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Pair-efficient reallocation of indivisible objects

Özgün Ekici
Department of Economics, Ozyegin University

We revisit the classical object reallocation problem under strict preferences. When
attention is constrained to the set of Pareto-efficient rules, it is known that top
trading cycles (TTC) is the only rule that is strategy-proof and individually ratio-
nal. We relax this constraint and consider pair efficiency. A rule is pair-efficient
if it never induces an allocation at which a pair of agents gain from trading their
assigned objects. Remarkably, even in the larger set of pair-efficient rules, we find
that TTC is still the only rule that is strategy-proof and individually rational. Our
characterization result gives strong support to the use of TTC in object realloca-
tion problems.

Keywords. Indivisible object, pair efficient, strategy-proof, individually rational,
top trading cycles.
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1. Introduction

This paper considers the object reallocation problem: There is a group of agents, each
of whom initially owns a distinct indivisible object. Agents have strict preferences over
objects. Each agent’s preference information is private. A rule specifies how to reallocate
objects based on the preference information reported by agents.

We study object reallocation as a mechanism design problem: We are interested in
rules satisfying desirable properties (axioms). We take two properties to be indispens-
able. First, the rule should incentivize agents to report preference information truthfully.
We are interested in strategy-proof rules under which an agent never gains from misre-
porting. When this property is not satisfied, agents may strategize, which requires ac-
quiring information about other agents’ preferences and formulating better strategies.
This process is arguably tiresome and wasteful. Second, we demand that the rule never
assigns an agent an object worse than her endowment (the object that she owns). A rule
satisfying this property is said to be individually rational. If a rule is not individually
rational, agents may opt out. Therefore, individual rationality is a minimal voluntary
participation constraint.

In an elemental result, Ma (1994) showed that when attention is constrained to the
set of Pareto-efficient rules, the only strategy-proof and individually-rational rule is top
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trading cycles (TTC). Pareto efficiency is a natural efficiency requirement and, therefore,
the result by Ma (1994) gives strong support to the use of TTC in object reallocation
problems. This rule reallocates objects to agents in a stepwise manner by identifying and
executing “top trading cycles.” A top trading cycle, or for short, a cycle, involves a group
of agents who own one another’s favorite objects. When these cycles are executed, each
agent involved in a cycle is assigned her favorite object. Then these agents and their
assigned objects are removed from consideration, which leaves a reduced problem with
a smaller number of agents and their endowments. In the reduced problem, new cycles
are identified and executed similarly, and so on.

The result by Ma (1994) shows that to find strategy-proof and individually-rational
rules other than TTC, one must relax the efficiency requirement. In this study, we do just
that and substitute Pareto efficiency with pair efficiency. Pareto efficiency requires that
at any induced allocation, no group of agents can gain from trading their assignments.
In contrast, pair efficiency only requires that no pair of agents can gain from trading their
assignments. Put differently, at an outcome, Pareto-efficiency rules out every efficiency-
improving trade, but pair efficiency only rules out efficiency-improving trades involving
pairs of agents. Since any efficiency-improving trade must involve at least two agents,
pair efficiency is arguably a minimal efficiency requirement. We illustrate the extent to
which pair efficiency relaxes Pareto efficiency in Example 1 in Section 2.2. In the exam-
ple, for n≥ 7 agents, we describe a preference profile according to which there is a single
Pareto-efficient allocation but the number of pair-efficient allocations exceeds 2n.

Our relaxation of the Pareto-efficiency requirement also has a practical motivation.
In this line of research, the literature focuses only on the welfare of the agents who trade
objects, but we may imagine situations in which the social planner also has a stake in
the outcome. For instance, when an employer (social planner) reallocates tasks (ob-
jects) to employees (agents), he may be interested in an outcome at which tasks will
be performed productively. If the social planner cares about the outcome, the actual
Pareto-efficient set of allocations becomes a superset of the set of allocations that are
Pareto-efficient based only on agents’ preferences.

Indeed, for purposes of implementation, pair efficiency may be a more suitable re-
quirement than Pareto efficiency. If an allocation is not Pareto-efficient, it admits an
efficiency-improving trade. Therefore, after its implementation, agents could trade their
assignments and destabilize the allocation. However, it would be a premature conclu-
sion to say that a Pareto-inefficient allocation will always be destabilized. If the associ-
ated efficiency-improving trade cycles are all large, involving many agents, agents may
find it hard to recognize and coordinate such trades. Therefore, after its implementa-
tion, the allocation may remain stable. However, the same argument cannot be made
if an efficiency-improving trade involves only a pair of agents. A mutually beneficial
pairwise exchange is easier to recognize and execute for the involved agents. There-
fore, for implementation purposes, while Pareto efficiency may be too demanding, pair
efficiency is a natural minimal requirement.

Although pair efficiency is a significant relaxation of Pareto efficiency, remarkably,
the main result of our paper shows that in object reallocation, this relaxation does not
give rise to new allocation rules. In Theorem 1, we show that TTC is characterized by
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the properties of strategy-proofness, individual rationality, and pair efficiency. Put dif-
ferently, even if the Pareto-efficiency requirement is relaxed and substituted by pair effi-
ciency, TTC still turns out to be the unique strategy-proof and individually rational rule
satisfying this property. As mentioned above, individual rationality is a minimal vol-
untary participation constraint and pair efficiency is a minimal efficiency requirement.
Therefore, by showing that TTC is the only strategy-proof rule that satisfies these two
minimal conditions, our main result gives very strong support for its use in object real-
location problems. The characterization result by Ma (1994) follows as a corollary of our
Theorem 1.

The notion of pair efficiency has been explored in previous research in the context
of the reallocation of divisible resources. Feldman (1973) explored the dynamics of pair-
wise barter trade to achieve a pairwise optimal allocation. Goldman and Starr (1982)
introduced the more general t-wise optimality notion and developed necessary condi-
tions and sufficient conditions for t-wise optimality to imply Pareto optimality. How-
ever, to our knowledge, ours is the first study that explores the concept in the context of
the reallocation of indivisible resources.

We believe that a key contribution of our paper is our novel proof technique. Exploit-
ing the procedural nature of TTC, we define an index that measures the level of similarity
of outcomes induced by an arbitrary rule and TTC. This similarity index lies at the heart
of our proof by minimal counterexample when showing Theorem 1. We believe that
in future studies, working with a similarity index can also be useful while studying the
properties of other procedural rules.

The rest of the paper is organized as follows. The following subsection presents other
related research. Section 2 introduces the model and TTC. Section 3 presents our main
result.

1.1 Other related research

The object reallocation problem was introduced by Shapley and Scarf (1974). The TTC
rule is also first mentioned in their paper. They attributed it to David Gale and men-
tioned that it finds a core allocation. Roth and Postlewaite (1977) later showed that there
is only one allocation in the core, which is found by TTC. Roth (1982) proved that TTC is
strategy-proof; Bird (1984) showed that it is coalitionally strategy-proof.

There are several characterization studies on TTC in the literature. As mentioned
above, Ma (1994) showed that TTC is the only rule that is strategy-proof, individually
rational, and Pareto-efficient. Svensson (1994), Anno (2015), and Sethuraman (2016)
provided shorter proofs of this result. Miyagawa (2002) showed that a rule that is
strategy-proof, individually rational, anonymous, and nonbossy is either TTC or the en-
dowment rule. In a more recent study, Fujinaka and Wakayama (2018) characterized
TTC in terms of strategy-proofness, individual rationality, and endowments-swapping-
proofness. This last property means that a pair of agents cannot both gain from trading
their endowed objects before the rule is implemented. Notice that while pair efficiency
is an efficiency criterion, endowments-swapping-proofness is a nonmanipulability no-
tion. For two other characterization studies on TTC, see Takamiya (2001) and Morrill
(2013).
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In their paper, Hylland and Zeckhauser (1979) considered the object allocation prob-
lem, in which agents have no private endowments and objects are initially collectively
owned. Abdulkadiroglu and Sönmez (1999) introduced the mixed-ownership extension
of the object allocation problem. There is a line of research in the literature identifying
classes of rules in object allocation and reallocation problems. In these studies, Pareto
efficiency plays a pivotal role as the efficiency criterion: In a general class of alloca-
tion problems, Sönmez (1999) showed that there exists a Pareto-efficient, individually-
rational, and strategy-proof solution only if the core is essentially single-valued (as in the
object reallocation problem). In the mixed-ownership extension of the object allocation
problem, Sönmez and Ünver (2010) characterized a class of rules by a set of proper-
ties that includes Pareto efficiency. In the object allocation problem, Pápai (2000) intro-
duced hierarchical exchange rules and characterized them by the properties of Pareto ef-
ficiency, group-strategy-proofness, and reallocation-proofness. Later, Pycia and Ünver
(2017) introduced an even larger class of rules called top cycles, and they characterized
them by the properties of Pareto efficiency and group-strategy-proofness.

2. Model

2.1 Preliminaries

Let I = {1, 2, � � � , n} be a finite set of agents. Let O = {o1, o2, � � � , on} be a finite set of
indivisible objects such that oi denotes agent i’s endowment.

Agents are equipped with strict preferences over objects. Let P = (Pi )i∈I denote a
preference profile where Pi denotes agent i’s strict preference relation. If agent i prefers
object o to ō at Pi, we write oPi ō. Let Ri denote the at least as good as relation associated
with Pi. Thus, oRi ō means oPi ō or o = ō.

When convenient, we describe a preference relation as an ordering of objects, from
agent’s first choice to last choice.

Let P be the set of strict preference relations over O. Thus, Pi ∈ P and P ∈ Pn.
Sometimes, we work with mixed profiles. For S ⊆ I, (P̄S , PI\S ) denotes the mixed

profile such that for i ∈ S, the preference relation is P̄i (as under profile P̄), and for i ∈
I \S, the preference relation is Pi (as under profile P). If S = {i}, we simply write (P̄i, PI\i ).
Later in the text, we work with a mixed profile (P+

i1
, P↑

i2
, P↑

i3
, � � � , P↑

ik
, PI\S ). This means

that the preference relation is P+
i1

for i1, P↑
is

for is ∈ {i2, � � � , ik}, and Pi for i ∈ I \ S. Other
mixed profile notations are understood accordingly.

An allocation assigns an object to each agent. A rule recommends an allocation for
each preference profile. The formal definitions are as follows.

An allocation μ : I → O is a one-to-one mapping from the set of agents to the set
of objects. For i ∈ I, μ(i) denotes agent i’s assignment at μ. Let M denote the set of
allocations.

A rule φ : Pn → M is a mapping from the set of preference profiles to the set of
allocations. That is, a rule φ associates each profile P with an allocation φ(P ). For i ∈ I,
φi(P ) denotes agent i’s assignment at φ(P ).
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2.2 Axioms

We introduce next the axioms (properties) that are central to our analysis.
As a nonmanipulability condition, we consider strategy-proofness. Agents cannot

manipulate (gain by misreporting) under a strategy-proof rule. The formal definition is
as follows.

An agent i can manipulate a rule φ at profile P by misreporting her preferences as
P̄i ∈ P (P̄i �= Pi) if φi(P̄i, PI\i )Pi φi(P ). A rule φ is strategy-proof if no agent can ma-
nipulate it at any preference profile. That is, under a strategy-proof rule, reporting true
preferences is a weakly dominant strategy.

As a voluntary participation condition, we consider individual rationality, which re-
quires that an agent is never assigned an object worse than her endowment. Agents may
opt out of an allocation rule if this condition is not satisfied. The formal definition is as
follows.

An allocation μ is individually rational at P if for each i ∈ I, μ(i)Rioi. A rule φ is
individually rational if for each P ∈ Pn, the allocation φ(P ) is individually rational at P .

We will consider two efficiency notions. The first one is Pareto efficiency, which rules
out at the outcome efficiency-improving trades between any group of agents. The sec-
ond one is the weaker pair-efficiency notion, which only rules out efficiency-improving
trades between pairs of agents. The formal definitions are as follows.

An allocation μ is Pareto-efficient at P if there exists no allocation μ̄ such that for
each i ∈ I, μ̄(i)Ri μ(i), and for some i ∈ I, μ̄(i)Pi μ(i). A rule φ is Pareto-efficient if for
each P ∈ Pn, the allocation φ(P ) is Pareto-efficient at P .

An allocation μ is pair-efficient at P if there do not exist i, j ∈ I, i �= j, such that
μ(i)Pj μ(j) and μ(j)Pi μ(i). A rule φ is pair-efficient if for each P ∈ Pn, the allocation
φ(P ) is pair-efficient at P .

By definition, pair efficiency is a weaker notion than Pareto efficiency. We illustrate
the extent to which pair efficiency relaxes Pareto efficiency in Example 1. In the example,
we introduce a “circular” preference profile under which there is a single Pareto-efficient
allocation, but the number of pair-efficient allocations exceeds 2n when there are n ≥ 7
agents.

Example 1. We will consider a circular preference profile Pn under which objects can
be labeled as x1, x2, � � � , xn such that for each agent i, xiPn

i xi+1P
n
i � � � P

n
i xi+n−1, where

xn+s = xs . This is illustrated in Figure 1. Under Pn, objects can be placed around a circle

Figure 1. Preferences under a circular profile.
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such that for each agent i, her preference ranking runs clockwise from her first choice xi
to her last choice xi−1.

Under Pn, there is one Pareto-efficient allocation, where each agent i receives her
first choice, xi. Under Pn, let F(n) be the number of pair-efficient allocations. We will
show that F(n) > 2n for n ≥ 7.

Let f (n, s) be the number of pair-efficient allocations that assign exactly s out of n
agents to their first choices. Then F(n) = ∑n

s=0 f (n, s).
Next, we will calculate f (n, s). Our calculation is recursive and depends on a key

observation. Notice that under Pn, we can construct the pair-efficient allocations for
which s agents receive their first choices in two steps as follows.

• We select s out of n agents and match them with their first choices.

• If s < n, we are left with a reduced problem with n− s agents and n− s objects. In the
reduced problem, we choose a pair-efficient matching at which no agent receives
her first choice. This matching, combined with the matches of s agents to their first
choices, induces a pair-efficient allocation in our original problem with n agents
and n objects.

Note that s out of n agents can be selected in
(n
s

)
ways. Also, in a problem with

n − s agents and n − s objects, by definition, there are f (n − s, 0) pair-efficient match-
ings at which no agent receives her first choice. Thus, f (n, s) = (n

s

)
f (n − s, 0). To

make this formula work for s = n, we set f (0, 0) = 1. Also, notice that, by definition,
f (1, 0) = f (2, 0) = 0.

Thus, we get

F(n) =
n∑

s=0

(
n

s

)
f (n− s, 0).

Let n ≥ 7. We will also assume that n is odd. Thus, n = 2k + 1 for some k ≥ 3. The
assumption that n is odd is not essential for our arguments, but it helps simplify the
exposition below. The interested reader can show that with a minor adjustment, our
subsequent arguments can be used to show the desired result for n even, too.

Using the facts that
( n
n−s

) = (n
s

)
and

∑n
s=0

(n
s

) = 2n, with some algebraic manipulation,
we get

F(n) =
n∑

s=0

(
n

s

)
+

n∑
s=0

(
n

s

)(
f (n− s, 0) − 1

)

= 2n +
k∑

s=0

(
n

s

)(
f (n− s, 0) + f (s, 0) − 2

)
.

To show that F(n) > 2n, it suffices to show that in the above summation, the term
f (n− s, 0) + f (s, 0) − 2 is always nonnegative and it is positive for s = 0.

One can easily verify that under a circular profile with 2t− 1 or 2t agents where t ≥ 2,
we get a pair-efficient allocation when each agent receives her lth-best object for l ∈
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{2, 3, � � � , t}. Since n≥ 7, this implies the following inequalities: For s = 0, f (n− s, 0) ≥ 3;
for s ∈ {1, 2}, f (n − s, 0) ≥ 2; for s ∈ {3, 4, � � � , k}, f (n − s, 0) ≥ 1 and f (s, 0) ≥ 1. Thus, as
required, the term f (n − s, 0) + f (s, 0) − 2 is always nonnegative and it is positive for
s = 0. Thus, F(n) > 2n.

2.3 Top trading cycles

We introduce next the top trading cycles (TTC) rule.
A top trading cycle, or for short, a cycle, is a sequence of distinct agents and objects

such that each agent in the cycle points to her favorite object and each object points to
its owner. A cycle can be illustrated as

i1 → oi2 → i2 → oi3 → ·· · → ik−1 → oik → ik → oik+1 → ik+1 = i1.

Above, i1, i2, � � � , ik are distinct agents. Agent is points to object os+1 and os+1 points
to its owner is+1 for s = 1, � � � , k. Thereby, the cycle forms.

The size of a cycle is the number of agents involved in that cycle. For instance, the
size of the cycle indicated above is k. We write |C| to indicate the size of a cycle C.

For two cycles C1 and C2, we say that C1 is smaller than C2 if |C1| < |C2| or if |C1| =
|C2| and in these two cycles, the agent whose index is smallest is in cycle C1. In a group
of cycles, the smallest cycle is the one that is smaller than the others.

Note that given two cycles, if no agent is part of both cycles, one of them must be
smaller than the other. Additionally, given a group of cycles, if no agent is part of mul-
tiple cycles, one cycle in the group must be the smallest. In the rest of the paper, when
we make size comparisons, no agent will be part of multiple cycles. Therefore, in the
groups of cycles that we consider, the smallest cycle will always be well defined. As an
illustration, suppose that we are considering the group of cycles C1, C2, C3 such that C1

comprises the agents 2, 7, C2 comprises the agents 3, 6, and C3 comprises the agents 1,
4, 5. Then the group’s smallest cycle is C1: C1 is smaller than C3 because |C1| = 2 and
|C3| = 3; C1 is also smaller than C2 because |C1| = |C2| = 2, but in these two cycles, 2 is
the agent whose index is smallest and it is part of C1.

When a cycle is executed, it means every agent involved in that cycle is assigned the
object to which she points. For instance, if the cycle illustrated above is executed, agent
is is assigned object ois+1 for s = 1, � � � , k. When we say that an allocation executes a cycle,
it means that at that allocation, every agent involved in that cycle is assigned the object
to which she points. For instance, if allocation μ executes the cycle illustrated above,
then μ(is ) = ois+1 for s = 1, � � � , k.

The TTC rule, which is subsequently presented in a formal format, proceeds in a
stepwise manner as follows. Every agent points to her favorite object and every object
points to its owner. This gives rise to one or more cycles. These cycles are executed. In
the next step, these agents and their assigned objects are removed from consideration.
This leaves a reduced problem with a smaller number of agents and objects. The rule
then operates on the reduced problem by identifying and executing new cycles, and so
on.
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It turns out that under TTC, the order in which cycles are executed is inconsequen-
tial.1 For instance, let C1 and C2 be the cycles that arise at Step 1. One possibility is that
we execute both C1 and C2, and then proceed to Step 2. Alternatively, we can execute
only C1 and then proceed to Step 2. In this latter scenario, at Step 2, C2 still remains.
However, the execution of C1 at Step 1 may trigger the formation of some new cycles,
say C3 and C4. Then we get three cycles at Step 2: C2, C3, C4. At Step 2, we may execute
any combination of these three cycles and then proceed to Step 3. Ultimately, the same
allocation is induced by TTC, independent of the order in which the cycles that arise are
executed.

However, to show our main result, we need a specification of the TTC rule that ex-
actly pinpoints which cycle is executed at which step. To this end, we will assume that at
any point in time, TTC proceeds by executing only the smallest cycle (as defined above).
We introduce this specification of TTC below.

Top Trading Cycles
Given a preference profile, TTC finds an allocation in a stepwise manner as follows.
Step 1. Construct a directed graph as follows. The nodes are agents and objects. For

each agent, there is an edge from that agent to her favorite object. For each object, there
is an edge from the object to its owner. Since there is an outgoing edge from each node
and the nodes are finite, this gives rise to one or more cycles. Execute the smallest cycle
among them. If a node remains, proceed to Step 2. Otherwise, terminate.

Step t ≥ 2. With remaining agents and objects, construct a new directed graph as
follows. The nodes are agents and objects. For each agent, there is an edge from that
agent to her favorite (remaining) object. For each object, there is an edge from the object
to its owner. Since there is an outgoing edge from each node and the nodes are finite,
this gives rise to one or more cycles. Execute the smallest cycle among them. If a node
remains, proceed to Step t + 1. Otherwise, terminate.

In the rest of the paper, when we speak of TTC, it is understood that we mean its
above specification.

3. Main result

Theorem 1. TTC is the only rule that is strategy-proof, individually rational, and pair-
efficient.

Ma (1994) showed that in the set of Pareto-efficient rules, TTC is the only rule that
is strategy-proof and individually rational. Since pair efficiency is a relaxation of Pareto
efficiency, his characterization result follows as a corollary of Theorem 1. In his paper,
Ma (1994) also showed that strategy-proofness, individually rationality, and Pareto effi-
ciency are independent axioms. That is, via three examples, he showed that a rule that
satisfies two of these axioms need not satisfy the third one. The three examples in his
paper can also be used to show the independence of the three axioms in Theorem 1. For
the examples, the interested reader may refer to his paper.

The rest of the paper is devoted to the proof of Theorem 1. Section 3.1 describes our
proof technique and introduces some tools. Section 3.2 presents our proof.

1See Remark 1 in Abdulkadiroglu and Sönmez (1999) and Lemma 6 in Carroll (2014).
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3.1 Proof technique

To characterize a rule ϕ by a set of axioms, one must show that (i) ϕ satisfies these axioms
and (ii) for an arbitrary rule φ, if φ satisfies the axioms, then φ = ϕ. Most often, (ii) is the
tricky part, which requires showing that φ(P ) = ϕ(P ) for every profile P . To show this,
the preference replacement technique is often used, which proceeds as follows.

• For a specific profile P1, using the fact that φ satisfies the axioms, it is shown that
φ(P1 ) = ϕ(P1 ).

• For an arbitrary profile P , a sequence of profiles P1, P2, � � � , Pr is defined such that
Pr = P . Using the fact that φ satisfies the axioms and given that φ(Ps ) = ϕ(Ps ), it is
shown that φ(Ps+1 ) = ϕ(Ps+1 ) for s ∈ {1, � � � , r − 1}.

Our proof technique is different. To show the desired result, we introduce a TTC-
similarity index function ρ. It measures the level of similarity of outcomes recom-
mended by an arbitrary rule and TTC at a given preference profile. We write ρ(φ, P ) for
the TTC-similarity level of the outcomes φ(P ) and TTC(P ). By definition, ρ(φ, P ) be-
comes infinite if the two outcomes are the same and finite if otherwise. Then we show
our main result by employing the proof by minimal counterexample method: If a rule φ

that satisfies the axioms is not the same as TTC, ρ(φ, P ) takes its smallest value for some
profile P . We then modify P and construct a profile P+ such that ρ(φ, P+ ) < ρ(φ, P ),
yielding a contradiction and proving the desired result.

The TTC-similarity index function ρ is defined by exploiting the TTC’s procedural
nature as follows. Consider running TTC with profile P .

• At Step 1, let C1 be the cycle that is executed. If φ(P ) does not execute C1, then
ρ(φ, P ) = (1, |C1|). If φ(P ) executes C1, check whether TTC terminates at Step 1. If
yes, then ρ(φ, P ) = (∞, ∞). If not, proceed to Step 2.

• At Step t, let Ct be the cycle that is executed. If φ(P ) does not execute Ct , then
ρ(φ, P ) = (t, |Ct|). If φ(P ) executes Ct , check whether TTC terminates at Step t. If
yes, then ρ(φ, P ) = (∞, ∞). If not, proceed to Step t + 1.

Note that ρ(φ, P ) = (t, k) �= (∞, ∞) means the following. At profile P , φ assigns
objects first by running TTC with profile P and executing the smallest cycles that arise
at Steps 1, 2, � � � , t − 1. However, φ then deviates from TTC. Specifically, φ(P ) does not
execute the smallest cycle that arises at Step t, which is of size k.

We compare the TTC-similarity levels using the lexicographic order as follows. For
P , P̄ ∈ Pn, let ρ(φ, P ) = (x1, y1 ) and ρ(φ, P̄ ) = (x2, y2 ). We write ρ(φ, P ) ≤ ρ(φ, P̄ ) if
x1 < x2, or if x1 = x2 and y1 ≤ y2. We write ρ(φ, P ) < ρ(φ, P̄ ) if ρ(φ, P ) ≤ ρ(φ, P̄ ) and
ρ(φ, P ) �= ρ(φ, P̄ ).

We also define a TTC-similarity level for a rule φ without reference to a preference
profile. We denote it by ρ(φ) and set its value equal to the minimum value that ρ(φ, P )
takes on the set of preference profiles. That is, ρ(φ) = ρ(φ, P ) where P ∈ Pn is such that
ρ(φ, P ) ≤ ρ(φ, P̄ ) for all P̄ ∈ Pn.

Note that if ρ(φ) = (t, k) �= (∞, ∞), it means that for any profile P , φ makes assign-
ments first by running TTC with profile P and executing the smallest cycles that arise at
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Steps 1, 2, � � � , t − 1, but then φ deviates from TTC for at least one profile. Specifically,
there is a profile P such that when TTC runs with P , the smallest cycle at Step t is of size
k and φ(P ) does not execute this cycle.

Also, note that if ρ(φ) = (∞, ∞), it means that for any profile P , φ(P ) = TTC(P ).
That is, to show that an arbitrary rule φ is the same as TTC, we need to show that ρ(φ) =
(∞, ∞).

We are now ready to present our proof.

3.2 Proof of Theorem 1

Proof. It is known that TTC is strategy-proof, individually rational, and pair efficient.
Thus, we will only show that if a rule φ satisfies these three axioms, then φ = TTC.

Suppose by contradiction that φ satisfies these three axioms but φ �= TTC. Then
ρ(φ) �= (∞, ∞). Let ρ(φ) = (t, k) for finite integers t, k.

Let P ∈ Pn be such that ρ(φ, P ) = (t, k). Consider TTC running with profile P . Let
C1, C2, � � � , Ct be, in order, the sets of cycles that arise at Steps 1, 2, � � � , t. Let C1 ∈ C1,
C2 ∈ C2, � � �, Ct ∈ Ct be, in order, the cycles that are executed at Steps 1, 2, � � � , t.

Since ρ(φ, P ) = (t, k), φ(P ) executes the cycles C1, C2, � � � , Ct−1, but not Ct . Let cy-
cle Ct be

i1 → oi2 → i2 → oi3 → ·· · → ik−1 → oik → ik → oik+1 → ik+1 = i1.

Let S = {i1, i2, � � � , ik}. We use is to denote an arbitrary agent in S. Note that when
objects involved in cycles C1, C2, � � � , Ct−1 are excluded, among remaining objects, os+1

is the favorite object at Pis .
We will prove the theorem by deriving a contradiction to our supposition that ρ(φ) =

(t, k). We will do this by constructing a preference profile P+ for which ρ(φ, P+ ) =
(t, k − 1). We will construct P+ from P by changing the preference relations of agents
in S one at a time. Along the process, we will consider the execution of TTC with these
new profiles. Specifically, we will compare the cycles that arise and that are executed at
Steps 1, 2, � � � , t when TTC runs with these profiles versus when it runs with profile P . In
our arguments, two observations pertaining to these cycles will become useful. We will
present them next.

First, notice that when TTC runs with profile P , up to and including Step t, an agent
is ∈ S never points to an object that she ranks below os+1. Therefore, the execution of
TTC up to this point will not change if is changes her preference ordering of objects
below os+1. We state this observation formally below.

Observation 1. Consider a profile (P̄S , PI\S ) such that for each is ∈ S, objects ordered
above os+1 are the same, and are ordered in the same way at P̄is and Pis . Then, when
TTC runs with profile (P̄S , PI\S ), in order, C1, C2, � � � , Ct are the sets of cycles that arise
and C1, C2, � � � , Ct are the cycles that are executed, at Steps 1, 2, � � � , t.

For our next observation, consider an arbitrary profile P+. When TTC runs with
P+, suppose that the cycles that arise at Steps 1, 2, � � � , t are the same cycles that arise
at these steps when TTC runs with profile P , but with the following exceptions. When
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TTC runs with P , we know that the cycle Ct arises at some step and then is executed at
Step t. However, the cycle Ct never arises when TTC runs with profile P+. Instead, a
new cycle, C+, arises at some step, where |C+| < |Ct|, and C+ remains unexecuted until
Step t. However, if it is so, notice that running TTC with P+ instead of P will not lead to
a change in the cycles that are executed at Steps 1, 2, � � � , t − 1. Removing Ct from and
adding C+ to the previous cycles is inconsequential since neither Ct nor C+ becomes
a smallest cycle at Steps 1, 2, � � � , t − 1. Also, notice that when TTC runs with P+, C+
becomes the executed cycle at Step t since |C+| < |Ct| and Ct is the smallest cycle in Ct .
We state this observation formally below.

Observation 2. When TTC runs with profile P+, let C̄1, C̄2, � � � , C̄t be, in order, the
sets of cycles that arise at Steps 1, 2, � � � , t such that for s = 1, 2, � � � , t − 1, C̄s \ {C+} =
Cs \ {Ct } and C̄t = Ct \ {Ct }∪ {C+}. Then, when TTC runs with profile P+, in order, C1, C2,
� � � , Ct−1, C+ are the cycles that are executed at Steps 1, 2, � � � , t.

Having made these two observations, we are now ready to proceed with the rest of
our proof.

Since φ(P ) does not execute Ct , at least one agent in this cycle is not assigned the
object to which she points. Without loss of generality, let ik not be assigned o1 at φ(P ).
Thus, φ(P ) assigns ik an object that is worse than oi1 at Pik . By individual rationality of
φ, k �= 1. Thus, k≥ 2.

In the remainder of the proof, we will consider certain preference relations. We illus-
trate them below.

Pis P
↑
is

P∗
i1

P+
i1

...
...

...
...

ois+1 ois+1 oi2 oi3
... ois oi3 oi1

ois
... oi1 oi2

... ois+2

...
...

...

• Above, P↑
is

is obtained from Pis by moving ois up, right below ois+1 . The order for P↑
is

includes in it ois+2 as if k≥ 3. However, disregard ois+2 if k= 2.

• Above, P∗
i1

and P+
i1

are defined assuming that k≥ 3: P∗
i1

is obtained from P
↑
i1

by mov-

ing oi3 up, right below oi2 ; P+
i1

is obtained from P∗
i1

by moving oi2 down, right below
oi1 .

Consider the profile Pk = (P↑
ik

, PI\ik ). If φik(Pk )P↑
ik
oik , then φik(Pk )Rik oik+1 . Recall

that φ(P ) assigns ik an object worse than oik+1 at P . However, then ik can manipu-

late φ at P by reporting P
↑
ik

. This cannot be true since φ is strategy-proof. Then, also

using the fact that φ is individually rational, we get φik(Pk ) = oik . By Observation 1,
when TTC runs with profiles Pk and P , the same sets of cycles arise, and the same cycles
are executed, at Steps 1, 2, � � � , t. Since ρ(φ) = (t, k), φ(Pk ) executes the cycles C1, C2,
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� � � , Ct−1. When objects assigned in the cycles C1, C2, � � � , Ct−1 are excluded, among re-
maining objects, ik−1’s favorite object at Pik−1 is oik . Since φik(Pk ) = oik , φ(Pk ) assigns
ik−1 an object worse than oik at Pik−1 .

Consider the profile Pk−1 = (P↑
ik−1

, P↑
ik

, PI\{ik−1,ik} ). If φik−1 (Pk−1 )P↑
ik−1

oik−1 , then

φik−1 (Pk−1 )Rik−1 oik . However, then ik−1 can manipulate φ at Pk by reporting P
↑
ik−1

.
This cannot be true since φ is strategy-proof. Then, also using the fact that φ is individ-
ually rational, we get φik−1 (Pk−1 ) = oik−1 . By Observation 1, when TTC runs with profiles
Pk−1 and P , the same sets of cycles arise, and the same cycles are executed, at Steps 1, 2,
� � � , t. Since ρ(φ) = (t, k), φ(Pk−1 ) executes the cycles C1, C2, � � � , Ct−1. Suppose k = 2.
However, then, by individual rationality of φ, we get φik(Pk−1 ) = oik . Then, at φ(Pk−1 ),
according to reported preferences, ik and ik−1 prefer one another’s assigned objects to
their own assignments. This cannot be true since φ is pair-efficient. Thus, k ≥ 3. When
objects assigned in the cycles C1, C2, � � � , Ct−1 are excluded, among remaining objects,
ik−2’s favorite object at Pik−2 is oik−1 . Since φik−1 (Pk−1 ) = oik−1 , φ(Pk−1 ) assigns ik−2 an
object worse than oik−1 at Pik−2 .

As described above, we can iteratively define the profiles Pk−2, Pk−3, � � � , P1. By ap-
plying similar arguments, for profile P1 = (P↑

i1
, P↑

i2
, � � � , P↑

ik
, PI\S ), we find the following:

φi1 (P1 ) = oi1 , and when TTC runs with profiles P1 and P , the same sets of cycles arise,
and the same cycles are executed at Steps 1, 2, � � � , t. However, then, by individual ratio-
nality of φ, we find that for each is ∈ S, φis (P

1 ) = ois .
Consider now the profile P∗ = (P∗

i1
, P↑

i2
, P↑

i3
, � � � , P↑

ik
, PI\S ). By Observation 1, when

TTC runs with profiles P∗ and P , the same sets of cycles arise and the same cycles
are executed at Steps 1, 2, � � � , t. Since ρ(φ) = (t, k), φ(P∗ ) executes the cycles C1, C2,
� � � , Ct−1. When objects assigned in the cycles C1, C2, � � � , Ct−1 are excluded, among
remaining objects, i1’s favorite three objects are, in order, oi2 , oi3 , oi1 . By individual
rationality of φ, we get φi1 (P∗ ) ∈ {oi2 , oi3 , oi1 }.

If φi1 (P∗ ) = oi2 , then i1 can manipulate φ at P1 by reporting P∗
i1

. This cannot be true
since φ is strategy-proof. Thus, φi1 (P∗ ) �= oi2 .

If φi1 (P∗ ) = oi3 , by individual rationality of φ, we get φi2 (P∗ ) = oi2 . But then, at
φ(P∗ ), according to reported preferences, i1 and i2 prefer one another’s assigned objects
to their own assignments. This cannot be true since φ is pair-efficient. Thus, φi1 (P∗ ) �=
oi3 .

Thus, φi1 (P∗ ) = oi1 .
Consider now the profile P+ = (P+

i1
, P↑

i2
, P↑

i3
, � � � , P↑

ik
, PI\S ). Since φ is strategy-proof,

we get φi1 (P+ ) = oi1 .
By definition of P+, when TTC runs with profile P+, the cycle Ct does not arise. In-

stead, at Step t or perhaps earlier, the cycle C+,

i1 → oi3 → i3 → oi4 → ·· · → ik−1 → oik → ik → oik+1 → ik+1 = i1,

arises.
Since φi1 (P+ ) = oi1 , φ(P+ ) does not execute the cycle C+. However, then, since

ρ(φ) = (t, k), when TTC runs with profile P+, the cycle C+ remains unexecuted until
Step t.
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We found the following occurrences. When TTC runs with profile P , the cycle Ct

arises at some step and it remains unexecuted until Step t, when it is executed. When
TTC runs with profile P+, the cycle C+ arises at some step and it remains unexecuted
until Step t. However, notice that when the cycles Ct and C+ are put aside, the remaining
cycles that arise at Steps 1, 2, � � � , t are the same when TTC runs with profiles P and P+.
Therefore, Observation 2 is applicable and, hence, when TTC runs with profile P+, C+ is
executed at Step t. Since φ(P+ ) does not execute C+, we get ρ(φ, P+ ) = (t, k− 1), which
contradicts that ρ(φ) = (t, k). This proves that φ = TTC.
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