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The Dynamics of Instability
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We study a model in which two players with opposing interests try to alter a status
quo through instability-generating actions. We show that instability can be used
to secure longer-term durable changes, even if it is costly to generate and does
not generate short-term gains. In equilibrium, instability generated by a player
decreases when the status quo favors them more. Equilibrium always exhibits a
region of stable states in which the status quo persists. As players’ threat power
increases, this region shrinks, ultimately collapsing to a single stable state that is
supported via a deterrence mechanism. There is long-run path-dependency and
inequity: although instability eventually leads to a stable state, it typically selects
the least favorable one for the initially disadvantaged player.
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Instability is an essential component of conflicts. Two political parties in a contin-
uous competition for voters’ support can stir unpredictable changes by leaking rumors
or taking outrageous stances that will prompt controversy. Two countries fighting over
disputed territories can adopt high-risk strategies that are often as likely to succeed as
to backfire: instigating internal rebellions, launching propaganda campaigns or appeal-
ing to international organizations. Rebellious groups often seek to create agitation in
the hope that they can profit from a volatile situation. Sometimes actions have no pre-
dictable effect other than to increase uncertainty, and instability itself becomes a means
to an end: groups with diametrically opposed interests can generate instability strategi-
cally to advance their agenda.

In this paper, we study the strategic implications of using instability as an instrument
in situations of conflict. We consider a model in which two forward-looking players
accrue bounded constant-sum gross flow payoffs. At any moment, players can pay a cost
to increase the volatility of a process that determines the status quo division of payoffs.
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In particular, instability has a symmetric effect everywhere but at the extreme states,
where it can only reflect the process toward less extreme states.

We show instability is an effective device in such situations. If the only thing a player
can do is to destabilize the status quo in a way that change is equally likely to be favor-
able or unfavorable, instability cannot offer any advantage in the short-term. Further-
more, even if instability were to lead to a more favorable situation for the player, it could
be met with additional instability by others with opposing views, further depressing the
incentives to take action. But when a player has nothing to lose, instability seems like
a natural instrument to oppose an excessively unfavorable status quo. We show how a
lower bound on the negative consequences of creating instability provides option value
that can be exploited by patient players, even when gains and losses are equally likely in
the short run.

We identify two key properties of players’ optimal (Markovian) behavior. First, an
optimal volatility strategy in response to any strategy of the opponent is characterized
by a threshold mechanism: players continuously generate positive volatility at situations
less favorable than a target “satisficing” state, and no instability at more favorable ones.
Second, best responses to monotone strategies are monotone, creating more instability
at less favorable states. Because gains over the status quo are driven by the option value
conferred by the lower bound on how unfavorable the state can be, at a more favorable
status quo, this option value decreases, and players become more conservative as they
stand to lose more.

We then prove existence and provide a complete constructive characterization of the
set of equilibria. An intuitive decoupling argument lies at the heart of this characteriza-
tion: at most, one player creates instability at any given moment. As instability yields
no short-term gains on the status quo and players have diametrically opposed interests,
they cannot both expect to benefit from it. As a result, equilibria are completely charac-
terized by two thresholds, defining two regions of instability, and a stable region wherein
the status quo prevails. Instability arises in the most extreme states, and the player who
least favors the status quo creates instability to strive for change. Instability is used as a
tool to push back against an extreme status quo, and more extreme states foster greater
instability. In contrast, in the stable region—corresponding to relatively more moderate
states—neither player sees advantage in destabilizing the status quo.

While equilibrium stable states always exist, these can be either the expression of
accommodating equilibrium behavior, or of a balance-of-power mechanism. In the for-
mer, players never push back against instability triggered by their opponent and so each
player pursues gains on the status quo by generating instability exactly as if they faced
no opposition. Such accommodating behavior occurs when impatience and costs to
instability are high enough, which owing to the threshold structure of best responses,
supports a unique equilibrium. This unique equilibrium generically features a con-
tinuum of stable states: those that are satisfactory to both players, and if perturbed,
would not trigger any instability. The situation fully reverses when players are patient
and costs to instability are low enough: multiple equilibria arise, and each is character-
ized by a unique stable state. Further, this unique stable status quo emerges as resulting
from players actively pushing back against their opponent’s attempts to advance their
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prospects. Equilibrium behavior is then characterized as a balance-of-power mecha-
nism at the stable status quo: the knowledge that the opponent will trigger social insta-
bility if the status quo is perturbed to their detriment deters the player from pursuing
further improvements.

Equilibria also exhibit clear monotone comparative statics. We find that lowering
a player’s costs to creating instability shifts the set of stable states in a strong set order
sense toward states the player prefers, as the player is willing to generate more instability
to pursue their goals.

Finally, we discuss the dynamics of instability in our model. We show that, regard-
less of the starting point, the process converges almost surely to an equilibrium stable
state. Nevertheless, we note a form of path dependency: if the process starts in a player’s
instability region, it will converge to that player’s least favorable stable state.

Our paper contributes to the literature studying theoretical models of conflict. Para-
phrasing Fearon (1995, p. 387), conflict is “a gamble whose outcome may be determined
by random or otherwise unforeseeable events.” This observation motivated the model-
ing of conflict using contests, that is, situations in which players exert costly effort to
affect their relative likelihood of obtaining a more favorable outcome. Starting with the
seminal work of Tullock (1980) in studying political party competition, several papers
use this modeling device to study issues related to conflict and competition, including
conflict over the appropriation of rents (Besley and Persson (2011), Powell (2013)), lob-
bying (Baye, Kovenock, and de Vries (1993), Che and Gale (1998)), territorial expansion
(Bueno de Mesquita (2020), Dziubiński, Goyal, and Minarsch (2021)), and how inequal-
ity affects the intensity of social conflict (Esteban and Ray (1999, 2011)). Closer in spirit
to this paper, Fang and Noe (2016, 2022) study risk-taking behavior in contest settings
under a mean-performance constraint. Our main contribution relative to the existing
literature on conflict is to introduce a novel instability mechanism and relate it to key
concepts and phenomena in the dynamics of conflict. Our model gives qualitatively
reasonable predictions for the dynamics of instability, and in doing so, highlights that
instability need not be a purely exogenous byproduct, but rather a powerful and impor-
tant instrument in situations of conflict.

Instability gives rise to two phenomena typically present in other models of conflict.
First, the fact that the disadvantaged player is the one who triggers instability is reminis-
cent of the idea that excessively unequal outcomes will trigger conflict (Fearon (1995))
and that laggards choose more risky strategy in R&D or sports (Cabral (2003), Anderson
and Cabral (2007)) and, more broadly, consistent with the idea of “gambling for res-
urrection” (Kräkel, Nieken, and Przemeck (2014), Calveras, Ganuza, and Hauk (2004)).
Second, although modeled in a different manner in either Jackson and Morelli (2009) or
Chassang and Padró i Miquel (2010), the common theme of deterrence appears in our
model in instances where a single state emerges as stable in equilibrium, and its stability
is supported only by the fact that each of the two players with opposing interests would
escalate conflict were the status quo affected.

Another related strand of the literature pertains to tug-of-war models and wars of
attrition. In Moscarini and Smith’s (2011) continuous-time analogue of the model by
Harris and Vickers (1987), players with antagonistic preferences exert effort to increase
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the probability a state moves toward their preferred outcome, controlling the drift rather
than the volatility of the process. Agastya and McAfee (2006) consider a related model
with drift control and absorbing boundaries, in which stability obtains at intermediate
states in draw equilibria because drift controls cancel each other. Gul and Pesendorfer
(2012) and Gieczewski (2020) consider war of attrition settings where players effectively
control variance by choosing when to stop the payoff process. Since in these models
payoffs are accrued only when conflict stops and the extreme states are absorbing, close
enough to the boundary, the winning side strives for a definitive victory and the losing
side concedes, leading to stability; at intermediate states, there is conflict (hence insta-
bility) to determine to which side the scale will tip. This prediction reverses in our setting
because there is no definitive victory. Since the losing side has much less and the win-
ning side more to lose, instability becomes a potent tool at extreme states, but too risky
at intermediate ones.

Lastly, our paper contributes to a growing literature on games in continuous time.
Although the use of differential methods for zero-sum games dates back to the seminal
work of Isaacs (1965), a number of recent contributions have effectively used stochas-
tic calculus and differential equations techniques in continuous time games.1 As other
recent papers in economics (e.g., Faingold and Sannikov (2011), Kaplan, Moll, and Vi-
olante (2018), Achdou, Han, Lasry, Lions, and Moll (2021), Lester (2020), Kuvalekar and
Lipnowski (2020), Escudé and Sinander (2023)) and a wealth of applications in finance,2

we rely on viscosity solutions to solve a nonsmooth optimal control problem. Building
on Lions (1986), this paper provides a technical contribution to this literature by proving
existence and uniqueness of optimal control of volatility of a reflecting process under re-
laxed regularity conditions. We hope that the present paper also serves to illustrate the
usefulness of this approach for obtaining precise characterizations in economic appli-
cations while imposing minimal assumptions.

The remainder of the paper is organized as follows: Section 1 introduces the model.
In Section 2, we give a detailed characterization of optimal instability strategies by study-
ing the best response to a fixed opponent strategy; we pay particular attention to the
benchmark case when the opponent is inactive and a single player controls the volatil-
ity. We use these results in Section 3 to construct and characterize equilibria, and, in
Section 4, we discuss the equilibrium dynamics of the status quo: namely, convergence
toward a stable state. Section 5 discusses some natural variations of our model.

1. The model

We now introduce our model. Time is continuous and indexed by t ∈ R+. The state at
time t is given by Xt ∈ [0, 1], corresponding to a status quo; players A and B have op-
posing preferences over the status quo captured by constant-sum flow payoffs. Player
A strictly prefers higher values of the status quo, whereas B favors lower ones, and we

1See Sannikov (2007) for applications to repeated games, or Daley and Green (2012, 2020) and Ortner
(2019) for applications to bargaining with a continuous inflow of news and evolving bargaining power.

2See the monographs by Fleming and Soner (2006) or Pham (2009) for more detail.
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remove any intrinsic incentive to generate instability by considering risk-neutral prefer-
ences. Given these assumptions, it is without loss to normalize player A’s gross payoff
at time t to be given byXt and player B’s by 1 −Xt .

The state evolves randomly and continuously over time according to the following
stochastic differential equation with reflection:

dXt =
√

2(αt +βt )dBt − dKt ,
where Bt is a standard Brownian motion, αt ≥ 0 and βt ≥ 0 are nonnegative adapted
processes controlled by playersA and B, respectively, andKt denotes the regulator pro-
cess that reflects the process within [0, 1] when it hits either bound and is inactive in the
interior, i.e., ifXt ∈ (0, 1) we have dKt = 0.3

This captures the idea that instability has a symmetric effect everywhere but at the
boundary. Over a small time interval, the change in the status quo is exclusively driven
by instability: at any instant,Xt goes either up or down with equal probability, except at
the boundaries (0 and 1), where it simply cannot become more extreme. Everywhere in
the interior, the status quo changes in a purely noisy manner.

A key assumption is that no player can get a negative flow payoff—intuitively, in
sharing a finite resource, one cannot have less than “nothing” (nor more than “every-
thing”). The reflecting boundaries express the fact that even when some player reaches
the lower bound of their payoffs, the game does not terminate. This contrasts with mod-
els with absorbing boundaries4 where the game stops upon reaching an extreme point.
Those are more likely to be applicable to situations with a clear end-point (an election, a
patent race, a sports match) and terminal payoff, whereas our model is more adequately
describing situations of repeated interaction without a definite ending where payoffs
continuously accrue (competition between political parties, long-lasting dispute over
territories between countries, protracted wars and rebellions). Although continuity of
the process is essential in capturing the desired intuition—because over a small time
interval the probability of hitting either bounds is zero, a form of local symmetry is
ensured—the fact that players control the level of instability means that the state can
change extremely quickly, or not at all.

Players A and B, respectively, control αt and βt—how much effort each puts into
destabilizing the status quo. Total instability effort αt + βt is aggregated additively and
corresponds to scaling the volatility of the Brownian motion, which is captured by the
square root transformation

√
2(αt +βt ) (the factor of 2 is just a convenient normaliza-

tion without loss). Instantaneous volatility here is the continuous-time analogue of in-
creasing variance in a discrete-time setting. In other words, players are always able to
escalate instability, but they cannot decrease instability triggered by the opponent.

3The presence of the regulator process Kt is purely a technical device used to define a process whose

infinitesimal variations essentially follows dXt = √
2(αt +βt )dBt but where an inward push compensates

every variation that would push the process outside of the bounded domain [0, 1];Kt precisely defines this
compensation to ensure that we have defined a process over [0, 1]. We give more technical details on the
definition of the process in A.

4As those discussed above, e.g., Gul and Pesendorfer (2012), Gieczewski (2020), Moscarini and Smith
(2001), Agastya and McAfee (2006).
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Observe that instability here is entirely endogenous: players can remain at the cur-
rent status quo forever if they choose not to increase volatility (αt = βt = 0), but each
player has the ability to unilaterally generate instability. In this sense, a stateXt at which
no player has an incentive to generate instability corresponds to a stable status quo. We
focus on the stylized case in which all instability is endogenous to clearly identify its
idiosyncratic effects.

Creating instability is costly. We assume the cost of instability effort is convex and
adopt a quadratic specification for simplicity. The instantaneous (net) payoffs of A and
B are respectively:

ua(Xt , αt ) :=Xt − ca

2
α2
t , ub(Xt , βt ) := (1 −Xt ) − cb

2
β2
t ,

where ca, cb ∈ R++ are idiosyncratic cost parameters for each player.
Because creating instability is costly, this is not a zero-sum game. At a given instant,

instability requires a pure destruction of surplus, which can only be warranted by the
hope of obtaining a durably better situation in some appropriate sense.

Each player chooses its instability effort over an infinite horizon. Players have dis-
count factors ra and rb, respectively; flow payoffs are normalized by the discount factors.
Expected utilities as a function of strategies and the status quo (the initial point of the
processX0 = x) are given by

Ua(α, β|x) := E

[∫ ∞

0
rae

−ratua(Xt , αt )dt

]
,

Ub(α, β|x) := E

[∫ ∞

0
rbe

−rbtub(Xt , βt )dt

]
.

We restrict attention to Markov-perfect equilibria (Maskin and Tirole (2001)) in con-
tinuous strategies. We then denote strategies as αt = a(Xt ), βt = b(Xt ), where a and
b are continuous functions from [0, 1] to R+. Formally, strategies belong to the class
of Xt-adapted progressively measurable processes, which we denote by A. The restric-
tion to Markov-perfect equilibria is common in the literature, due in part to well-known
issues in defining off-path behavior in continuous time (see Simon and Stinchcombe
(1989)). Continuity is partly a technical assumption, albeit a natural one in our setup. It
is also minimal in that it requires little regularity to ensure that the underlying objects
are properly defined. We formally define our equilibrium concept.

Definition 1. An equilibrium is a pair of continuous functions (a, b) from [0, 1] to R+
such that:

(i) The process α∗
t = a(Xt ) solves the control problem for playerA given b,

α∗ ∈ arg max
α∈A

E

[∫ ∞

0
rae

−rat
(
Xt − ca

2
α2
t

)
dt

]
where dXt =

√
2
(
αt + b(Xt )

)
dBt − dKt , X0 = x.
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(ii) The process β∗
t = b(Xt ) solves the control problem for player B given a,

β∗ ∈ arg max
β∈A

E

[∫ ∞

0
rbe

−rbt
(

(1 −Xt ) − cb
2
β2
t

)
dt

]
where dXt =

√
2
(
a(Xt ) +βt

)
dBt − dKt , X0 = x.

In the next section, we study the control problem in detail for a fixed strategy of the
opponent so as to characterize best responses in this game. In doing so, we will verify
that the previous definition of equilibrium is appropriate; in particular, optimal strate-
gies are well-defined and continuous. This also allows us to identify relevant properties
of best responses, which will prove useful to provide a direct construction of equilibria
in Section 3.

2. Characterizing best responses

In this section, we study the properties of players’ best responses through its differen-
tial characterization. We consider the control problem of one player, holding fixed the
strategy of the opponent. Since the individual problems of the players are symmetric by
definition when replacing Xt by 1 −Xt in the flow payoff, we will consider player A’s
problem. All results extend symmetrically to player B’s problem. As we focus on player
A’s problem, throughout this section we will omit the a subscripts on parameters ra, ca
and instead write r, c to alleviate notation.

To formally define the control problem that we study in this section, let (�, F , (Ft ),
P) denote a complete filtered probability space equipped with a one-dimensional Brow-
nian motion Bt . Fix b : [0, 1] → R+ a continuous function. The control problem of the
player is given by

va(x) = sup
α∈A

E

[∫ ∞

0
re−rt

(
Xt − c

2
α2
t

)
dt

]
where dXt =

√
2
(
αt + b(Xt )

)
dBt − dKt , X0 = x,

whereXt ,Kt solve the reflection problem, i.e.,Xt ∈ [0, 1].
The following subsection introduces the approach used to solve the control prob-

lem: a differential characterization of the problem and the theory of viscosity solutions.

2.1 Differential characterization: Existence and uniqueness

The value function of the control problem (and therefore the optimal control) is fully
characterized as the solution to a second-order differential equation—the Hamilton–
Jacobi–Bellman (HJB) equation—with reflective boundary conditions, which capture
the fact that the status quo is reflected on a closed interval.

To state the main result of this subsection, denote the positive part of y ∈ R by the
subscript +, y+ := max{y, 0}, and let n(x) denote the outer normal unit vector, where
n(0) = −1, n(1) = 1.
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Theorem 1. The value function va is the unique viscosity solution to the following
Hamilton–Jacobi–Bellman equation:

rva(x) − sup
a∈R+

{
rx− rc

2
a2 + (

a+ b(x)
)
v′′
a(x)

}
= 0 on (0, 1) (HJB)

with the reflective boundary condition,

n(x)v′
a(x) = 0 on {0, 1}. (BC)

Furthermore, va is continuous and, whenever v′′
a exists, the optimal control is given by

a(x) = 1
rc
v′′
a(x)+.

We will refer to the combination of (HJB) and (BC) as the reflected problem (RP)
given b.

The value function only solves (RP) in an appropriate weak sense we define below:
it is a viscosity solution.5 We rely on the use of viscosity solutions because a number of
issues render our problem nonstandard. First, the process degenerates and becomes de-
terministic if there is no instability. If for some x ∈ [0, 1] b(x) = 0, then by setting αt = 0
the player can make the process constant. In particular, this implies the boundary con-
ditions need not be satisfied as players could choose to “deactivate” the reflection by set-
ting a(x) = b(x) = 0 at x ∈ {0, 1}. Indeed if b(1) = 0, it is immediate that player A has no
interest to generate instability when the status quo is 1, asA enjoys the maximum possi-
ble payoff forever. This effectively makes 1 an absorbing point and the strong boundary
condition fails to hold in the usual sense. In general, whether or not the (strong) bound-
ary conditions hold is tightly related to the activity of the other player.

Second, players’ best responses generally do not satisfy standard regularity condi-
tions (as Lipschitz continuity), which prevents us from appealing to well-known result
for existence and uniqueness. Finally, the value function can be nondifferentiable; we
will show below it can exhibit a kink in equilibrium. The presence of a kink is more than
a technical curiosity and will reflect essential properties of an equilibrium: a kink ap-
pears at a stable status quo that is supported but both players threatening to generate
enough instability on either side to prevent any deviations. We give more details below
when characterizing the value function and equilibrium.

Before we introduce viscosity solutions, observe that the (HJB) equation can be
rewritten as

rva(x) − rx− b(x)v′′
a(x) − 1

2rc

[
v′′
a(x)+

]2 = 0.

5For general references on the theory of viscosity solutions of elliptic second-order differential equations
and its applications to optimal control, see Crandall, Ishii, and Lions (1992), Fleming and Soner (2006), and
Pham (2009).
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For convenience, we define the following notation for the differential operators:

Fa(x, v,M ) := rv− rx− b(x)M − 1
2rc

[M+]2 for (x, v,M ) ∈ [0, 1] × [0, 1] ×R,

B(x, p) := n(x)p for (x, p) ∈ {0, 1} ×R,

i.e., (RP) is given by Fa(x, va(x), v′′
a(x)) = 0 on (0, 1) and B(x, v′

a(x)) = 0 on {0, 1}. We
now state the definition of a viscosity solution of (RP).

Definition 2. A function w on [0, 1] is a viscosity subsolution of (RP) if its upper-
semicontinuous envelope w∗ satisfies

Fa
(
x0, w∗(x0 ), ϕ′′(x0 )

) ≤ 0 if x0 ∈ (0, 1) and

min
{
Fa

(
x0, w∗(x0 ), ϕ′′(x0 )

)
, B

(
x0, ϕ′(x0 )

)} ≤ 0 if x0 ∈ {0, 1}

for all ϕ ∈ C2([0, 1]) such that x0 is a local maximum of w∗ −ϕ.
A function w on [0, 1] is a viscosity supersolution of (RP) if its lower-semicontinuous

envelope w∗ satisfies

Fa
(
x0, w∗(x0 ), ϕ′′(x0 )

) ≥ 0 if x0 ∈ (0, 1) and

max
{
Fa

(
x0, w∗(x0 ), ϕ′′(x0 )

)
, B

(
x0, ϕ′(x0 )

)} ≥ 0 if x0 ∈ {0, 1}

for all ϕ ∈ C2([0, 1]) such that x0 is a local minimum of w∗ −ϕ.
A function w is a viscosity solution if it is both a viscosity sub and supersolution.

Viscosity solutions provide a powerful notion of generalized differentiability, which
is well adapted to studying HJB-type equations. One canonical intuition to visualize the
viscosity approach is to think about fitting smooth test functions—ϕ in the definition—
equal to the function at a given point but everywhere else above (for a subsolution) or
below (for a supersolution) and requiring the differential equation to hold with the ap-
propriate inequality for any such test function.

The proof of Theorem 1 is a combination of two propositions (proved in the Ap-
pendix). First, we prove that the value function is a viscosity solution to the stated equa-
tion.

Proposition 1 (Optimality). The value function va is a viscosity solution to (RP).

Proposition 1 follows from standard dynamic programming arguments and applying
Itô’s lemma to appropriate test functions, although our setup imposes minimal assump-
tions.

We then turn to proving we have a unique viscosity solution, therefore correspond-
ing to the value function itself. To do so, we first establish a comparison principle result
that will also be of practical interest in characterizing equilibrium properties.

Lemma 1 (Comparison principle). If w is a viscosity supersolution and w is a viscosity
subsolution to (RP), then w≥w in [0, 1].
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The comparison principle allows us to find bounds for our solution by construct-
ing sub and supersolutions. Moreover, since existence can be established using general
arguments, the comparison principle is instrumental in proving uniqueness.6

Proposition 2 (Existence and uniqueness). There exists a unique viscosity solution to
(RP). Furthermore, it is continuous.

The proof of Lemma 1 and Proposition 2 relies on adapting existing techniques from
the literature (see Crandall, Ishii, and Lions (1992)) with arguments that are idiosyncratic
to the problem at hand.

2.2 Properties of best responses

We now characterize player A’s optimal control for an arbitrary strategy by player B.
Recall that playerA’s control is characterized by

a(x) = 1
rc
v′′
a(x)+,

Even if playerA’s optimal control does depend on b (the dependence of b is encoded
within the value function va), the following theorem shows that the best response and
value function always exhibit a simple structure characterized by a threshold mecha-
nism.

Theorem 2 (Best-response characterization). Let b be a continuous function and va the
solution to problem (RP) given b. The optimal control a∗ exists, and the solution to the
control problem is fully characterized by two thresholds xa, xa ∈ (0, 1], xa ≤ xa, such that:

(i) on [0, xa ) ( the beneficial instability region), va is strictly convex, and strictly above
the identity;

(ii) on [xa, xa] ( the neutral region), va(x) = x;

(iii) on (xa, 1] ( the detrimental instability region), va is strictly concave, and strictly
below the identity;

(iv) a∗ is continuous, strictly positive on [0, xa ) and zero elsewhere.

Furthermore, va is increasing and twice continuously differentiable everywhere, except
possibly at xa. If va is not differentiable at xa < 1, then limx→x−

a
v′
a(x) ≥ limx→x+

a
v′
a(x)

(only concave kinks are permissible).

6To prove existence, it is sufficient to exhibit a subsolution (take v(x) := 0) and a supersolution (take
v(x) := 1) such that the latter is everywhere above the former. We can then construct a solution by taking
the pointwise supremum of subsolutions that are everywhere below that supersolution. This is known as
Perron’s methods in the viscosity solution literature. The comparison principle then immediately implies
uniqueness of a viscosity solution.
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Let us discuss the intuition underlying Theorem 2 and its implications.
First, observe that the threshold structure is a general feature of best responses, re-

gardless of player B’s strategy. The optimal strategy for A always consists of generating
strictly positive instability when the status quo is unfavorable enough, and doing so in
a vanishing manner as the player reaches a “satisficing” threshold xa. The fact that va is
strictly above the identity in the beneficial instability region captures the idea that A is
strictly better off there than if they were able to stay at that status quo forever. Further,
the fact that va is convex in this region captures the (positive) option value from insta-
bility. This option value decreases as player A’s share nears xa and the player becomes
more prudent as they have more to lose.

The lower threshold xa synthesizes player A’s ability to use instability to their ad-
vantage and is determined both by b, the discounting factor, and the cost parameter.
Essentially, expected gains from instability come from durably experiencing more fa-
vorable states. Beyond xa, it would be too costly or not beneficial enough to try to gen-
erate instability in their favor. This can be because it would require too long a span of
instability—entailing too high a cost—to exploit the option value offered by the lower
bound and secure durable improvements, or because player B would generate enough
instability at more favorable situations for player A so as to prevent them from durably
improving their situation there.

The beneficial instability region [0, xa ) is always nonempty: there is always a benefit
to generating some instability when the status quo is too disadvantageous. Reflection
binds at the lower bound, where the player has the worst possible payoff; for any interior
status quo, instability is locally equally likely to make the player worse off or better off.
Yet, the fact that there is a worst state generates option value and the strict incentive to
increase volatility at the bound spills over and makes it profitable to generate instability
in a nearby region. Such a threshold not only always exists for arbitrary b, but it is also
always strictly above zero, which demonstrates that instability always enables players to
fight off against situations that are too unfavorable.

The upper threshold xa only matters for determining the payoff structure at states in
which player A does not contribute to instability. It delineates an intermediate neutral
region [xa, xa] where, even though player A chooses not create instability, whatever in-
stability might be generated by the opponent is not harmful (expected payoff are equal
to status quo payoffs). For states that are strictly preferred to xa by playerA—where they
have a lot to lose—whatever instability is generated by the opponent is actively harmful
to player A. This is captured by the fact that va(x) < x in this region: player A would
prefer staying at the status quo, and va is concave as the option value of instability is
negative. Although the neutral region is always nonempty (but possibly consisting of a
single point), the detrimental instability region can be empty. Additionally, in general, it
need not be the case that b(x) = 0 in the neutral region.

A corollary of the previous results is that xa < 1 if and only if b(1)> 0. This highlights
how instability at the extreme states significantly influences the player’s behavior in the
interior of the domain. If b(1) = 0, no amount of instability that player B otherwise
generates inside the domain can be harmful to A (the detrimental instability region is
empty). As in this case, b entails no instability at player A’s preferred state (x= 1), and
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as playerAwould never optimally generate instability at this most favorable status quo,
A is then able to make this boundary fully absorbing. What happens at the extremes
has drastic consequences everywhere else: whatever instability B otherwise generates is
nonharmful and instead benefits player A. By contrast, if the boundary at 1 is actively
reflecting (b(1) > 0), player A cannot unilaterally stop the process at 1, and the option
value of increasing instability when close to 1 is negative.

Lastly, we provide a monotonicity result that suggests what will be the structure of
equilibria: if one player creates more instability when more disadvantaged, but becomes
more conservative as the status quo is more favorable to them, the other player will have
incentives to do the same.

Proposition 3. If b is nondecreasing on [0, xa], then the optimal control to the problem
(RP) is nonincreasing.

2.3 The inactive benchmark

Consider the case in which a player’s opponent is fully passive and never generates any
instability. We take player A’s viewpoint, with b(x) ≡ 0 for all x, so that player A’s ac-
tions are the only source of instability to the status quo. The analysis of this individual
decision-making problem not only serves to ground intuition, but most importantly,
key properties of equilibria will be determined by what would happen in the inactive
benchmark.

The HJB equation has a clear interpretation: it relates the instantaneous cost of con-
trol at the optimum to the marginal benefit relative to the status quo, which can be seen
as the option value of instability. This also highlights why the second-order derivative in
this context captures the option value. Indeed, rewrite the HJB as

r
(
va(x) − x)︸ ︷︷ ︸

improvement on the status quo

= 1
2rc

[
v′′
a(x)+

]2︸ ︷︷ ︸
option value

= rc

2
a∗(x)2︸ ︷︷ ︸

instantaneous cost of control

The next proposition strengthens Theorem 2 when restricting to the special case b≡ 0.

Proposition 4 (Properties of the inactive benchmark). Let v0
a be the value function in

(RP) given b≡ 0, and a∗,0 be the corresponding optimal control. Then there is x0
a ∈ (0, 1]

such that:

(i) on [0, x0
a ), v0

a is strictly convex, v0
a(x) > x, and a∗,0 is strictly positive and strictly

decreasing;

(ii) on [x0
a, 1], v0

a(x) = x and a∗,0(x) = 0.

Moreover, v0
a and a∗,0 are twice-continuously differentiable except possibly at x0

a = 1, with
v0′
a ≤ 1.
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Figure 1. Comparative statics for playerA in the inactive benchmark.

Figure 1 illustrates Proposition 4 with a numerical approximation of the value func-
tion and the optimal control of playerA in the inactive benchmark for different param-
eter values. It exhibits the typical best-response structure: the value function is convex
and above the identity when x is low enough; it meets the identity at x0

a, and remains at
the status quo for greater values of x.

Since b ≡ 0, the detrimental instability region is empty: if player A fully controls
instability, then they will never choose harmful levels of instability as they can always
guarantee the status quo—therefore v0

a(x) ≥ x everywhere. Moreover, player A’s inac-
tion region [x0

a, 1] determines the states at which, for the given cost and discounting
parameters, player A has no possible intrinsic benefit from instability. The active re-
gion [0, x0

a ) symmetrically delineates the situations where r and c are such that player
A can strictly profit from instability. By the same logic, the fact that a∗,0 is strictly de-
creasing over the active region [0, x0

a ) captures the idea that the return to instability is
decreasing as the status quo moves farther away from zero: at more favorable states, the
improvement on the status quo shrinks and so does the value to generating instability.
Figure 1(b) also depicts the corresponding optimal control to Figure 1(a), illustrating this
decreasing behavior.

We further provide comprehensive comparative statics on r, c, which will later
prove useful to obtain comparative statics of equilibria. Rewrite the HJB equation as
2r2c(va(x) − x) − [v′′

a(x)+]2 = 0. Assume va solves this equation, along with the bound-
ary condition (in the viscosity sense) for r, c, and denote xa the corresponding inaction
threshold. Let r̃, c̃ such that r̃2c̃ ≥ r2c. Directly 2r̃2c̃(va(x) − x) − [v′′

a(x)+]2 ≥ 0. Since
the boundary conditions are still verified in the viscosity sense, we can conclude that
va is a supersolution in the problem for r̃, c̃. Comparative statics then follow from the
comparison principle (Lemma 1); they are summarized in the next proposition.
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Proposition 5. Consider two pairs of cost and discounting parameters r, c and r̃, c̃. De-
note v0

a, x0
a, a∗,0 the value function, optimal threshold, and control corresponding to the

problem for r, c. Similarly, define ṽ0
a, x̃0

a, ã∗,0, a∗,0 under r̃, c̃. If r̃2c̃ > r2c, then:

(i) x̃0
a ≤ x0

a, with strict inequality if x̃0
a < 1;

(ii) ã∗,0 ≤ a∗,0 on [0, 1], with strict inequality on [0, x0
a ); and

(iii) ṽ0
a ≤ v0

a on [0, 1], with strict inequality on [0, x0
a ).

The interpretation of Proposition 5 is quite natural. For a higher cost/impatience,
instability is less profitable overall. Since the option value of generating instability is
fully due to the player’s forward-looking behavior, higher impatience reduces the option
value provided by the lower bound on the state x. Higher c raises the marginal cost of
instability. As a consequence, higher cost or impatience cause the region where it is
beneficial to generate instability to shrink (x̃0

a ≤ x0
a). The instability generated at any

state x is milder (ã∗,0 ≤ a∗,0), resulting in lower payoffs (ṽ0
a ≤ v0

a).
As a player becomes more patient and faces lower costs to instability, the player may

find it worthwhile to generate strictly positive instability everywhere but at 1, i.e., x0
a = 1.

The player’s threshold is also associated with the shape of the player’s optimal instabil-
ity as illustrated in Figure 1(b). When player A stops instigating instability at x0

a < 1,
then the fact that the flow payoffs are bounded above by 1 (x denotes a share) never
comes into play; the upper bound is inactive. In this case, the player’s optimal control
exhibits a convex shape, and the instability generated by player A vanishes smoothly,
with a∗,0′

(x) → 0 as x→ x0
a, as observed from the darker solid and dashed lines in Fig-

ure 1(b). In contrast, we observe that if the discount rate or the cost to instability are
low enough, the player adjusts volatility to exactly attain its first best and avoid the up-
per bound becoming actively reflecting. Then the player only stops generating instabil-
ity exactly at x0

a = 1, and we obtain the convex–concave shape for a∗,0 that we observe
in the dashed-dotted line in Figure 1(b), associated to instability vanishing abruptly at
x0
a. We show that this distinction between the cases depicted in Figure 1(b) is in fact a

generic property.

Proposition 6 (Implications of active upper bound). Let v0
a be the value function in

(RP) given b≡ 0, and a∗,0 be the corresponding optimal control. Then:

(i) a∗,0 is convex if and only if v0′
a,−(x0

a ) = 1;

(ii) there is x̂a ∈ [0, x0
a ) such that a∗,0 is convex on [0, x̂a] and concave on [x̂a, x0

a] if and
only if v0′

a,−(x0
a )< 1.

Furthermore, v0′
a,−(x0

a ) = 1 if x0
a < 1, and limx↑x0

a
a∗,0′(x) = −∞ if v0′

a,−(x0
a )< 1.

All the results in this section carry symmetrically to player B’s problem, with the
change of variable y = 1 − x (inverting the interval by relabeling 1 as 0 and vice versa).
This follows from symmetry of the problem, since player B’s best-response problem is
exactly player A’s problem after the change of variable—up to possibly heterogeneous
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parameters rb, cb. Equivalently, this amounts to expressing everything in terms of the
payoffs to player B instead of playerA.

3. Characterizing equilibria

We now turn our attention to characterizing (Markov-perfect) equilibria of the game.
These will be pairs of strategies (a, b) such that each is a best response to the other, and
so any equilibrium will necessarily have to comply with the properties discussed in the
previous section. In this subsection, we first establish three necessary properties inher-
ent to any equilibrium: (i) at most one player is creating instability, (ii) the more favor-
able the status quo for a player, the lower the instability that player generates, and (iii)
each player generates lower instability than they otherwise would were their opponent
passive.

This characterization allows us to delineate two possible cases for equilibrium, de-
pending on whether the instability regions in each player’s inactive benchmark overlap.
If they do not overlap, this gives rise to a unique accommodating equilibrium, where
players take an accommodating attitude toward the pursuit of a more favorable status
quo by their opponents, generating many stable states. If they do overlap, this leads
to the existence of multiple deterrence equilibria, each characterized by a unique stable
status quo that is sustained by a deterrence mechanism.

3.1 Necessary properties of equilibria

We first turn to a crucial property of equilibria: the fact that equilibrium instability
strategies decouple—at most one player generates instability at any given status quo.
Note that this feature is not immediately implied by our characterization of individual
best responses in Section 2.2: there are strategies b for which player A’s best response
involves generating instability at states x for which b(x) > 0. Nevertheless, any equi-
librium of the game is uniquely characterized by two thresholds that delineate three
regions: a stable region, a region where only player A generates instability, and a re-
gion where only player B generates instability. The next proposition summarizes those
properties and characterizes the structure of equilibria.

Proposition 7. In any equilibrium, there exist x, x ∈ (0, 1), x≤ x such that:

(i) ∀x ∈ [0, x), a(x)> 0 = b(x);

(ii) ∀x ∈ (x, 1], a(x) = 0< b(x); and

(iii) ∀x ∈ [x, x], a(x) = 0 = b(x).

Furthermore, a (resp., b) is strictly decreasing on [0, x) (resp., increasing on (x, 1]), and the
equilibrium is uniquely pinned down by x, x.

The first thing to note is that Proposition 7 distinguishes between states that trigger
instability and those at which stability is attained. The former are those that are deemed
excessively unfavorable by either playerA—x ∈ [0, x)—or player B—x ∈ (x, 1].
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The argument for why this “decoupling” structure of equilibria emerges is simple:
owing to the fact they have diametrically opposed interests (constant-sum gross flow
payoffs), it is not possible that both players expect to strictly improve on the same status
quo. At most, one of the players sees an advantage to generating instability at any given
status quo. We know that at extremes states, x= 0 and x= 1, the disadvantaged player
will actively push back by creating instability. After all, they have nothing to lose, and
while costly, instability can only improve their situation. Then, due to the fact that for
any strategy of their opponent the set of states at which they find it profitable to generate
instability is convex and includes their most unfavorable state (as shown in Theorem 2),
we obtain the existence of these three regions.

Second, Proposition 7 tells us as players benefit from a larger share of the available
benefits, they become more conservative in how much volatility they create. Recall that
the benefit to instability derives solely from the option value provided by the finiteness
of resources being shared, as the is no immediate gain to instability when x ∈ (0, 1).
However, as there is a natural lower bound on how unsatisfactory the outcome can be,
patient players may want to take a calculated risk to reap the benefits of this option
value. The proof follows from the fact that equilibrium strategies exhibit this decoupled
structure, combined with the fact that if the opponent is unresponsive to instability, the
optimal control is monotone in the state just as in the inactive benchmark discussed in
Proposition 4.

The next property of equilibria relates the players’ equilibrium strategies with their
optimal instability strategy in the inactive benchmark case. While it is tempting to think
that in general the player always attains the highest expected payoff when their oppo-
nent is passive (b ≡ 0), this is not the case. Player B could potentially take A’s stead in
generating optimal instability and saving A the cost of doing so. However, in equilib-
rium, it is indeed true that player A cannot be better-off than if facing a passive oppo-
nent.

Proposition 8. In any equilibrium, va ≤ v0
a and vb ≤ v0

b.

The result derives from two observations. First, that va is a subsolution to (RP) in
the inactive benchmark case, for which v0

a is a solution. Second, from the fact that, from
the comparison principle (Lemma 1), we know that any subsolution is weakly smaller
than a supersolution, and thus, than a solution. This implies we can compare equilib-
rium thresholds to inactive benchmark thresholds, as well as equilibrium instability to
inactive benchmark strategies (a∗,0, b∗,0). Specifically, a player will never generate more
instability at any point than they would in the inactive benchmark. This observation is
formalized in the following corollary.

Corollary 1. In any equilibrium with thresholds x, x and equilibrium strategies a∗, b∗:
(i) x ≤ x0

a and x0
b ≤ x; and (ii) a∗ ≤ a∗,0 and b∗ ≤ b∗,0. Furthermore, a∗ < a∗,0 and b∗ <

b∗,0(x) on [0, x0
a ) and (x0

b, 1], respectively, if and only if, x < x0
a and x0

b < x.

What a player could and would do if their opponent were to play passively deter-
mines the structure of equilibrium. In equilibrium, the optimal strategy b of the op-
ponent will never be beneficial to player A because they have diametrically opposed
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interests: it is not possible that both players simultaneously benefit from instability in
equilibrium. In other words, the intuition that if instability is not beneficial at a given
point when b ≡ 0, it is still not beneficial when b �= 0 is true in equilibrium, but not in
general. Additionally, the optimal strategy of the inactive benchmark and the inaction
threshold x0

a in particular can be interpreted as the players’ ability to threaten their op-
ponent. This underpins the argument that the inactive case discussed in Section 2.3 is
indeed the right benchmark.

While Propositions 7 and 8 deliver necessary properties of any equilibrium, they are
silent about the existence of equilibria. The remainder of this section is devoted not only
to showing their existence, but also to further specializing the characterization of equi-
libria by delineating the two possible kinds of equilibrium, which depend on parameter
values—and in particular on the relative positions of x0

a and x0
b.

3.2 Characterization of equilibria: Deterrence and accomodation

The main result of this subsection fully characterizes equilibria of the game; it delin-
eates two possible cases depending on the relative position of the thresholds in the in-
active benchmark. When profitable instability regions in the inactive benchmark do not
overlap, there is a unique accommodating equilibrium where both players follow their
inactive benchmark strategies and there are many stable states (x < x). If profitable
instability regions do overlap in the inactive benchmark, there are multiple deterrence
equilibria each characterized by a single stable state x= x. Then equilibrium strategies
can be obtained by solving an “as if” inactive benchmark on each player’s respective re-
stricted interval—[0, x] for A, [x, 1] for B—as if reflection occurred at x. We first state
the theorem, and then elaborate on its intuition and implications.

Theorem 3. An equilibrium (a∗, b∗ ) exists.
(Accommodating equilibrium) If x0

a ≤ x0
b, there is a unique equilibrium given by

(a∗, b∗ ) = (a∗,0, b∗,0 ). Moreover, at any equilibrium such that x < x it must be the case
that (x, x) = (x0

a, x0
b ).

(Deterrence equilibrium) If x0
a > x

0
b, a pair of strategies (a∗, b∗ ) is an equilibrium if

and only if a∗(x) = 1(x<x)
1
raca

v′′
a(x) and b∗(x) = 1(x>x)

1
rbcb

v′′
b(x), where va and vb are the

unique viscosity solutions to the respective inactive benchmark problems on [0, x] and
[x, 1], and x ∈ [x0

b, x0
a] \ {0, 1}.

Whenever there is a status quo such that neither of players wants to increase insta-
bility even if their opponent were passive (x0

a ≤ x0
b), then equilibrium behavior is every-

where as if their opponent were indeed passive. Each player is accommodating toward
their opponent’s aspirations to obtain a better outcome for themselves by creating some
instability; players never “push back” against one another.

It is worth emphasizing that an accommodating equilibrium, when it exists, must be
the unique equilibrium. In other words, when the inactive benchmark is such that there
is no status quo where both players would be willing to generate instability if the other
were inactive, then this is the only equilibrium outcome.
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Figure 2. Equilibrium strategies in an accommodating equilibrium. Note: Parameter values
are ra = rb = 7 and ca = cb = 15 for solid lines, and r̃a = 4, c̃a = 5 for the dashed line.

Another noteworthy feature of accommodating equilibria is that they exhibit an in-
terval [x0

a, x0
b] of stable states where the status quo prevails. This interval can be very

large, as in Figure 2(a) where approximately every state between 1/4 and 3/4 is stable.
There, the inability to profitably generate instability means that both players are willing
to accept a large range of states. As a consequence, states that can be potentially much
more strongly preferred by one player than another can be sustained in the long run.

Given that, from Proposition 5, x0
a (resp., x0

b) is decreasing (resp., increasing) with
respect to ra and ca (resp., rb and cb), equilibrium behavior will be accommodating if and
only if players’ impatience and costs to generating instability are high enough. What if
both players have a low enough cost to generating instability, or are patient enough, such
that there exists a region where both players would like to generate instability if the other
one were inactive? There cannot be an accommodating equilibrium in that case: both
players using their inactive benchmark strategy would lead to both generating strictly
positive instability at some status quo, contradicting Proposition 7. The structure of
deterrence equilibria comes from the fact that, when x0

b < x
0
a, in any equilibrium, it must

be the case that the stable region is reduced to a single point.

Lemma 2. If x0
a > x

0
b, then at any equilibrium x= x.

To see why this must be the case, note that if x < x, both players’ value functions
must equal the identity on [x, x] as on that region no one is generating instability. From
Corollary 8, it must be that at least one of the players would like to instigate instability
were their opponent passive throughout, i.e., x < x0

a or x0
b < x. Lemma 2 then shows

that if a player generates instability at a given status quo when their opponent is passive
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throughout (as in the inactive benchmark), then they would do the same in any equi-
librium in which their opponent is passive around this state. Moreover, Lemma 2 and
Proposition 8 combined imply that if x0

a > x
0
b, then x= x ∈ [x0

b, x0
a].

The second key observation is that, at any equilibrium such that x0
a > x > x

0
b, the

players’ equilibrium strategies are vanishing abruptly at x. Player A’s value function is
a viscosity solution va that satisfies Fa(x, va(x), v′′

a(x)) = 0 on [0, x], B(0, v′
a(x)) = 0, and

va(x) = x. Consequently, we will have that the left-derivative of the value function at x
is strictly smaller than one, as va ≤ v0

a and v′
a,−(x) ≤ v0′

a,−(x) < v0′
a,−(x0

a ) ≤ 1, where the
last inequality follows from the fact that v0

a is strictly convex on (x, x0
a ). As, owing to the

regularity of our problem, we can derive, for x ∈ (0, x),

a∗′(x) ∝ v′′′
a (x) = r2c

v′
a(x) − 1

v′′
a(x)

< 0,

we find that a∗′(x) → −∞ as x ↑ x, given that the numerator is bounded away from zero
and strictly negative v′

a,−(x)< 1, and the denominator is vanishing.
This second observation indicates that, at any equilibrium such that x0

a > x > x
0
b,

players behave as if x is an actively reflecting boundary. Indeed, the fact that playerA’s
equilibrium strategy vanishes abruptly at x is reminiscent of how the optimal control in
the inactive benchmark case is affected by an actively reflecting upper bound (Proposi-
tion 6): if v0′

a,−(x0
a )< 1, then a∗,0′

− (x0
a ) = −∞.

Combined, both these observations suggest a constructive method to characterize
any equilibrium: take a candidate stable point x ∈ (x0

b, x0
a ) and solve for the player A’s

(resp., B’s) unique viscosity solution to the inactive benchmark problem on [0, x] (resp.,
[x, 1]), as if reflection occurred at x instead of at 1 (resp., at (0). Then solve the HJB on
the region in which the player is inactive taking the opponent’s strategy as given with the
appropriate boundary conditions, piece the two together, and verify that the resulting
function is a viscosity solution to the original problem taking the opponent’s strategy
as given. In particular, the resulting function needs not only to be continuous at the
threshold, but it also cannot exhibit a convex kink at x.

The observations above indicate that any equilibrium must conform with this con-
struction, and thus, it is pinned-down by the threshold x. The question of existence of
an equilibrium can then be rephrased as follows: is there an state x ∈ [x0

b, x0
a] for which

such a construction holds? Theorem 3 answers this question affirmatively and provides
an exhaustive characterization: whenever x0

b < x
0
a, every x ∈ [x0

b, x0
a] \ {0, 1} determines

an equilibrium (when taken as the stable point in the construction above), and all equi-
libria correspond to this construction for some x ∈ [x0

b, x0
a] \ {0, 1}.

The proof verifies that any equilibrium needs to satisfy the construction laid out
above, and that such a construction is successful in characterizing equilibrium viscosity
solutions whenever x ∈ [x0

b, x0
a] \ {0, 1}. Note that x can never be equal to 0 or 1 because,

as proved in Theorem 2, va(0), vb(1) > 0: at extreme states, the player with nothing to
lose generates strictly positive instability in equilibrium.

In such cases, stability at equilibrium is sustained via deterrence: if their opponent
were to not react, both players would like to destabilize the status quo in hope of an
improvement of their situation at x. It is exactly because opponents would react and
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Figure 3. Equilibrium strategies in a deterrence equilibrium. Note: Parameter values are ra = 5,
ca = 6, rb = 6, and cb = 15.

push back, and would do so with enough intensity, that x is a stable status quo. This is
related to the existence and interpretation of a concave kink in the value function. There
is a kink only in one very specific situation: a deterrence equilibrium, with a single stable
status quo, supported by threats of high enough instability on both sides of it. Indeed, if
there is a kink at x, then b is strictly positive on (x, 1] but zero at x, which implies that x
is an status quo at which neither player generates instability.

The fact that only concave kinks are possible can be interpreted as each player fight-
ing back “hard enough” toward the stable status quo, so as to dissuade the other player
from attempting to further improve their situation.7 In a loose sense, it is the fact that
player B pushes back by abruptly increasing instability to the right of the stable status
quo that renders it absorbing by making the slope of va become discontinuously flatter.
This deters player A from taking action as it would be too costly to push the process
beyond such a point, and again a symmetric argument holds for player B.

Equilibrium strategies in accommodating and deterrence equilibria exhibit mean-
ingfully different properties: player A’s (B’s) equilibrium strategy is convex if x0

a ≤ x

(x ≤ x0
b) and convex–concave otherwise. In an accommodating equilibrium (as in

Figure 2(a)), both players’ equilibrium strategies are convex and instability vanishes
smoothly. In contrast, in a deterrence equilibrium (as in Figure 3(a)), equilibrium strate-
gies are convex–concave and have infinite slopes at the stable status quo, just as they do
in the inactive benchmark when the upper bound becomes a binding constraint. This
again captures the constrained nature of a deterrence equilibrium: it is as if the other

7If there were a convex kink at x, va would be increasing faster to the right of x than to the left, making it
profitable for player A to strictly increase volatility in a way that pushes the process up and symmetrically
for player B.
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player is acting as a reflecting barrier at the stable status quo. In Figure 3(b), we also ex-
hibit the case of a second deterrence equilibrium in which the unique stable status quo
coincides with x0

b. In such case, player B’s equilibrium strategy also coincides with their
optimal control in the inactive benchmark. With a reflecting boundary at x = x0

b and
player B’s optimal control would not be affected—explaining the convex structure of
the control. However, it curtails player A’s ambitions of reaching more favorable states
(x0
a > x= x0

b), giving rise to the convex–concave structure of their equilibrium instability
strategy.

3.3 Equilibrium comparative statics

The characterization of equilibria highlights that the thresholds x0
a, x0

b capture the max-
imal threat power of each player: there is no equilibrium with a stable status quo more
favorable to playerA than max{x0

a, x0
b} and less favorable than min{x0

a, x0
b}, while the op-

posite is true for player B.
This intrinsic dependence of equilibria on the inactive benchmark thresholds x0

a, x0
b

entails that we can directly harness the comparative statics on the individual decision
problem (Proposition 5) to obtain comparative statics of equilibria with respect to the
players’ costs to instability, c, and their patience or discount rate, r.

When players are impatient enough and face high enough costs to instability, we
obtain a unique accommodating equilibrium with a thick region of stable states, [x0

a, x0
b],

with x0
a ≤ x0

b. Fixing rb, cb (hence x0
b), as ra or ca decrease, x0

a increases, and the set of
stable states shrinks, as depicted in Figure 2(b): player A will now find it worthwhile
to generate instability at states that were previously stable. With enough patience and
costs low enough (ra, ca small enough), we eventually obtain x0

a > x
0
b, and transition into

deterrence equilibria. All equilibria have a unique stable stable state x ∈ [x0
b, x0

a] \ {0, 1}.
Hence, as ra, ca further decrease, x0

a increases and the set of equilibria expands. Let ≤SSO

denote the strong set order. The following corollary summarizes the results.

Corollary 2. Fix rb, cb > 0.

(i) There exists a unique θ > 0 such that r2
aca ≤ (<)θ if and only if x0

a ≥ (>)x0
b.

(ii) Let (ra, ca ), ( r̃a, c̃a ) and, given (rb, cb ), denote by S and S̃ the sets of stable states
associated with the respective equilibria. If r2

aca ≤ (<)r̃2
a c̃a, then equilibrium stable

states increase in the strong set order, S ≤SSO (<SSO )S̃ . Moreover, S̃ ⊇ (⊃)S if θ ≤
r2
aca, and S ⊆ (⊂)S̃ if r̃2

ac̃a ≤ θ.

The result holds symmetrically if we fix ra, ca and vary player B’s parameters.
Since if a player is more patient (lower r) or faces lower costs to instability (c), equi-

librium stable states shift in the strong set order. This suggests the possibility of ob-
taining comparative statics also with respect to equilibrium payoffs. The comparison is
straightforward across accommodating equilibria, but there is a subtlety when consid-
ering deterrence equilibria. Decreasing c will still make a player everywhere better off
since it shifts the value function up in their instability region, and leaves it unchanged in
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the passive region. Decreasing r, however, now has an ambiguous effect: fixing a given
equilibrium (i.e., a stable point) it makes the player better off in their instability region
and worse off in their passive region. The multiplicity of equilibria further muddles the
comparison, since it is possible to select different equilibria under the different param-
eters and have crossing equilibrium value functions. The following proposition sum-
marizes comparative statics of equilibrium payoffs in c and r, respectively—the proof is
directly from comparison principle arguments.

Proposition 9. Fix rb, cb. Let ṽa, va, and x̃, x be player A’s value function and equilib-
rium thresholds associated with equilibria given r̃a, c̃a and ra, ca, respectively, such that
( r̃a, c̃a ) ≤ (ra, ca ) and x̃≥ x. Then ṽa ≥ va on [0, x̃]. If, furthermore, r̃a = ra or x̃ < x0

b, then
ṽa ≥ va on [0, 1].

4. Equilibrium dynamics

What is the effect of players using strategically generating uncertainty on the dynam-
ics of instability and the evolution of the status quo? The precise characterization of
equilibrium in the previous section can be used to answer these questions directly.

A salient characteristic of our model is that all equilibria (of accommodating or de-
terrence type) display a form of path dependency. Consider an arbitrary equilibrium
with thresholds x, x partitioning the state space [0, 1], and denote X0 the initial point
of the process. If we start at a stable state, X0 ∈ [x, x], this will remain the status quo
forever since no player generates any instability. Moreover, if the process starts in say
A’s instability region [0, x], it will also remain in this region, and similarly for B’s insta-
bility region [x, 1]. This comes from continuity of the process and the fact that the outer
boundary (0 or 1, resp.) is reflecting while the inner boundary (x or x, resp.) is absorb-
ing in equilibrium. This implies that whichever player starts off as most disadvantaged,
will in equilibrium remain so forever, and can at most hope to reach their least preferred
stable status quo.

Does the process converge in the long run toward a stable status quo or does insta-
bility perpetuate if we start in an instability region? Given the previous discussion, if
there is (probabilistic) convergence from a player’s instability region, it will be toward
their least preferred stable status quo. The next proposition confirms this intuition.

Proposition 10. Let Xt be the process associated to equilibrium strategies a∗, b∗, and
denote x, x the corresponding equilibrium thresholds. Then (i) if X0 ∈ [x, x], Xt =X0 for
all t; and (ii) ifX0 < x (resp., > x),Xt converges almost surely to x (resp., x).

For the case X0 ∈ [x, x], the proof of Proposition 10 is trivial given that the process
is degenerate and there is no instability. For X0 < x, we can use a constructive ap-
proach to show that Xt is a submartingale. Indeed, construct the process Yt defined
by dYt := √

2a∗(|Xt|)dBt . Because of the structure of a∗, Yt has absorbing boundaries
on [−x, x] and, therefore, we can verify that it is a martingale using boundedness of a∗
and the optional stopping theorem. By using pathwise uniqueness of the solution Xt ,



Theoretical Economics 19 (2024) The Dynamics of Instability 387

we can argue that Yt = |Xt|, i.e., Yt is the mirror image ofXt without the reflection at 0—
this is done by fixing a Brownian path Bt(ω), which uniquely pins down Xt(ω) by path-
wise uniqueness. Then we argue that Yt and Xt can only cross the origin at the same
time and must be either identical or mirrored between two hitting times of zero (since
they have the same increments). Since the absolute value is a convex function, we con-
clude that Xt is a submartingale, and by the martingale convergence theorem it must
converge almost surely. We can then prove that Xt converges to x a.s. by contradiction,
since convergence to any x < x would only be sustainable under a measure zero trajec-
tory for the Brownian motion. The argument for X0 > x is symmetric using a similar
construction around 1.

Proposition 10 entails instability is decreasing in the long run. As players ap-
proach a stable status quo, whichever player is generating instability becomes more
conservative—a consequence of the properties of best responses. Therefore, in the long
run stability prevails.

5. Discussion

We now discuss a number of variations on our model.
Exogenous instability. To clearly identify the strategic incentives to generate insta-

bility, we focused on the case in which any instability is endogenous. Given that our
best-response characterization allows for arbitrary strategies by the opponent, and as
these correspond to continuous exogenous state-contingent volatility structures, all in
Sections 2.1 and 2.2 holds identically when allowing for exogenous instability sources
(independent from αt andβt , conditional onXt ). Considering a fixed exogenous level of
instability σ > 0, such that dXt =

√
αt +βt + σ2 dBt − dKt , an equilibrium exists.8 How-

ever, while at any equilibrium there is a unique state x ∈ (0, 1) at which a∗(x) = b∗(x) =
0, the modified model (mechanically) exhibits perpetual instability. There is no longer
convergence to a stable status quo: the state will eventually become too unfavorable for
any given player. Consequently, players will forever alternate in creating instability so as
to seek (temporary) improvements over the status quo.

Costs to instability. While we relied on quadratic costs for expositional convenience,
provided enough regularity,9 results generalize to smooth, strictly convex costs to insta-
bility. In particular, the proofs for the threshold structure of best responses (and other
properties in Theorem 2), monotonicity, and equilibrium characterization can be ad-
justed to accommodate general cost structures. The HJB equation would be given by

rva(x) − sup
a∈R+

{
rx− rc(a) + (

a+ b(x)
)
v′′
a(x)

}
.

8It is easy to show that the unique viscosity solution va given an arbitrary continuous b is now thrice-
continuously differentiable, and that the first three derivatives are bounded. Existence of an equilibrium
then follows by an application of the Arzelà–Ascoli theorem and Schauder’s fixed-point theorem.

9In particular, costs need to be sufficiently smooth, strictly increasing, and strictly convex on R+, with
0 = c(0) = c′(0). Although it goes beyond the scope of this paper to characterize its limits, the proof strategy
to (a version of) Theorem 1 extends given enough regularity on the cost function.
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Moreover, as rc′(a∗(x)) = v′′
a(x)+, whenever a∗(x)> 0 we would then have

r
(
va(x) − x) − b(x)rc′

(
a∗(x)

) = rc′(a∗(x)
)
a∗(x) − rc(a∗(x)

)
,

from which one can obtain that monotonicity of b implies monotonicity of a∗.10

State space. A substantive assumption in our model is that the state space lies on a

closed interval, as it is the option value provided by the lower bound that induces players

to generate strictly positive instability. Absent a lower bound on the state space, players

would have no desire to generate instability unless they were not risk-neutral. A similar

conclusion would hold if the boundaries were absorbing rather that reflecting.

Terminal payoff. Finally, we consider the case of having a terminal payoff, whereby

the instead of accruing a flow benefit, players accrue that payoff only when the both

players generate no instability. This can be seen as an extreme form of conflict, as creat-

ing instability fully deprives the opponent of any flow benefit. Immediately, for a given

strategy of the opponent b, one can see that player A’s optimal control would need to

satisfy a(x) = 0 whenever b(y ) > 0 for any y ≥ x, and thus we would have decoupling

for any best response. Heuristically, in an inactive benchmark (b≡ 0) one would expect

playerA’s value function to solve

rva(x) = max
{
rx,

1
2rc

[
v′′
a(x)+

]2
}

on (0, 1)

under boundary conditions v′
a(0) = 0, va(1) = 1, with the control being given by

a∗,0(x) = 1
rc v

′′
a(x)+. Differently from our model, we note that in such case the instability

would be increasing rather than decreasing in the inactive benchmark. Such a result is

reminiscent of Gul and Pesendorfer’s (2012) and Gul and Pesendorfer’s (2020).11 Focus-

ing on monotone strategies, a construction of accommodating equilibria with a region

of stable states given by [x0
a, x0

b] (if x0
a < x

0
b), and of deterrence equilibria with a unique

stable state x ∈ [x0
b, x0

a] (if otherwise) would be immediate,12 with instability greatest at

states nearing the region of stable states.

Our model’s novel approach to the mechanics of instability and its strategic impor-

tance in situations of conflict opens several paths for future investigation. It demon-

strates that the possible endogeneity of instability generates nontrivial dynamics that

should be further investigated, notably to better understand the interaction of various

conflict mechanisms in richer environments and their applications to concrete situa-

tions of conflict, bargaining, and related settings.

10We thank Yu Fu Wong for having pointed out that monotonicity would extend for general cost struc-
tures in the individual decision-making case—corresponding to our inactive benchmark with b≡ 0.

11Also, Moscarini and Smith (2001) who study not conflict but learning.
12Note that at a deterrence equilibrium, no player has an incentive to generate instability at x as this

would lead to permanent instability, and thus, a null benefit to instability to both players.
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Appendix A: Preliminaries

A.1 Stochastic differential equations with reflection

Consider our equation of interest, for a given a, b continuous measurable functions:

dXt =
√

2
(
a(Xt ) + b(Xt )

)
dBt − dKt

With say Xt ,Kt solve the reflection problem on O := (0, 1) if they are the continu-
ous Ft-adapted processes such that (i) dXt = √

2(αt + b(Xt ))dBt − dKt , (ii) Xt ∈ [0, 1]
a.s., and (iii) Kt is non-decreasing, its total variation |K|t = ∫ t

0 1Xt∈{0,1} d|K|s, and Kt =∫ t
0 n(Xs )d|K|s, where n(·) denotes the unit outward normal vector to O, i.e., n(1) = 1,
n(0) = −1.

Kt is the local time of the process at the boundary—it minimally pushes Xt back
inside of the domain (toward the inner normal) if it hits the boundary by compensating
the variations that would makeXt exit the domain. Lions and Sznitman (1984) show that
such processes are uniquely defined in much more general reflecting domains, essen-
tially under assumptions guaranteeing that the stochastic differential equation (SDE)
without reflection has a strongly (pathwise) unique solution.13

A.2 Test functions and second-order semijets

We recall the definition of second-order semijets. The second-order subjet of v at x0 ∈
(0, 1) is denoted by J2,−

[0,1]v(x0 ) ⊂ R
2 and defined as

(p,M ) ∈ J2,−
[0,1]v(x0 ) ⇐⇒

v(x) ≥ v(x0 ) +p(x− x0 ) + 1
2
M(x− x0 )2 + o(|x− x0|2

)
as x→ x0

Because the bounds play a special role, when x0 ∈ {0, 1} x can only converge to x0 from
one side. Following Crandall, Ishii, and Lions (1992), we consider the closure of the

subjet J
2,−
[0,1]v(x) in to properly define the viscosity characterization (at the boundary and

points of nondifferentiability).

13In general, this is not directly applicable to our equation. It is well known since the seminal paper of
Yamada and Watanabe (1971) that pathwise uniqueness of solutions to SDEs of the form dXt = σ(Xt )dBt is
difficult to guarantee beyond the general condition that σ is Hölder continuous with coefficient at least 1/2.
This condition clearly does not hold for general a, b continuous in our model. However, subsequent work
has improved on the Hölder-1/2 condition for specific cases. For our case, the presence of the reflection
helps guarantee existence and pathwise uniqueness although it might actually not hold for the unbounded
domain. In particular, Bass and Chen (2005) proved that under a mild regularity condition, the one-sided
reflection problem has a pathwise unique for a α-Hölder diffusion coefficient, α ∈ (0, 1/2). Bass, Burdzy,
and Chen (2007) extends and provides a different proof of the result. Their proof strategy for the one-sided
reflection essentially covers our case of interest and easily extends to having a second reflecting barrier: this
guarantees the pathwise uniqueness of a solution to our equation with one-sided reflection at zero. We can
then complete the proof by using the analytical apparatus of Lions and Sznitman (1984) or the original ap-
proach by Skorokhod (1961) to prove existence and pathwise uniqueness with the second reflecting barrier
given pathwise uniqueness of the one-sided reflecting process.



390 Barilla and Gonçalves Theoretical Economics 19 (2024)

To relate the subjet with our definition of viscosity solutions in terms of test func-
tions, we recall a classical result: (p,M ) ∈ J2,−

[0,1]v(x0 ) if and only if there exists a C2 func-
tionφ such that x0 is a local maximum of v−φ andφ′(x0 ) = p,φ′′(x0 ) =M . It is without
loss to require the maximum to be global and to impose φ(x0 ) = v(x0 ). In other words,
the subjet contains the first- and second-order derivative values that are admissible for
a smooth function φ that lies everywhere strictly below v (hence the subjet term) and
equals v at x0. This captures all the relevant differential information on v and can in-
deed be interpreted as a notion of differentiability for nondifferentiable functions. The
superjet is defined symmetrically, but considering a convex quadratic approximation (or
a smooth test function) from above. We denote it by J2,+

[0,1]v(x0 ) ⊂R
2 and it is defined as

(p,M ) ∈ J2,+
[0,1]v(x0 ) ⇐⇒

v(x) ≤ v(x0 ) +p(x− x0 ) + 1
2
M(x− x0 )2 + o((x− x0 )2) as x→ x0

with J
2,+
[0,1]v(x0 ) denoting the closure of the superjet. The analogue result holds for test

functions: (p,M ) ∈ J2,+
[0,1]v(x0 ) if and only if there exists a C2 function φ such that x0 is a

local (wlog global) minimum of v−φ and φ′(x0 ) = p, φ′′(x0 ) =M (wlog φ(x0 ) = v(x0 )).
We alternate between the (equivalent) formulation of viscosity properties in terms

of test functions and semijets to choose the most convenient and intuitive approach.

Appendix B: Omitted proofs

B.1 Proof of Theorem 1 (Viscosity characterization: Existence and uniqueness)

B.1.1 Proof of Proposition 1 (Viscosity characterization) Recall the control problem:

v(x) = sup
α∈A

E

[∫ ∞

0
e−rtf (Xt , αt )dt

]
where dXt =

√
2
(
αt + b(Xt )

)
dBt − n(Xt )dKt ,

where f (x, a) = x− c a2

2 .
The proof of the viscosity characterization of the solution is standard and relies on

applying the dynamic programming principle (DPP) and Itô’s formula—nonetheless, we
could not find a derivation that exactly matches all of our assumptions, so we provide
a direct derivation following usual steps.14 Our specific setup allows us to greatly re-
lax regularity assumptions on model primitives—in particular, it is sufficient that b is
continuous as long as we can guarantee pathwise uniqueness for the SDE.

We appeal to the following version of the DPP (see, e.g., Pham (2009), Section 3.3)
consisting of two results: (1) for all α ∈ A, for all stopping time τ, v(x) ≥ E[

∫ τ
0 e

−rtf (Xx
t ,

αt )dt + e−rτv(Xx
τ )]; and (2) for all ε > 0, there exists α ∈ A such that for all stopping

time τ, v(x) − ε ≤ E[
∫ τ

0 e
−rtf (Xx

t , αt )dt + e−rτv(Xx
τ )], where we use the notation Xx

t to
denote the value at t of the process following the dXt = √

2αt + b(Xt )dBt − n(Xt )dKt
and starting fromX0 = x.

14The closest result can be found in Lions (1986), with more regularity assumptions adapted for a more
general setting. The following proof closely follows the approach in Pham (2009, Section 4.3).



Theoretical Economics 19 (2024) The Dynamics of Instability 391

We first prove that v is a supersolution to (RP). Consider x0 ∈ [0, 1] and ϕ ∈ C2([0, 1])
such that x0 is a global minimum of v∗ −ϕ and without lossφ(x0 ) = v∗(x0 ), where v∗ de-
notes the lower-semicontinuous (l.s.c.) envelope of v. By definition, ∃{xn}n such that
xn → x0 and v(xn ) → v∗(x0 ) as n goes to infinity. By continuity of φ, γn := v(xn ) −
φ(xn ) → v∗(x0 ) − φ(x0 ) = 0. Define hn to be any strictly positive sequence such that
hn → 0 and γn/hn → 0 as n goes to infinity. Fix an arbitrary η > 0 and define the stop-
ping time τn := inf{t ≥ 0, |Xxn

t − xn| >η} (i.e., the first exit time of the process starting at
xn from a ball of size η). In turn, define the stopping time θn := τn ∧ hn.

Apply the DPP at xn using an arbitrary constant strategy αt ≡ a and stopping time
θn:

v(xn ) ≥ E

[∫ θn

0
e−rtf

(
Xxn
t , a

)
dt + e−rθnv(Xxn

θn

)]
.

Since x0 is a global minimum of v∗ − φ, v(x) ≥ v∗(x) ≥ φ(x) for all x ∈ [0, 1], and by
construction v(xn ) =φ(xn ) + γn, hence

ϕ(xn ) + γn ≥ E

[∫ θn

0
e−rtf

(
Xxn
t , a

)
dt + e−rθnϕ(

Xxn
θn

)]
.

Applying Ito’s formula at θn, xn and rearranging yields

γn ≥ E

[∫ θn

0
e−rt

(
f
(
Xxn
t , a

) + (
a+ b(Xxn

t

))
ϕ′′(Xxn

t

) − rϕ(
Xxn
t

))
dt

−
∫ θn

0
e−rtϕ′(Xxn

t

)
n
(
Xxn
t

)
dKt +

∫ θn

0
e−rtϕ′(Xxn

t

)√
2
(
a+ b(Xxn

t

))
dBt

]
.

The integrand in the last term
∫ θn

0 ϕ′(Xxn
t )(a+ b(Xxn

t ))dBt is bounded, so the expecta-
tion is equal to zero. Rearranging and diving by hn yields

γn

hn
+E

[
1
hn

∫ θn

0
e−rt

(
rϕ

(
Xxn
t

) − f (Xxn
t , a

) − (
a+ b(Xxn

t

))
ϕ′′(Xxn

t

))
dt

]
+E

[
1
hn

∫ θn

0
ϕ′(Xxn

t

)
n
(
Xxn
t

)
dKt

]
≥ 0.

For n high enough, θn = hn a.s. by continuity a.s. of trajectories ofXt . We use dominated
convergence and the mean value theorem to get that when n goes to infinity,

rϕ(x0 ) − f (x0, a) − (
a+ b(x0 )

)
ϕ′′(x0 ) +ϕ′(x0 )n(x0 )1x0∈{0,1} ≥ 0,

where the last term comes by definition given dK0 = 0 if x0 ∈ (0, 1). Hence,

rϕ(x0 ) − sup
a≥0

{
f (x0, a) + (

a+ b(x0 )
)
ϕ′′(x0 )

} +ϕ′(x0 )n(x0 )1x0∈{0,1} ≥ 0.

This implies that for all x ∈ (0, 1), rϕ(x0 ) − supa≥0{f (x0, a) + (a+ b(x0 ))ϕ′′(x0 )} ≥ 0; at
the boundary for x ∈ {0, 1}, either rϕ(x0 ) − supa≥0{f (x0, a) + (a + b(x0 ))ϕ′′(x0 )} ≥ 0 or
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ϕ′(x0 )n(x0 ) ≥ 0 (it cannot be that both are negative since their sum is nonnegative), from
which we directly conclude that v is a supersolution to (RP).

We now prove that v is a subsolution to (RP). Consider x0 ∈ [0, 1] and ϕ ∈ C2([0, 1])
such that x0 is a global maximum of v∗ − ϕ with ϕ(x0 ) = v∗(x0 ), where v∗ denotes the
upper-semicontinuous (u.s.c.) envelope of v. Assume by contradiction that v is not a
subsolution of (RP).

Since ϕ′(x0 )n(x0 )1x∈{0,1} is strictly positive on the boundary and zero away from it
and x0 �→ rϕ(x0 ) − supa≥0{f (x0, a) + (a+ b(x0 ))ϕ′′(x0 )} is continuous, there exists ε > 0
and η> 0 such that for all x ∈ B(x0, η) ∪ [0, 1],

rϕ(x) − sup
a≥0

{
f (x, a) + (

a+ b(x)
)
ϕ′′(x)

} +ϕ′(x)n(x)1x∈{0,1} ≥ ε.

Then by definition of the u.s.c. envelope, we can consider a sequence xn taking values in
B(x0, η)∪ [0, 1] such that xn → x0 and v(xn ) → v∗(x0 ) as n goes to infinity. Just as before,
we denote γn := v(xn ) −ϕ(xn ) → 0 and hm a strictly positive sequence such that hm → 0
and γm/hm → 0.

Define the stopping times τn := inf{t ≥ 0, |Xxn
t − xn| > η′} for some η′ such that 0<

η′ < η and θn := τn ∧ hn. By the second part of the DPP stated above applied to with
εhn/2 and taking stopping time θn, there exists αn ∈ A such that

v(xn ) − εhn

2
≤ E

[∫ θn

0
e−rtf

(
Xxn
t , αnt

)
dt + e−rθnv(Xxn

θn

)]
Recall that by construction v(xn ) = ϕ(xn ) + γn and v∗ ≤ ϕ. Hence,

ϕ(xn ) + γn − εhn

2
≤ E

[∫ θn

0
e−rtf

(
Xxn
t , αnt

)
dt + e−rθnϕ(

Xxn
θn

)]
.

Applying Itô’s formula to e−rθnϕ(Xxn
θn

) and rearranging gives

γn − εhn

2
≤ E

[∫ θn

0
e−rt

{(−rϕ(
Xxn
t

) + f (Xxn
t , αnt

) + (
αnt + b(Xxn

t

))
ϕ′′(Xxn

t

))
dt

−ϕ′(Xxn
t

)
n
(
Xxn
t

)
dKt

}]
−E

[∫ θn

0
e−rtϕ′(Xxn

t

)√
2
(
αnt + b(Xxn

t

))
dBt

]

As b is continuous by assumption, |ϕ′(Xxn
t )

√
2(αnt + b(Xxn

t ))| is bounded (because
Xt is bounded by construction) and the last expectation term is zero. Simplifying and
dividing by hn:

γn

hn
− ε

2
+E

[
1
hn

∫ θn

0
e−rt

{(
rϕ

(
Xxn
t

) − f (Xxn
t , αnt

) − (
αnt + b(Xxn

t

))
ϕ′′(Xxn

t

))
dt

+ϕ′(Xxn
t

)
n
(
Xxn
t

)
dKt

}] ≤ 0
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By construction, the term inside the integral is always greater than ε. Hence, we find

γn

hn
+ ε

(
E[θn]
hn

− 1
2

)
≤ 0.

Since by construction E[θn]
hn

converges to 1 when n goes to infinity (hn goes to zero), so
we obtain a contradiction and this concludes the proof.

B.1.2 Proof of Proposition 2 (Existence and uniqueness in the control problem) The
proof of Proposition 2 relies on a standard strategy: we first prove a comparison princi-
ple for our problem (every supersolution is above every subsolution); we then establish
existence using Perron’s method. The combination of those two results gives uniqueness
and continuity.

We first outline the proof structure for the comparison principle before detailing its
steps.15 Take an arbitrary supersolution w (l.s.c. without loss) and an arbitrary subso-
lution w (u.s.c. without loss), and assume toward a contradiction that supx∈[0,1]w(x) −
w(x)> 0. Note the supremum is attained and denote by x∗ a point at which it is.

We first show the supremum cannot be attained inside the domain, i.e., x∗ /∈ (0, 1),
using standard approximation techniques for viscosity solutions (dedoubling variables
and Ishii’s lemma).

We then consider x∗ = 0. We show that w is nonincreasing in some neighborhood
to the right of 0; furthermore, if either w(0)> 0 or b(0)> 0, then w is nondecreasing in
some neighborhood to the right of 0. w(0)< 0 implies b(0)> 0; so, if w(0)> w(0) then
eitherw(0)> 0 or b(0)> 0. Therefore, by the previous pointw is nondecreasing in some
neighborhood to the right of 0. This yields a contradiction because ifw is nondecreasing
and w is nonincreasing in a neighborhood of 0 to the right, the supremum cannot be
attained at 0.

Next, symmetrically consider x∗ = 1. We show that w is nondecreasing in some
neighborhood to the left of 1; furthermore, if either w(1)> 1 or b(1)> 0, then w is non-
increasing in some neighborhood to the left of 0. Since w(1) < 1 implies b(1) > 0, if
w(1) > w(1), then either w(1) > 1 or b(1) > 0. And by the previous point, w is nonin-
creasing in some neighborhood to the left of 1; hence, similarly the supremum cannot
be attained at 1.

This gives a contradiction, so we conclude supx∈[0,1]w(x)−w(x) ≤ 0, implyingw≤w
for all x.

Proof. Considerw a supersolution to (RP) and w a subsolution to (RP). Without loss of
generality, assumew to be l.s.c. andw to be u.s.c.—the proof goes through the same way
for the l.s.c. (resp., u.s.c.) envelope of w (resp., w), in turn giving the same result since
w(x) ≥w∗(x) ≥w∗(x) ≥w(x).

15The proof strategy is similar in spirit to standard proofs in the literature (e.g., Crandall, Ishii, and Lions
(1992)), but because of the presence of non-Lipschitz terms in the HJB equation, parts of the canonical
approximation methods will fail. Hence, we to appeal to arguments that are specific to the problem (which
would generally be quite ill-conditioned).



394 Barilla and Gonçalves Theoretical Economics 19 (2024)

Assume by contradiction that supx∈[0,1]w(x) −w(x)> 0. This supremum is attained
(since w−w is u.s.c.) and we denote x∗ a point, which attains it.

We first show a maximum principle result: the supremum of w − w cannot be at-
tained in the interior of the domain, i.e., x∗ ∈ {0, 1}. Assume toward a contradiction that
x∗ ∈ (0, 1). Define

Mα := sup
x,y∈[0,1]

w(x) −w(y ) − α

2
|x− y|2

this supremum is attained and we denote (xα, yα ) a point at which it is. Clearly, Mα ≥
w(x∗ )−w(x∗ )> 0. Furthermore, limα→∞ α|xα−yα|2 = 0 and limα→∞Mα =w(x∗ )−w(x∗ )
(this is a general result, see for instance Crandall, Ishii, and Lions (1992, Lemma 3.1.)).

Let f (x, y ) := w(x) − w(y ). Using Ishii’s lemma (Crandall, Ishii, and Lions (1992),
Theorem 3.2.), we know that if ψ ∈ C2([0, 1]2 ) is such that (x̂, ŷ ) is a local maximum of

f −ψ, then for each ε > 0 there exist Y ,X ∈ R such that (1) (Dxψ(x̂, ŷ ),X ) ∈ J2,+
O w(x̂),

i.e., there exists ϕ ∈ C2 such that x̂ is a local minimum of w− ϕ with ϕ′(x̂) =Dxψ(x̂, ŷ ),

and ϕ′′(x̂) =X ; and (2) (−Dyψ(x̂, ŷ ), Y ) ∈ J2,−
O w(ŷ ), i.e., there exists ϕ ∈ C2 such that ŷ is

a local maximum of w−ϕ with ϕ′(ŷ ) = −Dyψ(x̂, ŷ ), and ϕ′′(ŷ ) = Y . We have

−(
1 + ‖D2ψ(x̂, ŷ‖)

)
I2 ≤

(
ϕ′′(x̂) 0

0 −ϕ′′(ŷ )

)
≤D2ψ(x̂, ŷ ) + ε(D2ψ(x̂, ŷ )

)2
.

Hence, for any α > 0, we can take ε = 1/α and apply this result at (xα, yα ) with
ψα(x, y ) := α

2 |x−y|2. This implies there existsϕ
α

, ϕα appropriate test functions forw, w,
respectively, at xα, yα such that ϕ′′

α
(xα ) ≤ ϕ′′

α(yα ) for all α > 0. Since x∗ ∈ (0, 1), the su-
persolution and subsolution properties entail that for any α: F(xα, w(xα ), ϕ′′

α
(xα )) ≤ 0 ≤

F(yα, w(yα ), ϕ′′
α(yα )). Rearranging yields

r
(
w(xα )−w(yα )

)−r(xα−yα ) ≤ b(x)
(
ϕ′′
α

(xα )−ϕ′′
α(yα )

)+ 1
2rc

([
ϕ′′
α

(xα )
]2 −[

ϕ′′
α(yα )+

]2) ≤ 0,

which then implies r(w(xα ) −w(yα ) − α
2 |xα − yα|2 ) − r(xα − yα ) ≤ 0. Taking the limit in

the left-hand side yields w(x∗ ) − w(x∗ ) ≤ 0. This contradicts our premise. Therefore,
if supx∈[0,1]w(x) − w(x) > 0, the supremum can only be attained on the boundary, i.e.,
x∗ ∈ {0, 1}.

Now consider the case x∗ = 0. We first prove that w is nonincreasing in some right
neighborhood of 0. By definition of the second-order subjet, it is sufficient to show that,

for all (p,M ) ∈ J2,−
[0,1]w(0), p≤ 0.

Assume by contradiction there exists (p,M ) ∈ J2,−
[0,1]w(0) such that p > 0. Consider

any p′ such that 0 < p′ < p and an arbitrary M ′ > 0. There must exist some neighbor-
hood of 0 (to the right) such that px+ 1

2Mx
2 ≤ p′x+ 1

2M
′x2 (the first-order terms dom-

inate for x small enough). Therefore, as x→ 0, w(x) ≥ w(0) + px +Mx2/2 + o(x2 ) ≥
w(0) + p′x + M ′x2/2 + o(x2 ). Hence, (p′,M ′ ) ∈ J2,−

[0,1]w(0). Since this holds (close
enough to zero) for M ′ arbitrarily large, we get a contradiction since B(0, p′ ) < 0 and
F(0, w(0),M ′ )< 0 forM ′ large enough.
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We claim that if either w(0)> 0 or b(0)> 0, then w has to be nondecreasing in some
neighborhood of 0. It is again sufficient to show that for all (p,M ) ∈ J2,+

[0,1]w(0), p≥ 0.

Assume by contradiction that there exists (p,M ) ∈ J2,+
[0,1]w(0) with p < 0. Take any

p′ such that p < p′ < 0. For an arbitrary M ′ < 0, there must exist some neighborhood
of 0 (to the right) such that px + 1

2Mx
2 ≤ p′x + 1

2M
′x2 (the second-order terms van-

ish faster as x goes to zero); hence, as x → 0, w(x) ≤ w(0) + px + Mx2/2 + o(x2 ) ≤
w(0) + p′x+M ′x2/2 + o(x2 ). This implies (p′,M ′ ) ∈ J2,+

[0,1]w(0). Note F(0, w(0),M ′ ) =
rw(0) −b(0)M ′ > 0 when eitherw(0)> 0 or b(0)> 0. Hence, this is a contradiction since
B(0, p)> 0 and F(0, w(0), 0)> 0.

If w(0) < 0, it must be that b(0) > 0. Indeed, if b(0) = 0, then by continuity, for all

ε > 0, ∃xε > 0 such that 0 ≤ b(xε )< ε. For any ε, select arbitrarily (pε,Mε ) ∈ J2,−
[0,1]w(xε ).

We have, for all ε > 0,

0 ≤ F(
xε, w(xε ),Mε

) = rw(xε ) − rxε − b(xε )Mε − 1
2rc

Mε
2+ ≤ rw(0) − b(xε )Mε

Since b(xε ) < ε, this must imply that Mε < − rw(0)
ε . In other words, as we get close

enough to zero the second-order terms in the subjets are bounded above by an arbitrar-
ily negative constant. This delivers a contradiction, since it would mean that w is locally
bounded above by an arbitrarily concave paraboloid as we get closer to zero. To make

this point formal, define M ′
ε :=Mε + ε; from the previous point (pε,M ′

ε ) /∈ J2,−
[0,1]w(xε ),

i.e., by definition, as x→ xε, w(x)<w(xε ) +pε(x− xε ) +M ′
ε(x− xε )2/2 + o((x− xε )2 ).

Defining ϕε(x) :=w(xε ) + pε(x− xε ) + 1
2M

′
ε(x− xε )2, xε is not a local minimum of

w− ϕε. But, by construction, since M ′
ε → −∞ and xε → 0 as ε goes to zero, ϕε(x) −−−→

ε→0
1x �=0 × (−∞), i.e., the function that has value 0 at 0, and negative infinity everywhere
else; hence, lim infx→0w(x) = −∞<w(0) contradicting that w is l.s.c.

This entails that, if w(0) > w(0), then w is nondecreasing in some neighborhood
of 0 to the right— because either w(0) ≥ 0, which implies w(0) > 0 or w(0) < 0, which
implies b(0)> 0. Therefore, we have that in some neighborhood of 0 w is nonincreasing
and w is nondecreasing, which directly contradicts the fact that the supremum of w−w
is reached at 0 and not in the interior.

The only remaining possibility is x∗ = 1. The derivations are symmetrical to the pre-
vious case and we obtain that in some neighborhood of 1 w is nondecreasing and w is
nonincreasing, which directly contradicts the fact that the supremum ofw−w is reached
at 1 and not in the interior.

Putting those points together yields a contradiction. Therefore, we conclude that
supx∈[0,1]w(x) −w(x) ≤ 0, which entails w(x) ≥w(x) for all x ∈ [0, 1], and concludes the
proof.

Lemma 3 (Existence—Perron’s method). If the comparison principle holds for (RP), and
if there is a subsolution w and a supersolution w that satisfy the boundary conditions (in
the viscosity sense), then ŵ(x) := sup{w(x) : w ≤ w ≤ w and w is a subsolution of (RP) } is
a solution of (RP).
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This is standard and can be directly applied from, e.g., Crandall, Ishii, and Lions
(1992). Furthermore, we can exhibit an explicit supersolution (take w(x) := 1 for all x)
and an explicit subsolution (take w(x) := 0 for all x), directly giving existence.

B.2 Proof of Theorem 2 (Best-response characterization)

The proof of Theorem 2 consists of the following intermediary results.

Proposition 11. There are xa, xa ∈ (0, 1], xa ≤ xa, such that (i) on [0, xa ), va is convex
and strictly above the identity; (ii) on [xa, xa], va is equal to the identity; and (iii) on (xa, 1],
va is concave and strictly below than the identity. Further, va is increasing and ∀x ∈ [0, 1],
max{supx∈[0,xa] ∂va(x), supx∈[xa,1] ∂va(x)} ≤ 1.

Where ∂va and ∂va denote the sub and supergradient of va on [0, xa] and [0, xa];16

and

Proposition 12. va is of class C2 everywhere except possibly at xa where it might not
be differentiable. Moreover, (i) v′

a(0) = 0, and (ii) va is not differentiable at xa only if (a)
limx→x−

a
v′
a(x) ≥ limx→x+

a
v′
a(x), (b) b(xa ) = 0, and (c) if xa < 1, then b(1)> 0.

B.2.1 Proof of Proposition 11 (Value function is convex–concave)

Proof. By Proposition 2, the unique viscosity solution v is continuous. Let X> := {x ∈
[0, 1]|va(x) > x} and X< := {x ∈ [0, 1]|va(x) < x}, X= := [0, 1] \ (X> ∪ X< ). As va is a
subsolution (resp., supersolution), Fa(x, va(x),M ) := r(va(x) − x) − b(x)M − 1

2rc [M+]2

and b≥ 0, and for any interval I ⊆X> (resp., I ⊆X<) we have that M > 0 (resp., M < 0)

for all x ∈ I and all (ψ,M ) ∈ J2,+
[0,1]va(x) (resp., J

2,−
[0,1]va(x)). Note that, on X=, va is linear.

As, by Alvarez, Lasry, and Lions (1997, Lemma 1), for any convex and open subset I ⊆
X> ∪X= (resp., I ⊆X< ∪X=), va is convex (resp., concave) on I.

We now show that for any element x in an open interval I ⊆X>, its subgradient is
such that max∂va(x)< 1. As va is convex on I, its nonempty-, compact-, convex-valued,
and nondecreasing. If max∂va(x) ≥ 1, then we have that va(x′ ) ≥ va(x) + x′ − x > x′ for
any x′ ∈ I such that x′ > x. By continuity of va, [x, 1] ⊆ X> and we obtain va(1) > 1.
However, as va is a subsolution we must have that 0 ≥ min{Fa(1, va(1),M ), B(1, p)} =
B(1, p) for any (p,M ) ∈ J2,+

[0,1]va(1). And, by convexity of va on [x, 1] and the fact that

max∂va(x) ≥ 1, we have that (1, 0) ∈ J2,+
[0,1]va(1), resulting in B(1, p) = 1> 0, a contradic-

tion. An analogous argument holds to show that the supergradient of va at any point x
of an open interval I ⊆X< satisfies max∂va(x)< 1.

The bound on the supergradient of va implies that, if x ∈X<, it must be that ∀x′ ∈
[x, 1], va(x′ ) < va(x) + x′ − x < x′, and thus, x′ ∈X<. Immediately, we obtain supX> ≤
infX≤. Hence, ∃xa, xa ∈ [0, 1] such that [0, xa ) = X>, [xa, xa] = X=, and (xa, 1] = X>,
withX< andX> potentially empty.

16That is, ∂va(x) := {p|va(x′ ) − va(x) ≥ p(x′ − x), ∀x′ ∈ [0, xa]} and ∂va(x) := {p|va(x′ ) − va(x) ≤ p(x′ −
x), ∀x′ ∈ [xa, I]}.



Theoretical Economics 19 (2024) The Dynamics of Instability 397

Next, we clarify that, in fact, X>,X= �= ∅ (noting X> is an open set in [0, 1]), by
showing that 0 ∈X>. Suppose instead va(0) = 0 (and thus X≤ = [0, 1], with va concave
on [0, 1]). If there is some x′ ∈ [0, 1] such that v(x′ )> 0, letp := va(x′ )

x′ > 0. As v is concave,
va(x) = va(x) − va(0) ≥ p(x − 0) = p · x > p

2 (x + x2 ) for all x ∈ [0, x′], and so ( p2 , p) ∈
J

2,−
[0,1]va(0) and max{Fa(0, va(0), p), B(0, p2 )}< 0, contradicting that va is a supersolution.

If there is no such x′, then va ≡ 0 and (0, −1) ∈ J2,−
[0,1]va(1/2), with F(1/2, va(1/2), −1) =

−1/2< 0, again contradicting va is a supersolution.
Our last step is to show va is increasing. First, note that, by convexity of va,

max∂va(x) ≤ min∂va(x′ ) for any x, x′ ∈ X≥ such that x′ > x. Suppose, for the purpose
of contradiction, max∂va(0) < 0. This implies ∀x ∈ (0, xa], 0> va(0) − va(x). Then, let-

ting p := va(x)−va(0)
x < 0, we have (p, 0) ∈ J2,+

[0,1]va(0), which results in min{F(0, va(0), 0),
B(0, p)} > 0, a contradiction to va being a subsolution. As, symmetrically on [xa, 1],
va is concave, and thus, min∂va(x) ≥ max∂va(x′ ) for x, x′ ∈ X≤, it suffices to show
0 ∈ ∂va(1). Suppose to the contrary that for some x ∈ [xa, 1), 1 ≥ va(x) > va(1). Then

p := va(1)−va(x)
1−x < 0 and (p, 0) ∈ J2,−

[0,1]va(1), implying max{Fa(1, va(1), 0), B(1, p)} < 0,
now a contradiction to va being a supersolution.

B.2.2 Proof of Proposition 12 (Value function is C2, except possibly at a point)

Proof. v′′ exists a.e.: From Proposition 11, ∃xa, xa ∈ [0, 1] such that xa ≤ xa and va is
convex on [0, xa] and concave on [xa, 1]. By the Alexandrov theorem, va is twice differ-
entiable a.e. on [0, 1], and so it has left- and right-derivatives everywhere, denoted by
v′
a,− and v′

a,+, respectively.
No convex kinks: Take any x′ ∈ [0, 1]. Suppose by contradiction that v′

a,−(x′ ) <
v′
a,+(x′ ) and fixp ∈ (v′

a,−(x′ ), v′
a,+(x′ )). For any fixedM > 0, (p,M ) ∈ J2,−

[0,1]va(x′ ).17 How-
ever, for large enough M , Fa(x′, va(x′ ),M ) = r(va(x′ ) − x′ ) − b(x′ )M − 1

2rcM
2+ < 0, con-

tradicting that va is a supersolution.
At most one concave kink at x: Now take any x′ ∈ [0, 1]. Again suppose by con-

tradiction v′
a,−(x′ ) > v′

a,+(x′ ) and fix p ∈ (v′
a,+(x′ ), v′

a,−(x′ )). By a similar argument as

before, for any fixed M > 0, (p, −M ) ∈ J2,+
[0,1]va(x′ ). For b(x′ ) > 0 and large enough M ,

Fa(x′, va(x′ ), −M ) = r(v(x′ ) − x′ ) + b(x′ )M > 0, which contradicts va being a subsolu-
tion. For b(x′ ) = 0 and x′ ∈ (0, 1), Fa(x′, v(x′ ), −M ) = r(va(x′ ) − x′ ) ≤ 0. As va is player
A’s value function, whenever b(x′ ) = 0, the player can attain at least va(x′ ) ≥ x′ by set-
ting the control to zero. Hence, we must have va(x′ ) = x′. As va(x′ ) = x′ ⇐⇒ x′ ∈ [xa, xa],
we obtain v′

a(x′ ) = 1 for any x′ ∈ (xa, xa ). On [0, xa ), va is convex and v′
a,−(x′ ) ≥ v′

a,+(x′ ).
Thus, there are no concave kinks except possibly at x and only if b(xa ) = 0.

Continuity of v′
a on [0, 1] \ {xa}: On [0, xa ), v′

a exists and is monotone as va is convex
(by Proposition 11). As v′

a is also differentiable a.e., it has the intermediate value property
(by the Darboux theorem), which, together with monotonicity, implies v′

a is continuous
on [0, xa ). A symmetric argument applies to (xa, 1].

17To see this, let f (x) := va(x′ ) +p(x− x′ ) + 1
2M(x− x′ )2, and note that va − f ≥ 0 in a neighborhood of

x′, therefore with x′ being a local minimum of va − f .
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Existence and continuity of v′′
a on [0, 1] \ {xa}: We now show v′′

a exists and is con-
tinuous everywhere except possibly at xa. Fix x ∈ [0, xa ). As v′′

a exists a.e., then
take any sequence (xn )n≥1 ⊆ [0, xa ) such that xn → x and v′′

a(xn ) exists for every
n. Then (v′

a(xn ), v′′
a(xn )) ∈ J2,+

[0,1]va(xn ) ∩ J2,−
[0,1]va(xn ), as this is true if and only if

va is twice differentiable at xn (Crandall, Ishii, and Lions (1992), p. 15). Hence,
(xn, va(xn ), v′

a(xn )) → (x, va(x), v′
a(x)). ∀y ∈ [0, xa ), Fa(x, va(x),M ) ≤ 0 for allM ≥M :=

maxx∈[0,xa]
√

2cr
√
va(x) − x. Hence, (v′

a(x),M ) ∈ J2,+
[0,1]va(x). Together with convexity

of va on [0, xa ), this implies that v′′
a(xn ) ∈ [0,M] for all n, and then by compactness,

v′′
a(xn ) has a convergent subsequence. Take any convergent subsequence and denote its

limit as v′′∞. As Fa is continuous, 0 = Fa(xn, va(xn ), v′′
a(xn )) → Fa(x, va(x), v′′∞ ) = 0 =⇒

(v′
a(x), v′′∞ ) ∈ J2,+

[0,1]va(x) ∩ J2,−
[0,1]va(x), ensuring that va is also twice differentiable at x, for

any x ∈ [0, x), and v′′
a(x) = v′′∞. This implies v′′

a exists everywhere in [0, xa ). Moreover, as
v′′∞ ≥ 0 and Fa(x, va(x),M ′ ) < Fa(x, va(x),M ) for any M ′ >M ≥ 0, we must then have
v′′∞ being the limit of any convergent subsequence of (v′′

a(xn ))n≥1, and so, the limit of
the original sequence: v′′

a(xn ) → v′′∞ = v′′
a(x), and we obtain that v′′

a ∈ C2 on [0, xa ). A
symmetric argument holds for x ∈ (xa, 1].

Zero derivative at 0: Suppose v′
a(0)> 0. Then (v′

a(0)/2, 2v′′
a(0)) ∈ J2,−

[0,1]va(0)18 and
max{Fa(0, va(0), 2v′′

a(0)), B(0, v′
a(0)/2)}< 0, contradicting that va is supersolution.

Necessary conditions for nondifferentiability at xa: (a) and (b) follow from there being
only concave kinks and only if b(xa ) = 0. If xa < 1 and b(1) = 0, then we must have va
convex on [0, 1] and linear on [xa, 1]. It follows that v′

a,−(xa ) ≥ 1 (no convex kinks) and
v′
a,− ≤ 1, which implies v′

a,−(xa ) = 1 = v′
a,+(xa ), and the argument from above extends

to show that va ∈ C2([0, 1]). Consequently, we obtain (c) by the contrapositive.

B.3 Proof of Proposition 3 (Decreasing control)

Proof. As a(x) = 1
rc v

′′
a(x)+, where va is the solution to (RP) given b, it suffices to show

v′′
a is non-increasing in the convex region of va, i.e., on [0, xa], where xa is as defined in

Proposition 11. Assume by contradiction ∃x, y ∈ [0, xa] : x > y and v′′
a(x)> v′′

a(y ). Then,
using the fact that b is nondecreasing on this region,

0<
1

2rc

(
v′′
a(x)2 − v′′

a(y )2) = r[va(x) − x] − r[va(y ) − y] − b(x)v′′
a(x) + b(y )v′′

a(y )

≤ r[va(x) − x] − r[va(y ) − y] − (
b(x) − b(y )

)
v′′
a(x) ≤ r[va(x) − x] − r[va(y ) − y];

hence, 1 < va(x)−va(y )
x−y = v′

a(z) for some z ∈ (y, x) (mean value theorem), contradicting
0 ≤ v′

a ≤ 1 (Theorem 2).

B.4 Proof of Proposition 4 (Control is C1)

Proposition 4 follows from Theorem 2 and the next lemma.

Lemma 4. If b ≡ 0 and x0
a < 1 the optimal control to (RP) is C1([0, 1]). If x0

a = 1, it is
C1([0, 1)).

18To see this, define f (x) = va(0) + v′a(0)
2 x+ v′′

a(0)x2, noting that f (x) ≤ va(x) for small enough x.
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Proof. Let va be a viscosity solution to (RP) on O = (0, 1) when b ≡ 0 and a the asso-
ciated optimal control. Define xa as in Proposition 11. On [0, x), F(x, va, v′′

a ) = 0 ⇐⇒
v′′
a(x) = r√2c

√
va(x) − x, and a is continuously differentiable (even infinitely so) on this

[0, x). This proves the lemma for xa = 1. If xa < 1, then va(x) = x on (xa, 1] implying a
is C1 on this interval, with a′(x) = 0, and limx↓xa a

′(x) = 0. For the left derivative, noting

v′′
a(x)2 = 2r2c(va(x)−x) for any x ∈ [0, xa ) and v′′

a(x)> 0, differentiate both sides and ob-
tain a′(x) = v′′′

a (x)/rc = r(v′
a(x) −1)/v′′

a(x), which is continuous as v is C2 on [0, xa ) given
b≡ 0 (Proposition 12). As v′

a(x)−1< 0 (Proposition 11), then v′′′
a (x)< 0, and v′

a is strictly
increasing and strictly concave on this interval. Hence, v′

a(xa ) − v′
a(x) ≤ v′′

a(x)(xa − x),
∀x < xa. Thus, 0 ≤ (v′

a(x) −v′
a(x))/v′′

a(x) ≤ x−x. As (1 −v′
a(x))/v′′

a(x) → 0 for x ↑ xa, and
a′−(xa ) = 0, we obtain that a is C1 on [0, 1].

B.5 Proof of Proposition 6 (Control is convex–concave)

Proof. Let va be a viscosity solution to (RP) on O = (0, 1) when b≡ 0, and a the associ-
ated optimal control. Recall that a∝ v′′

a. Denote by f ′− the left derivative of f and f (n) its
nth order derivative. From Proposition 11, we have that v′

a,− ≤ 1. Owing to the regularity
of the solution, and we can derive on [0, xa ):

v′′
a(x) = r√2c

√
va(x) − x≥ 0,

v(3)
a (x) = r√c/2

(
va(x) − x)−1/2(

v′
a(x) − 1

) = r2c
v′
a(x) − 1

v′′
a(x)

≤ 0,

v(4)
a (x) = r2c− v(3)

a (x)2

v′′
a(x)

, v(5)
a (x) = v(3)

a (x)3

v′′
a(x)2 − 2

v(3)
a (x)
v′′
a(x)

v(4)
a (x).

As v′
a(x)< 1 for x ∈ [0, xa ), v(3)

a is strictly negative on [0, xa ). If, for x ∈ (0, xa ), v(4)
a (x) = 0,

then v(5)
a (x) = v(3)

a (x)3

v′′a(x)2 < 0. This implies that if, for x̃ ∈ (0, xa ), v(4)
a (x̃) = 0, then v(4)

a (x) ≤ 0

for any x ∈ (x̃, xa ). That is, ∃x̃ ∈ [0, xa ) such that v′′
a is convex on [0, x̃] and concave on

[x̃, xa].
Suppose v′

a,−(xa ) = 1. As, by Proposition 3, limx↑xa v
(3)
a (x) = 0, we have

lim
x↑xa

v(4)
a (x) = r2c− lim

x↑xa
v(3)
a (x)2

v′′
a(x)

= r2c− r2c lim
x↑xa

(
v′
a(x) − 1

)2

2r
√

2c
(
va(x) − x)3/2

= r2c− r2c lim
x↑xa

2
3

(
v′
a(x) − 1

)
v′′
a(x)

r
√

2c
(
va(x) − x)1/2(

v′
a(x) − 1

)
= r2c− r2c lim

x↑xa
2
3

= 1
3
r2c > 0,

where we used l’Hôpital’s rule in the before-last line. Consequently, v′′
a is convex on

[0, xa].

Suppose now that v′
a,−(xa ) < 1. Then v(3)

a (x) ≤ r2c
v′a,−(xa )−1
v′′a(0)

< 0 for any x ∈ [0, xa].

As v′′
a is strictly positive, decreasing, v′′

a(x) → 0 as x→ xa, v(4)
a (x)< 0 for all x < xa close

enough to xa. Hence, ∃x̃ ∈ [0, xa ) such that v′′
a is convex on [0, x̃] and concave on [x̃, xa].
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The fact that v′
a,−(xa

− ) = 1 if xa < 1 follows from the a being C1([0, 1]) when xa < 1

(Lemma 4). Finally, that a′−(xa ) = −∞ follows from v(3)
a (x) = r2c

v′a(x)−1
v′′a(x)

≤ r2c
v′a,−(xa )−1
v′′a(x)

<

0. As the denominator goes to zero as x approaches xa, the result is obtained.

B.6 Proof of Proposition 7 (Decoupling equilibrium instability)

Proof. Note that, from Theorem 1, va(x)+vb(x) ≤ supα,β r
∫ ∞

0 exp(−rt )(Xt + (1−Xt )−
caα(Xt )2 − cbβ(Xt )2 )dt ≤ r

∫ ∞
0 exp(−rt )dt = 1. From Proposition 11, as va is (strictly)

convex whenever va(x) ≥ (>)x ⇐⇒ 0 ≤ x ≤ xa(< xa ) and strictly concave elsewhere,
and vb is (strictly) convex whenever vb(x) ≥ (>)1 − x⇐⇒ 1 ≥ x≥ xb(> xb ), and strictly
concave elsewhere, we have that xa = xa =: x > 0 and xa = xb =: x < 1. This implies that
a(x) = 0 on [x, 1] and b(x) = 0 on [0, x]. As from Proposition 3 a is nonincreasing and b
is nondecreasing, and, from a straightforward modification of the proof of Proposition
4, v′′′

a < 0 on [0, xa ) and v′′′
b (x)> 0 on (xb, 1], we obtain that the optimal controls a and b

are respectively strictly decreasing and strictly increasing.

B.7 Proof of Proposition 8 (Inactive benchmark and equilibrium)

Proof. From Proposition 7, a∗(x)> 0 if and only if x ∈ [0, x), and, from Theorem 2, va is
concave on [x, 1]. Hence, on x ∈ [0, x), 0 = ra(va(x) −x) − 1

raca
[v′′
a(x)+]2, and on x ∈ [x, 1]

except at most at one point at which va is not twice differentiable, 0 = ra(va(x) − x) −
b(x)v′′

a(x) ≥ ra(va(x) −x). As at the (at most one) nondifferentiability point of va, there is
a concave kink (Theorem 2); one concludes va is a viscosity subsolution to the reflected
problem in the inactive benchmark. As v0

a is a viscosity solution to the same problem
(and thus a supersolution), from Lemma 1, v0

a ≥ va. The second part of the proposition
follows immediately. The same holds for player B.

B.8 Proof of Lemma 2 (Deterrence equilibria singleton stable region)

Proof. We prove the lemma by contradiction. Let (a, b) be an equilibrium under pa-
rameters such that x0

a > x
0
b and, for the purpose of contradiction, suppose x < x. Then

x < x0
a or x0

b < x. This is because from Proposition 8, x ≤ x0
a or x0

b ≤ x, and by assump-
tion, x0

a > x
0
b. Suppose x < x0

a (the proof is symmetric for the case in which x0
b < x). From

Theorem 2, only concave kinks are permissible, and then v′
a,−(x) ≥ v′

a,+(x) = 1. More-
over, from Proposition 8, the solution to playerA’s the inactive benchmark problem, v0

a,
is weakly greater than the player’s equilibrium value function, va ≤ v0

a. From Proposition
7, at an equilibrium, b(x) = 0 on [0, x] ⊇ [0, min{x, x0

a}]. As v0′′
a (x) = ra√2ca

√
v0
a(x) − x≥

ra
√

2ca
√
va(x) − x = v′′

a(x) on [0, min{x, x0
a}] and as v′

a(0) = v0′
a (0) = 0 (Proposition 12),

then v′
a,−(x) ≤ v0′

a,−(x)< v0′
a,−(xa ) ≤ 1 = v′

a,+(x), a contradiction.

B.9 Proof of Theorem 3 (Characterization of deterrence equilibria)

The proof of the first part of Theorem 3 (characterization of accommodating equilibria)
is detailed in the main text; here, we prove the second part (characterization of deter-
rence equilibria).

Let vba be the unique viscosity solution to (RP) on O = (0, 1) given b ∈ C0([0, 1]) and
xba := sup{x ∈ [0, 1]|vba(x) > x}, and analogously define vab and xab for player B, given a ∈
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C0([0, 1]). It is straightforward to check that, for (a∗, b∗ ) such that x0
b ≤ xb

∗
a = xa

∗
b ≤ x0

a,
the equilibrium strategies must be given as described in the statement of Theorem 3. We
then focus on showing that for any x ∈ [x0

b, x0
a], there is a unique strategy profile (a∗, b∗ )

such that xb
∗
a = xa

∗
b = x. The proof of Theorem 3 for x ∈ (x0

b, x0
a ) follows from the next

two lemmata.

Lemma 5. For x ∈ (0, x0
a ), let va denote the unique viscosity solution to (RP) on O = (0, x)

when b ≡ 0. Then (i) va ∈ C5([0, x)), (ii) va is convex, (iii) v′
a is concave, (iv) ∃x̃ ∈ [0, x)

such that v′′
a is convex on [0, x̃] and concave on [x̃, x), and (v) v′′′

a (x) → −∞ as x ↑ x.

Proof. There is a unique viscosity solution to (RP) on O = (0, x) when b ≡ 0 follows
from a straightforward modification of Theorem 1. Properties (i)–(v) follow from adjust-
ing the proofs of Propositions 4 and 6.

Lemma 6. Let x ∈ (0, 1) and fix b ∈ C0([0, 1]) such that (i) b(x) = 0 for x≤ x, (ii) b′(x)> 0
on (x, 1], (iii) limx↓x b′(x) = ∞. Then vba(x) ≤ x for x≥ x.

Proof. Suppose not. Then vba(x) > x =⇒ vb′′a (x) > 0, and by Proposition 4, vba is C3 lo-
cally at x with v′′′

a (x) < 0 in a neighborhood of x. Then, as b(x) = 0, for small ε > 0,
Fa(x, vba(x), vb′′a (x)) = Fa(x+ ε, vba(x+ ε), vb′′a (x+ ε)) = 0 ⇐⇒ 0 = (Fa(x, vba(x), vb′′a (x)) −
Fa(x + ε, vba(x + ε), vb′′a (x + ε)))/ε = r[(vba(x + ε) − vba(x))/ε − 1] − 1

2rc (vb′′a (x + ε)2 −
vb′′a (x)2/ε − vb′′a (x + ε)b(x + ε)/ε. Given that limε↓0 |r[(vba(x + ε) − vba(x))/ε − 1] −

1
2rc (vb′′a (x+ ε)2 − vb′′a (x)2 )/ε| = |r(vb′a (x) − 1) − 1

rc v
b′′
a (x)vb′′′a (x)| <∞ due to vba being lo-

cally C3, and given that b(x + ε)/ε = (b(x + ε) − b(x))/ε → ∞ as ε ↓ 0, by continuity,
∃ε̄ : ∀ε ∈ (0, ε̄), vb′′a (x+ ε̄)b(x+ ε)/ε > 2[r|vb′a (x) − 1| + 1

rc v
b′′
a (x)|vb′′′a (x)|]> r[(vba(x+ ε) −

vba(x))/ε− 1] − 1
2rc (vb′′a (x+ ε)2 − vb′′a (x)2/ε, a contradiction to 0 = (Fa(x, vba(x), vb′′a (x)) −

Fa(x+ ε, vba(x+ ε), vb′′a (x+ ε)))/ε.

We now take care of showing that x ∈ {x0
a, x0

b} also pins-down an equilibrium as de-
scribed.

If a≡ 0 on [x0
b, 1], then vab = v0

b on [x0
b, 1] and so b0 is a best response to a. We then

need that, if a is a best response to b0, then xb
0

a = x0
b. We prove this in two steps.

First, we show xb
0

a ≥ x0
b. Suppose not. Then vb

0

a (x) = x on [xb
0

a , x0
b], and by Theorem

2, vb
0

a ∈ C2([0, 1]). Let wa(x) := 1
x<xb

0
a
vb

0

a (x) + 1
x≥xb0

a
x. As vb

0

a ∈ C2([0, 1]) is a viscosity

solution to (RP) on O = (0, 1) given b= b0, and as xb
0

a < x0
b, it is straightforward to ver-

ify wa is a viscosity solution to (RP) on O = (0, 1) given b ≡ 0. However, xb
0

a < x0
b < x

0
a,

which contradicts uniqueness of the viscosity solution to the latter problem (Theorem
1). Second, we show that xb

0

a ≤ x0
b. Suppose not. Take any x ∈ (x0

b, xb
0

a ) and let (a∗, b∗ )
be the unique equilibrium such that a∗(x) = b∗(x) = 0 (Lemmata 5 and 6).

Claim 1: vb
0

a ≥ vb
∗
a on [0, xb

0

a ] and vb
0

a > vb
∗
a on (x, xb

0

a ]. Let wa(x) := 1x≤xvb
∗
a (x) +

1x>xx. Since (i) b0 ≥ b∗ (Proposition 8) and b0 > 0 ≡ b∗ on (x0
b, x), and (ii) vb

0

a and vb
∗
a

are strictly convex on [0, x), then wa is a subsolution to (RP) on O = (0, 1) given b= b0,
and, in particular, wa ≤ vb

0

a (Lemma 1). Hence, vb
0

a ≥ vb
∗
a on [0, x]. And, on (x, xb

0

a ], by
definition of these thresholds, vb

0

a (x) ≥ x > vb∗
a .
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Claim 2: vb
0

a ≤ vb∗
a on [xb

0

a , 1]. Let wa(x) := 1
x≥xb0

a
vb

0

a (x) + 1
x<xb

0
a
x. Since (i) b0 ≥ b∗

(Proposition 8), and (ii) vb
0

a and vb
∗
a are strictly concave on (xb

0

a , 1], then wa is a subsolu-
tion to (RP) on O = (0, 1) given b= b∗, and, in particular, wa ≤ vb∗

a . Hence, vb
0

a ≤ vb∗
a on

[xb
0

a , 1].
However, claims 1 and 2 clearly entail a contradiction: vb

∗
a (xb

0

a ) < vb
0

a (xb
0

a ) ≤
vb

∗
a (xb

0

a ).
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