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Abstract

We study a large market model of dynamic matching with no monetary transfers

and a continuum of agents who have to be assigned items at each date. When the social

planner can only elicit ordinal agents’ preferences, we prove that under a mild regularity

assumption, incentive compatible and ordinally efficient allocation rules coincide with

spot mechanisms. The latter specify “virtual prices” for items at each date and, for each

agent, randomly selects a budget of virtual money at the beginning of time. When the

social planner can elicit cardinal preferences, we prove that under a similar regularity

assumption, incentive compatible and Pareto efficient mechanisms coincide with Spot

Menu of Random Budgets mechanisms. These are similar to spot mechanisms except

that, at the beginning of time, each agent chooses within a menu, a distribution over

budget of virtual money.
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1 Introduction

In many contexts, agents have to be assigned streams of items when no monetary transfers

are allowed. Some examples include the assignment of civil servants—such as teachers—to

positions along their career trajectories, the allocation of courses to students from semester

to semester, the assignment of spaces in college dorms during university years, the allocation

of organs to hospitals waiting for transplants for their sick patients, etc. However, the lit-

erature does not provide much guideline on how to design allocation rules in these dynamic

contexts.1 While the class of possible allocation rules can potentially be quite large, we show

how efficiency and incentive compatibility requirements narrow it down to fairly simple rules

that conform well with prevalent practices.

Typically, in the aforementioned situations, a real money market is not allowed, so a

“virtual money” market is a natural option.2 In practice, agents are often given a budget of

virtual money that they can spend at regular intervals of time on items with high price or

can use it to buy cheap items and save money for future use. Hence, the assignment proceeds

simply by having a sequence of spot markets.

One example is the course allocation at Columbia Business School (CBS). Until recently,

at CBS, lifetime budgets were given upfront and carried over from semester to semester.3 A

student could spend her budget equally in each semester, spend most of it on courses in the

first semester, or save it for future use.4 The prices on courses were set to clear supply and

demand for each course. Eventually, the price for a stream of courses simply corresponds to

the sum of prices of each course in the stream. Another example is the assignment of teachers

to public schools, as done in France.5 Teachers are initially endowed a budget that depends

on their characteristics and is used all along their career.6 Each year, each teacher can decide

to use her budget to transfer to another school, i.e., to “buy” a position in another school.

1There have been a number of attempts to define optimal mechanisms in these dynamic contexts. Most of
them rely on repeated games structures where preferences are drawn i.i.d. over time and are separable. This
rules out many of the applications we have in mind. See the related literature section below.

2For studies on static matching problems with virtual money, see, for instance, Hylland and Zeckhauser
(1979), Budish (2011), Budish et al. (2017) or He et al. (2018).

3The Wharton School of Business uses a bidding system for courses as well. However, the mechanism used
is different: unused budgets from one semester do not carry over to subsequent semesters (see Budish et al.,
2017).

4A full description of the allocation process used until recently is given in the “Guide to Bidding” of CBS
from 2016. We note though that CBS is now using a different mechanism, see course-match-registration.

5See Combe et al. (2022) for institutional details on the French teacher assignment scheme.
6The initial budget depends on the number of kids, martial situation and medical condition.
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They can use their budget to buy a position in overdemanded schools if they can afford it.

For some underdemanded, mainly disadvantaged schools, prices are actually negative, i.e.,

teachers would receive a bonus if they go to these schools (and stay there for several years).

They could then accumulate more tokens to obtain a future assignment at schools that they

desire. Here again, the price of a stream of schools along the career trajectory of a teacher

is simply the sum of the prices of each school.7 Thus, by construction, spot markets, have a

special linear pricing structure.

One can imagine many other allocation rules. For instance, upon arriving, one could ask

an agent her preferences over streams of items and given the reported preferences allocate the

agent a sequence of items from then on. Indeed, in the context of course allocation, based

on students (reported) preferences, a university could decide every year to use an allocation

rule to assign students to sequences of courses over the full year spanning several semesters.

Similarly, teachers who recently graduated could be proposed sequences of schools over the

following years. With virtual money, one could price directly these streams of items. Since

this approach does not impose any linear structure on prices, it may be more permissive than

using spot markets, i.e., the allocation rules obtained in this way may not be obtained through

spot markets.

We use a large matching market setting with a continuum of agents introduced by Ash-

lagi and Shi (2016). However, we study a dynamic market where agents are assigned items

sequentially, while Ashlagi and Shi (2016) consider static environments. In our framework,

agents are present from date 1 through T (the finite horizon), and at each of these dates, they

have to be assigned items that perish at the end of the current period. We first consider the

case where the mechanism designer can only elicit ordinal preferences over the sequences of

items. We show that under a mild regularity assumption, the class of incentive compatible

and ordinally efficient allocation rules coincides with the class of spot mechanisms. A spot

mechanism works as follows. It specifies “virtual prices” for items at each date. At the begin-

ning of time, for each agent, it randomly selects a budget of virtual money according to some

distribution. Then, at each date, an item is affordable for this agent if her remaining budget

is above the virtual price for this item. At this date, the agent is allocated the item of her

7Dynamic assignment schemes with point systems can also be found in other applications. For instance,
to incentivize voluntary participation by hospitals in kidney exchange platforms, point systems rewarding
hospitals based on their marginal contribution to the platform have been recently adopted by the National
Kidney Registry kidney exchange platform (see Agarwal et al., 2019). In addition, the elite French school
Ecole Normale Supérieure has been using a point system for the assignment of students to dorms over the
years of study.
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choice among affordable ones. The agent pays the price of the assigned item, and the budget

is adjusted accordingly. Together with our prior observation that spot mechanisms impose a

linear structure on prices, our result shows, perhaps surprisingly, that this linear structure is

what is needed when one requires incentive compatibility and ordinal efficiency.

We then consider the case where the mechanism designer can elicit cardinal preferences.

Under a similar regularity assumption, we show a corresponding result: the class of incentive

compatible and Pareto efficient mechanisms coincides with a class of mechanisms that we call

Spot Menu of Random Budget (MRB) mechanisms. A spot MRB mechanism is similar to a

spot mechanism: it sets prices for each object at each date and will initially draw a budget

for each agent. The main difference is that at the beginning of time, each agent is offered a

menu of distributions. The distribution chosen in the menu will be used to randomly select

an initial budget of virtual money. Then, similarly to spot mechanisms, each agent uses her

budget to buy objects at each date.

Our theoretical results provide insights into the types of mechanisms used in practice. As

we already underlined, spot mechanisms are used in real-world markets. Of course, since under

spot mechanisms, at a given date, agents do not have to express their preferences on what

items they are willing to consume at further dates, these mechanisms may be seen as offering

simplicity in agents’ decision making or accommodating shocks in preferences that may occur

in the future. However, given the special structure of pricing underlying these mechanisms,

one may wonder about the losses induced by this special structure. Our main result shows

that the loss may be small in markets with a fairly large number of agents. Further, while the

optimality of spot mechanisms accords well with their use in practice, it is interesting to note

that in some contexts, the dynamic allocation of items is implemented by market mechanisms

differing from spot mechanisms. For instance, as we already mentioned, the Wharton School

of Business uses a bidding system for courses where unused budgets from one semester do not

carry over to subsequent semesters. We show by means of examples that such mechanisms

precluding transfers of budget from one period to the other are inefficient (and, hence, cannot

be replicated by spot mechanisms).8 More generally, our results shed light on the lack of

efficiency of the alternative assignment schemes.

These results also provide a path toward setting up the prices and the budgets in ap-

plications where spot markets are in use and where a social planner has a clear objective

8While this is a source of inefficiencies, Budish et al. (2017) argue that allowing the transfer of budgets
increases decision complexity since students have to think about how much of their budget they want to reserve
for future use.
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to optimize. For instance, for the assignment of teachers to public schools in France, one

of the main objectives of the administration/social planner is to ensure that enough experi-

enced teachers are assigned to disadvantaged schools. Maximizing the number of experienced

teachers in disadvantaged schools subject to incentive (and efficiency) constraints can then be

solved by optimizing over spot mechanisms only. The question then boils down to choices of

spot prices for schools and (distribution of) budgets for teachers.

Related literature. Several works have considered market-like mechanisms with token

money. The seminal article is Hylland and Zeckhauser (1979) which defines competitive

equilibrium with equal income in an environment with fake money. In this context, agents

buy probability shares of items, and prices clear the market. Budish (2011) defines a related

concept in combinatorial assignment problems such as course allocation. In a continuum

model, Che and Kojima (2010) show that the allocation of the random priority mechanism

(or random serial dictatorship) can be obtained by setting prices for each object and drawing

the budget of fake money of each agent from a uniform distribution that, following Ashlagi

and Shi (2016), we name Lottery-plus-cutoffs mechanisms.9 Importantly, the authors show

that random priority is equivalent to the probabilistic serial mechanism of Bogomolnaia and

Moulin (2001). Liu and Pycia (2016) and Ashlagi and Shi (2016) prove that the equivalence

with random priority extends to large classes of mechanisms. In particular, Ashlagi and Shi

(2016) characterize incentive compatible and efficient allocation rules with a continuum of

agents when the designer can only elicit ordinal preferences (under the same regularity as-

sumption as ours).10 They show that the class of incentive compatible and ordinally efficient

mechanisms coincides with the class of Lottery-plus-cutoffs mechanisms.11 However, all these

articles study static settings, whereas we consider a dynamic environment. In particular, we

show that the characterization by Ashlagi and Shi (2016) does not extend to our dynamic

setup.12

9Che and Kojima (2010) have a “temporal” interpretation of random priority to facilitate its comparison
with probabilistic serial but it is formally equivalent to our description.

10Miralles and Pycia (2020) establish a Second Welfare Theorem in assignment problems without transfers.
11Lottery-plus-cutoffs mechanisms can be implemented using the standard Deferred-Acceptance mechanism

with random priorities. Shi (2022) defines a large class of mechanisms, which includes Lottery-plus-cutoffs
mechanisms. He provides conditions under which one can implement these mechanisms using either Deferred-
Acceptance, Top Trading Cycle or Serial Dictatorship.

12Instead, to prove our characterization, we introduce a generalization of their class of Lottery-plus-cutoffs
mechanisms that we call Generalized Lottery plus Cuttoffs (GLC) mechanisms. GLC mechanisms also define
prices over sequences of items in our case but draw the budgets according to a general (possibly non-uniform)
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There is an extensive literature on dynamic mechanism design problems. Most of the lit-

erature focuses on settings in which monetary transfers are allowed (see Bergemann and Said

(2011) for a survey). There is a small body of literature on dynamic mechanisms without

transfers. Jackson and Sonnenschein (2007) study a general framework for resource allocation

in a finite horizon model without discounting in which agents learn all private information at

time 0.13 They assume that agents’ preferences are additively separable and independently

distributed across time and agents. The designer’s goal is to achieve ex-ante Pareto-efficient

outcomes. In order to achieve this goal, they build a budget-based mechanism in which each

agent announces his preferences and announcements of agents are “budgeted” so that the

distribution of preferences announced over the different dates must mirror the underlying dis-

tribution of preferences. Hence, the mechanism links the different periods to enforce incentives.

Related ideas have been developed and applied to infinite horizon models with discounting

where a designer has to repeatedly allocate a single resource to one of multiple agents, whose

values are private and i.i.d. across agents and periods (e.g., Guo et al., 2009 and Balseiro et al.,

2019).14 The proposed mechanisms share some similarities with our spot mechanisms; in par-

ticular, they are based on artificial currencies. For instance, in Jackson and Sonnenschein

(2007), each preference, ordering is associated with a budget of token money, and announcing

a preference ordering has a price that is taken from the associated preference-specific bud-

get.15 Beyond this type of similarities, our environments differ in important dimensions. The

environments these authors consider correspond to a large repetition of independent problems

(which is reflected in the assumption that preferences are drawn i.i.d. over time and are sepa-

rable). This is the cornerstone to ensure that one can link the problems to incentivize agents

to report truthfully their preferences when implementing an ex-ante efficient allocation. In

distribution. Spot mechanisms can be seen as GLC mechanisms where the prices of sequences has a linear
structure. We detail the exact connection in Section 4.2.

13Jackson and Sonnenschein (2007) is actually more general: they consider a decision problem that is linked
with a large number of independent copies of itself. One possible interpretation is that the same problem is
repeated a large number of times.

14These works combine techniques from repeated games (Abreu et al., 1990, Fudenberg et al., 1994) with
some of the ideas in Jackson and Sonnenschein (2007) to show how one can approach efficient outcomes when
the discount rate is high enough.

15In some related works, the budget may not be preference-specific and may endow agents with just a single
artificial currency budget. For instance, in Guo et al. (2009), agents have a budget of token money. If they
have a high valuation for the item today, they can pay the other agent a certain amount of token money to
increase their likelihood of obtaining the item today. In turn, the other agent can use the additional tokens
later on to increase his likelihood of obtaining the item whenever he will have a high valuation for the item. In
a finite horizon model, at the cost of satisfying incentive constraints approximately, Gorokh et al. (2017) offer
mechanisms endowing agents with a budget of artificial currency, and organizing a static monetary mechanism
in each period with payments in the artificial currency.
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contrast, our results do not rely at all on any separability or i.i.d. assumptions, and we cannot

rely on Jackson and Sonnenschein (2007)’s “linkage principle”. Dropping the separability and

i.i.d. assumptions considerably enlarges the set of applications.16

Our results also relate to the growing literature on dynamic matching. Bloch and Houy

(2012) and Kurino (2014) analyze a dynamic version of the housing market with overlapping

generations. In their models, the housing side is fixed at the beginning of time and infinitely

durable. In dynamic matching infinite horizon stochastic models, Akbarpour et al. (2020),

Baccara et al. (2020), Anderson et al. (2017) and Ashlagi et al. (2019) study the trade-off

between matching agents immediately or matching them later in order to benefit from market

thickening.17

Last, our analysis is also related to the literature on combinatorial auctions. Indeed, as

we already mentioned, spot mechanisms impose a linear structure on prices and characterize

the efficient and incentive compatible mechanisms. For assignment problems with transfers,

Kelso and Crawford (1982) show the existence of market-clearing prices (which by definition

assumes linearity of pricing) provided that agents preferences satisfy the so-called gross substi-

tute condition. Hence, under the latter condition, linear pricing allows to implement efficient

allocations (which is generically unique). More generally, Bikhchandani and Mamer (1997)

and Bikhchandani and Ostroy (2002) show that for an economy with transfers, for such a re-

sult to hold true, duality for the integer-valued assignment problem must hold. In particular,

with divisible items, the existence of market-clearing prices is ensured. In contrast, first, our

result holds without restricting the preferences of the agents and, notably, without imposing

any substitute condition. Second, of course, in our setting with a continuum of agents, indi-

16For instance, coming back to our leading examples, students have different sets of choices of courses across
semesters, and teachers’ preferences on the schools they want to attend today may depend on the school
they have been assigned to yesterday (for example, because they decided to move near their current school).
More generally, preferences over courses or schools in these applications are likely to be persistent across time.
Hence, these applications typically violate the assumptions in Jackson and Sonnenschein (2007).

17 More tangentially related to our work, the literature on online resource allocation and online fair division
studies the problem of allocating indivisible items arriving over time over a fixed time horizon to a set of
agents. The agents’ valuations for the item arriving at a given date are known only after the item arrives and
are unknown until then. One main question is how the offline setting where items are all available upfront
compares with the online setting where items arrive one at a time (e.g., Karp et al., 1990). Other works deal
with how much envy can be generated in the online context and how it conflicts with efficiency (e.g., Benade
et al. (2018), Zeng and Psomas (2020) and Bogomolnaia et al. (2022)). A difficulty in this literature is how
to deal with an uncertain future. One common view is that an adversary selects a distribution of values from
which each agent’s values are drawn. Results vary depending on the class of distributions that the adversary
can select from. In our model, we assume that the distribution of the agents’ preferences is known to the
designer, and our continuum model rules out uncertainty.
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visibilities are ruled out. One may thus naturally wonder if our assumption that there is a

continuum of agents buys us our result. As it turns out, in our economy with no transfers, the

continuum assumption is not essential—as discussed in Section 7—for our result to hold true.

Further, in this section, we provide an example of an economy with a continuum of agents

(and violating our regularity assumption) where linear pricing is with loss of generality.

Outline. We begin with an example to illustrate the main concepts and results. Then, we

introduce a benchmark dynamic allocation problem where each agent is assigned a single object

in every period. Although this simple model does not capture a variety of the environments

described above, it allows for a clear exposition of main ideas. In Section 4, we then proceed

to formally define ordinal mechanisms (i.e., mechanisms where agents only report their ordinal

preferences) and state our main result in the context of the benchmark model. We also provide

the intuition and sketch the proof of the main result. In Section 5, we extend the analysis

to cardinal mechanisms. Section 6 introduces the general framework that encompasses our

benchmark model and can be applied to many other settings including, for instance, the

allocation of bundles of objects. In particular, it subsumes the dynamic course allocation

application discussed in the introduction. Section 7 concludes with discussions of the model

and future research. All proofs are provided in the Appendix.

2 Motivating example

Consider a stylized example of a course allocation problem illustrating our main result. Every

semester a business school offers two courses: Mathematics (M) and Finance (F). In order

to graduate a student must complete two semesters, taking one course per semester. We

denote a course sequence by a two-tuple: (ab), where a ∈ {M,F} is the course taken in the

first semester and b ∈ {M,F} is the course taken in the second semester. For simplicity, we

assume that a student can take any combination of the courses over her curriculum. In total,

there are four course sequences: (MM), (MF), (FM), and (FF).18 We suppose that there is a

unit mass of students with arbitrary ordinal preferences over course sequences. We want to

assign each student a course sequence depending on her preference. An assignment can be

random, meaning that a student can draw a course sequence from a probability distribution.

18For instance, (MM) can be a specialization in Mathematics. The general framework introduced in Section
6 allows bundles of courses at each semester and arbitrary constraints on the acceptable course sequences.
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Moreover, it must depend only on the preferences and not the identities of students; thus, any

two students with the same preference face the same distribution.

Motivated by the examples in the introduction, we begin our investigation with the idea

of a virtual money market. There are multiple ways to design it in a dynamic environment.

For example, one can give each student two separate budgets of artificial currency, one for

every semester. Alternatively, we can give a single budget transferable across semesters. In

addition to budgets, another design dimension is the prices for courses. Should there be a

separate price for each course every semester? Or should there be a price for each course

sequence? Next, we illustrate how these design choices contribute to the efficiency of the

allocation mechanisms and pin down which design works best.

First, consider a mechanism similar to the “Course Match” mechanism in the Wharton

Business School where each student receives, for every semester, a separate budget that is not

transferable across semesters. We allow the budgets to be randomly drawn and independent

across students and semesters. Suppose that each budget is drawn uniformly from the unit

interval. Furthermore, let the (spot) prices of courses be p1M = 0, p1F = 1/3, p2M = 0, p2F =

2/3, where the superscript denotes the semester. When entering the program, each student

receives two budget realizations and then optimally uses each budget to buy a course for the

corresponding semester. In the table below, we provide the resulting (ex-ante) allocations for

student A with ordinal preferences (MF ) ≻ (FM) ≻ (FF ) ≻ (MM) and for student B with

ordinal preferences (FM) ≻ (MF ) ≻ (FF ) ≻ (MM).

Course Sequence Allocation for A Allocation for B
(FF) 0 0
(MF) 3/9 1/9
(FM) 4/9 6/9
(MM) 2/9 2/9

Note that student A obtains (FM) with a positive probability. It happens when her

budget at semester 1 is in [1/3, 1] and her budget at semester 2 is in [0, 2/3). Indeed, in that

case, student A cannot afford her most preferred sequence (MF ) since the price of Finance

at semester 2 is p2F = 2/3 which is above her budget for that semester. But she can afford her

second most preferred sequence (FM). Similarly, student B obtains (MF ) when her budget

at semester 1 is in [0, 1/3) and her budget at semester 2 is in [2/3, 1]. However, if these

students were to trade the probabilities of course sequences (FM) and (MF ), the same mass

of each course would be allocated in every semester, while the students would improve their
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allocations.19 Hence our first mechanism fails to produce an efficient allocation.

Given that there is no uncertainty over the future preferences or courses, one could argue

that our problem is essentially static. Thus, it is natural to treat course sequences as objects

and have a single transferable budget drawn when entering the program. Specifically, suppose

that each budget is uniform on a unit interval and that instead of assigning a price to each

separate course at each semester, we directly price each course sequence in the following way:

pMF = 0, pFM = 1/3, pFF = 2/3, and pMM = 1. Note that unlike in the previous mechanism,

these prices cannot be decomposed as the sums of spot prices across semesters.20 At the start

of the program, each student receives a single budget realization and optimally spends her

budget to buy a course sequence. Allocation 1 below specifies an allocation of a student with

preferences (MM) ≻ (FF ) ≻ (FM) ≻ (MF ). This allocation is not efficient. Indeed, the

Course sequence Allocation 1 Allocation 2
(MM) 0 1/3
(FF) 1/3 2/3
(FM) 1/3 0
(MF) 1/3 0

distribution of Allocation 2 assigns the same mass of each course in every semester, and the

student is better-off with this distribution. Hence, this second mechanism is also inefficient.

Finally, consider a spot mechanism combining a single transferable budget and spot prices.

Fix a uniform budget distribution and spot prices p1M = 0, p1F = 1/3, p2M = 0, and p2F = 2/3.

As an example, we derive an allocation of a student with ordinal preferences (FF ) ≻ (MF ) ≻
(FM) ≻ (MM). If the realized budget is in [1/3, 2/3), then the student will opt for Finance

in the first semester and then spend her budget on Mathematics in the second semester, thus

obtaining course sequence (FM). The probability of such realization is 1/3, and hence, the

probability of (FM) is 1/3. Similarly, we obtain the following probabilities for each course

sequence. It turns out that the allocation rule induced by this mechanism is efficient. Our

main result is that such spot mechanisms actually characterize the entire set of incentive

compatible and efficient allocation rules in the dynamic environment. In particular, any

incentive compatible and efficient allocation rule can be implemented by an appropriate choice

19By “improving”, we mean in a first order stochastic dominance sense: for each k, students have a weakly
higher probably to receive one of their top k course sequences (and for some k, this probability is strictly
higher).

20There is no vector of “spot prices” (p1M , p1F , p
2
M , p2F ) such that pab = p1a + p2b for each (ab) ∈ {M,F}2.

Indeed, if such spot prices existed, we would have pFF + pMM = pFM + pMF , which is not true.
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Course Sequence Probability
(FF) 0
(MF) 1/3
(FM) 1/3
(MM) 1/3

of budget distribution and spot prices, and any budget distribution and spot prices induce an

incentive compatible and efficient allocation rule.

3 The dynamic allocation problem

Consider a dynamic version of the allocation problem introduced by Ashlagi and Shi (2016).21

There is a continuum of agents, a sequence of T dates, and at each date t, a finite set of

object types Ot. Every date each agent must be allocated exactly one object, and the set of

pure allocations is given by O = O1 × · · · × OT . We allow individuals to receive random

allocations, which are elements of the probability simplex

∆ =

{
q ∈ R|O| : q ≥ 0,

∑
o∈O

qo = 1

}
,

where qo ≥ 0 is the probability of pure allocation o ∈ O.

The problem of the social planner is to design a mechanism that allocates objects by taking

into account the preferences of agents. We separately study the two types of mechanisms

corresponding to the elicited preferences being either ordinal or cardinal. We begin with

ordinal mechanisms because all the applications mentioned in the introduction involve ordinal

preferences and the main argument for the proof in the cardinal case heavily relies on the proof

construction in the ordinal case. We extend our results to cardinal preferences in Section 5.22

21This is a special case of the general model defined in Section 6. This model can accommodate the case
where agents are allocated bundles of objects at each date, as well as general constraints on the set of available
bundles.

22In order to implement a random allocation, one must find a corresponding lottery over pure allocations.
The Birkhoff-von Neumann Theorem states that this is possible in the static one-to-one environment, but when
agents are allocated distributions over bundles (or as in our model, over sequences of items), the theorem no
longer holds (e.g., Nguyen et al., 2016). However, in a model with a continuum of agents, this is irrelevant
simply because the probability share of getting a certain allocation could be treated as a share of agents getting
that allocation.
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4 Ordinal mechanisms

In this section, we assume that the social planner elicits only ordinal preferences over O.

Suppose that the preferences are strict and let π denote such an ordinal preference, i.e., a

permutation of O, and Π denote the set of all such preferences. Hence, we allow for arbitrary

complementarities in preferences between objects consumed by an agent on different dates.

For h = 1, . . . , |O|, we let π(h) be the element of O on the h-th place in an agent’s ranking

according to the preference π. Let F be a commonly known probability distribution over the

ordinal preferences, so that F (π) is the mass of agents with preferences π. We say that F has

full support if F (π) > 0 for every π ∈ Π.

A social planner allocates objects available at each date among agents taking into account

their reported ordinal preferences. A mechanism (or an allocation rule) x is a mapping from

the set of ordinal preferences to a set of random allocations, x : Π → ∆. Given mechanism

x, we denote a corresponding random allocation of an agent with preference profile π by

x(π) ∈ ∆.23,24 We say that a mechanism is incentive compatible (IC) if for any π, π′ and

each m = 1, . . . , |O|, we have

m∑
k=1

xπ(k)(π) ≥
m∑
k=1

xπ(k)(π
′). (4.1)

In other words, a mechanism is incentive compatible if the random allocation obtained by

reporting each agent’s true preferences first-order stochastically dominates for this agent each

random allocation that can be obtained by reporting some other preferences.25 Another

requirement that we impose is that it must be impossible for agents to improve their random

allocations in the sense of the first order stochastic dominance by trading their allocation

probabilities. Given date t and object i ∈ Ot, let Sit be the set of pure allocations with object

i at date t, i.e., Sit = {o ∈ O : ot = i}. We say that a mechanism x is ordinally efficient

23Our definition of a mechanism assumes that agents are treated symmetrically, i.e., agents with the same
reported ordinal preferences will receive the same random allocation. In particular, the social planner cannot
discriminate based on the observed characteristics of agents. However, it is easy to enrich our environment
allowing for the observed characteristics of agents. As in Ashlagi and Shi (2016), we would index mechanisms
by these observed “types” and focus on mechanisms that treat agents of the same type symmetrically and
that are ordinally efficient within types. It is straightforward to extend our results to this richer environment.

24Note that with a continuum of agents and a full support distribution, there is formally no difference
between a mechanism and an assignment of random allocations to agents.

25Since the model is ordinal, we use a definition purely based on ordinal preferences. As is well known, this
is equivalent to requiring that each agent maximizes his expected utility by reporting his true preferences π
for all cardinal representations of π.
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(OE) if there is no other mechanism x′ such that:

1. For each date t and object type i ∈ Ot we have∑
π∈Π

∑
o∈Sit

x′o(π)F (π) =
∑
π∈Π

∑
o∈Sit

xo(π)F (π).

2. For each m = 1, . . . , |O| and for each π, we have:
∑m

h=1
x′π(h)(π) ≥

∑m

h=1
xπ(h)(π), with

a strict inequality for some m and π such that F (π) > 0.

The first condition requires that at every date, the mass of allocated objects of every type

is the same in x and x′. The second condition requires that for each agent, the random

allocation associated with x′ first order stochastically dominates for this agent the random

allocation associated with x. We denote the set of all IC and OE mechanisms by Me
IC .

26

Our goal is to characterize the set of IC and OE mechanisms. Incidentally, we will show

that these mechanisms are similar to assignment schemes that are used in practice (e.g., for

course allocation at universities and for the assignment of teachers to schools in France).

4.1 Spot mechanisms and main characterization

The mechanisms used in practice and described in the introduction share a common feature:

they give a budget of artificial currency to each agent early on and allocate the objects “on

the spot”, i.e., they let agents manage their budget over time to buy some available objects at

each date. To capture this feature, we introduce the following definition. Fix a distribution

of budget with a continuous cumulative distribution function G over [0, 1], and for each date

t = 1, ..., T , prices pt = (pti)i∈Ot with p
t
i ≥ 0 for each object i ∈ Ot available at this date.27 A

mechanism x is a spot mechanism if it can be obtained when each agent amakes dynamically

optimal choices in the following procedure:

� Date 1. Agent a independently draws a budget according to distribution G. Let b1a be

the realized budget of agent a. Then a picks an object among the affordable ones, i.e.,

in {i ∈ O1 : p
1
i ≤ b1a}. If a chooses object i ∈ O1, the budget is adjusted to b2a := b1a− p1i ;

26Whereas we do not explicitly introduce object capacities in the model, they appear implicitly in Condition
1 of the definition of OE. Indeed, each allocation rule induces an utilization of capacity. Such allocation is OE
if the utilized capacities cannot be reassigned in a way that makes agents better-off. We provide a detailed
discussion of this in Section 7.

27The requirement that the distribution has a continuous cumulative distribution function is only needed
for the results presented in Section 7 when we relax the full support assumption.

13



� Date t ≥ 2. Agent a picks an object among the affordable ones, i.e., in {i ∈ Ot : p
t
i ≤ bta}.

If a chooses object i ∈ Ot, the budget is adjusted to bt+1
a := bta − pti.

We make two assumptions to guarantee that for each budget realization the procedure is

well defined, inducing a pure allocation of objects: (i) the object prices and the budget

distribution are such that there is an affordable pure allocation for each budget realization,

i.e., mino∈O
∑

t=1,...,T p
t
ot ≤ inf{z : G(z) > 0}; (ii) each agent must choose an object at each

date, i.e., the choices where an agent remains unassigned at some dates are not feasible.

Given the previous points, dynamic optimality implies that the sequence of choices of agent

a corresponds to his most preferred vector o = (ot)t=1,...,T in O such that
∑

t=1,...,T p
t
ot ≤ b1a.

Note that, given our assumption of strict preferences, for each agent a, there is a unique such

o.28 Integrating over all possible realizations of budgets given the distribution G, we obtain a

corresponding allocation rule x. We let Gsm denote the set of spot mechanisms.

Note that the definition captures, in particular, the course allocation procedure used at

CBS except for the fact that we have not allowed situations where bundles of objects are

allocated at each date t. Section 6 presents an extension of our model that captures this

aspect as well. It also resembles the procedure of assigning teachers to schools in France

described in the introduction. For an illustration of spot mechanisms, we refer the reader to

Section 2 with our motivating example (our last mechanism).

The main result of this section is that spot mechanisms characterize the entire set of

incentive compatible and ordinally efficient allocation rules in dynamic environments.

Theorem 1. Suppose that the distribution F has full support. A mechanism x is incentive

compatible and ordinally efficient if and only if it is a spot mechanism, i.e., Me
IC = Gsm.

In Section 6, we introduce a general framework with bundles which subsumes our current

model. There we also present Theorem 3 which subsumes Theorem 1, and whose proof is in

Section B of the Appendix.

We conclude this subsection with a few comments on our main result. As we already

underlined, spot mechanisms are used in real-world markets. However, one can imagine other

mechanisms, and indeed, other types of mechanisms are used in practice. Our result shows

that with a continuum of agents, the restriction to spot mechanisms is without loss as long as

one wants to achieve ordinally efficient and incentive compatible allocations. Methodologically,

28If the agent was to choose sequentially, then a simple backward induction argument together with the
strict preferences assumption would also lead to the same unique chosen allocation.
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this brings some simplification to a designer’s problem having a social objective to optimize.

Indeed, if the objective is ordinally efficient, then one has to optimize over spot mechanisms,

and the question then boils down to the choices of spot prices for items and the distribution

of budgets for agents. In addition, our results shed some light on the lack of efficiency of

alternative assignment schemes, some of which are used in practice. Indeed, our motivating

example in Section 2 illustrates two natural modifications of the spot mechanisms that turn

out to be inefficient, i.e., one where separate budgets are drawn independently for each date

and one where prices of pure allocations cannot be decomposed into spot prices. In particular,

the observation that the latter mechanisms are inefficient turns out to be a core element of

the proof of Theorem 1. The following section presents a sketch of this proof.

4.2 Sketch of the proof

Spot mechanisms are a special case of a larger class of mechanisms. Fix a collection of cutoffs

α := (αo)o∈O ∈ [0, 1]|O| and a distribution G over [0, 1]. An allocation rule x is a Generalized

Lottery-Plus-Cutoff (GLC) mechanism with parameters L := (α,G) if for every π and

h = 1, . . . , |O| we have

xπ(h)(π) = Pr(b < min
m=1,...,h−1

απ(m))− Pr(b < min
m=1,...,h

απ(m))

where b is the random budget drawn according to G.29 Plainly, under a generalized lottery-

plus-cutoffs allocation rule, each agent a independently draws a budget ba from distribution G

on the unit interval and chooses her favorite pure allocation o among those with cutoffs below

her budget, i.e., in the set {o ∈ O : αo ≤ ba}. We denote a GLC mechanism with parameters

L by xL and denote the set of allocation rules that are GLC mechanisms by G.

Spot mechanisms are a subclass of GLC mechanisms with a special “linear” structure of

cutoffs. Formally, a spot mechanism is a GLC mechanism with parameters L = (α,G) such

that there exists a sequence of profiles of non-negative prices p = (pt)t=1,...,T where pt = (pti)i∈Ot

for each t = 1, ..., T satisfying

αo =
T∑
t=1

ptot

for each o = (o1, ..., oT ) ∈ O. We will say that cutoffs satisfying the above condition are

linear. When the cutoffs α in the definition of a GLC mechanism are not linear, unlike spot

29With a convention that minm=1,...,h−1 απ(m) = 1 if h = 1.
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mechanisms, the resulting GLC mechanism cannot be reproduced by allocating objects “on

the spot”. Thus, one can implement a larger set of allocation rules using GLC mechanisms.

However, as shown in our motivating example in Section 2, GLC mechanisms need not be

ordinally efficient.

In a static environment, i.e., when T = 1, Ashlagi and Shi (2016) characterized ordinally

efficient and incentive compatible allocation rules as lottery-plus-cutoff mechanisms. Formally,

using our above terminologies, an allocation rule x is a lottery-plus-cutoffs mechanism if

it is a GLC mechanism with parameters L = (α,G) where G = U[0,1]. Under a lottery-

plus-cutoffs allocation rule, each agent a independently draws a budget ba from the uniform

distribution on the unit interval and chooses her favorite pure allocation o among those in

{o ∈ O : αo ≤ ba}. Let GAS be the set of lottery-plus-cutoffs mechanisms. Ashlagi and Shi

(2016)’s characterization result in the static case states that whenever the distribution F has

full support, an allocation rule x is ordinally efficient and incentive compatible if and only if

it is a lottery-plus-cutoff mechanism.

As long as we are in a non-trivial dynamic environment, i.e., when T ≥ 2, their result fails,

as made clear in the motivating example presented in Section 2. However, when T ≥ 2, we

can still interpret an allocation o ∈ O as “an item” in a static environment and use Ashlagi

and Shi (2016)’s “static” notion of ordinal efficiency on these items. Call this notion the AS

ordinal efficiency. This AS ordinal efficiency in our dynamic setting is not natural. It imposes

that there is no alternative allocation rule x′ satisfying for each o ∈ O∑
π∈Π

x′o(π)F (π) =
∑
π∈Π

xo(π)F (π)

(where we recall that o = (ot)t is a pure allocation, one for each date) together with Condition

2 in our definition of ordinal efficiency. Typically, reallocation of objects within a period is not

allowed.30 For instance, in our motivating example in Section 2, when discussing the second

mechanism, x′ (i.e., Allocation 2) violates the above condition, while it uses the same mass

of each object at each date. Of course, AS ordinal efficiency is weaker than OE, as stated in

the following lemma.

Lemma 1. If an allocation rule x is ordinally efficient, then it is AS-ordinally efficient.

Proof. If x is not AS-ordinally efficient, then one can find another allocation x′ s.t.

30Of course, as mentioned, in a static environment where T = 1, both notions coincide.
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Condition 2 of ordinal efficiency is satisfied, and for each o ∈ O:∑
π∈Π

x′o(π)F (π) =
∑
π∈Π

xo(π)F (π)

Fix an object i ∈ Ot. Clearly, summing the above equalities over all o ∈ Sit gives us condition

1 in the definition of ordinal efficiency. Thus, we conclude that x is not ordinally efficient.

Equipped with Lemma 1, we obtain that in our dynamic environment with T ≥ 2, one

direction of the characterization by Ashlagi and Shi (2016) holds.

Proposition 1. Suppose that the distribution F has full support. An allocation rule is incen-

tive compatible and ordinally efficient only if it is a lottery-plus-cutoffs mechanism. Formally,

Me
IC ⊂ GAS.

As will be explained below, our main result (Theorem 1) can be proved using Proposition

1 together with the following result.

Proposition 2. Suppose that the distribution F has full support. Fix an ordinally efficient

lottery-plus-cutoffs mechanism xL with L = (α, U[0,1]). Then, there exists a linear collection

of cutoffs ᾱ that has the same strict order as α, i.e., (αo < αo′) ⇒ (ᾱo < ᾱo′).

The cornerstone of the proof of Proposition 2 is the following result from the theory of

linear inequalities.31

Lemma 2 (Carver, 1921). For an arbitrary matrix A, Ax < 0 is feasible if and only if y = 0

is the only solution for y ≥ 0 and ATy = 0.

To understand how we apply Lemma 2, consider Example 1 below.

Example 1. There are two dates and two objects. Consider an allocation rule x induced by

a lottery-plus-cutoffs mechanism with strict cutoffs (α11, α12, α21, α22) such that α12 < α21 <

α22 < α11 < 1. Note that these cutoffs are not linear. Indeed, if they were, it would imply

that α11 + α22 = α12 + α21, which is not possible given the above ordering of cutoffs. Further,

these cutoffs are non-linear in a stronger sense. In the sequel, say that (α11, α12, α21, α22) has

a strict linear order if there is a linear collection of cutoffs with the same strict ordering. One

31See Chapter 7 of Schrijver (1986).
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Figure 1: Improving mass transfers for an agent with ordinal preferences (12) ≺ (21) ≺ (22) ≺
(11).

can show that (α11, α12, α21, α22) does not have a strict linear order.32 Below, we use Lemma

2 to show how the lack of strict linear order implies that x is not ordinally efficient.

We begin by arguing that the existence of a strict linear order for the vector of cutoffs

(α11, α12, α21, α22) in our example is equivalent to a certain system of linear inequalities being

feasible. First, if vector (α11, α12, α21, α22) has a strict linear order, then by definition, there

is a vector of non-negative prices p = (p11, p
1
2, p

2
1, p

2
2)
T such that αij > αi′j′ implies p1i + p2j >

p1i′ + p2j′. Hence, if our cutoffs have a strict linear order, then the following system of strict

inequalities is feasible:

p11 + p21 > p12 + p22,

p12 + p22 > p12 + p21,

p12 + p21 > p11 + p22.

32To see that there is no linear collection of cutoffs ᾱ with the same strict ordering as (α11, α12, α21, α22),
proceed by contradiction and assume there is such a collection ᾱ. Then, denoting p for the associated sequence
of profiles of prices, we would have that (1) ᾱ12 < ᾱ22 implies p11 < p12 while (2) ᾱ21 < ᾱ11 would imply p12 < p11,
a contradiction.
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We can rewrite the above system in matrix form as Ap < 0, where

A =

−1 1 −1 1

0 0 1 −1

1 −1 −1 1

 .

Second, if our cutoffs (α11, α12, α21, α22) have no strict linear order, then we show that

Ap < 0 is not feasible. Indeed, if there is a vector p such that Ap < 0, then one could

define new linear cutoffs α̃ by setting α̃ij = p1i + p2j for all i and j.33 By construction of A,

the new cutoffs are in the same order as (α11, α12, α21, α22) which is a contradiction with the

assumption that cutoffs have no strict linear order. Therefore the existence of a strict linear

order for the cutoffs is indeed equivalent to the feasibility of Ap < 0.

Given that our cutoffs have no strict linear order, Ap < 0 is not feasible. Hence, Lemma

2 guarantees that there exists y ≥ 0, y ̸= 0 such that ATy = 0. In particular, for any ε > 0,

y = (ε, 2ε, ε) is such a solution of ATy = 0. It turns out that we can use y to specify a

sequence of bilateral mass transfers that can improve upon a random allocation q for some

agents while keeping the mass of allocated objects of every type constant in every date. In

particular, let y1 = ε be the probability mass to be transferred from (22) to (11), y2 = 2ε be

the probability mass to be transferred from (21) to (22), and y3 = ε be the probability mass

to be transferred from (12) to (21). Then, ATy = 0 implies that if we were to start at any

random allocation and then could implement these three transfers, the mass of each object in

each date must remain the same. For example, consider object 1 at date 1. When we transfer

ε from (22) to (11), the mass of the object increases by ε. Its mass does not change when

we transfer 2ε from (21) to (22), and its mass decreases by ε when we transfer ε from (12)

to (21). So, in total, its mass has not changed after implementing the transfers. Formally,

the change of the mass of object i at date t is captured by the negative of the dot product

of the corresponding row of AT and y. Now, to show that allocation rule x is not ordinally

efficient, consider an agent whose ordinal preferences are the same as the order of cutoffs, i.e.,

(12) ≺ (21) ≺ (22) ≺ (11). By the full support assumption, there is a positive mass of such

agents. Because the cutoffs are strict, such agent is assigned a strictly positive probability of

33Note that the vector p is not guaranteed to be non-negative while this is required by our definition of spot
mechanism. Moreover, the cutoffs induced by p may not belong to the unit interval as also required (if these
prices are associated with cutoffs of a GLC mechanism). However, as shown in Lemma 4 of the Appendix, a
simple normalization of the vector p (where we add a sufficiently large number to prices to ensure positivity
and then multiply prices by a sufficiently small number to ensure that these lie in the unit interval) ensures
that both properties hold.
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each pure allocation. Hence, for sufficiently small ε > 0, we can implement the above sequence

of bilateral mass transfers. Moreover, each bilateral transfer moves the probability from a lower

to a higher ranked pure allocation according to this agent’s preferences (See Figure 1 for an

illustration). Hence, after implementing transfers y, she obtains a dominating (in first-order

stochastic dominance) random assignment while keeping the mass of each object assigned in

each date constant. Therefore, the random allocation x is not ordinally efficient.

The above example illustrates why cutoffs with a strict linear order are needed for a

lottery-plus-cutoff mechanism to be ordinally efficient as stated in Proposition 2.34 Then, we

can use Proposition 1 to deduce that if x ∈ Me
IC , then it is induced by a lottery-plus-cutoffs

mechanism, i.e., there exists a collection of cutoffs α such that x = xL with L = (α, U[0,1]).

From Proposition 2, we can deduce that there exists a collection of prices p = (pt)t=1,...,T ,

where pt = (pti)i∈Ot for each t = 1, ..., T and where the collection of linear cutoffs ᾱ induced

by p has the same strict order as the collection α, i.e., (αo < αo′) ⇒ (ᾱo < ᾱo′).35

However, the GLC mechanism with parameters (ᾱ, U[0,1]) does not generate the same

allocation rule as x. This is because the linear collection of cutoffs ᾱ has the same strict

ordering as α, but need not have the same values. But using a properly defined distribution

G, we can show that the GLC mechanism L′ := (ᾱ, G) is s.t. xL
′
= x so that the “only if part”

of Theorem 1 obtains. While we believe this part of the theorem is surprising, the “if part”

of Theorem 1 is a bit more expected, and its proof, which also uses Lemma 2, is relegated to

Section B of the Appendix.

Remark 1 (Linear cutoffs and uniform budget distribution.). One cannot use a uniform

distribution together with linear cutoffs to generate all the incentive compatible and ordinally

efficient rules (contrary to the static case studied in Ashlagi and Shi, 2016). To illustrate this,

Example 5 in Appendix A provides an ordinally efficient allocation that cannot be implemented

by a lottery-plus-cutoffs mechanism (i.e., with a uniform distribution over budgets) with linear

cutoffs.

34The argument presented in Example 1 only works with a collection α of strict cutoffs where (o ̸= o′) ⇒
(αo ̸= αo′). It is easy to construct examples with an ordinally efficient random allocation that can only be
implemented by a lottery-plus-cutoffs mechanism with non-strict cutoffs. In that case, one has to properly
build the resulting probability masses to be transferred, and an important part of the proof is devoted to this
construction.

35Cutoffs ᾱ induced by p means that ᾱo =
T∑

t=1
ptot for each o = (o1, ..., oT ) ∈ O.
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5 Cardinal mechanisms

We have studied a dynamic allocation problem where a social planner can only elicit the

ordinal preferences of agents. In this section, we extend the analysis to the case where the

planner can elicit a complete cardinal preference profile. Our results here are twofold. First, we

introduce a new cardinal allocation mechanism tailored to the dynamic environment. Second,

we use this mechanism to prove the main result resembling the spot market characterization

in the ordinal case.

Consider the dynamic allocation problem from Section 3. In contrast to the previous

section, here we let agents have cardinal preferences over a set of pure allocationsO represented

by utility vector u, with each coordinate denoting the utility from consuming a corresponding

pure allocation. We let U denote the set of all utility vectors inducing strict ordinal preferences

and assume that these utility vectors are distributed according to a continuous probability

measure F . For a measurable subset A ⊂ U , we let F (A) denote the mass of agents with

utility vectors in A.

We follow Ashlagi and Shi (2016) and impose a full relative support assumption on the

distribution F . In order to state this condition, let D := {u ∈ U : u · 1 = 0}. One could

understand this regularity condition as imposing that, a priori, an agent’s relative preference

could, with positive probability, take any direction in D.

In order to formally define our regularity assumption, let us define D̃ := {u ∈ D : ∥u∥ =

1}, where ∥·∥ is the Euclidean norm. Sets U,D and D̃ are all endowed with standard topolo-

gies.36 Let C be the collection of cones in D.37 We endow C with the following topology:

C ′ ⊂ C is open if C ′ ∩ D̃ is open in D̃. Following Ashlagi and Shi (2016), we say that distri-

bution F has full relative support if for any open cone C in C, F (Proj−1
D (C)) > 0, where

ProjD(·) stands for the projection of U into D.

Remark 2. The full relative support assumption is stronger than the full support assumption

introduced in the ordinal setting. Again, at an intuitive level, it ensures that F puts positive

mass on any direction in D. For instance, this assumption implies that, for a given pure

allocation o, the vector of utilities where agents assign a high (predetermined) level of relative

utility to o must have a positive mass.38 The interpretation here is that, each pure allocation

36R|O| is endowed with the topology induced by the Euclidean norm, and D is endowed with the relative
topology, i.e., a set is open in D if it is the intersection of an open set in R|O| with D. We endow D̃ with the
relative topology, i.e., a set is open in D̃ if it is the intersection of an open set in D with D̃.

37Recall that a cone is a set C such that for all λ > 0, x ∈ C =⇒ λx ∈ C.
38To make this observation precise, let us fix any c > 1. Given a vector of utilities u, let us denote
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o can, with positive probability, be a “superstar” i.e., much better than any other pure allo-

cation. This assumption is satisfied in standard multinomial discrete choice models where the

distribution of utilities has unbounded support (e.g., the standard logit, the mixed logit and the

probit models) but it may be violated when the distribution over utilities has a bounded support

(e.g., Lee (2016) or Che and Tercieux (2019)).

An allocation rule x is a mapping from utility vectors to random allocations, x : U → ∆.

An allocation rule x is incentive compatible if for each u ∈ U , reporting the true preferences

maximizes the expected utility:

u ∈ argmax
u′∈U

u · x(u′).

An allocation rule x is Pareto efficient if there is no other allocation rule x′ such that:

1. For each date t and object type i ∈ Ot we have∫
U

∑
o∈Sit

x′o(u)dF =

∫
U

∑
o∈Sit

xo(u)dF

2. For each u ∈ U , we have u ·x′(u) ≥ u ·x(u) and there is a set A ⊂ U such that F (A) > 0

and the inequality is strict for each u ∈ A

Condition 1 is the analogue of Condition 1 in the definition of ordinal efficiency: the mass of

allocated objects at each date remains the same. Condition 2 states that x′ delivers a weakly

higher expected utility to every agent and a strictly higher one for a positive mass of agents.

In what follows, we introduce a new cardinal mechanism that can be decentralized through a

sequence of spot markets, and we use it to characterize the set of incentive compatible and

Pareto efficient allocation rules.

A GLC mechanism is an ordinal mechanism and so it is not flexible enough to differentiate

cardinal preferences: if ordinal preferences of two agents coincide, then they receive the same

u′ := (uo −
∑

uo

|O| )o the normalized vector of utilities. Note that given the values of utilities for |O| − 1 items,

the last value is pinned down by the normalization. Without loss of generality, let us assume that this last
item is item |O|. The full relative support assumption implies that the measure of the set of utilities u for
which, once normalized, |u′

o| > c |u′
õ| for all õ ̸= o, |O| is positive. To see why this is true, consider the cone

Co = {u ∈ D : |uo| > c |uõ| for all õ ̸= o, |O|}. Co is an open cone. Indeed, O = {u ∈ R|O| : |uo| > c |uõ| for
all õ ̸= o, |O|} is open in R|O|. Hence, O ∩ D ∩ D̃ = Co ∩ D̃ is open in D̃—which implies that Co is an
open cone in C. Thus, F (Proj−1

D (Co)) > 0. This corresponds exactly to the set of utilities u for which, once
normalized, |u′

o| > c |u′
õ| for all õ ̸= o, |O|.
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allocation. Therefore, we modify a GLC mechanism in order to obtain a mechanism that

is responsive to the cardinal preferences of agents. Whereas a GLC mechanism has a single

distribution from which each agent independently draws a budget of artificial currency, we now

allow agents to choose from a menu of such distributions. We begin with a collection of cutoffs

α := (αo)o∈O ∈ [0, 1]|O| and a collection of distributions G := (Gj)j∈J over [0, 1].39 Then, a

random allocation can be constructed by drawing from an agent’s ex ante favourite distribution

and then choosing the agent’s most preferred affordable allocation given her budget realization.

For an agent with utility vector u ∈ U , let xG(u) be the expected utility-maximizing random

allocation induced by budget distribution G, that is,

xGu(h)(u) = Ĝ( min
m=1,...,h−1

αu(m))− Ĝ( min
m=1,...,h

αu(m))

for each h = 1, . . . , |O|, where u(h) ∈ O is a an allocation on h-th place in a preference ranking

according to utility vector u; Ĝ(z) is a probability that a random budget drawn according to

a distribution with c.d.f. G is strictly below z. An allocation rule x is a Menu of Random

Budgets (MRB) mechanism with parameters L := (α,G) if for every utility vector u,

there is distribution Gj(u) ∈ G such that x(u) = xGj(u)(u), and

Gj(u) ∈ argmax
G∈G

xG(u) · u.

Note that agents with identical ordinal but different cardinal preferences can choose different

budget distributions and hence receive different random allocations.

Similarly to the case of a GLC mechanism, we can introduce a spot version of a MRB

mechanism. Fix a sequence of profiles of non-negative prices p = (pt)t=1,...,T , where p
t =

(pti)i∈Ot for each t = 1, . . . , T and a collection of distributions G := (Gj)j∈J over [0, 1]. A

mechanism x is a spot MRB mechanism if it can be obtained when each agent a makes

dynamically optimal choices in the following procedure:

� Date 1. Each agent chooses a distribution from collection G and independently draws

a budget from it. Let b1a be the realized budget of each agent a. Each agent must pick

an object among the feasible ones, i.e., in {i ∈ O1 : p
1
i ≤ b1a}. If a chooses object i ∈ O1,

the budget is adjusted to b2a := b1a − p1i ;

� Date t ≥ 2. Each agent picks an object among the feasible ones, i.e., in {i ∈ Ot : p
t
i ≤ bta}.

39In this section, we allow distributions to be discrete to simplify the exposition.
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If agent a chooses object i ∈ Ot, the budget is adjusted to bt+1
a := bta − pti.

As in Section 4 we make two assumptions: (i) the object prices and the budget distributions

in G are such that there is an affordable pure allocation for each budget realization, i.e.,

mino∈O
∑

t=1,...,T p
t
ot ≤ inf{z : G(z) > 0} for each G ∈ G; (ii) each agent must choose an object

at each date. Under these assumptions, spot mechanisms always induce a random allocation

(each agent is assigned an object in each date). Clearly, spot MRB mechanisms constitute

MRB mechanisms with linear cutoffs. Formally, L := (α,G) is a spot MRB mechanism if

there exists a sequence of non-negative profiles of prices p = (pt)t=1,...,T , where p
t = (pti)i∈Ot

for each t satisfying αo =
∑T

t=1 p
t
ot for each o ∈ O.

The possibility of the spot market implementation of a MRB mechanism is in contrast

to the standard CEEI approach adopted in Ashlagi and Shi (2016). An allocation rule x

is a Competitive Equilibrium with Equal Income (CEEI) with prices α ∈]0,∞]|O| if

for any u, x(u) ∈ arg max
q∈∆

{u · q : α · q ≤ 1}.40 Thus, given a profile of prices, agents use

a budget of one unit of artificial currency to buy probability shares of pure allocations. A

CEEI approach does not fit our dynamic framework because each agent must choose the entire

dynamic allocation at the very first date. Nevertheless, it turns out that there is a connection

between the two mechanisms. Each CEEI can be implemented as a MRB mechanism, as the

following static example illustrates.

Example 2. Take a static model with T = 1, and consider an economy where each agent

is endowed with a single unit of artificial currency and there are three objects with prices

of probability shares α̂1 = 0, α̂2 = 0.5, and α̂3 = 2. In the CEEI, an agent chooses an

allocation in the probability simplex that maximizes her expected utility subject to a budget

constraint. We shall construct a MRB mechanism that induces the same allocation rule as

the CEEI above. First, let a collection of cutoffs for the MRB mechanism be given by the

above prices, which are normalized to lie inside the unit interval by dividing each price by the

highest price, i.e., α1 = 0, α2 = 0.25, α3 = 1. Second, for each random allocation that is a

part of the CEEI, we associate a distribution of a random budget. In particular, for such an

allocation x, let the corresponding distribution Gx assign probability xi to αi, for i = 1, 2, 3.

For instance, in each panel of Figure 2, the four allocations (1/2, 0, 1/2), (1, 0, 0), (0, 1, 0) and

(0, 2/3, 1/3), corresponding to the vertices of the shaded budget set, give rise to four budget

40We refer to the word “prices” in two different ways. The first refers to prices of each object at each date,
pti above, when defining a spot MRB mechanism. The second, αo above, refers to the prices associated to each
pure allocation in the definition of a CEEI.
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(1,0,0) (0,1,0)

(0,0,1)

(1/2,0,1/2)

(0,2/3,1/3)

(a) Budget distribution (1,0,0).

(1,0,0) (0,1,0)

(0,0,1)

(1/2,0,1/2)

(0,2/3,1/3)

(b) Budget distribution (0,1,0).

(1,0,0) (0,1,0)

(0,0,1)

(1/2,0,1/2)

(1/2,1/2,0)

(0,2/3,1/3)

(c) Budget distribution (1/2,0,1/2).

(1,0,0) (0,1,0)

(0,0,1)

(1/2,0,1/2)

(0,2/3,1/3)(2/3,0,1/3)

(d) Budget distribution (0,2/3,1/3)

Figure 2: Illustration of budget distributions in Example 2
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distributions, (1/2, 0, 1/2), (1, 0, 0), (0, 1, 0), and (0, 2/3, 1/3), correspondingly, where the first

number in each of the latter 3-tuples is the probability that the budget is equal to α1, the

second—to α2, and the third—to α3. Consider the random allocations that can be obtained by

an agent who draws a random budget from each of these distributions and optimally chooses

his pure allocation given budget realization. We illustrate them by the black dots in Figure 2.

For instance, an agent who chooses the random budget distribution (0, 1, 0) gets 0.25 units of

artificial currency with probability 1. In that case, he can buy either object 1 or 2 under the

resulting MRB. Hence, depending on his preferences, the agent will choose one of these two

pure allocations represented by the two bottom black allocations in Figure 2b. Similarly, an

agent who chooses the budget distribution (1/2, 0, 1/2) obtains a null budget with probability

1/2. In that case, he can only buy object 1 under the resulting MRB. With probability 1/2, he

receives a budget of 1 and can buy any of the available objects. The random allocation induced

by his optimal choices (integrating over all possible realizations of the budget) correspond to

one of the three black dots in Figure 2c. For instance, if the agent prefers 2 over 1 over

3, his optimal choices will generate random allocation (1/2, 1/2, 0). Notice that the random

allocations that can be generated by the choice of a random budget distribution all lie inside

the CEEI budget set represented by the grey region in Figure 2. Hence, if an agent receives

an allocation in the CEEI, then this agent weakly prefers the random budget distribution

generated by this allocation to any distribution generated by another allocation and obtains

this allocation in the MRB mechanisms with the above menu of budgets and prices. Hence,

this MRB mechanism induces the same allocation rule as the CEEI.

The following result generalizes the observation in the example.

Proposition 3. If x is CEEI, then x is a MRB mechanism.

Proof. Suppose x is a CEEI with prices α̂ = (α̂o)o∈O. Let

αo :=
α̂o

maxo{α̂o : α̂o ̸= ∞}+ 1

for each o ∈ O such that α̂o ̸= ∞, and α̂o = 1 for each o ∈ O such that α̂o = ∞41; and let

α = (αo)o∈O. For each u ∈ U and x(u) ∈ ∆, let Gx(u) be a discrete distribution that assigns

probability xo(u) to the budget value αo for each o, and let G = (Gx(u))u∈U be a collection of

such distributions. We show that x is a MRB mechanism with L = (α,G).
41Note that a probability share of each pure allocation with infinite price is zero for all agents
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Fix a discrete distribution of a random budget G. By choosing some affordable allocation

at each realization of a random budget, we induce some ex ante distribution over allocations.

Define a feasible choice rule to be a function that chooses an affordable pure allocation for each

realization of a random budget. Formally, a feasible choice rule is a function ψ : [0, 1] → O

such that αψ(z) ≤ z for any z ∈ [0, 1]. Then, given distribution G, let the set of random

allocations that can be induced by some feasible choice rule be:

B(G) = {y ∈ ∆ : there exists feasible ψ such that yo =
∑

z:ψ(z)=o

PG(z) for each o ∈ O},

where PG(z) is the probability of realization z given G.

Now, if an agent with utility u optimally chooses an affordable bundle for each realization

of the random budget Gx(u), then by construction of Gx(u), the induced ex ante distribution is

x(u). Hence, x(u) ∈ B(Gx(u)). Next, we show that if y ∈ B(Gx(u)), then random allocation

y also belongs to the original budget set in the CEEI mechanism with the collection of prices

α̂, i.e.,
∑

o yoα̂o ≤ 1. Therefore, when choosing from a collection of random budgets G, it is
optimal for an agent with utility u to choose distribution Gx(u).

Suppose y ∈ B(Gx(u)), and let ψ be a feasible choice rule that induces y. We have∑
o

α̂oyo =
∑
o

α̂o

∑
o′:ψ(αo′ )=o

xo′(u),

=
∑
o

∑
o′:ψ(αo′ )=o

α̂ψ(αo′ )
xo′(u).

Note the above sum consists of terms α̂ψ(αo′ )
xo′(u), and each term enters the sum only once.

Hence we can rewrite it as the sum of all these terms:∑
o

∑
o′:ψ(αo′ )=o

α̂ψ(αo′ )
xo′(u) =

∑
o′

α̂ψ(αo′ )
xo′(u),

≤
∑
o′

α̂o′xo′(u),

≤ 1.

Here, the first inequality follows from ψ being a feasible choice rule, i.e., αψ(αo′ )
≤ αo′ , and the

fact that αo′ is just a scaling of α̂o′ . The final inequality follows from x(u) being CEEI.
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Hence, if the prices in CEEI are linear, then from the above argument it follows that

CEEI can be decentralized using a spot MRB mechanism. Our main result in this section is

a cardinal version of Theorem 1.

Theorem 2. Suppose that distribution F is continuous and has full relative support. A mecha-

nism x is incentive compatible and Pareto efficient if and only if it is a spot MRB mechanism.

In the next section we generalize the cardinal model to the environment with bundles.

In this general environment, Theorem 2 is subsumed by Theorem 4 whose proof is given in

Section 1 of the Online Appendix.

6 The general framework

Throughout the analysis, we have focused on a simple dynamic environment where agents are

assigned a single object at every date. Although this model describes applications, such as

the assignment of teachers to jobs and students to dormitories, it does not address all the

situations where bundles of objects are allocated. For instance, in our motivating example of

course allocation, students can typically take some number of electives per semester. Moreover,

some courses can be pre- or anti-requisites to other courses, and students may be required to

earn a certain number of credits over the years to graduate. In order to capture this as well

as a variety of other settings, we generalize our benchmark model and state the two theorems

that subsume Theorem 1 and 2.

The general model. Fix a finite set of generalized object types O. Each agent must be

allocated a feasible (nonempty) bundle of objects. We denote the set of all feasible bundles

by B ⊂ 2O and write i ∈ b to denote that bundle b ∈ B contains object type i ∈ O. We

impose two restrictions on B. First, any two bundles in B must have the same size. Second,

each bundle in B contains at most one object of each type. A set of random allocations is

∆ =

{
q ∈ R|B| : q ≥ 0,

∑
b∈B

qb = 1

}
.

Ordinal preferences. Agents have ordinal strict preferences over B. As before, π denotes

such a preference, and Π is the set of all preferences, while π(h) ∈ B is the bundle in h-th

place in the ranking according to π ∈ Π. Let F be a probability distribution over ordinal
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preferences of agents with full support. As before, F (π) will denote the mass of agents with

preferences π. An allocation rule x is a mapping from a set of ordinal preferences to a set

of random allocations, i.e., x : Π → ∆. Definitions of incentive compatibility and ordinal

efficiency are similarly adapted to the bundle framework. An allocation rule x is incentive

compatible if for any π, π′ ∈ Π and each m = 1, . . . , |B|, we have

m∑
k=1

xπ(k)(π) ≥
m∑
k=1

xπ(k)(π
′).

An allocation rule x is ordinally efficient if there is no other allocation rule x′ such that:

1. For each object type i ∈ O, we have∑
π∈Π

∑
b:i∈b

x′b(π)F (π) =
∑
π∈Π

∑
b:i∈b

xb(π)F (π).

2. For each m = 1, . . . , |B| and each π ∈ Π, we have:
∑m

h=1
x′π(h)(π) ≥

∑m

h=1
xπ(h)(π), with

a strict inequality for some m and π such that F (π) > 0.

We denote the set of incentive compatible and ordinally efficient allocation rules by Me
IC .

The above model encompasses our benchmark dynamic allocation model with ordinal

preferences. Recall that the dynamic model begins with a finite set of object types Ot for each

date t. Without loss of generality, we can let Ot’s be disjoint sets. The set of pure allocations

was a product O = O1 × · · · × OT . Now, define the corresponding set of generalized object

types to be O = O1 ∪ · · · ∪ OT . Moreover, a bundle is feasible if and only if it contains

exactly one object from each Ot. Then, the set of pure allocations O corresponds to the set

of admissible bundles.

Example 3. The generalization allows us to include into our benchmark model the possibility

of allocating bundles and arbitrarily restricting feasible allocations. As an example, consider a

course allocation problem with two semesters and three courses a, b, and c. Suppose that each

course is available in both semesters but that course a is a prerequisite for course c and the

same course cannot be taken twice. Moreover, to graduate, each student is required to take two

courses. We can model this situation by letting O = {a1, a2, b1, b2, c1, c2}, where a subscript

denotes a semester at which a course is taken. The corresponding set of feasible bundles is

B = {(a1, b1), (a1, b2), (a2, b2), (b1, a2), (a1, c2)}.
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As before, our goal is to characterize all incentive compatible and ordinally efficient al-

location rules. To do so, we now introduce the appropriately modified version of a GLC

mechanism. Fix a collection of cutoffs α := (αb)b∈B ∈ [0, 1]|B| and a distribution G over [0, 1].

An allocation rule x is a Generalized Lottery-Plus-Cutoff (GLC) mechanism with

parameters L := (α,G) if for every π and h = 1, . . . , |B|

xπ(h)(π) = Pr(b < min
m=1,...,h−1

απ(m))− Pr(b < min
m=1,...,h

απ(m))

where b is a random budget drawn according to G. We denote a GLC mechanism with

parameters L = (α,G) by xL. Cutoffs α are linear if there exist object prices p = (pi)i∈O ∈
R|O| such that

αb =
∑
i∈b

pi,

for each b ∈ B. Let GL be the set of all GLC mechanisms with linear cutoffs. Now, we are

ready to state our main result.

Theorem 3. Suppose that the distribution F has full support. An allocation rule is incentive

compatible and ordinally efficient if and only if it is a GLC mechanism with linear cutoffs,

i.e., Me
IC = GL.

As we have already seen, our dynamic framework is embedded into the current one so

that Theorem 1 is a corollary of Theorem 3. The sketch of the proof is similar to the one we

presented in Section 4.2. The actual proof is provided in Section B of the Appendix.

Cardinal preferences. The generalization for cardinal preferences is the mirror analogue

of the previous section. Agents have cardinal preferences over B, and we let u be the utility

vector where each coordinate gives the utility for a bundle in B. The distribution F over

cardinal utility vectors can also be easily generalized, and the full relative support definition

does not change from the one given in Section 5. An allocation rule x now maps the set U

of cardinal utility vectors to ∆, the set of random allocations. The definitions of incentive

compatibility and Pareto efficiency can easily be adapted from Section 5. We can similarly

modify the definition of a MRB mechanism with parameters L := (α,G) to fit in this new

framework where the collection of cutoffs α is defined for the bundles in B. Cutoffs α are

linear if αb =
∑
i∈b
pi for each b ∈ B and some vector of non-negative prices p = (pti)i∈O. We

now state the generalization of Theorem 2 to the setting with bundles:
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Theorem 4. Suppose that the distribution F is continuous and has full relative support. A

mechanism x is incentive compatible and Pareto efficient if and only if it is a MRB mechanism

with linear cutoffs.

The proof is relegated to Section 1 of the Online Appendix.

7 Discussions

Capacity constraints. We do not introduce capacities because in many contexts, including

our main application of course allocation, these are endogenous choice variables rather than

hard constraints. Indeed, for each course a university can set a target capacity or a desired

maximum enrollment, but can potentially enroll more students (see Budish et al. (2017)). This

approach provides a greater flexibility by allowing the designer to set up an optimization prob-

lem where capacity utilization is endogenous. As we discuss in the next subsection “Designer’s

problem”, our main result helps to substantially simplify such optimization problems.

A recent literature in school choice also adopts this approach. For example, Ashlagi and Shi

(2016) emphasize the cost of public school busing when determining the allocation of students.

The budget limit imposes complex constraints on the schools, e.g., with the enrollment of

students coming from areas that require busing, capacity constraints are tighter. In this

context, the exact capacity constraint is also endogenous to the matching: the administration

may be willing to expand enrollment (of students living relatively far from the school) at

a financial cost (public busing cost). For daycare assignment, Kamada and Kojima (2023)

present a similar “budget constraint”: by law, the number of carers is higher for younger

children than for older ones, thus a daycare capacity depends on the distribution of ages of

the accepted children.

Nonetheless, hard capacity constraints can still be included in our model without changing

the main insight that OE and IC mechanisms are spot mechanisms. Consider our generalized

model of Section 6. For each generalized object i ∈ O, let ci be the capacity of object i. We

let c = (ci)i be the vector of capacities. We assume that there is a null object ∅ ∈ O that

has infinite capacity (c∅ = ∞), one can interpret it as “staying unassigned”. We say that an

allocation x is feasible for capacities c if for each object type i ∈ O:∑
π∈Π

∑
b:i∈b

xb(π)F (π) ≤ ci.
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A feasible allocation x is ordinally efficient for capacities c (OEc) if there exists no

other feasible allocation x′ s.t. for eachm = 1, . . . , |B| and for each π, we have:
∑m

h=1
x′π(h)(π) ≥∑m

h=1
xπ(h)(π), with a strict inequality for some m and π such that F (π) > 0.42 It is immediate

to see that, for a feasible allocation, OEc implies OE, thus Theorem 3 implies the following.43

Corollary 1. Assume that F is full support. If x is a feasible, IC and OEc mechanism then

it is a spot mechanism.

Designer’s problem. Above, we argued that, in many real-life problems, capacities are

part of the choice variables of the designer. Hence, in these contexts, it is natural to think of

the designer’s problem as an optimization problem where capacity utilization is endogenous.

Here we provide an example of the type of optimization/mechanism design problem we have

in mind. As we will explain our main result in this paper may be useful to simplify such

optimization problems. While this is illustrated through a specific objective of the designer,

it will be clear that the argument applies beyond this specific objective.44

For a mechanism x, define the capacity utilization by qi,t :=
∑

π∈Π
∑

o∈Sit
xo(π)F (π).

Based on the above discussion, let Ci,t(qi,t) denote the cost incurred by the designer for a

capacity utilization of qi,t of item i at date t, and the total cost simply adds up these costs

across items and dates. For the sake of the example, consider the following problem:

min
x

∑
π∈Π

|B|∑
k=1

kxπ(k)(π)F (π) +
∑
i,t

Ci,t(qi,t)

subject to

(IC) and (OE).

That is the designer cares about agents’ welfare (measured by the average ranks of agents)

and capacity utilization cost. The problem has an exponential number of variables and con-

straints. Specifically, assuming there are n available objects at each date, for each of the (nT )!

42This definition is similar to previous definition of Ordinal Efficiency except that Condition 1 is now replaced
by feasibility.

43Using a technique similar to the one of the proof of Theorem 3, one can show that the prices of each good
under the spot mechanism can be set to zero for the goods that are underutilized, i.e. which total allocated
mass is strictly less than their capacity.

44For instance, we could have handled objectives similar to those in Ashlagi and Shi (2016) where the
social planner’s maximizes a linear combination of utilitarian welfare and max-min welfare subject to other
constraints (such as respecting a target budget associated with capacity utilization / public school busing).
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ordinal preference profiles, we need to specify nT probabilities, hence nT × (nT )! variables,

and O((nT )2) complex constraints.

By our main result, the above optimization problem is equivalent to a simpler uncon-

strained program of optimizing over the spot mechanisms. In this problem, there are only

Tn+nT variables corresponding to spot prices and budget distribution.45 Thus, our character-

ization significantly reduces the number of variables and constraints. While the computational

analysis of the resulting problem is beyond the scope of our paper, our result may be seen as

a useful first step in this direction.46

Full support. Our results rely on a full support assumption for the distribution of prefer-

ences. Here we present an example showing that the characterization for ordinal preferences

may not hold if one relaxes the assumption. Furthermore we provide a natural refinement of

OE that allows us to dispense with the assumption altogether.

Example 4. Assume that there are two dates and two objects to be allocated at every date,

O1 = O2 = {1, 2}. The set of pure allocations is O = {(11), (12), (21), (22)}. Define the

following ordinal preference profiles;

� π1(11) < π1(12) < π1(21) < π1(22)

� π2(12) < π2(21) < π2(11) < π2(22)

� π3(21) < π3(12) < π3(11) < π3(22)

� π4(22) < π4(12) < π4(21) < π4(11)

Suppose that F (πk) > 0 for k = 1, 2, 3, 4 and F (π) = 0 for π ∈ Π\{π1, π2, π3, π4}, so that the

full support assumption is violated. Define the cutoffs for each pure allocation as α11 = α22 = 0

and α12 = α21 = 1. Clearly, the cutoffs are not linear as α11 + α22 ̸= α12 + α21. With

budgets drawn uniformly in [0, 1], a lottery-plus-cutoff mechanism x would generate the random

allocations: x(11)(π1) = x(11)(π2) = x(11)(π3) = 1 and x(22)(π4) = 1. As the allocation rule

x is a lottery-plus-cutoffs mechanism, it is IC. It is easily checked that the random allocation

45The choice of budget distribution G can be reduced to a choice of nT mass points. Indeed, sort the nT

cutoffs in ascending order. Then each G that puts the same probability mass in between each consecutive
cutoff induces the same allocation.

46To capture the setting where capacities are hard constraints one can simply let Ci,t be infinite when qi,t
is above a certain capacity constraint and 0 otherwise. Hence, our characterization result can be used even in
a context where there are hard capacity constraints.
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is also OE if only agents π1, π2, π3, π4 are present in the market. Indeed, both π1 and π4

surely obtain their top choices, and agents π2 and π3 both obtain (11) so that improving mass

transfers for either π2 or π3 would “hurt” π4. Hence, x is an IC and OE mechanism, but

it cannot be implemented by a GLC mechanism with linear cutoffs and, hence, with a spot

mechanism.47 Finally, note that if one reverses (11) and (22) in ranking π2—call this new

preference ranking π0—then the resulting allocation would not be OE. Hence, if F assigns

positive probability to π0 (in addition to πk for k = 1, 2, 3, 4), the issue is resolved.48

However, spot mechanisms can be seen as “robust” mechanisms once we relax the full

support assumption. To see this, we refine OE and IC to get a full characterization without

the full support assumption.

We say x is robustly OE and IC at F if for all sequences49 Fn → F , there exists a

sequence {xn} such that xn → x and xn is OE and IC at Fn for each n.50,51 To motivate the

definition, consider the perspective of an analyst who does not know the precise distribution

of preferences F . Then, to be confident in the mechanism x, the analyst would want an

allocation “close” to it to be OE and IC under the actual preference distribution. That is the

analyst would want x to be robustly OE and IC. With this definition, we have the following

proposition which proof is relegated to Section 2 of the Online Appendix.

Proposition 4. x is robustly OE and IC at F if and only if it is a spot mechanism.

Continuum. Our assumption of a continuum set of agents plays two roles in our environ-

ment. First, it is well-known that ordinal efficiency and incentive compatibility (and equal

treatment of equals) are incompatible in finite environments (see Bogomolnaia and Moulin

(2001)). However, as shown in Che and Kojima (2010), there are incentive compatible mech-

anisms (respecting an equal treatment of equals) under which inefficiencies vanish when the

47Indeed, to reproduce the random allocation x, we would need that allocations (12) and (21) have strictly
lower cutoffs than respectively (11) and (22). One can check that this cannot be achieved by linear prices
since the ordering is similar to the one in Example 1.

48Example 4 demonstrates that our results are not merely the consequence of a duality argument implied
by the assumption of a continuum of agents. This is an important difference with respect to the literature on
linear pricing in combinatorial auctions, as we discussed in the introduction.

49We endow the space of real numbers with a standard topology (e.g., induced by the Euclidean norm), the
space of distributions is endowed with the topology of weak convergence, and the product spaces are endowed
with the product topology.

50We say that x is OE at F if our notion of OE holds under probability distribution F . We say that it
satisfies IC at F if Condition (4.1) for IC holds for any π which receives strictly positive mass under F .

51In this definition, one can replace “for all sequences Fn → F” by “for some sequences of full-support
distributions Fn → F”; the next proposition still holds.

34



market is large. These mechanisms are ordinally efficient in a continuum economy. Thus, the

assumption of a continuum set of agents allows us to circumvent these impossibility results

and to characterize ordinally efficient and incentive compatible allocation rules. Of course,

these mechanisms may be inefficient in finite markets, but as argued in Che and Kojima

(2010), inefficiencies vanish when the market grows large. Second, the continuum assumption

allows us to avoid the standard issue in assignment problems with bundles that feasible frac-

tional allocations may not correspond to lotteries over feasible integral allocations. Indeed, the

Birkhoff-Von Neumann theorem may fail in this environment (see Budish (2011) and Nguyen

et al. (2016) for a discussion of this issue). This issue does not arise in an economy with a

continuum set of agents. The use of a continuum of agents to simplify the analysis of matching

problems is not new (see, for instance, Azevedo and Leshno (2016); Arnosti and Shi (2020)).

These models can usually be seen as the appropriate limit of a large finite problem.

Incentive Compatibility. Theorems 3 and 4 both impose an efficiency notion (respectively

ordinal and cardinal) and IC. If one drops IC and only requires efficiency, then none of these

theorems holds. For instance, consider an economy with T = 1 and at least three objects. Let

us consider an allocation rule that assigns to all preference rankings π but one their favorite

pure allocation. Call π0 the only preference ranking not obtaining its favorite pure allocation.

Clearly, this allocation is ordinally efficient: whenever we try to improve the situation of π0,

some other agents will be worse off. Further, the allocation rule is not incentive compatible

since π0, by swapping two objects in his or her ranking that differ from his or her top choice,

will be guaranteed to get his or her top choice object. Hence, this allocation rule cannot

be achieved by a generalized lottery-plus-cutoff mechanism (since these rules are incentive

compatible).52

Preference uncertainty. We assumed that the preferences of the agents over dynamic al-

locations are fixed at time zero. This implies that agents perfectly know their preferences

when choosing an object at a given date under a spot mechanism. In particular, we do not

allow agents to experience any unexpected shocks in their preferences over time. While it is

reasonable for our main motivating example of course assignment, it can be less so for appli-

52While this example is fairly straightforward, it makes clear that our results are conceptually different from
second welfare theorems. The latter do not impose any incentive compatibility constraints. In particular,
this shows that Theorem 4 on cardinal mechanisms is conceptually different from the second welfare theorem
of Miralles and Pycia (2020), who showed that in a finite market, efficient allocations with bundles can be
implemented by Competitive Equilibria with linear prices.

35



cations such as teacher assignment, where the time horizon is longer. However, at an informal

level, these shocks in preferences should reinforce the value of spot mechanisms. Indeed, spot

mechanisms are also attractive because agents do not commit to future assignments and can

“re-optimize” over time in case of preference shocks. Hence, an environment where preference

shocks occur over time may make spot mechanisms even better. We find this an interesting

perspective that we leave for future research.
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APPENDIX

A Example 5

In Example 5 below, we exhibit a random assignment that is OE and cannot be replicated by

a lottery-plus-cutoff mechanism with linear cutoffs. This, in particular, implies that we need

to allow non-uniform distributions of budgets in the definition of spot mechanisms to achieve

all OE and IC allocation rules.

Example 5. Let T = 2, O1 = O2 = {1, 2} and consider the following spot mechanism where

p11 = 0.6, p12 = 0, p21 = 0.4 and p22 = 0. The cutoffs are summarized below.

Allocation Cutoff
(11) 1
(12) 0.6
(21) 0.4
(22) 0

Distribution G over possible budgets in [0, 1] is assumed to satisfy P (z = 1) = 0.2, P (z =

0.6) = 0.2, P (z = 0.4) = 0.1 and P (z = 0) = 0.5. By Theorem 1, this random allocation

is ordinally efficient. Now, we claim that this random allocation cannot be replicated by a

lottery-plus-cutoff mechanism with linear cutoffs. First, to replicate this allocation, it is clear

that the order of cutoffs must remain the same, i.e., α11 > α12 > α21 > α22. Given that,

by definition of a lottery-plus-cutoff mechanism, the distribution over budgets in [0, 1] must

be uniform, we must have the following cutoffs to replicate the previous random allocation

calculated with distribution G:

Allocation Cutoff
(11) 0.8
(12) 0.6
(21) 0.5
(22) 0

However, it is easily checked that these cutoffs are non-linear.53 To recap, we need to use

53To see that these cutoffs are non-linear, we need to argue that there is no vector p = (p11, p
1
2, p

2
1, p

2
2)

T such
that αij = p1i + p2j for all i, j = 1, 2. Note that these equalities for ij = 11, 12 imply that p21 − p22 = 0.2 while

equalities for ij = 21, 22 imply that p21 − p22 = 0.5.
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spot mechanisms with non-uniform distributions to reproduce the above OE random allocation

rule.

B Proof of Theorem 3

The proof relies on the following result from the theory of linear inequalities.

Lemma 3. (Carver, 1921) For an arbitrary matrix A, Ax < 0 is feasible, if and only if y = 0

is the only solution for y ≥ 0 and ATy = 0.

To apply the lemma, we need some additional notations and preliminary results.

First, we discuss how the feasibility of linear system of inequalities relates to our notion

of a GLC mechanism with linear cutoffs. We begin by describing bundles by vectors. Each

feasible bundle b ∈ B is assigned a row vector db with |O| columns, one column for each

generalized object. For each object i ∈ O, we let dbi = 1 if i ∈ b, and dbi = 0 otherwise. It is

useful to describe the differences in a composition between bundles b and b′ by another row

vector ab,b′ given by

ab,b′ = db − db′ .

Hence, each vector ab,b′ is composed only of 1’s, -1’s, and 0’s:

� If i ∈ b and i /∈ b′, then the row of ab,b′ corresponding to object i is equal to 1.

� If i /∈ b and i ∈ b′ , then the row of ab,b′ corresponding to object i is equal to -1.

� If i either belongs or does not belong to both bundles, then the row of ab,b′ corresponding

to object i is equal to 0.

For any order ≤ on the set of feasible bundles B, we associate a matrix A that captures

the differences in a composition between each pair of strictly ordered bundles. In particular,

let matrix A contain as a row the vector ab,b′ as described above if and only if b < b′. Each

column of A corresponds to a generalized object. Let ai be the column of A corresponding

to object i. The following property of matrix A is instrumental for the proof.

Lemma 4. For cutoffs α, let A be the matrix associated with the total order on bundles

induced by these cutoffs, i.e., b < b′ ⇔ αb < αb′. Then, there exist linear cutoffs ᾱ such that

for each b, b′ ∈ B, (αb < αb′ ⇒ ᾱb < ᾱb′), if and only if there exists a vector p such that

Ap < 0.
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Proof. Let ᾱ be linear cutoffs such that for each b, b′ ∈ B, if αb < αb′ , then ᾱb < ᾱb′ , and

p be the non-negative prices inducing these cutoffs. Using our previous notations of vectors,

it means that ᾱb = db ·p for each b ∈ B.54 The difference between cutoffs for any two bundles

b and b′ is ᾱb − ᾱb′ = ab,b′ · p. So, in particular, ab,b′ · p < 0 means that bundle b has a lower

cutoff than b′. Hence, Ap < 0 because matrix A contains a row ab,b′ if and only if αb < αb′ .

Now, suppose that there exists a vector p such that Ap < 0. Note that this vector can be

arbitrary, in particular having negative coordinates. We begin by showing that there exists a

non-negative price vector p′ such that Ap′ < 0 and the linear cutoffs induced by p′ belong

to the unit interval as in the definition of GLC mechanism, i.e., ᾱb ≤ 1 for each b ∈ B. Note

that each vector ab,b′ is composed of an equal number of 1’s and -1’s because we have assumed

that the bundles are of equal size. Hence A1 = 0, where 1 is the unit vector. Therefore, for

a sufficiently large c > 0, p′′ = p + c · 1 is a non-negative price vector such that Ap′′ < 0.

Moreover, for a sufficiently small k > 0, p′ = k ·p′′ is such that the linear cutoffs ᾱ induced by

p′ belong to the unit interval. Finally, by construction of A, we have that for each b, b′ ∈ B,

if αb < αb′ , then ᾱb < ᾱb′ .

Second, we relate the existence of a nonnegative solution of a system of linear equations

to the notion of ordinal efficiency. This requires restating the definition of ordinal efficiency

in terms of probability mass transfers. Fix a random allocation q, a preference ordering π,

and a pair of bundles b and b′. Recall that qb stands for the probability to get bundle b. We

say that τb,b′(π) ∈ R is a bilateral transfer from b to b′ for π at q, or simply a bilateral

transfer, if 0 < τb,b′(π) ≤ qb and qb′ + τb,b′(π) ≤ 1. A bilateral transfer τb,b′(π) is improving

if π−1(b′) < π−1(b). In words, an improving bilateral transfer τb,b′(π) specifies the probability

mass to be moved from a lower ranked bundle b to a higher ranked bundle b′. Now, fix

two random allocations q′ and q. We say that q′ can be derived from q by an improving

bilateral transfer for π if there are bundles b and b′ such that qb′′ = q′b′′ for all bundles

b′′ ∈ B \{b, b′}, and qb > 0 and, moreover, τb,b′(π) := qb − q′b = q′b′ − qb′ > 0 is an improving

bilateral transfer from b to b′ for π at q. The following lemma applies the characterization of

first order stochastic dominance in terms of improving bilateral transfers to our framework.55

Lemma 5. Fix a preference ordering π and two random allocations q and q′. The random

allocation q′ ̸= q first order stochastically dominates q for preferences π if and only if q′ can

be derived from q by a finite sequence of improving bilateral transfers. Formally, there exists

54We let the coordinates of p and ab,b′ be ordered in a way, so that vector operations make sense.
55See for instance Østerdal (2010).
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a sequence (q1, . . . ,qn) of random allocations s.t. q1 = q, qn = q′ and for k = 1, . . . , n − 1,

qk+1 can be derived from qk by an improving bilateral transfer for π.

In light of Lemma 5, we can restate the second condition in the definition of ordinal

efficiency. Specifically, for each preference π such that x(π) ̸= x′(π), it requires to find

a sequence of improving bilateral transfers to go from random allocation x(π) to random

allocation x′(π).

Lemma 6. A random allocation x is ordinally efficient if and only if there is no other random

allocation x′ such that:

1. For each object type i ∈ O we have∑
π∈Π

∑
b:i∈b

x′b(π)F (π) =
∑
π∈Π

∑
b:i∈b

xb(π)F (π).

2. For each π ∈ Π such that x(π) ̸= x′(π), random allocation x′(π) can be derived from

x(π) by a sequence of improving bilateral transfers for π.

Now, consider a vector y whose coordinates are the same as those of the rows of matrix

A. We view each yb,b′ as a probability mass to be transferred from a bundle b with a lower

cutoff to a bundle b′ with a higher cutoff.

Lemma 7. Implementing the transfers in y do not change the allocated mass of each object

if and only if ATy = 0.

Proof. Consider a column vector y, each coordinate of which, yb,b′ ∈ R, corresponds to a

row ab,b′ of A. So, y specifies a set of probability mass transfers from lower to strictly higher

bundles in the order of cutoffs. Now, take a row i of matrix AT . Each coordinate of this row

corresponds to some pair of bundles b and b′. For example, suppose b′ has object i, while b

does not. Then, the corresponding coordinate of row i is equal to -1. Imagine transferring

mass yb,b′ from b to b′. Then, the total allocated mass of object i changes by yb,b′ . Therefore,

the negative of the dot product of row i of AT and the vector y, −(ai)Ty, gives the total

change in the allocated mass of object i resulting from the transfers defined by the vector y.

Accordingly, −ATy is a vector that captures the change in the allocated mass of each object.

In particular, if ATy = 0, then transfers y simply redistribute the masses of objects across

bundles.
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Finally we are ready to apply Lemma 3 to prove the following key technical result needed

for the proof of Theorem 3.

Proposition 5. Suppose that the distribution F has full support. Let xL be an ordinally

efficient GLC mechanism with L = (α, U[0,1]). Then, there exist linear cutoffs ᾱ such that for

all b, b′ ∈ B if αb < αb′, then ᾱb < ᾱb′.

Proof. Let A be the matrix associated with the total order on bundles induced by cutoffs

α. By Lemma 4, it suffices to show that there exists a vector p such that Ap < 0. For the

sake of contradiction, suppose that such vector does not exist. Then, by Lemma 3, there

exists y such that y ≥ 0,y ̸= 0 and ATy = 0. Next, we show that y can be used to construct

improving bilateral transfers for some preference profiles.

Let Πα be the set of preference profiles which ranking over bundles is consistent with the strict

rankings induced by cutoffs α. Those are the preferences π s.t. for any b, b′ ∈ B with αb < αb′ ,

then π−1(b′) < π−1(b). Below, we define a function f which, for each coordinate yb,b′ > 0 of y,

chooses a preference profile f(b, b′) ∈ Πα such that xb(f(b, b
′)) > 0. This ensures that agents

with preferences in f(b, b′) have a positive mass of b to transfer under an improving bilateral

transfer from b to b′. Note that, by definition, profile f(b, b′) prefers bundle b′ to b. For each

b ∈ B, denote the set of bundles with a cutoff equal to αb by I(b) = {b′′ ̸= b : αb′′ = αb}.
Consider two cases:

� First, suppose I(b) = ∅. Then, let f(b, b′) be any π ∈ Πα. Indeed, for all such π we

must have xb(π) > 0 because a GLC mechanism with L = (α, U[0,1]) picks the budget of

each agent uniformly from the unit interval. Hence, there is a positive probability for

the event E = {αb ≤ z < α̂b}, where α̂b = min{αb′′ : αb′′ > αb} is well-defined since

αb is not the highest cutoff. Indeed, recall that y contains coordinate yb,b′ only when A

contains row ab,b′ , which is true if and only if αb < αb′ .

� Second, suppose I(b) ̸= ∅. Then, by the full support assumption there exists a preference

profile πb ∈ Πα that ranks b ahead of each b′′ ∈ I(b). Hence, for the same reason as

before, we must have xb(πb) > 0. So, we define f(b, b′) = πb.

Now, for each yb,b′ > 0, pick the preference profile π = f(b, b′). By definition of a lottery-plus-

cutoff mechanism, since 0 ≤ αb < αb′ ≤ 1, and because budgets are drawn uniformly in [0, 1]

and π prefers b′ to b, we have that xb′(π) < 1. For ε > 0, let all the agents with preferences

π transfer a probability mass of (ε/F (π))yb,b′ from b to b′ at their random allocation xL(π).
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Note that this is well-defined given that, by the full support assumption, F (π) > 0 for all π.

Hence, the total mass transferred from b to b′ is εyb,b′ ≥ 0. Then, clearly, for a small enough

ε > 0 these are improving bilateral transfers. Moreover, because ATy = 0, by Lemma 4

these transfers do not change the allocated mass of each object. Therefore xL is not ordinally

efficient, which is a contradiction. It follows that there exist linear cutoffs ᾱ such that for each

b, b′ ∈ B, if αb < αb′ , then ᾱb < ᾱb′ .

We are now in a position to prove Theorem 3.

Proof. (⇒) Let x be an incentive compatible and ordinally efficient allocation rule. Our

first step is to use Theorem 2 of Ashlagi and Shi (2016) to show that that there exists a

GLC mechanism which defines the same allocation rule as x. This theorem applies to a static

framework without bundles. However, we can reinterpret each bundle b ∈ B as a single object

and hence map our bundle framework back into a simple static environment. Specifically,

interpret the set of feasible bundles B as a set of objects, so that preferences of agents over

bundles can be thought as preferences over objects in a static setting. With this view, the

model directly corresponds to the static case studied by Ashlagi and Shi (2016). Thus, x is a

well defined allocation rule in a static setting. An allocation rule x is A-S ordinally efficient

(A-S OE) if there is no other allocation rule x′ such that:

1. For each bundle b ∈ B we have56∑
π∈Π

x′b(π)F (π) =
∑
π∈Π

xb(π)F (π).

2. For each m = 1, . . . , |B| and each π ∈ Π we have:
∑m

h=1
x′π(h)(π) ≥

∑m

h=1
xπ(h)(π), with

a strict inequality for some m and π such that F (π) > 0.

Using the same argument as in Lemma 1, it is immediate to see that any OE allocation

rule must also be A-S OE. Hence, by Theorem 2 of Ashlagi and Shi (2016), we know that

there exists a GLC mechanism with L̂ = (α̂, U[0,1]) which defines the same allocation rule as

x, i.e., xL̂ = x. Moreover, the corresponding GLC mechanism L = (α, U[0,1]) in our initial

environment must also define the same allocation rule as x, i.e., xL = x.

Now, by Proposition 5, there exists a collection of linear cutoffs ᾱ such that, for all b, b′ ∈ B,

56Remember that this is the key difference with our Condition 1 in the definition of ordinal efficiency. We
impose equal mass for each object within a bundle while Ashlagi and Shi (2016) impose equal mass for each
bundle.
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if αb < αb′ , then ᾱb < ᾱb′ . However using cutoffs ᾱ while keeping the budget distribution

U[0,1] will not generate the same allocation rule. Indeed, Proposition 5 only ensures that the

linear cutoffs ᾱ have the same strict ordering as α. In particular, absolute differences between

cutoffs for any pair of bundles may change and bundles which had the same cutoffs in α may

now have different cutoffs in ᾱ. To compensate for such changes, one has to adjust the budget

distribution accordingly. In addition, we have to make sure that this adjustment can be done

using a distribution with a continuous c.d.f. Let K be the number of distinct values taken

by the cutoffs of α. First, index and relabel these unique values of cutoffs α to order them

strictly so that: α1 < α2 < · · · < αK . We partition bundles into equivalence classes: let

B1 := {b : 0 ≤ αb ≤ α1} and, for k = 2, . . . , K, Bk := {b : αk−1 < αb ≤ αk}. We also let

B≤k :=
⋃

k′=1,...,k

Bk′ be the set of all bundles affordable whenever the budget is equal to αk.

Note that, under the GLC mechanism with L = (α, U[0,1]), the probability to be able to afford

exactly all the bundles in B≤k is αk+1 − αk where we set αK+1 := 1. Fix a set Bk for some

k. Under α, all the bundles in Bk have the same cutoff αk. Under ᾱ, those bundles may not

have the same cutoffs. We let ᾱ+
k := maxb∈Bk

ᾱb, ᾱ
−
k := minb∈Bk

ᾱb, and, I
k
k−1 := [ᾱ+

k−1, ᾱ
−
k ]

for each k ≥ 1 where we let ᾱ+
0 := 0. By Lemma 5, because cutoffs ᾱ have the same strict

ordering as α, we have that ᾱ+
k−1 < ᾱ−

k for k ≥ 1 so that all the bundles in Bk−1 have strictly

lower cutoffs than those in Bk under ᾱ. Intuitively, going from cutoffs α to the linear cutoffs

ᾱ will create disjoint intervals of cutoffs [ᾱ−
k , ᾱ

+
k ], one for each set Bk.

57 Since these intervals

are disjoints, there are non-empty intervals in-between each of them, those are the intervals

Ikk−1 defined above. To reproduce the allocation of the GLC mechanism with L = (α, U[0,1])

using a GLC mechanism with L′ = (ᾱ, G) with a continuous c.d.f. G, we need to i) put no

probability mass in each interval [ᾱ−
k , ᾱ

+
k ] and ii) ensure that the probability to afford each

bundle B≤k is the same. Note that under (α, U[0,1]), this probability is αk+1 − αk while it is

G(ᾱ−
k+1) − G(ᾱ+

k ) under the GLC mechanism with L′ = (ᾱ, G). To do so, let g be the p.d.f

defined as follows:

g(x) =

{
αk

ᾱ−
k −ᾱ+

k−1

if x ∈ Ikk−1,

0 otherwise.

With this choice of p.d.f, it is immediate to see that the c.d.f. G is such that G(ᾱ−
k ) = G(ᾱ+

k ) =

αk. Note that, by doing so, it ensures that g is a well defined probability density function.

57Note that these intervals of cutoffs can have a single point whenever ᾱ−
k = ᾱ+

k . It happens in particular
when Bk is a singleton. This is illustrated in Figure 3 with the cutoff value α3.
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Intuitively, we put no probability mass in the intervals [ᾱ−
k , ᾱ

+
k ] and we choose appropriately

scaled uniform distributions for each interval Ikk−1 so that the resulting distribution is contin-

uous and satisfies the requirements i) and ii) above. We illustrate our construction of the new

c.d.f. G in Figure 3.

(⇐) Let xL be an allocation rule defined by a GLC mechanism with parameters L = (α,G) and

linear cutoffs. We show that xL ∈ Me
IC . The incentive compatibility is straightforward, so we

focus on proving ordinal efficiency. For the sake of contradiction, suppose xL is not ordinally

efficient. Then, there exists x′ such that xL and x′ allocate the same mass of each object and,

for each π, the random allocation x′(π) can be derived from xL(π) via a sequence of improving

bilateral transfers (whenever x′(π) ̸= xL(π)). Given such a sequence for π, let τb,b′(π) be the

total mass transferred from bundle b to bundle b′.58 We first note that, if τb,b′(π) > 0, then we

must have that αb < αb′ . Indeed, assume that αb′ ≤ αb. By definition of improving transfers,

we must have that π−1(b′) < π−1(b) and whenever an agent with preferences π has budget

z ≥ αb, both b and b
′ can be chosen by this agent so that she always picks b′. Hence, it implies

xLb (π) = 0, a contradiction to τb,b′(π) being the sum of the improving bilateral transfers from

b to b′. Now, we aggregate the bilateral transfers across all agents into a column vector y. In

particular, for each b, b′ ∈ B such that αb < αb′ we let

yb,b′ =
∑
π∈Π

τb,b′(π)F (π)

Hence, yb,b′ is the total mass transferred by all agents from b to b′. Let A be the matrix

associated with the total order on bundles induced by cutoffs α. Because xL and x′ allocate

the same mass of each object, by Lemma 4, we have ATy = 0. In addition, since xL ̸= x′, by

construction we have y ̸= 0. But then, by Lemma 3, Ap < 0 is not feasible, a contradiction

to α being linear. Therefore, allocation rule xL is ordinally efficient.

58By definition of ordinal efficiency, one can ignore the bilateral transfers for agents π with F (π) = 0. This
implies that this part of the proof (i.e., (⇐)) does not use the full ordinal support assumption.
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Figure 3: Illustration of the transformed budget distribution.

Note: we illustrate the construction of the new budget distribution. In the figure, we assumed that ᾱ−
3 = ᾱ+

3

and we noted ᾱ3 their value. The 45 degrees line is the c.d.f. of the uniform distribution for the GLC with
L = (α,U[0,1]). The piecewise-linear function is the c.d.f. G of the equivalent GLC mechanism with L′ = (ᾱ, G)
which uses linear cutoffs.

47


