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Sensitivity versus size: Implications for tax competition
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The conventional wisdom is that a large jurisdiction sets a higher tax rate than a
small jurisdiction. We show that this result arises due to simplifying assumptions
that imply that tax-base sensitivities are equal across jurisdictions. When more
than two jurisdictions compete in commodity taxes, tax-base sensitivities need
not be equal across jurisdictions and a small jurisdiction can set a higher tax rate
than a large jurisdiction. Our analysis extends to capital and profit taxes, and,
more generally, to various types of multi-player asymmetric competition.
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1. Introduction

The inverse-elasticity rule, dating to Ramsey (1927), has been widely applied to study
taxation, regulatory policy, and the pricing of public utilities. Applied to taxation, the
Ramsey rule states that if commodity demands are independent, optimal tax rates
should be inversely proportional to the elasticities.1 A common extension of the inverse-
elasticity rule is to tax competition models where jurisdictions set tax rates to attract a
mobile tax base. In equilibrium, the revenue-maximizing tax rate Ti in jurisdiction i is
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characterized by Ramsey pricing

Ti
1 + Ti = 1

ϵi
with ϵi = −dBi(p)/dTi

Bi(p)
pi, (1)

where, after normalizing producer prices to unity, pi = 1 +Ti denotes the after-tax price
and Bi denotes the tax base, which depends on the vector of after-tax prices of all juris-
dictions, p. We refer to |dBi(p)/dTi| as the base sensitivity.

A large share of the game theoretic tax competition literature focuses on “duopolity”
theory where two jurisdictions differ in size (Keen and Konrad (2013)). These mod-
els conclude that, with mobile factors, a jurisdiction’s tax rate is positively correlated
with size—larger jurisdictions set higher tax rates than smaller jurisdictions—because,
evaluating (1) at equal tax rates, larger jurisdictions face a smaller elasticity. We revisit
the role of size in the context of spatial competition models concerning the setting of
commodity taxes. In the classic models of Kanbur and Keen (1993) and Nielsen (2001),
two jurisdictions differ in population, but the population is uniformly distributed across
space within each jurisdiction. Jurisdictions compete for cross-border shoppers by set-
ting taxes in a Nash game. The more populated jurisdiction always sets a higher tax rate
than the smaller jurisdiction.

However, competition does not involve only two jurisdictions; neither are people
uniformly distributed across space. Most urban economics or trade models recognize
that population density differs across space and density has been shown to be critical in
the context of cross-border issues (Hindriks and Serse (2019)).2 We therefore extend the
classic commodity tax competition model by allowing jurisdictions to differ in how their
populations are distributed. One jurisdiction may have many consumers who can read-
ily cross-border shop, while the other may have most of its population far away from
borders. Following Caplin and Nalebuff (1991), we show that under mild conditions on
the distribution function, a unique Nash equilibrium exists. We first show that when
maintaining the assumption of two competing jurisdictions, the conventional result re-
mains: a jurisdiction with a larger total population will always set a higher tax rate than
the smaller jurisdiction regardless of how population is distributed.

The intuition for this stark result is that, in the case of two jurisdictions, the marginal
benefit of lowering taxes is the same for both the large and the small jurisdiction. Thus,
the tax-base sensitivity is identical in both jurisdictions, |dB1/dT1| = |dB2/dT2|, and the
magnitude of this derivative simultaneously affects the level—but not the pattern—of
tax rates in both jurisdictions. Then the relative elasticity, ϵ1/ϵ2, of the tax base evalu-
ated at identical tax rates, T1 = T2, depends only on the relative jurisdiction sizes, B1/B2.
Smaller governments perceive a higher elasticity irrespective of the distribution of indi-
viduals.

Our main contribution is then to show that relaxing both the assumption of two ju-
risdictions and a uniform population distribution allows for a much richer pattern of
equilibrium tax rates that can differ significantly from the conventional wisdom. Criti-
cally, we show that a smaller jurisdiction will set a higher rate than a larger jurisdiction if
there are multiple competitors and if the distribution of population is not uniform. This

2Friberg, Steen, and Ulsaker (2022) find a non-monotonicity in incentives to cross-border shop.
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result arises without resorting to any other asymmetries and without adding cross-base
interdependencies.3

Simplifying to gain intuition, consider the example of Connecticut, Rhode Island,
and Massachusetts. Both Connecticut’s and Rhode Island’s borders with Massachusetts
are densely populated due to the Hartford/Springfield and Providence metropolitan ar-
eas, but the density at the Rhode Island and Connecticut border is very low, consisting
of mainly rural farmland. With multiple borders, the sensitivity of the tax base depends
on an average of the responses at both borders of each state. As both borders with Mas-
sachusetts are the densest, Massachusetts can attract more cross-border shoppers by
lowering its tax rate compared to either of the other states, meaning that the tax-base
sensitivity in Massachusetts, |dBMA/dTMA|, is larger in absolute value than the tax-base
sensitivity in either of the other states, |dBRI/dTRI| or |dBCT/dTCT|. Thus, even though
the tax base of Massachusetts is the largest, if its sensitivity is sufficiently larger in ab-
solute value than the other two sensitivities, Massachusetts’ elasticity will be larger. Ac-
cordingly, in the presence of multiple jurisdictions, differences in the elasticity of the
tax base now depends on both population size and the distribution of residents across
space. There are numerous examples where smaller jurisdictions set higher tax rates
than larger jurisdictions. In the United States, where counties can set local taxes, we
document, using data from Agrawal (2014), that only in 16% of cases does the county
that sets the highest tax rate compared to its neighbors also have the largest population.

Tax competition remains an important determinant of consumption and excise
taxes, even though capital and labor are regarded as more mobile. First, for smaller
governments such as states, counties, or towns (or potentially even small countries),
cross-border shopping remains important. Second, unlike capital that is globally mo-
bile, consumption tax bases are only locally mobile via cross-border shopping.4 States,
localities, and even countries have a small number of neighbors, so game theoretic inter-
actions become important. Finally, numerous empirical studies document the existence
of strategic tax competition in commodity taxes.

Given that technological change and globalization have arguably made capital and
labor relatively more footloose, we show that our main results are applicable to models
of tax competition for corporate profits and capital, which seemingly differ in important
ways from the spatial commodity tax model. First, our results generalize to models of
tax competition with profit shifting (Keen and Konrad (2013)), which traditionally im-
pose restrictions on the cost of shifting profits to another country. In addition, these
models generally assume that multinational firms shift profits to a single low-tax coun-
try, but in reality, profit shifting can occur between many country pairs. The curvature
of the shifting cost function to the firm has the same qualitative implications on the re-
lationship between tax rates and size as the density function does in the commodity tax
setting.

3Most other models of asymmetric tax competition focus on size differences (Bucovetsky (1991), Haufler
and Wooten (1999)). The theoretical literature acknowledges that other asymmetries such as preferences
for public goods matter (Haufler (1996), Nielsen (2002)).

4However, e-commerce and digital services allow households to consume goods from all over the world,
potentially making the tax base more mobile.
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Second, analyzing competition for capital, Mongrain and Wilson (2018) obtain the
standard size result when firms have heterogeneous costs of moving. We show that the
distribution of moving costs plays the same role as the density of people in commodity
tax competition models. If moving costs are uniformly distributed, then the size effect
dominates, because the number of firms that are indifferent between moving and not
moving is the same for the two regions. If moving costs are not uniformly distributed
and there are more than two jurisdictions, the results from our commodity tax model
extend to capital tax competition.

Our results also have implications for industrial organization and political econ-
omy. A strand of industrial organization focuses on spatial price competition with
heterogeneous consumers and shows that the distribution of preferences affects firm
competition (Neven (1986), Anderson and Goeree (1997), Bloch and Manceau (1999),
Calvó-Armengol and Zenou (2002)). A similar mechanism is in the spatial voting lit-
erature (Bagh (2023)) where candidates announce platforms and heterogeneously dis-
tributed voters choose the platform closest to their preferences. If candidates view win-
ning as a means to policy, there is a trade-off between the probability of winning and
the implementation of the preferred party policy if elected; this trade-off can be influ-
enced by the distribution of voter preferences (Wittman (1983)). Both industrial orga-
nization and political economy typically restrict attention to duopolistic or symmet-
ric oligopolistic competition, while we show that the implication of consumer density
may qualitatively change price-setting behavior with asymmetric oligopolistic compe-
tition.5

2. A general model of tax competition

The concept that a larger jurisdiction sets a higher tax rate than a smaller jurisdic-
tion is common among commodity tax competition models (Kanbur and Keen (1993),
Lockwood (1993), Trandel (1994), Nielsen (2001), Wang (1999), Ohsawa and Koshizuka
(2003)). We expand the classic model of commodity tax competition of Nielsen (2001)6

and Kanbur and Keen (1993).7 In the typical model, consumers are uniformly dis-

5Chen and Riordan (2008) compare monopoly pricing to symmetric duopolistic competition and find
that prices under duopoly may be higher. Because a duopolist has a smaller base, duopoly prices tend to be
lower. However, the price sensitivity is lower in a duopoly, which leads to comparably higher prices under
duopoly. The reason for the latter effect is that a duopolist can only increase the market share by attract-
ing consumers from the competitor, whereas the monopolist can increase the market share by extending
market coverage.

6Nielsen (2001) normalizes density to be unity across both jurisdictions, allowing him to focus on size
differences (length and population) by assuming that one jurisdiction is longer than the other. Because
uniform density is imposed throughout both jurisdictions, the model does not actually allow for a change
in one jurisdiction’s population unless you are willing to change length and population jointly at same time.
In particular, increases in population in both jurisdictions (via an increase in density) holding market length
constant has no effect on tax rates.

7Kanbur and Keen (1993) normalize length across both jurisdictions allowing them to talk about differ-
ences in population even though they have differences in density across countries, but not within countries.
Because Kanbur and Keen (1993) features a discontinuity in the density at the border, and thus it allows for
specific country perturbations. Therefore, unlike the Nielsen (2001) model, an increase in population (via
an increase in density) changes tax rates.
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tributed within jurisdictions. Because commodity tax models are closer to a Ramsey
framework than capital tax models, we start here.

2.1 Non-uniform distribution with two jurisdictions

Before analyzing the implications of a non-uniform distribution of residents, we adjust
the standard linear Hotelling model by locating two jurisdictions on a circle. Transi-
tioning to a circle will allow us to generalize the model to more than two jurisdictions,
with each jurisdiction having the same number of borders.8 We normalize total popu-
lation to 1 and the circumference of the circle to 1. Jurisdiction 1 ranges from l21 to l12;
jurisdiction 2 ranges from l12 to l21 + 1.

Each jurisdiction’s government levies an origin-based commodity tax, where we de-
note the tax rate of jurisdiction i by Ti. Tax rates are chosen in a Nash game to maximize
tax revenue. Firms are potentially located anywhere on the circumference and sell the
good in a perfectly competitive environment resulting in producer prices equating to
marginal costs, which we normalize to 1. Individuals reside along the circumference
and wish to purchase one unit of a composite good from firms. Irrespective of the in-
dividuals’ residence, the maximum willingness to pay is V , meaning that individual de-
mand is zero if the total price exceeds V . We assume V is large enough to ensure full
market coverage, that is, larger than the highest gross price inclusive of transportation
costs. This upper limit on willingness to pay bounds tax rates from above at a maximum
rate T .

Although demand is perfectly inelastic, individuals have choice over where to buy
the good. A purchase at home incurs no transport costs because the individual shops at
the firm located at the point where she resides, thus paying the tax rate there. Instead,
if the individual purchases the good in the neighboring jurisdiction—doing so at the
first store after crossing the border—she pays the tax-inclusive price in the neighboring
jurisdiction, but incurs transportation costs δ per unit of distance traveled to the nearest
border from her home.

We generalize the standard model by allowing individuals to be non-uniformly dis-
tributed.9 Let x denote the clockwise distance from the border l21, which starts at point
0 on the circle. Residents are distributed on the circle according to a continuous and
differentiable probability density function (pdf) f (x) with f (x)> 0 on the interval [0, 1].
It has a cumulative distribution function denoted by F(x). Populations are given by
P1 = ∫︁ l12

0 f (x)dx and P2 = ∫︁ 1
l12
f (x)dx.

A consumer will purchase the good in the neighboring jurisdiction if the tax savings
(the tax differential) are greater than or equal to the cost of travel to the nearest border

8The use of a circle follows the industrial organization literature (Salop (1979)). In public finance, Trandel
(1992) and Agrawal (2015) use a circle with uniformly distributed consumers and no differences in jurisdic-
tion sizes.

9In Nielsen (2001) and Kanbur and Keen (1993), once length and population are known, the distribution
of density is irrelevant. Trandel (1994) realizes this issue and allows density to vary across space, but does
so in a linear manner and with two jurisdictions. A linearly increasing distribution implies that density near
the border and population are positively correlated.



1012 Agrawal, Bagh, and Mardan Theoretical Economics 20 (2025)

Figure 1. Model structure with two jurisdictions when T1 > T2. This figure shows the geo-
graphic layout. Consumers are located on the circumference of a circle where jurisdiction 1
ranges from l21 to l12 and jurisdiction 2 ranges from l12 to l21 + 1. We normalize l21 = 0. For
illustrative purposes, we show the case where T1 > T2. Individuals located within the (clockwise)
range enclosed by the points x21 and x12 purchase the good in jurisdiction 1, whereas the re-
maining individuals shop in jurisdiction 2.

(δ times distance to the respective border). For each border, the location of the marginal

individuals who are indifferent between shopping at home or in the neighboring juris-

diction, are given by

x12(T1, T2, l12 ) = l12 − T1 − T2

δ
, x21(T1, T2, l21 ) = l21 − T2 − T1

δ
. (2)

We normalize l21 to be point 0 so that x represents distance from this border. Indi-

viduals located within the (clockwise) range enclosed by the points x21(T1, T2, l21 ) and

x12(T1, T2, l12 ) purchase the good in jurisdiction 1, whereas the remaining individuals

shop in jurisdiction 2. The model does not presuppose any pattern on tax rates: these

cutoff rules encompass both cases where T1 > T2 and T1 ≤ T2. Figure 1 summarizes the

geography of the model for one case.

For notational convenience, due to the possibility that x21 < 0 if T2 > T1, we

define the density function over the interval x ∈ [−1, 1], where 1 is the length of

the circumference. For the same reason, we assume f (x) is periodic with a pe-

riod of 1, which implies that for any x < 0, we have f (x + 1) = f (x). This allows

us to integrate over a range containing negative values of x, thus expressing the

revenue functions elegantly. These assumptions are not critical to deriving any re-

sults.
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The revenue (payoff) functions are the tax rate times the tax base, Bi(T1, T2 ),

R1 ≡ T1B1(T1, T2 ) = T1

[︃∫︂ x12

x21

f (x)dx
]︃

= T1
[︁
F(x12 ) − F(x21 )

]︁

R2 ≡ T2B2(T1, T2 ) = T2

[︃
1 −

∫︂ x12

x21

f (x)dx
]︃

= T2
[︁
1 − F(x12 ) + F(x21 )

]︁
,

where x12 and x21 are the locations of the marginal consumers as defined in (2), sup-
pressing the functional notation for convenience.

Differentiating tax revenues to solve the revenue-maximization problem yields the
first-order conditions for T1 and T2, respectively:

∂R1

∂T1
= F(x12 ) − F(x21 ) − T1

f (x12 ) + f (x21 )
δ

= 0 (3)

∂R2

∂T2
= 1 − F(x12 ) + F(x21 ) − T2

f (x12 ) + f (x21 )
δ

= 0. (4)

To prove the existence and uniqueness of a Nash equilibrium in the tax competition
game, we make the following assumption after defining β(x) = f ′(x)/f (x).

Assumption 1 (log-Concavity). The distribution f (x) is log-concave and, therefore, the
ratio β(x) = f ′(x)/f (x) is nonincreasing on [0, 1].

The assumption of log-concavity is frequently used in studies that have a nonlin-
ear distribution of consumers (Anderson, de Palma, and Nesterov (1995), Bloch and
Manceau (1999)). Caplin and Nalebuff (1991) show that log-concavity is a sufficient con-
dition for the existence of equilibrium in a general class of games. As noted in Caplin and
Nalebuff (1991), the class of log-concave densities covers many frequently used prob-
ability distribution functions such as the normal, exponential, gamma, beta, Weibull,
logistic, Laplace, and uniform distributions.

Remark 1. Although many log-concave pdfs have supports larger than [0, 1], we can
always truncate a pdf with support larger than [0, 1] by defining the truncated pdf f̃ =
f (x)/[F(1) −F(0)] with support [0, 1]. As shown in Bagnoli and Bergstrom (2005), when
f is log-concave, its truncation f̃ will also be log-concave.

Thus, Assumption 1 allows for a large variety of distribution functions.

Remark 2. As shown in Bagnoli and Bergstrom (2005), the log-concavity of f (x) implies
the log-concavity of F(x), that is, f (x)/F(x) is also nonincreasing on [0, 1].

We need an additional technical assumption for existence. Define ρ= δ/T .

Assumption 2 (Technical). The distribution f (x) satisfies f ′(0)/f (0)< δ/T ≡ ρ.

Remark 3. This condition is about the growth rate of f at 0. It will hold if, near 0, the
graph of f is below the graph of the function h(x) = f (0)eρx.
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As long as f (x) is below h(x) near 0, the slope of f will be less than h and f ′(0) <
h′(0). Therefore, f ′(0)/f (0) < ρf (0)eρ·0/f (0) = ρ. Since h grows exponentially, the con-
dition is not very restrictive, allowing for a wide variety of pdfs. While ρ can theoretically
take on any finite number, as a matter of practicality, we can think of a reasonable range
for ρ. If taxes are expressed in ad valorem form, tax rates are usually bounded above by
1. With respect to δ, if distance is measured in time (hours), then δ is proportional to
the opportunity value of time (wages) plus driving costs (gasoline). Thus, ρ need not be
small.

There are numerous examples of log-concave distribution functions—or their trun-
cation over [0, 1]—for which Assumption 2 holds. Examples include the uniform distri-
bution for any value of ρ, the exponential distribution f (x) = λe−λx truncated over [0, 1]
satisfies f ′(0)/f (0) = −λ < ρ for all values of ρ, and the normal distribution’s truncation
over [0, 1] with parameters μ and σ has f ′(0)/f (0) = 2μ/σ , which will be smaller than
any ρ for a small enough μ or large enough σ . With the normal distribution, for μ= 0,
the condition will hold for any ρ and any σ .

Proposition 1 (Existence and Uniqueness). Suppose Assumptions 1 and 2 hold. A Nash
equilibrium exists and is unique.

Proofs, when not contained in the text, are provided in the Appendix.
This Nash equilibrium is characterized by

TN1 = − B1
(︁
TN1 , TN2

)︁
∂B1

∂T1

(︁
TN1 , TN2

)︁ = F
(︁
xN12

)︁ − F(︁
xN21

)︁
[︁
f
(︁
xN12

)︁ + f (︁xN21

)︁]︁
/δ

(5)

TN2 = − B2
(︁
TN1 , TN2

)︁
∂B2

∂T2

(︁
TN1 , TN2

)︁ = 1 − F(︁
xN12

)︁ + F(︁
xN21

)︁
[︁
f
(︁
xN12

)︁ + f (︁xN21

)︁]︁
/δ

, (6)

where we define xN21 ≡ x21(TN1 , TN2 , 0) and xN12 ≡ x12(TN1 , TN2 , l12 ) as the values of the
cutoff rules evaluated at the Nash tax rates. Assuming that f (x) follows a uniform distri-
bution implies that, after accounting for the second border, the optimal tax rates align
with those in Nielsen (2001). Further, dividing both sides of each equation by 1 + TNi
yields the standard inverse-elasticity formulation given by (1):

TNi

1 + TNi
= 1
ϵi

with ϵi = −
∂Bi
∂Ti

(︁
TN1 , TN2

)︁
Bi

(︁
TN1 , TN2

)︁ (︁
1 + TNi

)︁
. (7)

The numerators in the right-hand sides of (5) and (6) are i’s equilibrium tax base; in
the case of jurisdiction 1, this is F(xN12 ) − F(xN21 ). Additionally, the (absolute value of)
changes in the tax base, ∂Bi/∂Ti < 0, which are the denominators on the right-hand
sides, are i’s equilibrium tax-base sensitivity; in the case of two jurisdictions, this term is
identical, |∂Bi/∂Ti| = [f (xN12 ) + f (xN21 )]/δ.

Based on (5) and (6), we establish the following result.
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Proposition 2 (Two Jurisdictions and Tax Rates). Suppose Assumptions 1 and 2 hold.
The unique Nash equilibrium satisfies TN1 > TN2 if and only if P1 >P2.

Proof. Given that the denominators are equal in (5) and (6), the pattern of tax rates
depends on the relative sizes of the tax bases in the numerator:

TN1 > TN2 ⇐⇒ [︁
F

(︁
xN12

)︁ − F(︁
xN21

)︁]︁
>

[︁
1 − F(︁

xN12

)︁ + F(︁
xN21

)︁]︁
. (8)

If TN1 > TN2 , then P1 >F(xN12 )−F(xN21 ), because some individuals residing in jurisdiction
1 cross-border shop into jurisdiction 2. For the same reason, it must be that 1 −F(xN12 ) +
F(xN21 ) > P2. Then (8) implies that P1 > F(xN12 ) − F(xN21 ) > 1 − F(xN12 ) + F(xN21 ) > P2.
Thus, TN1 > TN2 ⇒ P1 >P2.

We show that P1 > P2 implies TN1 > TN2 by contradiction. Let TN2 > TN1 despite P1 >

P2. Then by (8), P2 − CBSN > P1 + CBSN , where CBSN denotes the total number of
cross-border shoppers evaluated at the Nash tax rates. If TN2 > TN1 , then it must be that
CBSN > 0. Given equality of denominators, for TN2 > TN1 to arise, it must be that P2 −
CBSN > P1 + CBSN , which is impossible given that P1 > P2 and CBSN > 0. Thus, P1 >

P2 ⇒ TN1 > TN2 .

This classic result—previously derived in more stylized models—has led to the the
intuition underlying many tax competition models. Intuitively, starting from equal tax
rates, a change in a jurisdiction’s own tax rate will have a smaller percent change on
its tax base if the jurisdiction is larger. Thus, the larger jurisdiction perceives a smaller
elasticity, which under the inverse-elasticity rule implies its optimal tax rate must rise
relative to the jurisdiction with the smaller population.

At first glance, it may appear surprising that the large jurisdiction always sets the
higher tax rate even in the extreme case when almost all of its population is located
directly at its borders, while the small jurisdiction’s population is concentrated at its
interior. One might initially think that the jurisdiction with its population at its inte-
rior is more inelastic. The reason for this stark result, however, originates from the fact
that the tax-base sensitivity is identical for both jurisdictions: they are competing for
the same marginal individuals irrespective of how these individuals are distributed, i.e.,
|∂B1/∂T1| = |∂B2/∂T2| = [f (xN12 ) + f (xN21 )]/δ. In other words, the density of the marginal
consumers at xNij is identical for both jurisdictions, implying that any marginal change in
the tax differential results in the same tax-base change for each jurisdiction. Accordingly,
differences in relative elasticities, and thus tax rates, are solely determined by relative
differences in the size of the tax bases across the jurisdictions.

2.2 Non-uniform distribution with three jurisdictions

In this section, we analyze whether the previously derived result extends to a setup with
more than two jurisdictions. While all of the basic assumptions remain unaltered, we
modify the setup by adding a third jurisdiction. Specifically, jurisdiction 1 ranges from
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Figure 2. Model structure with three jurisdictions when T1 > T2 > T3. This figure shows the
geographic layout of a three jurisdiction model. Consumers are located on the circumference
of a circle where jurisdiction 1 ranges from l31 to l12, jurisdiction 2 ranges from l12 to l23, and
jurisdiction 3 ranges from l23 to l31 + 1. We normalize l31 = 0. For illustrative purposes, we show
the case where T1 > T2 > T3. Individuals located within the (clockwise) range enclosed by the
points x31 and x12 purchase the good in jurisdiction 1, individuals located within the (clockwise)
range enclosed by the points x12 and x23 purchase the good in jurisdiction 2, and the remaining
individuals shop in jurisdiction 3.

l31 to l12, jurisdiction 2 ranges from l12 to l23, and jurisdiction 3 ranges from l23 to l31 +1.
The cutoff rules for the marginal individuals are

x12(T1, T2, l12 ) = l12 − T1 − T2

δ
, x23(T2, T3, l23 ) = l23 − T2 − T3

δ
,

x31(T1, T3, l31 ) = l31 − T3 − T1

δ
.

(9)

Individuals located within the range enclosed by the points x31 and x12 purchase the
good in jurisdiction 1, individuals located between x12 and x23 shop in jurisdiction 2,
and the remaining individuals buy the good in jurisdiction 3. Again, we normalize l31 to
be 0. Figure 2 displays the geography of the model.

As previously, we can express the revenue functions as

R1 ≡ T1B1(T1, T2, T3 ) = T1

[︃∫︂ x12

x31

f (x)dx
]︃

= T1
[︁
F(x12 ) − F(x31 )

]︁

R2 ≡ T2B2(T1, T2, T3 ) = T2

[︃∫︂ x23

x12

f (x)dx
]︃

= T2
[︁
F(x23 ) − F(x12 )

]︁

R3 ≡ T3B3(T1, T2, T3 ) = T3

[︃
1 −

∫︂ x12

x31

f (x)dx−
∫︂ x23

x12

f (x)dx
]︃

= T3
[︁
1 − F(x23 ) + F(x31 )

]︁
.



Theoretical Economics 20 (2025) Sensitivity versus size 1017

Remark 4. Proceeding as previously, suppose Assumptions 1 and 2 hold. A Nash equi-
librium with three jurisdictions again exists (and is unique).

The proof is a straightforward extension of that for Proposition 1, but is presented in
Appendix A.2.

The optimal tax rates can be expressed as

TN1 = − B1
(︁
TN1 , TN2 , TN3

)︁
∂B1

∂T1

(︁
TN1 , TN2 , TN3

)︁ = F
(︁
xN12

)︁ − F(︁
xN31

)︁
[︁
f
(︁
xN31

)︁ + f (︁xN12

)︁]︁
/δ

= P1 − CBSN12 − CBSN31[︁
f
(︁
xN31

)︁ + f (︁xN12

)︁]︁
/δ

(10)

TN2 = − B2
(︁
TN1 , TN2 , TN3

)︁
∂B2

∂T2

(︁
TN1 , TN2 , TN3

)︁ = F
(︁
xN23

)︁ − F(︁
xN12

)︁
[︁
f
(︁
xN12

)︁ + f (︁xN23

)︁]︁
/δ

= P2 + CBSN12 − CBSN23[︁
f
(︁
xN12

)︁ + f (︁xN23

)︁]︁
/δ

(11)

TN3 = − B3
(︁
TN1 , TN2 , TN3

)︁
∂B3

∂T3

(︁
TN1 , TN2 , TN3

)︁ = F
(︁
xN31

)︁ − F(︁
xN23

)︁
[︁
f
(︁
xN23

)︁ + f (︁xN31

)︁]︁
/δ

= P3 + CBSN23 + CBSN31[︁
f
(︁
xN23

)︁ + f (︁xN31

)︁]︁
/δ

, (12)

where, again, we simplify notation by letting a superscript N on the cutoff rules denote
that they are evaluated at the Nash tax rates. On the rightmost sides of the equations, we
rewrite the tax base as the jurisdictions’ population adjusted for cross-border shopping.
Specifically, population sizes are P1 = F(l12 )−F(0), P2 = F(l23 )−F(l12 ), andP3 = F(1)−
F(l23 ), while the cross-border shoppers evaluated at the Nash equilibrium tax rates are
given by CBSN12 = F(l12 ) −F(xN12 ), CBSN31 = F(xN31 ) −F(l31 ), and CBSN23 = F(l23 ) −F(xN23 ).
As previously, dividing by 1+TNi yields the standard inverse-elasticity formulation given
by (7).

To determine if, and under what conditions, a smaller jurisdiction will set a higher
tax rate, we proceed in two steps. In a first step, we rely on the simplifying assumption of
symmetry between two of the three jurisdictions, as this allows us to prove our claim in
an easy and elegant way. In a second step, we relax the symmetry assumption and show
that a smaller jurisdiction can set a higher tax rate than the larger jurisdiction under a
very general population distribution, albeit at the cost of more involved proofs.

First, in a very general, but symmetric setting, we can always find a range of juris-
dictional boundaries such that, in equilibrium, at least one smaller jurisdiction posts a
higher tax rate than a larger jurisdiction.

Proposition 3 (Overturn the Classic Result With Symmetry). Suppose Assumptions 1
and 2 hold. Assume that f (x) = f (1 − x), so that the distribution is symmetric about
x = 1/2. Let l12 = l and l23 = 1 − l so that jurisdiction 1 and 3 are symmetric. Then we
have values of l where P1 < P2 and TN1 > TN2 . That is, there exist distribution functions
and jurisdiction lengths where the Nash equilibrium is such that a larger population ju-
risdiction sets a strictly lower tax rate than at least one smaller jurisdiction.

Proof. The value of l that gives us P1 = P2 = P3 is obtained by solving F(l) = 1/3,
which has a unique solution denoted by l̄. Using (10)–(12) and imposing symme-
try, i.e., TN1 = TN3 , f (l) = f (1 − l), and F(1 − l) = 1 − F(l), yields the Nash equilibria
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TN1 = TN3 = δF(xN12 )/[f (0) + f (xN12 )] and TN2 = δ[1 − 2F(xN12 )]/[f (xN23 ) + f (xN12 )]. The
value of l that then gives TN1 = TN2 = TN3 , denoted by l, is given by solving

M(l) ≡ 2f (l)F(l)
f (0) + f (l)

= 1 − 2F(l) ≡H(l), (13)

where M ′(l) > 0 while H ′(l) < 0. Furthermore, H(0) = 1, H(1/2) = 0, and M(0) = 0.
Therefore, (13) has a unique solution 0 < l < 1/2. Therefore, for any l < l < l̄, we have
TN1 > TN2 despite P2 >P1.

To derive a sufficient condition for l < l̄, we can rewrite (13) as

F(l) = f (0) + f (l)
2f (0) + 4f (l)

≡ ϕ(l). (14)

By definition, l is the solution to the equation F(l) = ϕ(l), whereas l is the solution to
the equation F(l) = 1/3. Clearly, ϕ(0) > F(0). Moreover, assuming f (0) < f (l) implies
ϕ(l) < 1/3 = F(l). The continuity of ϕ and F now implies that F and ϕ must intersect
over (0, l). Hence, f (0)< f (l) is a sufficient condition for l < l.

The symmetry invoked to derive this proposition is a powerful tool to show that there
exist parameter constellations of jurisdiction boundaries such that a smaller jurisdiction
will set a higher tax rate than a larger jurisdiction. Thus, in a very general, but symmet-
ric setting, we can always find a range of jurisdictional boundaries such that at least
one jurisdiction posts a higher tax rate than a smaller sized jurisdiction. Interestingly, if
f (0) = 0, the values l and l̄ satisfy F−1(1/4)< l < F−1(1/3), though in this case, because
Assumption 2 does not hold, it would also need to be verified that the revenue func-
tions are quasi-concave for existence. To derive a precise analytical solution, we use a
triangular distribution as an example.

Example 1 (Triangular Distribution and Symmetric Jurisdictions). Jurisdictions 1 and 3
are symmetric, and have ranges [0; l] and [1 − l; 1], respectively. The rest of the circum-
ference encloses jurisdiction 2. The distribution of population is triangular, symmetric
around its maximum at x = 1/2, and has slopes of m and −m, respectively. It satisfies
f (0) = κ > 0 with 4κ+m = 4 in order for the area under f to integrate to 1. Thus, the
density is f (x) =mx+ 1 −m/4 for x≤ 1/2 and f (x) = −mx+ 1 + 3m/4 for x > 1/2, with
F(x) = (m/2)x2 + (1 −m/4)x for x≤ 1/2 and F(x) = −(m/2)x2 + (1 + 3m/4)x−m/4 for
x > 1/2. Then, focusing on a specific example by letting m = 2 and assuming ρ > 4, if√

73/16 − 3/16 < l <
√

57/12 − 1/4, we have P2 > P3 = P1, but TN2 < TN3 = TN1 , i.e., the
larger jurisdiction 2 sets the lower tax rate, overturning the classic result. ◊

To validate the example, we could proceed by explicitly solving for the Nash equi-
librium and then comparing relative tax rates and populations. Alternatively, we can
apply Proposition 3 by using the the functional form given in Example 1, noting that
both Assumptions 110 and 2 are satisfied when m = 2 and ρ > 4. Then F(l) < 1/3 be-
comes l2 + l/2< 1/3, implying we must have l < l̄= √

57/12 − 1/4 ≈ 0.379. Further, (13)

10Our triangular pdf is log-concave but is not differentiable at 1/2, as it has a sharp peak at 1/2, but we
can “smooth out” this peak over an interval that is arbitrarily small around 1/2.
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implies l > l= √
73/16 − 3/16 ≈ 0.347. Thus, if l < l, then P2 >P3 = P1 and T2 > T3 = T1,

i.e., the larger jurisdiction 2 sets the higher tax rate. If l̄ < l, then P3 = P1 > P2 and
TN3 = TN1 > TN2 , i.e., the larger jurisdictions 1 and 3 set the higher tax rate. However,
if l < l < l̄, then P2 > P3 = P1, but TN3 = TN1 > TN2 , so that the larger jurisdiction sets the
lower tax rate.

While these symmetric examples are sufficient to make the claim that there exist dis-
tribution functions that allow the smaller jurisdiction to set the higher tax rate, one may
wish to determine whether the result is due to the symmetry assumption or whether a
more general result is available. Next, we generalize to an asymmetric setting.

To formalize this strategy of proof, we start by embedding f (·), the population pdf,
within a family of pdfs—perturbations—f (·, ε), where ε ∈ [0, ν]. In the unperturbed
(original) game, ε = 0, and we drop it from our notation, e.g., f (·, 0) = f (·). The cor-
responding family of cumulative distribution functions (cdfs) will be denoted by F(·, ε)
with F(·, 0) = F(·). We will consider games with a perturbed pdf f (·, ε), and parameters
l12 and l23. We denote such a game by G(ε, l12, l23 ). The corresponding population
sizes and equilibrium—when it exists—will be, respectively, denoted by Pi(ε, l12, l23 )
and TNi (ε, l12, l23 ) for i= 1, 2, 3.

The strategy of our proof relies on small—but very specific— perturbations of the
density function that change the populations of jurisdictions while leaving taxes un-
changed. Generally, different distributions of individuals can directly affect tax rates in
potentially two ways: through alterations in the size of the tax bases and modifications
in the tax-base sensitivity. This means that arbitrary changes in the distribution function
will usually have an ambiguous effect on jurisdictions’ tax rates. Thus, we will consider
a specific perturbation. First, the perturbation cannot affect the number of marginal
cross-border shoppers at any xNij , which ensures that tax-base sensitivities remain unaf-
fected. Second, to ensure that tax bases remain unchanged, changes in a jurisdiction’s
population that originate from the perturbation need to be appropriately matched by
changes in the number of nonmarginal cross-border shoppers from another jurisdic-
tion, because a jurisdiction’s tax base is its population adjusted for cross-border shop-
pers.

Suppose, without loss of generality, that l12 and l23 are such that P1 = P2 > P3, and
that Assumptions 1 and 2 hold such that a Nash equilibrium exists. In the main text,
we focus on the most challenging case to prove our result: the case where that Nash
equilibrium is11

TN1 = TN2 > TN3 . (15)

We define a population perturbation. First, let (a, b) be an open subinterval of (0, 1)
with 0 < a < 1 and l23 < b < 1; (a, b) must be picked so that it contains xN12, xN23, and
xN31, that is, the cutoff rules evaluated at the Nash equilibrium before the perturbation.
We introduce a population redistribution of size ε from jurisdiction 3 to jurisdiction 1
around the outside of the interval (a, b) in the following manner. Consider intervals
(a1, b1 ) and (a2, b2 ) such that the first interval satisfies 0 < a1 < b1 < a and the second

11The other two cases can be shown trivially to lead to our desired result (Appendix A.5).
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Figure 3. Graphical representation of perturbation. The horizontal x axis shows an interval
(a, b) relative to the borders and the cutoff rules for an initial equilibrium corresponding to
TN1 = TN2 > TN3 . This figure then shows the specific perturbation to the distribution functions
given by the continuous functions g1 and g2, which equal 0 for all x other than where the func-
tions are nonzero. The shaded area of g1 is ε, while it is −ε for g2. The perturbations are amplified
graphically. The shape of the distribution function, the position of cutoff rules, and the jurisdic-
tion borders are not drawn to scale.

interval satisfies b < a2 < b2 < 1. Define two continuous functions g1 and g2, where
g1 ≥ 0 and it is 0 outside (a1, b1 ), whereas g2 ≤ 0 and it is 0 outside (a2, b2 ). We define
the perturbed function, f (x, ε), as

f (x, ε) = f (x) + g1(x) + g2(x).

Assume further that g1 and g2 are chosen such that (i) f (x, ε) ≥ 0 on [0, 1], and (ii)∫︁ b1
a1
g1(x)dx= ε and

∫︁ b2
a2
g2(x)dx= −ε. Our assumptions on g1 and g2 imply that f (·, ε)

is a pdf on [0, 1]. Figure 3 shows the construction of f (·, ε) graphically. Visually, we
can see that the above redistribution moves a population of size ε from jurisdiction 3
to jurisdiction 1. However, the population we move continues to shop in jurisdic-
tion 3. Therefore, for small enough ε, we expect the above population redistribution
to—very slightly—increases the population in jurisdiction 1 without impacting the tax
bases or sensitivities and, thus, not changing the equilibrium conditions or the pre-
redistribution equilibrium tax rates.

Indeed, Lemma 1 will be used to show that specific population movements to or
from particular points will yield the same equilibrium tax rates.

Lemma 1 (Perturbations and Equilibrium). Let φ : [0, T ] → ℝ be a continuous function.
Let z∗ be the unique maximizer of φ over [0, T ]. We can embed φ into a family of pertur-
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bations φ(·, ε) with ε ≥ 0 such that φ(z, 0) = φ(z) for all z ∈ [0, T ]. Furthermore, make
the following assumptions:

(i) There exists an open interval S that is a subset of [0, T ] and that contains z∗ such
that for all z ∈ S and all ε, we have φ(z, ε) =φ(z).

(ii) For all z ∈ [0, T ] and all ε ∈ [0, ε], we have |φ(z, ε) −φ(z)|< ε.

There exists ε̃ such that ∀ε < ε̃, z∗ is the unique maximizer of φ(·, ε) over [0, T ].

Intuitively, given a function with a unique maximizer z∗ over some compact interval,
we can introduce a “very small” perturbation that occurs “far enough” from z∗. After
such perturbation, z∗ continues to be a unique maximizer for the perturbed function.
We will apply the above lemma to the payoff functions R1, R2, and R3, and to specific
perturbations of the underlying population distribution. This will allow us to show in
Appendix A.5 that the equilibrium of the original unperturbed game (with a population
distribution satisfying Assumptions 1 and 2) is also an equilibrium of a perturbed game
(with a population distribution that may fail to satisfy Assumptions 1 and 2).12

However, this perturbation alone does not yield our result, but now must also be
combined with changes in jurisdiction boundaries. With this new population distribu-
tion, starting from the boundaries such that TN1 = TN2 , we can then make sufficiently
small changes in jurisdictional boundaries such that TN1 < TN2 without changing the
inequality on the relationship between populations.

Lemma 2 (Comparative Statics). Suppose Assumptions 1 and 2 hold. The equilibrium of
the gameG(l12, l23 ) satisfies

∂
(︁
TN1 − TN2

)︁
∂l12

> 0,
∂
(︁
TN1 − TN3

)︁
∂l12

> 0,
∂
(︁
TN2 − TN3

)︁
∂l12

< 0

∂
(︁
TN1 − TN2

)︁
∂l23

< 0,
∂
(︁
TN1 − TN3

)︁
∂l23

> 0,
∂
(︁
TN2 − TN3

)︁
∂l23

> 0.

(16)

Intuitively, focusing on the case of l12, if l12 increases clockwise, all else equal, the
tax differential TN1 − TN2 increases because the direct effect of an increase in length of
jurisdiction 1 (simultaneously shrinking 2’s size) is to raise the tax base in 1 and decrease
the tax base in 2. Further, jurisdiction 3 shrinks in size relative to jurisdiction 1, but
increases in relative size compared to jurisdiction 2, and tax rates follow these relative
patterns. We further prove in the Appendix that this lemma will hold for the perturbed
gameG(ε, l12, l23 ) as well.

Under the new perturbed distribution corresponding to the specific perturbation ε̃,
we have that the population of jurisdiction 1 is larger than that of jurisdiction 2, but

12For small enough ε, the solution of the unperturbed problem is an equilibrium for the perturbed prob-
lem. However, the perturbed problem may have additional equilibria. This possibility in the perturbed
game does not invalidate the subsequent proposition, because we are claiming the existence of a game
with at least one equilibrium that has specific properties.
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the Nash tax rates of the two jurisdictions are unchanged and, thus, the equality in (15)
still holds. Thus, in the final step of the proof, we move l12 to a slightly lower level,˜︁l12. Then by Lemma 2, we obtain TN1 (˜︁ε,˜︁l12, l23 ) < TN2 (˜︁ε,˜︁l12, l23 ) while P1(˜︁ε,˜︁l12, l23 ) >
P2(˜︁ε,˜︁l12, l23 ), overturning the classic result.

Alternatively, we could have started from P1 = P2 > P3, moved some popula-
tion from jurisdiction 1 to jurisdiction 3 without changing taxes, and then increased
l12 slightly. This would yield TN1 (˜︁ε,˜︁l12, l23 ) > TN2 (˜︁ε,˜︁l12, l23 ) while P1(˜︁ε,˜︁l12, l23 ) <
P2(˜︁ε,˜︁l12, l23 ). We can make the following statement.

Proposition 4 (Three Jurisdictions and Tax Rates). Suppose Assumptions 1 and 2 hold.
There exist ˜︁ε, ˜︁l12, and l23, and a population distribution f (x,˜︁ε) such that in the game
G(˜︁ε,˜︁l12, l23 ), the populations of the jurisdictions and the Nash equilibrium are such that
P1(˜︁ε,˜︁l12, l23 ) > P2(˜︁ε,˜︁l12, l23 ) and TN1 (˜︁ε,˜︁l12, l23 ) < TN2 (˜︁ε,˜︁l12, l23 ). Alternatively, we can
find a population distribution with P1(˜︁ε,˜︁l12, l23 ) < P2(˜︁ε,˜︁l12, l23 ) and TN1 (ϵ̃, l̃12, l23 ) >
TN2 (ϵ̃, l̃12, l23 ). That is, a smaller jurisdiction can set a higher tax rate than the next largest
jurisdiction.

The reason why Proposition 2 can be overturned is based on the fact that with
three jurisdictions, a jurisdiction can attract cross-border shoppers from two—instead
of one—jurisdictions at different magnitudes and sensitivities. Specifically, for jurisdic-
tion 1 to set a higher tax rate than jurisdiction 2 it must be that

TN1 > TN2 ⇐⇒ P1 − CBSN12 − CBSN31[︁
f
(︁
xN31

)︁ + f (︁xN12

)︁]︁
/δ

>
P2 + CBSN12 − CBSN23[︁
f
(︁
xN12

)︁ + f (︁xN23

)︁]︁
/δ

.

If the tax-base sensitivities evaluated at the Nash equilibrium, |∂Bi/∂Ti|, are the same
for all jurisdictions, as is the case under a uniform distribution, a jurisdiction would set
a higher tax rate if and only if it was the larger jurisdiction (for the same reasons as in
Proposition 2). To see this, if TN1 > TN2 , we have CBSN12 > 0 and the only way the classic
result can be overturned, i.e., when P2 > P1, is if CBSN23 − CBSN31 > 0. In the case of the
uniform distribution, these magnitudes are simply proportional to the cutoff rule’s tax
differential, and it can easily be seen that CBS31 < 0 requires TN1 < TN3 , while CBS23 > 0
requires TN2 > TN3 , which contradicts TN1 > TN2 . Similarly, if CBS23 > 0, but CBS31 > 0,
for TN1 > TN2 to arise, it must be that CBS31 > CBS23, which contradicts that CBSN23 −
CBSN31 > 0. When density is non-uniform, the tax rate in jurisdiction 1 can indeed be
larger than in jurisdiction 2 if, evaluated at the Nash tax rate, |∂B2/∂T2| is sufficiently
larger than |∂B1/∂T1| in order to compensate for the fact that P1 < P2 and, thus, that
the tax base in 2 may be larger. To see this, suppose that the numerators of the prior
conditions are approximately equal. Then the relative relationship between f (xN31 ) and
f (xN23 ) determines the relationship above.

The prior results in Proposition 4 focused, without loss of generality, on comparing
jurisdictions 1 and 2 (a smaller jurisdiction with a larger jurisdiction), but the results can
easily be extended to other pairwise comparisons of tax rates (including comparing the
smallest jurisdiction with the largest). We can compare jurisdiction 1 and 2, 1 and 3, and
2 and 3. This can easily be seen by example.
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Example 2 (Triangular Distribution and Asymmetric Jurisdictions). In this example, we
revisit Example 1. Let l̂ be a value that satisfies

√
73/16 − 3/16< l <

√
57/12 − 1/4. Then

l12 = l̂ and l23 = 1− l̂. Given the results of Example 1, we already know that at such a value
of l̂, P3 = P1 < P2 and TN1 = TN3 > TN2 . In this example, we fix l12 = l̂ and increase l23

from 1 − l̂ to 1 − l̂+ε, with ε very small, thus breaking the symmetry of the jurisdictions.
Then the equalities in Example 1 can be replaced with inequalities such that pairwise
comparisons of two jurisdictions, can yield the smallest jurisdiction setting a rate higher
than the largest jurisdiction. ◊

We state this result as follows.

Proposition 5 (Smallest Versus Largest Jurisdiction). Suppose Assumptions 1 and 2
hold. There exist distribution functions such that, in the Nash equilibrium, the small-
est jurisdiction can set a tax rate that is higher than the largest jurisdiction, that is, where
P3 <P1 <P2 and TN3 > TN2 .

Proof. To show that such a distribution exists, start with the scenario in the exam-
ple. The ε increase in l23 raises the population of jurisdiction 2 at the expense of 3. By
Lemma 2, we know the effect of this on relative tax differentials. Thus, when l12 = l̂ and
l23 = 1 − l̂+ ε, we have

P3 <P1 <P2 (17)

and

TN1 > TN3 > TN2 . (18)

Armed with these additional pairwise comparisons, we next pursue the question of
whether it is possible to have a full reversal of tax rates where populations and taxes
have the opposite rank orderings for all three jurisdictions. Without loss of generality,
we focus on the case where P1 <P3 <P2. Using a similar strategy of shifting populations
with taxes unchanged and changing border lengths, as in Proposition 4, we can show
the following proposition.

Proposition 6 (Three Jurisdictions and Complete Ordering of Tax Rates). Suppose As-
sumptions 1 and 2 hold. There exist a distribution function and values of l12 and l23 such
that TN2 < TN3 < TN1 despite P2 >P3 >P1.

Proof. Start with P2 > P3 = P1, but TN3 = TN1 > TN2 , which we know is possible by Ex-
ample 1. As in the proof of Proposition 4, we introduce a specific population move ε
from jurisdiction 2 to jurisdiction 3, while maintaining the old equilibrium. This will
give a new ordering P2 > P3 > P1 with the same equilibrium TN3 = TN1 > TN2 . Finally,
imposing Assumption 2 on our population distribution, we apply the second set of in-
equalities in Lemma 2 and increase l23 slightly to maintain P2 > P3 > P1 and obtain the
final equilibrium rates TN2 < TN3 < TN1 .
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Proposition 6 not only shows that a smaller jurisdiction can set the higher tax rate,
but that the full ranking of tax rates can follow the reverse order of populations. Propo-
sition 6 follows from the pairwise comparisons of tax rates between jurisdictions 1 and 2
and between jurisdictions 2 and 3 following Example 2 and Proposition 5. We conclude
that with multiple competitors and a general population distribution, many different
parameter values can yield interjurisdictional tax differentials where larger jurisdictions
set lower rates than smaller jurisdictions.

3. Broadening the model to other settings

While the focus of our previous analysis was on commodity taxation, this section high-
lights that the setup—and main message of our paper—can be easily applied to corpo-
rate or capital taxation. Size matters in these contexts as well.13 Although models of cor-
porate or capital tax competition do not generally rely on Hotelling-style models used in
the commodity tax competition literature, the spatial dimension can be reinterpreted in
terms of profit shifting or capital mobility.

3.1 Profit shifting

Keen and Konrad (2013) have already shown that the spatial commodity tax framework
can be used to study international profit shifting by redefining the travel costs that in-
dividuals incur to cross-border shop as profit-shifting costs.14 More specifically, they
consider a representative multinational enterprise that earns fixed profit �i, i = 1, 2, in
each jurisdiction in the absence of profit shifting. The multinational enterprise can shift
an amount xij(Ti, Tj ) between countries i and j so as to minimize its overall tax pay-
ments. The extent of profit shifting depends on the difference in tax rates between the
two jurisdictions. For notational convenience, we drop the arguments in xij(Ti, Tj ) and
use xij . Note that xij > 0 if Ti > Tj and xij ≤ 0 if Ti ≤ Tj . However, like cross-border
shopping, profit shifting is costly, which Keen and Konrad (2013) assume to be of the
quadratic form C(xij ) = δx2

ij/2. The assumption of quadratic shifting costs implies an
optimal amount of shifted profits similar to the cutoff rule for cross-border shopping
given by (2).15

To align our commodity tax framework with the profit-shifting model, we have to
extend the Keen and Konrad (2013) adaptation to include a third jurisdiction to which
the multinational firm can shift profits. This adds an element of realism to the model, as

13Wilson (1991) and Bucovetsky (1991) find that in a two-jurisdiction economy, the small jurisdiction is
better off than the larger jurisdiction under tax competition, because its low tax rate is increasing its tax
base at the expense of the large jurisdiction.

14Other extensions of the spatial tax competition framework to profit shifting include Agrawal and
Wildasin (2019) and Hebous and Keen (2023).

15The reason is that the marginal benefits/costs of cross-border activity become the same in the two
models. In the commodity tax model, a consumer living z units away from the border will purchase abroad
if the cost of traveling δz is smaller than the tax savings given by the tax rate differential Ti − Tj . In the
profit-shifting model, a company will shift additional units of profit as long as the marginal cost of shift-
ing ∂C(x)/∂x is smaller than the tax savings given by the tax rate differential Ti − Tj . If shifting costs are
quadratic, then ∂C(x)/∂x= δx, which resembles the cost of traveling in the commodity tax framework.
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firms generally have multiple subsidiaries located across different countries. To ensure
that the multinational firm does not shift profits to only one jurisdiction, we assume
shifting costs are bilateral, that is, Cij(xij ).16 The assumption of bilateral costs maps to
placing jurisdictions along a circle.

Next, to map the commodity tax model to profit shifting, we show how the popula-
tion distribution function relates to the shifting cost function. Like density, the shape
of the shifting cost function has important implications for tax competition. Analo-
gous to the assumption of uniform density, the prior literature has assumed the cost
function is quadratic. We allow for a more general form where shifting costs are strictly
convex, i.e., sign(∂Cij/∂xij ) = sign(xij ), sign(∂mCij/∂xmij ) = sign(|xij|), and ∂nCij/∂xnij > 0,
1 < m < n, where n denotes the highest-order derivative. This says that the sign of the
first derivative is either positive or negative depending on the tax differential, the signs
of all higher-order derivatives are nonnegative, and the sign of the highest-order deriva-
tive is strictly positive. For simplicity, assume n= 3. Relaxing the assumption about the
third derivative of the shifting costs is the linking element between the profit-shifting
model and our commodity tax model. The multinational’s after-tax profits are

(1 − T1 )(�1 − x12 − x13 ) + (1 − T2 )(�2 + x12 − x23 )

+ (1 − T3 )(�3 + x13 + x23 ) −C12 −C13 −C23,

which implicitly yields the optimal levels of profit shifting,

∂Cij

∂xij
= Ti − Tj , j = {2, 3}, i= {1, 2}, j ≠ i. (19)

Denoting x∗
ij(Ti, Tj ) as the optimal levels of shifting implied by (19), we derive the

sensitivity of profit shifting:

∂x∗
ij

∂Ti
= −∂x

∗
ij

∂Tj
= 1

∂2Cij

∂x2
ij

, j = {2, 3}, i= {1, 2}, j ≠ i.

The tax sensitivity of profit shifting depends on the magnitude of ∂2Cij/∂x
2
ij and,

thus, ultimately on the shape of the shifting cost function. Based on the multinational
firm’s trade-offs, we can formulate the jurisdictions’ tax revenues as

R1 = T1
[︁
�1 − x∗

12 − x∗
13

]︁
R2 = T2

[︁
�2 + x∗

12 − x∗
23

]︁
R3 = T3

[︁
�3 + x∗

13 + x∗
23

]︁
.

16See Huizinga, Laeven, and Nicodème (2008) and van’t Riet and Lejour (2018) for empirical evidence
showing that multinational firms base their decisions on bilateral costs.
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Differentiating Ri with respect to Ti implicitly determines the optimal taxes, where we
let x∗

ij(T
N
i , TNj ) ≡ xNij and ∂2Cij/∂x

2
ij ≡ c′′ij :

TN1 = − �1 − xN12 − xN13

−∂x12

∂T1

(︁
TN1 , TN2

)︁ − ∂x13

∂T1

(︁
TN1 , TN3

)︁ = �1 − xN12 − xN13(︁
c′′12

(︁
TN1 , TN2

)︁)︁−1 + (︁
c′′13

(︁
TN1 , TN3

)︁)︁−1

TN2 = − �2 + xN12 − xN23
∂x12

∂T2

(︁
TN1 , TN2

)︁ − ∂x23

∂T2

(︁
TN2 , TN3

)︁ = �2 + xN12 − xN23(︁
c′′12

(︁
TN1 , TN2

)︁)︁−1 + (︁
c′′23

(︁
TN2 , TN3

)︁)︁−1

TN3 = − �3 + xN13 + xN23
∂x13

∂T3

(︁
TN1 , TN3

)︁ + ∂x23

∂T3

(︁
TN2 , TN3

)︁ = �3 + xN13 + xN23(︁
c′′13

(︁
TN1 , TN3

)︁)︁−1 + (︁
c′′23

(︁
TN2 , TN3

)︁)︁−1 .

The optimal corporate tax rates have the same structure as (10)–(12), where the
exogenous firm profits �i play the same role as the exogenous population size Pi.
Profit shifting xN12, xN13, and xN23 is analogous to cross-border shopping CBSN12, CBSN31,
and CBSN23. The functional form of the shifting costs Cij affects the tax-base sensi-
tivity in a similar fashion as the functional form of the population distribution f (x),
where f (xN12 ), f (xN23 ), and f (xN31 ) in the commodity tax model matches (c′′12(TN1 , TN2 ))−1,
(c′′23(TN2 , TN3 ))−1, and (c′′13(TN1 , TN3 ))−1 in the profit-shifting model. If the cost function
is quadratic, these terms are all equal, yielding the standard result that larger jurisdic-
tions set higher rates. For ease of exposition, we focus on illustrating how our result
in Proposition 3 can be derived in the profit-shifting model. Note that we can define
the allocation of real profits across countries as �1 = l12�, �2 = (l23 − l12 )�, and �3 =
(1 − l23 )�, where � denotes worldwide profits, and l12, (l23 − l12 ) and (1 − l23 ) are the
exogenous shares of multinationals’ production in each country, with 0 < l12 < l23 < 1,
where, due to symmetry, l12 = l and l23 = 1 − l. Then it becomes clear that if �1 < �2,
there exist cost functions such that TN1 > TN2 if and only if l < l < l̄.

3.2 Capital mobility

Next we demonstrate similarities with models of capital mobility by drawing on Mon-
grain and Wilson (2018), who analyze tax competition in a setting where firms face het-
erogeneous moving costs. More specifically, there are two jurisdictions i = 1, 2 and a
mass of firms 2N . Jurisdictions may differ in size, that is, jurisdiction 1 is assumed to
be the larger jurisdiction with initiallyN1 = n2N firms, whereas jurisdiction 2 comprises
N1 = (1 − n)2N , where n ∈ [1/2, 1). Firms generate exogenous profits γ > 1 and can
relocate to the other jurisdiction, which results in idiosyncratic moving costs ĉ ∈ [0, 1]
distributed according to a cumulative distribution function F(ĉ), with density f (ĉ). Tax
competition arises because firms are taxed depending on where they are located, that
is, each jurisdiction levies a source-based tax Ti.

Figure 4(a) illustrates the situation of T1 > T2, which implies that some firms with
moving costs ĉ ≤ c12 ≡ γ(T1 −T2 ) initially located in jurisdiction 1 relocate to jurisdiction
2, so that the tax bases in jurisdictions 1 and 2 are given by γN1[1 − F(c12 )] and γN2 +
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Figure 4. Eliminating discontinuities in capital tax models. Panel (a) shows the setup of Mon-
grain and Wilson (2018), including a discontinuity in the distribution. Panel (b) shows how we
eliminate the discontinuity to simplify the problem, but still preserve all qualitative results of the
model. For illustrative purposes, the figure depicts a cutoff rule if T1 > T2.

γN1F(c12 ). The setup described in Figure 4(a) is identical to the setup in Kanbur and
Keen (1993), and, therefore, implies that the reaction function of the small jurisdiction,
here jurisdiction 2, features a discontinuity. This feature could considerably complicate
our analysis.

For this reason, we modify the Mongrain and Wilson (2018) model to eliminate the
discontinuity in the best response function without affecting the model’s results in a
qualitative manner. Our model circumvents the discontinuity by altering the length of
the jurisdictions (instead of the height) to make one larger than the other. After apply-
ing this adjustment to the Mongrain and Wilson (2018) model, the model setup can be
summarized as in the Figure 4(b). Figure 4(b) illustrates the situation of T1 > T2, which
implies that some firms with moving costs ĉ ≤ c12 ≡ γ(T1 − T2 ) initially located in juris-
diction 1 relocate to jurisdiction 2, with the difference that there is no discontinuity at
the border and, in turn, in the small jurisdiction’s tax reaction function. The tax bases in
jurisdictions 1 and 2 are now given by γ[N1 − F(c12 )] and γ[N2 + F(c12 )].

Based on these adjustments, we extend the Mongrain and Wilson (2018) model to
three jurisdictions. To align the capital-mobility model with the commodity tax model,
we need a few additional assumptions. First, following Janeba and Schulz (2023) and
Fuest and Sultan (2019), there are three industries, but each industry links only two
countries, i.e., industry ij links countries i and j. Firms in industry ij can only locate
in these two countries because firms cannot change industries. The idea that coun-
tries differ in industries is consistent with the Ricardian idea of specialization resulting
from regulatory or technological differences across countries. Second, firms draw an
industry-specific moving cost ĉij ∈ [0, 1] from an industry-specific cumulative distribu-
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tion function Fij(ĉij ) with density fij(ĉij ). Firms located in jurisdiction i will move to ju-
risdiction j if ĉij ≤ cij ≡ γ(Ti − Tj ), where the cost without the “hat” denotes the optimal
cutoff rule.

Based on these assumptions, we can formulate the jurisdictions’ revenues as

R1 = T1
[︁
N1 − F12(c12 ) − F13(c13 )

]︁
R2 = T2

[︁
N2 + F12(c12 ) − F23(c23 )

]︁
R3 = T3

[︁
N3 + F13(c13 ) + F23(c23 )

]︁
,

whereN1 = l12N ,N2 = (l23 − l12 )N , andN3 = (1 − l23 )N withN denoting the total num-
ber of firms, and l12, (l23 − l12 ), and (1 − l23 ) denoting the exogenous shares of initial
firms in each country (0 < l12 < l23 < 1). Differentiating the revenue functions Ri im-
plicitly determines the optimal taxes

TN1 = N1 − F12
(︁
cN12

)︁ − F13
(︁
cN13

)︁
γ
[︁
f12

(︁
cN12

)︁ + f13
(︁
cN13

)︁]︁
TN2 = N2 + F12

(︁
cN12

)︁ − F23
(︁
cN23

)︁
γ
[︁
f12

(︁
cN12

)︁ + f23
(︁
cN23

)︁]︁
TN3 = N3 + F13

(︁
cN13

)︁ + F23
(︁
cN23

)︁
γ
[︁
f13

(︁
cN13

)︁ + f23
(︁
cN23

)︁]︁ ,

where cNij are the optimal cutoff rules evaluated at Nash tax rates.
Again, the structure of the optimal tax rates is qualitatively the same as (10)–(12),

where the initial number of firms located in a jurisdiction, Ni, plays the same role as
the exogenous population size Pi. The number of firms moving, F12(cN12 ), F13(cN13 ), and
F23(cN23 ), corresponds to the number of cross-border shoppers CBSN12, CBSN31, and CBSN23,
and the distribution of moving costs, fij(cNij ), plays the same role as the distribution of

population, f (xNij ). If we assume symmetry in the same way as under Proposition 3, then

it is clear that ifN1 <N2, there exist moving-cost distributions such that TN1 > TN2 if and
only if l < l < l̄.

4. Conclusions

Declining mobility costs, technological change, and reductions in border controls pose
substantial challenges to the design of tax policies in an open economy. Many stan-
dard strategic tax competition models assume duopolistic competition, leading to the
conventional view that larger jurisdictions set higher tax rates. However, in reality, com-
petition for mobile tax bases is usually not just a bilateral, but a multilateral matter. We
show that allowing for oligopolistic competition can lead to fundamentally different out-
comes in the tax competition game irrespective of whether jurisdictions compete for
cross-border shoppers, capital, or profits. In the commodity tax setting, the shape of the
distribution of residents is critical. In a companion work, using data on the distribution
of households within jurisdictions, we empirically show that increases in the density of
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marginal households near the border is negatively correlated with a jurisdiction’s sales
tax rate and negatively correlated with it having a higher tax than its neighbors.

Our analysis focuses on a single-tax policy. However, an important feature of a tax
system is that jurisdictions decide on multiple-tax policies. In the case of commodity
taxes, for example, governments may set different excise tax rates on products that may
be complements or substitutes (Hoyt (2017)).17 We could extend our model to multi-
ple excise taxes on different products (e.g., beer, wine, and spirits). To do so, we would
need to relax the assumption of inelastic demand following Devereux, Lockwood, and
Redoano (2007) and then add a second commodity that influences demand for the first.
We have focused on the case in which tax-base interdependencies play a subordinate
role. In a quasi-linear model with two goods and two tax rates, if consumption of one
commodity is independent of consumption of the other commodity—consumer utility
is separable in the commodities—cross-price elasticities of demand are 0 and our re-
sults would carry through. However, Scheuer and Werning (2016) note that the inverse-
elasticity rule may provide little guidance for policy when cross-price elasticities are not
0. Concerning the results of our model, this implies that the conventional view that
larger jurisdictions set higher tax rates may no longer hold, even in the two jurisdiction
case. Future research might explore the role of such tax-base interdependencies more
thoroughly so as to think about tax competition as it relates to the tax system, not just to
a specific tax instrument in isolation.

Although our focus is on competition between governments, our framework shares
important commonalities with industrial organization models that consider price com-
petition with more than two firms (Aoyagi and Okabe (1991), Caplin and Nalebuff (1991),
Chen and Riordan (2007), Zhou (2017), Tarbush (2018)) or price competition in networks
(Bloch and Querou (2013), Mossay and Picard (2011), Ushchev and Zenou (2018)), “spa-
tial” voting models, where voters differ in preferences (Wittman (1983)), and the role of
border effects in trade (Anderson and van Wincoop (2003), Evans (2003)) and in urban
economics (Holmes (1998)).

With reference to border effects in urban economics, our model implies that the
population distribution is critical for the elasticity of the tax base. While it is reasonable
to believe that sales-tax differentials are not a major determinant of housholds’ (resi-
dential) migration decisions, jurisdictions have alternative instruments that influence
where people live. For example, land use and zoning regulations may allow jurisdictions
to influence the distribution of firms and individuals, and, thus, choose the elasticity
of the tax base, as in Slemrod and Kopczuk (2002), to maximize tax revenues. Indeed,
Jacob and McMillen (2015) document that commercial and industrial parcels are signif-
icantly more likely to be located near municipal boundaries, which reduces the likeli-
hood of own-residents shopping in the neighboring jurisdiction and, at the same time,
increases the likelihood of attracting neighboring cross-shoppers due to reduced travel
times. Whether such a policy is desirable from a welfare perspective needs to be evalu-
ated in a general equilibrium model that takes into account repercussions on, inter alia,
the housing market—again highlighting the role of cross-price elasticities.

17More generally, as noted in Slemrod (2019) and Keen and Slemrod (2017), a tax system consists of more
than tax bases and rates, with remittance rules, enforcement policies, and information exchange potentially
influencing the elasticity of the tax base.
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Appendix: Proofs

A.1 Proof of existence and uniqueness (two jurisdictions)

The game is supermodular if the strategy set is compact and the payoff functions display
strategic complementarity in the taxes (Rota-Graziosi (2019)). The strategy set is the
compact set [0, T ].

The first-order conditions (FOCs) are given by (3) and (4). We can rewrite (3) as

∂R1

∂T1
= F(x12 )

[︃
1 − T1

δ

f (x12 )
F(x12 )

]︃
⏞ ⏟⏟ ⏞

A

−F(x21 )

[︃
1 + T1

δ

f (x21 )
F(x21 )

]︃
⏞ ⏟⏟ ⏞

B

. (A.1)

Taking the derivative of termA with respect to T2 yields

A′ = f (x12 )
δ

[︃
1 − T1

δ

f ′(x12 )
f (x12 )

]︃
. (A.2)

Then using our assumptions, we have

f ′(z)
f (z)

≤ f ′(0)
f (0)

<
δ

T
∀z ∈ [0, 1], (A.3)

where the first inequality follows from the log-concavity of f and the second inequal-
ity follows from Assumption 2. Thus, A′ is positive for all T2. By the log-concavity of f
and the definitions in (2), term A is strictly increasing in T2, where the strict condition
follows from the strict inequality in (A.3). As shown in Bagnoli and Bergstrom (2005),
the log-concavity of f implies that F is also log-concave and, therefore, f (x21 )/F(x21 ) is
weakly decreasing in x. By (2), x21 decreases in T2 and, therefore, term B is a product
of two positive weakly decreasing functions in T2. Thus, combined with the fact that A
strictly increases in T2, we can conclude that the right-hand side of (A.1) is strictly in-
creasing in T2. Therefore, ∂2R1/∂T2∂T1 > 0. Applying the same argument to R2, we con-
clude that ∂2R2/∂T1∂T2 > 0. Hence, the game is supermodular and has an equilibrium
(Topkis (1979)).

Furthermore, we can make use of the dominant diagonal argument to prove unique-
ness of the equilibrium (Vives (1999, p. 47)). We can compute

�1 ≡ ∂2R1

∂T 2
1

+ ∂2R1

∂T2∂T1
= −f (x12 ) + f (x21 )

δ
< 0.

Similarly, we have

�2 ≡ ∂2R2

∂T 2
2

+ ∂2R2

∂T1∂T2
< 0.

Thus, the equilibrium in unique.18

18The definition of �1, the fact that �1 < 0, and the supermodularity of the game imply that the second
partial of R1 with respect to T1 is strictly negative and R1 is strictly concave in T1. Therefore, the best
response is single-valued. The same is true for the second jurisdiction.



Theoretical Economics 20 (2025) Sensitivity versus size 1031

A.2 Proof of existence and uniqueness (three jurisdictions)

Focusing on jurisdiction 1, differentiating the revenue functions yields

∂R1

∂T1
= F(x12 )

[︃
1 − T1

δ

f (x12 )
F(x12 )

]︃
⏞ ⏟⏟ ⏞

A

−F(x31 )

[︃
1 + T1

δ

f (x31 )
F(x31 )

]︃
⏞ ⏟⏟ ⏞

C

. (A.4)

Term A is identical to that in (A.1) and, thus, we can repeat the argument in Ap-
pendix A.1 to show that it is strictly increasing in T2. This proves the claim for T2, as
x31 is unaffected by T2. Similarly, we know that x31 decreases in T3, which means that
term C decreases in T3 because the log-concavity of f in Assumption 1 implies that F
is also log-concave. Hence, the negative second term of jurisdiction 1’s first-order con-
dition becomes less negative as T3 increases, which proves the claim for T3, as x12 is
unaffected by T3. Thus, ∂2R1/∂T1∂T2 > 0 and ∂2R1/∂T1∂T3 ≥ 0. Applying this logic to all
jurisdictions implies that the game is supermodular under Assumption 1.

With respect to uniqueness, for i ∈ {1, 2, 3}, let

�i ≡ ∂2Ri

∂T 2
i

+
∑︂
j≠i

∂2Ri
∂Tj∂Ti

.

We compute the elements of the Hessian matrix:

γ1 = ∂2R1

∂T 2
1

= −1
δ

[︁
f (x12 ) + f (x31 )

]︁ − (γ2 + γ3 )< 0

γ2 = ∂2R1

∂T2∂T1
= 1
δ

[︃
f (x12 ) − T1

δ
f ′(x12 )

]︃
> 0

γ3 = ∂2R1

∂T3∂T1
= 1
δ

[︃
f (x31 ) + T1

δ
f ′(x31 )

]︃
≥ 0

γ4 = ∂2R2

∂T1∂T2
= 1
δ

[︃
f (x12 ) + T2

δ
f ′(x12 )

]︃
≥ 0

γ5 = ∂2R2

∂T 2
2

= −1
δ

[︁
f (x12 ) + f (x23 )

]︁ − (γ4 + γ6 )< 0

γ6 = ∂2R2

∂T3∂T2
= 1
δ

[︃
f (x23 ) − T2

δ
f ′(x23 )

]︃
> 0

γ7 = ∂2R3

∂T1∂T3
= 1
δ

[︃
f (x31 ) − T3

δ
f ′(x31 )

]︃
> 0

γ8 = ∂2R3

∂T2∂T3
= 1
δ

[︃
f (x23 ) + T3

δ
f ′(x23 )

]︃
≥ 0

γ9 = ∂2R3

∂T 2
3

= −1
δ

[︁
f (x23 ) + f (x31 )

]︁ − (γ7 + γ8 )< 0.
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The indicated signs of these γs follows from the supermodularity of the payoff func-
tions. It can then be immediately seen that under Assumptions 1 and 2, �i < 0 for all
jurisdictions, which proves uniqueness (Vives (1999)).

A.3 Proof of Lemma 1

Let S = (α, β). Let ζ be the maximum value of φ on [0, α], and let ξ be the maximum
value of φ on [β, T ]. Since z∗ is the unique maximizer of φ, we can find ε̃ to be such
that φ(z∗ ) > max{ζ + ε̃, ξ + ε̃}. Assumption (ii) and the definition of ε̃ imply that, for
all ε < ε̃, the maximum of φ(·, ε) over [0, α]

⋃︁
[β, z] is strictly less than φ(z∗ ), which

is equal to φ(z∗, ε) by assumption (i). Moreover, assumption (i) implies that for all ε,
φ(z∗ ) is the maximizer of φ(·, ε) over (α, β). Therefore, for all ε < ε̃, we have φ(z∗, ε)>
φ(z, ε) for all z ∈ [0, T ] that are different from z∗. Hence, z∗ is the unique maximizer of
φ(·, ε) over [0, T ].

A.4 Proof of Lemma 2

Multiplying the first-order conditions of the game by δ and totally differentiating yields
the system of equations⎡

⎢⎣α1 α2 α3

α4 α5 α6

α7 α8 α9

⎤
⎥⎦ ×

⎡
⎢⎣dT1

dT2

dT3

⎤
⎥⎦ =

⎡
⎢⎣−δα2

δα4

0

⎤
⎥⎦dl12 +

⎡
⎢⎣ 0

−δα6

δα8

⎤
⎥⎦dl23 +

⎡
⎢⎣ δα3

0
−δα7

⎤
⎥⎦dl31,

where αi = δγi. Using Cramer’s rule, we can derive the effect of a change in l12 on the
equilibrium tax rates as

dTN1
dl12

= −α2(α5α9 − α6α8 ) + α4(α2α9 − α3α8 )

δ2|�|
dTN2
dl12

= α4(α1α9 − α3α7 ) + α2(α4α9 − α6α7 )

δ2|�|
dTN3
dl12

= −α4(α1α8 − α2α7 ) + α2(α4α8 − α5α7 )

δ2|�| ,

and the effect of l23 as

dTN1
dl23

= α6(α2α9 − α3α8 ) + α8(α2α6 − α3α5 )

δ2|�|
dTN2
dl23

= −α6(α1α9 − α3α7 ) + α8(α1α6 − α3α4 )

δ2|�|
dTN3
dl23

= α6(α1α8 − α2α7 ) + α8(α1α5 − α2α4 )

δ2|�| ,

where |�| < 0, to obtain a maximum. By Assumption 2, we have γ2, γ6, γ7 > 0, that is,
a strict inequality. Therefore, we also have α2, α6, α7 > 0. Moreover, we can derive the
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relationships

dTN1
dl12

− dTN2
dl12

=
[︁
f (x12 ) + f (x23 )

]︁
α2α9 + [︁

f (x12 ) + f (x31 )
]︁
α4α9

δ2|�|

−
[︁
f (x23 ) + f (x31 )

]︁
(α2α6 + α3α4 )

δ2|�| ≡ �12
l12

δ2|�| > 0

dTN1
dl12

− dTN3
dl12

=
[︁
f (x23 ) + f (x31 )

]︁
α2(α4 + α5 )

δ2|�|

−
[︁
f (x12 ) + f (x31 )

]︁
α4α8 + [︁

f (x12 ) + f (x23 )
]︁
α2α8

δ2|�| ≡ �13
l12

δ2|�| > 0

dTN2
dl12

− dTN3
dl12

=
[︁
f (x12 ) + f (x23 )

]︁
α2α7 + [︁

f (x23 ) + f (x31 )
]︁
α3α4

δ2|�|

+
[︁
f (x12 ) + f (x31 )

]︁[︁
f (x23 ) + f (x31 )

]︁
α4 + [︁

f (x12 ) + f (x31 )
]︁
α4α7

δ2|�|

≡ �23
l12

δ2|�| < 0 (A.5)

and

dTN1
dl23

− dTN2
dl23

= α6
[︁[︁
f (x12 ) + f (x31 )

]︁
α7 − (α1 + α2 )

[︁
f (x23 ) + f (x31 )

]︁]︁
δ2|�|

+ α3α8
[︁
f (x12 ) + f (x23 )

]︁
δ2|�| ≡ �12

l23

δ2|�| < 0

dTN1
dl23

− dTN3
dl23

=
[︁
f (x12 ) + f (x31 )

]︁
(α5 + α6 )α8 − α2α8

[︁
f (x12 ) + f (x23 )

]︁
δ2|�|

− α2α6
[︁
f (x23 ) + f (x31 )

]︁
δ2|�| ≡ �13

l23

δ2|�| > 0

dTN2
dl23

− dTN3
dl23

= α1α6
[︁
f (x23 ) + f (x31 )

]︁ − [︁
f (x12 ) + f (x31 )

]︁
(α6α7 + α4α8 )

δ2|�|

+ α1α8
[︁
f (x12 ) + f (x23 )

]︁
δ2|�| ≡ �23

l23

δ2|�| > 0. (A.6)

A.5 Proof of Proposition 4

A.5.1 Formalities and outline Given any vectors T = (T1, T2, T3 ) and l = (l12, l23 ), we
define the quantities that represent the marginal shoppers by x12(T1, T2, l12 ) = l12 −
(T1 −T2 )/δ, x23(T2, T3, l23 ) = l23 − (T2 −T3 )/δ, and x31(T3, T1 ) = l31 − (T3 −T1 )/δ, where
l31 is normalized to 0. Under perturbation ε, we also denote the (parameterized) payoff
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functions

R1(T1, T−1, ε, l12 ) = T1
[︁
F

(︁
x12(T1, T2, l12 ), ε

)︁ − F(︁
x31(T3, T1 ), ε

)︁]︁
R2(T2, T−2, ε, l12, l23 ) = T2

[︁
F

(︁
x23(T2, T3, l23 ), ε

)︁ − F(︁
x12(T1, T2, l12 ), ε

)︁]︁
R3(T3, T−3, ε, l23 ) = T3

[︁
1 − F(︁

x23(T2, T3, l23 ), ε
)︁ + F(︁

x31(T3, T1 ), ε
)︁]︁

,

where T−i denote the actions of players other than player i (e.g., T−1 = (T2, T3 )).
When ε = 0 (i.e., when we are considering a game with the original—unpertur-

bed—pdf, and the only parameters that can take different values are l12 and l23), we
simply drop ε from the notation. We write G(l12, l23 ) to denote the game. We write
R1(T1, T−1, l12 ), R2(T2, T−2, l12, l23 ), and R3(T3, T−3, l23 ) for the payoffs in G(l12, l23 ).
We also write P1(l12 ), P2(l12, l23 ), and P3(l23 ), and TN1 (l12, l23 ), TN2 (l12, l23 ), and
TN3 (l12, l23 ) to, respectively, denote the population sizes and the equilibria ofG(l12, l23 ).
We proceed as follows.

Step 1. Given the population distribution f , we can find values l12 and l23, and a
perturbation size ε̃ such that, in the perturbed game G(ε̃, l12, l23 ), we have P1(ε̃, l12 ) >
P2(ε̃, l12, l23 ) and TN1 (ε̃, l12, l23 ) = TN2 (ε̃, l12, l23 ).

Step 2. We move the border l12 to a slightly lower level l̃12 so that in the new game
G(ε̃, l̃12, l23 ), we have P1(ε̃, l̃12 )>P2(ε̃, l̃12, l23 ) and TN1 (ε̃, l̃12, l23 )< TN2 (ε̃, l̃12, l23 ).

A.5.2 Implementing Step 1 We start by assuming, without loss of generality, that the
parameters l12 and l23 are such that P1(l12 ) = P2(l12, l23 ) > P3(l23 ).19 As shown in Ap-
pendix A.2, a unique equilibrium exists for the gameG(l12, l23 ).

Case 1. If TN3 (l12, l23 )>min{TN1 (l12, l23 ), TN2 (l12, l23 )}, there is nothing to prove.
Case 2. Similarly, if TN1 (l12, l23 ) < TN2 (l12, l23 ), we can slightly increase l12 to a new

value l12 so that we have P1(l12 ) > P2(l12, l23 ) while the continuity of TN1 and TN2 with
respect to l12 implies that we still have TN1 (l12, l23 ) < TN2 (l12, l23 ). A similar argument
can be used if TN1 (l12, l23 )> TN2 (l12, l23 ).

Case 3. Therefore, the only case we need to consider in our proof is when the equi-
librium of the gameG(l12, l23 ) is

TN3 (l12, l23 )< TN1 (l12, l23 ) = TN2 (l12, l23 ). (A.7)

To to deal with this case, we can find a very specific (small) population redistribution
of size ε from jurisdiction 3 to jurisdiction 1. This will correspond to a perturbation
f (·, ε) of f that will increase the population of jurisdiction 1 by ε > 0 while keeping the
population of jurisdiction 2 the same and maintaining the equilibrium tax rates at their
pre-perturbation levels. In other words, in the perturbed game G(ε, l12, l23 ), we have
that P1(ε, l12 )>P2(ε, l12, l23 ) while TN1 (ε, l12, l23 ) = TN2 (ε, l12, l23 ) holds.

First, we simplify our notation with (TN1 , TN2 , TN3 ) = (TN1 (l12, l23 ), TN2 (l12, l23 ),
TN3 (l12, l23 )), and define xN12 = xN12(TN1 , TN2 , l12 ), xN23 = xN23(TN2 , TN3 , l23 ), and xN31 =
xN12(TN3 , TN1 ).

19See Lemma 3 in Appendix A.5.4 for details.
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Let (a, b) be an open subinterval of (0, 1) with 0< a< 1 and l23 < b< 1. Given (A.7),
(a, b) must be picked so that it contains the three points xN12, xN23, and xN31. The location
of the above points relative to (a, b) is shown on Figure 3.

We introduce a population redistribution of size ε from jurisdiction 3 to jurisdic-
tion 1 around the outside of the interval (a, b) in the following precise manner. Con-
sider intervals (a1, b1 ) and (a2, b2 ) such that the first interval is to the left of (a, b), i.e.,
0 < a1 < b1 < a, and the second interval is to the right of (a, b), i.e., b < a2 < b2 < 1.
Consider two continuous functions g1 and g2, where g1 ≥ 0 and it is 0 outside (a1, b1 ),
whereas g2 ≤ 0 and is 0 outside (a2, b2 ) as depicted in the second panel of Figure 3.
Define

f (x, ε) = f (x) + g1(x) + g2(x).

Assume further that g1 and g2 are chosen such that (i) f (x, ε) ≥ 0 on [0, 1], and
(ii)

∫︁ b1
a1
g1(x)dx = ε and

∫︁ b2
a2
g2(x)dx = −ε. The final panel of Figure 3 shows the con-

struction of f (·, ε) graphically.
Our assumptions on g1 and g2 imply that f (·, ε) is a pdf on [0, 1], and we make the

following observations.

Observation 1. We have f (x, ε) = f (x) on (a, b).

Observation 2. We have F(x, ε) − F(x′, ε) = F(x) − F(x′ ) for any x, x′ in (a, b).

Observation 3. We have |F(x, ε) − F(x)| ≤ ε on [0, 1].

Observation 3 implies that the difference between the perturbed F(·, ε) and the orig-
inal F(·) can be arbitrarily small—over all of [0, 1]—by choosing ε small enough.

Moreover, the above redistribution moves a population of size ε from jurisdiction 3
to jurisdiction 1. However, the population we move continues to shop in jurisdiction 3.
Therefore, for small enough ε, we expect the above population redistribution to—very
slightly—increases the size of the population in jurisdiction 1 without impacting the pre-
redistribution equilibrium tax rates. To see this, note that we can find small enough open
intervals S1, S2, and S3 respectively containing TN1 , TN2 , and TN3 such that for any T ′

1 ∈ S1,
T ′

2 ∈ S2, and T ′
3 ∈ S3, we have x12(T ′

1, T ′
2, l12 ), x23(T ′

2, T ′
3, l23 ), and x31(T ′

3, T ′
1 ) arbitrarily

close to xN12, xN23, and xN31.

Observation 4. Points x12(T ′
1, TN2 , l12 ), x23(TN2 , TN3 , l23 ), and x31(TN3 , T ′

1 ) are in (a, b).

Observations 2 and 4 together imply that, for all T ′
1 in S1, we have

R1
(︁
T ′

1, TN−1, ε, l12
)︁ =R1

(︁
T ′

1, TN−1, l12
)︁
. (A.8)

Furthermore, Observations 3 implies that we have, for all T1 on [0, T ],⃓⃓
F

(︁
x12

(︁
T1, TN2

)︁
, ε

)︁ − F(︁
x12

(︁
T1, TN2 , l12

)︁)︁⃓⃓
< ε (A.9)⃓⃓

F
(︁
x31

(︁
TN3 , T1

)︁
, ε

)︁ − F(︁
x31

(︁
TN3 , T1

)︁)︁⃓⃓
< ε. (A.10)
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Since R1 = T1[F(x12 ) − F(x31 )], this implies⃓⃓
R1

(︁
T1, TN−1, ε, l12

)︁ −R1
(︁
T1, TN−1, l12

)︁⃓⃓
< T

⃓⃓
F

(︁
x12

(︁
T1, TN2 , l12

)︁
, ε

)︁ − F(︁
x12

(︁
T1, TN2 , l12

)︁)︁⃓⃓
+ T ⃓⃓

F
(︁
x31

(︁
TN3 , T1

)︁)︁ − F(︁
x31

(︁
TN3 , T1

)︁
, ε

)︁⃓⃓
< 2Tε (A.11)

for all T1 on [0, T ].
In other words, (A.8) implies that the perturbed R1 and the unperturbed R1 agree

on S1, and (A.11) implies that the difference between the values of the perturbedR1 and
the unperturbed R1 can be made arbitrarily small over [0, T ]. Hence, by Lemma 1, there
exists ε1 such that for all ε < ε1, we have

TN1 = arg maxR1
(︁·, TN−1, ε1, l12

)︁
.

Using a similar argument, we show that there exists ε2 such that for all ε < ε2, we
have

TN2 = arg maxR2
(︁·, TN−2, ε2, l12, l23

)︁
,

and there exists ε3 such that for all ε < ε3, we have

TN3 = arg maxR3
(︁·, TN−3, ε3, l23

)︁
.

Let ε̃= min{ε1, ε2, ε3}. Then (TN1 , TN2 , TN3 ) is an equilibrium for the game G(ε̃, l12,
l23 ) for all ε ≤ ε̃. In particular, in the game G(ε̃, l12, l23 ), the equilibrium tax rates of
jurisdictions 1 and 2 are equal, and they are the same as the equilibrium tax rates in the
unperturbed gameG(l12, l23 ). Therefore, we have established that, for ε≤ ε̃,

TN1 (ε̃, l12, l23 ) = TN1 (l12, l23 ) = TN2 (l12, l23 ) = TN2 (ε̃, l12, l23 )

when

P1(ε̃, l12 )>P2(ε̃, l12, l23 ).

A.5.3 Implementing Step 2 We can show that in the game G(ε, l12, l23 ) and for small
enough ε, we have

∂
[︁
TN1 (l12, l23, ε) − TN2 (l12, l23, ε)

]︁
∂l12

> 0 (A.12)

in the same manner we used to establish the corresponding inequality for the game
G(l12, l23 ) in Lemma 1.20 Therefore, we perturb l12 to a slightly lower level l̃12 so that in
the new gameG(ε̃, l̃12, l23 ), we continue to have21

P1(ε̃, l̃12 )>P2(ε̃, l̃12, l23 )

20See Lemma 4 in Appendix A.5.4 for details.
21Suppose P1(ε̃, l̃12 ) > ψ > P2(ε̃, l̃12, l23 ). Since populations vary continuously with l12, we can change

l12 by a small amount such that we continue to have P1(ε̃, l̃12 )>ψ> P2(ε̃, l̃12, l23 ).
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and

TN1 (ε̃, l̃12, l23 )< TN2 (ε̃, l̃12, l23 ),

which completes the proof of Proposition 4.
Alternatively, in Step 1, and starting with P1 = P2 and TN1 = TN2 , we could have

moved an ε̃ amount of population from jurisdiction 1 to jurisdiction 3 such that the
pre-perturbation equilibrium rates are maintained. Therefore, after perturbation, we
continue to have TN1 = TN2 while we now have P1 < P2. Then in Step 2, we increase
l12 to a slightly higher value l̃12 such that while P1(ε̃, l̃12 ) < P2(ε̃, l̃12, l23 ), we have
TN1 (ε̃, l̃12, l23 )> TN2 (ε̃, l̃12, l23 ).

A.5.4 Technical lemmas used in the proof

Lemma 3. Let f be a pdf with f > 0 on [0, 1]. There exist l12 and l23 such that P1(l12, l23 ) =
P2(l12, l23 )>P3(l12, l23 ).

Proof. Since 0 ≤ F ≤ 1 is strictly increasing, we can choose l12 and l23 in (0, 1) such
that F(l23 )> 2/3 and F(l12 ) = F(l23 )/2. Then we have P1(l12, l23 ) = F(l12 ) = F(l23 )/2>
1/3, P2(l12, l23 ) = F(l23 ) − F(l12 ) = F(l23 )/2 > 1/3, and P3(l12, l23 ) = 1 − F(l23 ) < 1/3.
Therefore, P1(l12, l23 ) = P2(l12, l23 )>P3(l12, l23 ).

Lemma 4. In game G(ε, l12, l23 ), for small enough ε, ∂[TN1 (l12, l23, ε) − TN2 (l12, l23, ε)]/
∂l12 > 0.

Let f (·, ε) be obtained as in Step 1 above. The first-order conditions for the optimal
tax rates for the resulting perturbed game are

F(x12, ε) − F(x31, ε) − T1
[︁
f (x31, ε) + f (x12, ε)

]︁
δ

= 0 (A.13)

F(x23, ε) − F(x12, ε) − T2
[︁
f (x12, ε) + f (x23, ε)

]︁
δ

= 0 (A.14)

1 − F(x23, ε) + F(x31, ε) − T3
[︁
f (x23, ε) + f (x31, ε)

]︁
δ

= 0. (A.15)

For i = 1, � � � , 9, following Appendix A.2, we compute γi(ε) and αi(ε) = δγi(ε) by tak-
ing the total derivative of the above FOCs and following the definitions at the end of
Appendix A.2. For example, for the gameG(l12, l12 ),

γ2 = 1
δ

[︃
f (x12 ) − T1

δ
f ′(x12 )

]︃
≥ 0,

whereas for the gameG(l12, l23, ε),

γ2(ε) = 1
δ

[︃
f (x12, ε) − T1

δ
f ′(x12, ε)

]︃
.

Letting TN = (TN1 , TN2 , TN3 ), we have established that for ε < ε̃, an equilibrium
TN(l12, l23 ) of the game G(l12, l23 ) is also an equilibrium TN(l12, l23, ε) of G(l12, l23, ε).
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Because this equilibrium is in the interval (a, b) and using Observation 1, we conclude
that γ2 must be equal to γ2(ε) when evaluated at vectors TN(l12, l23 ) and TN(l12, l23, ε),
respectively. Similarly, we can show for i= 1, � � � , 9, γi = γi(ε) and αi = αi(ε) when eval-
uated at TN(l12, l23 ) and TN(l12, l23, ε), respectively.

Therefore, for small enough ε, we have

sign
[︃
∂
(︁
TN1 (l12, l23, ε) − TN2 (l12, l23, ε)

)︁
∂l12

]︃
= sign

[︃
∂
(︁
TN1 (l12, l23 ) − TN2 (l12, l23 )

)︁
∂l12

]︃
> 0,

where the inequality involving the second term was established in the proof of Lemma 2,
and the first term is computed the way the second term is computed in Appendix A.4,
but using αi(ε) instead of αi.
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