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Abstract

A key feature of communication with evidence is skepticism: a receiver

will attribute any incomplete disclosure to the sender concealing unfavor-

able evidence. I study when a change in the receiver’s prior belief about

the sender’s evidence induces more skepticism, i.e. induces the receiver, re-

gardless of his preferences, to take an equilibrium action that is less favorable

for the sender following every message. I provide a definition of when one
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1. Introduction
Communication during criminal trials, financial audits, and investment pitches

is often verifiable. In these settings, communication is less about the risk of mis-
representation (cheap talk) and more about which evidence is presented or omitted
(disclosure). Any rational observer (receiver) is naturally skeptical of the evidence
presented by an interested party (sender): the receiver will partially attribute in-
complete disclosures to the sender concealing unfavorable evidence.

This skepticism is harmful to the sender: a prosecutor would always prefer to
be faced with a less skeptical juror, and an entrepreneur a less skeptical investor.
It is also natural that the receiver’s beliefs about the sender’s evidence modulate
his degree of skepticism. Indeed, the criminal justice literature identifies a “CSI
effect”: Shelton et al. (2009) find that jurors who are more informed about forensics
are less likely to convict given the same evidence profile. However, it is not clear
which beliefs induce more skepticism than others. The main goal of this paper is
to characterize this comparison, i.e. to identify the sender’s preferences over the
receiver’s prior beliefs. Understanding these preferences is important because the
sender can often influence the receiver beliefs he faces. For example:

1. During jury selection, a prosecutor questions potential jurors in order to iden-
tify those that will return the highest probability of conviction. The prosecu-
tor selects jurors on many criteria including their beliefs about the evidence
available. The prosecutor wants to choose jurors who hold the least skeptical
beliefs concerning his evidence. Which juror beliefs will achieve this goal?

2. During each investment round, an entrepreneur discloses customer reviews,
prototypes, and sales numbers to an investor in order to obtain funding.
There are generally multiple rounds of investment. Thus, the entrepreneur
will be concerned about how an early disclosure affects the skepticism about
future disclosures. Which beliefs will the entrepreneur want to induce in
these future rounds, and which early disclosures will achieve this goal?

The common features of these examples is that there is some preliminary action
(jury selection) which affects the receiver’s beliefs going into verifiable disclosure
(e.g. the criminal trial). Thus, a key issue is understanding the sender’s preferences
over these beliefs within the static verifiable disclosure framework.
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One intuition is that the receiver’s degree of skepticism increases when he ex-
pects more evidence to be available. This accords with the CSI effect: prosecutors
will try to avoid jurors with bullish views about the amount of evidence that can be
presented. The issue is that there are potentially multiple dimensions over which
the sender can be informed, for example a prosecutor can have access to DNA
evidence, witness testimony, other forensic evidence, or any subset of these. This
makes it difficult to even define what it means to believe the sender has more ev-
idence. Indeed, there do not exist general comparative statics or characterization
results in multidimensional verifiable disclosure models.

I study a general verifiable disclosure model in which a sender communicates
with a receiver who then chooses an action in R. While the sender always prefers
higher actions, the receiver’s preferences depend on the sender’s private evidence
realization or type. The type space T doubles as the message space, and the mes-
sages available to each type are governed by a partial disclosure order ⪰d on T : if
one sender type dominates another according to the disclosure order, i.e., t′ ⪰d t′′,
then the former can make a declaration to the receiver that he is the latter type,
i.e., t′ can send message t′′. This can be interpreted as type t′ presenting all the
evidence type t′′ possesses: a prosecutor type with DNA evidence dominates a
prosecutor type with no evidence according to the disclosure order as the former
can masquerade as the latter through omission. In Subsection 2.1, I describe how
this framework captures familiar examples from the literature.

In the context of arbitrarily complex evidence structures, I provide a definition
of when one receiver belief over the sender’s type has “more evidence” than an-
other: if one sender type dominates another according to the disclosure order, the
former is relatively more likely than the latter under a distribution with more ev-
idence. Focusing on the receiver optimal equilibrium, Theorem 1 establishes that
the sender obtains lower actions regardless of his type realization or the receiver’s
preferences when he is believed to have more evidence. Equivalently, regardless
of the true distribution of evidence and the preferences of the receiver he faces, the
sender always prefers to be thought of as having less evidence. Moreover, the con-
verse is also true: if the sender prefers to induce one receiver belief over another in
this broad sense, then the preferred belief must have less evidence.
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My model makes no assumptions on the relationship between the amount of ev-
idence the sender has and its “value”, i.e., how high an action it would induce from
the receiver if truthfully revealed. Instead the relationship between more evidence
and more skepticism emerges from the receiver optimal equilibrium structure. My
second main contribution is to fully characterize the receiver optimal equilibrium.
Proposition 1 provides necessary and sufficient conditions for a set of sender types
to “pool together”, i.e. obtain the same equilibrium outcome. This leads to an
explicit expression for the receiver optimal equilibrium allocation in Theorem 2.
At a high level, the pooled set for a given sender type forms through simultane-
ously minimizing the receiver’s value over types that choose to mimic him and
maximizing the receiver’s value over the types that he chooses to mimic.

Signaling to affect receiver beliefs and decrease skepticism is at the heart of
many dynamic disclosure papers. Indeed, Section 3 discusses how previous stud-
ies use examples of more evidence changes in the Dye evidence model as a focal
point of their analysis. Theorem 1 can be used to generalize these insights as well
as to answer questions that necessitate more complicated evidence structures.

The application in Section 6 is a proof of concept. I ask whether an investor ben-
efits from early communication with an entrepreneur who obtains evidence gradu-
ally, rather than communicating only right before the investment decision. Specif-
ically, I add an additional period to the static verifiable disclosure game before
the receiver’s action choice during which the sender can accumulate and disclose
evidence. The potential for informative early disclosures relies on the sender’s un-
certainty about his final evidence and so this question is moot in the Dye model
where there is no residual uncertainty after any evidence is disclosed. Proposi-
tion 5 shows that the receiver does not benefit from early communication regard-
less of his preferences or prior beliefs if and only if the evidence structure satisfies
what I term the “Unique Evidence Path Property” (UEPP). The interpretation of
the UEPP is that the current evidence reveals the sequence of previous investiga-
tions undertaken, e.g. the performance test results for a prototype can only be
revealed if the prototype is first developed.
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Layout Subsection 1.1 discusses the related literature. Section 2 presents the
model and lists examples that fit my framework. Section 3 defines the more ev-
idence order and states the main result. Section 4 and Section 5 provide the anal-
ysis necessary to establish the main result. Section 6 studies a dynamic disclosure
application. All proofs are in Appendix B.

1.1. Related Literature

The first verifiable disclosure models were introduced by Milgrom (1981), Gross-
man (1981), and Grossman and Hart (1980). In these models, the sender could be
vague about his private information but not lie, i.e. he could declare any subset
of states that contains the true state. The main finding is the “unraveling” result
that in any equilibrium the sender fully reveals his information. There are many
ways unraveling can fail: if the sender’s direction of bias depends on his type (e.g.
Seidmann and Winter (1997)), if the sender pays a cost to disclose information (e.g.
Verrecchia (1983)), or if the receiver is uncertain about the sender’s information
endowment which is the focus of this paper (e.g. Dye (1985) and Jung and Kwon
(1988)).1,2

In line with this paper, various studies allow for more general evidence struc-
tures, but instead focus on establishing that the receiver’s utility in some equilib-
rium of the verifiable disclosure game is the same as that in which the receiver can
commit to a best response before learning the sender’s message. This equivalence
was first introduced in Glazer and Rubinstein (2004) and further explored by Sher
(2011), and Ben-Porath et al. (2017) in the context of multiple senders. Hart et al.
(2017) identifies the equilibrium that achieves this equivalence through the “truth
leaning refinement”. I focus on this receiver optimal equilibrium and my model is
the same as that in Hart et al. (2017).

In this general verifiable disclosure model, my focus is (i) equilibrium character-
ization, and (ii) understanding determinants of the receiver’s skepticism, or more
concretely, comparative statics on the receiver’s beliefs. Shin (2003) and Dziuda
(2011) characterize and analyze equilibria in multidimensional versions of the Dye
evidence framework with the simplification that each piece of evidence is either

1 Hagenbach et al. (2014) and Mathis (2008) provide necessary and sufficient conditions for un-
raveling in a general framework.

2 For surveys of this literature see Milgrom (2008) and Dranove and Jin (2010).
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“good” or “bad”.3 Given mild assumptions on the distribution, the sender always
plays a “sanitization” strategy of concealing bad pieces and fully revealing good
pieces. This means that the decision of whether to disclose a given piece of evi-
dence does not depend on other evidence possessed by the sender. This indepen-
dence is not general to multidimensional evidence models. Sher (2014) and Glazer
and Rubinstein (2004) derive methods to find the receiver optimal equilibrium
with more general evidence structures but restrict attention to the receiver choos-
ing between two actions, and the case where the sender has two payoff relevant
types - acceptable and unacceptable. Bertomeu and Cianciaruso (2016) propose
an algorithm for solving verifiable disclosure games when pure strategy equilibria
exist. My approach focuses on equilibrium outcomes instead of sender strategies.
This permits tractable analysis despite the fact that sometimes (generically) verifi-
able disclosure games only admit mixed strategy equilibria.

Comparative statics results on the receiver’s skepticism have mostly been lim-
ited to the Dye evidence model. In particular, dynamic disclosure models such as
that in Guttman et al. (2014), Acharya et al. (2011), and Grubb (2011) develop these
conclusions as the backbone of their analyses. The idea is that all else held equal,
the sender will take decisions in early periods that engender less skepticism in the
future. As Section 3 elaborates, these results are specific cases of Theorem 1.

2. Model
The setting involves a single sender and a single receiver. The sender privately

observes his type t ∈ T , where |T | = n, and sends a message to the receiver who
chooses an action a ∈ A ≡ R. The receiver has a prior belief h ∈ ∆T over the
sender’s type with associated measure H : 2T → [0, 1].4 The sender may have
some alternative prior belief over his type but it is not relevant to the results.

Preferences The sender’s utility, US : A × T → R, is strictly increasing in the
action a for every type t.5 The receiver’s utility, UR : A× T → R, depends on both

3 Dziuda (2011) also considers uncertainty over the direction of monotonic preferences of the
sender and over whether he is honest or strategic.

4 I refer to distributions with lower case and their associated measures with upper case.
5 In section 7 of my earlier working paper Rappoport (2020), I show that the analysis adapts

readily to the case where the sender has a (potentially evidence dependent) probability of prefer-
ring lower actions or having the same preferences as the receiver.
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the action and the sender’s type. I assume that ∀t ∈ T, UR(·, t) is strictly concave,
continuously differentiable, and admits a maximum. I denote the set of all such
receiver utilities as Υ. These assumptions imply that neither party will randomize
over induced actions in equilibrium, and so to ease notation I identify the sender’s
utility with the action taken, i.e. US(a, t) ≡ a.6

For each t ∈ T , denote v(t) ≡ argmaxa U
R(a, t). Similarly, define Vh(S) ≡

argmaxa E[UR(a, t)|t ∈ S, t ∼ h] to be the receiver’s best response conditional on
the sender’s type being in S and distributed according to h. I refer to sets of types
with relatively high (low) optimal actions, as “high (low) value”. A leading exam-
ple is when the receiver’s utility is quadratic loss, i.e. UR(a, t) = −(a − v(t))2 for
some function v : T → R. In this case Vh(S) = E[v(t)|t ∈ S, t ∼ h].

Messaging Technology I follow Hart et al. (2017) and assume that the message
space is the type space with the interpretation that type t sending message t′ is
type t “mimicking” t′. I assume that there is a partial disclosure order, ⪰d, over
T . The relation t ⪰d t′ means that t can send message t′, i.e., the set of available
messages to each type t is given by {t′ : t ⪰d t′}.7 The partial order assumption
imposes reflexivity, transitivity, and antisymmetry. That is, (i) t can send message
t, (ii) if t can mimic t′ and t′ can mimic t′′, then t can mimic t′′, and (iii) for t ̸= t′, t
can mimic t′ implies t′ cannot mimic t.8

This means that the sender’s type specifies two pieces of information: its posi-
tion in the disclosure order, and its best response to the receiver. Importantly, my
model makes no assumption on the relationship between these two aspects.

6 Strict concavity ensures that the receiver has a unique best response for all distributions h ∈
∆T . In combination with the assumption that the sender’s utility is strictly increasing in a for all t,
this implies that the sender will never randomize over messages which induce different actions.

7 The verifiable disclosure literature sometimes uses an alternative equivalent set of messaging
assumptions. There is an arbitrary message space M and each type has access to some subset
E(t) ⊂ M , where the message correspondence E satisfies a “normality” (Bull and Watson (2004))
or “nested range” (Green and Laffont (1986)) condition. A message structure is normal if ∀t ∈ T ,
there exists et ⊂ E(t), such that ∀t, t′ ∈ T , et ∈ E(t′) =⇒ E(t) ⊂ E(t′). Given a normal mes-
sage structure, the following disclosure ordered type space (T,⪰d) has the same set of equilibrium
allocations. T ≡ M with P(et) ≡ P(t), P(m) = 0 otherwise, and et ⪰d m ⇐⇒ m ∈ E(t).

8 Antisymmetry is without loss in the following sense. Consider that in addition to disclosable
evidence from (T ′,⪰d), the sender also has private information θ ∈ Θ so the type space is T × Θ.
Message feasibility is given by the preorder ⪰′

d defined by (t, θ) ⪰′
d (t′, θ′) ⇐⇒ t ⪰d t′. Because the

sender always prefers higher actions, (t, θ) must induce the same equilibrium action ∀θ ∈ Θ.
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Strategies and Equilibrium A strategy for the sender is σ : T → ∆T where
Supp(σt) ⊆ {t′ : t ⪰d t′} ∀ t. Because the receiver’s utility is strictly concave,
it is without loss to restrict the receiver to use a pure strategy, a : T → A, which
specifies an action choice in response to each message. A perfect Bayes equilibrium
(PBE) is a pair of feasible strategies (σ, a) such that ∀t ∈ T ,

(i) Supp(σt) ⊆ argmax
t′: t⪰dt′

a(t′),

(ii) a(t) = argmax
a∈A

E[UR(a, s)|σ, t] if t ∈ ∪t∈T Supp(σt), and

(iii) a(t) = Vq({t′ : t′ ⪰d t}) for some q ∈ ∆{t′ : t′ ⪰d t}.

In words: (i) the sender maximizes the receiver’s best response among feasible
messages, (ii) for on-path messages, the receiver updates according to Bayes rule
and best responds, and (iii) for off path messages, the receiver best responds to
some belief over sender types that have access to the message.

I focus on the receiver optimal PBE which I henceforth refer to as the ROE.
Denote πh(t|UR) ∈ A as the ROE allocation when the receiver has prior belief h ∈
∆T and utility function UR, and the sender is type t ∈ Supp(h). ROE strategies are
not unique and are kept in the background of the analysis.9

2.1. Examples

Common disclosure models that fit my framework are described below. I il-
lustrate (T,⪰d) as a directed graph with vertices representing types and directed
paths representing all non-reflexive dominance in the disclosure order.

Dye Evidence: The Dye evidence model was introduced by Dye (1985) and Jung
and Kwon (1988). The type space is given by T ≡ {t∅, t1, ..., tn−1}, where t1, ..., tn−1

represent different evidence realizations, and t∅ represents the case where the sender
has no evidence. The disclosure order is given by ti ⪰d t∅ ∀i = 1, ..., n − 1 with no

9 As discussed in Section 4, unrefined PBE admit multiplicity and put very little structure on
equilibrium outcomes. A number of studies have provided justifications for focusing on the ROE.
Hart et al. (2017) shows that the truth leaning refinement, in which (i) the receiver interprets each
off path message credulously, and (ii) the sender is truthful when doing so maximizes his obtained
action, selects the ROE. Hart et al. (2017) also show that perturbations where the sender has small
probability of being honest have a unique equilibrium outcome that is arbitrarily close to the ROE
in the limit. In addition, Sher (2011) and Hart et al. (2017) establish that the ROE is equivalent to
outcomes in the case where the principal can commit.
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other non-reflexive relations. Figure 1 illustrates the disclosure order in the Dye
model. The interpretation is that the sender who obtains evidence ti must either
fully reveal his type or completely withhold, i.e., declare t∅; accordingly, t∅ is un-
able to verify that he is uninformed. In this sense, the Dye evidence model is
distinguished by “all or nothing” disclosure which greatly simplifies its analysis.

t1

t2

t3

t4

t∅

Uninformed

Informed

Figure 1: Dye Evidence with n = 5.

Multidimensional Evidence: Suppose there are k potential kinds of evidence
each drawn from E ≡ {e1, ..., em}. Depending on the application, there are dif-
ferent ways to conceive of multidimensional evidence and the corresponding dis-
closure order. First, consider that each type t is an l ≤ k sample of E with replace-
ment, and t ⪰d t if and only if each ei ∈ t appears with greater frequency in t.10

That is, a type mimics another by withholding the residual evidence. I term this
multidimensional evidence structure as Independent Collection. For example, an
entrepreneur discloses a subset of his customer reviews which range from 0 to 5

stars.11,12 An example is displayed in the left panel of Figure 2.

10 More formally, each type is a function t : E → N, where
∑

i t(ei) ≤ k. t(ei) encodes how many
draws of evidence ei are possessed by type t. Accordingly t1 ⪰d t2 ⇐⇒ t1(ei) ≥ t2(ei) ∀i.

11 In the independent collection evidence structure evidence is indistinguishable. However, one
can encode distinguishable evidence through the support of h as follows. For i ≤ k, let Ei ≡
{ei1, ..., eimi

} represent the set of available evidence from source i. Construct an independent collec-
tion disclosure order where E = ∪iE

i and a distribution over T that puts zero mass on any sample
that includes multiple draws from the same Ei. This distinguishability is implicit under sequential
collection, as displayed in the right panel of Figure 2.

12 A related disclosure order is that used in “vagueness” models, e.g., that in Milgrom (1981) and
Hagenbach et al. (2014). These models feature a state x ∈ X and a set of messages (and therefore
types in the current modeling) given by the subsets of states 2X ≡ T . The disclosure order is given
by t ⪰d t if and only if t ⊆ t. However, this is isomorphic to a multidimensional independent
collection disclosure order defined as follows: E = X , and each subset t ⊂ X is mapped to the
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An alternative natural multidimensional disclosure order is as follows. A type
is an ordered subset (r1, ..., rl) where 0 ≤ l ≤ k and each ri ∈ E. For two types
t ≡ (r1, ..., rl) and t ≡ (r1, ..., rl), t ⪰d t if and only l ≥ l and ri = ri ∀i ≤ l. This
captures the idea that evidence collection is sequential, and accordingly, I term this
multidimensional evidence structure Sequential Collection. For example, a pros-
ecutor’s investigation can find a potential suspect and then check for a verifiable
refutation of their alibi, but revealing information about the alibi reveals a suspect
was found in the first place. Alternatively, there is a natural truncation structure
to the support of the evidence distribution. For example, an applicant can choose
the date to start reporting work experience on their CV, but unemployed segments
after are “resume gaps”. The right panel of Figure 2 presents an example of a
sequential collection disclosure order.

Multidimensional evidence potentially adds two aspects to the all or nothing
disclosure decision in the Dye model. Under sequential collection, the sender de-
cides “how much” evidence to disclose: in the right panel of Figure 2, type (0, 1)

decides whether to report no results— t∅, the results of his first investigation —
(0), or the results of both — (0, 1). Under independent collection, the sender not
only decides how much, but also “which” evidence to disclose: in the left panel
of Figure 2, given that type {1, 0} makes a partial disclosure they must still decide
between {0} and {1}.

Honest Types: In addition to obtaining evidence from some T ′, the sender can
either be strategic, S, or honest, H . Strategic types can disclose evidence according
to some arbitrary disclosure order ⪰′

d, while honest types must truthfully reveal.
The total type space and disclosure order are denoted by (T,⪰d) defined as follows:
T ≡ T ′ × {S,H} and t ⪰′

d t
′ =⇒ (t, S) ⪰d (t

′, θ′) ∀ t, t′ ∈ T ′, ∀θ′ ∈ {S,H} with ⪰d

admitting no other non-reflexive relations. Figure 3 displays the Dye model with
the addition of honest types.

type t̃(ei) = 1ei ̸∈t, and the prior belief h is such that t(ei) > 1 for some i implies h(t) = 0. More
noteworthy is that vagueness models commonly assume the sender “knows” the state, i.e., the
distribution of types h is supported only on the singleton elements of 2X = T . This demonstrates
how zero probability types capture extra messaging options for the sender.
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{∅}

{1}

{0}

{1, 1}

{1, 0}

{0, 0}

(a) Independent Collection.

(∅)

(1)

(0)

(1, 1)

(1, 0)

(0, 0)

(0, 1)

(b) Sequential Collection.

Figure 2: Examples of multidimensional evidence for E = {0, 1} and k = 2.

(t∅, S)

(t1, S)

(t2, S)

(t3, S)

(t4, S)

(t∅, H)

(t1, H)

(t2, H)

(t3, H)

(t4, H)

Figure 3: An honest types model with (T ′,⪰′
d) as Dye evidence.

3. Characterizing Increased Skepticism
The main goal of this paper is to understand what drives receiver “skepticism”,

that is, fixing the disclosure order, how does πh(t|UR) depend on the receiver’s
prior belief h? I focus on the effects of the receiver’s beliefs that do not depend
on his particular preferences; it is natural that increasing the probability of higher
valued types will increase equilibrium actions, but such a change is not naturally
interpreted as a decrease in skepticism. Theorem 1 below characterizes which be-
liefs induce higher equilibrium actions regardless of the receiver’s preferences. The
key ingredient is the definition below.

Definition 1. Let f, g ∈ ∆T be two receiver prior beliefs over the sender’s evi-
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dence. f has more evidence than g with respect to (T,⪰d), or f ≥ME g, if

∀t, t′ ∈ T, t ⪰d t
′ =⇒ f(t)g(t′) ≥ f(t′)g(t). (1)

For any type t that can mimic t′, t is relatively more likely than t′ under a prior
distribution with more evidence. With the view that each type is a set of evidence
which the sender can present, as in the independent collection structure from Sub-
section 2.1, the more evidence relation shifts probability to types that literally have
more evidence in a subset containment sense. It is worth noting that the more
evidence order is silent on whether one receiver belief is more “optimistic” than
another: the dominating types according to the disclosure order can be higher or
lower value relative to dominated types depending on the receiver’s preferences.13

If ⪰d were a complete order, then f ≥ME g would be equivalent to f mono-
tone likelihood ratio (MLR) dominates g on (T,⪰d). Definition 1 is an extension
of MLR dominance to a partially ordered set that only imposes the likelihood ra-
tio inequality on comparable pairs of types.14 The interpretation is that the more
evidence relation places no restriction on the relative probability of different kinds
of evidence, e.g. a distribution with more evidence can decrease or increase the
relative probability of DNA evidence to witness testimony.

Theorem 1. Let f, g ∈ ∆T with I ≡ Supp(f) ∩ Supp(g). If f ≥ME g, then,

πf (t|UR) ≤ πg(t|UR) ∀t ∈ I, ∀UR ∈ Υ. (2)

If f and g have the same support and condition (2) holds, then f ≥ME g.

The result says that if f has more evidence than g, every type obtains a lower

13 In this sense, a more evidence change captures more than just changes in the information struc-
ture of the sender about a payoff relevant state with a fixed prior; e.g., more evidence changes can
capture increases in the “average value” of the sender’s evidence. On the other hand, because the
value of each type to the receiver is assumed to remain constant across changes in the distribution
of evidence, there are changes in the information structure that do not correspond to changes in the
distribution of evidence in the current model. In my earlier working paper Rappoport (2020), sec-
tion 7.3 develops a more universal approach that captures all changes in the information structure.

14 There are existing notions adapting the likelihood ratio order to a partially ordered set. The
most common version is the multivariate likelihood ratio order described in chapter 6.E of Shaked
and Shanthikumar (1994) which is stronger than Definition 1 because it restricts to lattice orders,
and imposes likelihood restrictions on incomparable elements. My notion has been raised in pre-
vious studies (e.g., definition 1 in Whitt (1982)), but does not appear to be frequently used.
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equilibrium action when facing a receiver who holds beliefs f than one who holds
beliefs g, and that this comparison does not depend on the receiver’s preference. If
f and g have common support, then the converse also holds.15 The more evidence
relation exhausts the sense to which one can compare equilibrium actions based on
the receiver’s beliefs alone. That is, the mechanism behind Theorem 1 is increased
skepticism: the receiver believes that any equilibrium message is more likely to be
the result of strategic withholding on the part of the sender.

The rest of this section is organized as follows. I first discuss how the equiva-
lence result can be interpreted and used in applications. Next, I provide a preview
of the analysis and intuition for Theorem 1. Finally, I conclude this section by re-
visiting Subsection 2.1 to explore the implications of Theorem 1.

Using the Equivalence Result Many natural changes correspond to a more ev-
idence change in the receiver’s prior belief: advances in forensics permit testing
on a larger fraction of collected samples from crime scenes, or a firm develops a
reputation for keeping detailed records and accounts. Indeed, Theorem 1 rational-
izes the “CSI effect” mentioned in the introduction whereby potential jurors who
expect evidence to be more widely available convict less often.

Beyond these descriptive implications, Theorem 1 provides a key tool in ana-
lyzing situations in which the sender can signal or otherwise affect the beliefs of
the receiver before disclosing evidence. The corollary below develops this idea
by reinterpreting Theorem 1 as a characterization of the sender’s preferences over
receiver beliefs.

Corollary 1. Let f, g ∈ ∆T with full support. Let η ∈ ∆T be the sender’s actual distri-
bution over evidence. For every UR ∈ Υ, and η ∈ ∆T , the sender has a higher equilibrium
expected utility when facing a receiver who holds beliefs g than one who holds beliefs f if
and only if f has more evidence than g.

It is important to distinguish the above corollary from welfare comparative stat-
ics in a common prior model. If both the sender’s and receiver’s prior beliefs shift
between two distributions, then while it is still true that the sender does better

15 The caveat of full support in the equivalence is because the more evidence definition imposes
restrictions outside of the supports of f and g and these are not always relevant to the ROE actions.
A more complete converse is established in the proof: if f(t)g(t′) < f(t′)g(t) for some t ⪰d t′ such
that t′ ∈ Supp(f) ∩ Supp(g) then ∃UR ∈ Υ such that πf (t

′|UR) > πg(t
′|UR).
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“type by type” under the distribution with less evidence, his ex-ante expected util-
ity can be higher under the distribution with more evidence.16 Instead the compar-
ison in Corollary 1 is the relevant one for signaling interactions before the disclo-
sure game: when comparing two signals, the sender effectively manipulates the
receiver’s belief about his evidence, while holding his true distribution over evi-
dence constant. Which juror beliefs should a prosecutor try to select for at voir dire?
How does an entrepreneur disclosing early development progress affect investor
demands for future progress?

This paper is not the first to acknowledge how the sender’s preference over
receiver beliefs is important in dynamic disclosure. Grubb (2011), Acharya et al.
(2011), and Guttman et al. (2014) have used predecessors of Theorem 1 to derive
important insights. These papers’ comparative statics results focus on the one di-
mensional Dye evidence model of Subsection 2.1 and study specific changes in
the evidence distribution that, as Subsection 3.1 elaborates, are examples of more
evidence shifts.

With regard to dynamic disclosure, Theorem 1 can be used in two ways to en-
hance our understanding. First, it can elucidate how existing insights generalize
from one dimensional “all or nothing” evidence structures to multidimensional
evidence structures, e.g., while existing insights imply that a prosecutor would se-
lect jurors who perceive them as having a lower probability of obtaining Dye type
evidence, Corollary 1 implies that prosecutors will also select jurors who believe
them to have less evidence in the sense of Definition 1, regardless of how com-
plicated the evidence structure is. Second, Theorem 1 can answer new questions
that are only relevant to multidimensional evidence structures. In this regard, the
application in Section 6 is a proof of concept.

An (Incomplete) Intuition and Analysis Road Map The difficult direction in
proving Theorem 1 is that more evidence implies lower equilibrium actions. Note
that equilibrium behavior consists of certain subsets of sender types, “pooled sets”,
obtaining the same action from the receiver. The basic idea behind the result is
that the value of these “pooled” subsets decreases under a more evidence shift

16 For example, suppose that the disclosure order is empty, i.e., ⪰d admits no non-reflexive
relations, with the interpretation that every type can verifiably distinguish themselves from all
other types. The ROE has full separation, the actions do not depend on the distribution, and
f ≥ME g ∀f, g ∈ ∆T , which means that it is possible that E[v(t)|t ∼ f ] ≥ E[v(t)|t ∼ g].
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in the distribution of types. Because there are no restrictions on the receiver’s
preferences, the value of an arbitrary subset of types can go up or down with a
more evidence shift. Thus, the key steps in establishing the main result are to (i)
understand what is special about pooled subsets in the ROE, and (ii) connect these
properties with the effects of a more evidence shift in the receiver’s beliefs.

To preview the analysis, consider the following compelling, but ultimately in-
complete, intuition. Sender types that mimic other types in equilibrium are both
more dominant in the disclosure order (have the ability to mimic) and have lower
value to the receiver (have the incentive to mimic). Because a more evidence
change shifts probability to more dominant types in the disclosure order, in equi-
librium, it also shifts probability to lower value types, thereby decreasing the re-
ceiver’s best response. This intuition turns out to be correct in the Dye evidence
model, as illustrated in the first disclosure order of the example below, but not in
multidimensional evidence structures, as illustrated in the second disclosure order
of the example below which adds an additional piece of available evidence.

Example 1. For illustration, consider a prosecutor (the sender) disclosing evidence
to attempt to persuade a representative juror (the receiver) to convict a defendant
for a crime committed sometime between 8 and 11 am. Suppose that the investi-
gation could potentially turn up a witness – A, who was at the crime scene around
8 am (but not after), and reports whether they saw the crime being committed or
not. The type space is T = {t∅, A+, A−} indicating that witness A did not make
a usable statement, they saw the defendant, and they did not see the defendant
respectively. The receiver has quadratic loss and v(A+) > v(t∅) > v(A−). For any
receiver beliefs, the ROE involves type A+ disclosing, and A− withholding to pool
with t∅. Now consider two receiver beliefs f, g ∈ ∆T , such that f ≥ME g. In order
to confirm Theorem 1 we only have to look at the value of the pooled set {t∅, A−}.
Indeed f moves probability up the disclosure order from t∅ to A− relative to g, and
so because v(A−) < v(t∅) it holds that Vf ({t∅, A−}) ≤ Vg({t∅, A−}).

Now consider the following simple multidimensional extension of this evidence
structure. There is another witness – B, who was at the crime scene around 11 am
(but not before), and also reports whether they saw the crime being committed
or not. For the sake of keeping illustrations simple, suppose that B can only be
potentially sought out if A has first made a statement, so that this corresponds to
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v(t∅) = .5

v(A+) = .6

v(A−) = .45

v(A+B+) = 0

v(A+B−) = .8

v(A−B−) = .35

v(A−B+) = .9

P1

P2

P3

P4

Figure 4: An example where v(·) is not decreasing in ⪰d within each pooled set.

a sequential collection multidimensional evidence structure from Subsection 2.1.
The type space is now {t∅, A+, A−, A+B+, A−B−, A+B−, A−B+}, where B+ and B−

indicate that witness B reported seeing and not seeing the defendant respectively,
whereas A+ and A− indicate that B did not make a usable statement. The receiver’s
preferences and the disclosure order are displayed in Figure 4. The prosecutor’s
case is stronger with a single positive identification than a negative identification
or unusable testimony. However, two positive identifications, i.e., A+B+, is bad
for the prosecution’s case as two witnesses reporting they saw the crime being
committed at different times gets the case thrown out.

Now, consider two distributions, f, g ∈ ∆T where g is the uniform distribu-
tion over T , f ≥ME g, and, for simplicity, f is a “small deviation” from g.17 The
dotted ellipses in Figure 4 display the equilibrium pooled sets under both f and
g.18 In particular, the lowest payoff pooled set involves both types A+B+ and A+

mimicking t∅. Theorem 1 shows that πf (t|UR) ≤ πg(t|UR) ∀t ∈ T . This means
that the value of P1 = {A+B+, A+, t∅} is lower under f than g. However, unlike

17 For example, let f(t) ∈ [g(t)− ε, g(t) + ε] for small ε > 0. This assumption guarantees that the
equilibrium pooled sets are the same between f and g.

18 Each type declares the least dominant type according to ⪰d within their pooled set: every
t ∈ P1 declares t∅, every t ∈ P2 declares A−, and A+B− and A−B+ truthfully declare.
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in the Dye model, the receiver’s value is not decreasing in the disclosure order
within P1, and so we cannot appeal to the same intuition. Relative to g, f shifts
probability from A+ to A+B+ which decreases the receiver’s value, but also shifts
probability from t∅ to A+ which increases the receiver’s value. While this example
has been constructed to be simple and isolate the non-monotonicity, such patterns
occur regularly as part of pooled sets in multidimensional evidence structures.

In order to establish Theorem 1 we need to understand the structure of the
ROE pooled sets, e.g., what is special about the set {t∅, A+, A+B+} in the exam-
ple above? Proposition 1 identifies this property which also leads to an algorithm
for constructing the ROE and an explicit expression for ROE actions in Theorem 2.
In Section 5, I show that this defining feature of pooled sets also characterizes when
the value of a set decreases under any more evidence shift. I illustrate these results
throughout using the example from Figure 4: after Definition 2 and after Propo-
sition 2 for the equilibrium characterization results, and in Subsection 5.1 for the
comparative statics result.

3.1. More Evidence and More Skepticism: Examples

Dye Evidence Model In the Dye evidence model,

f ≥ME g ⇐⇒ f(t∅)g(ti) ≤ f(ti)g(t∅) ∀i = 1, ..., n− 1. (3)

One receiver belief has more evidence than another, and is thereby less preferred
by the sender, if and only if the probability of each evidence type has increased
relative to the no evidence type. The more evidence relation imposes no restric-
tions on the relative probability of evidence types even though these types may
pool together by withholding.

Various well known comparative statics are examples of the comparison in (3).
For example, many Dye evidence models parameterize the distribution over evi-
dence as follows: the sender obtains no evidence, i.e., is t∅, with probability 1 − p,
and obtains evidence ti with probability ph̃(ti) for h̃ ∈ ∆{t1, ..., tn−1}, and p ∈ (0, 1).
Jung and Kwon (1988) observed that increasing p while holding h̃ constant de-
creases the action for non-disclosure. It is easy to check that this change satisfies
the comparison in (3) and thereby corresponds to a more evidence change. An
immediate implication is that, in a dynamic disclosure framework where the final
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period is Dye disclosure, the sender will prefer actions in earlier periods that signal
he has a low probability p of obtaining evidence in the future. This is a key result
used in the dynamic disclosure papers Grubb (2011) and Acharya et al. (2011).

The key comparative static in Guttman et al. (2014) also pertains to the Dye
evidence model. For a fixed evidence distribution h ∈ ∆T , they condition on a
set of evidence types S ⊂ {t1, ..., tn−1} and the no evidence type to obtain h|S(t).19

Their backbone result finds that h|S′ induces a higher non-disclosure action than
h|S′′ for S ′ ⊂ S ′′. Again, it is straightforward to check that these two distributions
are comparable according to (3) and so this conclusion is an example of Theorem 1.

Multidimensional Evidence Theorem 1 shows how certain comparative statics
results from the Dye model generalize to multidimensional evidence structures.
Consider parameterizing the evidence distribution as follows. Fix the distribution
of each piece of evidence i ∈ 0, 1, ..., k as h̃i ∈ ∆E. The number of evidence pieces
is drawn from η ∈ ∆{0, 1, ..., k}.20 Call the induced distribution over evidence hη.
It is straightforward to check that if η′ monotone likelihood ratio (MLR) dominates
η′′, i.e., η′(i)η′′(j) ≥ η′(j)η′′(i) ∀i ≥ j, then hη′ has more evidence than hη′′ .

This comparison generalizes the above Dye evidence comparative static on p.
The fact that Theorem 1 is a characterization of when beliefs are worse for the
sender ((2)) reveals that other natural generalizations would not work. In par-
ticular, if η′ FOSD η′′ but η′ does not MLR dominate η′′, then there exist receiver
preferences and an evidence realization such that the sender does worse when the
receiver believes he has evidence distributed according to η′′ than according to η′.

Honest Types A natural intuition is that the strategic sender does better if he is
thought to be honest with higher probability. The idea is that evidence realizations
that would be withheld by a strategic sender to mimic some type t, are declared by
an honest sender. This in turn makes the receiver treat the sender more favorably
when he declares that he is type t. While this intuition has been confirmed with

19 Formally this is defined as h|S(t) ≡ (h(t)/ (H(S ∪ {t∅})))1t∈S∪{t∅}. This emerges naturally as
an object of interest in their model because they focus on pure strategy equilibria and so the set of
evidence types that make a given disclosure in period 1, which is what the receiver conditions on
in period 2, will be a subset of evidence types.

20 In the independent collection case, the l pieces are sampled uniformly without replacement,
and in the sequential collection case, the sender obtains evidence with indices {0, 1, ..., l}.
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specific evidence structures, Theorem 1 delivers this result generally.

Parameterize the distribution of evidence as follows. Let the probability of an
honest and strategic sender be p, 1 − p ∈ (0, 1) respectively. Let the distribution
over disclosable evidence conditional on the nature of the sender be h̃θ ∈ ∆T ′

for θ ∈ {S,H}. Denote the distribution over the total type space as hp ∈ ∆T =

∆(T ′×{S,H}). It is straightforward to check that for p′ ≥ p′′, hp′′ has more evidence
than hp′ . By Theorem 1, the sender does better when facing any receiver who holds
beliefs hp′ as compared with hp′′ .

4. Equilibrium Characterization

The equivalence in Theorem 1 relies on the structure of the ROE. This section
characterizes this structure and provides two ways to find the corresponding equi-
librium actions. Since I focus on a single distribution in this section, it is without
loss to assume a full support receiver prior belief h ∈ ∆T .

The following notation is useful. For S̃ ⊂ T , let W (S̃) ≡ {t ∈ T : ∃s ∈ S̃, s ⪰d t},
and B(S̃) ≡ {t ∈ T : ∃s ∈ S̃, t ⪰d s}. W (S̃) is the set of types that can be mimicked
by some type in S̃, and B(S̃) is the set of types that can mimic some type in S̃. The
subset S̃ ⊂ S is a lower (respectively upper) contour subset of S if W (S̃) ∩ S = S̃

(respectively B(S̃) ∩ S = S̃).

4.1. Equilibria as Partitions

Let π : T → R be some (not necessarily receiver optimal) equilibrium allocation
with π(T ) = {π1, ..., πk} with i < j =⇒ πi < πj . Denote the equivalence classes
induced by π as Pi = {t ∈ T : π(t) = πi} ∀i = 1, ...,m. I refer to P = (P1, ..., Pm)

as an equilibrium partition and each Pi as an equilibrium pooled set. While the allo-
cation clearly pins down the equilibrium partition, an equilibrium partition also
pins down the allocation. Because each t ∈ Pi is assigned the same action πi, this
action must be the receiver’s best response to the set as a whole, i.e. πi = Vh(Pi).
Saying that P = (P1, ..., Pm) is an equilibrium partition thereby means that there is
an equilibrium which allocates Vh(Pi) to every t ∈ Pi with Vh(Pi) is increasing in i.

Any candidate equilibrium partition must respect the sender’s incentives. That
is if t′ ⪰d t′′ then π(t′) ≥ π(t′′), i.e. t′ ∈ Pi, t′′ ∈ Pj =⇒ i ≥ j. I call a partition
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satisfying this property an interval partition. Each part Pi of an interval partition
is an interval in the sense that if t, t′′ ∈ Pi, and t ⪰d t

′ ⪰d t
′′, then t′ ∈ Pi.

To summarize, if P is an equilibrium partition, then P is an interval partition
with Vh(Pi) increasing in i. With one technical caveat, the converse is also true.21 As
a consequence, unrefined PBE pin down very little about which sets are pooled.22

However, focusing on the ROE guarantees additional structure on pooled sets.

4.2. The Receiver Optimal Equilibrium Partition

In the ROE, pooled sets have the additional property that they cannot be further
“separated”. Consider splitting some pooled set P into two parts P and P , where
Vh(P ) ≥ Vh(P ) ≥ Vh(P ). Clearly this allocation provides the receiver with more
information about the sender’s type, so in the ROE this must be prevented by the
sender’s incentives. One possibility is that some sender types in P have the ability
to mimic types in P , i.e. W (P ) ∩ P ̸= ∅. This is formalized below.

Definition 2. The receiver’s best response, Vh, is downward biased on (S,⪰d) if

Vh(W (S̃) ∩ S) ≥ Vh(S) ∀S̃ ⊂ S.) (4)

I refer to sets of types over which the receiver’s best response is downward bi-
ased as downward biased sets. The downward biased condition says that every
lower contour subset of S, i.e., a subset that cannot mimic any type in its comple-
ment, has lower value than the set as a whole. Because of the assumptions on UR,
the value of each lower contour subset is also lower than its complement in S.

It is important to note that S being downward biased does not imply v is de-
creasing on (S,⪰d). Figure 4 exemplifies this: v is non-monotonic in the disclosure
order on the pooled set {t∅, A+, A+B+} —- v(t∅) = .5, v(A+) = .6, and v(A+B+) = 0

21 The remaining feature is that there must exist a pooling strategy for each Pi, i.e. σ : Pi → ∆Pi

such that each on path type declaration in Pi induces the same best response from the receiver, and
off-path beliefs can be set sufficiently low. This condition is not pivotal in the analysis and so I defer
its characterization to Appendix A.

22 For an example of non-uniqueness consider that T ≡ {t1, t2, t3} with t3 ⪰d t2 ⪰d t1, UR is
quadratic loss, and v(t1) = 0, v(t2) = 10, and v(t3) = −5. Under any distribution h ∈ ∆T such that
h(t2) = h(t3), the ROE partition is given by ({t1}, {t2, t3}). However, full pooling where all types
declare t1 is also a PBE (with any other declaration assumed to come from t3). Theorem 1 does
not hold for this pooling equilibrium, as the equilibrium action for all types is given by Vh(T ) =
5/2H({t2, t3}) which is strictly increasing in H({t2, t3}) – a more evidence change.
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— but this set is downward biased under the uniform distribution g. To see this,
note that there are two proper lower contour subsets — {t∅}, and {t∅, A+} with
Vg({t∅}) = .5 and Vg({t∅, A+}) = .55 — both greater than V ({t∅, A+, A+B+}) = .366.

Proposition 1. Let P be a partition of T , where Vh(Pi) is increasing in i. P is the unique
receiver optimal equilibrium partition if and only if

Vh is downward biased on (Pi,⪰d) ∀i, and (5)

(P1, ..., Pm) is an interval partition of (T,⪰d). (6)

If each part of an equilibrium partition is downward biased, then it cannot be
refined and preserve sender incentive compatibility. To see this, consider a new
candidate equilibrium partition that refines some downward biased part Pi into
P̃1, P̃2, ..., P̃k where Vh(P̃i) is strictly increasing in i; in particular Vh(P̃1) < Vh(Pi).
Because of sender incentive compatibility, it must be that each t ∈ P̃1 cannot mimic
any type in Pi \ P̃1, or alternatively, P̃1 is a lower contour subset of Pi. But this
yields a contradiction, as Pi being downward biased implies that Vh(P̃1) ≥ Vh(Pi).

However, alternative equilibrium partitions can also be incomparable with the
receiver optimal partition, i.e. neither refinements nor coarsenings. To get an intu-
ition for the argument for Proposition 1, let P ∗ be an interval partition satisfying
the downward biased condition on each part, and let P be some arbitrary alter-
native equilibrium partition. I show that the receiver does better under P ∗ than
under P on each part P ∗

i . This is potentially counter-intuitive because the receiver
can assign types in P ∗

i a variety of actions under P while pooling them all at Vh(P
∗
i )

under P ∗. It turns out that because of the downward biased property, the variety
in actions under P is tailored to exactly oppose the receiver’s preferences.

To see why, let ak ≡ Vh(Pk) and let Qk ≡ Pj ∩ P ∗
i refer to the types in P ∗

i that get
action ak under P with a1 < ... < ak′ < Vh(P

∗
i ) < ak′+1 < ... < an. Observe that

for each j, ∪j
k=1Qk is a lower contour subset of P ∗

i and so by the downward biased
property Vh(∪j

k=1Qk) ≥ Vh(P
∗
i ). Similarly ∪n

k=jQk is an upper contour subset of P ∗
i

and so Vh(∪n
k=jQk) ≤ Vh(P

∗
i ). That is, P gives lower actions than P ∗ to subsets of

types for which the receiver actually prefers higher actions and vice versa. Figure 5
illustrates this pattern: the action ak under P is further away from the optimal action
for that set than is Vh(P

∗
i ). The proof of Proposition 1 transforms the alternative
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allocation by iteratively moving the actions down to Vh(P
∗
i ) for the lower contour

subsets (respectively up for the upper contour subsets) in a way that improves the
receiver’s utility at each stage.

Types higher in ⪰d

Action

Vh(Q1)

Vh(Q1 ∪Q2 ∪ · · · ∪Qk′)

Vh(Q1 ∪Q2)

Vh(Qk′+1 ∪ · · · ∪Qn)

Vh(Qn)

Vh(P
∗
i )

a1

a2

ak′

ak′+1

an

Figure 5: An ROE part P ∗
i intersects an alternative partition.

4.3. Solving for the Receiver Optimal Equilibrium

Lemma 1. For any set (S,⪰d), let J ⊂ argmin
S̃⊂S

Vh(W (S̃)∩S) and J ⊂ argmax
S̃⊂S

Vh(B(S̃)∩

S). Both ∪Ŝ∈JW (Ŝ) ∩ S and ∪Ŝ∈JB(Ŝ) ∩ S are downward biased sets.

Lemma 1 says that Vh is downward biased on any minimal-valued lower con-
tour subset or maximal valued upper contour subset. If there are multiple extrema,
then Vh is downward biased on any union. The ability to find downward biased
sets is useful in finding the ROE partition. Consider applying the above result as
follows. Begin with the entire type set T and use Lemma 1 to find a downward
biased P1. Next remove P1 and apply Lemma 1 to T \ P1 to find another down-
ward biased set P2. Repeat this process, until the type space is exhausted. This
algorithm, which I call partition into pooled sets, generates the ROE partition.
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ALGORITHM 1: Partition into Pooled Sets
Input: (T,⪰d)

Output: ROE partition
i = 1; S1 = T ;
while Si ̸= ∅ do

P i = argminS̃i⊂Si
Vh(W (S̃i) ∩ Si);

Pi = ∪S∈P i
S;

i = i+ 1;
Si = Si−1 \ Pi−1;

end

Proposition 2. The output of “Partition into Pooled Sets” is the ROE partition.

The algorithm constructs the ROE partition “bottom-up”, i.e. starting with the
lowest payoff part.23 Acharya et al. (2011) showed that, in the Dye model, the
lowest payoff obtained by the sender is the minimum valued set that contains
t∅; a result they termed “the minimum principle”. Proposition 2 generalizes this
insight: the lowest action pooled set is a minimal valued lower contour subset.

Constructing Pooled Sets in the Example from Figure 4 To illustrate the algo-
rithm consider the example from Figure 4 with the uniform distribution g over T .
Any lower contour subset contains the no evidence type t∅. Since A+B− and A−B+

are the highest value types and also undominated according to ⪰d, they cannot be
included in the minimal value lower contour subset. Similarly, A+B+ and A−B−

are undominated types with the lowest values and dominate the higher value
types A+ and A− respectively, and so if the former types are included so are their
latter counterparts. This reveals that the relevant lower contour subsets for com-
parison and their associated values are given by v(t∅) = .5, Vg({t∅, A−, A−B−}) =
.433, Vg({t∅, A+, A+B+}) = .366, and Vg({t∅, A−, A−B−, A+, A+B+}) = .38; so {t∅, A+, A+B+} =

P1 is the lowest valued pooled set. Excluding these types leaves a simple Dye
evidence structure composed of types {A−, A−B+, A−B−}, and an isolated A+B−

type. This immediately gives the equilibrium behavior illustrated in Figure 4.

23 When the minimization is replaced with a maximization, and the W operator is replaced with
the B operator, the algorithm constructs the same equilibrium partition “top-down”, i.e. starting
from the highest payoff part.
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While the above algorithm provides a way to determine the whole equilibrium
allocation, the following theorem provides a single program that characterizes the
equilibrium action for an arbitrary type.

Theorem 2. The ROE allocation satisfies

πh(t|UR) = min
{Sa: t∈Sa}

max
{Sb: t∈Sb}

Vh(W (Sa) ∩B(Sb)). (7)

The interpretation of Theorem 2 is that the pooled set for a given type t results
from the combination of two forces. First, type t chooses some set of dominated
types to pool with — B(Sb) — in order to increase the receiver’s best response.
Second, the types dominating this chosen set — W (Sa) — will pool with t if it
improves their value. This latter process serves to lower the value as these more
dominant types will only pool with t if they have relatively lower value. Thus the
min-max in (7) comes from (i) types that dominate t pooling with t to minimize his
action (because it improves their own) and (ii) t pooling with types he dominates
in order to maximize his action. The program in (7) reveals the complexity in the
general disclosure game: a type t considering mimicking t′ cannot just consider
the value of t′ but also all the types in B(t′), i.e., those that also have the ability
to mimic t′, and of course, this consideration also flows in the opposite direction
when types consider mimicking t.

Application to Honest Types Theorem 2 can be applied to the honest types model
from Subsection 2.1. Recall that the type space T ≡ T ′×{S,H} is composed of dis-
closable evidence {T ′,⪰′

d} and an indicator θ ∈ {S,H} for whether the sender is
strategic S and can disclose according to ⪰′

d or honest H and must truthfully reveal
t ∈ T ′. For any R ⊂ T ′, define

Ṽ (R) ≡ max
H̃⊂R

Vh((R× {S}) ∪ (H̃ × {H})). (8)

This is the receiver’s best response to the strategic senders with evidence in R and
the honest senders with evidence H̃ ⊂ R. The selected H̃ is the subset of types in
R who have higher value than Ṽ (R) and so mechanically Ṽ (R) ≥ Vh(R), ∀R ⊂ T ′.
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Proposition 3. The ROE allocation in an honest types model is given by

πh((t, S)|UR) = min
{Sa⊂T ′: t∈Sa}

max
{Sb⊂T ′: t ∈Sb}

Ṽ (W (Sa) ∩B(Sb)),

πh((t,H)|UR) = min{πh((t, S)|UR), v(t)}. (9)

The ROE actions for strategic types are the same as in a standard disclosure
game without the honest senders, but where the receiver has more favorable beliefs
about the sender: his best response to all subsets shifts up from Vh to Ṽ . On the
other hand the receiver obtains his bliss point for any nonstrategic sender with
value less than the ROE action of his strategic counterpart. The argument for the
result uses Theorem 2. The idea is that Sb in (7) can be altered to include or exclude
arbitrary honest counterparts of the strategic types in W (Sa) ∩ B(Sb). Since Sb is
chosen to maximize the receiver’s value, this yields the objective in (8).

5. Why More Evidence implies More Skepticism

The previous section characterized pooled sets as those over which the receiver’s
best response is downward biased. Still, because the downward biased property
does not imply monotonicity, we cannot employ standard comparative statics to
show that the value of a pooled set decreases under a more evidence shift. Estab-
lishing this fact, which serves as the backbone for the proof of Theorem 1, is the
goal of this section. For ease of exposition, I assume all distributions have full sup-
port and that the receiver has quadratic loss so that Vf (S) = E[v(s)|s ∈ S, s ∼ f ].24

Proposition 4. Let (S,⪰d) and f ∈ ∆S. Vf (S) ≤ Vg(S) ∀g ∈ ∆S such thatf ≥ME g

with respect to (S,⪰d) if and only if Vf is downward biased on (S,⪰d).

The result says that the condition that characterizes pooled sets in the ROE
also characterizes monotone comparative statics (MCS) under a likelihood ratio
increase in the distribution up a partially ordered set, i.e., a more evidence shift.
Proposition 4 implies that equilibrium actions are lower under more evidence
changes in the receiver’s beliefs that preserve the ROE partition. At the end of
this section I discuss how to adapt this conclusion to the case in which the ROE
partition changes under a more evidence shift.

24 Subsection B.7 shows how to use these results to prove Theorem 1 which does not assume
f, g ∈ ∆T have full support and the receiver can have arbitrary utility U ∈ ΥR.
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One direction of Proposition 4 is relatively straightforward. If Vh is not down-
ward biased on (S,⪰d), there is a lower contour subset with lower value than S

as a whole. Moving probability from this subset to its complement is a more ev-
idence shift and increases the value of S. The other direction in Proposition 4 is
more complicated. One would like to use the following well known comparative
statics result: the expected value of a decreasing function is lower under a mono-
tone likelihood ratio shift. This result appeared in Topkis (1976) and is formally
reproduced below in terms of receiver best responses.

Fact 1. For f, g ∈ ∆S, if ∀t, t′ ∈ S, f(t)g(t′) ≥ f(t′)g(t) =⇒ v(t) ≤ v(t′), then
Vf (S) ≤ Vg(S).

If the disclosure order were complete, and the receiver’s best response were
decreasing in the disclosure order on any pooled set, the above fact would yield
Proposition 4. The problem is that the disclosure order is not complete, and even
if it were, as Figure 4 illustrates, no such monotonicity property holds on the ROE
pooled sets. The next section instead uses the above fact iteratively to establish
MCS for downward biased sets.

5.1. Iteratively Pooling Subsets

Consider a downward biased set (S,⪰d) and two distributions f, g ∈ ∆S such
that f ≥ME g. For ease of exposition, assume that for any two different types
t′, t′′ ∈ S, f(t′)/g(t′) ̸= f(t′′)/g(t′′). Order types according to their likelihood ratio
as S = {t1, ..., tn} where f(ti)/g(ti) > f(tj)/g(tj) ⇐⇒ i > j. Because f ≥ME g, this
likelihood ratio order refines the disclosure order ⪰d, i.e., ti ⪰d tj =⇒ i ≥ j. The
important implication is that any lower truncated set of types, {t1, ..., tl}, is also a
lower contour subset of S. This means that the downward biased property implies
that Vf ({t1, ..., tl}) ≥ Vf (S) ∀l = 1, ..., n. I prove Proposition 4 by appealing to the
algorithm described below. In the main text I provide a proof sketch in the case
where UR is quadratic loss, and an illustration in the context of Figure 4. I leave
the proof in the general case to Appendix B.

Description of the Algorithm The algorithm begins with the complete partition,
Q1 = ({t1}, {t2}, ..., {tn}). Beginning with t1, the algorithm repeatedly forms the
largest consecutive sequence of elements such that v(tj) is decreasing in j. That
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is, the first sequence is {t1, t2, ..., tI1} such that v(t1) ≥ ... ≥ v(tI1) and v(tI1) <

v(tI1+1), the second sequence is {tI1+1, ..., tI2} such that v(tI1+1) ≥ ... ≥ v(tI2) and
v(tI2) < v(tI2+1), and so on until all types in S are exhausted. Next, a coarser par-
tition Q2 is formed by pooling all the elements of each decreasing sequence into
an associated single part with value determined by Vf (·). That is, Q2

1 ≡ {t1, ..., tI1},
Q2

2 = {tI1+1, ..., tI2}, and so on. This process is repeated: at each stage, Qi is coars-
ened into Qi+1 where each part of Qi+1 pools a consecutive sequence of Qi

j over
which Vf (Q

i
j) is decreasing in j. The algorithm concludes at stage T defined by

QT = QT+1, i.e. where Vf (Q
T
i ) is strictly increasing in i.

Proof Sketch of Proposition 4 Consider an arbitrary partition element, Qt
i, at

stage t > 1. Because each stage coarsens the partition, Qi
j is composed of “adja-

cent” parts from the previous partition, i.e., Qi
j = ∪l

l=lQ
i−1
l for some l < l, where

Vf (Q
i−1
l ) is decreasing in l for l = l, l + 1, ..., l. This means that, using Fact 1,

l∑
l=l

Vf (Q
i−1
l )G(Qi−1

l ) ≥
G(Qi

j)

F (Qi
j)

l∑
l=l

Vf (Q
i−1
l )F (Qi−1

l ) = G(Qi
j)Vf (Q

i
j),

where the last line makes use of the fact that the receiver has quadratic loss so that
Vf is a conditional expectation. By summing over all parts in Qi, we get∑

l

Vf (Q
i−1
l )G(Qi−1

l ) ≥
∑
l

Vf (Q
i
l)G(Qi

l).

Since this inequality holds at each stage, it holds between i = 1, where each part is
a single element, and the terminal stage i = T , i.e.,

Vg(S) =
∑
i

v(tj)g(ti) ≥
∑
i

Vf (Q
T
i )G(QT

i ).

If the terminal partition is trivial, i.e., QT
1 = S, then the right hand side is Vf (S),

which completes the argument. If the terminal partition is not trivial, then Vf (Q
T
1 ) <

Vf (S) which contradicts the downward biased property.

Comparative Statics in the example from Figure 4 Recall the pooled set P1 =

{t∅, A+, A+B+} from Figure 4 which is downward biased under the uniform dis-
tribution g. Let f ≥ME g, which in this case means that f MLR dominates g on
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the ordered set (t∅, A+, A+B+). Let f̃ and g̃ be respective distributions of f and g

conditioned on P1, so that G̃(P1) = F̃ (P1) = 1. Note that f̃ and g̃ retain the MLR
order.

The algorithm starts at the complete partition — Q1 = ({t∅}, {A+}, {A+B+}),
and forms maximum decreasing sequences according to v and the disclosure order.
These sequences are collapsed into new elements of the partition Q2, i.e., Q2

1 = {t∅}
and Q2

2 = {A+, A+B+}. Notice that because the receiver’s value is decreasing on
each part of this new partition, Vg̃(Q

2
i ) ≥ Vf̃ (Q

2
i ) ∀i = 1, 2.

The process repeats and, because Vg̃(Q
2
1) = v({t∅}) = .5 ≥ .3 = Vg̃({A+, A+B+}) =

Vg̃(Q
2
2), forms the sequence (Q2

1, Q
2
2) coarsening Q2 into the trivial partition. Notice

again that because Vg̃(Q
2
1) ≥ Vg̃(Q

2
2), and f̃ MLR dominates g̃,

Vg̃(Q
2
1)F̃ (Q2

1) + Vg̃(Q
2
2)F̃ (Q2

2) ≤ Vg̃(Q
2
1)G̃(Q2

1) + Vg̃(Q
2
2)G̃(Q2

2).

Putting the inequalities gleaned at each stage together gives

Vf (P1) = Vf̃ (P1) =v(t∅)f̃(t∅) + v(A+)f̃(A+) + v(A+B+)f̃(A+B+)

=Vf̃ (Q
2
1)F̃ (Q2

1) + Vf̃ (Q
2
2)F̃ (Q2

2)

≤Vg̃(Q
2
1)F̃ (Q2

1) + Vg̃(Q
2
2)F̃ (Q2

2)

≤Vg̃(Q
2
1)G̃(Q2

1) + Vg̃(Q
2
2)G̃(Q2

2)

=Vg̃(P1) = Vg(P1).

5.2. Changes in the Equilibrium Partition

Proposition 4 is only sufficient to show that more evidence implies lower equi-
librium actions in the case when the ROE partition is constant. This subsection
provides intuition for extending the argument to cases in which the ROE partition
changes when the sender has more evidence.

Consider that f ≥ME g. For simplicity, let the associated ROE partitions P g =

(P g
1 , P

g
2 ) have two elements, while P f = (P f

1 ), has only one. For α ∈ [0, 1], define
the combination distribution, hα ≡ αf+(1−α)g with corresponding ROE partition
Pα ≡ (Pα

1 , ..., P
α
mα

). By Proposition 1 Vg(P
g
1 ) < Vg(P

g
2 ), and Vf (P

g
1 ) ≥ Vf (P

g
2 ).

Because the receiver’s best response to these subsets is continuous in α, there
must exist some α∗ above which the ROE partition changes from P g to P f and
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Vhα∗ (P
g
1 ) = Vhα∗ (P

g
2 ). For simplicity, suppose that this is the only change in the

ROE partition as α increases from 0 to 1. Notice that for α > α′, hα ≥ME hα′ ,
and so Proposition 4 completes the argument in this case. The idea is that each
equilibrium part – P g

1 and P g
2 – decreases in value as α increases, until equalizing

at α = α∗. For α > α∗, all types pool together and so again by Proposition 4, the
value of P 1

f = S decreases in α.

6. Application to Dynamic Disclosure

Consider an entrepreneur making progress on a project that he can eventually
disclose to a venture capitalist in order to obtain an investment. Naturally this
progress happens gradually: first, perhaps the entrepreneur attempts to develop
a prototype, and only after can he potentially run performance test. This presents
the investor with the opportunity to speak with the entrepreneur at some inter-
mediate stage when potentially not all the evidence has arrived. Can the investor
benefit from these additional communications or should he just wait until mak-
ing his investment to consult with the entrepreneur? The depth in this question
is particular to multidimensional evidence structures: if the entrepreneur could
potentially obtain only a single piece of evidence as in the Dye model, any early
signaling would essentially end the game.

Broad lessons from dynamic mechanism design speak to the potential benefits
of this early communication when the entrepreneur has less private information
about his eventual progress. On the other hand, in a framework where investment
decisions are made only based on final disclosures, one might doubt whether early
disclosures would ever be made by the entrepreneur: why would he want to dis-
close early progress only to set expectations high for the future? Below, I develop a
simple two period extension to the static disclosure model, and characterize when
the receiver can and cannot benefit from early disclosure.

6.1. Dynamic Arrival of Evidence

A single sender and a single receiver interact over two periods. The disclosure
in each period follows the structure of the main text model in Section 2. The sender
has evidence ti ∈ T in period i, where |T | = n. In each period i, the sender sends
a message si ∈ T which is constrained according to the disclosure order ⪰d, i.e.,
si ∈ {s : ti ⪰d s}. I assume that there is a “no evidence type” t∅ ∈ T such that
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t ⪰d t∅ ∀t ∈ T . Sending t∅ in either period is interpreted as non-disclosure. The
type space and disclosure order, (T,⪰d), remain the same across periods. After
observing the disclosure in each period, s1 and s2, the receiver takes an action a to
maximize UR(a, t2) where UR ∈ Υ. That is, the receiver only cares about the final
evidence of the sender when selecting his action. I maintain that the sender simply
wants to maximize the chosen action a.

The sender’s evidence arrives gradually, and so his type changes between pe-
riods. The distribution of evidence t1 in period 1 is given by h1 ∈ ∆T which is
assumed to have full support. The probability of evidence t2 in period 2, condi-
tional on t1 in period 1, is given by

h2(t2|t1) =


h̃(t2)

H̃(B(t1))
if t2 ∈ B(t1)

0 otherwise
,

for some h̃ ∈ ∆T with full support. This implies that possessing more evidence in
period 1 makes one more likely to have more evidence in period 2 in the sense of
Definition 1. Note that for t2 ̸⪰d t1, the probability of realizing t2 after t1 is zero, i.e.
the sender does not “lose evidence” over time, and, for simplicity, this is the only
way that t2 depends on t1. Also, evidence is not “time-stamped”, i.e., the sender
cannot credibly convey in period 2 when any disclosed evidence arrived.

I focus on PBE of this game with the additional assumption that the ROE char-
acterized in Theorem 2 is selected in period 2. That is, denote the receiver’s in-
terim beliefs about t2 — after observing s1, but before observing s2 — hs1 ∈ ∆T .
The equilibrium allocation as a function of the type is determined according to
πhs1

(t2|UR) ∀t2 ∈ Supp(hs1).25,26

For a given equilibrium of this dynamic disclosure game, denote π̃ : T → ∆A
as the distribution of equilibrium actions as a function of the sender’s period 2

25 Formally, given sender period 1 disclosure strategies σ1 : T → ∆T , if s1 ∈ ∪t1∈T Supp(σ1(t1)),
let h̃1(·) ≡ P(·|s1) be the receiver’s beliefs about t1 computed according to Bayes Rule, and other-
wise let h̃1 ∈ ∆(B(s1)). The interim belief given disclosure s1 is hs1(t2) ≡

∑
t1∈T h2(t2|t1)h̃1(t1).

Given this refinement, equilibria are described by a sender period 1 strategy σ1 : T → ∆T , and
interim beliefs h : T → ∆T , such that Supp(σ1(t1)) ⊆ argmaxs1∈W (t1) E[πh̃s1

(t2|UR)|t2 ∼ h2(·|t1)].
26 Recall that this equilibrium focus also corresponds to the receiver having commitment power

within but not across periods, or to the truth leaning refinement a la Hart et al. (2017) in period 2.
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type.27 Let the ex-ante distribution over period 2 types be denoted by hA ∈ ∆T .28

One equilibrium, which I term static communication, involves the sender disclos-
ing t∅ in period 1 regardless of t1. This induces an allocation that is degenerate on
πhA

(t2|UR) for every t2 ∈ T , i.e., equivalent to the ROE in a static disclosure model.
I say the receiver benefits from early inspections if there exists an equilibrium allo-
cation π̃ which the receiver prefers to the static communication equilibrium. More
specifically, the receiver benefits from early inspections if there is an equilibrium π̃

such that π̃(t2) is non-degenerate for some t2 ∈ T . Such non-degeneracy represents
the receiver obtaining instrumental information in period 1. Thus, the question of
whether the receiver benefits from early inspections reduces to whether there ex-
ists an equilibrium in which the sender makes informative disclosures in period 1.
The following feature of disclosure orders is pivotal to this question.

Definition 3. A disclosure-ordered type space (T,⪰d) has the unique evidence
path property (UEPP) if ∀t, t′, t′′ ∈ T , t ⪰d t

′ and t ⪰d t
′′ =⇒ t′ ⪰d t

′′ or t′′ ⪰d t
′.

An alternative description of the UEPP is that for any type t, W (t) is completely
ordered. In this sense, the UEPP says there is a unique “path” in the disclosure
order to each type. While every Dye model satisfies the UEPP, this is not true
for multidimensional evidence structures: the UEPP is satisfied in the sequential
evidence collection model in the right panel of Figure 2, but not in the independent
evidence collection framework in the left panel of that figure.29 Indeed, the main
interpretation of the UEPP is that the evidence is gathered through a sequential
process of investigations uniquely determined by the results of the previous one.
The motivating example of this section satisfies the UEPP: a prototype can only
be tested if it has first been successfully developed, and so revealing a successful
performance test would also reveal which prototype was developed. In the context
of criminal investigations, an alibi can only be reported if the suspect has first been
identified. If instead different pieces of evidence can be collected independently,
then the UEPP will not be satisfied.

Proposition 5. If (T,⪰d) satisfies the UEPP, then the receiver does not benefit from early

27 The receiver does not randomize over actions in period 2, rather the potential randomness in
π̃ arises due to different period 1 disclosures leading to the same period 2 disclosure.

28 That is, hA(t) =
∑

s∈T h1(s)h2(t|s).
29 Note that {0, 1} ⪰d {0} and {0, 1} ⪰d {1}, but {1} and {0} are not ordered according to ⪰d.
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inspections. If (T,⪰d) does not satisfy the UEPP, then there exists h1, h2, and UR such
that the receiver benefits from early inspections.

The more complicated implication is that the receiver does not benefit from
early inspections under the UEPP, i.e., that all equilibria are outcome equivalent
to static communication. Recall that if instrumental period 1 disclosures could be
elicited, those that lead to different ROE actions in period 2, they would be valu-
able even under the UEPP. The result holds because such early disclosures are not
incentive compatible for the sender. The key intuition is that disclosing evidence
in period 1 is bad for the sender because it effectively tells the receiver that “more
evidence” is expected in period 2 as compared to if such evidence was not held
in period 1. This in turn induces worse equilibrium actions from the receiver be-
cause of Theorem 1. Without the UEPP two available disclosures for a given sender
type t may be incomparable according to ⪰d, and so one disclosure may not signal
“more evidence” in the eyes of the receiver.30

Proposition 5 suggests that if the sender is deciding only “how much” evidence
to disclose, as in the sequential collection evidence structure, then the receiver can-
not benefit from the sender’s evidence arriving gradually. Alternatively, under the
independent collection case, where the sender additionally decides “which” evi-
dence to disclose, the receiver can benefit by speaking to the sender before he has
acquired all evidence. Importantly, such a distinction does not appear in the Dye
evidence model, and so this takeaway could not be gleaned with existing compar-
ative statics results.

A. Preliminaries

Lemma 2. Consider two distributions q1, q2 ∈ ∆T such that Vq1(T ) < (=)Vq2(T ). For
any λ ∈ (0, 1), Vq1(T ) < (=)Vλq1+(1−λ)q2(T ) < (=)Vq2(T ).

Proof. This follows directly from Hart et al. (2017) lemma 1. Q.E.D.

A set (S,⪰d) is poolable with respect to full support h ∈ ∆S if there exists a
feasible sender strategy and receiver best responses on path aσ : ∪s∈S Supp(σs) →

30 In my earlier working paper Rappoport (2020), Appendix F provides an example with infor-
mative dynamic signaling when the UEPP is violated.

31



A such that aσ(s) = Vh(S) ∀s ∈ ∪s∈S Supp(σs). Define the following useful notation
for a partially ordered set (S,⪰d):

(i) W (S) ≡ {t ∈ S : ∀s ∈ S t ̸≻d s},

(ii) V +(S) ≡ {s ∈ S : v(s) ≥ Vh(S)},

(iii) ∀W ′ ⊂ W (S) E(W ′) ≡ B(W ′) \B(W (S) \W ′), and

(iv) ∀W ′ ⊂ W (S) Q(W ′) ≡ E(W ′) ∪ (B(W ′) ∩ V +(S)).

Lemma 3. a partially ordered set.(S,⪰d) is poolable with respect to h ∈ ∆S if and only if

∀W ′ ⊂ W (S) Vh(Q(W ′)) ≥ Vh(S). (10)

Proof. “ =⇒ ” Take a pooling strategy σ. Note that it is without loss to take
Supp(σ) ⊂ W (S).31 Take W ′ ⊂ W (S). Since σ is pooling, the best response must be
aσ(w) = Vh(S) ∀w ∈ Supp(σ). Let

q(t) ≡
∑

s∈W ′ σt(s)h(t)∑
s′∈S

∑
s∈W ′ σs′(s)h(t)

,

and note that by Lemma 2 and the fact that σ is pooling, Vq(S) = Vh(S). By
definition, q(t) = h(t) ∀t ∈ E(W ′). Moreover, the induced distribution of types
given Q(W ′) adds probability of types with value greater than Vh(S) and decreases
the probability of types with value less than Vh(S), by Lemma 2 it must be that
Vh(S) ≤ Vh(Q(W ′)).

“ ⇐= ” Let H ≡ {g ∈ ∆S : W (Supp(g)) ⊂ W (S)}. By definition h ∈ H. I
show that there exists a pooling strategy on (S,⪰d)with respect to every g ∈ H that
satisfies the assumptions of the proposition by induction on |W (Supp(g))|. For the
base case of W (Supp(g)) = {w}, the strategy σt(w) = 1 ∀t ∈ S is a pooling strategy.

Now let there exist pooling strategies for all g ∈ H that satisfy (10) on W (Supp(g)),
such that |W (Supp(g))| = N and consider a distribution g′ ∈ ∆S with |W (Supp(g′))| =
N + 1 that satisfies (10) on W (Supp(g′)) ≡ W . Consider arbitrary w ∈ W . First
consider the case in which Vg′(E({w})) ≤ Vg′(S). For λ ∈ [0, 1] define Cλ and

31 For each t ∈ ∪s∈S Supp(σs) \W (S), identify arbitrary t(t) ∈ W (S). For each w ∈ W (S) define
σ̃s(w) =

∑
t̃:w=t(t̃) σs(t̃) and σ̃s(t) = 0 otherwise.
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distribution fλ ∈ ∆S as follows

Cλ ≡
∑
s∈S

(
λ1s∈Q({w}) + (1− λ)1s∈E({w})

)
g′(s),

fλ(s) ≡
(
λ1s∈Q({w}) + (1− λ)1s∈E({w})

)
g′(s)/Cλ ∀s ∈ S.

First, because E({w}) ⊂ Q({w}) fλ(s) = g′(s)/Cλ ∀s ∈ E({w}), i.e. fλ includes
all probability mass of types that must declare w. Second, note that f1 = g′|Q({w})

so Vf1(S) = Vg′(Q({w})) which means that Vf1(S) ≥ Vg′(S) by (10). Third, note
that f0 = g′|E({w}) so Vf0(S) = Vg′(E({w})) which means that Vf0(S) ≤ Vg′(S) by
assumption. Since Vfλ(S) is continuous in λ, ∃λ ∈ [0, 1] such that Vfλ(S) = Vg′(S).

Suppose now that Vg′(E({w})) ≥ Vg′(S). By definition Q(W \{w})∩E({w}) = ∅
and Vg′(Q(W \ {w})) ≥ Vg′(S) by (10). Let R ≡ Q(W \ {w})c. This means that
E({w}) ⊂ R and Vg′(R) ≤ Vg′(S) by Lemma 2. Now for λ ∈ [0, 1] redefine

Cλ ≡
∑
s∈S

(
λ1s∈R + (1− λ)1s∈E({w})

)
g′(s),

fλ(s) ≡
(
λ1s∈R + (1− λ)1s∈E({w})

)
g′(s)/Cλ ∀s ∈ S.

By symmetric logic to the above paragraph fλ(s) = g′(s)/Cλ ∀s ∈ E({w}) and
Vf1(S) ≤ Vg′(S) ≤ Vf0(S). Since the receiver’s best response is continuous in λ,
∃λ ∈ [0, 1] such that Vfλ(S) = Vg′(S).

Now consider the distribution, g′′ ∈ ∆S defined by

g′′(s) ≡ g′(s)− fλ(s)Cλ

1− Cλ

.

Since g′ is a convex combination of g′′ and fλ and Vfλ(S) = Vg′(S), by Lemma 2
Vg′′(S) = Vg′(S). By definition of fλ, g′′(s) = 0 ∀s ∈ E({w}), so W (Supp(g′′)) =

W (S) \ {w}. Thus |W (Supp(g′′))| = N .

Now I verify that S with distribution g′′ satisfies (10). Consider arbitrary W ′ ⊂
W (Supp(g′′)) = W \{w}. By construction Supp(fλ) ⊂ Q({w}) ⊂ Q(W ′∪{w}). Thus
Vfλ(Q(W ′ ∪ {w})) = Vfλ(S) = Vg′(S). By (10) on S with respect to g′, Vg′(Q(W ′ ∪
{w})) ≥ Vg′(S). Finally, since g′ is a convex combination of g′′ and fλ, by Lemma 2
Vg′′(Q(W ′ ∪ {w})) = Vg′′(Q(W ′)) ≥ Vg′(S) = Vg′′(S) and (10) is satisfied on S with
respect to g′′.
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By the induction hypothesis, ∃σ : Supp(g′′) → ∆(W (Supp(g′′))) that is pooling
with respect to g′′. Now ∀w′ ∈ W define

σ̃t′(w
′) ≡

(1− Cλfλ(t
′))σt′(w

′) if w′ ∈ W (Supp(g′′))

Cλfλ(t
′) if w′ = w

.

The best responses to σ̃ are the best responses to σ on W (Supp(g′′)) and the best
response to fλ on w. Thus σ̃ is a pooling strategy for g′ on S. Q.E.D.

Lemma 4. If Vh is downward biased on (S,⪰d) then (S,⪰d) is poolable with respect to h.

Proof. Take W ′ ⊂ W (S). Because E(W ′) is a lower contour subset of S and Vh is
downward biased on S, Vh(E(W ′)) ≥ Vh(S). By Lemma 2 Vh(Q(W ′)) ≥ Vh(S). The
result follows from Lemma 3. Q.E.D.

B. Proofs

B.1. Proof of Proposition 1

Proof. The argument for Proposition 2 provides existence of an interval partition
P ∗ such that Vh is downward biased on P ∗

i ∀i = 1, ...,m. The existence of pooling
strategies on each P ∗

i is provided by Lemma 4.32 I will show that such a partition
is the ROE partition. Suppose that π : T → R be some alternative allocation such
that t ⪰d t

′ =⇒ π(t) ≥ π(t′). Let P = (P1, ..., Pm) represent the associated interval
partition into ordered equivalence classes induced by π.

Claim 1. The receiver’s utility is higher under P ∗ than under π.

Proof of Claim: I show that the receiver’s utility is higher on each part P ∗
i . Let

Qj ≡ Pl ∩ P ∗
i and aj ≡ πl where l is the j’th highest index such that Pl ∩ P ∗

i ̸= ∅
with P ∗

i = ∪k
j=1Qj . Take k̂ such that a1 < ... < ak̂ ≤ Vh(P

∗
i ) ≤ ak̂+1 < ... < ak. Note

that because P is an interval partition, ∪k
j=1Qj ≡ Q

k
is a lower contour subset of P ∗

i

for every k. This means that Vh(Qk
) ≥ Vh(P

∗
i ) ∀k because Vh is downward biased

32 For any off path t′ ∈ P ∗
i in such a pooling strategy one can set a(t) = Vh(B(t) ∩ S) ≤ Vh(P

∗
i )

where the inequality follows for the fact that Vh is downward biased on P ∗
i .
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on each P ∗
i . By strict concavity of UR, moving the action closer to a set’s bliss point

for that set increases the receiver’s utility. Thus ∀k ≤ k̂, ∀ ã ∈ [ak, Vh(P
∗
i )].∑

t∈Q
k

UR(ak, t)h(t) ≤
∑
t∈Q

k

UR(ã, t)h(t) ≤
∑
t∈Q

k

UR(Vh(P
∗
i ), t)h(t). (11)

Using these inequalities in (11) gives

∑
t∈Q

k

UR(ak, t)h(t) +
k̂∑

j=k+1

∑
t∈Qj

UR(aj, t)h(t) ≤
∑

t∈Q
k+1

UR(ak+1, t)h(t) +
k̂∑

j=k+2

∑
t∈Qj

UR(aj, t)h(t)

A sequence of these inequalities as k ranges from 1 to k̂ − 1 gives that

k̂∑
j=1

∑
t∈Qj

UR(aj, t)h(t) ≤
∑
t∈Q

k̂

UR(ak̂, t)h(t) ≤
∑
t∈Q

k̂

UR(Vh(P
∗
i ), t)h(t).

This shows that the receiver does better on Q1 ∪ ...∪Qk̂ under P ∗ than under P . A
symmetric argument for higher actions shows that the receiver also does better on
each upper contour subset ∪k

j=k̂+1
Qj . Q.E.D.

B.2. Proof of Lemma 1

Proof. Let S∗ ∈ argminS̃⊂S Vh(W (S̃) ∩ S) with W ≡ W (S∗) ∩ S and V ≡ Vh(W ).
Suppose that ∃S̃ ⊂ W : Vh(W (S̃) ∩ W ) < Vh(W ). Since being a lower contour
subset is preserved under intersections W (W (S̃)∩W ) = W (S̃)∩W , which contra-
dicts the minimality of W in the above problem. Thus each minimizer of the above
problem is downward biased.

Now take J ⊂ argminS̃⊂S Vh(W (S̃) ∩ S) with J ≡ (S1, ..., Sk), W i ≡ W (Si) ∩ S,
and W ≡ ∪k

i=1W i. Note that because each W i is downward biased and W i\∪i−1
j=1W j

is an upper contour subset of W i, Vh(W i \ ∪i−1
j=1W j) ≤ Vh(W i) = V . Since W is the

disjoint union of these sets, i.e. W = ∪k
i=1(Wi \ ∪i−1

j=1W j), Lemma 2 implies that
Vh(W ) ≤ V . Thus W ∈ argminS̃⊂S Vh(W (S̃)∩ S), and so by the previous argument
W is downward biased. The argument is symmetric for the argmax case. Q.E.D.
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B.3. Proof of Proposition 2

Proof. Algorithm 1 produces a partition of T into disjoint sets (P1, P2, ..., Pm). I
argue that this partition satisfies the requirements of Proposition 1, and thereby
constitutes the ROE partition. Lemma 1 implies that each Pi is a downward bi-
ased set. By construction, Vh(Pi) < Vh(Pi+1), otherwise Vh(Pi ∪ Pi+1) ≤ Vh(Pi) by
Lemma 2 contradicting that Pi is selected. Now suppose that t ⪰d t′ with t ∈ Pi,
and t′ ∈ Pj such that i < j. Then W (Pi) ∩ (T \ (∪i−1

k=1Pi)) ̸= Pi again contradicting
that Pi was selected. The argument is symmetric for the argmax case. Q.E.D.

B.4. Proof of Theorem 2

Proof. Take the ROE partition (P1, ..., Pm). For t ∈ Pi, Vh(Pi) = πh(t|UR). Thus, I
prove that the solution to the problem on the right hand side of (7) is Vh(Pi). Define
S∗
a ≡ ∪i

k=1Pk and S∗
b ≡ ∪m

k=iPk. I show that choosing Sa = S∗
a bounds the value of

(7) to be less than Vh(Pi). If we instead consider

max
{Sb:t∈Sb}

min
{Sa:t∈Sa}

Vh(W (Sa) ∩B(Sb)). (12)

The argument for why choosing Sb = S∗
b bounds the max-min value in (12) to

be greater than Vh(Pi) is symmetric. The conclusion follows from the max-min
inequality which implies a saddle point.

Take feasible Sb. B(Sb) ∩W (S∗
a) = ∪i

k=1(B(Sb) ∩ Pk). By Proposition 1 and since
B(Sb) ∩ Pk is an upper contour subset of each Pk, for k ≤ i Vh((B(Sb) ∩ Pk) ≤
Vh(Pk) ≤ Vh(Pi). Thus, by Lemma 2, Vh(∪i

k=1(B(Sb) ∩ Pk)) ≤ Vh(Pi). Q.E.D.

B.5. Proof of Proposition 3

Proof. For a given subset of strategic types R ⊂ T ′ × S, let H̃(R) ⊂ R ×H , be the
set of honest types that solves (8). Let the value of the problem in (7) be V with
associated solutions S∗

a and S∗
b , where Rθ ≡ (W (S∗

a)∩B(S∗
b ))∩T ′×θ for θ ∈ {S,H}

be the associated set of strategic and honest types. First, observe that without loss
in the optimization (t,H) ∈ RH =⇒ (t, S) ∈ RS . To see this, first suppose
v(t,H) ≤ V , then setting Sb ≡ RS ∪ (RH \ (t,H)), gives Vh(W (S∗

a) ∩ B(Sb) ≥ V by
Lemma 2. Analogously, if v(t,H) ≥ V , then setting Sa ≡ RS ∪ (RH \ {(t,H)}) gives
Vh(W (Sa) ∩B(Sb)) ≤ V for any feasible Sb.
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Now note that setting Sb ≡ RS ∪ H̃(RS) in (7) gives Vh(W (Sa) ∩ B(Sb)) =

Ṽ (R) ≥ Vh(W (S∗
a) ∩ B(S∗

b )) by definition of H̃(R). Let (t, S) ∈ Pi in the ROE
partition. (t,H) /∈ Pi, then since (t,H) is isolated in T \ (∪n

j=iPi) according to ⪰d,
Proposition 2 implies that (t,H) is in a singleton pooling set and πh((t,H)|UR) =

v((t,H)). Q.E.D.

B.6. Proof of Proposition 4

Proof. “ ⇐= ” Let r : S → R be defined as r(s) ≡ UR
a (Vf (S), s) and define Er

h(S
′) ≡

E[r(s′)|s′ ∈ S ′, s′ ∼ h] for h ∈ ∆S. Notice that (i) Er
f (S) = 0, and (ii) because UR

is strictly concave, Vh(S̃) ≥ Vf (S) ⇐⇒ Er
h(S̃) ≥ 0, ∀S̃ ⊂ S, ∀h ∈ ∆S. Because

Vf is downward biased on (S,⪰d), so is Er
f . Because f ≥ME g, we can order the

elements of S as (s1, ..., sm) such that i ≥ j implies f(si)g(sj) ≥ f(sj)g(si) and
sj ̸⪰d si. Note that ∀k ≥ 1, {s1, ..., sk} is a lower contour subset of S and so because
Er

f is downward biased on S, Er
f ({s1, ..., sk}) ≥ 0. Now I will input (s1, ..., sm) into

the algorithm from Subsection 5.1 using the receiver’s set valued best response as
Er instead of V .

Because the algorithm acts on a finite set and repeatedly returns strictly coarser
partitions it must terminate at some stage T . At this point QT = QT+1 which
means that Er

f (Q
T
1 ) < ... < Er

f (Q
T
m) which implies that Er

f (Q
T
1 ) = Er

f ({s1, ..., sk}) <
Er

f (S) = 0 if QT is non-trivial. Thus QT = (S) is the trivial partition.

Consider the partition Qi = (Qi
1, ..., Q

i
m) generated at stage i > 1. Each part Qi

j is
the union of a consecutive sequence of parts from the previous partition Qi−1 of de-
creasing value. That is for each j there exists k(j) ≤ k(j) such that Qi

j = ∪k(j)
l=k(j)Q

i−1
l

and Er
f (Q

i−1
k ) is decreasing for k(j) ≤ k ≤ k(j). Moreover, the likelihood ratio

order is preserved at each stage, i.e. F (Qi
j)G(Qi

j+1) ≤ F (Qi
j+1)G(Qi

j). This means
that one can use Fact 1 on the set Qi

j , to obtain that ∀i, j,

1

G(Qi
j)

k(j)∑
l=k(j)

Er
f (Q

i−1
l )G(Qi−1

l ) ≥ 1

F (Qi
j)

k(j)∑
l=k(j)

Er
f (Q

i−1
l )F (Qi−1

l ) = Er
f (Q

i
l).

Using a string of these inequalities on each part of the partition at each stage of the
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algorithm we get,

Er
g(S) =

∑
Q1

k⊂S

Er
f (Q

1
k)G(Q1

k) ≥
∑
QT

k ⊂S

Er
f (Q

T
k )G(QT

k ) = Er
f (S).

The first equality follows from the fact that Q1 is the complete partition on S and
the second equality follows from the fact that QT = (S) is the trivial partition on S.

“ =⇒ ” Suppose there exists a lower contour subset L = W (L) ⊂ S, such that
Vf (L) < Vf (S) =⇒ Vf (L) < Vf (S \ L). Define g(s) = f(s)/F (L) if s ∈ L and
g(s) = 0 otherwise. f ≥ME g but Vf (S) > Vg(S). Q.E.D.

B.7. Proof of Theorem 1

Proof. “ =⇒ ” Note that if f ≥ME g then Zg ≡ {t ∈ T : g(t) = 0} is an upper
contour set of (T,⪰d) and Zf ≡ {t ∈ T : f(t) = 0} is a lower contour set of (T,⪰d).
Let P g = (P g

1 , ..., P
g
l , Z

g) be the ROE partition under g and take arbitrary j and
t ∈ P g

j . Define Dg ≡ ∪j
k=1P

g
k and consider the problem,

max
S̃⊂T : B(S̃)∩(Dg\Zf )̸=∅

Vf (B(S̃) ∩ (Dg \ Zf )), (13)

with corresponding solution S with R ≡ B(S)∩(Dg \Zf ). Note that R ⊂ Supp(f)∩
Supp(g). Because Dg \ Zf is a feasible Sa in Theorem 2 under f , Vf (R) ≥ πf (t|UR).
By Lemma 1 Vf is downward biased on R. Thus by Proposition 4, this means that
Vg(R) ≥ Vf (R). Now notice that by Proposition 2,

πg(t|UR) = max
S̃⊂T : B(S̃)∩Dg ̸=∅

Vg(B(S̃) ∩Dg).

Moreover, because Zf is a lower contour subset of T ,

max
S̃⊂T : B(S̃)∩Dg ̸=∅

Vg(B(S̃) ∩Dg) ≥ max
S̃⊂T : B(S̃)∩(Dg\Zf )̸=∅

Vg(B(S̃) ∩ (Dg \ Zf )).

Thus πg(t|UR) ≥ Vg(R). Putting this string of inequalities together gives the de-
sired conclusion that πf (t|UR) ≤ πg(t|UR).

“ ⇐= ” Let t ⪰d t′ and f, g ∈ ∆T such that f(t)g(t′) < f(t′)g(t) with t′ ∈ I .
Define S ≡ W ({t}) ∩ B({t′}), and S̃ ≡ S \ {t, t′}. Notice that either (a) F (S̃ ∪
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{t})/f(t′) < G(S̃ ∪ {t})/g(t′), or (b) f(t)/F (S̃ ∪ {t′}) < g(t)/G(S̃ ∪ {t′}). Consider
two actions v > v and let UR be quadratic loss, with (i) v(s) = v ∀s /∈ W ({t}), (ii)
v(s) = v ∀s ∈ W (t)\B(t′), (iii) in case (a) v(s) = v ∀s ∈ S̃ in case (b) v(s) = v ∀s ∈ S̃,
(iv) v(t) = v, and (v) v(t′) = v.

For any distribution h ∈ ∆T , the ROE partition is made up of 3 parts given by
P1 = W ({t}) \ S, P2 = S and P3 = T \ W ({t})). The associated actions (as long
as each part has positive support are Vh(P1) = a, Vh(P3) = a, and Vh(P2) = Vh(S).
Vf (S) > Vg(S) in either case. Thus πf (t

′|UR) > πg(t
′|UR). Q.E.D.

B.8. Proof of Proposition 5

Proof. Recall that given a period 1 sender strategy σ : T → ∆T , hs ∈ ∆T is the
receiver’s interim belief following period 1 disclosure s. Note that

hs(t2) =

∑
t1∈W ({t2})

h̃(t2)

H̃(B(t1))
σt1(s)h1(t1)∑

t1∈T σt1(s)h1(t1)
. (14)

Claim 2. Suppose s′, s′′ ∈ ∪t1∈T Supp(σt1), S ⊂ T is an interval, S ∩ Supp(hs′) ̸= ∅,
and S ∩ Supp(hs′′) ̸= ∅. If σt1(s

′′) = 0 ∀t1 ∈ S then hs′ ≥ME hs′′ with on (S,⪰d).

Proof of Claim: Take t2, t2 ∈ Supp(hs) for some period 1 declaration s such that
t2 ⪰d t2. It holds that hs(t2)/h̃(t2) ≥ hs(t2)/h̃(t2). To see this expand the expressions
on either side of the inequality using (14) to get

∑
t1∈W (t2)

σt1(s
′′
1)h1(t1)

H̃(B(t1))
≥

∑
t1∈W (t2)

σt1(s
′′
1)h1(t1)

H̃(B(t1))
. (15)

Since t2 ⪰d t2, the LHS sums more terms (in a set containment sense) and is there-
fore greater than the RHS. By showing that the above is an equality for s = s′′, we
will have shown that hs′(t2)hs′′(t2) ≥ hs′(t2)hs′′(t2), i.e. hs′ ≥ME hs′′ on S. Suppose
to the contrary that the LHS > RHS of (15) for s = s′′. This means there exists
t1 ∈ W ({t2}) \ W ({t2}) such that σt1(s

′′) > 0. But since t1, t2 ∈ W (t2) and since
t2 ̸⪰d t1, by the UEPP t1 ⪰d t2. But because S is an interval, t1 ∈ S. This means that
σt1(s

′′) = 0 by assumption, which is a contradiction.

I first show that under the UEPP the only equilibrium allocation is static com-
munication. Consider a candidate non-degenerate equilibrium allocation π̃ : T →
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∆A with associated sender period 1 strategy σ : T → ∆T and with corresponding
period 2 ROE partitions given period 1 disclosure s of B({t1 : σt1(s) > 0}) denoted
as (P s

1 , ..., P
s
m(s)).

33 I will show that ∀t ∈ Supp(hs′) ∩ Supp(hs′′), we have that (i)
t ∈ P s′

k ∩P s′′
j =⇒ P s′

k ∩Supp(hs′′) = P s′′
j ∩Supp(hs′) and (ii) πhs′

(t|UR) = πhs′′
(t|UR).

Towards a contradiction, let P s′

k be the highest index part of P s′ to violate con-
dition (i) or (ii) or both. Take P s′′

j with the highest index j such that P s′′
j ∩ P s′

k ̸= ∅.
This means that P s′′

j′ ∩ P s′

k = ∅ ∀j′ > j and since higher parts of P s′ cannot vio-
late (i), P s′′

j ∩ P s′

k′ = ∅ ∀k′ > k. This means that P s′

k is feasible in the maximiza-
tion that selects P s′′

j in the construction of each partition of the maximization ver-
sion of Algorithm 1. At the stage where P s′

k is selected, the fact that P s′′
j ∩ P s′

k′ =

∅ ∀k′ > k means that P s′′
j is also available. This means that Vhs′

(P s′

k ) ≥ Vhs′
(P s′′

j )

and Vhs′′
(P s′′

j ) ≥ Vhs′′
(P s′

k ).

Now suppose that Vhs′
(P s′

k ) > Vhs′′
(P s′′

j ). Each period 1 type t1 ∈ P s′

k expects
to remain in P s′

k in period 2 with strictly positive probability in which case he gets
a strictly higher action from s′, or to end up in a higher part in which case he is
indifferent between s′ and s′′ by assumption. This means that declaring s′ strictly
dominates declaring s′′ for t1 and so σt1(s

′′) = 0 ∀t1 ∈ P s′

k . Thus by Claim 2 hs′ ≥ME

hs′′ on P s′

k . Using Proposition 4, this implies that Vhs′
(P s′

k ) ≤ Vhs′′
(P s′

k ). Using the
inequality above that Vhs′′

(P s′′
j ) ≥ Vhs′′

(P s′

k ) leads to a contradiction. The opposite
case in which Vhs′

(P s′

k ) < Vhs′′
(P s′′

j ) is symmetric.

The only remaining case is that Vhs′
(P s′

k ) = Vhs′′
(P s′′

j ). In this case P s′

k does not
violate condition (ii) so it must violate condition (i) by assumption. Without loss,
let P s′

k ̸⊂ P s′′
j , the opposite case being symmetric. Now define the non-empty in-

terval R ≡ ∪j′<jP
s′′

j′ ∩P s′

k . Notice that period 1 types in R strictly prefer declaration
s′ to s′′: in period 2 they either remain in R in which case s′ is preferred or they end
up in a higher part in which case they are indifferent by assumption. This means
that σt1(s

′′) = 0 ∀t1 ∈ R. Thus by Claim 2 hs′ ≥ME hs′′ on R.

Since by assumption P s′′

j′ ∩ P s′

k′ = ∅ ∀k′ > k, j′ < j, the upper contour subset of
P s′′

j′ given by (∪k′≥kP
s′

k′ )∩ P s′′

j′ = P s′

k ∩ P s′′

j′ . Thus by Proposition 1 Vhs′′
(P s′

k ∩ P s′′

j′ ) ≤
Vhs′′

(P s′′

j′ ) < Vhs′′
(P s′′

j ) ∀j′ < j. R is the disjoint union of these upper contour
subsets and so by Lemma 2 Vhs′′

(R) < Vhs′′
(P s′′

j ). By analogous logic R is a lower

33 if π̃ is degenerate then the result follows from the fact the degenerate action must be the best
response to each pooled set under the unconditional period 2 distribution by Lemma 2.
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contour subset of P s′

k . This means that any lower contour subset of R, denoted R,
is in turn a lower contour subset of P s′

k and thereby has Vhs′
(R) ≥ Vhs′

(P s′

k ). The
following claim extending Proposition 4 establishes a contradiction using S = R,
hs′ = f and hs′′ = g and v = Vhs′

(P s′

k ). This completes the proof.

Claim 3. Suppose that (S,⪰d) is a disclosure ordered subset. Take two distributions f, g ∈
∆S such that f ≥ME g. If v is such that, Vf (W (S ′) ∩ S) ≥ v ∀S ′ ⊂ S, then Vg(S) ≥ v.

Proof of Claim: Suppose not, i.e. Vg(S) < v. There exists a lower contour subset
W ⊂ S such that (i) Vg(W ) < v, and (ii) Vg(W (S ′) ∩ W ) ≥ v ∀S ′ : W ̸⊂ W (S ′).
To see that such a subset exists, notice first that S satisfies (i). Furthermore if a
lower contour subset W satisfies (i) but not (ii), then the violator to (ii) — W ′ —
is a strictly smaller lower contour subset that also satisfies (i). Since S is finite this
process must terminate with a lower contour subset satisfying both properties.

By construction W is a downward biased set under g. Thus by Proposition 4
Vg(W ) ≥ Vf (W ) but by assumption Vf (W ) ≥ v, a contradiction.

Q.E.D.
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