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Bad apples in symmetric repeated games
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We study large-population repeated games where players are symmetric but not
anonymous, so player-specific rewards and punishments are feasible. Players
may be commitment types who always take the same action. Even though players
are not anonymous, we show that an anti-folk theorem holds when the commit-
ment action is “population dominant,” meaning that it secures a payoff greater
than the population average payoff. For example, voluntary public goods provi-
sion in large populations is impossible when commitment types never contribute,
even if monetary rewards can be targeted to contributors; however, provision is
possible if noncontributors can be subjected to involuntary fines. A folk theorem
under incomplete information provides a partial converse to our result. Along
the way, we develop some general results on symmetric games with incomplete
information and/or repeated play.

Keywords. Repeated games, symmetric games, incomplete information, com-
mitment types, large populations, population dominant action, free-rider prob-
lem.

JEL classification. C72, C73, D82.

1. Introduction

Large-population repeated games model social cooperation in settings including com-
munity resource management (Ostrom (1990)), voluntary public goods provision
(Miguel and Gugerty (2005)), informal risk-sharing (Ligon, Thomas, and Worrall (2002)),
and interactions in online marketplaces (Friedman and Resnick (2001)). In reality, large
groups inevitably contain a few agents who do not behave cooperatively, so it is natural
to investigate when social cooperation is robust to introducing a small share of uncoop-
erative agents. The current paper shows that such robustness requires that it is possible
to punish defectors without also punishing the rest of the population as severely: that is,
that it is possible to hold defectors to payoffs below the population average. Intuitively,
given that a large society is very likely to contain some defectors, if punishing defectors
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is too costly, then rational players prefer to pool with defectors, so in equilibrium every-
one defects. If instead punishing defectors is cheaper, rational players can be induced
to separate from defectors, and cooperation can prevail among rational players.

This paper builds closely on our earlier work (Sugaya and Wolitzky (2020), hence-
forth SW20). There we showed that cooperation is impossible in large-population re-
peated games under two conditions:

(a) The game has a “pairwise dominant”action, each player may be a commitment
type who always takes this action—what we call a bad apple—and the distribu-
tion of the number of bad apples in the population is “smooth.”An action a0 is
pairwise dominant if whenever some player takes a0 and another player takes a
different action, the first player gets a strictly higher payoff than the second. The
smoothness condition holds if, for example, each player is a bad apple with inde-
pendent probability z for any fixed z ∈ (0, 1) as the population sizeN → ∞.

(b) Players are symmetric and anonymous: for any action profile (a1, � � � aN ), any per-
mutation π on the set of player names I = {1, � � � ,N }, and any player i ∈ I, we have

ui(a1, � � � , aN ) = uπ(i)(aπ−1(1), � � � , aπ−1(N ) ).1 (1)

Under these conditions, as N → ∞, social welfare in every Nash equilibrium con-
verges to that where everyone takes a0, regardless of how the players’ actions are mon-
itored. The logic is that if rational players frequently took actions other than a0, bad
apples would get substantially higher payoffs than rational players. A rational player
would, therefore, deviate by following the bad-apple strategy of always taking a0 if this
deviation were undetectable. Finally, smoothness implies that this deviation is almost
undetectable whenN is large (even if actions are perfectly monitored).

Granting that anyone could turn out to be a bad apple with some small (indepen-
dent) probability, this “anti-folk theorem” precludes cooperation in a range of environ-
ments, including the following two.

Example 1 (Prisoner’s Dilemma (PD) with anonymous random matching). . Each pe-
riod, players match in pairs, uniformly at random, to play a standard one-shot, two-
player PD. Players do not observe their partner’s identity before choosing actions (Co-
operate or Defect). ♦

Example 2 (Public goods game). Each period, players decide whether to Work or Shirk,
where working is privately costly, but benefits everyone else. ♦

These two examples are actually one and the same, because playing Cooperate with-
out knowing the partner’s identity is a kind of public good provision. Note that Defect is
pairwise dominant in Example 1; so is Shirk in Example 2.

These examples notwithstanding, anonymity is a very restrictive assumption, be-
cause it rules out player-specific rewards and punishments. For instance, the following
games (described formally later on) are symmetric but not anonymous.

1This condition is equivalent to the stage game satisfying standard definitions of symmetry and
anonymity (e.g., Plan (2017, Theorem 1)).
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Example 1′ (PD with non-anonymous random matching). The same as Example 1, but
players observe their partner’s identity before choosing actions. ♦

Example 2′ (Public goods game with transfers). The same as Example 2, but each player
also has the option of sending money to any other player, simultaneously with the
Work/Shirk decisions.

(It is convenient to consider a version of this game with a small transaction cost. For
concreteness, assume that for each dollar player i sends to player j, player j receives
only 99 cents, the remaining penny being wasted.) ♦

Example 3 (Helping with externalities). The same as Example 1′, but taking Cooper-
ate generates a positive externality for all other players, in addition to benefiting one’s
partner. ♦

These games violate condition (1) because actions have different payoff conse-
quences for different players, but they are still symmetric.2 So when the population is
large and likely contains a few bad apples, does the folk theorem hold in these games or
not?

The current paper shows that our earlier anti-folk theorem extends to symmetric
games. Unlike in anonymous games, in symmetric games, a player may care about
which of her opponents are bad apples, not just how many bad apples there are in the
population. Nonetheless, a player’s expected payoff conditional on the event that there
are n bad apples remains well defined, and we can reproduce our earlier arguments
working with these expected payoffs.

However, while our anti-folk theorem extends to symmetric, non-anonymous
games, these games rarely have pairwise dominant actions. For instance, the action
Defect Against Everyone is not pairwise dominant in Example 1′ or 3, and the action
Shirk and Don’t Send Anyone Money (or, for short, Shirk and Stiff) is not pairwise dom-
inant in Example 2′. This follows because, for example, a player who takes Shirk and
Stiff can get a lower payoff than another player who takes a more generous action, if the
latter player receives enough money from third parties.

To address games like Examples 1′, 2′, and 3, we generalize the notion of a pairwise
dominant action to that of a “population dominant action.” This is an action a0 such
that the payoff of any player who takes a0 exceeds the average payoff in the population
by an amount proportional to the fraction of the population who take actions other than
a0. For example, Shirk and Stiff is population dominant in Example 2′, because the pay-
off of a player who takes Shirk and Stiff exceeds the average payoff in the population by
at least 0.01 times the fraction of players who take actions other than Shirk and Stiff.3 In
contrast, Defect Against Everyone is not population dominant in Example 1′, because
the payoff of a player who takes Defect Against Everyone can be lower than the payoffs

2That is, their automorphism groups are player-transitive. We will explain this condition.
3The 0.01 comes from the assumed transaction cost. Without transaction costs, our arguments would

still show that no one can Work, but they would allow the possibility that some players might Shirk while
transferring money back and forth.
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of the other players in the population if they cooperate with each other while defecting
against the player taking Defect Against Everyone. In this case, deviating from a more
cooperative strategy to Defect Against Everyone is unprofitable. Finally, we will see that
Defect Against Everyone is population dominant in Example 3 if and only if the exter-
nality is sufficiently large. Intuitively, a larger externality makes it more difficult to hold
a free-rider’s payoff below the population average.

In general, the existence of a population dominant action is tied to the impossibility
of targeting punishment toward a specific player. If a population dominant action exists,
a player who takes this action always obtains a payoff greater than the population aver-
age. It is, therefore, impossible to punish a player who takes such an action without also
punishing the rest of the population just as severely. If, instead, no action is population
dominant, then a player can be punished for taking any action without punishing the
rest of the population as much. This distinction turns out to be crucial for supporting
cooperative outcomes in large-population games with commitment types.

The main result of the current paper is that our earlier anti-folk theorem extends
not only to symmetric (non-anonymous) games, but also to games with a population
dominant (non-pairwise dominant) action. This result implies that the existence of a
population dominant action is a major obstacle to cooperation in large populations. To
see the intuition, suppose that the committed players in the population take population
dominant actions, while the rational players may take different actions. By the definition
of population dominance, on average the committed players obtain higher payoffs than
the rational players. Moreover, if the distribution of the number of committed players is
smooth, then if one rational player deviates to always taking her population dominant
action, this has only a small effect on the population distribution of actions. Hence,
the payoff of a rational player who deviates to always taking her population dominant
action is close to the equilibrium payoff of a truly committed player. Since this devi-
ation must be unprofitable in equilibrium, and since committed players obtain higher
equilibrium payoffs than rational players, it follows that the equilibrium payoffs of com-
mitted players and rational players must be very similar. Finally, again by the definition
of population dominance, this implies that rational players must also almost always take
population dominant actions in equilibrium.

We also present a folk theorem for repeated games with incomplete information and
perfect monitoring. When applied to symmetric games, this result implies that our anti-
folk theorem is reasonably tight, and, hence, that the notion of population dominance
cannot be greatly generalized. Together, our results imply that, for example, cooperation
in large populations with commitment types is possible in Example 1′ and in Example 3
with small externalities (for perfect monitoring), but not in Example 2′ or in Example 3
with large externalities (for any monitoring structure).

A step in the proof of our anti-folk theorem is that in symmetric games with public
randomization, the average payoff across players from any equilibrium can be attained
in an equilibrium where all players obtain the same payoff. This result is very natural,
but it appears to be novel, and it may be useful beyond our particular problem.

This paper connects to several strands of literature. First, a literature following Green
(1980) and Sabourian (1990) studies large-population repeated games with complete in-
formation, focusing on the difficulty of monitoring a large number of players through
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a coarse aggregate signal.4 Second, the reputation literature studies how introducing
a small amount of incomplete information can yield sharp anti-folk theorems in re-
peated games with patient players (Fudenberg and Levine (1989), Mailath and Samuel-
son (2006)). Third, in incomplete information settings, several papers develop measures
of the pivotality or influence of a player’s type on an aggregate outcome, and give condi-
tions under which most players’ influence must be small in large populations (al-Najjar
and Smorodinsky (2000), McLean and Postlewaite (2002)). See SW20 for a more exten-
sive discussion of related literature.

2. Preliminaries

2.1 Model

We consider symmetric repeated games with commitment types. These are repeated
games where the stage game, the prior over players’ types (rational or committed), and
the monitoring structure are all symmetric. This section introduces the model and the
relevant symmetry notions. This material is relatively standard but somewhat notation-
heavy; it can be skimmed on a first reading.

Stage games. An N-player stage game G= (I,A, u) consists of a finite set of players
I = {1, � � � ,N }, a finite product set of actionsA= ×i∈IAi, and a payoff function ui :A→
R for each i ∈ I. Throughout the paper, we normalize the range of each ui to lie in [0, 1].
An automorphism on G (Nash (1951)) is a bijection π : I → I together with a bijection
φi :Ai →Aπ(i) for each player i such that

ui(a) = uπ(i)
(
φ(a)

)
for all i ∈ I, a ∈A,

where φ(a) ∈A is the action profile defined by φ(a)j =φπ−1(j)(aπ−1(j) ) for all j ∈ I. This
says that payoffs are invariant to simultaneously relabeling players according to π and
relabeling actions according to φ. The game G is symmetric if its automorphism group
is player-transitive: for all i, j ∈ I, there exists an automorphism (π, φ) on G such that
π(i) = j.5

Let us formalize Examples 1′ and 2′, and check that they symmetric.
PD with non-anonymous random matching. For each player i, Ai = {C,D}I\{i}, with

the interpretation that the j �= i coordinate of ai (which we denote as ai,j) is i’s action
upon meeting j. That is, an action is a mapping from the partner’s identity to Cooperate
or Defect. For (x, y ) ∈ {C,D}2, let v(x, y ) denote player 1’s payoff in the two-player PD at
action profile (x, y ). Payoffs in the PD with non-anonymous random matching are given
by ui(a) = ∑

j �=i v(ai,j , aj,i )/(N − 1). Note that for any bijection π : I → I, the pair (π, φ)
is an automorphism, where φ is defined as φi((ai,j )j∈I\{i} ) = (aπ(i),π(j) )j∈I\{i} for all i ∈ I
and ai ∈Ai. This implies that the game is symmetric.

Public goods game with transfers. LetMi denote the set of vectorsmi ∈ {0, � � � , m̄}I\{i}

whose components sum to at most m̄. For each player i, Ai = {W , S} × Mi: player i

4For some recent results and further references on such models, see Sugaya and Wolitzky (2022).
5This is a standard notion of symmetry. For much more on symmetry in N-player games, see, e.g., Stein

(2011), Hefti (2017), Plan (2017), and Ham (2021).
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chooses Work or Shirk, along with a nonnegative integer amount of money to send to
each opponent, up to a total of m̄ dollars. Letwi(ai ) ∈ {W , S} denote the first component
of ai, and let mi,j(ai ) denote the amount of money i sends to j under ai. Suppose that
taking Work entails a private cost of ζ, but benefits each other player byβ/(N−1), where
ζ, β > 0. Recall also our assumption that one penny out of every dollar transferred is
wasted. Then payoffs are given by

ui(a) =
∑
j �=i

β1
{
wj(aj ) =W }
N − 1

+ v
(∑
j �=i

(
0.99mj,i(aj ) −mi,j(ai )

)) − ζ1
{
wi(ai ) =W }

,

where v is a utility function for money, which is assumed to be strictly increasing, strictly
concave, and bounded above.6 Note that for any bijection π : I → I, the pair (π, φ) is an
automorphism, where, for all i ∈ I and ai ∈Ai, the action aπ(i) =φi(ai ) ∈Aπ(i) is defined
as wπ(i)(aπ(i) ) = wi(ai ) and mπ(i),j(aπ(i) ) =mi,π−1(j)(ai ) for all j �= π(i). So the game is
symmetric.

Note that both of these examples are not only symmetric, but also N-transitively
symmetric, meaning that for any permutation π on I, there exists a bijection φ such
that (π, φ) is an automorphism. An example of a game that is symmetric but not N-
transitively symmetric is a game “played on a circle,” where each player cares only about
her neighbors’ actions.

Commitment types. We consider games where each player i has a type θi ∈ {R, B},
where R is the rational type and B is the bad (or “commitment”) type. For each player i,
there is a commitment action a∗

i ∈Ai such that if θi = B, then player i is constrained to
take a∗

i . Let a∗ = (a∗
i )i∈I . There is a common prior p on the set of players’ types {R, B}N .

It will be convenient to adopt the accounting convention that the rational and commit-
ment type of each player have the same payoff function, despite having different strategy
sets.

We call a triple (G, a∗, p) a game with commitment types. In such a game, we say
that an automorphism (π, φ) of G is admissible if it maps each player i’s commit-
ment action to player π(i)’s, so that φi(a∗

i ) = a∗
π(i) for all i. We say that a game with

commitment types (G, a∗, p) is symmetric if the group of admissible automorphisms
of G is player-transitive, and, in addition, the prior p is (N-transitively) symmetric,
meaning that for any type profile θ ∈ {R, B}N and any permutation π : I → I, we have
p(θ1, � � � , θN ) = p(θπ(1), � � � , θπ(N ) ). With a symmetric prior, we denote the probability
that a given player is a commitment type by z = ∑

θ:θi=B p(θ).
Monitoring structures. Given a stage game G, a monitoring structure (Y , χ) consists

of a finite product set of signals Y = ×i∈IYi and a family of conditional probability dis-
tributions χ(y|a), one for each action profile a ∈ A. For example, perfect monitoring
describes the case where Yi =A for each player i, and χ(y|a) = 1{yi = a ∀i ∈ I}.

We will need a notion of symmetry that jointly applies to stage games (including
games with commitment types) and monitoring structures. We say that an admissible
automorphism for the tuple (G, a∗, p, Y , χ) is an admissible automorphism (π, φ) on

6We introduce a bounded utility function for money because some of our results require that payoffs are
bounded independently ofN .
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(G, a∗, p) (defined above) together with a bijection ψi : Yi → Yπ(i) for each player i such
that

χ(y|a) = χ(
ψ(y )|φ(a)

)
for all i ∈ I, y ∈ Y , a ∈A,

whereφ(a) is defined above andψ(y ) ∈ Y is the signal defined byψ(y )j =ψπ−1(j)(yπ−1(j) )
for all j ∈ I. The tuple (G, a∗, p, Y , χ) is symmetric if the group of its admissible auto-
morphisms is player-transitive and the prior p is symmetric.

Repeated games. A repeated game with commitment types 
= (G, a∗, p, Y , χ, δ) con-
sists of a stage game G, a profile of commitment actions a∗, a prior p ∈ �({R, B}N ), a
monitoring structure (Y , χ), and a discount factor δ ∈ [0, 1). In each period t = 1, 2 � � �,
the players take actions at , the period-t signal yt is drawn according to χ(yt|at ), and
each player i observes yi,t , the i component of yt . A history for player i at the beginning
of period t takes the form hti = (ai,τ , yi,τ )t−1

τ=1, with h1
i = ∅. A strategy σi for player i maps

histories hti to elements of �(Ai ) for each t. For each player i, the commitment type
of player i is constrained to play a∗

i in every period—that is, to play the strategy Always
a∗
i —while the rational type of player i chooses a strategy σi to maximize her expected

discounted payoff. We can also let the players observe the outcome of a public random-
izing device in each period, but this is not essential: our folk and anti-folk theorems both
hold irrespective of the availability of public randomization.

Note that the normal form of a repeated game with commitment types 
 is itself a
(static) game with commitment types, where a player’s “action” is her repeated game
strategy. In particular, player i’s commitment action is the repeated game strategy Al-
ways a∗

i . A preliminary observation is that, when viewed in this way, 
 is symmetric if
the tuple (G, a∗, p, Y , χ) is symmetric. The proof is straightforward and is deferred to
the Appendix.

Lemma 1. If the tuple (G, a∗, p, Y , χ) is symmetric, then the normal form of the repeated
game with commitment types 
 = (G, a∗, p, Y , χ, δ) is a symmetric game with commit-
ment types (with an infinite strategy set).

We call such a game 
 a symmetric repeated game with commitment types.

2.2 Payoff-symmetric equilibria

We now show that in any normal form symmetric game with commitment types where
players observe the outcome of a public randomizing device at the beginning of the
game, it is without loss to focus on equilibria where a player’s expected payoff condi-
tional on her own type and the event that the number of bad types in the population is
n is the same across players. By Lemma 1, the same conclusion applies to symmetric
repeated games with commitment types, when public randomization is available. Since
public randomization only expands the equilibrium payoff set, our main result (the anti-
folk theorem given in the next section) applies a fortiori without public randomization.

Consider any game with commitment types (G, a∗, p). In this section only, we de-
note strategy profiles in this game by s, to emphasize the case where (G, a∗, p) is the
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normal form of a repeated game. We also allow the strategy set S to be infinite. Given a
strategy profile s and a type profile θ, let

ρ(s, θ)i =
{
si if θi =R,

a∗
i if θi = B

for each i ∈ I.

If each player i takes strategy si when she is rational, ρ(s, θ) is the strategy profile in game
G that is actually played at type profile θ. Let |θ| = |i ∈ I : θi = B|, and denote player i’s
expected payoff under strategy profile s conditional on the event that |θ| = n and θi =R
(resp., θi = B) by

un,R
i (s) =

∑
θ:|θ|=n,θi=R

Pr(θ)

Pr
(|θ| = n, θi =R

)ui(ρ(s, θ)
)
,

un,B
i (s) =

∑
θ:|θ|=n,θi=B

Pr(θ)

Pr
(|θ| = n, θi = B

)ui(ρ(s, θ)
)
,

where un,R
i is well defined for n ∈ {0, � � � ,N − 1} and un,B

i is well defined for n ∈
{1, � � � ,N } = I. Denote the corresponding population average payoffs by

un,R(s) = 1
N

∑
i∈I
un,R
i (s), un,B(s) = 1

N

∑
i∈I
un,B
i (s), and un(s) = N − n

N
un,R(s) + n

N
un,B(s).

To ease notation, we let (s′i; s−i ) := (s1, � � � , si−1, s′i, si+1, � � � , sN ), the strategy profile
where i takes s′i and her opponents take s−i. A strategy profile s ∈ S is a Bayes Nash
equilibrium (NE) in the game (G, s∗, p) if∑

θ

Pr(θ)ui
(
ρ(s, θ)

) ≥
∑
θ

Pr(θ)ui
(
ρ
((
s′i; s−i

)
, θ

))
for all i ∈ I, s′i ∈ Si.

Let S∗ denote the set of NE in (G, p). Let �(S∗ ) denote the set of (Borel) probability
distributions over S∗. Note that any distribution in �(S∗ ) can be attained in an equilib-
rium with public randomization at the beginning of the game. Linearly extending payoff
functions to distributions over strategy profiles as usual, we call a distribution s̄ ∈ �(S∗ )
payoff symmetric if

un−1,R
i ( s̄) = un−1,R( s̄) and un,B

i ( s̄) = un,B( s̄) for all i ∈ I, n ∈ I.

Lemma 2. Let (G, a∗, p) be a symmetric game with commitment types. For any s∗ ∈ S∗,
there exists a payoff symmetric distribution s̄ ∈ �(S∗ ) such that

un−1,R( s̄) = un−1,R(
s∗

)
and un,B( s̄) = un,B(

s∗
)

for all n ∈ I.

The proof is somewhat lengthy and is deferred to the Appendix, but the main idea
is simple. Fix a NE s and suppose that un,R

i (s) < un,R
j (s) for some i, j, n.7 By symme-

try, there is an admissible automorphism (π, φ) such that π(i) = j. Since s is a NE, a

7The case where un,B
i (s)< un,B

j (s) for some i, j, n is analogous.
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simple argument implies that the strategy profile s′ = φ(s) is also a NE and, moreover,
that the vector (un,R

k (s′ ))k∈I is a permutation of the vector (un,R
k (s))k∈I .8 Therefore, the

distribution s′′ = 0.5s + 0.5s′ is in �(S∗ ). Furthermore, payoffs under s′′ are the average
of those under s and s′, so since payoffs under s and s′ are permutations of each other,
payoffs under s′′ are more equal across players than those under s. Thus, for any NE
with unequal payoffs, we can construct a NE with more equal payoffs, which yields the
conclusion of the lemma.

As an aside, note that Lemma 2 also applies to symmetric games without commit-
ment types. While it is natural that payoff-symmetric equilibria are without loss in sym-
metric games with public randomization, we are not aware of a reference for this result.

3. Anti-folk theorem

We now present our main result: in symmetric repeated games where the commitment
actions a∗ are “population dominant” and the prior p is “smooth,” as N → ∞, social
welfare in every NE converges to that where a∗ is always played. This generalizes the
main result of SW20, which assumed that the game is anonymous (i.e., (1) holds) and
the commitment actions are “pairwise dominant,” which is a stronger condition than
population dominance.

We first introduce the relevant definitions. A profile of actions a∗ ∈ A is pairwise
dominant if there exists a positive number c > 0 such that the payoff of any player iwho
takes a∗

i is no less than any other player’s payoff and exceeds the payoff of any player j
who takes aj �= a∗

j by at least c; that is,

ui
(
a∗
i ; a−i

) − uj
(
a∗
i ; a−i

) ≥ c1
{
aj �= a∗

j

}
for all i, j ∈ I, a−i ∈A−i.

For instance, Defect is pairwise dominant in the PD with anonymous random match-
ing and Shirk is pairwise dominant in the public goods game, but no action is pairwise
dominant in the PD with non-anonymous random matching or the public goods game
with transfers (when m̄ is large).

Next, denote the population average payoff (“social welfare”) at action profile a by

U(a) = 1
N

∑
i

ui(a).

A profile of actions a∗ ∈A is population dominant if there exists a positive number c > 0
such that the payoff of any player i who takes a∗

i exceeds the population average payoff
by at least c times the fraction of the population whose actions differ from a∗; that is,

ui
(
a∗
i ; a−i

) −U(
a∗
i ; a−i

) ≥ c
∣∣{j ∈ I : aj �= a∗

j

}∣∣
N

for all i ∈ I, a−i ∈A−i.

Clearly, a pairwise dominant action is also population dominant. Note that no action is
population dominant in the PD with non-anonymous random matching, but Shirk and

8A similar argument appears in Plan (2017).
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Stiff is population dominant in the public goods game with transfers, with c equal to the
minimum of 0.01v′(0) and the private cost of taking Work.9

Pairwise and population dominance are nonnested with the usual notion of dom-
inance (i.e., ui(a∗

i ; a−i ) ≥ ui(ai; a−i ) for all ai ∈ Ai, a−i ∈ A−i). For example, in the PD
with non-anonymous random matching, Defect Against Everyone is dominant but not
pairwise or population dominant. One can also give examples where a pairwise or popu-
lation dominant action is not dominant; SW20 gives such an example for pairwise dom-
inance.

We assume that whenever a pairwise or population dominant action profile a∗ exists,
it is also the commitment action profile. The interpretation is that we are focusing on
situations where the commitment types are “selfish.”

It is interesting to consider the above definitions in the context of Example 3.
Helping with externalities. Consider the PD with non-anonymous random match-

ing, where if a player cooperates, she incurs a cost of C > 0, her partner incurs a benefit
of B > C, and the other n− 2 players in society each incur an externality of X . Player i’s
payoff is thus

−C1{i cooperates} +B1
{
i’s partner cooperates

}
+X(number of other players who cooperate).

Observe that if X = 0, then this game reduces to the usual PD with non-anonymous
matching (Example 1′), while if X = B, then since the partner’s identity becomes irrele-
vant, it reduces to the PD with anonymous matching (Example 1). We have thus already
seen that Defect Against Everyone is population dominant if X = B, but not if X = 0. In
general, it is easy to see that Defect Against Everyone is population dominant if and only
ifX > (B−C )/2.10 This follows because, whenever a player takes Cooperate rather than
Defect, the effect on social welfare is

1
N

(
B−C + (N − 2)X

)
,

while the effect on the utility of any third player isX , and

X >
1
N

(
B−C + (N − 2)X

) ⇐⇒ X >
B−C

2
.

Intuitively, when X > (B− C )/2, the free-rider problem is relatively severe. Our results
will imply that if each player is committed to Defect Against Everyone with a small in-
dependent probability, then all players almost always defect in every equilibrium when
X > (B−C )/2 andN is large (for any monitoring structure, uniformly in δ), but there is
an equilibrium where all rational players always cooperate whenX < (B−C )/2 and δ is
sufficiently high (for perfect monitoring, uniformly inN).

9This follows because if n players other than i each transfer $1, the average money holdings of players −i
is at most −0.01n/(N − 1), and, hence, since v is concave, the average money utility of players −i is at most
v(−0.01n/(N − 1)), which in turn is less than v(0) − (0.01n/(N − 1))v′(0). Hence, ui(a∗

i ; a−i ) −U(a∗
i ; a−i ) ≥

0.01v′(0)n/(N − 1).
10In contrast, the assumption that B >C implies that shirking is not pairwise dominant.
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Returning to the general model, we let b ≥ 0 denote the greatest impact on total
population payoffs that can result from a player switching from a∗ to another action.
This is given by

b= max
ai∈Ai ,a−i∈A−i

N
∣∣U(ai; a−i ) −U(

a∗
i ; a−i

)∣∣.
Some of our result will require that as N → ∞, c is bounded away from 0 and b is
bounded away from ∞. These conditions ensure that the advantage of a pairwise dom-
inant action does not vanish, and that a significant fraction of players must take non-
pairwise dominant actions in order to generate a level of social welfare significantly dif-
ferent from U(a∗ ).

Next, following SW20, let Bn denote the event that |θ| = n, and let qn denote the
probability of Bn conditional on the event that a given player is rational: qn = Pr(Bn|θi =
R) for n ∈ {0, � � � ,N−1}. Similarly, conditional on the event that a given player is rational,
denote the probability that n−1 out of the remainingN−1 players are bad by q−

n = qn−1

for n ∈ {1, � � � ,N }. By convention, let qN = q−
0 = 0. With this convention, q= (qn )Nn=0 and

q− = (q−
n )Nn=0 are both probability distributions on {0, � � � ,N }. Denote the total variation

distance between these probability distributions by

�q,q− = max
N⊆{0, ���,N }

∣∣∣∣∑
n∈N

(
qn − q−

n

)∣∣∣∣.
As discussed in SW20,�q,q− is a measure of the detectability of a deviation by the rational
type of player i to the strategy Always a∗

i .
We say that a sequence of repeated games indexed by N , (
)N , has a smooth distri-

bution of bad types if limN→∞�q,q− = 0. For example, this condition holds if the distri-
bution q ∈ �({0, � � � ,N }) is log-concave for all N and limN→∞ qn = 0 for all n. In partic-
ular, this is the case if types are independent and the commitment probability z is fixed
independent of N . See SW20 for further examples and discussion of the smoothness
condition.

We are ready to state our main result. Note that the formulas in the theorem rely on
our assumption that ui(a) ∈ [0, 1] for all i ∈ I and a ∈A. For a fixed repeated game 
,
this is just a normalization, but when we consider a sequence of repeated games (
)N ,
it requires that payoffs are bounded independent ofN .11

Theorem 1. For any symmetric repeated game with commitment types 
with a popula-
tion dominant action profile a∗, in any Nash equilibrium, social welfare U satisfies

∣∣U −U(
a∗)∣∣ ≤ (1 − z)b

1 + c
c
�q,q− . (2)

11However, Theorem 1 goes through if payoffs are bounded by a function ū(N ), and the smoothness
condition is strengthened to limN→∞ ū(N )�q,q− = 0. (In this case, the right-hand side of (2) must be mul-
tiplied by ū(N ).) For example, this condition holds if ū(N ) is linear in N and types are independent with
a fixed commitment probability z, as in this case �q,q− converges to 0 exponentially fast in N . Note that
since payoffs are bounded by a linear function of N in Example 3, the conclusion of Theorem 1 applies in
this example.
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In particular, for any sequence (
)N of such games that satisfies lim infN→∞ cN > 0 and
lim supN→∞ bN <∞ and has a smooth distribution of bad types, and any corresponding
sequence of Nash equilibrium social welfare levels (U )N , we have

lim
N→∞

∣∣UN −UN
(
a∗)∣∣ = 0. (3)

Theorem 1 extends the main result in SW20 by generalizing anonymity to symme-
try, and pairwise dominance to population dominance. For example, Theorem 1 im-
plies that for largeN , social welfare in any NE in the public goods game with transfers is
close to

∑
i vi(0)/N—the welfare level that results when everyone plays Shirk and Stiff—

whenever commitment types play Shirk and Stiff and the distribution of commitment
types is smooth. We emphasize that this conclusion holds even though this game is not
anonymous and does not have a pairwise dominant action.12

The proof of Theorem 1 follows the proof in SW20, with two new ideas. First, a key
point in SW20 is that if the rational type of player i deviates to Always a∗

i , then her ex-
pected payoff conditional on Bn is equal to the expected payoff of a bad type conditional
on Bn+1. That is, for any payoff-symmetric strategy profile σ , we have∑

θ:|θ|=n,θi=R
Pr(θ|Bn, θi =R)E

[
ui

(
Always a∗

i ; σ−i
)∣∣θ] = un+1,B

for all i ∈ I, n ∈ {0, � � � ,N − 1}. (4)

The first step in proving Theorem 1 is showing that this equation remains valid in sym-
metric games. To see this, note that for all i ∈ I, n ∈ {0, � � � ,N − 1}, and θ−i such that
|θ−i| = n, we have

Pr(θ−i|Bn, θi =R) = Pr(θ−i|θi =R)∑
θ̃−i:|θ̃−i|=n

Pr(θ̃−i|θi =R)

= 1(
N − 1
n

) = Pr(θ−i|θi = B)∑
θ̃−i:|θ̃−i|=n

Pr(θ̃−i|θi = B)
= Pr(θ−i|Bn+1, θi = B), (5)

where the middle equalities hold because the prior is symmetric. This in turn implies
that ∑

θ:|θ|=n,θi=R
Pr(θ|Bn, θi =R)E

[
ui

(
Always a∗

i ; σ−i
)∣∣θ]

=
∑

θ−i:|θ−i|=n
Pr

(
θ−i||θ−i| = n, θi =R

)
E

[
ui

(
Always a∗

i ; σ−i
)∣∣θ]

12Applied to the public goods game with transfers, Theorem 1 is reminiscent of the impossibility theo-
rem of Mailath and Postlewaite (1990). However, their theorem concerns a static game with two levels of
public good provision and independent types. See SW20 for a more detailed comparison with Mailath and
Postlewaite.
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=
∑

θ−i:|θ−i|=n
Pr

(
θ−i||θ−i| = n, θi = B

)
E

[
ui

(
Always a∗

i ; σ−i
)∣∣θ] = un+1,B,

which yields (4).13

Equation (4) lets us generalize the key lemma of SW20 as follows.

Lemma 3. For any symmetric game with commitment types and any payoff-symmetric
NE,

∑N−1
n=0 qnu

n,R ≥ ∑N−1
n=0 qnu

n,B −�q,q− , with the convention that u0,B = 1.

Proof. The equilibrium payoff of the rational type of player i equals
∑N−1
n=0 qnu

n,R. If,
instead, the rational type of player i deviates to Always a∗

i , her expected payoff equals∑
θ

Pr(θ|θi =R)E
[
ui

(
Always a∗

i ; σ−i
)∣∣θ]

=
N−1∑
n=0

qn
∑

θ:|θ|=n,θi=R
Pr(θ|Bn, θi =R)E

[
ui

(
Always a∗

i ; σ−i
)∣∣θ] =

N−1∑
n=0

qnu
n+1,B,

where the first equation is by definition of qn and the second is by (4). Hence, in
any payoff-symmetric NE, we must have

∑N−1
n=0 qnu

n,R ≥ ∑N−1
n=0 qnu

n+1,B. However,
by the same argument as in SW20 (cf. (2) in that paper), we have

∑N−1
n=0 qnu

n+1,B ≥∑N−1
n=0 qnu

n,B −�q,q− . Therefore,
∑N−1
n=0 qnu

n,R ≥ ∑N−1
n=0 qnu

n,B −�q,q− .

Now we can prove Theorem 1. Here, the novelty relative to SW20 involves comparing
bad types’ payoffs to the average payoff among players in the population who do not
take their population dominant actions, and showing that this comparison implies that
the population dominant actions must almost always be taken.

Proof. Proof of Theorem 1 We restrict attention to payoff symmetric equilibria σ ,
which is without loss by Lemma 2. We first show that whenever |θ| ∈ {1, � � � ,N − 1},
in every period, the average payoff among bad types exceeds the average payoffs among
rational types by at least c times the fraction of rational types who take actions other
than a∗. To see this, for any type profile θ with |θ| = n ∈ {1, � � � ,N − 1} and any action
profile a with ai = a∗

i for all i with θi = B, let m(a) = |{i ∈ I : ai �= a∗
i }|, the number of

players who take actions other than a∗. Denote the average payoffs among bad types,
rational types, and all players by

uB = 1
n

∑
i:θi=B

ui(a), uR = 1
N − n

∑
i:θi=R

ui(a), and U = n

N
uB + N − n

N
uR.

Since a∗ is population dominant, we have

uB ≥U + m

N
c = n

N
uB + N − n

N
uR + m

N
c, or, equivalently, uB ≥ uR + m

N − nc. (6)

13Note that (5) requires our assumption that the prior is N-transitively symmetric. If we imposed only a
weaker form of symmetry that allowed certain players’ types to be especially strongly correlated, (5) would
be violated and the conclusion of Theorem 1 would typically fail, because society could detect a deviation
by player i to Always a∗

i by checking specific other players’ types.
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Now denote player i’s expected payoff in period t conditional on type profile θ by
ui,t(θ) = E[ui(at )|θ], and denote her overall expected payoff conditional on θ by ui(θ) =
(1−δ)

∑
t δ
t−1ui,t(θ). Since (6) holds for every θ and a that arise with positive probability

conditional on Bn, we have, for all t and θ,

1
n

∑
i:θi=B

ui,t(θ) ≥ 1
N − n

∑
i:θi=R

ui,t(θ) +

∑
i∈I

Pr
(
ai,t �= a∗

i |θ
)

N − n c.

Taking a discounted sum over periods and taking the expectation over θ : |θ| = n, we
have

1
n
E

[ ∑
i:θi=B

ui(θ)|Bn
]

≥ 1
N − nE

[ ∑
i:θi=R

ui(θ)|Bn
]

+
(1 − δ)

∞∑
t=1

δt−1
∑
i∈I

Pr
(
ai,t �= a∗

i |Bn
)

N − n c.

Next, note that

1
n
E

[ ∑
i:θi=B

ui(θ)|Bn
]

= 1
n
E

[∑
i∈I

1{θi = B}ui
(
ρ(σ , θ)

)∣∣Bn
]

= 1
n

∑
i∈I

Pr(θi = B|Bn )E
[
ui

(
ρ(σ , θ)

)∣∣Bn, θi = B
]

= 1
n

∑
i∈I

n

N
un,B
i (σ ) = 1

N

∑
i∈I
un,B
i (σ ) = un,B(σ ),

and similarly 1
N−nE[

∑
i:θi=R ui(θ)|Bn] = un,R(σ ). So we have

un,B ≥ un,R + γnc, (7)

where

γn =
(1 − δ)

∞∑
t=1

δt−1
∑
i∈I

Pr
(
ai,t �= a∗

i |Bn
)

N − n = (1 − δ)
∞∑
t=1

δt−1 1
N

∑
i∈I

Pr
(
ai,t �= a∗

i |Bn, θi =R
)
.

With Lemma 3 and inequality (7) in hand, the rest of the proof follows SW20; we
include the remaining steps for completeness. Recalling that u0,B = 1 by convention
and u0,R ∈ [0, 1] by assumption, we obtain

�q,q− ≥
N−1∑
n=0

qn
(
un,B − un,R) ≥

N−1∑
n=1

qn
(
un,B − un,R) ≥

N−1∑
n=1

qnγnc,

where the first inequality is by Lemma 3, the second is by q0(u0,B − u0,R ) ≥ 0, and the
third is by (7). Now define γ = ∑N−1

n=0 qnγn. Since q0 = q0 − q−
0 ≤ �q,q′ and γ0 ∈ [0, 1], we
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have

γ = q0γ0 +
N∑
n=1

qnγn ≤ �q,q− + 1
c
�q,q− = 1 + c

c
�q,q− .

Finally, the discounted sum of the expected fraction of players who take actions other
than a∗ equals

(1 − δ)
∞∑
t=1

δt−1 1
N

∑
i∈I

N−1∑
n=0

Pr(Bn ∧ θi =R) Pr
(
ai,t �= a∗

i |Bn, θi =R
)

= (1 − δ)
∞∑
t=1

δt−1 1
N

∑
i∈I

N−1∑
n=0

(1 − z)qn Pr
(
ai,t �= a∗

i |Bn, θi =R
)

= (1 − z)
N−1∑
n=0

qnγn = (1 − z)γ.

Therefore, expected social welfare differs from U(a∗ ) by at most (1 − z)bγ ≤ (1 −
z)b1+c

c �q,q− . This yields (2), and taking �q,q− → 0 yields (3).

It is straightforward to extend Theorem 1 to games with multiple populations, where
the players within each population are symmetric. For example, consider a variant of
the public goods game with transfers where there are two populations, agents and prin-
cipals. In every period, each agent chooses Work or Shirk (where working is privately
costly but benefits all other players), and each principal chooses an amount of money
to send to each agent. (These choices can be simultaneous or sequential.) Suppose that
each agent is committed to Shirk with independent probability zA > 0, and each prin-
cipal is committed to Stiff (i.e., send no money) with independent probability zP > 0.
Then the above arguments can be modified to show that as N → ∞, all principals al-
most always Stiff, and, given this, all agents almost always Shirk. In contrast, if zP = 0,
so the principals are known to be rational (or, alternatively, if there is a single principal
with sufficiently deep pockets), then there is an equilibrium where rational agents al-
ways Work, and the principal(s) send money to each agent if and only if she works. This
example illustrates how a deep-pocketed principal (or a group of known-rational prin-
cipals) can induce effort by a large group of agents, while the agents would be unable to
support effort by transferring money among themselves.

4. Folk theorem

We now present a folk theorem for repeated games with incomplete information and
perfect monitoring. This theorem covers asymmetric games, but, when specialized to
symmetric games, it implies a partial converse to Theorem 1. This shows that the popu-
lation dominance concept cannot be greatly generalized.

For each type profile θ ∈ {R, B}N , let 
(θ) denote the complete-information re-
peated game where it is common knowledge that the players’ types are described by
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θ. Let R(θ) = {i : θi = R} and B(θ) = {i : θi = B}. Let A(θ) = ∏
i∈R(θ)Ai ×

∏
i∈B(θ){a

∗
i }, let

�(A(θ)) denote the set of probability distributions onA(θ), and let �∗(A(θ)) denote the
set of independent mixtures on A(θ), given by

∏
i∈R(θ)�(Ai ) × ∏

i∈B(θ) 1{ai = a∗
i }. De-

note player i’s minmax payoff in the game 
(θ) by vθ−i
i = minα∈�∗(A−i(θ−i )) maxai∈Ai ui(ai;

α−i ). Denote the set of feasible payoffs in 
(θ) by

F(θ) = {
v ∈ [0, 1]N : ∃α ∈ �∗(A(θ)

)
such that u(α) = v(θ)

}
,

and denote the set of feasible and individually rational payoffs in 
(θ) by

F∗(θ) = {
v ∈ F(θ) : vi > v

θ−i
i ∀i such that θi =R

}
.

Define the set F∗∗(θ) to be equal to F∗(θ) if the projection of F∗(θ) on the set of rational-
player payoff vectors [0, 1]|i:θi=R| has nonempty relative interior, and to be equal to the
convex hull of the set of static NE payoffs inG(θ) otherwise. We say that a family of pay-
off vectors (v(θ))θ∈{R,B}N , with v(θ) ∈ F∗∗(θ) for each θ, is feasible, individually rational,
and incentive compatible (FIRIC) if

E
[
vi(θ)|θi =R

]
> E

[
max

{
vi(θi = B; θ−i ), min

v∈cl(F∗∗(θ))
vi

}∣∣∣θi =R]
for all i ∈ I.14 (8)

Note that this definition imposes strict versions of both individual rationality (rational
player i’s payoff exceeds her smallest payoff in cl(F∗∗(θ))) and incentive compatibility
(rational player i’s payoff exceeds her payoff when following the bad-type strategy). Fi-
nally, we say that an expected payoff vector v ∈ [0, 1]N is consistent with FIRIC if there
exists a FIRIC family of payoff vectors (v(θ))θ∈{R,B}N such that v= E[v(θ)].

Theorem 2. Fix any repeated game with commitment types and perfect monitoring, 
.
For any payoff vector v ∈ [0, 1]N consistent with FIRIC and any ε > 0, there exists δ̄ < 1
such that, for every δ > δ̄, there exists a sequential equilibrium in 
 with an expected
payoff vector v′ satisfying |vi − v′

i| ≤ ε for all i ∈ I.

For example, in the PD with non-anonymous random matching, let v(θ) be the
payoff vector that results when all pairs of rational players cooperate with each other,
while everyone defects against commitment types. It is easy to see that the family
(v(θ))θ∈{R,B}N is FIRIC. Hence, Theorem 2 implies that the corresponding ex ante payoff
vector can be approximated in sequential equilibrium when the players are sufficiently
patient. (In this example, the payoff vector can actually be exactly attained.)

In contrast, for any symmetric game where the commitment action profile a∗ is pop-
ulation dominant, any payoff vector consistent with FIRIC is close to u(a∗ ) when �q,q−
is small. This follows because, by the same argument as in the proof of Theorem 1, in-
centive compatibility implies that the expected discounted fraction of periods in which
players take actions other than a∗ (i.e., the variable γ defined in the proof of Theorem 1)
is bounded by 1+c

c �q,q− , where c is the parameter in the definition of population domi-
nance.

14Here cl(·) denotes closure in the relative topology.
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We sketch the proof, deferring the details to the Appendix.15 Fix a family of FIRIC
payoff vectors (v(θ))θ∈{R,B}N such that v = E[v(θ)]. For any history ht , let θ(ht ) denote
the set of players who have “revealed rationality” at history ht by previously taking some
action ai �= a∗

i , and let i(ht ) denote the identity of the most recent player (if any) to have
deviated from equilibrium play at history ht . All rational players are supposed to re-
veal rationality in the first period of the game. Subsequently, on the equilibrium path,
the players take a sequence of actions that achieve the payoff vector v(θ(ht )), and that
have the further property that continuation payoffs under the action sequence are al-
ways close to v(θ(ht )).16 Off the equilibrium path, the players take a sequence of actions
that achieve a payoff vector close to argminv′∈cl(F∗∗(θ(ht ))) v

′
i(ht ). Since rational players are

supposed to reveal rationality immediately, at any history ht , all players who have re-
vealed rationality believe that the continuation game is the complete information game

(θ(ht )). Therefore, since v(θ(ht )) ∈ F∗∗(θ(ht )), the payoff vector v(θ(ht )) is attainable
in a continuation equilibrium as in Fudenberg and Maskin (1986). Moreover, since the
family of payoff vectors (v(θ))θ∈{R,B}N is incentive compatible, and continuation payoffs
conditional on each set of revealed-rational players θ(ht ) are approximately constant, it
is optimal for a rational player to reveal rationality in the first period (rather than never
revealing rationality or waiting to reveal rationality until a later period). In particular, if
player i does not reveal rationality in period 1, then conditional on each opposing type
profile θ−i, her continuation payoff cannot exceed the maximum of vi((θi = B; θ−i )) (her
continuation payoff if she never reveals rationality) and minv∈cl(F∗∗(θ)) vi (her continua-
tion payoff subsequent to revealing rationality after period 1) by more than an arbitrarily
small amount. Finally, at off-path histories, a rational player who has not yet revealed
rationality (contrary to equilibrium play) may or may not prefer to do so, but her play at
these histories is irrelevant for the other players’ incentives, so she can be prescribed an
arbitrary best response.

To conclude this section, we show how, when applied to symmetric games, Theo-
rem 2 implies a partial converse to Theorem 1. Fix a symmetric game with a commit-
ment action profile a∗. For each number of bad types n, fix a mixed action profile

αn ∈ argmax
α∈�(A)

un,R(α) − un,B(α).

That is, αn maximizes the payoff difference between rational players and bad ones. Next,
for any type profile θ ∈ {R, B}N , let v∗(θ) denote the payoff vector where rational play-
ers take α|θ|. We will show that if the commitment action profile a∗ does not satisfy a
slightly generalized version of population dominance, then the family of payoff vectors
(v∗(θ))θ∈{R,B}N is incentive compatible, and, hence, by Theorem 2, can be obtained in
equilibrium by patient players, if these payoffs vectors are also individually rational. In

15The proof is a variation of existing arguments (e.g., Fudenberg and Maskin (1986), Hörner and Lovo
(2009), Hörner, Lovo, and Tomala (2011)). As compared to the latter two papers, our construction is simpler
because we do not require that the equilibrium is “belief-free.”Indeed, nontrivial belief-free equilibria typ-
ically do not exist in our setting, because a player who is certain that all of her opponents are commitment
types can only take a static best response.

16Sorin (1986) and Fudenberg and Maskin (1991) showed that such a sequence exists.
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other words, for any symmetric game where our anti-folk theorem does not apply, there
exists a strategy profile where rational players outperform bad players, and this strategy
profile can be supported as an equilibrium if it is individually rational and the players
are patient. This observation implies that Theorem 1 cannot be extended much further.

We say that the commitment action profile a∗ satisfies generalized population dom-
inance if there exists a positive number c > 0 such that

N−1∑
n=0

N

N − nqncn ≥ 0,

where

cn = min
α∈�(A)

(
un,B(α) − un(α) − cE

[∣∣{i ∈ I : ai �= a∗
i

}∣∣α, Bn
]

N

)
for all n ∈ {0, � � � ,N − 1}.

We note that population dominance can be replaced with generalized population dom-
inance in Theorem 1.17

Now suppose that a∗ does not satisfy generalized population dominance for any c >
0. Then, for c∗n = maxα∈�(A) u

n(α) − un,B(α), we have
∑
n

N
N−nqnc

∗
n ≥ 0. We claim that if

this inequality holds with �q,q− slack, so that
∑
n

N
N−nqnc

∗
n−�q,q− > 0, then the family of

payoff vectors (v∗(θ))θ∈{R,B}N is incentive compatible; that is,

E
[
v∗
i (θ)|θi =R

]
> E

[
v∗
i (θi = B; θ−i )|θi =R

]
for all i ∈ I.18 (9)

To see why this is true, note that, by symmetry, (9) is equivalent to
∑N−1
n=0 qnu

n,R >∑N−1
n=0 qnu

n+1,B. When players take αn for each realized number of bad types n, we have

un,B = un − c∗n = n

N
un,B + N − n

N
un,R − c∗n and, hence, un,B ≤ uu,R − N

N − nc
∗
n.

Taking the expectation over n gives

N−1∑
n=0

qnu
n+1,B =

N−1∑
n=0

qnu
n,B +

N∑
n=0

(
q−
n − qn

)
un,B

≤
N−1∑
n=0

qnu
n,R −

N−1∑
n=0

N

N − nqnc
∗
n +�q,q− <

N−1∑
n=0

qnu
n,R,

as desired.

17To see why, by the same proof as (7), we have un,B ≥ un,R+ (N/(N −n))cn+γnc. Taking an expectation

and using
∑N−1
n=1 (N/(N −n))qncn ≥ 0, this implies that

∑N−1
n=1 qn(un,B −un,R ) ≥ ∑N−1

n=1 qnγnc. The rest of the
proof is unchanged.

18Note that (9) is the same as (8), but without individual rationality.
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5. Conclusion

This paper has investigated when a large group of symmetric players can support co-
operation when each of them might be committed to defection. Our main result is that
cooperation in this environment requires that it is possible to punish defectors with-
out simultaneously punishing the rest of the population as severely. For example, vol-
untary public goods provision is impossible when the only available incentive instru-
ments are the withdrawal of provision and monetary rewards targeted to contributors;
however, involuntary fines targeted to noncontributors restore the possibility of pro-
vision. In addition, in the PD with non-anonymous random matching, cooperation
is possible if and only if it does not provide large positive externalities to third par-
ties.

We have presented our results in a simple model with one rational type, one com-
mitment type, and (for the folk theorem) perfect monitoring. Extensions to multi-
ple rational or commitment types are straightforward; see SW20 for a discussion of
these extensions in the anonymous case. In particular, our anti-folk theorem extends
whenever players are committed to population dominant actions with positive (in-
dependent) probability, even if there is also a positive probability that they may be
committed to different strategies. The simple commitment types considered here are
thus “canonical,” in the sense of the reputation literature (e.g., Fudenberg and Levine
(1989)).

Imperfect monitoring raises interesting issues, some of which we have pursued in
other work. In large-population repeated games with imperfect public monitoring, the
prospects for cooperation depend on the interaction between the discount factor, the
population size, and the precision of monitoring (Sugaya and Wolitzky (2022)). As for
private monitoring, in the PD with non-anonymous random matching where players
only observe their partner’s actions, cooperation is possible only if players are suffi-
ciently patient relative to the population size, or if the game is augmented with cheap
talk (Sugaya and Wolitzky (2021)). The interaction between incomplete information and
private monitoring more generally is a fairly open area.19

Appendix: Omitted proofs

A.1 Proof of Lemma 1

Fix distinct i, j ∈ I. Since (G, a∗, p, Y , χ) is symmetric, there exists an admissible
automorphism (π, φ, ψ) on G such that π(i) = j. We construct an admissible au-
tomorphism (π̃, φ̃) on 
 such that π̃(i) = j, where here admissibility means that
φ̃k(Always a∗

k ) =Always a∗
π̃(k) for all k ∈ I. First, for each player i and period t, let Ht

i

denote the set of player i’s period t histories, and define a bijection ηti : Ht
i → Ht

π(i)
by

ηti
(
(ai,τ , yi,τ )t−1

τ=1

) = (
φi(ai,τ ), ψi(yi,τ )

)t−1
τ=1 for all hti ∈Ht

i .

19A couple of exceptions are Yamamoto (2014) and Sugaya and Yamamoto (2020).
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Next, let π̃ = π and define φ̃ as follows: for each player i and strategy σi, define φ̃i(σi )
to be the strategy σ̃π(i) that satisfies

σ̃π(i)
(
htπ(i)

)
[aπ(i)] = σi

((
ηti

)−1(
htπ(i)

))[
φ−1
i (aπ(i) )

]
for all htπ(i) ∈Ht

π(i), aπ(i) ∈Aπ(i). (10)

Since ηti and φi are bijections, φ̃i is also a bijection. Also, since (π, φ) is admissible,
φi(a∗

i ) = a∗
π(i), and, hence, φ̃i(Always a∗

i ) =Always a∗
π̃(i).

It remains to show that ui(σ ) = uπ(i)(σ̃ ). For each ht = ((ai,τ , yi,τ )t−1
τ=1 )i∈I , define

ηt(ht ) by ηt(ht )j = ηt
π−1(j)(h

t
π−1(j) ) for all j ∈ I. Then for all ht and (at , yt ) ∈ At × Yt ,

we have

Prσ
(
at , yt|ht

) =
∏
i

σi
(
hti

)
[ai,t ]χ(yt|at )

=
∏
i

σ̃π(i)
(
ηti

(
hti

))[
φi(ai,t )

]
χ(yt|at )

=
∏
i

σ̃π(i)
(
ηti

(
hti

))[
φi(ai,t )

]
χ
(
ψ(yt )|φ(at )

)

=
∏
π−1(i)

σ̃i
(
ηt
π−1(i)

(
ht
π−1(i)

))[
φπ−1(i)(aπ−1(i),t )

]
χ
(
ψ(yt )|φ(at )

)

= Pr σ̃
(
φ(at ), ψ(yt )|ηt

(
ht

))
,

where the second line follows from (10), the third line follows from admissibility of
(π, φ), the fourth line changes the index from i to π−1(i), and the fifth line is by defi-
nition of ηt . Given this, by induction on t, for each t and at ∈A, we have

Prσ (at ) =
∑
yt ,ht

Prσ
(
at , yt|ht

)
Prσ

(
ht

) =
∑
yt ,ht

Pr σ̃
(
φ(at ), ψ(yt )|ηt

(
ht

))
Pr σ̃

(
ηt

(
ht

))

= Pr σ̃
(
φ(at )

)
.

Since (π, φ) is an automorphism onG, we have

ui(σ ) = (1 − δ)
∑
t

δt−1
∑
at

Prσ (at )ui(at ) = (1 − δ)
∑
t

δt−1
∑
at

Prσ (at )uπ(i)
(
φ(at )

)

= (1 − δ)
∑
t

δt−1
∑
at

Pr σ̃
(
φ(at )

)
uπ(i)

(
φ(at )

) = uπ(i)(σ̃ ),

as desired.

A.2 Proof of Lemma 2

We first note a preliminary fact used later in the proof: if (π, φ) is an admissible auto-
morphism onG, then

ui
(
ρ(s, θ)

) = uπ(i)
(
(φ ◦ ρ)(s, θ)

) = uπ(i)
(
ρ
(
φ(s), π(θ)

))
, (11)
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where π(θ) is the type profile defined by π(θ)j = θπ−1(j) for all j ∈ I. Here, the first
equality holds because (π, φ) is an automorphism, and the second holds because, since
(π, φ) is admissible, for each i ∈ I we have

φπ−1(i)
(
ρ(s, θ)π−1(i)

) =
{
φπ−1(i)(sπ−1(i) ) if θπ−1(i) =R,

s∗i if θπ−1(i) = B
= ρ(φ(s), π(θ)

)
i
.

Now fix any s∗ ∈ S∗. To simplify notation, for each n ∈ I, let un−1,R = un−1,R(s∗ ) and
un,B = un,B(s∗ ). Define

S∗∗ = {
s ∈ S∗ : un−1,R(s) = un−1,R and un,B(s) = un,B ∀n ∈ I}

U = {
v ∈R

2N2
: ∃s ∈ S∗∗ s.t. un−1,R

i (s) = v(n−1)N+i and

un,B
i (s) = vN2+(n−1)N+i ∀i ∈ I, n ∈ I}.

Thus, v ∈ U if and only if there is an equilibrium s such that v is the vector of condi-
tional expected utilities under s for each player, where the vector v first lists, for each
n ∈ {0, � � � ,N − 1}, each player’s expected payoff conditional on being rational when
there are n bad players; and then lists, for each n ∈ {1, � � � ,N }, each player’s expected
payoff conditional on being bad when there are n bad players. Note that the set U is
compact by standard arguments.

Given v ∈R
2N2

, for each n ∈ I, define theN-dimensional vectors

vn−1,R = (v(n−1)N+i )Ni=1 and vn,B = (vN2+(n−1)N+i )Ni=1.

Note that v is given by the concatenation of the vectors vn−1,R for n ∈ I, followed by the
concatenation of the vectors vn−1,B for n ∈ I. Now define a new vector f (v) ∈ R

2N2
by

letting (f (v))(n−1)N+i equal the ith-lowest component of the vector vn−1,R for each i ∈ I
and n ∈ I. and letting (f (v))N2+(n−1)N+i equal the ith-lowest component of the vector
vn,B for each i ∈ I and n ∈ I. That is, for each n ∈ I, the (n − 1)N + 1st through (n −
1)(N + 1)st coordinates of the vector f (v) are equal to the increasing rearrangement of
the vector vn−1,R, and theN2 + (n−1)N+1st throughN2 + (n−1)(N+1)st coordinates
of the vector f (v) are equal to the increasing rearrangement of the vector vn,B. Let

F = {
w ∈R

2N2
: ∃v ∈U s.t. f (v) =w}

.

Note that F is compact, because U is compact and f is continuous. Note also that

(1/N )
N∑
i=1

w(n−1)N+i = un−1,R and

(1/N )
N∑
i=1

wN2+(n−1)N+i = un,B for all w ∈ F and n ∈ I.
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Let � denote the lexicographic order on R
2N2

. Let ŵ denote a maximal element of
F in the lexicographic order.20 Define the vector w̄ ∈ R

2N2
by letting w̄(n−1)N+i = un−1,R

and w̄N2+(n−1)N+i = un,B for all i ∈ I and n ∈ I. Note that w̄ � ŵ; otherwise, there would
exist n ∈ I such that ŵ(n−1)N+i ≥ un−1,R for all i ∈ {1, � � � ,N }, with strict inequality for
some i, which implies that (1/N )

∑N
i=1 ŵ(n−1)N+i > un−1,R (or, symmetrically, n ∈ I such

that ŵN2+(n−1)N+i ≥ un,B for all i ∈ {1, � � � ,N } with strict inequality for some i, implying

that (1/N )
∑N
i=1 ŵN2+(n−1)N+i > un,B), a contradiction.

We now argue that ŵ � w̄. Suppose toward a contradiction that w̄ � ŵ. Let m ∈
{1, � � � , 2N2} denote the smallest index such that ŵm > w̄m. Suppose that m ≤ N2, so
there exist n ∈ I and i ∈ I satisfying m = (n − 1)N + i. (The m > N2 case is symmetric
and is omitted.) Let v denote an element of U such that f (v) = ŵ. Since ŵ(n−1)N+i >
w̄(n−1)N+i, (1/N )

∑N
i=1 ŵ(n−1)N+i = un−1,R, and the vector (ŵ(n−1)N+i )Ni=1 is a rearrange-

ment of the vector vn−1,R, not all components of vn−1,R are equal. Let i, j ∈ I satisfy

i ∈ argmin
k∈I

vn−1,R
k and j ∈ argmax

k∈I
vn−1,R
k ,

and note that vn−1,R
i < vn−1,R

j . Moreover, note that for all n′ < n and i ∈ I, we have

vn
′−1,R
i = un′−1,R by minimality ofm.

Let s ∈ S∗ satisfy un−1,R(s) = vn−1,R for all n ∈ I. Since (G, p) is symmetric,
there exists an admissible automorphism (π, φ) such that π(i) = j and uk(ρ( s̃, θ)) =
uπ(k)(ρ(φ( s̃), π(θ))) for each k ∈ I, θ ∈ �, and s̃ ∈ S. Let s′ = φ(s). We claim that s′
is a NE. To see this, fix a player k ∈ I and a strategy ŝk ∈ Sk. Let k′ = π−1(k), and let
ŝk′ =φ−1

k′ ( ŝk ). For every strategy profile s̃, we have

∑
θ

Pr(θ)uk′
(
ρ( s̃, θ)

) =
∑
θ

Pr(θ)uk
(
ρ
(
φ( s̃), π(θ)

))

=
∑
θ

Pr
(
π(θ)

)
uk

(
ρ
(
φ( s̃), π(θ)

))

=
∑
θ

Pr(θ)uk
(
ρ
(
φ( s̃), θ

))
, (12)

where the first line follows because (π, φ) is an admissible automorphism (so (11)
holds), the second line follows because π is symmetric, and the third line follows by
rearranging the sum. Hence, we have∑

θ

Pr(θ)uk
(
ρ
(
s′, θ

)) =
∑
θ

Pr(θ)uk
(
ρ
(
φ(s), θ

)) =
∑
θ

Pr(θ)uk′
(
ρ(s, θ)

)

≥
∑
θ

Pr(θ)uk′
(
ρ
(
( ŝk′ ; s−k′ ), θ

))

=
∑
θ

Pr(θ)uk
(
ρ
((
ŝk; φ(s)−k

)
, θ

)) =
∑
θ

Pr(θ)uk
(
ρ
((
ŝk, s′−k

)
, θ

))
,

20Note that the lexicographic order admits a maximum on a compact subset of R2N2
.
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where the first and last equalities follow because s′ =φ(s), the second and third equali-
ties follow by (12) and ŝk′ =φ−1

k′ ( ŝk ), and the inequality follows because s is a NE. As this
inequality holds for any k ∈ I and ŝk ∈ Sk, we see that s′ is a NE.

Next, for each k ∈ I and n′ ∈ I, let v′
(n′−1)N+k = un

′−1,R
k (s′ ) and v′

N2+(n′−1)N+k =
un

′,B
k (s′ ). Since s′ ∈ S∗, the resulting vector v′ lies in U . Moreover, by (11) and symmetry

of π, for each k ∈ I and n′ ∈ I, we have

un
′−1,R
k (s) =

∑
θ:|θ|=n′−1,θk=R

Pr(θ)

Pr
(|θ| = n′ − 1, θk =R)uk(ρ(s, θ)

)

=
∑

θ:|θ|=n′−1,θk=R

Pr(θ)

Pr
(|θ| = n′ − 1, θk =R)uπ(k)

(
ρ
(
φ(s), π(θ)

))

=
∑

θ:|θ|=n′−1,θπ(k)=R

Pr(θ)

Pr
(|θ| = n′ − 1, θπ(k) =R)uπ(k)

(
ρ
(
φ(s), π(θ)

))

= un−1,R
π(k)

(
s′

)
.

Similarly, un
′,B
k (s) = un

′,B
π(k)(s

′ ) for each k ∈ I and n′ ∈ I. Therefore, for each k ∈
{0, � � � , 2N2 − N }, the vector (v′

kN+i )
N
i=1 is a permutation of (vkN+i )Ni=1, which in par-

ticular implies that s′ ∈ S∗∗. Now define the distribution s̄ to be a 50:50 mixture over s
and s′. Clearly, s̄ ∈ �(S∗∗ ). Let

v̄= u( s̄) = 1
2

(
v+ v′)

and note that f (v̄) ∈ F . Since, for all n′ < n and k ∈ I, we have vn
′−1,R
k = un′−1,R, it follows

that

v̄n
′−1,R
k = un′−1,R for all k ∈ I, n′ < n. (13)

In addition, since π(i) = j, i ∈ argmink∈I vn−1
k , and j ∈ arg maxk∈I vn−1

k , we have

v̄n−1,R
i = 1

2

(
vn−1,R
i + vn−1,R

j

)
> vn−1,R

i . (14)

Moreover, since (v′ )n−1,R is a permutation of vn−1,R and v̄= 1
2 (v+ v′ ), we also have

v̄n−1,R
k ≥ vn−1,R

i for all k ∈ I (15)

v̄n−1,R
k > vn−1,R

i for all k ∈ I\argmin
k′∈I

vn−1,R
k′ . (16)

Since i ∈ argmink∈I v
n−1,R
k′ , (13), (14), (15), and (16) together imply that f (v̄) � f (v). But

this contradicts the maximality of ŵ= f (v) in F . We can thus conclude that ŵ� w̄.
Since w̄� ŵ and ŵ� w̄, we conclude that ŵ= w̄, proving the lemma.
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A.3 Proof of Theorem 2

Fix such a payoff vector v and ε > 0. Let (v(θ))θ∈{R,B}N satisfy (8) and v= E[v(θ)].
Let �int ⊆ {R, B}N denote the set of type profiles such that the projection of F∗(θ)

on the set of rational-player payoff vectors has nonempty relative interior, and, hence,
F∗∗(θ) = F∗(θ). By (8), there exists a constant η> 0 such that, for all i ∈ I,

vi(θ) ≥ min
v′∈cl(F∗∗(θ))

v′
i +η for all θ ∈�int,

E
[
vi(θ)|θi =R

]
> E

[
max

{
vi

(
(θi = B; θ−i )

)
, min
v′∈cl(F∗∗(θ))

v′
i

}∣∣∣θi =R]
+η

(17)

Lemma 4. There exists δ̄ < 1 such that, for every δ > δ̄, the following conditions hold:

(i) For each θ ∈ �int, there exists a sequence of pure action profiles {αt(θ)}∞t=1 such
that v(θ) = (1−δ)

∑∞
t=1 δ

t−1u(αt(θ)) and, for each t, |(1−δ)
∑∞
t ′=t δt

′−1u(αt ′(θ))−
v(θ)| <η/4.

(ii) For each θ /∈ �int, there exists a sequence of mixed action profiles {αt(θ)}∞t=1 such
thatαt(θ) is a static Nash equilibrium for every θ, v(θ) = (1−δ)

∑∞
t=1 δ

t−1u(αt(θ)),
and, for each t, |(1 − δ)

∑∞
t ′=t δt

′−1u(αt ′(θ)) − v(θ)| <η/4.

(iii) For each θ ∈ � and i ∈ I, there exists a subgame-perfect equilibrium σi(θ) in the
game 
(θ) with equilibrium payoff v satisfying vi ≤ minv′∈cl(F∗∗(θ)) v

′
i + η/4 for all

i ∈ I.

Proof. The proof follows from Fudenberg and Maskin (1991), observing that the set of
feasible and individually rational payoffs has nonempty interior when θ ∈�int, and that
F∗∗(θ) is defined as the convex hull of the set of static Nash equilibrium payoffs when
θ /∈�int.

Without loss, we take δ̄≥ 1 −η/8.
Recall that θ∗ is the realized set of rational players. For any history ht , let θ(ht ) ⊆ θ∗

denote the set of players who have ever taken any action other than a∗ at ht : we call this
the set of players who have revealed rationality at ht .

We now fix an arbitrary static NE in the one-shot game where θ∗ is distributed ac-
cording to p, each player i ∈ θ∗ is restricted to take actions in A \ {a∗}, and each player
i /∈ θ∗ is restricted to take {a∗}. Let α0 ∈ �∗(A(θ∗ )) be the equilibrium strategy. Let �̄i be
the set of strategies for player i where she takes αi,0 in period 1.

We will prove that each v(θ∗ ) is attainable without fully constructing the equilib-
rium strategy profile: in particular, we will not construct the continuation strategy of a
rational player who does not reveal rationality in the first period, leaving this defined
implicitly. Formally, we will construct a quasi-equilibrium, which is a strategy profile in
�̄ that satisfies the following conditions for each player i ∈ θ∗:

Condition 1. Player i takes αi,0 in period 1.
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Condition 2. For each period t ≥ 2 and history ht such that i ∈ θ(ht ), it is optimal for
player i to follow the equilibrium strategy at history ht , conditional on the event
that θ∗ = θ(ht ).

Condition 3. It is optimal for player i to follow the equilibrium strategy in period 1.

We first establish that this suffices to deliver the theorem.

Lemma 5. Fix a strategy profile σ ∈ �̄. For any belief system μ such that (σ , μ) satisfies
Kreps–Wilson consistency, and for any t ≥ 2, after each (possibly off-path) history ht , every
rational player i believes with probability 1 that θ(ht ) ∪ {i} = θ∗.

Proof. It is immediate that every rational player believes with probability 1 that θ(ht )∪
{i} ⊆ θ∗. Thus, we prove that every rational player believes with probability 1 that, for any
j /∈ θ(ht ) ∪ {i}, player j is a commitment type. Since j /∈ θ(ht ) ∪ {i}, player j takes a∗

j for all
periods 1, � � � , t − 1. For any completely mixed sequence of strategy profiles converging
to σ , conditional on any sequence of the other players’ actions, this action sequence for
player j is played with nonvanishing probability in the (positive probability) event that
player j is bad, but is played with vanishing probability when player j is rational (as αj,0

puts zero probability on a∗
j ). Hence, the corresponding limit beliefs put probability 1 on

the event that player j is rational.

Lemma 6. For any quasi-equilibrium, there exists an outcome-equivalent sequential
equilibrium.

Proof. Given a quasi-equilibrium σ∗, we can construct an outcome-equivalent strat-
egy profile σ∗∗ by specifying that, for each period t, (i) if either t = 1 or ht satisfies
i ∈ θ(ht ), player i follows σ∗

i , and (ii) if t > 1 and i ∈ θ∗\θ(ht ), player i takes a (dynamic)
best response given the belief that θ∗ = θ(ht ) ∪ {i} (and, hence, by (i), given the belief
that players −i follow σ∗

−i). Since σ∗∗ ∈ �̄, by Lemma 5, at any history ht with t ≥ 2, every
rational player i believes that θ∗ = θ(ht ) ∪ {i}. Thus, σ∗∗

i is sequentially rational given
Conditions 1–3 in the definition of a quasi-equilibrium.

We now construct a quasi-equilibrium that attains v(θ) whenever θ∗ = θ for each
θ. In period 1, each player i ∈ θ∗ takes ai according to α0,i in period 1. In period t ≥ 2,
players follow an automaton strategy profile with state (θ,ω), where θ⊆ I and ω ∈ {0} ∪
({3, � � � , t} × I ). The initial state is θ= θ(h2 ) and ω= 0.

Given the current state (θ,ω) and calendar time t, actions are determined as follows:
(i) Ifω= 0, then player i takes αi,t−1(θ) specified in Lemma 4.21 (ii) Ifω= (n, τ) for some
n ∈ I and τ ≤ t, then player i takes σni (θ)(hτ:t ), where hτ:t = (aτ , � � � , at−1 ) is the history
following period τ (with hτ:τ = {∅}).

Given the current state (θ,ω) and realized action profile at , the next-period state
(θ′,ω′ ) is determined as follows: (i) If ω= 0 and each player i takes ai,t ∈ suppαi,t−1(θ),

21Note that the time index is shifted by one since the game 
(θ) in Lemma 4 does not have the revelation
stage.
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then (θ′,ω′ ) = (θ, 0). (ii) If ω = 0 and there is a unique player i who takes ai,t /∈
suppαi,t−1(θ), then θ′ = θ∪ {i} andω′ = (i, t+1). (iii) Ifω= (n, τ) and each player i takes
ai,t ∈ suppσni (θ)(hτ:t ), then θ′ = θ and ω′ = ω. (iv) If ω = (n, τ) and there is a unique
player i ∈ θ who takes ai,t /∈ suppσni (θ)(hτ:t ), then θ′ = θ and ω′ = ω. (v) If ω = (n, τ)
and there is a unique player i /∈ θ who takes ai /∈ σni (θ)(hτ:t ) = {a∗

i }, then θ′ = θ ∪ {i} and
ω′ = (i, t + 1).

Conditional on each realization of the set of rational players θ∗, this strategy profile
delivers payoff v(θ∗ ) from period 2 onward. Since v= E[v(θ)], for sufficiently large δ, the
ex ante expected payoffs are within ε of v.

It remains to verify that the strategy profile is a quasi-equilibrium. Condition 1 holds
by construction. For Condition 2, note that if ω= 0 and θ(ht ) ∈�int, then, by Lemma 4,
the on-path continuation payoff is at least v(θ(ht )) − η/4, while the deviation payoff is
at most (1 − δ)(1) + δ(minv′∈cl(F∗∗(θ(ht ))) v

′
i + η/4). By (17) and δ ≥ 1 − η/8, the former

quantity is greater, so the prescribed strategy is optimal. If, instead, ω = 0 and θ(ht ) /∈
�int, then the prescribed strategy is a sequence of static Nash equilibria. If, instead,
ω �= 0, then the prescribed strategy σi(θ) is a subgame-perfect equilibrium.

Finally, for Condition 3, note that

E

[
(1 − δ)

∞∑
t=1

ui(at )|σ
∗, i ∈ θ∗

]

= E
[
(1 − δ)ui(α) + δvi

(
θ∗)∣∣i ∈ θ∗]

≥ E
[
vi

(
θ∗)∣∣i ∈ θ∗] − (1 − δ)(1) ≥ E

[
vi

(
θ∗)∣∣i ∈ θ∗] − η

8
. (18)

By contrast, we can bound maxσi E[(1 − δ)
∑∞
t=1 ui(at )|σi, σ

∗
−i] as follows. Taking any

action outside suppα0,i other than a∗
i in period 1 is unprofitable, as it leads to a lower

payoff in period 1 (as α0 is a static equilibrium) and the same continuation payoff start-
ing in period 2 (since Condition 2 has established that for player i ∈ θ(ht ), it is optimal
to follow the equilibrium strategy). We thus focus on strategies that take a∗

i in period 1.
By Lemma 5, player i believes with probability 1 that θ(h1 ) = θ∗\{i}. By construction, for
each θ∗, conditional on the event θ∗\{i} = θ, taking an action ai,t /∈ suppαi,t−1(θ) in pe-
riod t at state (θ, 0) gives a continuation payoff of at most minv′∈cl(F∗∗(θ∗ )) v

′
i +η/4. Since

the sequence of equilibrium action distributions αt = αt−1(θ∗\{i}) is deterministic for
t ≥ 2, by optimally choosing the period T in which player i reveals rationality, we have

max
σi

E

[
(1 − δ)

∞∑
t=1

ui(at )|σi, σ
∗
−i, i ∈ θ∗

]

≤ (1 − δ) +E

⎡
⎢⎢⎢⎣

max
T≥2

(1 − δ)
T−1∑
t=2

δt−1ui
(
αt−1

(
θ∗\{i}

))
+(1 − δ)δT−1(1) + δT

(
min

v′∈cl(F∗∗(θ∗ ))
v′
i +

η

4

)
∣∣∣∣∣i ∈ θ∗

⎤
⎥⎥⎥⎦ .
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For each θ∗, recalling that vi(θ∗\{i}) = (1 − δ)
∑∞
t=1 δ

t−1ui(αt(θ∗\{i})), we have

∣∣∣∣∣(1 − δ)
T∑
t=1

δt−1ui
(
αt

(
θ∗\{i}

)) − (
1 − δT )

vi
(
θ∗\{i}

)∣∣∣∣∣
≤ δT

∣∣∣∣∣vi(θ∗\{i}
) − (1 − δ)

∞∑
t=T+1

δt−T−1ui
(
αt

(
θ∗\{i}

))∣∣∣∣∣ ≤ η

4
, (19)

where the latter inequality follows from Lemma 4. Hence, we have

max
σi

E

[
(1 − δ)

∞∑
t=1

ui(at )|σi, σ
∗
−i, i ∈ θ∗

]

≤ (1 − δ) +E

[
max
T≥2

(1 − δ)
T−1∑
t=2

δt−1ui
(
αt−1

(
θ∗\{i}

)) + (1 − δ)δT−1

+ δT
(

min
v′∈cl(F∗∗(θ∗ ))

v′
i +

η

4

)∣∣∣∣i ∈ θ∗
]

≤ 3(1 − δ) +E

[
max
T≥1

(1 − δ)
T∑
t=1

δt−1ui
(
αt

(
θ∗\{i}

)) + δT+1 min
v′∈cl(F∗∗(θ∗ ))

v′
i|i ∈ θ∗

]
+ η

4

≤ 3(1 − δ) +E

[
max
T≥1

(
1 − δT )

vi
(
θ∗\{i}

) + δT+1 min
v′∈cl(F∗∗(θ∗ ))

v′
i|i ∈ θ∗] + η

2

≤ E

[
max

{
vi

(
θ∗\{i}

)
, min
v′∈cl(F∗∗(θ∗ ))

v′
i

}∣∣∣i ∈ θ∗] + 7η
8

,

where the second inequality changes the time index, the third uses (19), and the fourth
uses δ > 1 −η/8. Finally, (17) and (18) imply Condition 3.
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