outer normal unit vector, where n(0)=−1,n(1)= 1.

Theorem 1. The value function va is the unique viscosity solution to the following Hamilton–
Jacobi–Bellman equation:

rva(x)− sup
a∈R+

{
rx− rc

2
a2 + (

a+b(x)
)
v′′a(x)

}
= 0 on (0,1) (HJB)

with the re�ective boundary condition:

n(x)v′a(x)= 0 on {0,1}. (BC)
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Furthermore, va is continuous and, whenever v′′a exists, the optimal control is given by

a(x)= 1
rc

v′′a(x)+.

We will refer to the combination of (HJB) and (BC) as the re�ected problem (RP) given b.

The value function only solves (RP) in an appropriate weak sense we de�ne below: it is a vis-
cosity solution.5 We rely on the use of viscosity solutions because a number of issues render our
problem non-standard. First, the process degenerates and becomes deterministic if there is no
instability. If for some x ∈ [0,1] b(x) = 0, then by setting αt = 0 the player can make the process
constant. In particular, this implies the boundary conditions need not be satis�ed as players could
choose to ‘deactivate’ the re�ection by setting a(x) = b(x) = 0 at x ∈ {0,1}. Indeed if b(1) = 0, it
is immediate that player A has no interest to generate instability when the status quo is 1, as A

enjoys the maximum possible payo� forever. This e�ectively makes 1 an absorbing point and the
strong boundary condition fails to hold in the usual sense. In general, whether or not the (strong)
boundary conditions hold is tightly related to the activity of the other player.

Second, players’ best responses generally do not satisfy standard regularity conditions (as Lip-
schitz continuity), which prevents us from appealing to well-known result for existence and
uniqueness. Finally, the value function can be non-di�erentiable; we will show below it can
exhibit a kink in equilibrium. The presence of a kink is more than a technical curiosity and will
re�ect essential properties of an equilibrium: a kink appears at a stable status quo that is sup-
ported but both players threatening to generate enough instability on either side to prevent any
deviations. We give more details below when characterizing the value function and equilibrium.

Before we introduce viscosity solutions, observe that the (HJB) equation can be rewritten as:

rva(x)− rx−b(x)v′′a(x)− 1
2rc

[
v′′a(x)+

]2 = 0.

For convenience, we de�ne the following notation for the di�erential operators:

Fa(x,v, M) := rv− rx−b(x)M− 1
2rc

[
M+

]2 for (x,v, M) ∈ [0,1]× [0,1]×R

B(x, p) := n(x)p for (x, p) ∈ {0,1}×R

5For general references on the theory of viscosity solutions of elliptic second-order di�erential equations and its
applications to optimal control see Crandall et al. (1992), Fleming and Soner (2006), and Pham (2009).
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that is, (RP) is given by Fa(x,va(x),v′′a(x))= 0 on (0,1) and B(x,v′a(x))= 0 on {0,1}. We now state
the de�nition of a viscosity solution of (RP):

De�nition 2. A function w on [0,1] is a viscosity subsolution of (RP) if its upper-semicontinuous
envelope w∗ is satis�es

Fa(x0,w∗(x0),ϕ′′(x0))≤ 0 if x0 ∈ (0,1)

and min
{
Fa(x0,w∗(x0),ϕ′′(x0)),B(x0,ϕ′(x0))

}≤ 0 if x0 ∈ {0,1}

for all ϕ ∈C 2([0,1]) such that x0 is a local maximum of w∗−ϕ.

A function w on [0,1] is a viscosity supersolution of (RP) if its lower-semicontinuous envelope
w∗ is satis�es

Fa(x0,w∗(x0),ϕ′′(x0))≥ 0 if x0 ∈ (0,1)

and max
{
Fa(x0,w∗(x0),ϕ′′(x0)),B(x0,ϕ′(x0))

}≥ 0 if x0 ∈ {0,1}

for all ϕ ∈C 2([0,1]) such that x0 is a local minimum of w∗−ϕ.

A function w is a viscosity solution if it is both a viscosity sub- and supersolution.

Viscosity solutions provide a powerful notion of generalized di�erentiability which is well adapted
to studying HJB-type equations. One canonical intuition to visualize the viscosity approach is to
think about �tting smooth test functions — ϕ in the de�nition — equal to the function at a given
point but everywhere else above (for a subsolution) or below (for a supersolution) and requiring
the di�erential equation to hold with the appropriate inequality for any such test function.

The proof of Theorem 1 is a combination of two propositions (proved in the Appendix). First, we
prove that the value function is a viscosity solution to the stated equation.

Proposition 1 (Optimality). The value function va is a viscosity solution to (RP).

Proposition 1 follows from standard dynamic programming arguments and applying Ito’s lemma
to appropriate test functions, although our setup imposes minimal assumptions.

We then turn to proving we have a unique viscosity solution, therefore corresponding to the
value function itself. To do so, we �rst establish a comparison principle result that will also be of
practical interest in characterizing equilibrium properties.
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Lemma 1 (Comparison Principle). If w is a viscosity supersolution and w is a viscosity subsolu-
tion to (RP), then w ≥ w in [0,1].

The comparison principle allows us to �nd bounds for our solution by constructing sub- and
supersolutions. Moreover, since existence can be established using general arguments, the com-
parison principle is instrumental in proving uniqueness.6

Proposition 2 (Existence and Uniqueness). There exists a unique viscosity solution to (RP). Fur-
thermore, it is continuous.

The proof of Lemma 1 and Proposition 2 relies on adapting existing techniques from the literature
(see Crandall et al. 1992) with arguments that are idiosyncratic to the problem at hand.

2.2. Properties of Best Responses

We now characterize player A’s optimal control for an arbitrary strategy by player B. Recall that
player A’s control is characterized by

a(x)= 1
rc

v′′a(x)+,

Even if player A’s optimal control does depend on b (the dependence of b is encoded within the
value function va), the following theorem shows that the best response and value function always
exhibit a simple structure characterized by a threshold mechanism.

Theorem 2. (Best Response Characterization) Let b be a continuous function and va the solution
to problem (RP) given b. The optimal control a∗ exists, and the solution to the control problem
is fully characterized by two thresholds xa, xa ∈ (0,1], xa ≤ xa, such that:

(i) on [0, xa) (the bene�cial instability region), va is strictly convex, and strictly above the identity;

(ii) on [xa, xa] (the neutral region), va(x)= x;

(iii) on (xa,1] (the detrimental instability region), va is strictly concave, and strictly below the
identity;

6To prove existence, it is su�cient to exhibit a subsolution (take v(x) := 0) and a supersolution (take v(x) := 1) such
that the latter is everywhere above the former. We can then construct a solution by taking the pointwise supremum
of subsolutions that are everywhere below that supersolution. This is known as Perron’s methods in the viscosity
solution literature. The comparison principle then immediately implies uniqueness of a viscosity solution.

11



(iv) a∗ is continuous, strictly positive on [0, xa) and zero elsewhere.

Furthermore, va is increasing and twice continuously di�erentiable everywhere, except possibly
at xa. If va is not di�erentiable at xa < 1, then limx→x−a v′a(x)≥ limx→x+a v′a(x) (only concave kinks
are permissible).

Let us discuss the intuition underlying Theorem 2 and its implications.

First, observe that the threshold structure is a general feature of best responses, regardless of
player B’s strategy. The optimal strategy for A always consists of generating strictly positive
instability when the status quo is unfavorable enough, and doing so in a vanishing manner as
the player reaches a ‘satis�cing’ threshold xa. The fact that va is strictly above the identity in the
bene�cial instability region captures the idea that A is strictly better o� there than if they were
able to stay at that status quo forever. Further, the fact that va is convex in this region captures
the (positive) option value from instability. This option value decreases as player A’s share nears
xa and the player becomes more prudent as they have more to lose.

The lower threshold xa synthesizes player A’s ability to use instability to their advantage and is
determined both by b, the discounting factor, and the cost parameter. Essentially, expected gains
from instability come from durably experiencing more favorable states. Beyond xa, it would be
too costly or not bene�cial enough to try to generate instability in their favor. This can be because
it would require too long a span of instability — entailing too high a cost — to exploit the option
value o�ered by the lower bound and secure durable improvements, or because player B would
generate enough instability at more favorable situations for player A so as to prevent them from
durably improving their situation there.

The bene�cial instability region [0, xa) is always non-empty: there is always a bene�t to gener-
ating some instability when the status quo is too disadvantageous. Re�ection binds at the lower
bound, where the player has the worst possible payo�; for any interior status quo, instability is
locally equally likely to make the player worse o� or better o�. Yet, the fact that there is a worst
state generates option value and the strict incentive to increase volatility at the bound spills over
and makes it pro�table to generate instability in a nearby region. Such a threshold not only al-
ways exists for arbitrary b, but it is also always strictly above zero, which demonstrates that
instability always enables players to �ght o� against situations that are too unfavorable.
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The upper threshold xa only matters for determining the payo� structure at states in which player
A does not contribute to instability. It delineates an intermediate neutral region [xa, xa] where,
even though player A chooses not create instability, whatever instability might be generated by
the opponent is not harmful (expected payo� are equal to status quo payo�s). For states that
are strictly preferred to xa by player A — where they have a lot to lose — whatever instability is
generated by the opponent is actively harmful to player A. This is captured by the fact that va(x)<
x in this region: player A would prefer staying at the status quo, and va is concave as the option
value of instability is negative. Although the neutral region is always non-empty (but possibly
consisting of a single point), the detrimental instability region can be empty. Additionally, in
general, it need not be the case that b(x)= 0 in the neutral region.

A corollary of the previous results is that xa < 1 if and only if b(1) > 0. This highlights how
instability at the extreme states signi�cantly in�uences the player’s behavior in the interior of
the domain. If b(1) = 0, no amount of instability that player B otherwise generates inside the
domain can be harmful to A (the detrimental instability region is empty). As in this case b entails
no instability at player A’s preferred state (x = 1), and as player A would never optimally generate
instability at this most favorable status quo, A is then able to make this boundary fully absorbing.
What happens at the extremes has drastic consequences everywhere else: whatever instability
B otherwise generates is non-harmful and instead bene�ts player A. On the other hand, if the
boundary at 1 is actively re�ecting (b(1)> 0), player A cannot unilaterally stop the process at 1,
and the option value of increasing instability when close to 1 is negative.

Lastly, we provide a monotonicity result that suggests what will be the structure of equilibria: if
one player creates more instability when more disadvantaged, but becomes more conservative as
the status quo is more favorable to them, the other player will have incentives to do the same.

Proposition 3. If b is non-decreasing on [0, xa], then the optimal control to the problem (RP) is
non-increasing.

2.3. The Inactive Benchmark

Consider the case in which a player’s opponent is fully passive and never generates any instability.
We take player A’s viewpoint, with b(x)≡ 0 for all x, so that player A’s actions are the only source
of instability to the status quo. The analysis of this individual decision-making problem not only
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serves to ground intuition, but most importantly, key properties of equilibria will be determined
by what would happen in the inactive benchmark.

The HJB equation has a clear interpretation: it relates the instantaneous cost of control at the
optimum to the marginal bene�t relative to the status quo, which can be seen as the option value
of instability. This also highlights why the second-order derivative in this context captures the
option value. Indeed, rewrite the HJB as:

r(va(x)− x)︸          ︷︷          ︸
improvement on the status quo

= 1
2rc

[v′′a(x)+]2

︸            ︷︷            ︸
option value

= rc
2

a∗(x)2

︸       ︷︷       ︸
instantaneous cost of control

The next proposition strengthens Theorem 2 when restricting to the special case b ≡ 0.

Proposition 4 (Properties of the Inactive Benchmark). Let v0
a be the value function in (RP) given

b ≡ 0, and a∗,0 be the corresponding optimal control. Then, there is x0
a ∈ (0,1] such that

(i) on [0, x0
a), v0

a is strictly convex, v0
a(x)> x, and a∗,0 is strictly positive and strictly decreasing;

(ii) on [x0
a,1], v0

a(x)= x and a∗,0(x)= 0.

Moreover, v0
a and a∗,0 are twice-continuously di�erentiable except possibly at x0

a = 1, with v0′
a ≤ 1.

Figure 1 illustrates Proposition 4 with a numerical approximation of the value function and the
optimal control of player A in the inactive benchmark for di�erent parameter values. It exhibits
the typical best-response structure: the value function is convex and above the identity when x

is low enough; it meets the identity at x0
a, and remains at the status quo for greater values of x.

Since b ≡ 0, the detrimental instability region is empty: if player A fully controls instability, then
they will never choose harmful levels of instability as they can always guarantee the status quo
— therefore v0

a(x) ≥ x everywhere. Moreover, player A’s inaction region [x0
a,1] determines the

states at which, for the given cost and discounting parameters, player A has no possible intrinsic
bene�t from instability. The active region [0, x0

a) symmetrically delineates the situations where
r and c are such that player A can strictly pro�t from instability. By the same logic, the fact
that a∗,0 is strictly decreasing over the active region [0, x0

a) captures the idea that the return
to instability is decreasing as the status quo moves farther away from zero: at more favorable
states the improvement on the status quo shrinks and so does the value to generating instability.
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Figure 1. Comparative Statics for Player A in the Inactive Benchmark

Figure 1b also depicts the corresponding optimal control to Figure 1a, illustrating this decreasing
behavior.

We further provide comprehensive comparative statics on r, c which will later prove useful to
obtain comparative statics of equilibria. Rewrite the HJB equation as 2r2c(va(x)−x)−[v′′a(x)+]2 =
0. Assume va solves this equation, along with the boundary condition (in the viscosity sense) for
r, c, and denote xa the corresponding inaction threshold. Let r̃, c̃ such that r̃2 c̃ ≥ r2c. Directly
2r̃2 c̃(va(x)− x)− [v′′a(x)+]2 ≥ 0. Since the boundary conditions are still veri�ed in the viscosity
sense, we can conclude that va is a supersolution in the problem for r̃, c̃. Comparative statics then
follow from the comparison principle (Lemma 1); they are summarized in the next proposition:

Proposition 5. Consider two pairs of cost and discounting parameters r, c and r̃, c̃. Denote v0
a,

x0
a,a∗,0 the value function, optimal threshold, and control corresponding to the problem for r, c.

Similarly de�ne ṽ0
a, x̃0

a, ã∗,0, a∗,0 under r̃, c̃. If r̃2 c̃ > r2c, then,

(i) x̃0
a ≤ x0

a, with strict inequality if x̃0
a < 1;

(ii) ã∗,0 ≤ a∗,0 on [0,1], with strict inequality on [0, x0
a); and
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(iii) ṽ0
a ≤ v0

a on [0,1], with strict inequality on [0, x0
a).

The interpretation of Proposition 5 is quite natural. For a higher cost/impatience, instability is
less pro�table overall. Since the option value of generating instability is fully due to the player’s
forward-looking behavior, higher impatience reduces the option value provided by the lower
bound on the state x. Higher c raises the marginal cost of instability. As a consequence, higher
cost or impatience cause the region where it is bene�cial to generate instability to shrink (x̃0

a ≤ x0
a).

The instability generated at any state x is milder (ã∗,0 ≤ a∗,0), resulting in lower payo�s (ṽ0
a ≤ v0

a).

As a player becomes more patient and faces lower costs to instability, the player may �nd it
worthwhile to generate strictly positive instability everywhere but at 1, i.e. x0

a = 1. The player’s
threshold is also associated with the shape of the player’s optimal instability as illustrated in
Figure 1b. When player A stops instigating instability at x0

a < 1, then the fact that the �ow payo�s
are bounded above by 1 (x denotes a share) never comes into play: the upper bound is inactive.
In this case, the player’s optimal control exhibits a convex shape, and the instability generated by
player A vanishes smoothly, with a∗,0′(x) → 0 as x → x0

a, as observed from the darker solid and
dashed lines in Figure 1b. In contrast, we observe that if the discount rate or the cost to instability
are low enough, the player adjusts volatility to exactly attain its �rst best and avoid the upper
bound becoming actively re�ecting. Then, the player only stops generating instability exactly at
x0

a = 1, and we obtain the convex-concave shape for a∗,0 that we observe in the dashed-dotted
line in Figure 1b, associated to instability vanishing abruptly at x0

a. We show that this distinction
between the cases depicted in Figure 1b is in fact a generic property:

Proposition 6 (Implications of Active Upper Bound). Let v0
a be the value function in (RP) given

b ≡ 0, and a∗,0 be the corresponding optimal control. Then,

(i) a∗,0 is convex if and only if v0′
a,−(x0

a)= 1;

(ii) there is x̂a ∈ [0, x0
a) such that a∗,0 is convex on [0, x̂a] and concave on [x̂a, x0

a] if and only if
v0′

a,−(x0
a)< 1.

Furthermore, v0′
a,−(x0

a)= 1 if x0
a < 1, and limx↑x0

a
a∗,0′(x)=−∞ if v0′

a,−(x0
a)< 1.

All the results in this section carry symmetrically to player B’s problem, with the change of
variable y = 1− x (inverting the interval by relabeling 1 as 0 and vice versa). This follows from
symmetry of the problem, since player B’s best response problem is exactly player A’s problem
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after the change of variable — up to possibly heterogeneous parameters rb, cb. Equivalently, this
amounts to expressing everything in terms of the payo�s to player B instead of player A.

3. Characterizing Equilibria
We now turn our attention to characterizing (Markov-perfect) equilibria of the game. These will
be pairs of strategies (a,b) such that each is a best response to the other, and so any equilibrium
will necessarily have to comply with the properties discussed in the previous section. In this
subsection, we �rst establish three necessary properties inherent to any equilibrium: (i) at most
one player is creating instability, (ii) the more favorable the status quo for a player, the lower
the instability that player generates, and (iii) each player generates lower instability than they
otherwise would were their opponent passive.

This characterization allows us to delineate two possible cases for equilibrium, depending on
whether the instability regions in each player’s inactive benchmark overlap. If they do not over-
lap, this gives rise to a unique accommodating equilibrium, where players take an accommodating
attitude toward the pursuit of a more favorable status quo by their opponents, generating many
stable states. If they do overlap, this leads to the existence of multiple deterrence equilibria, each
characterized by a unique stable status quo that is sustained by a deterrence mechanism.

3.1. Necessary Properties of Equilibria

We �rst turn to a crucial property of equilibria: the fact that equilibrium instability strategies de-
couple — at most one player generates instability at any given status quo. Note that this feature
is not immediately implied by our characterization of individual best-responses in Section 2.2:
there are strategies b for which player A’s best response involves generating instability at states
x for which b(x) > 0. Nevertheless, any equilibrium of the game is uniquely characterized by
two thresholds that delineate three regions: a stable region, a region where only player A gen-
erates instability, and a region where only player B generates instability. The next proposition
summarizes those properties and characterizes the structure of equilibria.

Proposition 7. In any equilibrium, there exist x, x ∈ (0,1), x ≤ x such that

(i) ∀x ∈ [0, x), a(x)> 0= b(x);

(ii) ∀x ∈ (x,1], a(x)= 0< b(x); and
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(iii) ∀x ∈ [x, x], a(x)= 0= b(x).

Furthermore, a (resp. b) is strictly decreasing on [0, x) (resp. increasing on (x,1]), and the equi-
librium is uniquely pinned down by x, x.

The �rst thing to note is that Proposition 7 distinguishes between states that trigger instability and
those at which stability is attained. The former are those that are deemed excessively unfavorable
by either player A — x ∈ [0, x) — or player B — x ∈ (x,1].

The argument for why this ‘decoupling’ structure of equilibria emerges is simple: owing to the
fact they have diametrically opposed interests (constant-sum gross �ow payo�s), it is not possible
that both players expect to strictly improve on the same status quo. At most one of the players
sees an advantage to generating instability at any given status quo. We know that at extremes
states, x = 0 and x = 1, the disadvantaged player will actively push back by creating instability.
After all, they have nothing to lose and, while costly, instability can only improve their situation.
Then, due to the fact that for any strategy of their opponent the set of states at which they �nd
it pro�table to generate instability is convex and includes their most unfavorable state (as shown
in Theorem 2), we obtain the existence of these three regions.

Second, Proposition 7 tells us as players bene�t from a larger share of the available bene�ts, they
become more conservative in how much volatility they create. Recall that the bene�t to instability
derives solely from the option value provided by the �niteness of resources being shared, as the
is no immediate gain to instability when x ∈ (0,1). However, as there is a natural lower bound
on how unsatisfactory the outcome can be, patient players may want to take a calculated risk to
reap the bene�ts of this option value. The proof follows from the fact that equilibrium strategies
exhibit this decoupled structure, combined with the fact that if the opponent is unresponsive to
instability, the optimal control is monotone in the state just as in the inactive benchmark discussed
in Proposition 4.

The next property of equilibria relates the players’ equilibrium strategies with their optimal in-
stability strategy in the inactive benchmark case. While it is tempting to think that in general
the player always attains the highest expected payo� when their opponent is passive (b ≡ 0), this
is not the case. Player B could potentially take A’s stead in generating optimal instability and
saving A the cost of doing so. However, in equilibrium, it is indeed true that player A cannot be
better-o� than if facing a passive opponent:
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Proposition 8. In any equilibrium, va ≤ v0
a and vb ≤ v0

b.

The result derives from two observations. First, that va is a subsolution to (RP) in the inactive
benchmark case, for which v0

a is a solution. Second, from the fact that, from the comparison
principle (Lemma 1), we know that any subsolution is weakly smaller than a supersolution — and
thus, than a solution. This implies we can compare equilibrium thresholds to inactive benchmark
thresholds, as well as equilibrium instability to inactive benchmark strategies (a∗,0,b∗,0). Specif-
ically, a player will never generate more instability at any point than they would in the inactive
benchmark. This observation is formalized in the following corollary:

Corollary 1. In any equilibrium with thresholds x, x and equilibrium strategies a∗,b∗, (i) x ≤ x0
a

and x0
b ≤ x; and (ii) a∗ ≤ a∗,0 and b∗ ≤ b∗,0. Furthermore, a∗ < a∗,0 and b∗ < b∗,0(x) on [0, x0

a)

and (x0
b,1], respectively, if and only if, x < x0

a and x0
b < x.

What a player could and would do if their opponent were to play passively determines the struc-
ture of equilibrium. In equilibrium the optimal strategy b of the opponent will never be bene�cial
to player A because they have diametrically opposed interests: it is not possible that both players
simultaneously bene�t from instability in equilibrium. In other words, the intuition that if insta-
bility is not bene�cial at a given point when b ≡ 0, it is still not bene�cial when b , 0 is true in
equilibrium, but not in general. Additionally, the optimal strategy of the inactive benchmark and
the inaction threshold x0

a in particular can be interpreted as the players’ ability to threaten their
opponent. This underpins the argument that the inactive case discussed in Section 2.3 is indeed
the right benchmark.

While Propositions 7 and 8 deliver necessary properties of any equilibrium, they are silent about
the existence of equilibria. The remainder of this section is devoted not only to showing their
existence, but also to further specializing the characterization of equilibria by delineating the
two possible kinds of equilibrium, which depend on parameter values — and in particular on the
relative positions of x0

a and x0
b.

3.2. Characterization of Equilibria: Deterrence and Accomodation

The main result of this subsection fully characterizes equilibria of the game; it delineates two
possible cases depending on the relative position of the thresholds in the inactive benchmark.
When pro�table instability regions in the inactive benchmark do not overlap, there is a unique
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accommodating equilibrium where both players follow their inactive benchmark strategies and
there are many stable states (x < x). If pro�table instability regions do overlap in the inactive
benchmark, there are multiple deterrence equilibria each characterized by a single stable state
x = x. Then, equilibrium strategies can be obtained by solving an “as if” inactive benchmark on
each player’s respective restricted interval — [0, x] for A, [x,1] for B — as if re�ection occurred
at x. We �rst state the theorem, and then elaborate on its intuition and implications.

Theorem 3. An equilibrium (a∗,b∗) exists.

(Accommodating equilibrium) If x0
a ≤ x0

b, there is a unique equilibrium given by (a∗,b∗)= (a∗,0,b∗,0).
Moreover, at any equilibrium such that x < x it must be the case that (x, x)= (x0

a, x0
b) .

(Deterrence equilibrium) If x0
a > x0

b, a pair of strategies (a∗,b∗) is an equilibrium if and only if
a∗(x) = 1(x<x)

1
raca

v′′a(x) and b∗(x) = 1(x>x)
1

rb cb
v′′b(x), where va and vb are the unique viscosity

solutions to the respective inactive benchmark problems on [0, x] and [x,1], and x ∈ [x0
b, x0

a]\{0,1}.

Whenever there is a status quo such that neither of players wants to increase instability even if
their opponent were passive (x0

a ≤ x0
b), then equilibrium behavior is everywhere as if their oppo-

nent were indeed passive. Each player is accommodating towards their opponent’s aspirations
to obtain a better outcome for themselves by creating some instability; players never ‘push back’
against one another.

It is worth emphasizing that an accommodating equilibrium, when it exists, must be the unique
equilibrium. In other words, when the inactive benchmark is such that there is no status quo
where both players would be willing to generate instability if the other were inactive, then this
is the only equilibrium outcome.

Another noteworthy feature of accommodating equilibria is that they exhibit an interval [x0
a, x0

b]

of stable states where the status quo prevails. This interval can be very large, as in Figure 2a
where approximately every state between 1/4 and 3/4 is stable. There, the inability to pro�tably
generate instability means that both players are willing to accept a large range of states. As a
consequence, states that can be potentially much more strongly preferred by one player than
another can be sustained in the long run.

Given that, from Proposition 5, x0
a (resp. x0

b) is decreasing (resp. increasing) with respect to ra

and ca (resp. rb and cb), equilibrium behavior will be accommodating if and only if players’
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Figure 2. Equilibrium Strategies in an Accommodating Equilibrium

Note: Parameter values are ra = rb = 7 and ca = cb = 15 for solid lines, and r̃a = 4, c̃a = 5 for the dashed line.

impatience and costs to generating instability are high enough. What if both players have a low
enough cost to generating instability, or are patient enough, such that there exists a region where
both players would like to generate instability if the other one were inactive? There cannot be
an accommodating equilibrium in that case: both player using their inactive benchmark strat-
egy would lead to both generating strictly positive instability at some status quo, contradicting
Proposition 7. The structure of deterrence equilibria comes from the fact that, when x0

b < x0
a, in

any equilibrium, it must be the case that the stable region is reduced to a single point.

Lemma 2. If x0
a > x0

b, then at any equilibrium x = x.

To see why this must be the case, note that if x < x, both players’ value functions must equal
the identity on [x, x] as on that region no one is generating instability. From Corollary 8, it must
be that at least one of the players would like to instigate instability were their opponent passive
throughout, i.e. x < x0

a or x0
b < x. Lemma 2 then shows that if a player generates instability at a

given status quo when their opponent is passive throughout (as in the inactive benchmark), then
they would do the same in any equilibrium in which their opponent is passive around this state.
Moreover, Lemma 2 and Proposition 8 combined imply that if x0

a > x0
b, then x = x ∈ [x0

b, x0
a].
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The second key observation is that, at any equilibrium such that x0
a > x > x0

b, the players’ equi-
librium strategies are vanishing abruptly at x. Player A’s value function is a viscosity solution va

that satis�es Fa(x,va(x),v′′a(x))= 0 on [0, x], B(0,v′a(x))= 0, and va(x)= x. Consequently, we will
have that the left-derivative of the value function at x is strictly smaller than one, as va ≤ v0

a and
v′a,−(x) ≤ v0′

a,−(x) < v0′
a,−(x0

a) ≤ 1, where the last inequality follows from the fact that v0
a is strictly

convex on (x, x0
a). As, owing to the regularity of our problem, we can derive, for x ∈ (0, x),

a∗′(x)∝ v′′′a (x)= r2c
v′a(x)−1

v′′a(x)
< 0,

we �nd that a∗′(x) → −∞ as x ↑ x, given that the numerator is bounded away from zero and
strictly negative v′a,−(x)< 1, and the denominator is vanishing.

This second observation indicates that, at any equilibrium such that x0
a > x > x0

b, players behave
as if x is an actively re�ecting boundary. Indeed, the fact that player A’s equilibrium strategy
vanishes abruptly at x is reminiscent of how the optimal control in the inactive benchmark case is
a�ected by an actively re�ecting upper bound (Proposition 6): if v0′

a,−(x0
a)< 1, then a∗,0′

− (x0
a)=−∞.

Combined, both these observations suggest a constructive method to characterize any equilib-
rium: take a candidate stable point x ∈ (x0

b, x0
a) and solve for the player A’s (resp. B’s) unique

viscosity solution to the inactive benchmark problem on [0, x] (resp. [x,1]), as if re�ection oc-
curred at x instead of at 1 (resp. at 0). Then, solve the HJB on the region in which the player is
inactive taking the opponent’s strategy as given with the appropriate boundary conditions, piece
the two together, and verify that the resulting function is a viscosity solution to the original prob-
lem taking the opponent’s strategy as given. In particular, the resulting function needs not only
to be continuous at the threshold, but it also cannot exhibit a convex kink at x.

The observations above indicate that any equilibrium must conform with this construction, and
thus it is pinned-down by the threshold x. The question of existence of an equilibrium can then be
rephrased as follows: is there an state x ∈ [x0

b, x0
a] for which such a construction holds? Theorem

3 answers this question a�rmatively and provides an exhaustive characterization: whenever
x0

b < x0
a, every x ∈ [x0

b, x0
a]\{0,1} determines an equilibrium (when taken as the stable point in the

construction above), and all equilibria correspond to this construction for some x ∈ [x0
b, x0

a]\{0,1}.

The proof veri�es that any equilibrium needs to satisfy the construction laid out above, and
that such a construction is successful in characterizing equilibrium viscosity solutions whenever
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Figure 3. Equilibrium Strategies in a Deterrence Equilibrium

Note: Parameter values are ra = 5, ca = 6, rb = 6, and cb = 15.

x ∈ [x0
b, x0

a] \ {0,1}. Note that x can never be equal to 0 or 1 because, as proved in Theorem 2,
va(0),vb(1) > 0: at extreme states, the player with nothing to lose generates strictly positive
instability in equilibrium.

In such cases, stability at equilibrium is sustained via deterrence: if their opponent were to not
react, both players would like to destabilize the status quo in hope of an improvement of their
situation at x. It is exactly because opponents would react and push back, and would do so with
enough intensity, that x is a stable status quo. This is related to the existence and interpretation
of a concave kink in the value function. There is a kink only in one very speci�c situation:
a deterrence equilibrium, with a single stable status quo, supported by threats of high enough
instability on both sides of it. Indeed, if there is a kink at x, then b is strictly positive on (x,1] but
zero at x, which implies that x is an status quo at which neither player generates instability.

The fact that only concave kinks are possible can be interpreted as each player �ghting back
‘hard enough’ towards the stable status quo, so as to dissuade the other player from attempting
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to further improve their situation.7 In a loose sense, it is the fact that player B pushes back by
abruptly increasing instability to the right of the stable status quo that renders it absorbing by
making the slope of va become discontinuously �atter. This deters player A from taking action as
it would be too costly to push the process beyond such a point, and again a symmetric argument
holds for player B.

Equilibrium strategies in accommodating and deterrence equilibria exhibit meaningfully di�erent
properties: player A’s (B’s) equilibrium strategy is convex if x0

a ≤ x (x ≤ x0
b) and convex-concave

otherwise. In an accommodating equilibrium (as in Figure 2a), both players’ equilibrium strate-
gies are convex and instability vanishes smoothly. In contrast, in a deterrence equilibrium (as
in Figure 3a), equilibrium strategies are convex-concave and have in�nite slopes at the stable
status quo, just as they do in the inactive benchmark when the upper bound becomes a binding
constraint. This again captures the constrained nature of a deterrence equilibrium: it is as if the
other player is acting as a re�ecting barrier at the stable status quo. In Figure 3b, we also ex-
hibit the case of a second deterrence equilibrium in which the unique stable status quo coincides
with x0

b. In such case, player B’s equilibrium strategy also coincides with their optimal control
in the inactive benchmark. With a re�ecting boundary at x = x0

b and player B’s optimal control
would not be a�ected — explaining the convex structure of the control. However, it curtails player
A’s ambitions of reaching more favorable states (x0

a > x = x0
b), giving rise to the convex-concave

structure of their equilibrium instability strategy.

3.3. Equilibrium Comparative Statics

The characterization of equilibria highlights that the thresholds x0
a, x0

b capture the maximal threat
power of each player: there is no equilibrium with a stable status quo more favorable to player
A than max{x0

a, x0
b} and less favorable than min{x0

a, x0
b}, while the opposite is true for player B.

This intrinsic dependence of equilibria on the inactive benchmark thresholds x0
a, x0

b entails that
we can directly harness the comparative statics on the individual decision problem (Proposition
5) to obtain comparative statics of equilibria with respect to the players’ costs to instability, c,
and their patience or discount rate, r.

7If there were a convex kink at x, va would be increasing faster to the right of x than to the left, making it pro�table
for player A to strictly increase volatility in a way that pushes the process up and symmetrically for player B.
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When players are impatient enough and face high enough costs to instability we obtain a unique
accommodating equilibrium with a thick region of stable states, [x0

a, x0
b], with x0

a ≤ x0
b. Fixing

rb, cb (hence x0
b), as ra or ca decrease, x0

a increases, and the set of stable states shrinks, as de-
picted in Figure 2b: player A will now �nd it worthwhile to generate instability at states that
were previously stable. With enough patience and costs low enough (ra, ca small enough), we
eventually obtain x0

a > x0
b, and transition into deterrence equilibria. All equilibria have a unique

stable stable state x ∈ [x0
b, x0

a] \ {0,1}. Hence, as ra, ca further decrease, x0
a increases and the set

of equilibria expands. Let ≤SSO denote the strong set order. The following corollary summarizes
the results:

Corollary 2. Fix rb, cb > 0.

(i) There exists a unique θ > 0 such that r2
aca ≤ (<)θ if and only if x0

a ≥ (>) x0
b.

(ii) Let (ra, ca), (r̃a, c̃a) and, given (rb, cb), denote by S and S̃ the sets of stable states associated
with the respective equilibria. If r2

aca ≤ (<) r̃2
a c̃a, then equilibrium stable states increase in the

strong set order, S ≤SSO (<SSO)S̃ . Moreover, S̃ ⊇ (⊃)S if θ ≤ r2
aca, and S ⊆ (⊂)S̃ if r̃2

a c̃a ≤ θ.

The result holds symmetrically if we �x ra, ca and vary player B’s parameters.

Since if a player is more patient (lower r) or faces lower costs to instability (c), equilibrium stable
states shift in the strong set order, this suggests the possibility of obtaining comparative statics
also with respect to equilibrium payo�s. The comparison is straightforward across accommodat-
ing equilibria, but there is a subtlety when considering deterrence equilibria. Decreasing c will
still make a player everywhere better o� since it shifts the value function up in their instability
region, and leaves it unchanged in the passive region. Decreasing r, however, now has an am-
biguous e�ect: �xing a given equilibrium (i.e. a stable point) it makes the player better o� in
their instability region and worse o� in their passive region. The multiplicity of equilibria fur-
ther muddles the comparison, since it is possible to select di�erent equilibria under the di�erent
parameters and have crossing equilibrium value functions. The following proposition summa-
rizes comparative statics of equilibrium payo�s in c and r respectively — the proof is direct from
comparison principle arguments:

Proposition 9. Fix rb, cb. Let ṽa,va and x̃, x be player A’s value function and equilibrium thresh-
olds associated with equilibria given r̃a, c̃a and ra, ca, respectively, such that (r̃a, c̃a)≤ (ra, ca) and
x̃ ≥ x. Then ṽa ≥ va on [0, x̃]. If, furthermore, r̃a = ra or x̃ < x0

b, then ṽa ≥ va on [0,1].
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4. Equilibrium Dynamics
What is the e�ect of players using strategically generating uncertainty on the dynamics of in-
stability and the evolution of the status quo? The precise characterization of equilibrium in the
previous section can be used to answer these questions directly.

A salient characteristic of our model is that all equilibria (of accommodating or deterrence type)
display a form of path dependency. Consider an arbitrary equilibrium with thresholds x, x parti-
tioning the state space [0,1], and denote X0 the initial point of the process. If we start at a stable
state, X0 ∈ [x, x], this will remain the status quo forever since no player generates any instability.
Moreover, if the process starts in say A’s instability region [0, x], it will also remain in this region
— and similarly for B’s instability region [x,1]. This comes from continuity of the process and
the fact that the outer boundary (0 or 1 respectively) is re�ecting while the inner boundary (x or
x respectively) is absorbing in equilibrium. This implies that whichever player starts o� as most
disadvantaged, will in equilibrium remain so forever, and can at most hope to reach their least
preferred stable status quo.

Does the process converge in the long run towards a stable status quo? Or does instability perpet-
uate if we start in an instability region? Given the previous discussion, if there is (probabilistic)
convergence from a player’s instability region, it will be towards their least preferred stable status
quo. The next proposition con�rms this intuition.

Proposition 10. Let X t be the process associated to equilibrium strategies a∗,b∗, and denote
x, x the corresponding equilibrium thresholds. Then, (i) if X0 ∈ [x, x], X t = X0 for all t; and (ii) if
X0 < x (resp. > x), X t converges almost surely to x (resp. x).

For the case X0 ∈ [x, x], the proof of Proposition 10 is trivial given that the process is degenerate
and there is no instability. For X0 < x, we can use a constructive approach to show that X t is a
submartingale. Indeed, construct the process Yt de�ned by dYt :=

√
2a∗(|X t|)dBt. Because of

the structure of a∗, Yt has absorbing boundaries on [−x, x], and therefore we can verify that it
is a martingale using boundedness of a∗ and the optional stopping theorem. By using pathwise
uniqueness of the solution X t, we can argue that Yt = |X t|, that is, Yt is the mirror image of X t

without the re�ection at 0 — this is done by �xing a Brownian path Bt(ω), which uniquely pins
down X t(ω) by pathwise uniqueness. Then, we argue that Yt and X t can only cross the origin at
the same time and must be either identical or mirrored between two hitting times of zero (since
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they have the same increments). Since the absolute value is a convex function, we conclude
that X t is a submartingale, and by the martingale convergence theorem it must converge almost
surely. We can then prove that X t converges to x a.s. by contradiction, since convergence to any
x < x would only be sustainable under a measure zero trajectory for the Brownian motion. The
argument for X0 > x is symmetric using a similar construction around 1.

Proposition 10 entails instability is decreasing in the long run. As players approach a stable status
quo, whichever player is generating instability becomes more conservative — a consequence of
the properties of best responses. Therefore, in the long run stability prevails.

5. Discussion
We now discuss a number of variations on our model.

Exogenous instability. To clearly identify the strategic incentives to generate instability, we
focused on the case in which any instability is endogenous. Given that our best-response charac-
terization allows for arbitrary strategies by the opponent, and as these correspond to continuous
exogenous state-contingent volatility structures, all in subsections 2.1 and 2.2 holds identically
when allowing for exogenous instability sources (independent fromαt and βt, conditional on X t).
Considering a �xed exogenous level of instabilityσ> 0, such that dX t =

√
αt +βt +σ2dBt−dK t,

an equilibrium exists.8 However, while at any equilibrium there is a unique state x ∈ (0,1) at which
a∗(x) = b∗(x) = 0, the modi�ed model (mechanically) exhibits perpetual instability. There is no
longer convergence to a stable status quo: the state will eventually become too unfavorable for
any given player. Consequently, players will forever alternate in creating instability so as to seek
(temporary) improvements over the status quo.

Costs to instability. While we relied on quadratic costs for expositional convenience, provided
enough regularity,9 results generalize to smooth, strictly convex costs to instability. In particular,
the proofs for the threshold structure of best responses (and other properties in Theorem 2),
monotonicity, and equilibrium characterization can be adjusted to accommodate general cost

8It is easy to show that the unique viscosity solution va given an arbitrary continuous b is now thrice-continuously
di�erentiable, and that the �rst three derivatives are bounded. Existence of an equilibrium then follows by an appli-
cation of Arzelà–Ascoli theorem and Schauder’s �xed point theorem.

9In particular, costs need to be su�ciently smooth, strictly increasing and strictly convex on R+, with 0 = c(0) =
c′(0). Although it goes beyond the scope of this paper to characterize its limits, the proof strategy to (a version of)
Theorem 1 extends given enough regularity on the cost function.
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structures. The HJB equation would be given by

rva(x)− sup
a∈R+

{
rx− rc(a)+ (a+b(x))v′′a(x)

}
.

Moreover, as rc′(a∗(x))= v′′a(x)+, whenever a∗(x)> 0 we would then have

r(va(x)− x)−b(x)rc′(a∗(x))= rc′(a∗(x))a∗(x)− rc(a∗(x)),

from which one can obtain that monotonicity of b implies monotonicity of a∗.10

State space. A substantive assumption in our model is that the state space lies on a closed
interval, as it is the option value provided by the lower bound that induces players to generate
strictly positive instability. Absent a lower bound on the state space, players would have no desire
to generate instability unless they were not risk-neutral. A similarly conclusion would hold if the
boundaries were absorbing rather that re�ecting.

Terminal payo�. Finally, we consider the case of having a terminal payo�, whereby the instead
of accruing a �ow bene�t, players accrue that payo� only when the both players generate no
instability. This can be seen as an extreme form of con�ict, as creating instability fully deprives
the opponent of any �ow bene�t. Immediately, for a given strategy of the opponent b, one can
see that player A’s optimal control would need to satisfy a(x) = 0 whenever b(y) > 0 for any
y ≥ x, and thus we would have decoupling for any best response. Heuristically, in an inactive
benchmark (b ≡ 0) one would expect player A’s value function to solve

rva(x)=max
{

rx,
1

2rc
[v′′a(x)+]2

}
on (0,1)

under boundary conditions v′a(0) = 0, va(1) = 1, with the control being given by a∗,0(x) =
1
rc

v′′a(x)+. Di�erently from our model, we note that in such case the instability would be in-
creasing rather than decreasing in the inactive benchmark. Such a result is reminiscent of Gul
and Pesendorfer’s (2012) and Gieczewski’s (2020).11 Focusing on monotone strategies, a construc-
tion of accommodating equilibria with a region of stable states given by [x0

a, x0
b] (if x0

a < x0
b), and of

10We thank Yu Fu Wong for having pointed out that monotonicity would extend for general cost structures in the
individual decision-making case — corresponding to our inactive benchmark with b ≡ 0.
11Also Moscarini and Smith (2001) who study not con�ict but learning.
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deterrence equilibria with a unique stable state x ∈ [x0
b, x0

a] (if otherwise) would be immediate,12

with instability greatest at states nearing the region of stable states.

Our model’s novel approach to the mechanics of instability and its strategic importance in situ-
ations of con�ict opens several paths for future investigation. It demonstrates that the possible
endogeneity of instability generates non-trivial dynamics that should be further investigated, no-
tably to better understand the interaction of various con�ict mechanisms in richer environments
and their applications to concrete situations of con�ict, bargaining, and related settings.
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Appendix A. Preliminaries

A.1. Stochastic Di�erential Equations with Re�ection

Consider our equation of interest, for a given a,b continuous measurable functions:

dX t =
√

2
(
a(X t)+b(X t)

)
dBt −dK t

With say X t,K t solve the re�ection problem on O := (0,1) if they are the continuous Ft-adapted
processes such that (i) dX t =

√
2
(
αt +b(X t)

)
dBt − dK t, (ii) X t ∈ [0,1] a.s., and (iii) K t is non-

decreasing, its total variation |K |t =
∫ t

0 1X t∈{0,1}d|K |s, and K t =
∫ t

0 n(Xs)d|K |s, where n(·) denotes
the unit outward normal vector to O , that is, n(1)= 1, n(0)=−1.

K t is the local time of the process at the boundary — it minimally pushes X t back inside of the
domain (towards the inner normal) if it hits the boundary by compensating the variations that
would make X t exit the domain. Lions and Sznitman (1984) show that such processes are uniquely
de�ned in much more general re�ecting domains, essentially under assumptions guaranteeing
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that the stochastic di�erential equation (SDE) without re�ection has a strongly (pathwise) unique
solution.13

A.2. Test functions and Second-order Semijets

We recall the de�nition of second-order semijets. The second-order subjet of v at x0 ∈ (0,1) is
denoted by J2,−

[0,1]v(x0)⊂R2 and de�ned as:

(p, M) ∈ J2,−
[0,1]v(x0)⇐⇒ v(x)≥ v(x0)+ p(x− x0)+ 1

2
M(x− x0)2 + o(|x− x0|2) as x → x0

Because the bounds play a special role, when x0 ∈ {0,1} x can only converge to x0 from one side.
Following Crandall et al. (1992), we consider the closure of the subjet J

2,−
[0,1]v(x) in to properly

de�ne the viscosity characterization (at the boundary and points of non-di�erentiability).

To relate the subjet with our de�nition of viscosity solutions in terms of test functions, we recall a
classical result: (p, M) ∈ J2,−

[0,1]v(x0) if and only if there exists a C 2 functionφ such that x0 is a local
maximum of v−φ and φ′(x0) = p, φ′′(x0) = M. It is without loss to require the maximum to be
global and to impose φ(x0)= v(x0). In other words, the subjet contains the �rst- and second-order
derivative values that are admissible for a smooth function φ that lies everywhere strictly below v

(hence the subjet term) and equals v at x0. This captures all the relevant di�erential information
on v and can indeed be interpreted as a notion of di�erentiability for non-di�erentiable functions.
The superjet is de�ned symmetrically, but considering a convex quadratic approximation (or a
smooth test function) from above. We denote it by J2,+

[0,1]v(x0)⊂R2 and it is de�ned as,

(p, M) ∈ J2,+
[0,1]v(x0)⇐⇒ v(x)≤ v(x0)+ p(x− x0)+ 1

2
M(x− x0)2 + o((x− x0)2) as x → x0

13In general, this is not directly applicable to our equation. It is well known since the seminal paper of Yamada and
Watanabe (1971) that pathwise uniqueness of solutions to SDEs of the form dX t =σ(X t)dBt is di�cult to guarantee
beyond the general condition that σ is Hölder continuous with coe�cient at least 1/2. This condition clearly does
not hold for general a,b continuous in our model. However, subsequent work has improved on the Hölder-1/2
condition for speci�c cases. For our case, the presence of the re�ection helps guarantee existence and pathwise
uniqueness although it might actually not hold for the unbounded domain. In particular, Bass and Chen (2005)
proved that under mild regularity condition, the one-sided re�ection problem has a pathwise unique for a α-Hölder
di�usion coe�cient, α ∈ (0,1/2). Bass et al. (2007) extends and provides a di�erent proof of the result. Their proof
strategy for the one-sided re�ection essentially covers our case of interest and easily extends to having a second
re�ecting barrier: this guarantees the pathwise-uniqueness of a solution to our equation with one-sided re�ection at
zero. We can then complete the proof by using the analytical apparatus of Lions and Sznitman (1984) or the original
approach by Skorokhod (1961) to prove existence and pathwise-uniqueness with the second re�ecting barrier given
pathwise-uniqueness of the one-sided re�ecting process.
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with J
2,+
[0,1]v(x0) denoting the closure of the superjet. The analogue result holds for test functions:

(p, M) ∈ J
2,+
[0,1]v(x0) if and only if there exists a C 2 function φ such that x0 is a local (wlog global)

minimum of v−φ and φ′(x0)= p, φ′′(x0)= M (wlog φ(x0)= v(x0)).

We alternate between the (equivalent) formulation of viscosity properties in terms of test func-
tions and semijets, in order to choose the most convenient and intuitive approach.

Appendix B. Omitted Proofs

B.1. Proof of Theorem1 (ViscosityCharacterization: Existence andUnique-

ness)

B.1.1. Proof of Proposition 1 (Viscosity Characterization)

Recall the control problem:

v(x)= sup
α∈A

E

[∫ ∞

0
e−rt f (X t,αt)dt

]
s.t. dX t =

√
2
(
αt +b(X t)

)
dBt −n(X t)dK t

where f (x,a)= x− c a2

2 .

The proof of the viscosity characterization of the solution is standard and relies on applying
the dynamic programming principle (DPP) and Ito’s formula — nonetheless, we could not �nd a
derivation that exactly matches all of our assumptions, so we provide a direct derivation following
usual steps.14 Our speci�c setup allows us to greatly relax regularity assumptions on model
primitives — in particular, it is su�cient that b is continuous as long as we can guarantee pathwise
uniqueness for the SDE.

We appeal to the following version of the DPP (see e.g. Pham 2009, Section 3.3) consisting of two
results: (1) for all α ∈A , for all stopping time τ, v(x)≥ E

[∫ τ

0
e−rt f (X x

t ,αt)dt+e−rτv(X x
τ )

]
; and (2)

for all ε> 0, there exists α ∈A such that for all stopping time τ, v(x)−ε≤ E
[∫ τ

0
e−rt f (X x

t ,αt)dt+

e−rτv(X x
τ )

]
, where we use the notation X x

t to denote the value at t of the process following the
dX t =

√
2αt +b(X t)dBt −n(X t)dK t and starting from X0 = x.

14The closest result can be found in Lions (1986), with more regularity assumptions adapted for a more general
setting. The following proof closely follows the approach in Pham (2009, Section 4.3).
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We �rst prove that v is a supersolution to (RP). Consider x0 ∈ [0,1] and ϕ ∈ C 2([0,1]) such that
x0 is a global minimum of v∗−ϕ and without loss φ(x0) = v∗(x0), where v∗ denotes the lower-
semicontinuous (l.s.c.) envelope of v. By de�nition, ∃{xn}n such that xn → x0 and v(xn)→ v∗(x0)

as n goes to in�nity. By continuity of φ, γn := v(xn)−φ(xn) → v∗(x0)−φ(x0) = 0. De�ne hn to
be any strictly positive sequence such that hn → 0 and γn/hn → 0 as n goes to in�nity. Fix an
arbitrary η> 0 and de�ne the stopping time τn := inf{t ≥ 0, |X xn

t − xn| > η} (i.e. the �rst exit time
of the process starting at xn from a ball of size η). In turn de�ne the stopping time θn := τn ∧hn.

Apply the DPP at xn using an arbitrary constant strategy αt ≡ a and stopping time θn:

v(xn)≥ E
[∫ θn

0
e−rt f (X xn

t ,a)dt+ e−rθn v(X xn
θn

)
]

.

Since x0 is a global minimum of v∗−φ, v(x) ≥ v∗(x) ≥ φ(x) for all x ∈ [0,1], and by construction
v(xn)=φ(xn)+γn, hence:

ϕ(xn)+γn ≥ E
[∫ θn

0
e−rt f (X xn

t ,a)dt+ e−rθnϕ(X xn
θn

)
]

.

Applying Ito’s formula at θn, xn and rearranging yields:

γn ≥ E
[∫ θn

0
e−rt ( f (X xn

t ,a)+ (a+b(X xn
t ))ϕ′′(X xn

t )− rϕ(X xn
t )

)
dt

−
∫ θn

0
e−rtϕ′(X xn

t )n(X xn
t )dK t +

∫ θn

0
e−rtϕ′(X xn

t )
√

2(a+b(X xn
t ))dBt

]
.

The integrand in the last term
∫ θn

0 ϕ′(X xn
t )(a+b(X xn

t ))dBt is bounded, so the expectation is equal
to zero. Rearranging and diving by hn yields:

γn

hn
+E

[
1

hn

∫ θn

0
e−rt (rϕ(X xn

t )− f (X xn
t ,a)− (a+b(X xn

t ))ϕ′′(X xn
t )

)
dt

]
+E

[
1

hn

∫ θn

0
ϕ′(X xn

t )n(X xn
t )dK t

]
≥ 0.

For n high enough, θn = hn a.s. by continuity a.s. of trajectories of X t. We use dominated
convergence and the mean value theorem to get that, when n goes to in�nity,

rϕ(x0)− f (x0,a)− (a+b(x0))ϕ′′(x0)+ϕ′(x0)n(x0)1x0∈{0,1} ≥ 0,

where the last term comes by de�nition given dK0 = 0 if x0 ∈ (0,1). Hence:

rϕ(x0)−sup
a≥0

{
f (x0,a)+ (a+b(x0))ϕ′′(x0)

}
+ϕ′(x0)n(x0)1x0∈{0,1} ≥ 0.
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This implies that for all x ∈ (0,1), rϕ(x0)−supa≥0
{
f (x0,a)+(a+b(x0))ϕ′′(x0)

}≥ 0; at the boundary
for x ∈ {0,1}, either rϕ(x0)−supa≥0

{
f (x0,a)+ (a+b(x0))ϕ′′(x0)

}≥ 0 or ϕ′(x0)n(x0)≥ 0 (it cannot
be that both are negative since their sum is nonnegative). From which we directly conclude that
v is a supersolution to (RP).

We now prove that v is a subsolution to (RP). Consider x0 ∈ [0,1] and ϕ ∈ C 2([0,1]) s.t. x0 is
a global maximum of v∗−ϕ with ϕ(x0) = v∗(x0), where v∗ denotes the upper-semicontinuous
(u.s.c.) envelope of v. Assume by contradiction that v is not a subsolution of (RP).

Since ϕ′(x0)n(x0)1x∈{0,1} is strictly positive on the boundary and zero away from it and x0 7→
rϕ(x0)−supa≥0

{
f (x0,a)+ (a+b(x0))ϕ′′(x0)

}
is continuous, there exists ε> 0 and η> 0 such that

for all x ∈ B(x0,η)∪ [0,1],

rϕ(x)−sup
a≥0

{
f (x,a)+ (a+b(x))ϕ′′(x)

}
+ϕ′(x)n(x)1x∈{0,1} ≥ ε.

Then by de�nition of the u.s.c. envelope we can consider a sequence xn taking values in B(x0,η)∪
[0,1] such that xn → x0 and v(xn) → v∗(x0) as n goes to in�nity. Just as before, we denote γn :=
v(xn)−ϕ(xn)→ 0 and hm a strictly positive sequence such that hm → 0 and γm/hm → 0.

De�ne the stopping times τn := inf{t ≥ 0, |X xn
t − xn| > η′} for some η′ such that 0 < η′ < η and

θn := τn ∧ hn. By the second part of the DPP stated above applied to with εhn/2 and taking
stopping time θn, there exists αn ∈A such that:

v(xn)− εhn

2
≤ E

[∫ θn

0
e−rt f (X xn

t ,αn
t )dt+ e−rθn v(X xn

θn
)
]

Recall that by construction v(xn)=ϕ(xn)+γn and v∗ ≤ϕ, hence

ϕ(xn)+γn −
εhn

2
≤ E

[∫ θn

0
e−rt f (X xn

t ,αn
t )dt+ e−rθnϕ(X xn

θn
)
]

Applying Ito’s formula to e−rθnϕ(X xn
θn

) and rearranging gives:

γn −
εhn

2
≤ E

[∫ θn

0
e−rt {(−rϕ(X xn

t )+ f (X xn
t ,αn

t )+ (αn
t +b(X xn

t ))ϕ′′(X xn
t )

)
dt−ϕ′(X xn

t )n(X xn
t )dK t

}]

−E
[∫ θn

0
e−rtϕ′(X xn

t )
√

2(αn
t +b(X xn

t ))dBt

]
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As b is continuous by assumption,
∣∣∣ϕ′(X xn

t )
√

2(αn
t +b(X xn

t ))
∣∣∣ is bounded (because X t is bounded

by construction) and the last expectation term is zero. Simplifying and dividing by hn:

γn

hn
− ε

2
+E

[
1

hn

∫ θn

0
e−rt {(rϕ(X xn

t )− f (X xn
t ,αn

t )− (αn
t +b(X xn

t ))ϕ′′(X xn
t )

)
dt+ϕ′(X xn

t )n(X xn
t )dK t

}]≤ 0

By construction the term inside the integral is always greater than ε, hence we �nd:

γn

hn
+ε

(
E[θn]

hn
− 1

2

)
≤ 0

Since by construction E[θn]
hn

converges to 1 when n goes to in�nity (hn goes to zero), so we obtain
a contradiction and this concludes the proof.

B.1.2. Proof of Proposition 2 (Existence and Uniqueness in the Control Problem)

The proof of Proposition 2 relies on a standard strategy: we �rst prove a comparison principle for
our problem (every supersolution is above every subsolution); we then establish existence using
Perron’s method. The combination of those two results gives uniqueness and continuity.

We �rst outline the proof structure for the comparison principle before detailing its steps.15 Take
an arbitrary supersolution w (l.s.c. without loss) and an arbitrary subsolution w (u.s.c. without
loss), and assume towards a contradiction that supx∈[0,1] w(x)−w(x) > 0. Note the supremum is
attained and denote by x∗ a point at which it is.

We �rst show the supremum cannot be attained inside the domain, i.e. x∗ ∉ (0,1), using standard
approximation techniques for viscosity solutions (dedoubling variables and Ishii’s lemma).

We then consider x∗ = 0. We show that w is non-increasing in some neighborhood to the right
of 0; furthermore if either w(0)> 0 or b(0)> 0, then w is non-decreasing in some neighborhood
to the right of 0. w(0) < 0 implies b(0) > 0; so, if w(0) > w(0) then either w(0) > 0 or b(0) > 0.
Therefore by the previous point w is non-decreasing in some neighborhood to the right of 0. This
yields a contradiction because if w is non-decreasing and w is non-increasing in a neighborhood
of 0 to the right, the supremum cannot be attained at 0.

Next, symmetrically consider x∗ = 1. We show that w is non-decreasing in some neighborhood
to the left of 1; furthermore if either w(1) > 1 or b(1) > 0, then w is non-increasing in some
15The proof strategy is similar in spirit to standard proofs in the literature (e.g. Crandall et al. 1992), but, because
of the presence of non-Lipschitz terms in the HJB equation, parts of the canonical approximation methods will fail.
Hence we to appeal to arguments that are speci�c to the problem (which would generally be quite ill-conditioned).
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neighborhood to the left of 0. Since w(1)< 1 implies b(1)> 0, if w(1)> w(1), then either w(1)> 1

or b(1)> 0. And by the previous point w is non-increasing in some neighborhood to the left of 1

— hence similarly the supremum cannot be attained at 1.

This gives a contradiction, so we conclude supx∈[0,1] w(x)−w(x)≤ 0, implying w ≤ w for all x.

Proof. Consider w a supersolution to (RP) and w a subsolution to (RP). Without loss of generality,
assume w to be l.s.c. and w to be u.s.c. — the proof goes through the same way for the l.s.c. (resp.
u.s.c.) envelope of w (resp. w), in turn giving the same result since w(x)≥ w∗(x)≥ w∗(x)≥ w(x).

Assume by contradiction that supx∈[0,1] w(x)−w(x)> 0. This supremum is attained (since w−w

is u.s.c.) and we denote x∗ a point which attains it.

We �rst show a maximum principle result: the supremum of w−w cannot be attained in the
interior of the domain, i.e. x∗ ∈ {0,1}. Assume towards a contradiction that x∗ ∈ (0,1). De�ne:

Mα := sup
x,y∈[0,1]

w(x)−w(y)− α

2
|x− y|2

this supremum is attained and we denote (xα, yα) a point at which it is. Clearly Mα ≥ w(x∗)−
w(x∗)> 0. Furthermore limα→∞α|xα− yα|2 = 0 and limα→∞ Mα = w(x∗)−w(x∗) (this is a general
result, see for instance Crandall et al. (1992, Lemma 3.1.)).

Let f (x, y) := w(x)−w(y). Using Ishii’s Lemma (Crandall et al. 1992, Theorem 3.2.), we know that
if ψ ∈ C 2([0,1]2) is such that (x̂, ŷ) is a local maximum of f −ψ, then, for each ε > 0 there exist
Y , X ∈ R such that (1) (Dxψ(x̂, ŷ), X ) ∈ J

2,+
O w(x̂), i.e. there exists ϕ ∈ C 2 such that x̂ is a local

minimum of w−ϕ with ϕ′(x̂) = Dxψ(x̂, ŷ), and ϕ′′(x̂) = X ; and (2) (−D yψ(x̂, ŷ),Y ) ∈ J
2,−
O w( ŷ),

i.e. there exists ϕ ∈ C 2 such that ŷ is a local maximum of w−ϕ with ϕ′( ŷ) = −D yψ(x̂, ŷ), and
ϕ′′( ŷ)=Y . And we have

−(
1+||D2ψ(x̂, ŷ||)) I2 ≤


ϕ

′′(x̂) 0

0 −ϕ′′( ŷ)


≤ D2ψ(x̂, ŷ)+ε(D2ψ(x̂, ŷ)

)2
.

Hence for any α> 0, we can take ε= 1/α and apply this result at (xα, yα) withψα(x, y) := α
2 |x−y|2.

This implies there existsϕ
α
,ϕα appropriate test functions for w,w respectively at xα, yα such that

ϕ′′
α
(xα)≤ϕ′′

α(yα) for allα> 0. Since x∗ ∈ (0,1), the supersolution and subsolution properties entail
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that for any α: F(xα,w(xα),ϕ′′
α
(xα))≤ 0≤ F(yα,w(yα),ϕ′′

α(yα)). Rearranging yields

r(w(xα)−w(yα))− r(xα− yα)≤ b(x)
(
ϕ′′
α
(xα)−ϕ′′

α(yα)
)
+ 1

2rc

(
[ϕ′′

α
(xα)]2 − [ϕ′′

α(yα)+]2
)
≤ 0,

which then implies r(w(xα)−w(yα)− α
2 |xα− yα|2)−r(xα− yα)≤ 0. Taking the limit in the left hand

side yields w(x∗)−w(x∗)≤ 0. This contradicts our premise. Therefore if supx∈[0,1] w(x)−w(x)> 0,
the supremum can only be attained on the boundary, i.e. x∗ ∈ {0,1}.

Now consider the case x∗ = 0. We �rst prove that w is non-increasing in some right neigh-
borhood of 0. By de�nition of the second-order subjet, it is su�cient to show that, for all
(p, M) ∈ J

2,−
[0,1]w(0), p ≤ 0.

Assume by contradiction there exists (p, M) ∈ J
2,−
[0,1]w(0) such that p > 0. Consider any p′ such

that 0 < p′ < p and an arbitrary M′ > 0. There must exist some neighborhood of 0 (to the
right) such that px+ 1

2 Mx2 ≤ p′x+ 1
2 M′x2 (the �rst-order terms dominate for x small enough).

Therefore, as x → 0, w(x) ≥ w(0) + px + Mx2/2 + o(x2) ≥ w(0) + p′x + M′x2/2 + o(x2). Hence
(p′, M′) ∈ J2,−

[0,1]w(0). Since this holds (close enough to zero) for M′ arbitrarily large, we get a
contradiction since B(0, p′)< 0 and F(0,w(0), M′)< 0 for M′ large enough.

We claim that if either w(0) > 0 or b(0) > 0, then w has to be non-decreasing in some neighbor-
hood of 0. It is again su�cient to show that for all (p, M) ∈ J2,+

[0,1]w(0), p ≥ 0.

Assume by contradiction that there exists (p, M) ∈ J
2,+
[0,1]w(0) with p < 0. Take any p′ such that

p < p′ < 0. For an arbitrary M′ < 0, there must exist some neighborhood of 0 (to the right)
such that px+ 1

2 Mx2 ≤ p′x+ 1
2 M′x2 (the second-order terms vanish faster as x goes to zero),

hence, as x → 0, w(x) ≤ w(0)+ px+ Mx2/2+ o(x2) ≤ w(0)+ p′x+ M′x2/2+ o(x2). This implies
(p′, M′) ∈ J2,+

[0,1]w(0). Note F(0,w(0), M′) = rw(0)− b(0)M′ > 0 when either w(0) > 0 or b(0) > 0.
Hence this is a contradiction since B(0, p)> 0 and F(0,w(0),0)> 0.

If w(0) < 0, it must be that b(0) > 0. Indeed, if b(0) = 0, then, by continuity, for all ε> 0, ∃xε > 0

such that 0≤ b(xε)< ε. For any ε, select arbitrarily (pε, Mε) ∈ J
2,−
[0,1]w(xε). We have, for all ε> 0,

0≤ F(xε,w(xε), Mε)= rw(xε)− rxε−b(xε)Mε−
1

2rc
Mε

2
+ ≤ rw(0)−b(xε)Mε

Since b(xε)< ε, this must imply that Mε <− rw(0)
ε

. In other words, as we get close enough to zero
the second-order terms in the subjets are bounded above by an arbitrarily negative constant. This
delivers a contradiction, since it would mean that w is locally bounded above by an arbitrarily
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concave paraboloid as we get closer to zero. To make this point formal, de�ne M′
ε := Mε+ε; from

the previous point (pε, M′
ε) ∉ J

2,−
[0,1]w(xε), i.e., by de�nition, as x → xε, w(x)< w(xε)+ pε(x− xε)+

M′
ε(x− xε)2/2+ o((x− xε)2).

De�ning ϕε(x) := w(xε)+ pε(x− xε)+ 1
2 M′

ε(x− xε)2, xε is not a local minimum of w−ϕε. But,
by construction, since M′

ε →−∞ and xε → 0 as ε goes to zero, ϕε(x) −−−→
ε→0

1x,0 × (−∞), i.e., the
function that has value 0 at 0, and negative in�nity everywhere else, hence liminfx→0 w(x) =
−∞< w(0) contradicting that w is l.s.c.

This entails that, if w(0)> w(0), then w is non-decreasing in some neighborhood of 0 to the right
— because either w(0)≥ 0 which implies w(0)> 0 or w(0)< 0 which implies b(0)> 0. Therefore,
we have that in some neighborhood of 0 w is non-increasing and w is non-decreasing, which
directly contradicts the fact that the supremum of w−w is reached at 0 and not in the interior.

The only remaining possibility is x∗ = 1. The derivations are symmetrical to the previous case and
we obtain that in some neighborhood of 1 w is non-decreasing and w is non-increasing, which
directly contradicts the fact that the supremum of w−w is reached at 1 and not in the interior.

Putting those points together yields a contradiction. Therefore, we conclude that supx∈[0,1] w(x)−
w(x)≤ 0, which entails w(x)≥ w(x) for all x ∈ [0,1], and concludes the proof. �

Lemma 3 (Existence — Perron’s Method). If the comparison principle holds for (RP), and if there
is a subsolution w and a supersolution w that satisfy the boundary conditions (in the viscosity
sense), then ŵ(x) := sup

{
w(x) : w ≤ w ≤ w and w is a subsolution of (RP)

}
is a solution of (RP).

This is standard and can be directly applied from e.g. Crandall et al. (1992). Furthermore, we
can exhibit an explicit supersolution (take w(x) := 1 for all x) and an explicit subsolution (take
w(x) := 0 for all x), directly giving existence.

B.2. Proof of Theorem 2 (Best-Response Characterization)

The proof of Theorem 2 consists of the following intermediary results:

Proposition 11. There are xa, xa ∈ (0,1], xa ≤ xa, such that (i) on [0, xa), va is convex and strictly
above the identity; (ii) on [xa, xa], va is equal to the identity; and (iii) on (xa,1], va is concave and
strictly below than the identity. Further, va is increasing and ∀x ∈ [0,1],
max{supx∈[0,xa]∂va(x),supx∈[xa,1]∂va(x)}≤ 1.
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where ∂va and ∂va denote the sub- and supergradient of va on [0, xa] and [0, xa];16 and

Proposition 12. va is of class C 2 everywhere except possibly at xa where it might not be di�er-
entiable. Moreover, (i) v′a(0) = 0, and (ii) va is not di�erentiable at xa only if (a) limx→x−a v′a(x) ≥
limx→x+a v′a(x), (b) b(xa)= 0, and (c) if xa < 1, then b(1)> 0.

B.2.1. Proof of Proposition 11 (Value Function is Convex-Concave)

Proof. By Proposition 2, the unique viscosity solution v is continuous. Let X> := {x ∈ [0,1] |
va(x)> x} and X< := {x ∈ [0,1] | va(x)< x}, X= := [0,1]\ (X>∪ X<). As va is a subsolution (resp.
supersolution), Fa(x,va(x), M) := r(va(x)− x)−b(x)M− 1

2rc [M+]2 and b ≥ 0, and for any interval
I ⊆ X> (resp. I ⊆ X<) we have that M > 0 (resp. M < 0) for all x ∈ I and all (ψ, M) ∈ J

2,+
[0,1]va(x)

(resp. J
2,−
[0,1]va(x)). Note that, on X=, va is linear. As, by Alvarez et al. (1997, Lemma 1), for any

convex and open subset I ⊆ X>∪ X= (resp. I ⊆ X<∪ X=), va is convex (resp. concave) on I .

We now show that for any element x in an open interval I ⊆ X>, its subgradient is such that
max∂va(x)< 1. As va is convex on I , its non-empty-, compact-, convex-valued, and non-decreasing.
If max∂va(x)≥ 1, then we have that va(x′)≥ va(x)+ x′− x > x′ for any x′ ∈ I such that x′ > x. By
continuity of va, [x,1] ⊆ X> and we obtain va(1) > 1. However, as va is a subsolution we must
have that 0≥min{Fa(1,va(1), M),B(1, p)}= B(1, p) for any (p, M) ∈ J

2,+
[0,1]va(1). And, by convex-

ity of va on [x,1] and the fact that max∂va(x) ≥ 1, we have that (1,0) ∈ J
2,+
[0,1]va(1), resulting in

B(1, p)= 1> 0, a contradiction. An analogous argument holds to show that the supergradient of
va at any point x of an open interval I ⊆ X< satis�es max∂va(x)< 1.

The bound on the supergradient of va implies that, if x ∈ X<, it must be that ∀x′ ∈ [x,1], va(x′)<
va(x)+x′−x < x′ and thus x′ ∈ X<. Immediately, we obtain sup X> ≤ inf X≤. Hence ∃xa, xa ∈ [0,1]

such that [0, xa)= X>, [xa, xa]= X=, and (xa,1]= X>, with X< and X> potentially empty.

Next, we clarify that, in fact, X>, X= , ; (noting X> is an open set in [0,1]), by showing that
0 ∈ X>. Suppose instead va(0)= 0 (and thus X≤ = [0,1], with va concave on [0,1]). If there is some
x′ ∈ [0,1] such that v(x′)> 0, let p := va(x′)

x′ > 0. As v is concave, va(x)= va(x)−va(0)≥ p(x−0)= p·
x > p

2 (x+x2) for all x ∈ [0, x′], and so ( p
2 , p) ∈ J

2,−
[0,1]va(0) and max{Fa(0,va(0), p),B(0, p

2 )}< 0, con-
tradicting that va is a supersolution. If there is no such x′, then va ≡ 0 and (0,−1) ∈ J

2,−
[0,1]va(1/2),

with F(1/2,va(1/2),−1)=−1/2< 0, again contradicting va is a supersolution.
16That is, ∂va(x) := {p | va(x′)− va(x) ≥ p(x′ − x), ∀x′ ∈ [0, xa]} and ∂va(x) := {p | va(x′)− va(x) ≤ p(x′ − x), ∀x′ ∈
[xa, I]}.
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Our last step is to show va is increasing. First note that, by convexity of va, max∂va(x) ≤
min∂va(x′) for any x, x′ ∈ X≥ such that x′ > x. Suppose, for the purpose of contradiction, max∂va(0)<
0. This implies ∀x ∈ (0, xa], 0 > va(0)− va(x). Then, letting p := va(x)−va(0)

x < 0, we have (p,0) ∈
J

2,+
[0,1]va(0), which results in min{F(0,va(0),0),B(0, p)}> 0, a contradiction to va being a subsolu-

tion. As, symmetrically on [xa,1], va is concave and thus min∂va(x)≥max∂va(x′) for x, x′ ∈ X≤,
it su�ces to show 0 ∈ ∂va(1). Suppose to the contrary that for some x ∈ [xa,1), 1≥ va(x)> va(1).
Then, p := va(1)−va(x)

1−x < 0 and (p,0) ∈ J
2,−
[0,1]va(1), implying max{Fa(1,va(1),0),B(1, p)}< 0, now a

contradiction to va being a supersolution. �

B.2.2. Proof of Proposition 12 (Value Function is C 2, except possibly at a point)

Proof. v′′ exists a.e.: From Proposition 11, ∃xa, xa ∈ [0,1] such that xa ≤ xa and va is convex on
[0, xa] and concave on [xa,1]. By Alexandrov theorem, va is twice di�erentiable a.e. on [0,1], and
so it has left- and right-derivatives everywhere, denoted by v′a,− and v′a,+ respectively.

No convex kinks: Take any x′ ∈ [0,1]. Suppose by contradiction that v′a,−(x′) < v′a,+(x′) and �x
p ∈ (v′a,−(x′),v′a,+(x′)). For any �xed M > 0, (p, M) ∈ J

2,−
[0,1]va(x′).17 However, for large enough M,

Fa(x′,va(x′), M)= r(va(x′)− x′)−b(x′)M− 1
2rc M2

+ < 0, contradicting that va is a supersolution.

At most one concave kink at x: Now take any x′ ∈ [0,1]. Again suppose by contradiction
v′a,−(x′) > v′a,+(x′) and �x p ∈ (v′a,+(x′),v′a,−(x′)). By a similar argument as before, for any �xed
M > 0, (p,−M) ∈ J

2,+
[0,1]va(x′). For b(x′)> 0 and large enough M, Fa(x′,va(x′),−M)= r(v(x′)−x′)+

b(x′)M > 0, which contradicts va being a subsolution. For b(x′)= 0 and x′ ∈ (0,1), Fa(x′,v(x′),−M)=
r(va(x′)− x′) ≤ 0. As va is player A’s value function, whenever b(x′) = 0, the player can at-
tain at least va(x′) ≥ x′ by setting the control to zero. Hence, we must have va(x′) = x′. As
va(x′)= x′ ⇐⇒ x′ ∈ [xa, xa], we obtain v′a(x′)= 1 for any x′ ∈ (xa, xa). On [0, xa), va is convex and
v′a,−(x′)≥ v′a,+(x′). Thus, there are no concave kinks except possibly at x and only if b(xa)= 0.

Continuity of v′a on [0,1]\{xa}: On [0, xa), v′a exists and is monotone as va is convex (by Propo-
sition 11). As v′a is also di�erentiable a.e., it has the intermediate value property (by Darboux
theorem), which, together with monotonicity, implies v′a is continuous on [0, xa). A symmetric
argument applies to (xa,1].

17To see this, let f (x) := va(x′)+ p(x− x′)+ 1
2 M(x− x′)2, and note that va − f ≥ 0 in a neighborhood of x′, therefore

with x′ being a local minimum of va − f .
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Existence and continuity of v′′a on [0,1] \ {xa}: We now show v′′a exists and is continuous ev-
erywhere except possibly at xa. Fix x ∈ [0, xa). As v′′a exists a.e. then take any sequence (xn)n≥1 ⊆
[0, xa) such that xn → x and v′′a(xn) exists for every n. Then, (v′a(xn),v′′a(xn)) ∈ J2,+

[0,1]va(xn)∩
J2,−

[0,1]va(xn), as this is true if and only if va is twice di�erentiable at xn (Crandall et al. 1992, p. 15).
Hence, (xn,va(xn),v′a(xn)) → (x,va(x),v′a(x)). ∀y ∈ [0, xa), Fa(x,va(x), M) ≤ 0 for all M ≥ M :=
maxx∈[0,xa]

p
2cr

√
va(x)− x. Hence, (v′a(x), M) ∈ J2,+

[0,1]va(x). Together with convexity of va on
[0, xa), this implies that v′′a(xn) ∈ [0, M] for all n, and then, by compactness, v′′a(xn) has a conver-
gent subsequence. Take any convergent subsequence and denote its limit as v′′∞. As Fa is con-
tinuous, 0= Fa(xn,va(xn),v′′a(xn))→ Fa(x,va(x),v′′∞)= 0=⇒ (v′a(x),v′′∞) ∈ J2,+

[0,1]va(x)∩J2,−
[0,1]va(x),

ensuring that va is also twice di�erentiable at x, for any x ∈ [0, x), and v′′a(x)= v′′∞. This implies v′′a
exists everywhere in [0, xa). Moreover, as v′′∞ ≥ 0 and Fa(x,va(x), M′) < Fa(x,va(x), M) for any
M′ > M ≥ 0, we must then have v′′∞ being the limit of any convergent subsequence of (v′′a(xn))n≥1,
and so, the limit of the original sequence: v′′a(xn) → v′′∞ = v′′a(x), and we obtain that v′′a ∈ C 2 on
[0, xa). A symmetric argument holds for x ∈ (xa,1].

Zero derivative at 0: Suppose v′a(0)> 0. Then, (v′a(0)/2,2v′′a(0)) ∈ J2,−
[0,1]va(0)18 and

max{Fa(0,va(0),2v′′a(0)), B(0,v′a(0)/2)}< 0, contradicting that va is supersolution.

Necessary conditions for nondi�erentiability at xa: (a) and (b) follow from there being only
concave kinks and only if b(xa) = 0. If xa < 1 and b(1) = 0, then we must have va convex on
[0,1] and linear on [xa,1]. It follows that v′a,−(xa) ≥ 1 (no convex kinks) and v′a,− ≤ 1, which
implies v′a,−(xa)= 1= v′a,+(xa), and the argument from above extends to show that va ∈C 2([0,1]).
Consequently, we obtain (c) by the contrapositive. �

B.3. Proof of Proposition 3 (Decreasing Control)

Proof. As a(x)= 1
rc v′′a(x)+, where va is the solution to (RP) given b, it su�ces to show v′′a is non-

increasing in the convex region of va i.e. on [0, xa], where xa is as de�ned in Proposition 11.
Assume by contradiction ∃x, y ∈ [0, xa] : x > y and v′′a(x) > v′′a(y). Then, using the fact that b is
non-decreasing on this region,

0< 1
2rc

(
v′′a(x)2 −v′′a(y)2) = r[va(x)− x]− r[va(y)− y]−b(x)v′′a(x)+b(y)v′′a(y)

≤ r[va(x)− x]− r[va(y)− y]− (
b(x)−b(y)

)
v′′a(x)≤ r[va(x)− x]− r[va(y)− y]

18To see this, de�ne f (x)= va(0)+ v′a(0)
2 x+v′′a(0)x2, noting that f (x)≤ va(x) for small enough x.
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hence 1 < va(x)−va(y)
x−y = v′a(z) for some z ∈ (y, x) (mean value theorem), contradicting 0 ≤ v′a ≤ 1

(Theorem 2). �

B.4. Proof of Proposition 4 (Control is C 1)

Proposition 4 follows from Theorem 2 and the next lemma.

Lemma 4. If b ≡ 0 and x0
a < 1 the optimal control to (RP) is C 1([0,1]). If x0

a = 1 it is C 1([0,1))

Proof. Let va be a viscosity solution to (RP) on O = (0,1) when b ≡ 0 and a the associated optimal
control. De�ne xa as in Proposition 11. On [0, x), F(x,va,v′′a)= 0 ⇐⇒ v′′a(x)= r

p
2c

√
va(x)− x,

and a is continuously di�erentiable (even in�nitely so) on this [0, x). This proves the lemma for
xa = 1. If xa < 1, then va(x) = x on (xa,1] implying a is C 1 on this interval, with a′(x) = 0,
and limx↓xa

a′(x) = 0. For the left derivative, noting v′′a(x)2 = 2r2c(va(x)− x) for any x ∈ [0, xa)

and v′′a(x) > 0, di�erentiate both sides and obtain a′(x) = v′′′a (x)/rc = r(v′a(x)− 1)/v′′a(x), which
is continuous as v is C 2 on [0, xa) given b ≡ 0 (Proposition 12). As v′a(x)−1 < 0 (Proposition
11), then v′′′a (x) < 0, and v′a is strictly increasing and strictly concave on this interval. Hence,
v′a(xa)−v′a(x)≤ v′′a(x)(xa−x), ∀x < xa. Thus, 0≤ (v′a(x)−v′a(x))/v′′a(x)≤ x−x. As (1−v′a(x))/v′′a(x)→
0 for x ↑ xa, and a′

−(xa)= 0, we obtain that a is C 1 on [0,1]. �

B.5. Proof of Proposition 6 (Control is Convex-Concave)

Proof. Let va be a viscosity solution to (RP) on O = (0,1) when b ≡ 0, and a the associated optimal
control. Recall that a ∝ v′′a. Denote by f ′− the left-derivative of f and f (n) its n-th order derivative.
From Proposition 11, we have that v′a,− ≤ 1. Owing to the regularity of the solution, and we can
derive on [0, xa):

v′′a(x)= r
p

2c
√

va(x)− x ≥ 0, v(3)
a (x)= r

p
c/2(va(x)− x)−1/2(v′a(x)−1)= r2c

v′a(x)−1
v′′a(x)

≤ 0,

v(4)
a (x)= r2c− v(3)

a (x)2

v′′a(x)
, v(5)

a (x)= v(3)
a (x)3

v′′a(x)2 −2
v(3)

a (x)
v′′a(x)

v(4)
a (x).

As v′a(x) < 1 for x ∈ [0, xa), v(3)
a is strictly negative on [0, xa). If, for x ∈ (0, xa), v(4)

a (x) = 0, then
v(5)

a (x) = v(3)
a (x)3

v′′a(x)2 < 0. This implies that if, for x̃ ∈ (0, xa), v(4)
a (x̃) = 0, then v(4)

a (x) ≤ 0 for any x ∈
(x̃, xa). That is, ∃x̃ ∈ [0, xa) such that v′′a is convex on [0, x̃] and concave on [x̃, xa].
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Suppose v′a,−(xa)= 1. As, by Proposition 3, limx↑xa
v(3)

a (x)= 0, we have

lim
x↑xa

v(4)
a (x)= r2c− lim

x↑xa

v(3)
a (x)2

v′′a(x)
= r2c− r2c lim

x↑xa

(v′a(x)−1)2

2r
p

2c(va(x)− x)3/2

= r2c− r2c lim
x↑xa

2
3

(v′a(x)−1)v′′a(x)

r
p

2c(va(x)− x)1/2(v′a(x)−1)
= r2c− r2c lim

x↑xa

2
3
= 1

3
r2c > 0,

where we used l’Hôpital’s rule in the before-last line. Consequently, v′′a is convex on [0, xa].

Suppose now that v′a,−(xa)< 1. Then v(3)
a (x)≤ r2c

v′a,−(xa)−1
v′′a(0) < 0 for any x ∈ [0, xa]. As v′′a is strictly

positive, decreasing, v′′a(x) → 0 as x → xa, v(4)
a (x) < 0 for all x < xa close enough to xa. Hence,

∃x̃ ∈ [0, xa) such that v′′a is convex on [0, x̃] and concave on [x̃, xa].

The fact that v′a,−(xa
−) = 1 if xa < 1 follows from the a being C 1([0,1]) when xa < 1 (Lemma 4).

Finally, that a′
−(xa)=−∞ follows from v(3)

a (x)= r2c v′a(x)−1
v′′a(x) ≤ r2c

v′a,−(xa)−1
v′′a(x) < 0. As the denomina-

tor goes to zero as x approaches xa, the result obtains. �

B.6. Proof of Proposition 7 (Decoupling Equilibrium Instability)

Proof. Note that, from Theorem 1, va(x)+vb(x)≤ supα,β r
∫ ∞

0 exp(−rt)(X t+(1−X t)− caα(X t)2−
cbβ(X t)2)dt ≤ r

∫ ∞
0 exp(−rt)dt = 1. From Proposition 11, as va is (strictly) convex whenever

va(x) ≥ (>) x ⇐⇒ 0 ≤ x ≤ xa (< xa) and strictly concave elsewhere, and vb is (strictly) convex
whenever vb(x) ≥ (>)1− x ⇐⇒ 1 ≥ x ≥ xb (> xb), and strictly concave elsewhere, we have that
xa = xa =: x > 0 and xa = xb =: x < 1. This implies that a(x) = 0 on [x,1] and b(x) = 0 on [0, x].
As, from Proposition 3 a is nonincreasing and b is nondecreasing, and, from a straightforward
modi�cation of the proof of Proposition 4, v′′′a < 0 on [0, xa) and v′′′b (x) > 0 on (xb,1], we obtain
that the optimal controls a and b are, respectively, strictly decreasing and strictly increasing. �

B.7. Proof of Proposition 8 (Inactive Benchmark and Equilibrium)

Proof. From Proposition 7, a∗(x) > 0 if and only if x ∈ [0, x), and, from Theorem 2, va is concave
on [x,1]. Hence, on x ∈ [0, x), 0 = ra(va(x)− x)− 1

raca
[v′′a(x)+]2, and on x ∈ [x,1] except at most

at one point at which va is not twice di�erentiable, 0 = ra(va(x)− x)− b(x)v′′a(x) ≥ ra(va(x)− x).

As at the (at most one) nondi�erentiability point of va there is a concave kink (Theorem 2), one
concludes va is a viscosity subsolution to the re�ected problem in the inactive benchmark. As v0

a

is a viscosity solution to the same problem (and thus a supersolution), from Lemma 1, v0
a ≥ va.

The second part of the proposition follows immediately. The same holds for player B. �
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B.8. Proof of Lemma 2 (Deterrence Equilibria Singleton Stable Region)

Proof. We prove the lemma by contradiction. Let (a,b) be an equilibrium under parameters such
that x0

a > x0
b and, for the purpose of contradiction, suppose x < x. Then, x < x0

a or x0
b < x. This

is because, from Proposition 8, x ≤ x0
a or x0

b ≤ x, and, by assumption, x0
a > x0

b. Suppose x < x0
a

(the proof is symmetric for the case in which x0
b < x). From Theorem 2, only concave kinks

are permissible, and then v′a,−(x) ≥ v′a,+(x) = 1. Moreover, from Proposition 8, the solution to
player A’s the inactive benchmark problem, v0

a, is weakly greater than the player’s equilibrium
value function, va ≤ v0

a. From Proposition 7, at an equilibrium, b(x)= 0 on [0, x]⊇ [0,min{x, x0
a}].

As v0′′
a (x) = ra

p
2ca

√
v0

a(x)− x ≥ ra
p

2ca
√

va(x)− x = v′′a(x) on [0,min{x, x0
a}] and as v′a(0) =

v0′
a (0)= 0 (Proposition 12), then v′a,−(x)≤ v0′

a,−(x)< v0′
a,−(xa)≤ 1= v′a,+(x), a contradiction. �

B.9. Proof of Theorem 3 (Characterization of Deterrence Equilibria)

The proof of the �rst part of Theorem 3 (characterization of accommodating equilibria) is detailed
in the main text; here we prove the second part (characterization of deterrence equilibria).

Let vb
a be the unique viscosity solution to (RP) on O = (0,1) given b ∈C 0([0,1]) and xb

a := sup{x ∈
[0,1] | vb

a(x)> x}, and analogously de�ne va
b and xa

b for player B, given a ∈C 0([0,1]). It is straight-
forward to check that, for (a∗,b∗) such that x0

b ≤ xb∗
a = xa∗

b ≤ x0
a, the equilibrium strategies must

be given as described in the statement of Theorem 3. We then focus on showing that for any
x ∈ [x0

b, x0
a], there is a unique strategy pro�le (a∗,b∗) such that xb∗

a = xa∗
b = x. The proof of Theo-

rem 3 for x ∈ (x0
b, x0

a) follows from the next two lemmata:

Lemma 5. For x ∈ (0, x0
a), let va denote the unique viscosity solution to (RP) on O = (0, x) when

b ≡ 0. Then, (i) va ∈C 5([0, x)), (ii) va is convex, (iii) v′a is concave, (iv) ∃x̃ ∈ [0, x) such that v′′a is
convex on [0, x̃] and concave on [x̃, x), and (v) v′′′a (x)→−∞ as x ↑ x.

Proof. That there is a unique viscosity solution to (RP) on O = (0, x) when b ≡ 0 follows from a
straightforward modi�cation of Theorem 1. Properties (i)-(v) follow from adjusting the proofs of
Propositions 4 and 6. �

Lemma 6. Let x ∈ (0,1) and �x b ∈C 0([0,1]) such that (i) b(x)= 0 for x ≤ x, (ii) b′(x)> 0 on (x,1],
(iii) limx↓x b′(x)=∞. Then, vb

a(x)≤ x for x ≥ x.
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Proof. Suppose not. Then, vb
a(x) > x =⇒ vb′′

a (x) > 0, and, by Proposition 4, vb
a is C 3 locally at x

with v′′′a (x) < 0 in a neighborhood of x. Then, as b(x) = 0, for small ε > 0, Fa(x,vb
a(x),vb′′

a (x)) =
Fa(x+ ε,vb

a(x+ ε),vb′′
a (x+ ε)) = 0 ⇐⇒ 0 = (Fa(x,vb

a(x),vb′′
a (x))−Fa(x+ ε,vb

a(x+ ε),vb′′
a (x+ ε)))/ε=

r[(vb
a(x+ε)−vb

a(x))/ε−1]− 1
2rc (vb′′

a (x+ε)2−vb′′
a (x)2/ε−vb′′

a (x+ε)b(x+ε)/ε. Given that limε↓0 |r[(vb
a(x+

ε)−vb
a(x))/ε−1]− 1

2rc (vb′′
a (x+ε)2−vb′′

a (x)2)/ε| = |r(vb′
a (x)−1)− 1

rc vb′′
a (x)vb′′′

a (x)| <∞ due to vb
a being

locally C 3, and given that b(x+ε)/ε= (b(x+ε)−b(x))/ε→∞ as ε ↓ 0, by continuity, ∃ε̄ :∀ε ∈ (0, ε̄),
vb′′

a (x+ ε̄)b(x+ ε)/ε > 2[r|vb′
a (x)−1|+ 1

rc vb′′
a (x)|vb′′′

a (x)|] > r[(vb
a(x+ ε)− vb

a(x))/ε−1]− 1
2rc (vb′′

a (x+
ε)2 −vb′′

a (x)2/ε, a contradiction to 0= (Fa(x,vb
a(x),vb′′

a (x))−Fa(x+ε,vb
a(x+ε),vb′′

a (x+ε)))/ε. �

We now take care of showing that x ∈ {x0
a, x0

b} also pins-down an equilibrium as described.

If a ≡ 0 on [x0
b,1], then va

b = v0
b on [x0

b,1] and so b0 is a best response to a. We then need that, if
a is a best response to b0, then xb0

a = x0
b. We prove this in two steps.

First, we show xb0

a ≥ x0
b. Suppose not. Then vb0

a (x) = x on [xb0

a , x0
b] and, by Theorem 2, vb0

a ∈
C 2([0,1]). Let wa(x) := 1

x<xb0
a

vb0

a (x)+1
x≥xb0

a
x. As vb0

a ∈ C 2([0,1]) is a viscosity solution to (RP)
on O = (0,1) given b = b0, and as xb0

a < x0
b, it is straightforward to verify wa is a viscosity solution

to (RP) on O = (0,1) given b ≡ 0. However, xb0

a < x0
b < x0

a, which contradicts uniqueness of the
viscosity solution to the latter problem (Theorem 1). Second, we show that xb0

a ≤ x0
b. Suppose

not. Take any x ∈ (x0
b, xb0

a ) and let (a∗,b∗) be the unique equilibrium such that a∗(x) = b∗(x) = 0

(Lemmata 5 and 6).

Claim 1: vb0

a ≥ vb∗
a on [0, xb0

a ] and vb0

a > vb∗
a on (x, xb0

a ]. Let wa(x) := 1x≤xvb∗
a (x)+1x>xx. Since (i)

b0 ≥ b∗ (Proposition 8) and b0 > 0≡ b∗ on (x0
b, x), and (ii) vb0

a and vb∗
a are strictly convex on [0, x),

then wa is a subsolution to (RP) on O = (0,1) given b = b0, and, in particular, wa ≤ vb0

a (Lemma
1). Hence, vb0

a ≥ vb∗
a on [0, x]. And, on (x, xb0

a ], by de�nition of these thresholds, vb0

a (x)≥ x > vb∗
a .

Claim 2: vb0

a ≤ vb∗
a on [xb0

a ,1]. Let wa(x) := 1
x≥xb0

a
vb0

a (x)+1
x<xb0

a
x. Since (i) b0 ≥ b∗ (Proposition

8), and (ii) vb0

a and vb∗
a are strictly concave on (xb0

a ,1], then wa is a subsolution to (RP) on O = (0,1)

given b = b∗, and, in particular, wa ≤ vb∗
a . Hence, vb0

a ≤ vb∗
a on [xb0

a ,1].

However, claims 1 and 2 clearly entail a contradiction: vb∗
a (xb0

a )< vb0

a (xb0

a )≤ vb∗
a (xb0

a ).
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