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Abstract

This paper studies a dynamic quantile model for intertemporal decisions under
uncertainty, in which the decision maker maximizes the τ-quantile of the stream
of future utilities, for τ ∈ (0, 1). We present two sets of contributions. First, we
generalize existing results in directions that are important for applications. In par-
ticular, the sets of choices and random shocks are general metric spaces, either con-
nected or finite. Moreover, the future state is not exclusively determined by agent’s
choice, but can also be influenced by shocks. Under these generalizations, we es-
tablish the Principle of Optimality, show that the corresponding dynamic problem
yields a value function and, under suitable assumptions, this value function is con-
cave and differentiable. Additionally, we derive the corresponding Euler equation.
Second, we illustrate the usefulness of this approach by studying two prominent
dynamic economics models. The first deals with intertemporal consumption with
one asset. We obtain closed form expressions for the value function, the optimal
asset allocation and consumption, as well as for the consumption path. These
closed form solutions allow us to obtain useful comparative statics that shed light
on how consumption and savings respond to increase in risk aversion, impatience
and interest rates. For the second model, we discuss a quantile-based version of
the job-search model with uncertainty.
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1 Introduction

Dynamic programming is a basic tool for intertemporal economic analysis that allows
economists to examine a wide variety of problems. This framework has been exten-
sively used because it is sufficiently rich to model problems involving sequential deci-
sion making over time and under uncertainty. See, among others, Stokey et al. (1989),
Rust (1996), Ljungqvist and Sargent (2012), and Sargent and Stachurski (2023).

Many applications of intertemporal maximization use the standard recursive ex-
pected utility (EU). These models have been workhorses in several economic fields.
EU is simple and amenable to theoretical modeling. The assumption of maximization
of average utility, the average being a simple measure of centrality, has intuitive appeal
as a behavioral postulate. Nevertheless, the usual EU framework has been subjected
to a number of criticisms, including in its dynamic version.1 An expanding litera-
ture considers alternative recursive models. We refer the reader to Epstein and Zin
(1989, 1991), Weil (1990), Grant et al. (2000), Epstein and Schneider (2003), Hansen and
Sargent (2004), Maccheroni et al. (2006), Klibanoff et al. (2009), Marinacci and Mon-
trucchio (2010), Strzalecki (2013), Bommier et al. (2017), Sarver (2018), and Dejarnette
et al. (2020) among others.

Recently, de Castro and Galvao (2019) suggested a new alternative to the EU re-
cursive model. In their model, the economic agent chooses the alternative that leads
to the the highest τ-quantile of the stream of future utilities for a fixed τ ∈ (0, 1). The
dynamic quantile preferences for intertemporal decisions are represented by an addi-
tively separable quantile model with standard discounting. The associated recursive
equation is characterized by the sum of the current period utility function and the dis-
counted value of the certainty equivalent, which is obtained from a quantile operator.
This intertemporal model is tractable and simple to interpret, since the value func-
tion and Euler equation are transparent, and easy to calculate (analytically or numeri-
cally). This framework allows the separation of the risk attitude from the intertempo-
ral substitution, which is not possible with EU, while maintaining important features
of the standard model, such as dynamic consistency and monotonicity.2 Static quan-
tile preferences were first studied by Manski (1988) and axiomatized by Chambers
(2009), Rostek (2010), and de Castro and Galvao (2022). There are several recent ap-
plications of quantile preferences models; see, e.g., Bhattacharya (2009), Giovannetti
(2013), Barunı́k and Čech (2021), Long et al. (2021), and Chen et al. (2021), de Castro

1For example, it has been well documented in the literature that it is not possible to separate the
intertemporal substitution from the risk attitude parameters when using standard dynamic models
based on the EU (see, e.g., Hall, 1988). The framework proposed by Kreps and Porteus (1978) to study
temporal resolution of uncertainty was one of the first efforts to go beyond EU in the dynamic setting.

2In the quantile model, the risk attitude is captured by τ. Therefore, the model allows a separation
of risk attitude (governed by τ) and the elasticity of intertemporal substitution, which is exclusively
determined by the utility function; see Section 2 for details.
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et al. (2022b), Barunı́k and Nevrla (2022). From an experimental point of view, de Cas-
tro et al. (2022c) find that the behavior of between 30% and 50% of the individuals can
be better described with quantile preferences rather than the standard EU. Moreover,
de Castro et al. (2022a) provide experimental evidence that when individuals selecting
a portfolio are able to clearly assess the differences in the lotteries’ payoff distributions,
their portfolio choices are closer to the optimal decision of a quantile maximizer than
of a mean-variance maximizer.

The first main contribution of this paper is to generalize the quantile dynamic pro-
gramming model. We extend existing results in important directions that are useful
for practical applications. First, the sets of choices and random shocks are now general
metric spaces, either connected or finite. This generalization substantially broadens
the scope of economic applications. Moreover, we relax the assumption that the future
state variable is exclusively determined by the agent’s choice. Now the future state
can also be influenced by shocks, and the choice variable is completely separate from
the state variable, with the agent choosing a contingent action plan, which could also
be influenced by the shock. This allows, for instance, to study the case in which the
wealth in the current state is influenced by the random returns and not directly chosen
from a previous investment decision.

Under these generalizations, we show that theoretical properties of the dynamic
quantile model remain valid. In particular, we first establish the validity of the Princi-
ple of Optimality. Second, we show that the optimization problem leads to a contrac-
tion, which therefore has a unique fixed-point. This fixed point is the value function
of the problem and satisfies the Bellman equation. Third, under suitable assumptions,
we prove that the value function is concave and differentiable, thus establishing the
quantile analog of the envelope theorem. Fourth, using these results, we derive the
corresponding Euler equation for the infinite horizon problem. These extensions are
nontrivial.3

The second main contribution of this paper is to provide examples to illustrate
the usefulness of the recursive quantile model, exploring its economic and empiri-
cal implications. In particular, we revisit two important models.4 First, we illustrate
the methods with a simple intertemporal consumption model with a single asset (see,
e.g. Ljungqvist and Sargent, 2012), where the economic agent decides on how much
to consume and save by maximizing a quantile recursive function subject to a linear
budget constraint. Following a large body of literature, we specify an isoelastic utility
function and derive several properties of the model. The quantile model is charac-

3The main difficult in establishing our results is related to the continuity of the quantile operator.
This continuity is specially delicate when the variables are not required to have continuous densities.
See discussion in Section 3.4.

4The model can be applied to virtually any dynamic model with uncertainty; we restrict ourselves
to these applications for space constraints.
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terized by three parameters: the discount factor, the risk attitude, and the elasticity
of intertemporal substitution. We solve the dynamic problem and obtain the Euler
equation. Interestingly, we are able to obtain closed form expressions for the fixed
point value function, and the optimal consumption and asset allocation. These closed
form solutions allow us to do comparative statics with respect to the parameters of
the model and establish how consumption and savings decisions are influenced by
changes in the risk attitude, impatience or intertemporal substitution of decision mak-
ers, or by interest rates changes.

In the second example, we discuss a quantile-based version of the job-search model
discussed in McCall (1970). In a labor market characterized by uncertainty and costly
information, both employers and employees will be searching. The analysis is directed
to the employee’s job-searching strategy. This model illustrates the use of the quantile
framework when the decision variable is discrete and one of the shocks – namely,
keeping or losing the job – is also discrete.5 We establish a characterization of the
value function as a function of the wage, as well as the optimal wage.

The remaining of the paper is organized as follows. Section 2 describes the dynamic
economic model and introduces the dynamic programming approach for determining
the optimal solution of the recursive quantile model. We begin the discussion moti-
vating the quantile model with a review of a dynamic model of intertemporal con-
sumption without uncertainty. Section 3 presents the main theoretical results. Section
4 illustrates the empirical usefulness of the the new approach by providing different
examples of the dynamic quantile model. Finally, Section 5 concludes. We relegate all
proofs to the Appendix.

2 An Introduction to Quantile Preferences

This section introduces the dynamic programming approach for determining the op-
timal solution of the recursive quantile model, which was introduced by de Castro
and Galvao (2019). The objective is to write a recursive problem and solve the infinite
horizon sequence problem, subject to a given constraint.

We begin by briefly revisiting the definition of quantiles. Given two random vari-
ables, W and Z, let F(w∣Z = z) = FW∣Z=z(w) = Pr (W ⩽ w∣Z = z) denote the conditional
cumulative distribution function (c.d.f.) of W given Z. If the function w ↦ FW∣Z=z(w) is
strictly increasing and continuous in its support, its inverse is the quantile of W given
Z, that is, Qτ[W∣Z = z] = F−1

W∣Z=z(τ), for τ ∈ (0, 1).6 This case is illustrated in Figure
1(a). If w ↦ FW∣Z=z(w) is not invertible, we can still define the quantile as one of its

5The model also contemplates a continuous shock, determining the distribution of new wages.
6In this paper we will not consider the cases in which τ ∈ {0, 1}.
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generalized inverses. Following the standard practice, we define the quantile as the
left-continuous version of the generalized inverse:

Qτ[W∣Z = z] ≡ inf{w ∈R ∶ Pr[W ⩽ w∣Z = z] ⩾ τ}. (1)
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Figure 1: c.d.f. (F) and quantile (Q) functions when (a) F is continuous and strictly
increasing in its support [x0, x1]; and (b) F is not invertible.

For simplicity, in the rest of the paper we will denote Qτ[W∣Z = z] by Qτ[W∣z] or
Qτ[w∣z].

Before we define quantile preferences both in the static and dynamic settings, it is
useful to consider a simple investment problem without uncertainty: at date t a con-
sumer that had invested xt in the previous period, receives interests R, risk free. The
consumer then needs to decide how much to consume in period t, ct, enjoying util-
ity U(ct) and how much to invest for future period, xt+1. Thus, xt+1 = xtR − ct or
ct = xtR − xt+1. The consumer’s problem is:

max
{xt}

∞
t=0,xt⩾0

∞

∑
t=0

βt U(xtR − xt+1)

where β ∈ (0, 1) is the discount factor. This model can be conveniently written in
recursive form. For this, let v(xt) denote the present value of all future optimal con-
sumption, given that the initial wealth is xt. The recursive problem is:

v(xt) = max
xt+1∈[0,xtR]

{U(xtR − xt+1)+ βv(xt+1)} . (2)

It is easy to see that the concavity of U determines the consumption and investment
decision by the consumer. In fact, if U is the isoelastic utility U(c) = c1−γ/(1 − γ) for
γ > 0, γ /= 1, the elasticity of intertemporal substitution (EIS) is equal to 1/γ.

Now, we would like to consider uncertainty, where the interest rate is represented
by the random shock zt. It is convenient to adapt the recursive form of the risk free
problem (2) by considering a certainty equivalent of the continuation utility, repre-
sented by value function v(xt, zt) that depends in how much was invested in the pre-
vious period, xt, and the current shock zt. If, as usual, we adopt expectation as the the

5



certainty equivalent, then the recursive problem becomes:

v(xt, zt) = max
xt+1∈[0,ztxt]

{U(xtzt − xt+1)+ βE[v(xt+1, zt+1∣zt]} , (3)

where Et is the conditional expectation with respect to the information at time t. Note
that now the utility function U(⋅) in (3) determines both the risk attitude and the EIS.
For the isoelastic function mentioned above, a single parameter, γ, determines both
the EIS and the coefficient of relative risk aversion (CRRA). This creates a conceptual
problem, since risk attitude and intertemporal substitution are distinct economic con-
cepts, that should be mutually independent.

This problem has been recognized a long time ago; see, for instance, Hall (1978,
1988). The preferred approach to deal with it has been to consider Epstein and Zin
(1989)’s preferences. In this paper, we take a different route, by considering dynamic
quantile preferences, that are defined by substituting the certainty equivalent expecta-
tion E[⋅] in (3) by a quantile operator Qτ[⋅]. That is, we consider the following recursive
problem:

v(xt, zt) = max
xt+1∈[0,ztxt]

{U(xtzt − xt+1)+ βQτ[v(xt+1, zt+1∣zt]} , (4)

With this change, U determines exclusively the intertemporal substitution, exactly as
it does in the case without uncertainty. The risk attitude in the quantile model is not
influenced by U. In order to understand this claim, let us consider quantile preferences
in the static case.7

Recall that an expected utility maximizer with utility U ∶ R → R prefers lottery X
to Y if E[U(X)] ⩾ E[U(Y)]. Thus, it seems natural to define quantile preferences by
simply substituting the expectation by the quantile operator in this comparison, that
is,

X ⪰ Y ⇐⇒ Qτ[u(X)] ⩾ Qτ[u(Y)]. (5)

However, quantiles enjoy the following property: for any continuous and increasing
function f ∶ R → R, f (Qτ[X]) = Qτ[ f (X)].8 If U ∶ R → R is strictly increasing and

7Quantile preferences were first introduced by Manski (1988). Rostek (2010) and Chambers (2009)
provide axioms for the static case, and de Castro and Galvao (2022) formally axiomatize both the static
and dynamic quantile preferences. Giovannetti (2013) studies a two-period economy for an intertem-
poral consumption model under quantile utility maximization. de Castro and Galvao (2019) establish
the properties of a general dynamically consistent quantile preferences model.

8This property holds for expectation only if f is linear. For quantiles, it is sufficient that f is non-
decreasing and left-continuous. See de Castro and Galvao (2019, Lemma A.2, p. 1927).

6



continuous, as usual, then we can take its inverse and apply to (5), to obtain:

X ⪰ Y ⇐⇒ U−1(Qτ[U(X)]) ⩾ U−1(Qτ[U(Y)]) ⇐⇒ Qτ[X] ⩾ Qτ[Y].

Therefore, the utility function plays absolutely no role in the static quantile preference
“defined” by (5). In particular, we could change a concave U by a convex U and
obtain the same preference, that depends only on the quantile of the random variables
themselves. However, this does not mean that U does not play a role in dynamic
quantile preferences. On the contrary, in a dynamic setting U has exactly the same
role that it had in the risk free model: to define the intertemporal substitution. In fact,
once uncertainty is resolved, the dynamic quantile preference model reduces to the
risk free model (2).

The discussion so far leads to an important question: if the concavity of the util-
ity function does not play a role in the risk attitude for quantile preferences, what
does?9 The answer, first observed by Manski (1988), is quite simple: τ itself. To see
this, consider Mendelson (1987)’s concept of “quantile-preserving spreads”, that is an
adaptation of the famous Rothschild and Stiglitz (1970)’s mean-preserving spreads.
The idea is that Y is a quantile preserving spread of X if it is more likely to have both
worse and better outcomes than X. Formally, Mendelson (1987) defines:

Definition 2.1 (Quantile-preserving spread). We say that Y is a τ-quantile-preserving
spread of X if Qτ[Y] = Qτ[X] = q and the following holds: (i) t < q Ô⇒ FY(t) ⩾ FX(t);
and (ii) t > q Ô⇒ FY(t) ⩽ FX(t). Y is a quantile-preserving spread of X if it is a τ-quantile-
preserving spread of X for some τ ∈ (0, 1).

Figure 2 illustrates the c.d.f.’s of random variables Y and X when Y is a τ̄-quantile-
preserving spread of X.10 Notice that this definition captures the notion that Y is
riskier than X, since it puts weight in more extreme values than X. Manski (1988)
uses a different terminology for the same concept referring to the property of “sin-
gle crossing from below”: FX crosses FY from below when Y is a quantile-preserving
spread of X.

Note that if Qτ[Y] = q and X is equal to q with probability 1, then Y is a τ-quantile-
preserving spread of X. In other words, any risk asset Y with τ-quantile q is a quantile-
preserving spread of any riskless asset X with value q.

Figure 2 suggests that the choice of a τ-quantile maximizer or τ-decision maker
(τ-DM) depends on whether τ is below or above the quantile τ̄ where the two c.d.f.’s
cross. That is, when τ < τ̄ as in Figure 2, a τ-DM prefers the safer asset X: Qτ[X] ⩾
Qτ[Y]. On the other hand, if τ ′ > τ̄, a τ-DM prefers the riskier asset Y: Qτ[X] ⩽ Qτ[Y].

9Appendix B discusses the relationship of risk attitudes in EU and quantile preferences.
10Mendelson (1987) formalize other four conditions and show that they are all equivalent to the above

definition; see the paper for further discussion and intuition.
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Figure 2: Y is a τ̄-quantile-preserving spread of X.

The following result formalizes the relationship between risk and the quantile τ for
the simple static case.

Proposition 2.2 (Manski, 1988). Let Y be a τ̄-quantile-preserving spread of X for τ̄ ∈ (0, 1).
Then: (i) τ ⩽ τ̄ Ô⇒ Qτ[X] ⩾ Qτ[Y], that is, a τ-DM prefers the asset X if τ is low; and (ii)
τ ⩾ τ̄ Ô⇒ Qτ[X] ⩽ Qτ[Y], that is, a τ-DM prefers asset Y if τ is high.

A relevant question is whether it is possible to reduce quantile preferences to ex-
pected utility with special subjective beliefs. If we restrict the set of alternatives (ran-
dom prospects) from which the decision maker has to choose, and focus on a parame-
trized class of utility functions, it is possible to define a map of risk attitude between
quantile preferences and expected utility. For example, suppose that we restrict our at-
tention to log-normal variables X, that is, ln(X) ∼ N (µ, σ), the certainty equivalent of
an expected utility maximizer, with isoelastic utility function U(x) = x1−γ/(1 − γ), γ /=
1, will be a function of µ, σ and γ, while the certainty equivalent of a τ-quantile max-
imizer will be a function of µ, σ and τ. By equating these certainty equivalents, we
obtain a map between the downside risk aversion parameter τ and the risk aversion
parameter γ for those class of assets. Appendix B shows that this map depends only
on σ, that is, by fixing the standard deviation σ, there is a one-to-one map between
the risk attitude parameters τ and γ. However, the pairs of corresponding τ and γ

will change if we change σ. Moreover, a completely new map may be obtained for
different classes of random variables. Besides exploring this construction, Appendix B
shows that quantile preferences in general cannot be reduced to expected utility pref-
erences even with special priors, and also that quantile preferences do not belong to
the general class of preferences considered by Epstein and Zin (1989).

3 Theoretical Results

This section generalizes existing results for dynamic quantile models and provides
theoretical foundations for the applications discussed in Section 4 below. Such gener-
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alizations are important for potential applications of dynamic economic models, thus
substantially enlarging the scope of applicability of the recursive quantile model.

We begin by establishing the Principle of Optimality, and then the existence of
the value function associated to the dynamic programming problem for the quantile
preferences. We also present results on monotonicity, concavity, and differentiability
of the value function. Finally, we derive the Euler equation. Derivations for dynamic
consistency are similar to those contained in de Castro and Galvao (2019), and are
omitted.

3.1 States, Decisions, Shocks and Notation

Let X denote the state space, Y be the set of possible actions the decision-maker (DM)
may take, and Z , the range of the shocks (random variables) in the model. We require
these sets to be metric spaces. Let xt ∈ X denote the state in period t, and zt ∈ Z
the shock after the end of period t − 1, both of which are known by the DM at the
beginning of period t. In each period t, the DM chooses a feasible action yt from a
constraint subset Γ(xt, zt) ⊂ Y .

In the model above, the resolution of uncertainty at period t occurs after the DM
chooses an action so the next period’s state xt+1 may be affected by the shock zt+1,
as discussed in Stokey et al. (1989, p. 240). This influence is described by a law of
motion function ϕ from X ×Y ×Z to X that determines the next period state variable
xt+1 as function of the current state xt, the choice yt, and the shock zt+1 realized at the
beginning of period t + 1, that is,

xt+1 = ϕ(xt, yt, zt+1). (6)

It is common in the literature to write the law of motion in equation (6) as simply a
function of xt, yt and zt+1; see, e.g., Stokey et al. (1989, p. 256). In most models, this is
even simpler and we could write ϕ(xt, yt, zt+1) = yt.

Let Z t = Z ×⋯×Z (t-times, for t ∈ N), Z∞ = Z ×Z ×⋯ and N0 ≡ N ∪ {0}. Given
z ∈ Z∞, z = (z1, z2, ...), we denote (zt, zt+1, ...) by tz and (zt, zt+1, ..., zt ′) by tzt ′ . A similar
notation can be used for x ∈ X∞ and y ∈ Y∞.

The random shocks will follow a time-invariant (stationary) Markov process. The
set of random shocks Z is a (subset of a) metric space, assumed to be either connected
or finite. Some results require Z to be Euclidean, that is, Z ⊆ Rk. Stationary Markov
processes are modeled by a Markov kernel K ∶ Z × Σ → [0, 1], where Σ is the Borel
σ-algebra of the metric space Z .11 This means that the probability that Z ′ ∈ A ⊂ Z

11Recall that a mapping K ∶ Z × Σ → [0, 1] is a Markov kernel if for each z ∈ Z , the set function
K(z, ⋅) ∶ Σ → [0, 1] is a probability measure and, for each S ∈ Σ, the mapping K(⋅, S) → [0, 1] is Σ-
measurable. See Aliprantis and Border (2006, Definition 19.11, p. 630).
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given Z = z is Pr (Z ′ ∈ A∣Z = z) = K(z, A). The expectation of a function h ∶ Z → R is
E [h(w)∣ z] = ∫Z h(z ′)k(z, dz ′).

We now introduce the concept of quantile martingale process. This class of processes
will be especially useful later to investigate particular examples of the model with
closed form solutions. Recall that for a standard martingale process, the best predictor
of the expectation of the future value of the shock is its expectation. We adapt this
notion for quantiles as follows.

Definition 3.1. We say that Z is a τ-quantile martingale if

Qτ[Zt+1∣Zt = zt] = zt. (7)

This means that the best τ-th conditional quantile predictor of the random vari-
able Zt+1 is the current value zt. A simple and useful example of quantile martingale
process is given by the following:

Example 3.2. Let Zt+1 = Zt + et, where et satisfies Qτ[et∣Zt = zt] = 0. Then, (7) holds, since
Qτ[Zt+1∣Zt = zt] = Qτ[Zt + et∣Zt = zt] = zt +Qτ[et∣Zt = zt] = zt + 0 = zt.

3.2 The Recursive Problem

Given the current state xt and current shock zt, Γ(xt, zt) denotes the set of possi-
ble choices yt, that is, the feasibility constraint set. Given xt, zt and yt ∈ Γ(xt, zt),
u (xt, yt, zt) denotes the instantaneous utility obtained in period t. The next period
xt+1 is defined by a function ϕ ∶ X ×Y ×Z → X of the current state xt, the choice yt and
the next period shock zt+1, that is,

xt+1 = ϕ(xt, yt, zt+1).

In our model, the uncertainty with respect to the future realizations of zt are eval-
uated by a quantile. In the dynamic quantile model, the intertemporal choices can be
represented by the maximization of a value function v ∶ X ×Z → R that satisfies the
recursive equation:

v(x, z) = sup
y∈Γ(x,z)

{u (x, y, z) + βQτ[ v (ϕ(x, y, z ′), z ′) ∣ z]}, (8)

where z ′ indicates the next period shock.
Note that this is similar to the usual dynamic programming problem, in which the

expectation operator E[⋅] is in place of Qτ[⋅]. See de Castro and Galvao (2019) for a
construction of this recursive model from dated preferences. Section 3.5 below proves
uniqueness of the solution to problem (8), under assumptions that will be discussed
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there and in Section 3.4. However, before we establish these results, it is useful to study
the infinite horizon problem, which deals with a sequence of plans. We introduce
the relevant notation and definitions in Section 3.3. A reader that is content to focus
only on the recursive problem (8) will be able to skip it, since the rest of the paper is
independent of these developments.

3.3 Infinite Horizon Problem and the Principle of Optimality

In this section we define the infinite horizon problem and establish the Principle of
Optimality, analogous to Stokey et al. (1989, Section 9.1) and that generalizes de Cas-
tro and Galvao (2019, Proposition 3.17). That is, we show that optimizing period by
period, as in the recursive problem (8), yields the same result as choosing the best plan
for the infinite horizon problem. This requires to formally define plans and the value
function evaluated at those plans. Hence, we need to introduce some notation that is
specific to this section and will not be used in the rest of the paper. There will be no
loss to a reader that decides to skip this subsection.

At period t, the decision maker has learned the realization of the finite sequence
of shocks zt = (z1, ..., zt) ∈ Z t and can make a choice based upon this knowledge. This
leads us to the following:

Definition 3.3. A plan h is a profile h = (ht)t∈N where, for each t ∈ N, ht is a measurable
function from X ×Z t to Y . The set of plans is denoted by H.

The interpretation of the above definition is that a plan ht(xt, zt) represents the
choice that the individual makes at time t upon observing the current state xt and the
sequence of previous shocks zt. The following notation will simplify statements below.

Definition 3.4. Given a plan h = (ht)t∈N ∈ H, x ∈ X and realization z∞ = (z1, ...) ∈ Z∞,
its associated sequence of states and choices is the sequence (xh

t , yh
t )t∈N ∈ X∞ × Y∞ defined

recursively by xh
1 = x and, for t ⩾ 1, by

yh
t = ht(xh

t , zt) (9)

xh
t+1 = ϕ (xh

t , yh
t , zt+1) . (10)

Similarly, given h ∈ H, (x, zt) ∈ X × Zt, the t-sequence associated to (x, zt) is (xh
t , yh

t )tl=1 ∈
X t ×Y t defined recursively by (9) and (10).

Since the elements of the sequence depend on x and z∞, we may write them as
xh

t (x, z∞) and yh
t (x, z∞). However, for simplicity and whenever convenient, we will

write only xh
t , xh

t (⋅), xh
t (x, ⋅) or even xh

t (x, zt), in order to emphasize that xh
t depends

on the initial state x and on the sequence of shocks z∞, up to time t. Notice that (xh
t )nt=1
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is a random variable (function of z∞) for each (h, x0, z0) and it is not known (realized)
before time t = n.

Definition 3.5. A plan h is feasible from (x, z) ∈ X ×Z if ht(xh
t , zt) ∈ Γ (xh

t , zt) for every
t ∈N and z∞ ∈ Z∞ such that xh

1 = x and z1 = z.

We denote by H(x, z) the set of feasible plans from (x, z) ∈ X ×Z . Let H denote the
set of all feasible plans from some point, that is, H ≡ ∪(x,z)∈X×ZH(x, z). We will give
sufficient conditions for H(x, z) /= ∅. Before that, we need to introduce some additional
notation. For each h ∈ H and n ∈N∪ {0}, define the function Sh,n ∶ X ×Zn+1 →R by:

Sh,n (x, zn+1) ≡
n
∑
t=0

βtu(xh
t+1, yh

t+1, zt+1). (11)

It is sometimes convenient to abuse notation and write Sh,n as a function of X ×Z∞

instead of X ×Zn+1, that is, Sh,n(x, z∞) instead of Sh,n (x, zn+1).
For a measurable S ∶ Z∞ →R, let Qτ[S ∣ zt] denote the conditional quantile given zt.

Define Q1
τ[S ∣ z] as Qτ[S ∣ z] and, recursively, Qn+1

τ [S ∣ z] = Qn
τ [Qτ [S ∣ zn+1] ∣ z ], i.e.,12

Qn
τ[S ∣ z] = Qτ [ ⋯ Qτ [Qτ [S ∣ zn] ∣ zn−1] ⋯ ∣z] .

The appendix discuss some properties of this operator, that are essentially the same of
the standard quantile operator.13 For n ∈N and h ∈ H, define

Vn(h, x, z) ≡ Qn
τ [Sh,n(x, ⋅) ∣ z ] .

The following assumption adapts Stokey et al. (1989, Assumption 9.2) to our set-
ting.

Assumption 0 The feasibility correspondence Γ ∶ X ×Z → Y is nonempty-valued, its graph is
measurable and it has at least a measurable selection. Moreover, for all x ∈ X , z ∈ Z and h ∈ H,
there exists the limit

V(h, x, z) ≡ lim
n→∞

Vn(h, x, z). (12)

Assumption 0 is implied by our other assumptions introduced below. It is a very
weak requirement, that allows us to define the value function below, but will not be
used outside this subsection. This assumption enables us to state our first result,

12Since the “law of iterated expectations” does not have an analogue for quantiles, the iterative quan-
tiles defining Qn

τ[⋅∣⋅] do not collapse to a single quantile as they would do for expectations. See further
discussion in de Castro and Galvao (2019).

13Proposition 6.3 of de Castro et al. (2023) gives sufficient conditions for the existence of the limit
Q∞τ [S ∣ z] ≡ limn→∞Qn

τ[S ∣ z]. In particular, if S is in L∞, Q∞τ [S ∣ z] exists. However, we are interested in
another type of limit, that we discuss next.
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which establishes that the set of feasible plans departing from (x, z) ∈ X ×Z at time
t is nonempty:

Lemma 3.6. Let Assumption 0 hold. For any x ∈ X and z ∈ Z , H(x, z) /= ∅.

Now, we can define v∗ ∶ X ×Z →R, the value function of infinite horizon problem:

v∗(x, z) ≡ sup
h∈H(x,z)

V(h, x, z). (13)

Our objetive is to establish the Principle of Optimality, that roughly states that solv-
ing the infinite horizon problem choosing plans as in (13) is essentially equivalent to
solving the functional equation (8), in which the problem step by step, in a recursive
fashion. In order to formalize this result, we need a few more definitions. The most im-
portant of those is the transversality condition. Recall that the standard transversality
condition requires that the product of βn and the integral of v up to time n converges
to zero for all plans and initial states; cf. equation (7) in Stokey et al. (1989, p. 246).
Our analogue is that limn→∞ βnQτ [v(⋅) ∣ zn] = 0. This is formalized as follows:

Definition 3.7. We say that a function v ∶ X × Z → R satisfies the conditional quantile
transversality condition (CQTC) if for any h ∈ H, (x, z) ∈ X ×Z , and ϵ > 0, there exists nϵ

such that n ⩾ nϵ implies that for all zn = (z1, ..., zn) ∈ Zn, with z1 = z,

−ϵ < βn Qτ [ v (ϕ(xh
n, yh

n, zn+1), zn+1) ∣ zn] < ϵ. (14)

Notice that the above condition does not require v to be integrable, as the standard
transversality condition does. Indeed, the quantile can even be uniformly bounded,
which would imply (14), for a non-integrable v, for which the transversality condition
would not hold. When we assume that the process is Markov and has additional
structure, we can offer an alternative transversality condition. See Definition A.16 in
the Appendix A.8.1.

For a function v ∶ X ×Z →R, let Gv ∶ X ×Z → Y be the correspondence defined by:

Gv(x, z) ≡ {y ∈ Γ(x, z) ∶ v(x, z) = u(x, y, z)+ βQτ[v (ϕ(x, y, z ′), z ′) ∣ z]} . (15)

Of course, this correspondence may have empty values in general. We say that a plan
h ∈ H is obtained from Gv if there exists a sequence of selections gt ∶ X ×Z → Y such that
for all t ∈N and all (x, z) ∈ X ×Z , gt(x, z) ∈ Gv(x, z) and ht(x, zt) = gt (ht−1(x, zt−1), zt).

We are now ready to state our Principle of Optimality.14

14See Stokey et al. (1989, Theorem 9.2).
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Theorem 3.8 (Principle of Optimality). Let Assumption 0 hold. Suppose that a function
v ∶ X ×Z → R satisfies (8) and (14). Suppose that Gv is nonempty and has a measurable
selection. Then v = v∗ and any plan h obtained from Gv attains the supremum in (13).

In the rest of the paper, we will introduce stronger assumptions that would imply
not only Assumption 0, but also the existence of functions satisfying the functional
equation (8) and (14). The significance of the above result is that it suggests a partial
uniqueness result for the value function: even if our stronger assumptions introduced
below do not hold but only the much weaker Assumption 0, there will be just one
function that satisfies both the functional equation (8) and the CQTC (14).

3.4 Basic Assumption on Random Shocks

Now we state the main assumptions concerning the shocks, used for establishing the
results. The following basic assumption is assumed throughout the paper.

Assumption 1 (Markov). Z is a metric space, which is either connected or finite, and the
process is Markov, with transition function K ∶ Z ×Σ → [0, 1] satisfying the following:

(i) for each z ∈ Z and η ∈ (0, 1), there exists compact Z ′ ⊂ Z such that K(z,Z ′) > 1− η;

(ii) for each compact A ⊂ Z , the function z ∈ Z ↦ K(z, A) ∈ [0, 1] is continuous;

(iii) for each A ∈ Σ open and nonempty, K(z, A) > 0 for all z ∈ Z .

Assumption 1 is adopted in all results of this paper, even if it is not explicitly men-
tioned. Note that Assumption 1 allows an unbounded multidimensional Markov pro-
cess. Condition (i) is equivalent to the requirement that, for each z ∈ Z , K(z, ⋅) is a tight
measure, that is, K(z, A) = sup{K(z, C) ∶ C is compact, C ⊂ A} for all A ∈ Σ. When Z
is compact, this condition is trivially satisfied by choosing Z ′ = Z . Condition (ii) is a
continuity property for Markov kernels that is satisfied for the most familiar processes.
Condition (iii) is just the requirement that open subsets of Z have positive measure.
We need to impose this condition in order to rule out discontinuities in the quantile.
The property that quantiles are continuous is necessary to establish the continuity of
the value function and, therefore, fundamental to many of the results in this paper.15

Obviously, the continuity of the value function is also a desirable feature in itself.
Establishing the continuity of the quantile operator is the most delicate step in the

proof. This is complicated by the fact that we allow discrete random shocks. Some
of the problems that may arise when allowing discrete and continuous variables are
illustrated by de Castro and Galvao (2022); see their Example 3.11 and Remark 3.12.

15The continuity of the value function requires, as an intermediary step, that the map (x, y, z) ↦
Qτ[ v(ϕ(x, y, w), w) ∣ z] is continuous for continuous and bounded v; see Proposition A.4 in the ap-
pendix. This result obviously requires that quantiles are continuous, that is, z ↦ Qτ[w∣z] is continuous.
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The following example shows that Assumption 1-(iii) is necessary for the continu-
ity of quantiles.

Example 3.9. Let Z = [0, 1]. Define

f (w, z) =
⎧⎪⎪⎨⎪⎪⎩

2(1− z), if w ∈ [0, 1
4]∪ [

3
4 , 1]

2z, if w ∈ (1
4 , 3

4)

Thus, for all z ∈ [0, 1], f (z) = ∫
1

0 f (w, z)dw = 2(1−z)
4 + 2z

2 +
2(1−z)

4 = 1,and we obtain f (w∣z) =
f (w,z)
f (z) = f (w, z). Consider K ∶ Z ×Σ → [0, 1] defined by K(z, A) = ∫A f (w∣ z)dw. This Markov

kernel satisfies Assumption 1-(i) and (ii), but not (iii). Indeed, the interval A ≡ (1
4 , 3

4) is open,
but K(0, A) = 0. We will show that this leads to a failure of continuity of the quantile at z = 0
for τ = 1

2 . We have:

Pr[w ⩽ α∣ z] = K (z,{w ∈ Z ∶ w ⩽ α}) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2(1− z)α, if α ∈ [0, 1
4]

1−z
2 + 2z (α − 1

4) , if α ∈ (1
4 , 3

4]
1+z

2 + 2(1− z) (α − 3
4) , if α ∈ (3

4 , 1]
.

Thus, for τ = 1
2 , we have Qτ[w∣ z] = 1

2 if z /= 0, but Qτ[w∣0] = 1
4 .

Example 3.9 can be modified to justify also the requirement of Assumption 1 that
Z is either connected or finite. Indeed, all conditions of Assumption 1 are satisfied in
the following example, but for the fact that Z is not connected.

Example 3.10. Let Z = [0, 1
4]∪ [

3
4 , 1], and τ = 1

2 . Define

f (w, z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4− 2z, if (w, z) ∈ [0, 1
4]× [0, 1

4]
4+ 2z, if (w, z) ∈ [3

4 , 1]× [0, 1
4]

4, otherwise

Then f (w, z) > 0 for all (w, z) ∈ Z ×Z and f (z) = 2,∀z ∈ Z , which implies that f (w∣z) =
1
2 f (w, z). Defining the Markov kernel as before, Assumption 1 is satisfied, but for the fact that
Z is not connected. We have:

Pr[w ⩽ α∣ z] = K (z,{w ∈ Z ∶ w ⩽ α}) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(2− z)α, if α ∈ [0, 1
4]

2−z
4 , if α ∈ (1

4 , 3
4]

2−z
4 + (2+ z) (α − 3

4) , if α ∈ (3
4 , 1]

Consider a sequence zn ≡ 1
n → z∗ = 0. Since τ = 1

2 , Qτ[w∣ z∗] = 1
4 , while

Qτ[w∣ zn] =
3
4
+ zn

2+ zn
→ 3

4
, when n →∞.

Thus, z ↦ Qτ[w∣ z] is not continuous at z∗ = 0.
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It is worth noting that Assumption 1 extends the setting in de Castro and Galvao
(2019) by allowing the set of random shocks Z to be a (connected or finite) metric
space, instead of a convex subset of an Euclidean space. We also impose some less
stringent assumptions on the distribution of the shocks, which generalize the setting
of de Castro and Galvao (2019). These extensions are some of the major theoretical
contributions of the current paper.

3.5 Existence of the Value Function

We prove the existence of the value function through a contraction fixed point theo-
rem. The first step is to the define the contraction operator. Let C denote the space of
bounded and continuous functions v ∶ X ×Z →R. For τ ∈ (0, 1), and v ∈ C, define M(v)
by:

M(v)(x, z) = sup
y∈Γ(x,z)

u (x, y, z)+ βQτ[v(ϕ(x, y, w), w)∣ z], (16)

where β ∈ (0, 1) and Γ ∶ X ×Z → Y is the feasibility correspondence. The functional
in (16) is similar to the usual dynamic programming problem with the expectation
operator E[⋅] instead of Qτ[⋅]. We show below that Mτ has a fixed point, which is
the value function of the dynamic programming problem and that the supremum is
achieved, that is, the the policy correspondence Υ ∶ X ×Z → Y defined by

Υ(x, z) ≡ {y ∈ Γ(x, z) ∶ y achieves the supremum in (16)} (17)

has non-empty values. For this, we need the following:

Assumption 2 (Continuity). The discount rate β ∈ (0, 1) and the following hold:

(i) X and Y are metric spaces;

(ii) u ∶ X ×Y ×Z →R is continuous and bounded;

(iii) ϕ ∶ X ×Y ×Z → X is continuous;

(iv) The correspondence Γ ∶ X ×Z ⇉ Y is continuous, with nonempty, compact values.16

Note that in Assumption 2-(i), the state space X is not required to be Euclidean nor
convex, as in de Castro and Galvao (2019). This allows X to be infinite dimensional or
finite. The same is true for the action space Y . In fact, since now we do not assume that
the choice is the next period state as de Castro and Galvao (2019) do, it is possible that
Y /= X and the richness on Y does matter. Property (ii) is the standard continuity as-
sumption of the utility function, which is extended to the transition function ϕ in (iii)

16Since at this point convexity is not required, we may have Γ finite-valued, representing the case
where only finitely many options are available to the decision-maker at each period.
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and to the feasibility correspondence in (iv). Conditions (ii), (iii) and (iv) guarantee
that an optimal choice always exist.

Together, Assumptions 1 and 2 generalize the existing setting in the literature. The
following result establishes that under those assumptions, M is a β-contraction in C,
that is, M(v) ∈ C for any v ∈ C, and ∥M(v)−M(v ′)∥ ⩽ β∥v − v ′∥ for any v, v ′ ∈ C.

Theorem 3.11. Under Assumptions 1 and 2, M is a β-contraction in C. Thus, it has a unique
fixed point v̄ ∶ X ×Z → R ∈ C. Moreover, the policy correspondence Υ ∶ X ×Z → Y is upper
semi-continuous with non-empty and compact values.

The unique fixed point of the problem will be the value function of the problem.
The proof of this result is not a routine application of similar theorems from the ex-
pected utility case, since continuity of quantiles is not immediate. We explore the
Markov transition properties required in Assumption 1 to establish that the quantile
functional is continuous; see Proposition A.4 in the Appendix for details. As we have
shown with counterexamples after Assumption 1, this result may fail if the require-
ments in that Assumption are not met.

Remark 3.12. Theorem 3.11 and all the other results of this paper still hold if we relax Assump-
tion 1 by allowing Z to be disconnected, provided that we work with a subset of continuous
functions v ∶ X ×Z → R such that w ↦ v(x, w) has a connected image, for all x ∈ X . Notice
that the image of this function is connected if v is continuous and Z is connected.17 Section
4.2 illustrates this approach. See also comments before Lemma A.9 in the appendix.

Below we derive some sharper properties of the value function, namely, mono-
tonicity, concavity and differentiability, as well as single-valuedness of the policy cor-
respondence.

3.6 Monotonicity

In this section we establish monotonicity of the value function with respect to the x and
z variables. This section imposes only that the metric spaces X and Y are Euclidean, so
monotonicity has a natural meaning. We start with an assumption necessary to prove
strict increasingness of the value function with respect to the state variable x.18

Assumption 3 (Monotonicity in x). The following holds: (i) X ⊂ Rp; (ii) Y ⊂ Rm; (iii) u
and ϕ are non-decreasing in x; and (iv) for every z ∈ Z and x ⩽ x ′, Γ(x, z) ⊆ Γ(x ′, z).

17Example 3.10 obtains discontinuity for the quantile by using the function v(x, w) = w, which has
the disconnected image Z = [0, 1

4]∪ [
3
4 , 1].

18As it is well known, there are two related notions of strict increasingness for a function h ∶ Rp → R:
(i) x1 ⩾ x0, but x1 /= x0 implies h(x1) > h(x0); and the weaker notion that (ii) x1

i > x0
i for i = 1, ..., p implies

h(x1) > h(x0). Theorem 3.13 holds with any definition, provided that they are applied consistently in
the assumption and in the result.
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From the next result and all that follow, by v̄ we mean the unique fixed point of M

in C, guaranteed to exist by Theorem 3.11.

Theorem 3.13. Under Assumptions 1, 2 and 3, v̄ is non-decreasing in x. If u is also strictly
increasing in x, so is v̄.

It is also possible to establish increasingness of the value function also with respect
to the shocks z. For this, we need to require monotonicity of u, ϕ and Γ with respect to
z. This is content of the following:

Assumption 4 (Monotonicity in z). Both u and ϕ are non-decreasing in z and, for every
x ∈ X , and z ⩽ z ′, Γ(x, z) ⊆ Γ(x, z ′).

For establishing monotonicity with respect to shocks, we also need the following
assumption. It assumes that Z is a subset of an Euclidean space Rk, for which that
z = (z1, ..., zk) ⩽ z ′ = (z ′1, ..., z ′k)means zi ⩽ z ′i for all i = 1, ..., k.

Assumption 5. Z ⊂Rk and for any weakly increasing function h ∶ Z →R and z, z ′ ∈ Z such
that z ⩽ z ′, E [h(w)∣ z] ⩽ E [h(w)∣ z ′].

Assumption 5 is just a requirement that the conditional distribution K(z ′, ⋅) first-
order stochastically dominates K(z, ⋅) whenever z ′ ⩾ z. It implies, in particular, an
analogous inequality for quantiles, that is, under the above conditions we also have
Qτ [h(w)∣ z] ⩽ Qτ [h(w)∣ z ′]; see Lemma A.12 in the appendix. We have the following
result:

Theorem 3.14. Under Assumptions 1, 2, 3, 4, and 5, v̄ is non-decreasing in x and z. If u is
also strictly increasing in z, so is v̄.

It should be noted that Theorem 3.14 holds not only for very general Euclidean X
and Y , which may be even discrete, but also for any Z ⊂ Rk satisfying Assumptions 1
and 5, which allow multidimensional shocks. In the next section, where we establish
concavity, more restrictions will be imposed over the sets X , Y and Z .

3.7 Concavity

In this section we establish concavity of the value function. Moreover, we show that
the policy correspondence is convex-valued. For establishing this, we naturally need
to require the spaces to be convex and the functions to be concave. Moreover, the fea-
sibility constraint set also needs to satisfy a convexity requirement. This is the content
of the following:
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Assumption 6 (Convexity and Concavity). The following holds: (i) X and Y are convex;
(ii) u and ϕ are concave in (x, y); and (iii) for all z ∈ Z and all x, x ′ ∈ X , y ∈ Γ(x, z) and
y ′ ∈ Γ(x ′, z) imply

θy + (1− θ)y ′ ∈ Γ[θx + (1− θ)x ′, z], for all θ ∈ [0, 1].

Notice that Assumption 6-(iii) implies that Γ(x, z) is a convex set for each (x, z) ∈
X ×Z . In addition to the standard convexity and concavity requirements of Assump-
tion 6, to deal with the continuous shock scenario, we need to work with unidimen-
sional shocks, as required by the following:

Assumption 7. Z ⊆R.

We need to restrict the dimension of the Markov process to k = 1 for using comono-
tonicity arguments, that guarantee that the quantile of sums of random variables is the
sum of quantiles. This property fails in general. The next result establishes concavity
of the value function.

Theorem 3.15. Let Assumptions 1 – 7 hold. Then v̄ is concave in x and Υ ∶ X ×Z → Y is
convex-valued. If, additionally, u is strictly concave in (x, y), then v̄ is strictly concave in x
and Υ has convex values. Whenever v̄ is strictly concave, Υ is single-valued and continuous.

3.8 Differentiability

This section presents results for differentiability of the value function with respect to
the state variable x. In this case, two different approaches are needed depending on
whether the choice space, Y , is convex or discrete. Nevertheless, both cases rely on the
following common basic assumption:

Assumption 8. The function u is C1 in x and ϕ does not depend on x.

The second part of Assumption 8 imposes that the next period state can depend
on the choice y and the observed shock z, but not on the current state x. The set of
actions Γ(x, z) available to the decision-maker may depend on x. The requirement is
that in no other way the current state x can affect the next period state after an action
y is picked and a shock z is realized. It is important to note that Assumption 8 is also
required in the expected utility context; see Stokey et al. (1989, p. 270, item f).19 In any
case, this condition is satisfied in many practical applications.

Now, we present a result on the differentiability of v̄ for convex Y ,20 which follows
the classical Benveniste and Scheinkman (1979)’s argument.

19Blume et al. (1982) assume that the shock zt is an argument of the law of motion ϕ, but zt is not in Γ
or the instantaneous utility function. Nevertheless, they apply different techniques to show that optimal
plans can be obtained by an application of the Implicit Function Theorem to first order conditions.

20Notice that convexity of Y is required by Assumption 6.
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Theorem 3.16. Let Assumptions 1 – 8 hold and assume that x ∈ X ⊂Rp is interior. Then v̄ is
differentiable in x and for i = 1, ..., p,

∂v̄
∂xi
(x, z) = ∂u

∂xi
(x, y∗, z), (18)

where y∗ ∈ Υ(x, z) is a maximizer of (16) for v̄.

Although the standard result presented above requires convexity of Y , we are able
develop different arguments (not based on concavity) to establish differentiability of
the value function even if Y is finite and, hence, not convex. This is the content of the
following:

Theorem 3.17. Assume that the choice set Y is finite. Let Assumptions 1, 2 and 8 hold. Fix
x ∈ X ⊂ Rp, z ∈ Z . Assume that x ∈ X is an interior point where the optimal correspondence
Υ(x, z) ⊂ Γ(x, z) is lower hemi-continuous.21 Then, v̄ is differentiable in x, and

∂v̄
∂xi
(x, z) = ∂u

∂xi
(x, y∗, z),

where y∗ ∈ Υ(x, z) is a maximizer of (16) for v̄.

Notice that Theorem 3.17 requires less assumptions than Theorem 3.16, but it re-
stricts to finite choice sets and requires lower hemi-continuity of the optimal corre-
spondence.

3.9 Euler Equation

The final step is to characterize the solutions of the quantile recursive problem through
the Euler equation. As before, let v̄ be the unique fixed point of M in C, guaranteed to
exist by Theorem 3.11. By Theorem 3.16, if ϕ does not depend on x, v̄ is differentiable
in its first coordinate, satisfying ∂v̄

∂xi
(x, z) = ∂u

∂xi
(x, y∗, z). Given that we have shown

the differentiability of value function, we are able to apply the standard technique to
obtain the Euler equation, as formalized in the following theorem:

Below, we will assume that Assumption 8 holds, so that ϕ does not depend on
x. Using again v̄ as the fixed point of M, we can define ṽ ∶ X ×Z → R by ṽ(y, z) ≡
v̄(ϕ(y, z), z).

Theorem 3.18 (Euler Equation). Let Assumptions 1 – 8 hold. Let (xt, yt, zt)t∈N be a se-
quence of states, optimal decisions and shocks, such that (xt, yt) are interior for all t. If

21Recall that this means that for every sequence xn → x, and every y∗ ∈ Υ(x, z), there exists some
sequence {yn}n∈N such that yn ∈ Υ(xn, z) for every n ∈N and yn → y∗.
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zt ↦ ∂u
∂x (xt, yt, zt) ⋅ ∂ϕ

∂yi
(yt−1, zt) is strictly increasing, then ∀n ∈N and i = 1, ..., m:

∂u
∂yi
(xt, yt, zt)+ βQτ [

∂u
∂x
(xt+1, yt+1, zt+1) ⋅

∂ϕ

∂yi
(yt, zt+1) ∣ zt] = 0. (19)

In (19), ∂u
∂yi

represents the derivative of u with respect to the i-th coordinate of its

second variable (y) (that is, an unidimensional value) and ∂u
∂x represents the derivative

of u with respect to its first variable (x) (that is, a p-dimensional vector). Since ϕ takes
value on X ⊂ Rp, ∂ϕ

∂yi
stands for the p-dimensional derivative vector of ϕ with respect

to the i-th coordinate of y. We could also rewrite (19) as follows:

∂u
∂yi
(xt, yt, zt)+ βQτ

⎡⎢⎢⎢⎢⎣

p

∑
j=1

∂u
∂xj
(xt+1, yt+1, zt+1)

∂ϕj

∂yi
(yt, zt+1) ∣ zt

⎤⎥⎥⎥⎥⎦
= 0, (20)

where ϕj stands for the j-th component of ϕ.
Theorem 3.18 provides the Euler equation, that is the optimality conditions for the

quantile dynamic programming problem. This result is the generalization of the tra-
ditional expected utility to the quantile preferences. The Euler equation in (19) is dis-
played as an implicit function, nevertheless for any particular application, and given
utility function, one is able to solve it explicitly as a conditional quantile function.

When ϕ(y, z) = y and we identify X ≡ Y , as in the model where the shock occurs be-
fore the decision-maker chooses his action, so in practice it is the same as considering
his choice being directly the next period state, (19) simplifies to

∂u
∂yi
(xt, yt, zt)+ βQτ [

∂u
∂xi
(xt+1, yt+1, zt+1) ∣ zt] = 0.

The proof of Theorem 3.18 relies on a result about the differentiability inside the
quantile function. Indeed, if h is differentiable and the derivative ∂h

∂yi
(y, Z) is inte-

grable, then

∂

∂yi
E[h(y, Z)] = E [ ∂h

∂yi
(y, Z)] , but

∂

∂yi
Qτ[h(y, Z)] /= Qτ [

∂h
∂yi
(y, Z)] ,

in general. However, de Castro and Galvao (2019) establish conditions under which
the commutability of the two operations holds. See their paper for details.

4 Applications

In this section we discuss two well-known economic models that can be adapted to
quantile preferences. The analysis of these canonical models are useful to illustrate
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the recursive quantile model, as well as the new theoretical results in this paper.

4.1 Intertemporal Consumption

In a seminal work, Modigliani and Brumberg (1954) investigated intertemporal con-
sumption and life-cycle. This framework has been used as a standard economic ap-
proach to the study of consumption behavior and served as basis for a very large
literature and subsequent models of intertemporal consumption (see, e.g., Deaton,
1992).

This first example uses a consumption-based model to illustrate the dynamic quan-
tile preferences methods. We establish results as an explicit formula for the value func-
tion, the optimal consumption and asset hold, as well as their corresponding paths. We
also compare the results with the case without uncertainty, and make a parallel with
the permanent income hypothesis.

Consider the following economy. At the beginning of period t, the decision-maker
(DM) has xt ∈ X ⊂R+ units of the risky asset, with return zt ∈ Z ⊆R++. With wealth xtzt

at the beginning of period t, the DM decides yt = (ct, xt+1), which includes the amount
consumed in period t, ct, and next period’s state, xt+1. Therefore, the next period units
of the risky asset xt+1 is given by the law of motion ϕ ∶ X ×Y ×Z → X introduced in
equation (6), as follows:

xt+1 = ϕ(xt, yt, zt+1) = ϕ(xt, (ct, xt+1), zt+1).

The transformation that defines the recursive equation is the following:

M(v̄)(xt, zt) ≡ max
(ct,xt+1)∈Γ(xt,zt)

{U(ct)+ βQτ [v̄(xt+1, zt+1)∣ zt]}, (21)

where β ∈ (0, 1) is the discount factor, τ ∈ (0, 1) is the risk attitude, Γ ∶ X ×Z → Y =
X ×X is the feasibility correspondence and U ∶ R+ → R defines the utility function,
that is related to the function u ∶ X ×Y ×Z →R of Section 3 by the following:

u(xt, yt, zt) = u(xt, (ct, xt+1), zt) = U(ct). (22)

We impose the following assumption.

Assumption 9. The following holds: (i) X = [0, x] for some x > 0; (ii) Z = [z, z], with
z > z > 0; (iii) U ∶ X → R is C2, U ′ > 0, U ′′ < 0; (iv) ϕ ∶ X × Y ×Z → X is defined
by ϕ(x, y, z) = ϕ(x, (c, x ′), z) = x ′; and (v) Γ ∶ X ×Z → Y = X ×X is given by Γ(x, z) ≡
{(c, x ′) ∈ X ×X ∶ c + x ′ ⩽ xz}.

Assumption 9 encompass many useful specifications for applications. Although it
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restricts the domain to be [0, x] instead of the usual R+ or R++, this limitation does not
create significant issues; see discussion after Corollary 4.2 below. It should be noted
that Assumption 9 allows all commonly used utility functions, such as the isoelastic
and exponential that are explicitly discussed below.

Now, we use the results from Section 3 above to show that the transformation de-
fined by (21) possesses a fixed point, which is a value function satisfying the recursive
equation and previous properties.

Theorem 4.1. Let Assumptions 1 and 9 hold. There exists a unique continuous and bounded
function v̄ ∶ X ×Z → R satisfying the recursive equation (21). This function is increasing in
x.

If Assumption 5 also holds and if the optimal point in (21) is interior to Y , then v̄ is
differentiable in x, strictly increasing in x and z, strictly concave in x and satisfies, for an
optimal path {(ct, xt)}∞t=1 that is interior, with ct = xtzt − xt+1,

∂v̄
∂x
(xt, zt) = U ′(xtzt − xt+1)zt = (xtzt − xt+1)−γzt. (23)

Moreover, for this optimal interior path, the following Euler Equation holds:22

−U ′(ct)+Qτ [βU ′(ct+1)zt+1∣ zt] = 0. (24)

Theorem 4.1 follows from results in Section 3, although some of the previous as-
sumptions are not strictly satisfied. See the proof in the appendix for details.

The Euler equation for the intertemporal consumption model (24) has a very simple
intertemporal substitution interpretation. The marginal rate of substitution between
consumption in two periods must be equal to the marginal rate of transformation.
Suppose the DM decreases the consumption by dct at time t, invests dct in the asset
and consumes the proceeds at time t + 1. The decrease in utility at time t is U ′ (ct).
The increase in utility at time t+ 1 is uncertain because of the shock, but viewed at t, it
is evaluated as the τ-quantile Qτ[βU ′ (ct+1) zt+1∣ zt]. The future uncertainty is solved
using the τ-quantile.

Next, we specialize the utility function to the isoelastic and exponential utility
cases. We will see that in those specific cases, we can obtain closed form solutions
for the value function.

22To obtain this Euler equation, we change the setup above. See details in the proof of this theorem
in the appendix.
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4.1.1 Isoelastic Utility Function

In this section we specify U ∶ X →R to be the isoelastic utility function, for γ ∈ (0, 1):23

U(c) = c1−γ

1−γ
, γ ∈ (0, 1). (25)

In the Appendix, we discuss the cases of γ ⩾ 1. Now, we specialize the conclusions of
Theorem 4.1.

Corollary 4.2. Let Assumptions 1, 5 and 9 hold, with U given by (25). Then, there exists a
unique continuous and bounded function v̄ ∶ X ×Z →R satisfying the recursive equation (21),
that is, v̄ = M(v̄). Moreover, if the optimal choice is interior, v̄ is differentiable in x, strictly
increasing in z, strictly concave in x, satisfies (23) and the following Euler equation holds:

Qτ [β (
ct+1

ct
)
−γ

zt+1∣zt] = 1. (26)

The Euler equation (26) provides an equilibrium condition for consumption. Em-
pirically, together with instrumental variables quantile regression methods – as in, for
instance, de Castro et al. (2019) – it could be used to estimate the parameters charac-
terizing the preferences for intertemporal substitution in the model.

Although Corollary 4.2 restricts the domain of the utility function in (25) to [0, x],
we develop below results for the usual unbounded domain R+. Indeed, Theorem 4.3
offers a closed form expression for the value function v̄ in R+. This theorem does not
state uniqueness for v̄ because involved functions are not bounded and the contraction
argument does not apply. However, Theorem 4.4 establishes that this value function v̄
is indeed the unique fixed point among all functions satisfying the functional equation
(21) that also satisfy the conditional quantile transversality condition introduced in
Section 3.3.

We focus here in the case γ ∈ (0, 1), which is simpler to state. The results for γ = 1
and γ > 1 are developed separately in the appendix; see, respectively, Theorems A.24
and A.30.

Assumption 10. The following holds: (i)U is given by (25), for γ ∈ (0, 1); (ii) X =R+; (iii)
Z ⊂R+ is a closed interval; (iv) ϕ ∶ X ×Y ×Z → X is defined by ϕ(x, y, z) = ϕ(x, (c, x ′), z) =
x ′; (v) Γ ∶ X ×Z → Y = X ×X is given by Γ(x, z) ≡ {(c, x ′) ∈ X ×X ∶ c + x ′ ⩽ xz}; (vi) there
exists z̃ > 0 such that 0 < Qτ[w∣z] ⩽ z̃, for for all z ∈ Z ;24 and (vii) βz̃1−γ < 1.

The following functions are useful in the statement below. Let rτ,s(z) be defined

23The case γ ⩾ 1 is studied in the Appendix.
24Notice that Z does not need to be bounded and may include zero. This condition only requires that

the quantile Qτ[w∣z] is strictly positive and bounded by z̃ for all z ∈ Z .
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recursively by rτ,0(z) = 1, and

rτ,s(z) = rτ,s−1 (Qτ[w∣ z]) ⋅Qτ[w∣ z], for s ⩾ 1. (27)

Given this, define the functions:

R(z) ≡
∞

∑
s=1

β
s
γ [rτ,s(z)]

1−γ
γ and S(z) ≡ R(z)

1+ R(z)
. (28)

Assumption 10 guarantees that R is well-defined.25 Observe that both functions R(z)
and S(z) depend on all three parameters β, τ and γ. We have the following:

Theorem 4.3. Let Assumptions 1, 5 and 10 hold. Let v̄ ∶ X ×Z →R be given by

v̄(x, z) = 1
1−γ

⋅ (xz)1−γ ⋅ [1+ R(z)]γ . (29)

Then v̄ is a fixed point of the transformation M defined in (21). Moreover, the optimal policy
function y∗ ∶ X ×Z → Y = X ×X is given by:

y∗(x, z) = (c , x ′) = ([1− S(z)] ⋅ xz , S(z) ⋅ xz), (30)

and for an optimal consumption path {ct}∞t=1 associated with shocks {zt}∞t=1,

ct+1

ct
= zt+1 ⋅ R(zt) ⋅ [1− S(zt+1)] . (31)

Notice that the value function in (29) is characterized by three parameters: the dis-
count factor (β), the risk attitude (τ), and the parameter in the utility function (γ).
The discount factor characterizes consumer’s impatience. It is used to discount future
payments of intertemporal utility functions, and allows to obtain the present value
of future consumption. The risk attitude parameter – given by the quantile τ, as dis-
cussed in Section 2 – describes consumer’s reluctance to substitute consumption across
states of the world under uncertainty and is meaningful even in an atemporal setting.
The elasticity of intertemporal substitution (EIS), that is, the elasticity of consumption
growth with respect to marginal utility growth, is just 1/γ in this dynamic quantile
model.26 As discussed in Section 2, an important feature of the recursive quantile
model is that it allows for the complete separation of the risk and EIS parameters,

25 By Assumption 10-(vi), rτ,s(z) ⩽ z̃rτ,s−1(z). Therefore, rτ,s(z) ⩽ z̃s. This implies that

β
s
γ [rτ,s(z)]

1−γ
γ ⩽ (β

1
γ z̃

1−γ
γ )

s
. By Assumption 10-(vii), β

1
γ z̃

1−γ
γ < 1. This implies that the infinite sum

defining R(z) converges.
26Under time separable utility, the EIS is also the percent change in consumption growth per percent

increase in the net interest rate.
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while maintaining important properties as dynamic consistency and monotonicity.
The main contribution of Theorem 4.3 is to provide explicit solutions for the value

function and the optimal savings (investment) and consumption for each given state
and random shock, in equations (29) and (30). In addition, equation (31) derives a
recursive equation for the optimal path for the consumption, that allows to obtain ex-
plicit expressions for the growth of consumption as function of random shocks. These
expressions may be very useful in theoretical and empirical analysis.

We observe that, in contrast with the results shown in Theorem 4.3 for the quantile
model, it is difficult to obtain closed form expressions in the standard recursive EU
case for general Markov shock processes.27 For this reason, it has been standard in
the literature (see, e.g., Adda and Cooper, 2003) to use numerical methods to solve
dynamic programming problems under the EU model.

Notice that in Theorem 4.3 we refrain from stating uniqueness of v̄ because the
transformation may fail to be a contraction.28 The following theorem establishes the
desired uniqueness result using another argument, namely, the Principle of Optimality
(Theorem 3.8), that uses the conditional quantile transversality condition (CQTC); see
Definition 3.7.

Theorem 4.4 (Uniqueness of the Value Function). Let Assumptions 1, 5 and 10 hold. Let
v̄ ∶R+ ×Z →R be the function defined by (29). Suppose that v ∶ X ×Z →R is a fixed point of
M defined by (21) that satisfies the CQTC. Then, v = v̄.

In fact, in Appendix A.8.1, we state a more general result than Theorem 4.4, by in-
troducing another transversality condition that may be easier to verify. There, we also
show how a mild condition would imply CQTC.29 In any case, Theorem 4.4 shows
that function v̄ defined by (29) is essentially the only function that satisfies the func-
tional equation for this isoelastic model, even with unbounded domain. Notice we
have reached this conclusion without using the standard contractions arguments, that
are usually restricted to bounded functions.

In the rest of this section, we explore particularizations of this model, to obtain
simpler expressions for the value function v̄. We will consider conditions that are

27In the EU case, the solution is also separable in the form v(x, z) = x1−γ

1−γ L(z), where L(z) is the

fixed point of the operator T(L(z)) = z1−γ {1+ β
1
γ (E[L(w)∣ z])

1
γ }

γ

. However, the fact that E[⋅] does not

commute with increasing functions makes it hard to find a simple closed form for L. Thus, a numer-
ical approach seems unavoidable for the EU version of this model. In contrast, for quantiles we have

(Qτ[L(w)∣z])
1
γ = Qτ [(L(w))

1
γ ∣z] and the exponent 1

γ will cancel with the exponent γ coming from the

iteration.
28Remember, in particular, that the usual argument for establishing that M is a contraction requires

that this transformation is restricted to bounded functions.
29See Remark A.23.
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stronger than the general Markov assumption. For instance, if we assume that the
shocks are independent and identically distributed (iid), we can specialize the above
results as follows:

Example 4.5 (The iid case). If the shocks are independent, then Qτ[w∣ z] becomes a con-
stant, Qτ[w], such that (27) reduces to rτ,s(z) = rτ,s = (Qτ[w])

s. Similarly, let aβ,τ,γ =

β
1
γ (Qτ[w])

1−γ
γ . Then,

R(z) =
∞

∑
s=1

β
s
γ [rτ,s(z)]

1−γ
γ =

∞

∑
s=1

as
β,τ,γ =

aβ,τ,γ

1− aβ,τ,γ
,

since 0 < aβ,τ,γ < 1 by Assumption 10(vi;vii). Therefore, S(z) = aβ,τ,γ. With this, the above
results simplify to xt+1 = aβ,τ,γxtzt, ct = (1 − aβ,τ,γ)xtzt, ct+1 = aβ,τ,γctzt+1, and v̄(xt, zt) =
(1−aβ,τ,γ)

−γ

1−γ (xtzt)1−γ.

If we interpret the shocks zt as coming from productivity determined by human
capital, the last expressions in Example 4.5 above capture the essence of the standard
permanent income hypothesis (PIH) discussed in Hall (1988): current consumption
is determined by a combination of current non human wealth xt and human capi-
tal wealth zt. The fraction of total wealth consumed today further depends on aβ,τ,γ,
which is a function of all parameters of the model. Also, notice that the uncertainty
is resolved using the quantile operator, which is inside aβ,τ,γ. An increase in the risk
attitude has the same effect as increase in the discount factor making the current con-
sumption decrease. When γ < 1, an increase in γ (decrease in EIS) also decreases
current consumption.

Another case of interest is when the shocks are τ-quantile martingales (see Defini-
tion 3.1):

Example 4.6 (τ-quantile martingales). Assume that z follows a τ-quantile martingale pro-
cess – see Definition 3.1 and equation (7). Then Qτ[w∣ z] = z for all z, so

rτ,s(z) = zs for all s ⩾ 1.

Therefore, Theorem 4.3 implies that the value function is explicitly given by

v̄(x, z) = 1
1−γ

(xz)1−γ [
∞

∑
s=0
(β

1
γ z

1−γ
γ )

s
]

γ

= 1
1−γ

(xz)1−γ (1− β
1
γ z

1−γ
γ )
−γ

, (32)

with optimal consumption c∗(x, z) = (1− β
1
γ z

1−γ
γ ) xz and optimal savings (βz)

1
γ x. Notice

that the general formulas for the value function and the optimal assets and consumption depend
on all parameters of the model. These expressions are explicitly dependent on β and γ, but they
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are functions of τ implicitly, because we assumed that the process is a τ-quantile martingale
process, which means that for a given risk attitude τ, the uncertainty is solved as Qτ[w∣ z] = z.

These expressions give us the opportunity to compare them with with those for the
model without uncertainty, where it is also possible to obtain closed form solutions.
This is the subject of the next section.

4.1.2 Comparison with the Riskless Case

We will see now how the closed form expressions obtained in Theorem 4.3 for the
quantile model generalize similar expressions for a model without risk. To see this,
it is sufficient to consider the case in equation (21), where the set of shocks reduces
to a singleton, that is, Z = {R} so that the budget constraint ct = xtzt − xt+1 becomes
ct = xtR − xt+1. Notice that the familiar “cake eating problem” is a special case, in
which R = 1. If we consider R < 1, in general this problem is called “ice cream eating
problem” since a fraction 1 − R > 0 of the “ice cream” “melts” each period and is no
longer available for consumption.

Consider a recursive model without uncertainty as

v̄(xt) = max
xt+1∈[0,xtR]

U(xtR − xt+1)+ βv̄(xt+1). (33)

The first order condition (Euler equation) for this problem leads to U ′(ct) = βRU ′(ct+1).
Assume that U is the isoelastic utility function in (25), and let aβ,γ = β

1
γ R

1−γ
γ . If we de-

note the optimal savings (next period assets) by x∗ and optimal consumption by c∗,
we have the following closed form expressions:

v̄(x) =
(1− aβ,γ)−γ

1−γ
(xR)1−γ (34)

x∗ = aβ,γ ⋅ xR (35)

c∗ = (1− aβ,γ) ⋅ xR (36)

ct+1 = aβ,γctR. (37)

Equations (34)–(37) are parallel to those in Theorem 4.3 and Examples 4.5 and 4.6.
We observe that the equations for both cases, with and without uncertainty, have sim-
ilar functional forms, but naturally, for the former case the quantile operator appears
in the expressions to resolve the uncertainty. This is interesting since it shows that the
quantile model is able to capture important features of the model without risk, but at
the same time allows for studying risk and risk attitudes. Notice also that the optimal
savings (x∗) and consumption (c∗) are shares of the available resources, namely, xz in
the uncertain case and xR in the risk free case. But, again, the case with uncertainty
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depends on the risk attitude τ and the quantile operator. Hence, a small increment in
x has similar effects on y∗ and c∗ in both models, but differences across the models
depend on the quantile τ. Another interesting point regards the consumption path,
where consumption at time t + 1 is a share of the previous consumption in both mod-

els. Notice that aβ,γ = β
1
γ R

1−γ
γ above corresponds to aβ,τ,γ = β

1
γ (Qτ[w])

1−γ
γ of Example

4.5, where τ plays an explicit role. However, the two models will not be equivalent
even if Qτ[w] = R, which implies that aβ,γ = aβ,τ,γ. Indeed, in the model with un-
certainty of Example 4.5, we have ct+1 = aβ,τ,γctzt+1, while ct+1 = aβ,γctR in the model
without risk. Notice that zt+1 is a random element and may take values different from
Qτ[w] or R.

It is also interesting to see that equation (37) shows that the parameter characteriz-
ing the utility function is the EIS. Recall that the EIS is defined as EIS = d ln(ct+1/ct)/d ln(R).
Taking logarithm of (37), we obtain

ln(ct+1

ct
) = 1

γ
ln(β)+ 1

γ
ln(R).

Taking the derivative with respect to ln(R), we obtain EIS = 1/γ.

4.1.3 Comparative Statics

As previously observed, expressions (29), (30) and (31) show that the value function
and the optimal saving and consumption decisions are functions of the three parame-
ters characterizing the model, the discount factor β, the EIS 1/γ, and the risk attitude
(quantile) τ. These closed form solutions allow us to obtain comparative statics results
as established by the following:

Theorem 4.7. Let the assumptions of Theorem 4.3 hold, with the appropriate modifications to
allow γ ⩾ 1.30 Then we have the following:

1. If the decision maker (DM) becomes more impatient, that is, the discount factor β de-
creases, then the DM consumes more (and saves less).31

2. If the elasticity of intertemporal substitution (EIS= 1
γ ) increases and βz̃ < 1, then the

DM consumes more (and saves less).32

3. If the decision maker (DM) becomes more risk averse, that is, the risk attitude parameter
τ decreases, then the DM consumes more (and saves less) if γ ∈ (0, 1); and if γ > 1, then

30The precise conditions for the cases γ = 1 and γ > 1 are given, respectively, in the statements of
Theorems A.24 and A.30 in the appendix.

31We refer to consumption and savings as fractions of available assets xz
32See Assumption 10 for a definition of z̃ for the case γ ∈ (0, 1) and Theorem A.30 in the appendix, for

γ > 1. Since item 2 deals with changes in γ, it is not meaningful to consider γ = 1.
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the DM consumes less (and saves more). Moreover, if γ = 1, consumption and savings
decisions are not affected by the risk attitude.

4. If the distribution of returns increases, that is, the τ-quantile Qτ[w∣z] of future returns
increases for all z ∈ Z , then the DM consumes less (and saves more) if γ ∈ (0, 1); and if
γ > 1, the DM consumes more (and saves less). Moreover, if γ = 1, consumption and
savings decisions are not affected by these changes.

Theorem 4.7 sheds light on the impact of changes of the parameters of the model
on intertemporal consumption and savings decisions. First, it confirms the intuitive
result that an increase in impatience makes the DM to consume more and save less.
Second it clarifies the impact of changes in EIS. Recall that the EIS measures the sensi-
tivity of consumption growth to changes in the interest rate (the return of investment
opportunities). As the EIS increases, the DM becomes more sensitive to changes in
investment opportunities, and hence consumes more and saves less, provided that
the gains from investment are not too high. Third, we note the very interesting result
concerning changes in the risk attitude. When the DM becomes more risk averse (τ
decreases), changes in consumption and savings depend on the EIS (1/γ). When the
EIS is larger than 1, the DM is sensitive to investment opportunities, and an increase
in risk aversion leads to larger consumption and smaller investment. Finally, Theorem
4.7 shows that the consumption and savings decisions react differently to changes in
the rate of return, depending on the EIS: for high EIS – γ ∈ (0, 1) – an increase in in-
terest rates leads to less consumption and more savings. If the EIS is low – γ > 1 – the
same change leads to opposite behavior. These implications are empirically testable
and may shed light, among other things, on the debate whether the EIS is larger or
smaller than 1; see for instance Thimme (2017).

4.1.4 Exponential Utility and the Permanent Income Hypothesis

Now, we can consider the exponential utility, U(c) = − 1
γ exp(−γc), for γ > 0.33 Un-

der the conditions of Theorem 4.1, we can obtain the following Euler Equation for an
interior optimal path {ct}∞t=1 in this case:

Qτ[ct+1∣ zt] =
1
γ

ln (Qτ[zt+1∣ zt])+ ct +
1
γ

ln β. (38)

The model in equation (38) is very similar to the well-known permanent income
hypothesis (PIH) model in Hall (1978, 1988) and Flavin (1981) for the conditional ex-

33This function is also usually known as the Constant Absolute Risk Aversion (CARA) function, as
the isoelastic function discussed in Sections 4.1.1 and A.8.2 is known as Constant Relative Risk Aversion
(CRRA) function. Both terms are not appropriate for quantile preferences since, as we have explained
in Section 2, the utility functions do not have any implications for risk attitude, but for intertemporal
substitution.
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pectations. Indeed, Hall (1988, equation (1), p. 341) writes the following equation
resulting from an EU model and lognormal returns:

E[ct+1∣ zt] =
1
γ

ln (E[zt+1∣ zt])+ ct + k, (39)

adapting his notation to ours.
Generally the PIH predicts that consumption depends on permanent income, which

is the annuity value of lifetime resources. If rational expectations are also assumed,
together with a constant rate of return, the PIH implies that consumption follows a
random walk, so that only consumption in the previous period contains information
which can predict current consumption. Therefore, the DM adjusts current consump-
tion immediately to the point where consumption is not expected to change, smooth-
ing the consumption path.

If one assumes that zt = z for all t, as it is common the literature (see, e.g., Flavin
(1981)), then equation (38) becomes a quantile (regression) version of the unit root
model for the conditional average widely analyzed in the literature. Thus, the quan-
tile model predicts a τ-quantile martingale (see Definition 3.1). This conjecture could
be empirically tested by using quantile regression unit root tests, as for example in
Koenker and Xiao (2004), using data on consumption.

We notice similarities and differences between equations (38) and (39). First, con-
ditional expectations in (39) are substituted by conditional quantiles in (38). Second,
notice that these two models produce different empirical implications. For the quantile
case, the model implies existence of an unit root for the τ-quantile of the conditional
quantile function of ct+1. On the other hand, the EU implies a unit root for the con-
ditional average. While both models predict unit root behavior of the time-series of
consumption, these predictions are not nested, since the τ-quantile does not need to
coincide with the conditional mean.

4.2 Search with Unemployment

We now present a quantile-based version of the job-search model discussed in McCall
(1970); see also Lippman and McCall (1976a,b). In a labor market characterized by
uncertainty and costly information, both employers and employees will be searching.
The analysis presented here is directed to the employee’s job-searching strategy.34

The worker begins each period t with a wage offer wt and has to decide if she
accepts the offer and works at that wage (yt = 1) or refuses the offer (yt = 0) and
searches for a new one. Hence, the decision variable yt takes discrete values in {0, 1}.

34An interesting extension of this model would encompass unemployment benefit. We leave it for
future research.
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If she decides to search, she earns nothing during the period t, and a new wage offer
wt+1 ∈ [0, w̄] will be her best option for the next period, when she will be making
another choice between searching or working. This new wage offer wt+1 is modeled as
a continuous shock. If the worker chooses to work at period t, there is a chance that she
looses her job (et+1 = 0) in the next period t+ 1, or keeps it (et+1 = 1) and thus maintains
the same wage xt as in the previous period, where xt denotes the effectively earned
wage at period t. Hence, the random variable determining whether the worker keeps
or looses the job (et), which can be interpreted as employer’s decision, is a discrete
shock. The next period state xt+1 given by (6) satisfies the following law of motion:35

xt+1 = ϕ(xt, yt, et+1, wt+1) = et+1xtyt + (1− yt)wt+1. (40)

We assume that the worker cannot lend nor borrow, so consumption will equal earn-
ings xt at each period t. The variable z is a vector zt = (et, wt) representing the shocks
concerning the employer’s decision et of keeping the worker and the wage offer wt

resulting from the search. Thus, the decision maker’s problem can be represented by

v̄(xt, zt) = sup
yt∈{0,1}

{ytU(xt)+ βQτ [v̄(ϕ(xt, yt, zt+1), zt+1) ∣ zt]} , (41)

where U ∶ [0, w̄]→R denotes the utility over consumption, satisfying U(0) = 0.
We impose the following:

Assumption 11 (Independence and iid). The ssequences wt and et are iid, independent of
each other, and wt has a continuous distribution with support [0, w̄], with Qτ[w] > 0.

Observe that if yt = 1, then xt+1 = et+1xt and if yt = 0, xt+1 = wt+1. Since the shocks are
independent by Assumption 11, then the future state does not depend on the current
value of the shocks zt = (et, wt). Moreover, for any of the choices yt ∈ {0, 1}, the value
function does not depend on the current value of shocks. Therefore, we can write the
value function (41) as a function only of xt, that is,

v̄(xt) =max

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

βQτ [v̄(wt+1)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

value for yt=0

, U(xt)+ βQτ [v̄(et+1xt)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

value for yt=1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

. (42)

The characterization of the value function requires a few definitions. Observe that
Qτ[e] ∈ {0, 1} and Qτ[w] ∈ [0, w̄] are values determined by the primitives of the model.

35Observe that this ϕ does not satisfy Assumption 8 since it depends on xt.
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Let us define the following constant:

A =
β (1+ βQτ[e])

1− β2 U (Qτ[w]) . (43)

It is easy to see that A(1− β) < U(Qτ[w]). Thus, if U is continuous and strictly increas-
ing, we can define uniquely x∗ by

U(x∗) = (1− β)A. (44)

We have the following:

Theorem 4.8. Let Assumption 11 hold, β ∈ (0, 1), and assume that U ∶ [0, w̄] → R is
strictly increasing and continuous, with U(0) = 0. Then, there exists a unique continuous
and bounded value function v̄ satisfying (41), and this v̄ is strictly increasing in xt, does not
depend on zt and is given by

v̄(x) =
⎧⎪⎪⎨⎪⎪⎩

A, if x ⩽ x∗

(1+ β
1−βQτ[e])U(x)+ (1−Qτ[e])βA, if x > x∗

(45)

Moreover, it is optimal to accept the offer (y∗ = 1) if x ⩾ x∗ and it is optimal to search (y∗ = 0)
if x ⩽ x∗.

The solution in Theorem 4.8 is interesting and intuitive, being similar to the one
obtainable for the expected utility model.36 Indeed, equation (44) is the same as equa-
tion (3) in Stokey et al. (1989, p. 306). However, the expressions for A and v(x) are
different. Compare equations (2) and (4) in Stokey et al. (1989, p. 306) with (43) and
(45), respectively.

The decision-maker (DM) has an optimal benchmark salary x∗ given by (44), which
depends on both Qτ[e] and Qτ[w]. Whenever a wage offer is below this level, the
worker rejects the offer and searches for a new one. If, on the contrary, the DM receives
an offer greater than x∗, the offer is accepted. It is worth noticing that this critical wage
x∗ is increasing in τ, as shown in expression (43). Since the parameter τ captures the
risk attitude of the DM, larger values of τ – meaning that the agent is more risk lover –
are associated with larger wages x∗. Therefore, a risk loving DM will have a relatively
higher benchmark wage level x∗, and hence will be more likely to engage in searching
for a better salary, whereas a more risk averse DM is more likely to accept a given wage
offer, since the benchmark x∗ is lower. We note that the quantile search model gener-
ates different implications from that for the EU, since the solution depends on both
Qτ[e] and Qτ[w]. These quantile values are, in general, different from the expectation

36See Stokey et al. (1989, Section 10.7).
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of their corresponding distributions. Potential coincidence depends on the skewness
of these distributions, and the particular risk attitude parameter τ.

5 Conclusion

This paper studies dynamic quantile preferences introduced by de Castro and Galvao
(2019). In this model, an agent maximizes the stream of future τ-quantile utilities. We
are able to generalize and sharpen their results in many directions that are relevant for
economic applications. In particular, we allow the shocks to be in a finite set or in a
general connected metric space. Also, the future state is not directly chosen, but can
be affected by shocks. These features allow to deal with applications that were not
covered by de Castro and Galvao (2019)’s results. We show that the recursive quantile
preferences model yields a value function, using a fixed-point argument. We also ob-
tain desirable properties of the value function. In addition, we derive the correspond-
ing Euler equation. These results are illustrated for two models: an intertemporal
consumption and savings problem, and a search with unemployment model.

A Appendix

This appendix collects all the formal proofs of the results in the main text. Before we proceed

to the proofs we review a few useful properties of quantiles.37

A.1 Preliminaries

In this appendix, we state and prove a number of results about quantiles, most of which are

well-known. Quantiles are monotonic in the following sense: if X first-order stochastically

dominates Y then Qτ[X] ⩾ Qτ[Y]. If X is risk-free, that is, X = x with probability one for

some x, then Qτ[X] = x. Quantiles are also translation-invariant, that is, Qτ[α+X] = α+Qτ[X],
∀α ∈ R; and scale-invariant, that is, Qτ[αX] = αQτ[X], ∀α ∈ R+. On the other hand, quantiles do

not share many of the convenient properties of expectations. For instance, Qτ[−X] = −Q1−τ[X],
provided the cdf of X is invertible.38 We highlight three other important properties that fail

for quantiles and would be important for our results. First, in general, quantiles are not lin-

ear: Qτ[X + Y] /= Qτ[X] +Qτ[Y] in general; but see Proposition A.2 below. Second, quan-

tiles do not satisfy an analogue of the law of iterated expectations: if Σ0 ⊂ Σ1 are two σ-

algebras, then, in general, Qτ[Qτ[X∣Σ1]∣Σ0] /= Qτ[X∣Σ0]. Third, in general, it is not possi-

ble to interchange a differentiation and a quantile operator, as it is for expectations, that is,
∂Qτ
∂x [h(x, Z)] /= Qτ [ ∂h

∂x(x, Z)]. Despite these shortcomings, we are able to overcome the difficul-

ties to obtain our results.
37See de Castro and Galvao (2019) for proofs of the stated properties and other results.
38See Lemma A.27 below for a more general statement.
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We proceed to state some properties that will be used repeatedly below, beginning with

the following:39

Pr [X < Qτ[X]] ⩽ τ ⩽ Pr [X ⩽ Qτ[X]] = FX (Qτ[X]) . (46)

Let Θ be a set (of parameters) and g ∶ Θ ×Z ×Z → R be a measurable function. We denote

by Qτ[g(θ, ⋅)∣ z] the quantile function associated with g, that is:

Qτ[g(θ, ⋅)∣ z] ≡ inf{α ∈ R ∶ Pr [(g(θ, W) ⩽ α)∣Z = z] ⩾ τ}. (47)

The following result is a generalization of de Castro and Galvao (2019, Lemma A.2) to the case

in which Z can be discrete, not only finite but also countable. Since the proof is identical, we

omit it.

Lemma A.1. Assume that Z ⊂ R is closed and g ∶ Θ ×Z → R is non-decreasing and left-continuous
in Z , where closedness and left-continuity are relative to the usual topology on R . Then,

Qτ[g(θ, ⋅)∣ z] = g (θ, Qτ[w∣ z]) . (48)

Although this paper focus attention on Z connected or finite, our results can be extended

for countable Z . In this setup, it is usual to endow Z with the discrete topology. Since this

topology is trivial, every function is continuous with respect to it. But for the purpose of this

lemma, more structure is needed for the case in which Z is countable, by requiring continuity

with respect to the usual topology of R. To see this assumption is needed, we provide the

following counterexample. Let Z = {1− 1/n; n ∈N} ∪ {1, 2}. Then Z is discrete and closed in

the usual R-topology. Consider the probabilities

Pr [Z = 1− 1
n
] = 1

2n+1 ; n ∈N, and Pr[Z = 1] = Pr[Z = 2] = 1
4

.

Instead of considering functions continuous with respect to the usual topology, assume

only continuity with respect to the discrete topology on Z . Let g be given by

g (1− 1/n) = (1− 1/n) ; g(1) = 2 and g(2) = 3.

For τ = 1/2, one has Qτ [g(Z)] = 1 while g (Qτ[Z]) = g(1) = 2.

The next result is just a generalization of de Castro and Galvao (2019, Proposition A.4):

Proposition A.2. Given random variables X and Y, assume that there are continuous and increasing
functions h and g such that X = h(Z) and Y = g(Z). Then

Qτ[X +Y] = Qτ[X]+Qτ[Y] (49)

and if X, Y > 0,
Qτ[X ⋅Y] = Qτ[X] ⋅Qτ[Y]. (50)

39See de Castro and Galvao (2019, Lemma A.1, p. 1926).
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Proof. The property (49) is well-known; a proof can be found in de Castro and Galvao (2019,

Proposition A.4). To see that (50) also holds, observe that we can apply the monotonic func-

tion ln to the positive random variables X and Y, and use (48) and (49) for the comonotonic

variables ln(X) and ln(Y), to obtain:

ln (Qτ[X ⋅Y]) = Qτ[ln(X ⋅Y)] = Qτ[ln(X)+ ln(Y)] = Qτ[ln(X)]+Qτ[ln(Y)]

= ln(Qτ[X])+ ln(Qτ[Y]) = ln(Qτ[X] ⋅Qτ[Y]).

Applying the exponential function to the terms on the left and on the right of the above equa-

tion, we obtain (50).

We conclude with a useful property of convergence:

Lemma A.3. Left fn ∶ X ⊂ Rp → R be a sequence of functions converging uniformly to a function
f ∶ X → R. Then

lim
n→∞

Qτ[ fn(X)] = Qτ[ f (X)].

Proof of Lemma A.3: Let ϵ > 0. Since fn → f uniformly, there exists some N ∈N such that

−ϵ

2
+ f (x) < fn(x) < f (x)+ ϵ

2

for all x ∈ X whenever n ⩾ N. Taking quantiles imply

−ϵ +Qτ[ f (X)] < −
ϵ

2
+Qτ[ f (X)] = Qτ [−

ϵ

2
+ f (X)] ⩽ Qτ[ fn(X)]

⩽ Qτ [ f (X)+ ϵ

2
] = Qτ[ f (X)]+

ϵ

2
< Qτ[ f (X)]+ ϵ,

so

∣Qτ[ fn(X)]−Qτ[ f (X)]∣ < ϵ,

if n ⩾ N. Thus, the result follows.

A.2 Proofs of Section 3.3

Proof of Lemma 3.6: By Stokey et al. (1989, Theorem 7.6), Γ has a measurable selection. There-

fore, the argument in Stokey et al. (1989, Lemma 9.1) establishes the result.

Proof of Theorem 3.8: Under Assumption 0, v∗ is well defined by (13). Let v ∶ X ×Z → R be a

function satisfying the assumptions of Theorem 3.8. We need to show that:

(A) v(x, z) ⩾ V(h, x, z), for all (x, z) ∈ X ×Z and h ∈ H(x, z); and

(B) v(x, z) = limn→∞V(hn, x, z), for a sequence of plans {hn} obtained from Gv.
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To see (A), assume that it is false, that is, there exists (x1, z1) ∈ X ×Z , h ∈ H, and ϵ > 0 such

that v(x1, z1)+ 2ϵ < V(h, x1, z1). From (12), there exists n1 such that n ⩾ n1 implies that

Vn−1(h, x1, z1)− ϵ > v(x1, z1). (51)

From (8), and using (9) and (10),

v(x1, z1) = sup
y1∈Γ(x1,z1)

{u (x1, y1, z1) + βQτ[ v (ϕ(x1, y1, z2), z2) ∣ z1]}

⩾ Qτ [u (x1, yh
1, z1) + β v (ϕ(x1, yh

1, z2), z2) ∣ z1]

We can use again (8) to obtain that v(x1, z1) is not smaller than

Qτ

⎡⎢⎢⎢⎢⎣
Sh,0 (x1, z1)+ β sup

y2∈Γ(xh
2 ,z2)

{u (xh
2 , y2, z2) + βQτ [ v (ϕ(xh

2 , y2, z3), z3) ∣ z2]} ∣ z1

⎤⎥⎥⎥⎥⎦
⩾ Qτ [Qτ [Sh,0 (x1, z1)+ β u (xh

2 , yh
2, z2) + β2 v (ϕ(xh

2 , yh
2, z3), z3) ∣ z2] ∣ z1]

= Q2
τ [Sh,1 (x1, z2) + β2 v (ϕ(xh

2 , yh
2, z3), z3) ∣ z1] .

Proceeding in this fashion, we obtain:

v(x1, z1) ⩾ Qn
τ [Sh,n−1 (x1, zn) + βn v (ϕ(xh

n, yh
n, zn+1), zn+1) ∣ z1]

= Qn−1
τ [ Qτ [Sh,n−1 (x1, zn) + βn v (ϕ(xh

n, yh
n, zn+1), zn+1) ∣ zn] ∣ z1]

= Qn−1
τ [Sh,n−1 (x1, zn) + βn Qτ [ v (ϕ(xh

n, yh
n, zn+1), zn+1) ∣ zn] ∣ z1] .

From the transversality condition, there exists n2 ⩾ n1 such that n ⩾ n2 implies (14). Therefore,

v(x1, z1) ⩾ Qn−1
τ [Sh,n−1 (x1, zn) + βn Qτ [ v (ϕ(xh

n, yh
n, zn+1), zn+1) ∣ zn] ∣ z1] (52)

⩾ Qn−1
τ [Sh,n−1 (x1, zn)− ϵ ∣ z1]

= Vn−1(h, x, z)− ϵ,

but this contradicts (51). The contradiction establishes (A).

From (A), we conclude that v(x, z) ⩾ suph∈H(x,z)V(h, x, z). For a contradiction, assume

that (B) is false, that is, there exists ϵ > 0 and (x1, z1) ∈ X × Z , such that v(x1, z1) − 2ϵ >
suph∈H(x1,z1)V(h, x1, z1). Let h be any plan obtained from Gv, which exists because of the stated

assumptions on Gv. Then, v(x1, z1)−2ϵ > V(h, x1, z1). From (12), there exists n1 such that n ⩾ n1

implies that

v(x1, z1) > Vn−1(h, x1, z1)+ ϵ. (53)

We can repeat the developments above after (51), where all inequalities hold with equality
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since h is obtained from G. In this fashion, we obtain:

v(x1, z1) = Qn−1
τ [Sh,n−1 (x1, zn) + βn Qτ [ v (ϕ(xh

n, yh
n, zn+1), zn+1) ∣ zn] ∣ z1] , (54)

From CQTC, there exists n2 ⩾ n1 such that n ⩾ n2 implies (14). Therefore,

v(x1, z1) ⩽ Qn−1
τ [Sh,n−1 (x1, zn)+ ϵ ∣ z1] = Vn−1(h, x, z)+ ϵ,

but this contradicts (53). The contradiction establishes (B) and concludes the proof.

Notice that this also establishes the last claim. Indeed, if there exists a plan h obtained from

Gv such that v(x1, z1) > V(h, x1, z1), the above arguments would lead to the same contradiction.

This concludes the proof.

A.3 Proofs of Section 3.5

Proof of Theorem 3.11: This will be established through a series of Lemmas and the next

Proposition. In the following proofs, we denote by w the next period shock, given that the

current shock is z.

Proposition A.4. If v ∈ C, the map (x, y, z)↦ Qτ[v(ϕ(x, y, w), w)∣ z] is continuous.

The proof of Proposition A.4 is divided in a series of Lemmas. Before presenting them,

we need to make a simple observation and introduce some notation. Observe that, since ϕ

is continuous, by setting y ′ = (x, y) and v ′(y ′, w) = v(ϕ(x, y, w), w), it suffices to prove that

(y ′, z) ↦ Qτ[v ′(y ′, w)∣ z] is continuous. We proceed in this direction, simply writing y and v
instead of y ′ and v ′, respectively.

Now consider a sequence (yn, zn)→ (y∗, z∗). Let K ∶ Z ×Σ → [0, 1] be the transition function

representing the Markov process of the shocks Z , where Σ is the Borel σ-algebra. Let

mn(α) ≡ Pr ({w ∈ Z ∶ v(yn, w) ⩽ α}∣ zn) = K (zn,{w ∈ Z ∶ v(yn, w) ⩽ α})

and

m∗(α) ≡ Pr ({w ∈ Z ∶ v(y∗, w) ⩽ α}∣ z∗) = K (z∗,{w ∈ Z ∶ v(y∗, w) ⩽ α}) .

Let αn ≡ inf{α ∈ R ∶ mn(α) ⩾ τ} = Qτ[v(yn, ⋅)∣ zn] and α∗ ≡ inf{α ∈ R ∶ m∗(α) ⩾ τ} =
Qτ[v(y∗, ⋅)∣ z∗]. We want to show that αn → α∗.40 We will proceed in two main steps, first

showing that α ≡ lim infn αn ⩾ α∗ and then showing that ᾱ ≡ lim supn αn ⩽ α∗.41 This will

establish the result.

Lemma A.5. Suppose that αn → α̂. Given ϵ, δ > 0, there exists nϵ,δ ∈ N and a compact Z ′ ⊂ Z such

40Notice that we do not claim that mn(α)→ m∗(α), as in equation (50) of de Castro and Galvao (2019),
and the proof does not depend on this convergence.

41Since v is bounded, it is not possible that αn →∞ or −∞, that is, α, ᾱ ∈ R are well-defined.
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that n ⩾ nϵ,δ implies that

K(z∗,{w ∈ Z ′ ∶ v(y∗, w) ⩽ α̂ + ϵ})+ δ > τ; and (55)

K(zn,{w ∈ Z ′ ∶ v(y∗, w) ⩽ α̂ − ϵ})+ δ > K(z∗,{w ∈ Z ∶ v(y∗, w) ⩽ α̂ − ϵ}). (56)

Proof. By Assumption 1-(i), given ϵ > 0, there exists Z ′ ⊂ Z compact such that

K(z∗,Z/Z ′) < δ

4
. (57)

Using (57) and Assumption 1-(ii), there exists n1 ∈N such that if n ⩾ n1,42

∣K(zn,Z/Z ′)−K(z∗,Z/Z ′)∣ < δ

4
⇒ K(zn,Z/Z ′) < K(z∗,Z/Z ′)+ δ

4
< δ

2
. (58)

Let D be a compact set containing the sequence {yn}n∈N and, of course, its limit y∗. Then,

since v is continuous, it is uniformly continuous in the compact D ×Z ′. Hence, there exists

n2 ⩾ n1 such that if n ⩾ n2 then

∣ v(yn, w)− v(y∗, w)∣ < ϵ

2
, ∀w ∈ Z ′ and ∣ α̂ − αn∣ < ϵ

2
. (59)

Now, let w ∈ Z ′ be such that v(yn, w) ⩽ αn. By (59), v(y∗, w) ⩽ v(yn, w)+ ϵ
2 ⩽ αn + ϵ

2 < α̂+ ϵ. Thus,

if n ⩾ n2, {w ∈ Z ′ ∶ v(yn, w) ⩽ αn} ⊂ {w ∈ Z ′ ∶ v(y∗, w) ⩽ α̂ + ϵ} . Defining E ≡ {w ∈ Z ′ ∶ v(y∗, w) ⩽ α̂ + ϵ},
which is compact, we conclude that

K (zn,{w ∈ Z ∶ v(yn, w) ⩽ αn}) ⩽ K (zn, E)+K (zn,Z/Z ′) . (60)

Since the expression on the left above is greater than or equal to τ by (46), we can use (58)

to conclude that τ < K (zn, E) + δ
2 . Again by Assumption 1-(ii), there exists n3 ⩾ n2 such that

n ⩾ n3 implies K(zn, E) < K(z∗, E)+ δ
2 . Therefore, we have proved (55).

To see (56), define F ≡ {w ∈ Z ′ ∶ v(y∗, w) ⩽ α̂ − ϵ}. This set is compact. Observe that

K (z∗,{w ∈ Z ∶ v(y∗, w) ⩽ α̂ − ϵ}) ⩽ K (z∗, F)+K (z∗,Z/Z ′) . (61)

Again by Assumption 1-(ii), there exists n4 ⩾ n3 such that n ⩾ n4 implies

K(z∗, F) < K(zn, F)+ δ

2
. (62)

Combining (61) with (57) and (62), we obtain (56). Finally, let nϵ,δ ≡ n4.

Lemma A.6. Let Assumption 1 hold. Then, α ≡ lim infn αn ⩾ α∗.

Proof. We will show that α ⩾ α∗ by contradiction. So, assume that α < α∗. This means that there

exists ϵ > 0 and a subsequence nj such that αnj → α, with α + ϵ < α∗. Since α∗ ≡ inf{α ∈ R ∶

42Since K(z,Z/Z ′) = 1 − K(z,Z ′) for any z ∈ Z , Assumption 1-(ii) implies K(zn,Z/Z ′) →
K(z∗,Z/Z ′).
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m∗(α) ⩾ τ}, m∗(α + ϵ) < τ. Choose η > 0 such that

τ − η > m∗(α + ϵ) = K (z∗,{w ∈ Z ∶ v(y∗, w) ⩽ α + ϵ}) .

Given this η > 0, Lemma A.5 implies that there exists a compact Z ′ ⊂ Z such that

m∗(α + ϵ) ⩾ K(z∗,{w ∈ Z ′ ∶ v(y∗, w) ⩽ α + ϵ}) > τ − η,

that is, τ − η > m∗(α + ϵ) > τ − η, which is a contradiction that establishes the result.

Let us denote by E∗ the set {w ∈ Z ∶ v(y∗, w) ⩽ α∗}. Since v is continuous, E∗ is closed.

Lemma A.7. Let ᾱ ≡ lim supn αn. If K (z∗, E∗) > τ, then ᾱ ⩽ α∗.

Proof. For a contradiction, assume that there exists ϵ > 0 such that ᾱ − ϵ > α⋆. Let {αnj}j∈N be a

subsequence converging to ᾱ. Let δ > 0 be such that K (z∗, E∗) > τ + 2δ. By Lemma A.5, there

exists j1 ∈N and a compact Z ′ ⊂ Z such that j ⩾ j1 implies that

K(znj ,{w ∈ Z ′ ∶ v(y∗, w) ⩽ ᾱ − ϵ}) > K(z∗,{w ∈ Z ∶ v(y∗, w) ⩽ ᾱ − ϵ})− δ.

Since ᾱ − ϵ > α∗, K (z∗,{w ∈ Z ∶ v(y∗, w) ⩽ ᾱ − ϵ}) ⩾ K (z∗, E∗) > τ + 2δ. Thus, if j ⩾ j1,

K(znj ,{w ∈ Z ∶ v(y∗, w) ⩽ ᾱ − ϵ}) > τ + δ.

Since αnj = inf{α ∈ R ∶ K (znj ,{w ∈ Z ∶ v(ynj , w) ⩽ α}) ⩾ τ}, then αnj ⩽ ᾱ− ϵ for all j ⩾ j1. However,

this contradicts αnj → ᾱ, and concludes the proof.

Now, we have to deal with the case in which

K (z∗, E∗) = K (z∗,{w ∈ Z ∶ v(y∗, w) ⩽ α∗}) = τ. (63)

We deal with this case by considering first the case in which Z is finite and then the case in

which Z is connected.

Lemma A.8. Let Assumption 1 hold, in the specific case in which Z is finite. If (63) holds, then
ᾱ ≡ lim supn αn ⩽ α∗.

Proof. For a contradiction, assume that for some ϵ > 0, ᾱ− ϵ > α∗. Given that Z is a finite metric

space, it is endowed with the discrete topology. Since zn → z∗, we may assume, without loss

of generality, that there exists a subsequence such that znj = z∗ for all j ∈N and αnj → ᾱ. There

exists j1 ∈N such that for all j ⩾ j1, ∣αnj − ᾱ∣ < ϵ
2 . Since ᾱ − ϵ > α∗, for all j ⩾ j1,

α∗ < α∗ + ϵ

2
< ᾱ − ϵ

2
< αnj . (64)

Since αnj = inf{α ∈ R ∶ K (znj ,{w ∈ Z ∶ v(ynj , w) ⩽ α}) ⩾ τ}, for all j ⩾ j1,

K (z∗,{w ∈ Z ∶ v(ynj , w) ⩽ ᾱ − ϵ

2
}) < τ. (65)
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Fix a compact D containing {yn}n∈N. Again, since v continuous and Z is finite, v is uniformly

continuous on D ×Z . Hence, there exists j2 ⩾ j1 such that ∀w ∈ Z and j ⩾ j2,

∣v(y∗, w)− v(ynj , w)∣ < ϵ

2
.

Thus, if j ⩾ j2 and w ∈ Z is such that v(y∗, w) ⩽ α∗, we have

v(ynj , w)− ϵ

2
< v(y∗, w) ⩽ α∗,

so, by (64), for all j ⩾ j2,

v(ynj , w) < α∗ + ϵ

2
< ᾱ − ϵ

2
< αnj .

Therefore, for all j ⩾ j2,

E∗ = {w ∈ Z ∶ v(y∗, w) ⩽ α∗} ⊂ {w ∈ Z ∶ v(ynj , w) ⩽ ᾱ − ϵ

2
} .

Using this, (63) and (65), we have t, for j ⩾ j2,

τ = K (z∗, E∗) ⩽ K (z∗,{w ∈ Z ∶ v(ynj , w) ⩽ ᾱ − ϵ

2
}) < τ,

a contradiction. Thus, the result is established.

Now, we consider (63) for the case in which Z is connected. In fact, we will establish the

result for a condition that is implied but it is slightly more general than the requirement that

Z is connected, namely, the assumption that the image of w ↦ v(y∗, w) is connected, that is, it

is an interval. Since v is continuous, the condition that Z is connected implies this property.

Lemma A.9 below establishes the relevant result, assuming only this condition on the v.

Lemma A.9. Let Assumption 1 hold, v ∈ C, and assume that v(y∗,Z) is an interval. If (63) holds,
then ᾱ ≡ lim supn αn ⩽ α∗.

Proof. For a contradiction, assume that ᾱ > α∗. Fix δ > 0 such that α∗ + 2δ < ᾱ. Let nj be a

subsequence such that αnj → ᾱ. Thus, there exists j1 ∈ N such that j ⩾ j1 implies αnj > ᾱ − δ >
α∗ + δ. We claim that the set B ≡ {w ∈ Z ∶ α∗ < v(y∗, w) < ᾱ− δ} is nonempty. To see this, suppose

that B = ∅. Since τ ∈ (0, 1), (63) implies that

0 < 1− τ = K (z∗,{w ∈ Z ∶ v(y∗, w) > α∗}) = K (z∗,{w ∈ Z ∶ v(y∗, w) ⩾ ᾱ − δ}) .

Therefore, there exists w1 ∈ {w ∈ Z ∶ v(y∗, w) ⩾ ᾱ − δ}. Again by (63), there exists w0 ∈ {w ∈
Z ∶ v(y∗, w) ⩽ α∗}. Therefore, v(y∗, w0) ⩽ α∗ < ᾱ − δ ⩽ v(y∗, w1). Since v(y∗,Z) is an interval,

[α∗, ᾱ − δ] ⊂ v(y∗,Z), which contradicts B = ∅. Thus, there exists w2 such that α∗ < v∗(w2) <
ᾱ − δ. Let ϵ ∈ (0, δ] be such that v∗(w2) ∈ (α∗ + ϵ, ᾱ − ϵ).

Since w2 ∈ {w ∈ Z ∶ α∗ + ϵ < v(y∗, w) < ᾱ − ϵ}, and v is continuous, this set is nonempty and

open. Assumption 1-(iii) guarantees that there exists η > 0 such that 5η < τ and

K(z∗,{w ∈ Z ∶ α∗ + ϵ < v(y∗, w) < ᾱ − ϵ}) > 5η. (66)
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Assumption 1-(i) enables us to find a compact Z ′ ⊂ Z such that

K(z∗,Z/Z ′) < η. (67)

Let C ≡ {w ∈ Z ′ ∶ α∗ + ϵ ⩽ v(y∗, w) ⩽ ᾱ− ϵ}. Notice that C ⊂ Z ′ is compact, since v is continuous.

From (66) and (67),

K(z∗, C) ⩾ K (z∗,{w ∈ Z ∶ α∗ + ϵ ⩽ v(y∗, w) ⩽ ᾱ − ϵ})−K(z∗,Z/Z ′) > 4η. (68)

Let D ⊂ X be a compact containing the sequence {yn}n∈N and, naturally, its limit y∗. Thus,

v is uniformly continuous in D ×Z ′ and there exists j2 ⩾ j1, such that for all w ∈ Z ′ and j ⩾ j2,

∣v(ynj , w)− v(y∗, w)∣ < ϵ

2
, and (69)

∣ᾱ − αnj ∣ < ϵ

2
. (70)

Now notice that, if w ∈ Z ′ and α∗ + ϵ ⩽ v(y∗, w), (69) implies that for all j ⩾ j2,

v(ynj , w) > v(y∗, w)− ϵ

2
⩾ α∗ + ϵ − ϵ

2
= α∗ + ϵ

2
. (71)

Notice also that, if w ∈ Z ′ and v(y∗, w) ⩽ ᾱ − ϵ, (69) implies that

v(ynj , w) < v(y∗, w)+ ϵ

2
⩽ ᾱ − ϵ + ϵ

2
= ᾱ − ϵ

2
. (72)

Hence, (71), (72) and the fact that ᾱ − ϵ/2 < αnj , from (70), imply that for j ⩾ j2,

C = {w ∈ Z ′ ∶ α∗ + ϵ ⩽ v(y∗, w) ⩽ ᾱ − ϵ} ⊂ {w ∈ Z ∶ α∗ + ϵ

2
< v(ynj , w) < αnj} . (73)

Since K(z∗, C) > 4η by (68) and K(znj , C)→ K(z∗, C), there exists j3 ⩾ j2 such that for all j ⩾ j3,

K (znj , C) > 2η.

Therefore, from the definition of mnj , for all j ⩾ j3,

mnj (α∗ + ϵ

2
)+ 2η < K (znj ,{w ∈ Z ∶ v(ynj , w) ⩽ α∗ + ϵ

2
})+K (znj , C)

⩽ K (znj ,{w ∈ Z ∶ v(ynj , w) < αnj}) ⩽ τ,

where we have used (73) to obtain the penultimate inequality, while the last inequality holds

from the definition of αnj and (46). Thus, we have established that for all j ⩾ j3,

mnj (α∗ + ϵ

2
) < τ − 2η. (74)

On the other hand, if j ⩾ j3 and w ∈ Z ′ is such that v(y∗, w) ⩽ α∗, then from (69),

v(ynj , w) < v(y∗, w)+ ϵ

2
⩽ α∗ + ϵ

2
,
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that is,
{w ∈ Z ′ ∶ v(y∗, w) ⩽ α∗} ⊂ {w ∈ Z ′ ∶ v(ynj , w) ⩽ α∗ + ϵ

2
} . (75)

From the definition of α∗, (46), and (67), we have for all j ⩾ j3,

τ ⩽ K (z∗, E∗) ⩽ K (z∗, E∗ ∩Z ′)+K (z∗,Z/Z ′) < K (z∗, E∗ ∩Z ′)+ η. (76)

By Assumption 1-(ii), K (znj , E∗ ∩Z ′)→ K (z∗, E∗ ∩Z ′). Therefore, there exists j4 ⩾ j3 such that

j ⩾ j4 implies, using (76), that

K (znj , E∗ ∩Z ′) > K (z∗, E∗ ∩Z ′)− η > τ − 2η. (77)

Hence, for each j ⩾ j4,

mnj (α∗ + ϵ

2
) = K (znj ,{z ∈ Z ∶ v(ynj , w) ⩽ α∗ + ϵ

2
}) by definition

⩾ K (znj ,{z ∈ Z ′ ∶ v(ynj , w) ⩽ α∗ + ϵ

2
}) by set inclusion

⩾ K (znj ,{z ∈ Z ′ ∶ v(y∗, w) ⩽ α∗}) by (75)

= K (znj , E∗ ∩Z ′) by definition

> τ − 2η. by (77)

However, this contradicts (74), concluding the proof.

Proof of Proposition A.4. Observe that K(z∗,{z ∈ Z ∶ v(y∗, w) ⩽ α∗}) ∈ [τ, 1], by (46) and the

fact that K(z∗, ⋅) is a probability. The case Z finite is established by Lemmas A.6, A.7, and A.8

and the case Z connected is proved by Lemmas A.6, A.7 and A.9.

Lemma A.10. For each v ∈ C the supremum in (16) is attained and M(v) ∈ C. Moreover, the optimal
correspondence Υ ∶ X ×Z ⇉ Y defined by

Υ(x, z) ≡ arg max
y∈Γ(x,z)

Qτ[u (x, y, z)+ βv̄(ϕ(x, y, w), w)∣ z] (78)

is upper semi-continuous with non-empty compact values.

Proof. The proof repeats the proof of de Castro and Galvao (2019, Lemma A.6).

We conclude the proof of Theorem 3.11 by showing that M satisfies Blackwell’s sufficient

conditions for a contraction.

Lemma A.11. M satisfies the following conditions:

(a) For any v, v ′ ∈ C, v ⩽ v ′ implies M(v) ⩽M(v ′).

(b) For any a ⩾ 0 and x ∈ X, M(v + a)(x) ⩽M(v)(x)+ βa, with β ∈ (0, 1).

Then, ∥M(v)−M(v ′)∥ ⩽ β∥ v − v ′∥ , that is, M is a contraction with modulus β. Therefore, M has a
unique fixed-point v̄ ∈ C.
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Proof. To see (a), let v, v ′ ∈ C, v ⩽ v ′ and define g as

g(x, y, z, w) = u (x, y, z)+ βv(ϕ(x, y, w), w) (79)

and analogously for g ′.It is clear that g ⩽ g ′. Then, by de Castro and Galvao (2019, Lemma

A.1(vi)), Qτ[g(⋅)∣ z] ⩽ Qτ[g ′(⋅)∣ z], which implies (a).

To verify (b), since a is a constant,:

Qτ[v(ϕ(x, y, w), w)+ a∣ z] = Qτ[v(ϕ(x, y, w), w)∣ z]+ a.

Thus, M(v + a) =M(v)+ βa, that is, (b) is satisfied with equality. By a standard argument, (a)
and (b) imply that M is a contraction and the result follows.

A.4 Proofs of Section 3.6

Proof of Theorem 3.13: We will present the proof for the case with strict increasigness. For non-

decreasing functions, the same argument works with weak inequalities where strict inequali-

ties appear below. Let C ′ ⊂ C be the set of the bounded and continuous functions v ∶ X ×Z → R

which are nondecreasing in x. It is easy to see that C ′ is a closed subset of C. Let C ′′ ⊂ C ′ be the

set of strictly increasing functions x. If we show that M(C ′) ⊂ C ′′, then the fixed-point of M

will be strictly increasing in x.

Let v ∈ C ′ and consider x0, x1 ∈ X , x0 < x1. For i = 0, 1, let yi ∈ Γ(xi, z) attain the maximum,

that is,

M(v) (xi, z) = u(xi, yi, z)+ βQτ[v(ϕ(xi, yi, w), w)∣ z],

By Assumption 3, Γ(x0, z) ⊂ Γ(x1, z), so y0 ∈ Γ(x1, z). Therefore,

Mv(x0, z) = u(x0, y0, z)+ βQτ[v(ϕ(x0, y0, w), w)∣ z]

< u(x1, y0, z)+ βQτ[v(ϕ(x1, y0, w), w)∣ z]

⩽ Mv(x1, z),

where in the first inequality we used that u is strictly increasing in x, both v and ϕ are weakly

increasing in x, and the fact that quantiles is a monotonic operator, that is, for any g, h functions

such that g ⩽ h, Qτ[g(Z)] ⩽ Qτ[h(Z)]— see de Castro and Galvao (2019, Lemma A.1(vi)). In

the last inequality we have used the optimality of M. This shows that Mv is strictly increasing

in x when v ∈ C ′, that is, Mτ(C ′) ⊂ C ′′, since v ∈ C ′ was arbitrary.

To establish Theorem 3.14, we need the following two lemmas, which rely on its assump-

tions.

Lemma A.12. If h ∶ Z → R is weakly increasing and z ⩽ z ′, then Qτ[h(w)∣ z] ⩽ Qτ[h(w)∣ z ′].

44



Proof. From Assumption 5, if h ∶ Z → R is weakly increasing and z ⩽ z ′:

E [−1{W∈Z ∶h(W)⩽α}∣ z] ⩽ E [−1{W∈Z ∶h(W)⩽α}∣ z ′] .

Thus,

Pr ([h(W) ⩽ α] ∣ z) = E [1{W∈Z ∶h(W)⩽α}∣ z] ⩾ E [1{W∈Z ∶h(W)⩽α}∣ z ′] = Pr ([h(W) ⩽ w] ∣ z ′) . (80)

If we define H(w∣ z) = Pr ([h(W) ⩽ w] ∣Z = z), then (80) can be written as:

H(w∣ z) ⩾ H(w∣ z ′).

Observe that Qτ[h(w)∣ z] = inf{α ∈ R ∶ H(α∣ z) ⩾ τ} and, whenever z ⩽ z ′, H(w∣ z ′) ⩽
H(w∣ z), for all w. Therefore, if z ⩽ z ′, then

{α ∈ R ∶ H(α∣ z) ⩾ τ} ⊃ {α ∈ R ∶ H(α∣ z ′) ⩾ τ},

which implies that

Qτ[h(w)∣ z] = inf{α ∈ R ∶ H(α∣ z) ⩾ τ} ⩽ inf{α ∈ R ∶ H(α∣ z ′) ⩾ τ} = Qτ[h(w)∣ z ′],

as we wanted to show.

Lemma A.13. If u and v are weakly increasing in x and z, then M(v) is weakly increasing in z. If u
is strictly increasing in z, so is M(v).

Proof. Let z1, z2 ∈ Z , with z1 < z2. For i = 1, 2, let yi ∈ Γ (x, zi) realize the maximum, that is,

M(v) (x, zi) = u(x, yi, zi)+ βQτ[v(ϕ(x, yi, w), w)∣ zi].

If u is strictly increasing in z, we have:

M(v) (x, z1) = u(x, y1, z1)+ βQτ[v(ϕ(x, y1, w), w)∣ z1]

< u(x, y1, z2)+ βQτ[v(ϕ(x, y1, w), w)∣ z1].

If u is just weakly increasing, the above remains true with weak inequality (and the same

is true below; for simplicity, we focus only in the case of strict inequality). By Assumption

4, ϕ is weakly increasing in z. Since v is weakly increasing in x and z, the function h(w) ≡
v(ϕ(x, y1, w), w) is weakly increasing in w. Lemma A.12 implies that

Qτ[v(ϕ(x, y1, w), w)∣ z1] ⩽ Qτ[v(ϕ(x, y1, w), w)∣ z2],

which gives:

M(v) (x, z1) < u(x, y1, z2)+ βQτ[v(ϕ(x, y1, w), w)∣ z2].
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From Assumption 4, Γ(x, z1) ⊆ Γ(x, z2), that is, y1 ∈ Γ(x, z2). Optimality thus implies that:

u(x, y1, z2)+ βQτ[v(ϕ(x, y1, w), w)∣ z2] ⩽ u(x, y2, z2)+ βQτ[v(ϕ(x, y2, w), w)∣ z2]

=M(v) (x, z2) .

Therefore, M(v) (x, z1) <M(v) (x, z2), which shows strict increasingness in z.

Proof of Theorem 3.14: That v̄ is increasing with respect to x was already proved in Theorem

3.13. The argument for the similar property with respect to z is analogous: let C ′ ⊂ C be

the set of the bounded and continuous functions v ∶ X ×Z → R which are nondecreasing in

z; C ′ is again a closed subset of C. Let C ′′ ⊂ C ′ be the set of strictly increasing functions z.

Lemma A.13 shows that M(C ′) ⊂ C ′′ if u is strictly increasing in z and M(C ′) ⊂ C ′ if u is only

weakly increasing. Thus, the fixed-point of M has the stated properties, which concludes the

proof.

A.5 Proofs of Section 3.7

Proof of Theorem 3.15: As we have done in the proof of Theorem 3.13, we will present the

arguments just for the strict concavity case. For weak concavity, the same argument works

with weak inequalities where strict inequalities appear below. We organize the proof in a series

of lemmas. It is convenient to introduce the following notation. Let C ′ ⊂ C be the set of the

bounded and continuous functions v ∶ X ×Z → R which are concave in x and nondecreasing

in both x and z. It is easy to see that C ′ is a closed subset of C. Let C ′′ ⊂ C ′ be the set of strictly

concave functions in x and strictly increasing in both x and z. If we show that M(C ′) ⊂ C ′′,
then the fixed-point of M will be strictly concave in x, as well as strictly increasing in both x
and z . (See, for instance, Stokey et al. (1989, Corollary 1, p. 52).)

Lemma A.14. Under the assumptions of Theorem 3.15, M(C ′) ⊆ C ′. If u is strictly concave, M(C ′)
is also strictly concave.

Proof. As commented above, we will prove the result just with strict conditions; the weak

conditions follow by using weak inequalities. Let α ∈ (0, 1), v ∈ C ′ and consider x0, x1 ∈ X ,

x0 /= x1. For i = 0, 1, let yi ∈ Γ(xi, z) attain the maximum, that is,

M(v) (xi, z) = u(xi, yi, z)+ βQτ[v(ϕ(xi, yi, w), w)∣ z].
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Let xα ≡ αx0 + (1− α)x1 and yα ≡ αy0 + (1− α)y1. Hence,

αMv(x0, z)+ (1− α)Mv(x1, z) = α {u(x0, y0, z)+ βQτ[v(ϕ(x0, y0), w), w)∣ z]}+

(1− α) {u(x1, y1, z)+ βQτ[v(ϕ(x1, y1, w), w)∣ z]}

< u(xα, yα, z)+ β{Qτ[αv(ϕ(x0, y0, w), w)∣ z]+

Qτ[(1− α)v(ϕ(x1, y1, w), w)∣ z]}

= u(xα, yα, z)+ βQτ[αv(ϕ(x0, y0, w), w)+ (81)

(1− α)v(ϕ(x1, y1, w), w)∣ z]

⩽ u(xα, yα, z)+ βQτ[v(ϕ(xα, yα, w), w)∣ z]

⩽ Mv(xα, z),

where the first inequality is due to the strict concavity of u in the first two variables. The

equality in (81) is justified by Proposition A.2: since v is increasing in both variables and ϕ

is increasing in the last variable, v(ϕ(x, y, w), w) is both increasing and continuous on w, so

comonotonicity applies. The second inequality follows from concavity in x of v and in (x, y)
of ϕ, as well as the fact that quantiles preserve order; see de Castro and Galvao (2019, Lemma

A.1(vi)). The last inequality follows from Assumption 6 and the definition of M(v). This

proves that Mv is strictly concave in x when v ∈ C ′.

We conclude the proof of Theorem 3.15 by showing that the policy correspondence (78) is

single-valued and continuous.43

Lemma A.15. If u is strictly concave on y and v̄ is concave in x or v̄ is strictly concave in x, then the
optimal correspondence Υ(x, z) is single valued.

Proof. For an absurd, assume that there were y ≠ y ′ in Υ(x, z), that is,

v̄(x, z) = u(x, y, z)+ βQτ[v̄(ϕ(x, y, w), w)∣ z] = u(x, y ′, z)+ βQτ[v̄(ϕ(x, y ′, w), w)∣ z].

Let yα ≡ αy + (1− α)y ′. By Assumption 6, yα ∈ Γ(x, z). Hence,

v̄(x, z) = αv̄(x, z)+ (1− α)v̄(x, z)

= α {u(x, y, z)+ βQτ[v̄(ϕ(x, y, w), w)∣ z]}+

(1− α) {u(x, y ′, z)+ βQτ[v̄(ϕ(x, y ′, w), w)∣ z]}

< u(x, yα, z)+ β{Qτ[αv̄(ϕ(x, y, w), w)∣ z]+Qτ[(1− α)v̄(ϕ(x, y ′, w), w)∣ z]}

= u(x, yα, z)+ βQτ[αv̄(ϕ(x, y, w), w)+ (1− α)v̄(ϕ(x, y ′, w), w)∣ z] (82)

⩽ u(x, yα, z)+ βQτ[v̄(ϕ(x, yα, w), w)∣ z]

⩽ v̄(x, z),

where the first inequality is due to the strict concavity of u in the first two variables. Equal-

ity (82) is jusfied by the same argument that established (81) in Lemma A.14. The second

43With weak concavity, the inequalities are weak and the proof establishes that Υ is convex.
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inequality follows from concavity in x of v̄ (by Lemma A.14) and in (x, y) of ϕ, as well as

de Castro and Galvao (2019, Lemma A.1(vi)). The last inequality follows from Assumption 6

and the definition of v̄. This contradiction proves that the policy correspondence given by (78)

is single-valued. Lemma A.10 shows that the correspondence is upper semi-continuous. Since

it is single-valued, it is continuous as a function.

A.6 Proofs of Section 3.8

Proof of Theorem 3.16: The proof follows from an easy adaptation of Benveniste and Scheinkman

(1979)’s argument, as developed by de Castro and Galvao (2019). We will reproduce the argu-

ment here for readers’ convenience.

Let v be the fixed point of M ∶ C → C, which exists by Theorem 3.11. Let y∗ ∶ X ×Z → Y be a

measurable selection of Υ ∶ X ×Z → Y , that is, y∗(x, z) ∈ Υ(x, z). A measurable selection exists

because of Aliprantis and Border (2006, Theorem 18.19, p. 605). Thus, for all (x, z),

v(x, z) = u(x, y∗(x, z), z)+ βQτ[v(ϕ(x, y∗(x, z), w), w) ∣ z].

Recall that v is concave by Theorem 3.15. Fix x0 in the interior of X and define:

w̄(x, z) ≡ u(x, y∗(x0, z), z)+ βQτ[v(ϕ(x0, y∗(x0, z), w), w) ∣ z].

From the optimality of v, for a neighborhood of x0, we have w̄(x, z) ⩽ v(x, z), with equality

at x = x0, which implies w̄(x, z) − w̄(x0, z) ⩽ v(x, z) − v(x0, z). Note that w̄ is concave and

differentiable in x because u is. Thus, any subgradient p of v at x0 must satisfy

p ⋅ (x − x0) ⩾ v(x, z)− v(x0, z) ⩾ w̄(x, z)− w̄(x0, z).

Thus, p is also a subgradient of w̄. But since w̄ is differentiable, p is unique. Therefore, v is a

concave function with a unique subgradient. Therefore, it is differentiable at x0 (cf. Rockafellar

(1970, Theorem 25.1, p. 242)) and its derivative with respect to x is the same as that of w̄, that

is, for each i = 1, ..., p,44

∂v
∂xi
(x, z) = ∂w̄

∂xi
(x, z) = ∂u

∂xi
(x, y∗(x, z), z),

as we wanted to show.

Proof of Theorem 3.17: Let {hn}n∈N ⊂ R be a sequence of real numbers converging to 0. Let

ei = (0, ..., 0, 1, 0, ..., 0) ⊂ Rp be the ith canonical basis vector. Since x ∈ X ⊂ Rp is assumed to be

interior, we can suppose that the hn are small enough so that xn ≡ x + hnei ∈ X for all n ∈ N.

Clearly, we have xn → x. Let y∗ ∈ Υ(x, z). Since Υ is lower hemicontinuous at (x, z), there exists

44Recall that x ∈ X ⊂ Rp from Assumption 3.
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yn ∈ Υ(xn, z) such that yn → y∗. Since Y is discrete, this means that yn = y∗ for sufficiently high

n. Therefore, without loss of generality, we can assume that y∗ ∈ Υ(x, z)∩Υ(xn, z) for all n ∈N.

From (16),

v(x + hnei, z) = u(x + hnei, y∗, z)+ βQτ [v (ϕ(y∗, z ′), z ′) ∣ z] .

Since v(x, z) = u(x, y∗, z)+ βQτ [v (ϕ(y∗, z ′), z ′) ∣ z], we obtain

lim
n→∞

v(x + hnei, z)− v(x, z)
hn

= lim
n→∞

u(x + hnei, y∗, z)− u(x, y∗, z)
hn

= ∂u
∂xi
(x, y∗, z).

Since {hn} is an arbitrary sequence converging to 0, the proof is complete.

A.7 Proofs of Section 3.9

Proof of Theorem 3.18: Let g(x, y, z) ≡ u(x, y, z)+ βQτ[v̄(ϕ(y, w), w)∣ z] and y∗(x, z) be an inte-

rior solution of the problem (16). Let ṽ(y, w) = v̄(ϕ(y, w), w). Observe that ṽ is weakly increas-

ing in w, differentiable in its first variable and for 0 < y ′i − yi < ϵ, for some small ϵ > 0,

ṽ(y ′i , y−i, w)− ṽ(yi, y−i, w)

= ∫
y ′i

yi

∂ṽ
∂yi
(α, y−i, w)dα

= ∫
y ′i

yi

∂v̄
∂x
(ϕ(α, y−i, w), w) ⋅ ∂ϕ

∂yi
(α, y−i, w)dα

= ∫
y ′i

yi

∂u
∂x
(ϕ(α, y−i, w), y∗(ϕ(α, y−i, w), w), w) ⋅ ∂ϕ

∂yi
(α, y−i, w)dα,

where we have applied the chain rule in the second equality, and Theorem 3.16 in the third.

Thus, the difference in the first line is weakly increasing in w because, by hypothesis, the

integrand in the last line is. Therefore, the assumptions of Proposition 3.19 from de Castro

and Galvao (2019) are satisfied and we conclude that ∂Qτ
∂yi
[ṽ(y, w)] = Qτ [ ∂ṽ

∂yi
(y, w)] . Since u is

differentiable in y, so is g. Since y∗(x, z) is interior, the following first order condition holds:

∂g
∂yi
(x, y∗(x, z), z) = ∂u

∂yi
(x, y∗(x, z), z)+ βQτ [

∂ṽ
∂yi
(y∗(x, z), w)∣ z] = 0.

Now we apply Theorem 3.16 and its expression: ∂v̄
∂x(x, z) = ∂u

∂x (x, y∗(x, z), z), together with the

chain rule, to conclude that

∂u
∂yi
(x, y∗(x, z), z)

+ βQτ [
∂u
∂x
(ϕ(y∗(x, z), w), y∗(ϕ(y∗(x, z), w), w), w) ⋅ ∂ϕ

∂yi
(y∗(x, z), w)∣z] = 0.

Now, we have just to put the notation of a sequence. For this, let h = (xt) denote an optimal

path beginning at (x0, z0). Then the above equation can be rewritten, substituting x for xh
t ,
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y∗(x, z) for yh
t , ϕ(y∗(x, z), w) for xt+1, y∗(ϕ(y∗(x, z), w), w) for yh

t+1, z for zt and w for zt+1, as:

∂u
∂yi
(xh

t , yh
t , zt)+ βQτ [

∂u
∂x
(xh

t+1, yh
t+1, zt+1) ⋅

∂ϕ

∂yi
(yh

t , zt+1)∣zt] = 0, (83)

which we wanted to establish.

A.8 Proofs of Section 4.1

We first generalize Assumption 9 to the following:

Assumption 12. The following holds: (i) X = [x, x] for some x > x ⩾ 0; (ii) Z = [z, z], with
z > z > 0; (iii) U ∶ X → R is C2, U ′ > 0, U ′′ < 0; (iv) ϕ ∶ X ×Y ×Z → X is defined by ϕ(x, y, z) =
ϕ(x, (c, x ′), z) = x ′; and (v) Γ ∶ X ×Z → Y = X ×X is given by Γ(x, z) ≡ {(c, x ′) ∈ X ×X ∶ c + x ′ ⩽
max{xz, 2x}}.45

Proof of Theorem 4.1 with Assumption 12 in place of Assumption 9: For the existence of the

value function, it is sufficient to check that Assumption 2 holds and apply Theorem 3.11. Since

y = (c, x ′) ∈ Y = X ×X , U ∶ X → R is C2, X is compact, then u(x, y, z) = u(x, (c, x ′), z) = U(c)
is continuous and bounded. The function ϕ(x, y, z) = ϕ(x, (c, x ′), z) = x ′ is also continuous and

bounded. The correspondence Γ ∶ X ×Z → Y defined by Γ(x, z) ≡ {(c, x ′) ∈ X ×X ∶ c + x ′ ⩽
max{xz, 2x}} is continuous, with nonempty, compact values. Then, Assumption 2 holds and

there exists a value function that satisfies the functional equation (21).

Assumption 6-(i) is satisfied because X and Y = X ×X are convex. The function u(x, y, z) =
u(x, (c, x ′), z) = U(c) is increasing, but not strictly increasing, in the first and last variables

and it is concave, but not strictly concave, in the first two variables. Also, φ ∶ X ×Y ×Z → X
defined by ϕ(x, y, z) = ϕ(x, (c, x ′), z) = x ′ is non-decreasing and concave in all variables. Thus,

Assumption 6-(ii) is satisfied. Assumption 6-(iii) is also satisfied.

Assumption 7 is trivially satisfied. since Z = [z, z] ⊂ R++. Assumption 8-(i) holds since

u(x, y, z) = u(x, (c, x ′), z) = U(c) is constant with x and thus, C1. Assumption 8-(ii) holds since

φ ∶ X ×Y ×Z → X defined by ϕ(x, y, z) = ϕ(x, (c, x ′), z) = x ′ does not depend on x.

Thus, the other claims in Theorem 4.1 follow from Theorems 3.15, 3.16, and 3.18, although

the Euler equation needs some further work. In the above context, the Euler equation cannot

be applied because it refers to interior points, and the optimal choices of c and the next period

x ′ will not be interior to Γ(x, z), but in its boundary. We can change the definition of Y and

Γ(x, z) to remedy this. Let Y = X and y = x ′, that is, the decision maker chooses directly

the next state. To keep the boundary limits, consider the function l ∶ R+ → R+ defined by

l(α) =min{max{α, 2x}, 2x}. Thus, if xz ∈ (2x, 2x), l(xz) = xz, but it is equal to 2x if xz ⩽ 2x and

to 2x if xz ⩾ 2x. By the strict monotonicity of U, c = l(xz) − x ′ = l(xz) − y and we can redefine

u(x, y, z) = U(l(xz)− y), ϕ(x, y, z) = y and Γ(x, z) ≡ {y ∈ X ∶ l(xz) − y ∈ X}. For interior points,

xz ∈ (2x, 2x), and the Euler equation (24) is easily obtained.

45The requirement c + x ′ ⩽ max{xz, 2x} implies that (c, x ′) = (x, x) is still in the budget set even if
xz < 2x. This guarantees that Γ(x, z) is never empty.
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Proof of Corollary 4.2: It follows immediately from Theorem 4.1.

Proof of Theorem 4.3: We want to show that v̄ ∶ X ×Z → R given by (29) is a fixed point of

M ∶ C → C:

M(v̄)(x, z) = max
(c,x ′)∈Γ(x,z)

{ c1−γ

1− γ
+ βQτ [v̄(x ′, w)∣ zt]},

where X = [0,+∞) and Γ(x, z) = {(c, x ′) ∈ X 2 ∶ c + x ′ ⩽ xz}}.
Let us analyze this maximization problem. If xz = 0 then c = x ′ = x = 0 is the only choice

possible, that is, Γ(x, z) = {(0, 0)}. Assume, from now on, that xz > 0. Since the utility is strictly

increasing, it is not possible that c + x ′ < xz, since in this case we could increase consumption

to obtain a higher utility. Therefore, c + x ′ = xz. Thus, we can define t = x ′
x so that c = x(z − t)

and t ∈ [0, z]. Substituting (29) into the above expression of M, we obtain:

M(v̄)(x, z) = sup
t∈[0,z]

{x1−γ(z − t)1−γ

1− γ
+ βQτ [

x1−γt1−γ

1− γ
w1−γ(1+ R(w))γ∣ z]}

= x1−γ ⋅ sup
t∈[0,z]

{(z − t)1−γ

1− γ
+ β

t1−γ

1− γ
Qτ [w1−γ(1+ R(w))γ∣ z]} .

Let us define q ∶ Z → R by:

q(z) ≡ Qτ [w1−γ(1+ R(w))γ∣ z] . (84)

We are interested in the maximization problem maxt∈[0,z] v(t), where v ∶ [0, z]→ R is:

v(t) ≡ (z − t)1−γ

1− γ
+ β

t1−γ

1− γ
q(z). (85)

The first order condition is v ′(t) = −(z − t)−γ + t−γβq(z) = 0, which leads to the optimal:

t∗ = z[βq(z)]
1
γ

1+ [βq(z)]
1
γ

. (86)

Notice that t∗ ∈ (0, z) if z, q(z) > 0. If t ∈ [0, z), then v ′′(t) = −γ [(z − t)−γ−1 + t−γ−1βq(z)] < 0,

which implies that t∗ given by (86) is optimal. Substituting (86) into (85), we obtain:

v(t∗) = z1−γ

(1− γ){1+ [βq(z)]
1
γ}

1−γ
+ βq(z)
(1− γ) ⋅

z1−γ[βq(z)]
1−γ

γ

{1+ [βq(z)]
1
γ}

1−γ
= z1−γ

(1− γ) {1+ [βq(z)]
1
γ}

γ

.

Therefore,

M(v̄)(x, z) = (xz)1−γ

1− γ
⋅ {1+ [βq(z)]

1
γ}

γ

.

Thus, we conclude that v̄ is a fixed point of M, that is, v̄ =M(v̄), if we establish that {1+ [βq(z)]
1
γ}

γ

=
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[1+ R(z)]γ, that is,

R(z) = β
1
γ [q(z)]

1
γ = β

1
γ {Qτ [w1−γ(1+ R(w))γ∣ z]}

1
γ . (87)

Using the commutabiblity with monotonic function (48), this is equivalent to

R(z) = β
1
γ Qτ [w

1−γ
γ (1+ R(w))∣ z] .

Recall that R(z) = ∑∞s=1 β
s
γ [rτ,s(z)]

1−γ
γ , where rτ,s(z) is defined recursively by (27), that is,

rτ,0(z) = 1, and rτ,s(z) = rτ,s−1 (Qτ[w∣ z]) ⋅Qτ[w∣ z] for s ⩾ 1. Notice that all rτ,s(z) are non-

decreasing and continuous in z. Therefore, they are all comonotonic. Moreover, they are all

strictly positive by Assumption 10-(vi). From Proposition A.2, we have:

Qτ[w rτ,s−1(w)∣z] = Qτ[w∣z]rτ,s−1(Qτ[w∣z]) = rτ,s(z).

Using these properties and expressions, we obtain:

β
1
γ Qτ [w

1−γ
γ (1+ R(w)) ∣ z] = β

1
γ Qτ [w

1−γ
γ (1+

∞
∑
s=1

β
s
γ [rτ,s(w)]

1−γ
γ ) ∣ z]

= Qτ [β
1
γ w

1−γ
γ + β

1
γ w

1−γ
γ

∞
∑
s=1

β
s
γ [rτ,s(w)]

1−γ
γ ∣ z]

= Qτ [β
1
γ w

1−γ
γ ∣ z]+Qτ [

∞
∑
s=1

β
s+1
γ [w rτ,s(w)]

1−γ
γ ∣ z]

= β
1
γ rτ,1(z)

1−γ
γ +

∞
∑
s=1

β
s+1
γ {Qτ [w rτ,s(w)∣ z]}

1−γ
γ

=
∞
∑
s=1

β
s
γ [rτ,s(z)]

1−γ
γ ,

which is just R(z), as we wanted to verify.

Finally, we observe that the optimal savings and consumption decisions are determined by

t∗ from (86), that is,

x ′ = xt∗ = xz[βq(z)]
1
γ

1+ [βq(z)]
1
γ

= xzR(z)
1+ R(z) = xzS(z).

where we used using (87) and the definition (28) of S(z). Since c = xz − x ′, c = [1− S(z)]xz, we

obtain (30).

Finally, given a sequence of shocks {zt}∞t=1, since ct = c(xt, zt) = [1 − S(zt)]xtzt, xt+1 =
S(zt)xtzt and ct+1 = c(xt+1, zt+1) = [1+ S(zt+1)]xt+1zt+1, we have

ct+1

ct
= [1+ S(zt+1)]S(zt)xtztzt+1

[1− S(zt)]xtzt
= zt+1[1+ S(zt+1)]

S(zt)
1− S(zt)

,

which proves (31), since S(zt)
1−S(zt) = R(zt) by simple manipulations.
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A.8.1 Uniqueness of the value function

In this section, we will prove a stronger version of Theorem 4.4. For this, consider the following

variant of the transversality condition:

Definition A.16. We say that a function v ∶ X ×Z → R satisfies the quantile transversality condition
(QTC) if for any optimal plan h ∈ H starting at any (x, z) ∈ X ×Z , and ϵ > 0, there exists nϵ such that
n ⩾ nϵ implies that

−ϵ < βn Qn
τ [ v (ϕ(xh

n, yh
n, zn+1), zn+1) ∣ z1] < ϵ. (88)

We have the following:

Theorem A.17 (Uniqueness of the Value Function). Let Assumptions 1, 5 and 10 hold. Let v̄ ∶
R+ ×Z → R be the function defined by (29). Suppose that v ∶ X ×Z → R is a fixed point of M defined
by (21) and either: (i) the CQTC – see (14) or (ii) v and all optimal plans are weakly increasing and
continuous in all its arguments, and v satisfies QTC. Then, v = v̄.

The proof of Theorem A.17 is organized in many steps. The first one is to argue that As-

sumption 0 is satisfied, as Lemma A.18 establishes.

Lemma A.18. Let Assumptions 1, 5 and 10 hold. Then, Assumption 0 is satisfied.

Proof. From Assumption 10, Γ ∶ X ×Z → Y = X ×X is given by Γ(x, z) = {(c, x ′) ∈ X ×X ∶
c + x ′ ⩽ xz}. Therefore, Γ(x, z) /= ∅ and Γ has measurable selections. Recall that

Vn(h, x, z) = Qn
τ [Sh,n(x, ⋅) ∣ z ] = Qn

τ [
n
∑
t=0

βtu(xh
t+1, yh

t+1, zt+1) ∣ z ]

= Qτ [ ⋯ Qτ [Qτ [
n−1

∑
t=0

βtu(xh
t+1, yh

t+1, zt+1)+ βnu(xh
n+1, yh

n+1, zn+1) ∣ zn] ∣ zn−1] ⋯ ∣z]

= Qτ [ ⋯ Qτ [
n−1

∑
t=0

βtu(xh
t+1, yh

t+1, zt+1)+ βn Qτ [u(xh
n+1, yh

n+1, zn+1) ∣ zn] ∣ zn−1] ⋯ ∣z]

From (22) and Assumption 10-(i), we have, for γ ∈ (0, 1),

0 ⩽ u(xh
n+1, yh

n+1, zn+1) = U(cn+1) =
c1−γ

n+1

1− γ
. (89)

Since Γ(x, z) = {(c, x ′) ∈ X ×X ∶ c + x ′ ⩽ xz}, cn+1 ⩽ xh
n+1zn+1 ⩽ xh

nznzn+1 and, continuing in this

manner, we obtain cn+1 ⩽ xh
1z1⋯zn ⋅ zn+1. Moreover,

βn Qτ [u(xh
n+1, yh

n+1, zn+1) ∣ zn] ⩽
βn (xh

1z1⋯zn)
1−γ

1− γ
(Qτ [zn+1 ∣ zn])

1−γ
.

From Assumption 10-(vi) and (vii), there exists z̃ > 0 such that 0 < Qτ[w∣z] ⩽ z̃, for all z ∈ Z
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and ℓ ≡ βz̃1−γ < 1. Substituting ℓ in the above inequality, we obtain

Vn(h, x, z) ⩽ Qτ

⎡⎢⎢⎢⎢⎣
⋯ Qτ

⎡⎢⎢⎢⎢⎣

n−1

∑
t=0

βtu(xh
t+1, yh

t+1, zt+1)+
βn−1 (xh

1z1⋯zn)
1−γ

1− γ
l ∣ zn−1

⎤⎥⎥⎥⎥⎦
⋯ ∣z
⎤⎥⎥⎥⎥⎦

.

By repeating the same reasoning repeatedly, we conclude that

Vn(h, x, z) ⩽ (xz)1−γ

1− γ

n
∑
t=0

lt = (xz)1−γ

(1− γ)(1− l) .

Notice that, from the fact that each term in the sum of Vn(h, x, z) is nonnegative, as observed

by (89), the sequence Vn(h, x, z) is nondecreasing and bounded. Therefore, it is convergent.

This concludes the proof of Assumption 0.

The following result will be useful below.

Lemma A.19. Let Assumptions 1, 5 and 10 hold. Assume that f ∶ Zn → R+ and g ∶ Zn+1 → R+ are
weakly increasing and continuous in all arguments. Then,

Qn−1
τ [ f (zn)+ βnQτ [g (zn+1) ∣ zn] ∣ z1] = Qn−1

τ [ f (zn) ∣ z1]+ βn Qn
τ [g (zn+1) ∣ z1] . (90)

Proof. The function zn ↦ f (zn) is weakly increasing, by Assumption 5 and Lemma A.12, zn ↦
Qτ [g (zn+1) ∣ zn] is also weakly increasing. Therefore, these two functions are comonotonic

and Proposition A.2 implies that:

Qτ [ f (zn) + βnQτ [g (zn+1) ∣ zn] ∣ zn−1]

= Qτ [ f (zn) ∣ zn−1] + βnQτ [Qτ [g (zn+1) ∣ zn] ∣ zn−1] .

Again by Assumption 5 and Lemma A.12, the functions zn−1 ↦ Qτ [ f (zn) ∣ zn−1] and zn−1 ↦
Q2

τ [g (zn+1) ∣ zn−1] are weakly increasing and, hence, comonotonic. As before,

Qτ [Qτ [ f (zn) + βnQτ [g (zn+1) ∣ zn] ∣ zn−1] ∣ zn−2]

= Qτ [Qτ [ f (zn) ∣ zn−1] ∣ zn−2] + βnQτ [Qτ [Qτ [g (zn+1) ∣zn] ∣ zn−1] ∣ zn−2] .

Proceeding in this way, we obtain (90).

Given v ∶ X ×Z → R, recall from (15) that Gv ∶ X ×Z → Y denotes the optimal correspon-

dence and that a plan obtained from Gv if there exists a sequence of selections gt ∶ X ×Z → Y
such that for all t ∈N and all (x, z) ∈ X ×Z , gt(x, z) ∈ Gv(x, z) and ht(x, zt) = gt (ht−1(x, zt−1), zt).
Moreover, a plan is optimal if it is obtained from Gv. Recall from (9) and (10) that yh

t = ht(xh
t , zt)

and xh
t+1 = ϕ (xh

t , yh
t , zt+1). Therefore, we may define the sequence of optimal states by func-

tions hx
t (x, zt+1) = ϕ(xh

t , yh
t , zt+1) = xh

t+1.
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Lemma A.20. Let Assumptions 1, 5 and 10 hold. Fix v ∶ X × Z → R+ and optimal plan h. If
zn+1 ↦ v (hx

t (x, zn+1) , zn+1) is weakly increasing and continuous, then,

Qn−1
τ [Sh,n−1 (x1, zn) + βn Qτ [ v (ϕ(xh

n, yh
n, zn+1), zn+1) ∣ zn] ∣ z1]

= Qn−1
τ [Sh,n−1 (x1, zn) ∣ z1] + βn Qn

τ [ v (ϕ(xh
n, yh

n, zn+1), zn+1) ∣ z1] , (91)

where Sh,n(x, zn+1) is defined by (11).

Proof. The assumptions imply that the functions f (zn) ≡ Sh,n−1(x, zn) and g(zn+1) ≡ v (hx
t (x, zn+1) , zn+1)

satisfy the assumptions of Lemma A.19. The conclusion follows from that Lemma.

Lemma A.21. Let Assumptions 1, 5 and 10 hold. Let v∗ ∶ R+ ×Z → R be defined by (13) and let
v ∶ X ×Z → R satisfy QTC and v = M(v) for M defined by (21). Assume further that zn+1 ↦
v (hx

t (x, zn+1) , zn+1) is weakly increasing and continuous for all n. Then v = v∗.

Proof. It is sufficient to adapt the proof of Theorem 3.8. We can repeat everything in that proof

up to (52), that is, there exists n1 such that n ⩾ n1 implies (51) and (52), i.e.:

v(x1, z1) ⩾ Qn−1
τ [Sh,n−1 (x1, zn) + βn Qτ [ v (ϕ(xh

n, yh
n, zn+1), zn+1) ∣ zn] ∣ z1]

= Qn−1
τ [Sh,n−1 (x1, zn) ∣ z1] + βn Qn

τ [ v (ϕ(xh
n, yh

n, zn+1), zn+1) ∣ z1] ,

where the equality comes from Lemma A.20. By the QTC, we conclude that there exists n2 ⩾
n1 such that n ⩾ n1, v(x1, z1) > Vn(h, x1, z1) − ϵ, which contradicts (51). The contradiction

establishes (A) in the proof of Theorem 3.8.

The proof of (B) is the same up to equation (54), for an optimal plan h ∈ H, that is,

v(x1, z1) = Qn−1
τ [Sh,n−1 (x1, zn) + βn Qτ [ v (ϕ(xh

n, yh
n, zn+1), zn+1) ∣ zn] ∣ z1]

= Qn−1
τ [Sh,n−1 (x1, zn) ∣ z1] + βn Qn

τ [ v (ϕ(xh
n, yh

n, zn+1), zn+1) ∣ z1] ,

where again the equality comes from Lemma A.20. By QTC, we conclude that there exists

n2 ⩾ n1 such that n ⩾ n1, v(x1, z1) < Vn(h, x1, z1)+ ϵ, but this contradicts (53). The contradiction

establishes (B) and concludes the proof.

Lemma A.22. The function v̄ ∶ R+ ×Z → R, defined by (29), satisfies QTC (88).

Proof. Footnote 25 argues that R(z) converges. Indeed, if we denote (β
1
γ z̃

1−γ
γ ) by B ∈ (0, 1),

that footnote shows that R(z) ⩽ ∑∞s=1 Bs = B
1−B . Therefore, for (x, z) ∈ D,

v̄(x, z) = 1
1− γ

⋅ (xz)1−γ ⋅ [1+ R(z)]γ ⩽ 1
1− γ

⋅ (xz)1−γ ⋅ [1+ B
1− B

]
γ

= (xz)1−γ

(1− γ)(1− B)γ . (92)

Notice that v̄ ⩾ 0. Thus, to establish QTC (88), it is sufficient to show that there exists nϵ such

that n ⩾ nϵ such that

βn Qn
τ [ v̄ (ϕ(xh

n, yh
n, zn+1), zn+1) ∣ z1] < ϵ. (93)
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By the definition of Γ, we have xh
n+1zn+1 ⩽ xh

nznzn+1, and finally,

xh
n+1 ⋅ zn+1 ⩽ x1 ⋅ z1⋯zn ⋅ zn+1. (94)

Thus, the left hand side of (93) is smaller than

βn (x)1−γ

(1− γ)(1− B)γ (z1Qτ [z2 ⋯ Qτ [znQτ [zn+1 ∣ zn] ∣ zn−1] ⋯ ∣z1])
1−γ

⩽ βn (x1)1−γ

(1− γ)(1− B)γ (z1Qτ [z2 ⋯ Qτ [zn z̃ ∣ zn−1] ⋯ ∣z1])
1−γ

,

where we have used Assumption 10-(vi): there exists z̃ > 0 such that 0 < Qτ[w∣z] ⩽ z̃, for all

z ∈ Z . Proceeding this way, and using Assumption 10-(vii), that is, ℓ = βz̃1−γ < 1, we obtain

βn Qn
τ [ v̄ (ϕ(xh

n, yh
n, zn+1), zn+1) ∣ z1] ⩽

(x1z1)1−γ

(1− γ)(1− B)γ (ℓ)
n .

From this inequality, it is clear that we can find nϵ such that for all n ⩾ nϵ, (93) holds.

Proof of Theorem A.17: By Lemma A.22, v̄ satisfies QTC. By Theorem 4.3, v̄ is continuous and

increasing in all variables and so is the optimal plan. By Lemma A.21, v̄ = v∗. Let v be a fixed

point of M. If v satisfies CQTC, v = v∗ by Theorem 3.8. On the other hand, if v satisfies (ii)
of Theorem A.17, then the conditions of Lemma A.21 are met, and v = v∗. In any case, we

conclude that v = v̄, as we wanted to show.

Remark A.23. Although we did not prove directly that v̄ satisfies CQTC, a mild addition to Assump-
tion 10 allows us to establish it. Namely, it is sufficient to add the requirement that Z ⊂ [0, z̃], for z̃
satisfying Assumption 10-(vii). In this case, using (92), (94) and ℓ = βz̃1−γ < 1, we obtain

βn Qτ [ v (ϕ(xh
n, yh

n, zn+1), zn+1) ∣ zn] ⩽ βn (x1 ⋅ z1 ⋅ z2 ⋯ zn z̃)1−γ

(1− γ)(1− B)γ ⩽ (x1z1)1−γ

(1− γ)(1− B)γ ℓ
n

Since ℓ < 1 and v̄ ⩾ 0, this establishes (14).

A.8.2 Log utility function

Our results can also be adapted to the case of an isoelastic utility fuction with γ = 1. Indeed,

Corollary 4.2 can be adapted to yield exactly the same Euler equation (26), with γ = 1. Instead

of repeating these results, we obtain directly the closed form solutions for this case, parallel to

Theorem 4.3:

Theorem A.24. Let Assumptions 1, 5 and 10 hold, with the following modifications: γ = 1, X =
(0,∞); Z ⊂ R++, U(x) = ln(x), there exists z̃ > 0 such that 0 < Qτ[w∣z] ⩽ z̃,∀z ∈ Z . Let v̄ ∶ X ×Z →
R be defined by

v̄(x, z) ≡
∞
∑
s=0

βs

1− β
ln qτ,s(z)+

ln x
1− β

+
ln [ββ(1− β)1−β]
(1− β)2 , (95)
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where qτ,s(z) is given recursively by qτ,0(z) = z and

qτ,s(z) = qτ,s−1 (Qτ[w∣ z]) for s ⩾ 1. (96)

Then, v̄ is a fixed point of M defined by (21). Moreover, the optimal policy is:

y∗(x, z) = (c , x ′) = ((1− β)xz , βxz). (97)

Proof of Theorem A.24: First observe that since Qτ[w∣z] ⩽ z̃, qτ,0(z) ⩽ z̃ for all z ∈ Z . By

induction, qτ,s(z) ⩽ z̃, for all s ∈N and z ∈ Z . This shows that the infinite sum in (95) converges.

Let v̄ be given by (95). For conciseness, denote ln[ββ(1−β)1−β]
(1−β)2 by C. Then,

Mv̄(x, z) = sup
y∈[0,xz]

{ln(xz − y)+ βQτ [
∞
∑
s=0

βs

1− β
ln qτ,s(z ′)+

ln y
1− β

+C∣ z]}

= sup
y∈[0,xz]

{ln(xz − y)+ β [
∞
∑
s=0

βs

1− β
ln qτ,s(Qτ[z ′∣ z])+

ln y
1− β

+C]}

=
∞
∑
s=1

βs

1− β
ln qτ,s(z)+ βC + sup

y∈[0,xz]
{ln(xz − y)+ β

1− β
ln y} , (98)

where we used Lemma A.1 in the second equality, since the qτ,s(z) are increasing by a succes-

sive application of Lemma A.12; and in the third equality, we used the recursive relation (96).

The first order condition for the expression in brackets from (98) for optimal y is

1
xz − y

= β

1− β

1
y

,

which leads to the optimal savings policy y = βxz. Thus, consumption is c = xz− x ′ = (1− β)xz.

Substituting these expressions into (98):

Mv̄(x, z) =
∞
∑
s=1

βs

1− β
ln qτ,s(z)+ βC + ln [(xz)(1− β)]+ β

1− β
ln [(xz)β]

=
∞
∑
s=1

βs

1− β
ln qτ,s(z)+ βC + (1+ β

1− β
) ln(xz)+ (1− β) ln(1− β)+ β ln(β)

1− β

=
∞
∑
s=1

βs

1− β
ln qτ,s(z)+

ln(xz)
1− β

+ βC +
ln [(β)β(1− β)1−β]

(1− β)

= [
∞
∑
s=1

βs

1− β
ln qτ,s(z)+

ln(z)
1− β

]+ ln(x)
1− β

+ βC + (1− β)C

=
∞
∑
s=0

βs

1− β
ln qτ,s(z)+

ln(x)
1− β

+C

= v̄(x, z).

This concludes the proof.

Now we note that equation (95) simplifies further when the shocks z are iid:

Example A.25. (iid) Assume that the shocks are iid. In this case, qτ,s(z) = Qτ[Z] for all s ⩾ 1. Hence,
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(95) can be written as

v̄(x, z) =
∞
∑
s=1

βs

1− β
ln Qτ[Z]+

ln z
1− β

+ ln x
1− β

+
ln [(β)β(1− β)1−β]

(1− β)2

= ln xz
1− β

+ κ̄,

where

κ̄ =
ln [(Qτ[Z])β ββ(1− β)1−β]

(1− β)2

is a constant.

Analogously, we can treat the case of τ-quantile martingale process.

Example A.26 (τ-quantile martingale process). When Z follows a τ-quantile martingale process
(see equation (7)), the recursive functions from (96) are qτ,s(z) = z for all s, so (95) takes the form

v̄(x, z) =
∞
∑
s=0

βs

1− β
ln z + ln x

1− β
+

ln [ββ(1− β)1−β]
(1− β)2

= ln z
(1− β)2 +

(1− β) ln x
(1− β)2 +

ln [ββ(1− β)1−β]
(1− β)2

=
ln{zx(1−β)ββ(1− β)1−β}

(1− β)2 .

A.8.3 The right-continuous quantile

To deal with the case in which γ > 1, we need some additional definitions and properties. In

particular, we need to define the τ-quantile∗ (or right-continuous quantile), as

Q∗τ[X] = sup{α ∈ R ∶ Pr[X ⩽ α] ⩽ τ}.

This definition allows to study Qτ[αX] for α < 0. We have the following:

Lemma A.27. Let X be a random variable and τ ∈ (0, 1). Then

Qτ[X] = −Q∗1−τ[−X] (99)

Proof of Lemma A.27: Recall that, whenever A ⊂ R, inf A = − sup(−A). Hence,

−Q∗1−τ[−X] = − sup{α ∈ R; P[−X ⩽ α] ⩽ 1− τ} = inf{−α ∈ R; P[X ⩾ −α] ⩽ 1− τ}

= inf{α ∈ R; P[X ⩾ α] ⩽ 1− τ} = inf{α ∈ R; 1− P[X ⩾ α] ⩾ τ}

= inf{α ∈ R; P[X < α] ⩾ τ} .

So, it suffices to prove that

inf{α ∈ R; P[X < α] ⩾ τ} = inf{α ∈ R; P[X ⩽ α] ⩾ τ} , (100)
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since the right-hand side equals Qτ[X] by definition.

Let A = {α ∈ R; P[X < α] ⩾ τ}, B = {α ∈ R; P[X ⩽ α] ⩾ τ}. Since A ⊂ B, we have inf B ⩽ inf A.

For a contradiction, suppose that inf B < inf A. Then, there would be some b ∈ B and y ∈ R such

that inf B < b < y < inf A. Therefore,

τ ⩽ P[X ⩽ b] ⩽ P[X < y]. (101)

On the other hand, y < inf A implies that y ∉ A, so P[X < y] < τ, which contradicts (101).

This establishes (100), thus completing the proof.

We have the following result concerning interchangeability between quantiles and mono-

tone functions:

Lemma A.28. Let τ ∈ [0, 1] and g ∶ R→ R be increasing. Then

Qτ [g(X)] = g (Qτ[X]) if g is left-continuous (102)

and
Q∗τ [g(X)] = g (Q∗τ[X]) if g is right-continuous. (103)

If, instead, g ∶ R→ R is decreasing, then

Qτ [g(X)] = g (Q∗1−τ[X]) if g is right-continuous (104)

and
Q∗1−τ [g(X)] = g (Qτ[X]) if g is left-continuous. (105)

Proof of Lemma A.28: Equation (102) is exactly Lemma A.2 from de Castro and Galvao (2019).

Now assume that g is increasing and right-continuous. To prove (103), we show that g (Q∗τ[X])
is the supremum of {α ∈ R; P[g(X) ⩽ α] ⩾ τ}. For this, let y < g (Q∗τ[X]). Then

P[g(X) ⩽ y] ⩽ P [g(X) < g (Q∗τ[X])] ⩽ P [X < Q∗τ[X]] ⩽ τ,

that is,

y < g (Q∗τ[X]) implies P[g(X) ⩽ y] ⩽ τ. (106)

Now, let y > g (Q∗τ[X]). We want to show that Q∗τ[X] < inf{x; g(x) ⩾ y} = α̂, since it implies

that P[g(X) ⩽ y] ⩾ P[X ⩽ α̂] > τ, that is, it proves that

y > g (Q∗τ[X]) implies P[g(X) ⩽ y] > τ. (107)

Let xn be a strictly decreasing sequence converging to α̂. Since xn > α̂, then g(xn) ⩾ y. Hence,

g (Q∗τ[X]) < y ⩽ limn→∞ g(xn) = g(α̂), since g is right-continuous. As g is increasing, this

implies that Q∗τ[X] < α̂, thus establishing (107). Since (106) and (107) together characterize

the supremum of {α ∈ R; P[g(X) ⩽ α] ⩾ τ}, this proves (103). Now, if g is decreasing and

right-continuous, then Qτ[g(X)] = −Q∗1−τ [−g(X)] = g (Q∗1−τ[X]) , where we used Lemma A.27
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in the first equality and (103) in the second, since −g is increasing and right-continuous. This

proves (104). Finally, if g is decreasing and left-continuous, then Q∗1−τ[g(X)] = −Qτ [−g(X)] =
g (Qτ[X]) , where we used Lemma A.27 in the first equality and (102) in the second, since −g
is increasing and left-continuous. This proves (105) and concludes the proof.

Remark A.29. We conclude this subsection by observing that Proposition A.2 and Lemma A.12 are
also valid with Q∗1−τ in place of Qτ. The proof is similar to the proofs of those results, substituting Qτ

by Q∗1−τ and using Lemma A.28.

A.8.4 Closed form solution for γ > 1

Now, we can consider the case γ > 1. The following functions are parallel to the ones defined

by (27) and (28). Let r∗τ,s(z) be defined recursively by r∗τ,0(z) = 1, and

r∗τ,s(z) = r∗τ,s−1 (Q∗1−τ[w∣ z]) ⋅Q∗1−τ[w∣ z] for s ⩾ 1. (108)

Given this, define the functions:

R∗(z) ≡
∞
∑
s=1

β
s
γ [r∗τ,s(z)]

1−γ
γ and S∗(z) ≡ R∗(z)

1+ R∗(z) . (109)

Convergence of the sum defining R∗(z) by Assumption 10-(vii). We have the following:

Theorem A.30. Let Assumptions 1, 5 and 10 hold, with the following modifications: X = R++, Z ⊂
R++ γ > 1, and there exists z̃ > 0 such that 0 < Q∗1−τ[w∣z] ⩽ z̃, for all z ∈ Z , and βz̃1−γ < 1. Let
v̄ ∶ X ×Z → R be given by

v̄(x, z) = 1
1− γ

⋅ (xz)1−γ ⋅ [1+ R∗(z)]γ . (110)

Then v̄ is a fixed point of the transformation M defined in (21). Moreover, the optimal policy function
y∗ ∶ X ×Z → Y = X ×X is:

y∗(x, z) = (c , x ′) = ([1− S∗(z)] ⋅ xz , S∗(z) ⋅ xz) , (111)

and for an optimal consumption path {ct}∞t=1 associated with shocks {zt}∞t=1,

ct+1

ct
= zt+1 ⋅ R∗(zt) ⋅ [1− S∗(zt+1)] . (112)

Proof. The proof is very similar to the proof of Theorem 4.3. For reader’s convenience, we will

repeat here the relevant details and modifications. First observe that r∗τ,s(z) ⩽ z̃r∗τ,s−1(z) and

r∗τ,s(z) ⩽ z̃s. This implies that β
s
γ [r∗τ,s(z)]

1−γ
γ ⩽ (β

1
γ z̃

1−γ
γ )

s
. Since βz̃1−γ < 1, we have β

1
γ z̃

1−γ
γ < 1.

This implies that the infinite sum defining R∗(z) converges.
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Now, we want to show that v̄ ∶ X ×Z → R given by (110) is a fixed point of M ∶ C → C:

M(v)(x, z) = max
(c,x ′)∈Γ(x,z)

{ c1−γ

1− γ
+ βQτ [v(x ′, w)∣ zt]},

where X = (0,+∞) and Γ(x, z) = {(c, x ′) ∈ X 2 ∶ c + x ′ ⩽ xz}}.
Let us analyze this maximization problem. Since 0 ∉ X ∪Z , it is not possible that xz = 0 for

(x, z) ∈ X ×Z . Since the utility is strictly increasing, it is not possible that c + x ′ < xz, since in

this case we could increase consumption to obtain a higher utility. Therefore, c+ x ′ = xz. Thus,

we can define t = x ′
x so that z − t = c

x , for t ∈ [0, z]. Thus,

M(v̄)(x, z) = sup
t∈[0,z]

{x1−γ(z − t)1−γ

1− γ
+ βQτ [

x1−γt1−γ

1− γ
w1−γ(1+ R(w))γ∣ z]}

= x1−γ ⋅ sup
t∈[0,z]

{(z − t)1−γ

1− γ
+ β

t1−γ

1− γ
Q∗1−τ [w1−γ(1+ R(w))γ∣ z]} ,

where we have used Lemma A.28 for the decreasing map x ↦ x
1−γ . Let us define:

q∗(z) ≡ Q∗1−τ [w1−γ(1+ R(w))γ∣ z] .

We are interested in the maximization problem maxt∈[0,z] v(t), where v ∶ [0, z]→ R is:

v(t) ≡ (z − t)1−γ

1− γ
+ β

t1−γ

1− γ
q∗(z). (113)

The first order condition is v ′(t) = −(z − t)−γ + t−γβq∗(z) = 0, which leads to the optimal:

t∗ = z[βq∗(z)]
1
γ

1+ [βq∗(z)]
1
γ

. (114)

Notice that t∗ ∈ (0, z). Then v ′′(t) = −γ [(z − t)−γ−1 + t−γ−1βq∗(z)] < 0, which implies that t∗

given by (114) is optimal. Substituting (114) into (113), we obtain:

v(t∗) = z1−γ

(1− γ){1+ [βq∗(z)]
1
γ}

1−γ
+ βq∗(z)
(1− γ) ⋅

z1−γ[βq∗(z)]
1−γ

γ

{1+ [βq∗(z)]
1
γ}

1−γ

= z1−γ

(1− γ) {1+ [βq∗(z)]
1
γ}

γ

.

Therefore, M(v̄)(x, z) = (xz)1−γ

1−γ ⋅ {1+ [βq∗(z)]
1
γ}

γ

and v̄ will be a fixed point of M if we

establish that {1+ [βq∗(z)]
1
γ}

γ

= [1+ R∗(z)]γ, that is,

R∗(z) = β
1
γ [q∗(z)]

1
γ = β

1
γ {Q∗1−τ [w1−γ(1+ R∗(w))γ∣ z]}

1
γ .
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Using again Lemma A.28, (103), for the increasing function x ↦ x
1
γ , this is equivalent to

R∗(z) = β
1
γ Q∗1−τ [w

1−γ
γ (1+ R∗(w))∣ z] .

Recall that R∗(z) = ∑∞s=1 β
s
γ [r∗τ,s(z)]

1−γ
γ , where r∗τ,s(z) is defined recursively by r∗τ,0(z) = 1 and

r∗τ,s(z) = r∗τ,s−1 (Q
∗
1−τ[w∣ z]) ⋅Q∗1−τ[w∣ z] for s ⩾ 1. Notice that all r∗τ,s(z) are nondecreasing and

continuous in z, by Remark A.29 and an adaptation of Lemma A.12. By Proposition A.2, the

product of those terms can commute with the Q∗1−τ operator. Thus, Q∗1−τ[w r∗τ,s−1(w)∣z] =
Q∗1−τ[w∣z]r∗τ,s−1(Qτ[w∣z]) = r∗τ,s(z). Using these properties and expressions, we obtain:

β
1
γ Q∗1−τ [w

1−γ
γ (1+ R∗(w)) ∣ z] = β

1
γ Q∗1−τ [w

1−γ
γ (1+

∞
∑
s=1

β
s
γ [r∗τ,s(w)]

1−γ
γ ) ∣ z]

= Q∗1−τ [β
1
γ w

1−γ
γ + β

1
γ w

1−γ
γ

∞
∑
s=1

β
s
γ [r∗τ,s(w)]

1−γ
γ ∣ z]

= Q∗1−τ [β
1
γ w

1−γ
γ ∣ z]+Q∗1−τ [

∞
∑
s=1

β
s+1
γ [w r∗τ,s(w)]

1−γ
γ ∣ z]

= β
1
γ r∗τ,1(z)

1−γ
γ +

∞
∑
s=1

β
s+1
γ {Q∗1−τ [w r∗τ,s(w)∣ z]}

1−γ
γ

=
∞
∑
s=1

β
s
γ [r∗τ,s(z)]

1−γ
γ ,

which is just R∗(z), as we wanted to verify. The expressions for the optimal savings, con-

sumption and consumption growth are obtained in the same fashion as in Theorem 4.3. This

concludes the proof.

A.8.5 Proof of Theorem 4.7

It is useful to collect the expressions for consumption and savings for all cases (γ ∈ (0, 1), γ =
1, γ > 1). From (30), (97) and (111), the optimal consumption is given by:

c∗(x, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1+∑∞s=1 β
s
γ [rτ,s(z)]

1−γ
γ }
−1
⋅ xz, if γ ∈ (0, 1)

(1− β) ⋅ xz, if γ = 1

{1+∑∞s=1 β
s
γ [r∗τ,s(z)]

1−γ
γ }
−1
⋅ xz, if γ > 1

Since the optimal savings is given by xz − c∗(x, z), it is sufficient to study the claims for con-

sumption, since the ones for savings follow from those. We restate below the claims in Theorem

4.7, with the respective proofs.

1. If the decision maker (DM) becomes more impatient, that is, the discount factor β de-

creases, then the DM consumes more (and saves less).
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If we take the derivative of c∗ with respect to β, we obtain:

∂c∗

∂β
(x, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1) ∑
∞
s=1

s
γ

β
s
γ −1[rτ,s(z)]

1−γ
γ

{1+∑∞s=1 β
s
γ [rτ,s(z)]

1−γ
γ }

2 ⋅ xz, if γ ∈ (0, 1)

−xz, if γ = 1

(−1) ∑
∞
s=1

s
γ

β
s
γ −1[r∗τ,s(z)]

1−γ
γ

{1+∑∞s=1 β
s
γ [r∗τ,s(z)]

1−γ
γ }

2 ⋅ xz, if γ > 1

Thus, ∂c∗
∂β < 0 in all cases, which establishes the claim.

2. If the elasticity of intertemporal substitution (EIS= 1
γ ) increases and βz̃ < 1, then the DM

consumes more (and saves less).

Taking the derivative of c∗ with respect to γ, we obtain:46

∂c∗

∂γ
(x, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)
∑∞s=1

[βsrτ,s(z)]
1
γ

rτ,s(z) ⋅ln[βsrτ,s(z)]⋅(−1) 1
γ2

{1+∑∞s=1 β
s
γ [rτ,s(z)]

1−γ
γ }

2 ⋅ xz, if γ ∈ (0, 1)

(−1)
∑∞s=1

[βsr∗τ,s(z)]
1
γ

r∗τ,s(z)
⋅ln[βsr∗τ,s(z)]⋅(−1) 1

γ2

{1+∑∞s=1 β
s
γ [r∗τ,s(z)]

1−γ
γ }

2 ⋅ xz, if γ > 1

If γ ∈ (0, 1), ∂c∗
∂γ has the same signal of ln [βsrτ,s(z)] (if it is the same for all s). By Assump-

tion 10-(vi), rτ,s(z) ⩽ z̃rτ,s−1(z). Therefore, rτ,s(z) ⩽ z̃s. This implies that βsrτ,s(z) ⩽ (βz̃)s.
If βz̃ < 1, then βsrτ,s(z) < 1, which implies that ∂c∗

∂γ < 0 if γ ∈ (0, 1). If 1
γ increases, γ

decreaces and the result follows.

If γ > 1, ∂c∗
∂γ has the same signal of ln [βsr∗τ,s(z)] (if it is the same for all s). Since

Q∗1−τ[w∣z] ⩽ z̃, r∗τ,s(z) ⩽ z̃r∗τ,s−1(z). Therefore, r∗τ,s(z) ⩽ z̃s. This implies that βsr∗τ,s(z) ⩽
(βz̃)s. The rest of the argument is the same as above.

3. If the decision maker (DM) becomes more risk averse, that is, the risk attitude parameter

τ decreases, then the DM consumes more (and saves less) if γ ∈ (0, 1) and consumes less

(and saves more) if γ > 1. Moreover, if γ = 1, consumption and savings decisions are not

affected by the risk attitude.

Taking the derivative of c∗ with respect to γ, we obtain:

∂c∗

∂τ
(x, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)∑
∞
s=1

1−γ
γ

β
s
γ [rτ,s(z)]

1−2γ
γ ∂rτ,s(z)

∂τ

{1+∑∞s=1 β
s
γ [rτ,s(z)]

1−γ
γ }

2 ⋅ xz, if γ ∈ (0, 1)

0, if γ = 1

(−1)∑
∞
s=1

1−γ
γ

β
s
γ [r∗τ,s(z)]

1−2γ
γ

∂r∗τ,s(z)
∂τ

{1+∑∞s=1 β
s
γ [r∗τ,s(z)]

1−γ
γ }

2 ⋅ xz, if γ > 1

46We omit the case γ = 1 because it does not make sense to take the derivative with respect to γ in
this case.
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Since ∂Qτ[w∣z]
∂τ > 0, we have ∂rτ,s(z)

∂τ > 0. Therefore, if γ ∈ (0, 1), ∂c∗
∂τ < 0. On the other hand,

since ∂Q∗1−τ[w∣z]
∂τ < 0, we have ∂r∗τ,s(z)

∂τ < 0. Thus, if γ > 1, ∂c∗
∂τ > 0. This establishes the claims.

4. If the distribution of returns increases or, more specifically, the τ-quantile Qτ[w∣z] of

future interest rates increases for a fixed quantile τ for all z ∈ Z , then the DM consumes

less (and saves more) if γ ∈ (0, 1) and consumes more (and saves less) if γ > 1. Moreover,

if γ = 1, consumption and savings decisions are not affected by these changes.

This comes from the expressions obtained in the previous item.

A.9 Proofs of Section 4.2

Proof of Theorem 4.8: Assumption 11 implies Assumption 1, but for the fact that Z = [0, w̄]×
{0, 1} is not connected. However, since zt ↦ v̄(xt, zt) is constant (it does not depend on zt),

its image is connected and the conditions described in Remark 3.12 are met. If we define

u(x, y, z) = U(x), this is continuous and bounded; ϕ given by (40) is continuous and Γ(x, z) =
{0, 1} is continous, with nonempty, compact values. Therefore, Assumption 2 holds. Thus,

existence and uniqueness of the fixed point v̄ follows from Theorem 3.11. The claim that v̄ is

strictly increasing in xt follows from Theorem 3.13, since Assumption 3 is also satisfied: u and

ϕ are strictly increasing in their first variable and Γ is constant.

Since v̄ is a function of xt only and only next period shocks matter, we can simplify notation

by letting e and w denote the future realizations of the shocks. With this notation, we can

rewrite (42) as

v̄(x) =max{βv (Qτ[w]) , U(x)+ βv̄ (Qτ[e]x)} . (115)

Since e ∈ {0, 1}, then Qτ[e] ∈ {0, 1}. Let us consider separately these two cases.

First case: Qτ[e] = 0.

In this case, we have: v̄(x) = max{βv̄(Qτ[w]), U(x) + βv̄(0)}. In the particular case in

which x = 0, this becomes v̄(0) = max{βv̄(Qτ[w]), βv̄(0)}, since U(0) = 0. By Assumption 11,

Qτ[w] > 0 and from the fact that v̄ is strictly increasing, βv̄(Qτ[w]) > βv̄(0), which implies that

v̄(0) = βv̄(Qτ[w]) > 0. For simplicity, denote βv̄(Qτ[w]) by Ã > 0. Then, we have established

that v̄(x) =max{Ã, U(x)+ βÃ}. Since U is strictly increasing, if there exists x̃ such that U(x̃) =
(1− β)Ã, then

v̄(x) =
⎧⎪⎪⎨⎪⎪⎩

Ã, if x ⩽ x̃
U(x)+ βÃ, if x > x̃

Since β < 1, Ã = βv̄(Qτ[w]) < v̄(Qτ[w]). Therefore, Qτ[w] > x̃. This implies that v̄(Qτ[w]) =
U(Qτ[w])+ βÃ = U(Qτ[w])+ β2v̄(Qτ[w]). Therefore,

v̄(Qτ[w]) =
1

1− β2 U(Qτ[w]) and Ã = β

1− β2 U(Qτ[w])

Since Qτ[e] = 0, this is exactly the expression of A given by (43), that is, Ã = A. With this
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equality, then the definition of x̃ as the value such that U(x̃) = (1 − β)Ã = (1 − β)A becomes

exactly the definition of x∗ in (44). Moreover, using Qτ[e] = 0, we see that the expression of

v̄(X) in (45) for x > x∗ is equal to U(x)+ βA, exactly as above. This concludes the proof for this

case.

Second case: Qτ[e] = 1.

In this case, we have: v̄(x) = max{βv̄(Qτ[w]), U(x) + βv̄(x)}. Repeating the same argu-

ments given above, we conclude that v̄(0) = max{βv̄(Qτ[w]), βv̄(0)} = βv̄(Qτ[w]). Again

denote βv̄(Qτ[w]) by Ã > 0. Then, we have established that v̄(x) = max{Ã, U(x) + βv̄(x)}.
Since both U and v̄ are strictly increasing, if there exists x̃ such that U(x̃)+ βv̄(x̃) = Ã,

v̄(x) =
⎧⎪⎪⎨⎪⎪⎩

Ã, if x ⩽ x̃
U(x)+ βv̄(x), if x > x̃

Since β < 1, Ã = βv̄(Qτ[w]) < v̄(Qτ[w]). Therefore, Qτ[w] > x̃. This implies that v̄(Qτ[w]) =
U(Qτ[w])+ βv̄(Qτ[w]). Therefore,

v̄(Qτ[w]) =
1

1− β
U(Qτ[w]) and Ã = β

1− β
U(Qτ[w]).

Since Qτ[e] = 1, from (43) we have again Ã = A. From this, the definition of x̃ as the value

such that U(x̃) + βv̄(x̃) = A becomes U(x̃) (1+ β
1−β) = A leading to the definition of x∗ in (44).

Now, it remains to observe that if x > x̃ = x∗, the expression v̄(x) = U(x) + βv̄(x) implies

v̄(x) = 1
1−β U(x). Since Qτ[e] = 1, this is exactly the expression that we find in (45). This

concludes the proof.

B Relating QP and other preferences

In this appendix, we further discuss the relationship between the quantile preferences and

alternative models, specially subjective expected utility (EU) and Epstein-Zin.

B.1 Quantile preferences are not Expected Utility

In this subsection, we show that it is not possible, in general, to reduce a given quantile pref-

erence to EU. More formally, we show that given a quantile preference ≽τ, in general it is not

possible to find subjective beliefs π and utility function u ∶ R→ R such that the expected utility

≽(π,u) defined by π and u is equivalent to ≽τ, in the sense that

Qτ[X] ⩾ Qτ[Y] ⇐⇒ X ≽τ Y ⇐⇒ X ≽(π,u) Y ⇐⇒ Eπ[u(X)] ⩾ Eπ[u(Y)]. (116)

This can be seen in a simple state space, with only two states, that is, Ω = {ω1, ω2}.
Now we prove that assertion (116) does not hold. A quantile preference ≽τ over random

variables X ∶ Ω → R is defined by a number τ ∈ (0, 1) and probability over Ω defined by p =

65



Pr[ω = ω1]. Consider random variables X and Y such that X(ω1) ⩽ X(ω2) and Y(ω1) > Y(ω2).
Then,

Qτ[X] =
⎧⎪⎪⎨⎪⎪⎩

X(ω1), if τ ⩽ p
X(ω2), if τ > p

and Qτ[Y] =
⎧⎪⎪⎨⎪⎪⎩

Y(ω2), if τ ⩽ 1− p
Y(ω1), if τ > 1− p

.

For concreteness, assume τ = 1
3 and p = 1

2 , so that τ ⩽ p and τ ⩽ 1− p.

For a contradiction, suppose that we have found subjective beliefs π over Ω, defined by π =
Pr[ω = ω1], and strictly increasing utility function u ∶ R → R such that (116) holds. Let X ′ be a

constant random variable, that is, X ′(ω1) = X ′(ω2) = x ′. Thus, Qτ[X ′] = x ′ = u−1 (Eπ[u(X ′)]).
By (116), we must have, for any random variable X such that X ′(ω1) ⩽ X ′(ω2),

x ′ ⩾ Qτ[X] = X(ω1) ⇐⇒ u(x ′) ⩾ πu[X(ω1)]+ (1−π)u[X(ω2)].

We claim that this implies that π = 1. Indeed, for a contradiction, assume that π < 1. Pick

X(ω1) = 0 < x ′ = 1 and u[X(ω2)] > u(x ′)−πu(X(ω1)
1−π = u(1)−πu(0)

1−π , which implies X(ω2) > x ′ >
X(ω1) and u(x ′) < πu[X(ω1)]+ (1−π)u[X(ω2)], contradicting (116). This shows that π = 1.

Since π = 1, for any random variable X, Eπ[u(X)] = u(X(ω1)). Consider the random

variables X and Y defined by 1 = X(ω1) ⩽ X(ω2) = 2 and Y(ω1) = 3 > Y(ω2) = 0. Then,

u(1) = Eπ[u(X)] < Eπ[u(Y)] = u(3) but 1 = Qτ[X] > Qτ[Y] = 0,

which again contradicts (116) and shows that this equivalence is not possible.

This proof works for an arbitrary state space and shows that the problem already arises if

we restrict ourselves to binary lotteries, that is, random variables that take only two variables.

In this case, it is enough to substitute the two states by a fixed partition of Ω = Ω1 ⊍Ω2.

Overall, this discussion illustrates the importance of choice sets when comparing QP and

EU. When the choice sets are sufficiently rich, in general, the two preferences produce obser-

vational distinct choices. Only for restricted choices they coincide.

B.2 Restricting the set of random variables

Despite of the main negative general point of the equivalence between QP and EU for binary

lotteries discussed above, when one restricts the utility function and the class of random vari-

ables, it may be possible to obtain equivalence of QP and EU for given utility functions and

beliefs π in this restricted setting.

Both QP and EU are characterized the one parameter capturing risk attitude. Thus, we

concentrate on studying the connection thorough this parameter.

We begin our study of the relationship between QP and the EU preferences by specifying

the class of utility functions. We consider the Constant Relative Risk Aversion (CRRA):

u(x) = x1−γ

1− γ
, for γ > 0, γ /= 1. (117)
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Moreover, let us restrict ourselves to log-normal variables X such that ln(X) ∼ N(µ, σ) to

describe lotteries.

First, we calculate the certainty equivalent for a γ-CRRA EU maximizer is:

v1−γ

1− γ
= E[u(X)] =

exp [(1− γ)µ + 1
2 σ2(1− γ)2]

(1− γ)

⇒ ln(v) = µ + 1
2

σ2(1− γ)⇒ v = exp [µ + 1
2

σ2(1− γ)] , (118)

which depends on γ, µ, and σ2.

Second, for QP the certainty equivalent is given by

Qτ[X] = exp (µ + σqτ) , (119)

where qτ = F−1
N (τ) is the τ-quantile of a standard normal variable (FN is the cdf of a standard

normal variable), and depends on τ, µ, and σ.

Next we compare decisions using QP and EU as a function of these parameters. We first

study the case with two risky choices, and then we include a risk free choice.

B.2.1 Two risky choices

Let X and Y be two random variables such that ln(X) ∼ N(µ, σX) and ln(Y) ∼ N(µ, σY), that

is, they are two log-normal variables that differ only in their variance, but not their average.

Therefore, if γ /= 1, from equations (118) and (119) we have the following choices:

X ≽EU Y ⇐⇒ µ + 1
2

σ2
X(1− γ) ⩾ µ + 1

2
σ2

Y(1− γ) ⇐⇒
⎧⎪⎪⎨⎪⎪⎩

σX ⩾ σY, if γ < 1

σX ⩽ σY, if γ > 1

X ≽τ Y ⇐⇒ exp (µ + σXqτ) ⩾ exp (µ + σYqτ) ⇐⇒
⎧⎪⎪⎨⎪⎪⎩

σX ⩾ σY, if τ > 1
2

σX ⩽ σY, if τ < 1
2

.

This shows that, if we compare only log-normal random variables with the same average,

τ-quantile preferences for τ < 1
2 are equivalent to CRRA EU with γ > 1: in both models, the

decision maker (DM) prefers the random variable with lower variance. Of course this domain

of choices is very restrictive and does not allow even a distinction between EU preferences

with different parameters.

Notice that τ < 1
2 ⇐⇒ qτ < 0. Since we understand τ < 1

2 as risk aversion, the choice under

the QP makes sense: the DM prefers the random variable with lower variance.47

It is illustrative to verify what happens when γ = 1. In this case, E[u(X)] = E[ln(X)] = µ.

Thus, this DM is indifferent between log-normal variables with the same mean, even though

47It should be noted that a CRRA with γ ∈ (0, 1) is also considered risk averse, since u ′′(x) = −γxγ−1 <
0. However, when confronted with two log-normal variables with same mean, a EU DM with γ <
1 prefers would prefer the random variable with larger risk aversion. For quantile preferences, this
happens only if τ > 1

2 , which characterizes risk loving. Notice also that if τ = 1
2 the DM is indifferent

between X and Y.
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she is risk averse. Notice that the same indifference occurs if γ = 0. For the quantile model,

indifference occurs only if τ = 1
2 .48

It is natural to consider a slightly larger domain, which includes also risk free choices. We

consider this next.

B.2.2 Including risk free choices

Since all EU and QP lead to the same certain equivalent for the choices, namely, the value

that they assume with probability one, the only interesting case that remains to analyze is

the comparison between a log-normal variable X such that ln(X) ∼ N(µ, σX) and a risk free

variable Y such that Pr[Y = y] = 1.

Consider a γ-CRRA EU preference, for γ > 1, and a τ-quantile preference, for τ < 1
2 . Then,

X ≽EU Y ⇐⇒ exp [µ + 1
2

σ2(1− γ)] ⩾ y

X ≽τ Y ⇐⇒ exp (µ + σXqτ) ⩾ y.

The two preferences may differ if

µ + 1
2

σ2
X(1− γ) ≷ µ + σXqτ ⇐⇒

1
2

σX(1− γ) ≷ qτ.

For a given γ > 1 and τ < 1
2 , there exists σ such that 1

2 σ(1− γ) = qτ. If σX < σ,

1
2

σX(1− γ) > 1
2

σ(1− γ) = qτ ⇒ exp [µ + 1
2

σ2
X(1− γ)] > exp (µ + σXqτ) . (120)

In this case, there are risk free variables Y for which the preferences would be

X ≻EU Y ≻τ X.

This means that for a safer than σ random variable, the EU DM prefers the risky alternative,

while the quantile DM can still prefer the safe alternative. If σX > σ, we can have the reverse,

that is,

X ≺EU Y ≺τ X.

Notice, however, that this discrepancy would happen only for certain values of risk free lot-

teries. If we exclude some risk free lotteries, the two preferences may agree. This suggests the

following procedure.

Suppose that we fix γ > 1 and a set of random variables ln(X) ∼ N(µ, σX) such that σX ∈
[0, σ̄]. What should be our choice of τ and what intervals of risk free comparisons would make

the two preferences agree?

Choose τ such that qτ = σ̄
2 (1 − γ) < 0. Since σX ⩽ σ̄, we want to exclude risk free random

48Remember that we are excluding the cases in which τ ∈ {0, 1}. If we were to consider these cases,
then τ = 0 would lead to Qτ[X] = 0 for all log-normal variables X.
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0.34

2.65
Figure 3: Map between γ ↦ τ = m(σ, γ), for σ = 1

2 , 1, 2.

variables with values y satisfying:

exp(µ) ⩾ exp [µ + 1
2

σ2
X(1− γ)] > y > exp (µ + σXqτ) ⩾ exp (µ + σ̄qτ) ,

that is, we want to exclude y such that ln(y) ∈ (µ + σ̄qτ, µ). In other words, fixing σ and γ > 1, let

τ = FN (σ
2 (1− γ)). Then, the γ-CRRA EU preference agrees with the τ-quantile preferences for

all log-normal variables X such that ln(X) ∼ N(µ, σX), with σX ∈ [0, σ] and risk free variables

taking values y ⩽ µ + σ2

2 (1− γ).
It is useful to define and illustrate the map γ ↦ τ such that

τ = m(σ, γ) = FN (
σ

2
(1− γ)) ,

for σ = 1
2 , 1, 2. If σ = 1

2 and γ = 2.65, we have τ = 0.34, as illustrated in Figure 3. If σ = 2 then

γ = 1.41 gives τ = 0.34. If σ = 1 then γ = 1.83 gives τ = 0.34. Notice that this means that the τ-

quantile preference for τ = 0.34 is the same as the γ-CRRA for γ = 1.41, 1.83 and 2.65 for different
sets of random variables. Table 1 illustrates these different set of random variables. The table

reveals the trade-off: if we want to include higher values of variance in our set of allowable

log-normal variables, we have to give-up some risk-free lotteries, and chose a higher γ.49

σ γ −σqτ Interval of σX Interval of y

0.5 2.65 -0.21 [0, 0.5] (−∞, 6.01]∪ [7.39,+∞)
1 1.82 -0.41 [0, 1] (−∞, 4.89]∪ [7.39,+∞)
2 1.41 -0.82 [0, 2] (−∞, 3.24]∪ [7.39,+∞)

Table 1: Range of random variables X and Y such that ln(X) ∼ N(µ, σX), for µ = 2, and
Pr[Y = y] = 1 associated to τ = 0.34.

We can also illustrate the corresponding preferences for a set of random variables. Consider

the log-normal variables Xi such that Xi ∼ N(2, σi), for i = 1, 2, 3, 4, where σ4 = 0.3, σ3 = 0.7,

49The value 7.39 that appears 3 times in Table 1 is just an approximation of exp(µ) = exp(2).
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σ2 = 1.5, σ1 = 3. The certainty equivalents of those lotteries for different preferences are shown

in Table 2.

σi / Certaint Equivalents: γ1 = 1.41 γ2 = 1.82 γ3 = 2.65 0.34-QP

σ4 = 0.3 7.25 7.12 6.86 6.53
σ3 = 0.7 6.68 6.04 4.93 5.54
σ2 = 1.5 4.66 2.94 1.15 3.98
σ1 = 3.0 1.17 0.18 0.00 2.14

Table 2: CE for γ-CRRA EU and τ-QP, for γ = 1.41, 1.82, 2.65 and τ = 0.34.

Consider now the risk free lotteries Y j, for j = 1, 2, 3, where Pr[Y j = yj] = 1, for y1 = 2,

y2 = 3.5, y3 = 5.5, y4 = 6.7, so that y1 < 3.24 < y2 < 4.89 < y3 < 6.01 < y4; compare with values for

risk free lotteries in Table 1. Let us denote by ≽i the γi-CRRA EU, for i = 1, 2, 3, where γ1 = 1.41,

γ = 1.82 and γ3 = 2.65. Let ≽τ denote the quantile preference for τ = 0.34. Of course, for all

preferences k ∈ {1, 2, 3, τ}, X4 ≻k X3 ≻k X2 ≻k X1 and Y4 ≻k Y3 ≻k Y2 ≻k Y1. The preferences

differ, however, in how Xi and Y j are compared. The ranking are as follows:

X4 ≻1 X3 ≻1 Y4 ≻1 Y3 ≻1 X2 ≻1 Y2 ≻1 Y1 ≻1 X1;

X4 ≻2 Y4 ≻2 X3 ≻2 Y3 ≻2 Y2 ≻2 X2 ≻2 Y1 ≻2 X1;

X4 ≻3 Y4 ≻3 Y3 ≻3 X3 ≻3 Y2 ≻3 Y1 ≻3 X2 ≻3 X1;

Y4 ≻τ X4 ≻τ X3 ≻τ Y3 ≻τ X2 ≻τ Y2 ≻τ X1 ≻τ Y1.

We will see now how these rankings confirm the previous predictions. Observe that if σ = 0.5

and γ1 = 1.41, the variables that belong to the set of permissible values is {X4, Y3, Y2, Y1}.
Indeed, X4 ≻1 Y3 ≻1 Y2 ≻1 Y1 and X4 ≻τ Y3 ≻τ Y2 ≻τ Y1. On the other hand, {X3, X2, X1, Y4} are

not permissible since these variables lead to inconsistencies with ≽τ:

for X3 ∶ X3 ≻1 Y4 but Y4 ≻τ X3;

for X2 ∶ X2 ≻1 Y2 but Y2 ≻τ X2;

for X1 ∶ Y1 ≻1 X1 but X1 ≻τ Y1;

for Y4 ∶ X4 ≻1 Y4 but Y4 ≻τ X4.

Similarly, if if σ = 1 and γ2 = 1.82, the variables that belong to the set of permissible values is

{X4, X3, Y2, Y1}. Indeed, X4 ≻2 X3 ≻2 Y2 ≻2 Y1 and X4 ≻τ X3 ≻τ Y2 ≻τ Y1. On the other hand,

{X2, X1, Y4, Y3} are not permissible, since these variables lead to inconsistencies with ≽τ:

for X2 ∶ X2 ≻2 Y2 but Y2 ≻τ X2;

for X1 ∶ Y1 ≻2 X1 but X1 ≻τ Y1;

for Y4 ∶ X4 ≻2 Y4 but Y4 ≻τ X4;

for Y3 ∶ X3 ≻2 Y3 but Y3 ≻τ X3.

Finally, if if σ = 2 and γ3 = 2.65, the variables that belong to the set of permissible values is
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{X4, X3, X2, Y1}. Indeed, X4 ≻3 X3 ≻3 X2 ≻3 Y1 and X4 ≻τ X3 ≻τ X2 ≻τ Y1. On the other hand,

{X1, Y4, Y3, Y2} are not permissible, since these variables lead to inconsistencies with ≽τ:

for X1 ∶ Y1 ≻3 X1 but X1 ≻τ Y1;

for Y4 ∶ X4 ≻3 Y4 but Y4 ≻τ X4;

for Y3 ∶ Y3 ≻3 X3 but X3 ≻τ Y3;

for Y2 ∶ Y2 ≻3 X2 but X2 ≻τ Y2.

The discussion in this Appendix has important practical implications for empirically iden-

tifying and separating the QP from the EU. For example, when designing an experiment to

identify and estimate the risk attitude, and compare these models one needs enough variation

in the lotteries to be able to separate them. de Castro et al. (2022c) consider binary lotteries with

fixed payoffs, but consider substantial variation in the corresponding probabilities to identify

the parameters of these two models.

B.3 Comparison with Epstein-Zin

Quantile preferences (QP) are representatives of monotone preferences studied by Bommier

et al. (2017). Thus, in particular QP has also the recursive representation established by their

Lemma 1, namely,

U(c, m) =W(c, I(m ○U−1))

where W is a time aggregator and I is a certainty equivalent.50 Although the usual specification
of Epstein and Zin preferences is not monotonic, in general, as Bommier et al. (2017) show, the

above equation may suggest that QP are also a subclass of the Epstein and Zin (1989) general

preferences. It turns out that this is not the case.

Epstein and Zin (1989, p. 944) called their certainty equivalent as mean value functional as

map from the set of measures to R+ “which is consistent with first and second degree stochastic

dominance and satisfies” µ(δx) = x,∀x ∈ R+.

While the quantile certainty equivalent is consistent with first degree stochastic dominance,

it does not satisfy second degree stochastic dominance. To see this consider the following

example.

Example B.1. Let Y be a risk-free lottery that pays 100 for sure. Let X be a mean-preserving spread
of Y, such as the following: X = 99 + p = 100 − (1 − p) with probability p ∈ (0, 1) and X = 100 + p
with probability 1 − p. It is clear that E[X] = 100 and E[u(X)] ⩽ u(E[X]) = u(100) = u(Y) for any
concave u. However,

Qτ[X] =
⎧⎪⎪⎨⎪⎪⎩

99+ p, if τ ⩽ p
100+ p, if τ > p

.

50Monotone preferences, such as QP, allow the particularization that W(c, y) = c + βy.
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Thus, Qτ[X] > Qτ[Y] = 100 if τ > p. Finally, note that while Y stochastically dominates X in the
second degree for any p ∈ (0, 1), a τ-quantile maximizer may prefer X if τ > p.
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