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1. Introduction

Studying optimal tax problems involving multiple income sources and dimensions of
unobserved heterogeneity presents a significant challenge in the field of public finance.
It is crucial to consider this dual-layered multidimensionality when exploring topics
such as the optimal taxation of a couple’s incomes, the optimal taxation of income from
labor and capital, and the optimal means testing of benefits. However, the investigation
of such issues introduces considerable theoretical challenges, complicating the formu-
lation of policy recommendations.

Mirrlees (1976) pioneered a Mechanism Design (MD) approach to characterize the
optimal incentive-compatible allocation of multiple taxable incomes. This approach
results in a partial differential equation that proves challenging to interpret. Golosov,
Tsyvinski, and Werquin (2014) develop a Tax Perturbation (TP) approach to characterize
the optimal tax schedule. They, too, derive a partial differential equation describing the
optimal tax function. Their formulation, however, offers the benefit of being expressed
in terms of observable sufficient statistics.

The extent to which the MD approach by Mirrlees (1976) and the TP approach by
Golosov, Tsyvinski, and Werquin (2014) are equivalent has not been examined yet. At
first glance, it might appear that both approaches must be equivalent, since the taxa-
tion principle (Hammond (1979)) proves that selecting a tax function is equivalent to
choosing an incentive-compatible allocation. However, this principle holds true only
when there are no additional constraints on the tax schedule or the allocation of tax-
able incomes. Both Mirrlees’ MD approach and Golosov, Tsyvinski, and Werquin’s TP
approach introduce additional smoothness assumptions—the former on the allocation
and the latter on the tax schedule—to facilitate the application of variational calculus.
These smoothness assumptions address the possibility that distinct types may be al-
located the same income bundles, a situation referred to as “bunching,” or instances
where the mapping between types and income is discontinuous, a situation referred
to as “jumping.” In this paper, we derive optimal-tax formulas using both approaches.
We study a model where taxpayers differ in multiple unobservable characteristics and
in multiple incomes, and assume that individuals respond along the intensive margins.
We assume that multidimensional versions of the single crossing conditions hold and
make standard assumptions on the smoothness of the optimal-tax function and the op-
timal allocation. We show that under these assumptions the optimal-tax formulas de-
rived through both approaches are equivalent when the number of unobservable char-
acteristics equals the number of taxable incomes. The assumptions required to apply
the TP approach are slightly more demanding than those required to apply the MD ap-
proach. With the TP approach, we need to assume the tax-function is thrice differen-
tiable, whereas the MD approach only requires twice-differentiability of the tax func-
tion.

We also investigate the cases where the numbers of taxable incomes and charac-
teristics are not equal. The TP approach solves the optimal-tax problem in the income
space, whereas the MD approach solves the same problem in the type space. Therefore,
if the number of characteristics exceeds the number of incomes, solving the optimal-tax
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problem with the TP approach reduces the dimensionality of the problem, and thus its
complexity. Conversely, the MD approach reduces the dimensionality when the number
of incomes exceeds the number of characteristics.

Determining the optimal tax schedule involves solving a partial differential equa-
tion, a task that is significantly more complex than solving the ordinary differential
equation implied by the optimal tax formula for a single tax base. To illustrate the com-
plexity, consider that in a one-dimensional scenario, one can examine the effects of per-
turbing the marginal tax rate at one income level. The optimal marginal tax rate at that
income level is then determined by the ratio of mechanical and income effects at all in-
comes above, to compensated effects at the income level under consideration. However,
in a multidimensional scenario, it is not possible to examine the effects of a change in
the tax gradient at one combination of incomes without inducing additional changes in
the tax gradients at other combinations of incomes.

We develop a numerical algorithm that tackles this geometric complexity and can
solve the optimal multidimensional tax problem in its general form. We apply our algo-
rithm to the taxation of couples. In our application, we adopt simplifying assumptions
akin to those made by Kleven, Kreiner, and Saez (2007). We presume quasilinear and
additively separable household preferences. Furthermore, consistent with the empiri-
cal literature, we assume that the labor supply of wives is more elastic (0.43) than that of
husbands (0.11) (Bargain and Peichl (2016)). Lastly, we calibrate the joint distribution of
skills nonparametrically, starting from the joint distribution of incomes in the Current
Population Survey (CPS) of the US census.

To facilitate our exposition, we introduce the notion of an “isotax curve,” which
refers to a set of income bundles that incur the same tax liability. Our findings indi-
cate that the optimal isotax curves are nearly linear and parallel, with both spouses sub-
jected to positive marginal tax rates. A joint income tax that discounts female income
by approximately 53% closely approximates the fully optimized schedule in terms of so-
cial welfare. Additionally, we explore the concept of negative jointness, which stipulates
that the optimal marginal tax rates of males should decrease with an increase in female
income (and vice versa). Kleven, Kreiner, and Saez (2007) analytically demonstrate that
negative jointness is desirable when the productivities of both spouses are assumed to
be uncorrelated. However, our numerical findings suggest that this result does not hold
up under a more realistic joint distribution of productivities.

In addition to our comparison between the MD approach and the TP approach, and
our numerical algorithm, we make several theoretical contributions. First, we formulate
a test to verify the Pareto efficiency of a given tax schedule. If the welfare weights re-
vealed by the optimal tax formula are negative for certain income bundles, then reduc-
ing tax liabilities at these income bundles results in a self-financed Pareto improvement.
This extends the revealed social preference approach of Werning (2007), Bourguignon
and Spadaro (2012), Bargain, Dolls, Neumann, Peichl, and Siegloch (2014), Jacobs, Jon-
gen, and Zoutman (2017), Scheuer and Werning (2017), Hendren (2020), and Bierbrauer,
Boyer, and Hansen (2023) to a multidimensional context.

Second, we employ the MD approach to establish conditions under which the first-
order conditions are sufficient to characterize the optimal allocation. This holds true
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when the government’s Lagrangian is concave both with respect to the taxpayers’ utili-
ties, and with respect to the gradient of the mapping between the taxpayers’ types and
utilities. We analytically confirm that the specification used in our numerical exercise
complies with these sufficiency conditions. Therefore, once we have obtained a nu-
merical solution that satisfies the government’s first-order conditions, we know that it
is the unique solution. Consequently, there is no need to perform sensitivity analyses
concerning the initial conditions of our algorithm.

Third, we address a concern in the TP approach, where it is assumed by both Saez
(2001) and Golosov, Tsyvinski, and Werquin (2014) that incomes respond smoothly to
tax perturbations. We contribute by explicitly outlining the assumptions about the tax
schedule that ensure smooth responses of taxpayers to tax perturbations. Our assump-
tions rule out kinks in the tax schedule and the presence of multiple global optima,
thereby ensuring that incremental tax perturbations do not lead to jumps in taxpayers’
behavior.

Fourth, we introduce a new method to derive the optimal mechanism. When Mir-
rlees (1976) and Kleven, Kreiner, and Saez (2007) derive necessary conditions for the
optimal incentive-compatible allocation, they use taxpayers’ utilities and taxable in-
comes as controls. The challenge here is that there are numerous income allocations
that satisfy their necessary conditions for the optimum. We show how for each such
income allocation, the first-order incentive constraints imply the partial derivatives of
the attained utilities with respect to the types. At this point, nothing guarantees that
the obtained partial derivatives of the achieved utilities are mutually consistent, mean-
ing they imply symmetric second-order partial derivatives. Mirrlees (1976, p. 343) and
Kleven, Kreiner, and Saez (2007, p. 18) recognize this issue by stating that among the
different solutions of the partial differential equation, only the one implying symmetric
second-order cross- derivatives should be considered. We circumvent these challenges
by dividing the government’s problem into two stages. In the first stage, the government
chooses the optimal type-to-utility mapping from the set of possible mappings. In the
second stage, the taxable incomes are determined as functions of the utility profile and
its partial derivatives.

Finally, we investigate the cases where the number of characteristics p differs from
the number of incomes n. If the number of characteristics exceeds the number of in-
comes, opting for the TP method and using average sufficient statistics among taxpayers
with identical income bundles reduces the complexity of the problem. This extends the
findings of Saez (2001), Scheuer and Werning (2016) and Jacquet and Lehmann (2021) to
situations where taxpayers have multiple income sources. Conversely, applying the MD
approach in this setting is only feasible under strong restrictions on preferences (see,
e.g., Choné and Laroque (2010), Rothschild and Scheuer (2013, 2014, 2016), Scheuer
(2014), and Jacquet and Lehmann (2023) for the n = 1 <p case).

When the number of incomes n exceeds the number of unobservable characteristics
p, it generally makes more sense to use the MD approach. Indeed, by working within
the type space rather than the income space, one reduces the problem’s dimensionality.
In this case, the government’s problem involves the two-step process described above.
The second step then is a subprogram that determines the most efficient distribution
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of income choices to produce the type-to-utility mapping that was selected in the first
step. The solution to this subprogram is independent of government preferences and
solely depends on the resource costs of providing these utility levels. Our findings shed
light on similar subprograms implicitly present in the works of, among others, Atkinson
and Stiglitz (1976), Golosov, Kocherlakota, and Tsyvinski (2003), Gerritsen, Jacobs, Rusu,
and Spiritus (2025), and Ferey, Lockwood, and Taubinsky (2022).

Related literature

Our derivations crucially rely on assumptions on the smoothness of the allocations and
of the tax schedule. Such assumptions are also found in the MD approaches proposed
by Mirrlees (1976) and further developed by Kleven, Kreiner, and Saez (2007), and the
TP approach of Golosov, Tsyvinski, and Werquin (2014). When comparing the two ap-
proaches, we rule out the possibilities of jumping and bunching.

While bunching can occur in one-dimensional models, it is more likely when tax-
payers have multiple income sources and multidimensional unobserved characteristics.
To see this, note that our paper is related to the multidimensional screening problem,
which has been studied in the context of monopoly pricing by Armstrong (1996), Ro-
chet and Choné (1998), and Basov (2005). Rochet and Choné (1998) demonstrate that
bunching is a significant concern due to the interplay between the participation con-
straint and the second-order incentive constraints. However, our model does not in-
clude participation constraints, making the argument of Rochet and Choné (1998) not
directly applicable to our model.

Still, Dodds (2023) shows that bunching is optimal in the optimal tax problem if so-
cial preferences are sufficiently close to maximin. The intuition is that, following Boad-
way and Jacquet (2008), the dual of the optimal tax problem with maximin social pref-
erences consists in maximizing tax revenue subject to incentive constraints and a lower
bound at the lowest utility level. The latter constraint is mathematically equivalent to
the participation constraint in the monopoly model of Rochet and Choné (1998). Con-
versely, Kleven, Kreiner, and Saez (2007) argue that a range of moderate inequality aver-
sions exists where bunching does not occur in the optimum. Therefore, the approach
we adopt in this paper is valid when social preferences remain sufficiently far from max-
imin.

Most closely related to our work is a concurrent working paper by Golosov and
Krasikov (2023). They study the optimal taxation of couples with a general tax func-
tion that depends on both spouses’ incomes and allows for different earnings abili-
ties for both spouses. Using a mechanism-design approach, they derive the optimum
and focus on obtaining new theoretical results by applying the Coarea formula to the
optimal tax expression. This method enables them to find closed-form solutions for
various conditional moments of the optimal tax formula, such as linking optimal tax
rates to the correlation in spousal earnings. Our study, on the other hand, combines
the mechanism-design and tax-perturbation approaches. We demonstrate when these
two methods yield the same optimal tax formula and discuss the pros and cons of each
approach.
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Another important paper on taxation with multiple dimensions of labor through MD
tools is Boerma, Tsyvinski, and Zimin (2022). Their paper differs from ours in multiple
aspects. First, they solve the government’s problem using Legendre transformations.
With this method, individual utility functions must be additively separable with isoe-
lastic cost of effort. Conversely, neither our numerical algorithm nor our analytical re-
sults rely on such restrictions on individual preferences. Second, Boerma, Tsyvinski, and
Zimin (2022) assume that production requires sorting between manual and cognitive la-
bor. In this case, bunching is a robust property throughout the income distribution, for
reasons similar to those set forth by Rochet and Choné (1998).

Our paper also relates to the literature, which studies multidimensional heterogene-
ity in the context where the government can only observe and tax a single income (e.g.,
Choné and Laroque (2010), Rothschild and Scheuer (2013, 2014, 2016), Lockwood and
Weinzierl (2015), Jacquet and Lehmann (2021), Bergstrom and Dodds (2021)). We rely
on the insights in this literature to formulate our expressions in terms of sufficient statis-
tics. Specifically, in the context of multidimensional heterogeneity, sufficient statistics
can be strongly endogenous to the tax schedule. We use the approach of Jacquet and
Lehmann (2021) to overcome this issue by expressing our optimal tax formulas in terms
of total elasticities that incorporate this endogeneity. We expand on this literature by al-
lowing for multidimensional incomes in addition to multidimensional heterogeneity in
unobserved characteristics.

Scheuer (2014) and Gomes, Lozachmeur, and Pavan (2018) study a setting with mul-
tidimensional heterogeneity in which agents choose to earn income in one of two dif-
ferent sectors, and the government can tax the income of each sector according to a sep-
arate tax schedule. The main difference with our approach is that in our model agents
can earn multiple incomes at the same time.

Like in our application, Frankel (2014) studies the optimal taxation of couples in a
setting with multidimensional heterogeneity and taxation of both male and female in-
come. The main contrast between the approaches is that we allow for a continuous
type distribution, whereas Frankel (2014) studies a discrete 2 × 2 distribution of married
couples. Cremer, Pestieau, and Rochet (2001, 2003) also consider multidimensional set-
tings. However, they only allow labor income to be taxed nonlinearly, whereas taxes on
commodity/capital are constrained to be linear.

The paper is organized as follows. We describe the problem of multidimensional
optimal taxation in Section 2. Section 3 is devoted to the TP approach, and Section 4 is
devoted to the MD approach. We compare both approaches in Section 5. We present
our numerical algorithm and results in Section 6.

2. The model

2.1 Taxpayers

The economy consists of a unit mass of taxpayers who differ in a p-dimensional vector

of characteristics denoted w
def≡ (w1, � � � , wp ), that we call type. The type space is denoted

W ⊂ R
p and is assumed to be closed and convex. Types are distributed according to a

twice continuously differentiable density denoted by f (·), which is positive over W .
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Taxpayers make n choices. The n observable tax bases are denoted x
def≡ (x1, � � � , xn ) ∈

R
n+. We call these tax bases incomes for brevity.1 Taxpayers pay a tax T (x) that can

depend on all incomes in a nonlinear way. Taxpayers who earn incomes x consume
after-tax income c = ∑n

i=1 xi − T (x1, � � � , xn ).
The preferences of taxpayers of type w over consumption c and income choices x are

described by a thrice continuously differentiable utility function U(c, x; w) defined over
R
n+1+ ×W . Taxpayers enjoy utility from consumption but endure disutility to obtain in-

come, so Uc > 0 and Uxi < 0. Let C(·, x; w) be the inverse of U(·, x; w). That is, a taxpayer
of type w earning incomes x should consume C(u, x; w) to enjoy utility level u. It fol-
lows that Cu = 1/Uc and Cxi = −Uxi/Uc . We assume the utility function U(·, ·; w) is weakly
concave in (c, x) and indifference sets defined by c = C(u, x; w) are strictly convex in x.

We assume taxpayers maximize utility subject to their budget constraints. Therefore,
a taxpayer of type w solves

U(w)
def≡ max

x1, ���,xn
U

(
n∑

i=1

xi − T (x1, � � � , xn ), x1, � � � , xn; w

)
. (1)

Let X(w)
def≡ (X1(w), � � � , Xn(w)) denote the solution to this program and let C(w)

def≡∑n
i=1 Xi(w) − T (X(w)) denote the corresponding consumption. In addition, we denote

the marginal rate of substitution between the ith income and consumption as

S i(c, x; w)
def≡ −Uxi (c, x; w)

Uc(c, x; w)
= Cxi

(
U(c, x; w), x; w

)
> 0. (2)

The first-order conditions for taxpayers of type w are

∀j ∈ {1, � � � , n} : Sj
(
C(w), X(w); w

) = 1 − Txj

(
X(w)

)
. (3)

2.2 Government

The government’s budget constraint is given by∫
W

T
(
X(w)

)
f (w) dw −E ≥ 0, (4)

where E ≥ 0 is an exogenous amount of public expenditure. The government’s objective
aggregates the utility of the households in the economy:∫

W
�

(
U(w); w

)
f (w) dw, (5)

where the transformation (u; w) �→ �(u; w) is twice continuously differentiable in
(u, w), increasing and weakly concave in u and potentially type-dependent. The gov-
ernment’s problem consists of finding the tax function T (·) that maximizes the social

1Our model could be extended to include observable actions like private expenditures in education,
which correspond to negative cash-flows for the households. This extension would not affect the validity of
our results.
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welfare function (5) subject to revenue constraint (4), taking into account taxpayers’
behaviors defined by (1).

Following Diamond (1975) and Saez (2001), we define the welfare weights of tax-
payers of type w as the social marginal utility of consumption expressed in monetary
terms:

g(w)
def≡ �u

(
U(w); w

)
Uc

(
C(w), X(w); w

)
λ

≥ 0, (6)

where λ > 0 is the Lagrange multiplier associated to the budget constraint.
We compare two strategies to solve the government’s problem.

• In the tax perturbation (TP) approach, we consider the effects of marginal reforms
of the tax schedule x �→ T (x), taking into account taxpayer’s behavioral responses to
tax reforms. The tax schedule is optimal only if any tax reforms induce no first-order
effect on the government’s objective.

• In the mechanism design (MD) approach, we acknowledge the taxation principle
according to which selecting a tax schedule x �→ T (x) taking into account taxpayer’s
behavioral responses is equivalent to choosing an incentive-compatible allocation
w �→ (C(w), X(w)). At the second-best optimum, no incentive-compatible pertur-
bation of the allocation should induce a first-order effect on the government’s ob-
jective.

For tractability reasons, most authors make smoothness assumptions to pursue ei-
ther of these two approaches. In the following sections, we clarify the relations between
the assumptions. We proceed by first introducing the TP approach and the MD ap-
proach separately, in Sections 3 and 4, and comparing both approaches in Section 5.

3. The tax perturbation approach

In this section, we derive the optimal tax formula using the TP approach, which was
previously derived by Golosov, Tsyvinski, and Werquin (2014). A necessary condition for
a tax schedule to be optimal is that small perturbations of the schedule do not change
social welfare. Golosov, Tsyvinski, and Werquin (2014) assume that individuals respond
smoothly to such perturbations. We contribute by revealing underlying assumptions
that ensure that the responses of the taxpayers to tax reforms are smooth. We also iden-
tify additional assumptions that allow the characterization of the optimum in a partial
differential equation. Identifying these assumptions allows us to compare the TP ap-
proach to the MD approach.

We first formally introduce the perturbations to the tax schedule. Perturbing the tax
schedule x �→ T (x) in the direction R(·) by magnitude t ⪋ 0 leads to the perturbed tax
schedule x �→ T (x) − t R(x). The utility of taxpayers of type w then becomes a function
of the magnitude t through

ŨR(w, t )
def≡ max

x1, ���,xn
U

(
n∑

i=1

xi − T (x1, � � � , xn ) + t R(x1, � � � , xn ), x1, � � � , xn; w

)
. (7)
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By definition, we know that ŨR(w, 0) =U(w). The first-order conditions associated with
(7) are

∀j ∈ {1, � � � , n} : Sj

(
n∑

i=1

xi − T (x) + t R(x), x; w

)
= 1 − Txj (x) + t Rxj (x). (8)

If we perturb the tax schedule or any of the characteristics of the households, then the
households will update their choices X̃R(w, t ) such that first-order conditions (8) remain
satisfied. We now introduce assumptions on the unperturbed tax schedule that allow
applying the implicit function theorem to (8) to derive these behavioral responses.

Assumption 1. The tax schedule T (·) verifies the following assumptions:

(i) The tax schedule x �→ T (x) is thrice continuously differentiable.

(ii) For each type w ∈ W , the second-order conditions associated with (1) are strictly
verified, that is, the matrix [S i

xj
+ SjS i

c + Txixj ]i,j is positive definite at c = C(w)

and x = X(w).2

(iii) For each type w ∈ W , the function x �→ U(
∑n

i=1 xi − T (x), x; w) admits a single
global maximum.

Assumption 1(i) rules out kinks like those in piecewise linear tax schedules. More-
over, it ensures that the first-order conditions (8) are twice continuously differentiable
in t, w, and x, provided that the direction R(·) is thrice continuously differentiable. We
require thrice differentiability to derive Proposition 1 and 3, as we explain in more detail
below. Assumption 1(ii) ensures that the first-order conditions (8) are associated with a
local maximum of the taxpayers’ program (7). Parts (i) and (ii) of Assumption 1 together
enable one to apply the implicit function theorem to determine how a local maximum
of (7) is affected by a small tax perturbation or a small change in types. Assumption 1(iii)
rules out the existence of multiple global maxima. This prevents an incremental tax
perturbation from causing a “jump” in the taxpayers’ choices from one maximum to
another. At such jumps, the derivative of X̃R(w, t ) with respect to the size t of the per-
turbation tends to infinity.3 If Assumption 1 is satisfied, then the function X̃R(w, t ) that
solves (7) is continuously differentiable for t close to 0, that is, the behavioral responses
to tax reforms are smooth.

Geometrically, Assumption 1 implies that for each type w, the indifference set de-
fined by c = C(U(w), x; w) admits a single tangency point with the budget set defined by
c = ∑n

i=1 xi−T (x) and lies strictly above the budget set elsewhere. Given that we assume

2We let [a(k)]k denote a column vector whose kth row is a(k), [A(k, �)]k,� denotes a rectangular matrix
whose kth row and �th column is A(k, �), and · stands for the matrix product. The transpose operator is
denoted with superscript T , and the inverse operator is denoted with superscript −1.

3Note that in the n= 1 case, Bergstrom and Dodds (2023) relax part (iii) of our Assumption 1 and allow for
some individuals’ optimization problems to admit multiple global maxima, leading to jumping responses.
Hence, Assumption 1 is only sufficient to apply the TP, but not necessary.
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that the indifference sets defined by c = C(u, x; w) are strictly convex, Assumption 1 is
automatically verified if the tax schedule is linear (see Appendix A.1).

We characterize the optimal tax schedule under the presumption that Assumption 1
holds, which then needs to be verified ex post in applications. This approach is analo-
gous with the standard first-order MD approach, which presumes that the second-order
incentive constraints do not bind in the optimum, and verifies ex post that this is indeed
the case (Mirrlees (1971, p. 188)).

A variation in t affects the first-order conditions (8) through the changes in the
marginal tax rates on the right-hand side and through the changes in the tax liabilities
that determine the marginal rates of substitution on the left-hand side. Thanks to As-
sumption 1, one can differentiate Equations (8) with respect to t and x, which leads to
(see Appendix A.2):

∂X̃R
i (w, t )
∂t

= ∂Xi(w)
∂ρ

R
(
X(w)

)
︸ ︷︷ ︸

Income responses

+
n∑

j=1

∂Xi(w)
∂τj

Rxj

(
X(w)

)
︸ ︷︷ ︸

Compensated responses

. (9)

Here, ∂Xi(w)/∂τj denotes type-w taxpayers’ ith income response to a compensated4 per-
turbation of the jth marginal tax rate in the direction R(x) = xj − Xj(w). Moreover,
∂Xi(w)/∂ρ denotes their ith income response to a lump sum perturbation in the direc-
tion R(x) = 1. Note that we do not explicitly assume that responses to tax perturbations
are smooth. Instead, we show that if the unperturbed tax schedule verifies Assump-
tion 1, the function t �→ X̃R(w, t ) is continuously differentiable at t = 0, and that Equa-
tion (9) holds in that case.5

We now investigate whether, starting from a tax schedule T (·), a perturbation in a
direction R(·) is socially desirable by investigating its effects on the government’s per-
turbed Lagrangian:

L̃R(t )
def≡

∫
W

{
T

(
X̃R(w, t )

) − tR
(
X̃R(w, t )

) + �
(
ŨR(w, t ); w

)
λ

}
f (w) dw, (10)

which is written in monetary terms. To compute the partial derivative of the Lagrangian
with respect to the magnitude t of the tax reform, we also need the partial derivative
of social welfare. Apply the envelope theorem to (7) and use (6) and (9) to find (See

4These perturbations are said to be “compensated for taxpayers of type w” because they change the
marginal tax rate of type w but leave the tax liability at incomes x = X(w) unchanged.

5Strictly speaking, these responses do not just depend on the type w, but also on the Hessian of the tax
function. When the tax function is nonlinear, the responses to a tax reform generate changes in the marginal
tax rates, which further induce compensated responses to these changes in marginal tax rates, etc. (Jacquet
and Lehmann (2021)). By applying the implicit function theorem, the behavioral responses ∂Xi(w)/∂ρ and
∂Xi(w)/∂τj encapsulate this “circular process” through the endogeneity of the marginal tax rates. We refer
to these responses as total responses. We discuss the relation between direct and total responses in the
working paper version of this article (Appendix A.3 of Spiritus, Lehmann, Renes, and Zoutman (2022)).
Finally, throughout the paper, we evaluate the partial derivatives with respect to t only at t = 0.
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Appendix A.3):6

∂L̃R(t )
∂t

=
∫
W

{[
g(w) − 1 +

n∑
i=1

Txi

(
X(w)

) ∂Xi(w)
∂ρ

]
R

(
X(w)

)

+
∑

1≤i,j≤n

Txi

(
X(w)

) ∂Xi(w)
∂τj

Rxj

(
X(w)

)}
f (w) dw. (11)

At the optimum, there should not exist an infinitesimal perturbation of the tax
schedule that would induce a first-order effect on the government’s objective. There-
fore, the right-hand side of (11) should be equal to zero for any direction R(·). We derive
an optimal tax formula from this requirement in Appendix A.4. To do so, we first rewrite

(11) in the income space. For this purpose, let X def≡ {x|∃w ∈ W : x = X(w)} denote the
range of the type set W under the allocation w �→ X(w). Let h(x) denote the joint density
of incomes x, which is defined over X . Furthermore, for each combination of incomes
x ∈ X , let ∂Xi(x)/∂τj , ∂Xi(x)/∂ρ, and g(x), respectively, denote the means of ∂Xi(w)/∂τj ,
∂Xi(w)/∂ρ and g(w) among taxpayers that earn the combination of incomes X(w) = x.
Second, we use the divergence theorem to rewrite the second line of (11). For this pur-
pose, we need income densities and compensated responses to be continuously differ-
entiable. Furthermore, we can only apply the divergence theorem on the income space
X if it is of dimension n. We thus make the following assumption.

Assumption 2. The number of characteristics is greater than or equal to the number of
incomes (p ≥ n), the income space X is of dimension n, and the sufficient statistics h(x),
∂Xi(x)/∂τj , ∂Xi(x)/∂ρ, and g(x) are continuously differentiable functions of x.

At the end of this subsection, we provide sufficient microfoundations to illustrate the
plausibility of Assumption 2. The following proposition then characterizes the optimal
tax schedule (see the proof in Appendix A.4).

Proposition 1. If the optimal tax schedule satisfies Assumptions 1 and 2, the optimum
verifies the Euler–Lagrange equation:

[
1 − g(x) −

n∑
i=1

Txi(x)
∂Xi(x)
∂ρ

]
h(x) = −

∑
1≤i,j≤n

∂

[
Txi(x)

∂Xi(x)
∂τj

h(x)

]
∂xj

, (12a)

for all x in X , and it verifies the boundary conditions:

∀x ∈ ∂X :
∑

1≤i,j≤n

Txi(x)
∂Xi(x)
∂τj

h(x) ej(x) = 0, (12b)

6In Spiritus et al. (2022), we show that the effect of any perturbation on the government’s Lagrangian has
the same sign as the effect on the social objective of that perturbation combined with a lump-sum transfer
that keeps the budget restriction satisfied. This result also holds outside of the optimum, as long as the
weight λ put on government’s revenue verifies (15d).
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where ∂X denotes the boundary of X , and e(x) = (e1(x), � � � , en(x)) denotes the outward
unit vector normal to the boundary at x. Finally, when conditions (12a) and (12b) hold,
the Lagrange multiplier λ is implicitly determined by

0 =
∫
W

[
1 − g(x) −

n∑
i=1

Txi(x)
∂Xi(x)
∂ρ

]
h(x) dx. (12c)

Proposition 1 provides necessary conditions for the government’s optimum in the
income space. It is consistent with Proposition 3 in Golosov, Tsyvinski, and Werquin
(2014). The Euler–Lagrange equation (12a) provides a divergence equation that should
hold for any income x ∈ X . Note that we use thrice differentiability of the tax schedule
(Assumption 1(i) to derive the proposition. Equation (26b) in Appendix A.2 shows that
the sufficient statistics ∂Xi(w)/∂τj depend on the second-order partial derivatives of the
tax schedule. Since the right-hand side of (12a) once again contains partial derivatives
of these sufficient statistics, we require the tax system to be at least thrice differentiable.
Equations (12b) are boundary conditions that should hold at any income x ∈ ∂X in the
boundary of X . Finally, Equation (12c) states that, starting from the optimum, a lump
sum perturbation implies no first-order effect on the Lagrangian. Using (6), the latter
condition determines the Lagrange multiplier λ. To provide more intuition, the working
paper version of this article contains a heuristic proof of Proposition 1 based on a re-
form that uniformly changes tax liability within a closed convex subset of X and changes
marginal tax rates around that subset (Section III.3 of Spiritus et al. (2022)).

We use the Euler–Lagrange equation (12a) to derive a test to verify whether a given
tax schedule is Pareto efficient, and, if not, what reform can lead to a Pareto improve-
ment. We thus extend results by Werning (2007), Lorenz and Sachs (2016), Scheuer and
Werning (2017), Hendren (2020), and Bierbrauer, Boyer, and Hansen (2023) to a setting
with multiple incomes. Solving (12a) for g(x), the revealed marginal welfare weights are
defined as

ĝ(x)
def≡ 1 −

n∑
i=1

Txi(x)
∂Xi(x)
∂ρ

+ 1
h(x)

∑
1≤i,j≤n

∂

[
Txi(x)

∂Xi

(
X(w)

)
∂τj

h(x)

]
∂xj

. (13)

This formula extends the inverse-optimum approach of Bourguignon and Spadaro
(2012), Bargain et al. (2014), and Jacobs, Jongen, and Zoutman (2017) to a setting
with multidimensional incomes. If for some income x these revealed marginal welfare
weights are negative, then there exists a Pareto improvement to the current tax schedule
(see Appendix A.5 for the proof).

Proposition 2. Under Assumptions 1 and 2:

(i) An incremental tax perturbation that decreases tax liabilities where ĝ(x) < 0, and
that does not change tax liabilities elsewhere, is Pareto improving.

(ii) A Pareto efficient tax schedule must lead to ĝ(x) ≥ 0 for all x ∈ X .
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Part (ii) of Proposition 2 provides a necessary condition in terms of observable statis-
tics to test whether the current tax system is Pareto efficient. If the test fails, part (i) of
Proposition 2 provides a Pareto improving tax reform. The Pareto improving reform we
provide is different than the one provided by Lorenz and Sachs (2016) and Bierbrauer,
Boyer, and Hansen (2023). In a unidimensional setting, one can decrease the marginal
tax rate in a small income interval and decrease the tax liability above. The current situ-
ation is Pareto dominated if such a reform generates extra revenue for the government.
In the multidimensional setting, such a reform is not feasible because it is geometrically
not possible to change the gradient of the tax function at one income bundle without
affecting this gradient for at least some other income bundles. This is the reason we
consider reforms that decrease tax liability at income bundles where revealed welfare
weights are negative instead of reforms changing the tax gradient. This is generalization
of the Pareto-improving reforms studied by Scheuer and Werning (2017) and Hendren
(2020) to a multidimensional context.7

We have shown that the optimality conditions in Proposition 1 and the condition
for a Pareto improvement in Proposition 2 are valid if Assumptions 1 and 2 hold. As
Assumption 2 may appear overly demanding, we now discuss a microfoundation to
demonstrate its plausibility.

Assumption 2′ . The utility function U satisfies:

(i) The number of incomes is equal to the number of unobserved characteristics n= p.

(ii) The matrix [S i
wj

]i,j is invertible.

(iii) The mapping w �→ (S1(c, x; w), � � � , Sn(c, x; w)) defined on W is injective.

Part (iii) of Assumption 2′ guarantees that at each income bundle x ∈ X , each vector
of marginal rates of substitution is at most assigned to a single type. For n = p = 1, Parts
(ii) and (iii) of Assumption 2′ are both equivalent to the standard single crossing condi-
tion. For n = p> 1, part (iii) of Assumption 2′ is stronger than part (ii), as the latter only
demands local invertibility between the types and the marginal rates of substitution. As-
sumption 2′ is then a natural extension of the unidimensional single crossing condition,
which corresponds to Assumption 1 in Dodds (2023). One case in which Assumption 2′
holds is when the utility function is additively separable:

U(c, x; w) = γ(c) −
n∑

i=1

υi(xi, wi ) where γ′, υi
xi

, υi
xi ,xi > 0 �= υi

xi ,wi
. (14)

Both parts (ii) and (iii) of Assumption 2′ then become equivalent to υi
xi ,wi

�= 0.8

7The Pareto improving reforms of Scheuer and Werning (2017) and Hendren (2020) decentralize the
Pareto improvements studied by Werning (2007) in a one-dimensional MD context. Bergstrom and Dodds
(2023) extend our Proposition 2 for the presence of bunching.

8When the utility function takes the form (14), we get Si(c, x; w) = υi
xi (xi, wi )/γ′(c). Assumption 2′ then

amounts to demanding that the n one-dimensional mappings wi �→ υi
xi (xi, wi )/γ′(c) are injective, which is

guaranteed by υi
xi ,wi

being either everywhere positive or everywhere negative.
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Together, Assumptions 1 and 2′ guarantee that the tax schedule effectively separates
taxpayers by type, so no two types choose the same bundle of incomes. We thus obtain
the following lemma, which we prove in Appendix A.6.

Lemma 1. Under Assumptions 1 and 2′, the mapping w �→ X(w) is a continuously differ-
entiable bijection from W into X , and Assumption 2 holds.

Lemma 1 allows us to rewrite the necessary conditions for the optimal tax schedule
in the type space. This is important because the type space W is exogenous to the tax
schedule whereas the income space X is not. In the numerical computations, this en-
ables us to solve the Euler–Lagrange partial differential equation over a fixed space. Ad-
ditionally, it is useful because we will also be able to retrieve this optimal tax formula in
the type space using the MD approach, proving the consistency of the two approaches.
We derive the following proposition in Appendix A.7.9

Proposition 3. Under Assumption 2′, if the optimal tax schedule satisfies Assumption 1,
the optimum verifies the Euler–Lagrange equation in the type space:[

1 − g(w) −
n∑

i=1

Txi

(
X(w)

)∂Xi(w)
∂ρ

]
f (w) =

∑
1≤i,j≤n

∂
[
Txi

(
X(w)

)
Aj,i(w) f (w)

]
∂wj

, (15a)

for all w in W , while the boundary conditions become∑
1≤i,j≤n

Txi

(
X(w)

)
Aj,i(w) ej(w) = 0, (15b)

for all w in W , where the matrix A is defined by

[Ai,j ]i,j
def≡ [

S i
wj

]−1
i,j = −

[
∂Xi(w)
∂wj

]−1

i,j
·
[
∂Xi(w)
∂τj

]
i,j

. (15c)

Finally, the Lagrange multiplier λ is implicitly determined by

0 =
∫∫

W

[
1 − g(w) −

n∑
i=1

Txi

(
X(w)

) ∂Xi(w)
∂ρ

]
f (w) dw. (15d)

4. The mechanism design approach

In this section, we rederive the optimal tax system using the mechanism-design ap-
proach instead of the tax-perturbation approach. This exercise serves two purposes.
First, it allows us to verify under what conditions the two approaches result in the same

9Note that thrice differentiability of the tax schedule, as we assume in Assumption 1, remains necessary
for the derivation of (15a), as it presumes knowledge of the Jacobian [∂Xi/∂wj ]i,j of the allocation. This
Jacobian depends on the Hessian of the tax schedule, as we show in Appendix A.2.
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optimal-tax function. Second, we use the mechanism-design approach to verify un-
der what conditions the solution to the government’s first-order conditions uniquely
describes the social maximum.

The MD approach consists in optimizing over the set of allocations w �→ (C(w),
X(w)) that verify the self-selection (or incentive) constraints:

∀w, ŵ ∈ W : U(w)
def≡ U

(
C(w), X(w); w

) ≥ U
(
C(ŵ), X(ŵ); w

)
. (16)

Instead of dealing with the double continuum of inequalities in (16), we follow Mirrlees
(1976) by adopting a First-Order MD approach (henceforth the FOMD approach). The
FOMD amounts to finding a continuously differentiable allocation w �→ (U(w), X(w),
C(w)) that verifies only the first-order incentive constraints:

∀w ∈ W , ∀i ∈ {1, � � � , p} : Uwi (w) = Uwi

(
C(w), X(w); w

)
, (17)

and maximizes the government’s Lagrangian:∫
W

{
n∑

i=1

Xi(w) −C(w) + �
(
U(w); w

)
λ

}
f (w) dw −E. (18)

We restrict our attention to allocations that are continuously differentiable and sat-
isfy the incentive constraint (16). This is formalized in Assumption 3.

Assumption 3. The allocation w �→ (C(w), X(w)) is continuously differentiable and
incentive-compatible, that is, it verifies (16).

We divide the optimization problem into two stages. In the first stage, the govern-
ment chooses the utility profile w �→U(w). In the second stage, the government chooses
the incentive compatible allocation w �→ X(w) to maximize the resources extracted from
taxpayers conditional on the utility profile chosen in the first stage, thus guaranteeing
that a Pareto efficient allocation is chosen. Formally, the government chooses the utility
profile w �→U(w) to maximize∫

W
L

(
U(w), Uw1 (w), � � � , Uwp(w); w, λ

)
dw, (19)

where function L(·) is defined as

L(u, z; w, λ)
def≡

(
R(u, z; w) + �(u; w)

λ

)
f (w) −E, (20)

and the function R(·) is defined via the subprogram

R(u, z; w)
def≡ max

x1, ���,xn

n∑
i=1

xi − C(u; x; w)

s.t. ∀i ∈ {1, � � � , p} : zi = Uwi

(
C(u, x; w), x; w

)
.

(21)
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Our approach differs from the traditional approach in Mirrlees (1976), Kleven,
Kreiner, and Saez (2007), and Renes and Zoutman (2017), who directly maximize La-
grangian (18) subject to the incentive constraint (17) with respect to both the utility pro-
file and the allocation. As noted by Mirrlees (1976, p. 343) and Kleven, Kreiner, and Saez
(2007, p. 18), the traditional approach hides a conceptual problem in the multidimen-
sional context. To see this, consider an example in which utility is additively separable as
in (14). In that case, for any given candidate allocation w �→ X(w), the first-order incen-
tive constraints (17) form a system of partial differential equations in w �→ U(w). If there
is only one type, p = 1, the system simplifies to an ordinary differential equation, which
can be integrated to provide the corresponding mapping w �→ U(w), up to a constant.
Conversely, when p ≥ 2, the system of partial differential equations (17) for a given can-
didate mapping w �→ X(w) yields a candidate for the gradient of w �→ U(w) with com-

ponents w �→ Zi(w)
def≡ −υi

wi
(Xi(w), wi ) for all i ∈ {1, � � � , p}. However, not every com-

bination of mappings w �→ Zi(w) can be the gradient of a mapping w �→ U(w). The
utility profile w �→ U(w) must exhibit symmetric second-order cross-derivatives, that is,
Uwj ,wk(w) =Uwk,wj (w) for all j, k, and all w. Hence, only candidate mappings w �→ X(w)
that imply a utility profile that verifies ∂Zk(w)/∂wj = ∂Zj(w)/∂wk for all j, k, and for all
w, are implementable. These additional implementability constraints are irrelevant in
one-dimensional optimal tax problems but cannot be ignored in the multidimensional
case. Our approach overcomes this challenge by explicitly choosing the utility profile
U(w) in the first stage, and choosing C(w) and X(w) from the incentive-compatible al-
locations that implement that utility profile in the second stage. Therefore, the solution
automatically satisfies the implementability condition Uwi ,wj (w) =Uwj ,wi (w).

To apply methods from variational calculus to the government’s problem (19)–(21),
we make regularity assumptions about subprogram (21) in Assumption 4. First, we rule
out the possibility that two allocations that yield the same utility profile also extract an
identical amount of resources. Second, we make differentiability assumptions about the
unique solution to subprogram (21). Together, these assumptions ensure the differen-
tiability of the function L, defined in Equation (20), with respect to all of its arguments.
We will provide a plausible microfoundation in Assumption 4′.

Assumption 4. Subprogram (21) admits a single solution for each (u, z; w). We denote
this solution by X1(u, z; w), � � � , Xn(u, z; w) and assume that it is twice continuously dif-
ferentiable in (u, z; w).

Note that subprogram (21) selects n incomes subject to p constraints. Assumption 4
thus implies that the MD approach is generally restricted to cases with at least as many
incomes as types, n ≥ p, although some exceptions exist, as we discuss in Section 5. As-
sumptions 3 and 4 allow us to derive necessary conditions for the FOMD problem (19) by
considering continuously differentiable perturbations in the utility profile w �→ U(w),
and deducing the resulting perturbed allocations w �→ (C(w), X(w)) from subprogram
(21). Assumption 4 ensures a unique perturbed allocation exists for every perturbed
w �→ U(w). Mirrlees (1976, p. 342) implicitly makes a similar assumption to ensure his
system of equations (63) admits a single solution. This leads to the following proposi-
tion, which we prove in Appendix B.1.
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Proposition 4. Under Assumption 4, if among the allocations that verify the first-order
incentive constraints (17), the optimal one verifies Assumption 3, then the optimal utility
profile w �→U(w) must verify for all w in W :

(
1 − S i

)
f (w) = Uc

p∑
j=1

θj(w)S i
wj

, ∀i ∈ {1, � � � , n}, (22a)

p∑
j=1

∂θj

∂wj
(w) =

(
1
Uc

− �u
(
U(w); w

)
λ

)
f (w) −

p∑
j=1

θj(w)
Ucwj

Uc
, (22b)

0 =
p∑

j=1

θj(w) ej(w), ∀w ∈ ∂W , (22c)

where we define

θj(w)
def≡ −Lzj

(
U(w), Uw1 (w), � � � , Uwp(w); w, λ

)
. (22d)

Equation (22a) characterizes the optimal incomes X(w). Equation (22b) is the Euler–
Lagrange equation characterizing the cost θ(wj ) of distorting the jth component of the
gradient of w �→ U(w) (see (22d)). Equation (22c) corresponds to the boundary condi-
tions that must hold along the boundary of the type space ∂W . Equations (22a), (22b),
and (22c), respectively, correspond to equations (60), (61), and (62) in Mirrlees (1976).
Note that θj(·) corresponds to the multiplier of the incentive constraints in Mirrlees
(1976), as well as to the multiplier of the incentive constraints in the resource maxi-
mization subprogram (21). Our approach of perturbing w �→ U(w) and deducing the
implied perturbation of the allocation w �→ (C(w), X(w)) from the first-order incentive
constraints, thus shows that the shadow cost on the incentive constraint can be inter-
preted as the resource cost of changing U(w).

In a setting where the number of incomes equals the number of characteristics,
n = p, there is usually only one incentive-compatible allocation that can implement the
same utility profile, because the number of free variables in the system of equations (17)
is equal to the number of equations. In a setting with more incomes than types, n > p,
the same utility profile can typically be offered through multiple incentive compatible
allocations. In that case, through subprogram (21), the n first-order conditions (22a)
can be decomposed into p conditions characterizing the optimal w �→ U(w) profile and
n−p supplementary conditions describing how to decentralize the mapping w �→ U(w)
at the lowest cost.

Several results in the literature that are derived in settings where n > p correspond to
these supplementary conditions. A famous example is the Atkinson and Stiglitz (1976)
theorem, which states for p = 1 that when preferences are weakly separable between
leisure and consumption, commodity taxes should be uniform. This result remains valid
regardless of social preferences for redistribution and can be seen as a way to realize a
desired distribution of utilities with the least distortions (see also Jacobs and Boadway
(2014)). In the same vein, Boadway and Keen (1993), Gauthier and Laroque (2009), and
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Jacobs and de Mooij (2015) retrieve first-best principles such as the Samuelson rule for
the provision of public good or the Pigouvian tax rule in case of externalities in models
with weakly separable preferences and one-dimensional unobserved heterogeneity. An-
other strand of literature considers capital income taxation in settings with endogenous
labor supply and savings and one dimension of unobserved heterogeneity. Assuming
that preferences, inherited wealth or returns to capital vary along the ability distribution,
the Atkinson and Stiglitz (1976)’s theorem no longer applies and the optimal capital tax
is nonzero.10 These authors show how to split the deadweight losses of redistribution
between labor and capital income taxation, relying only on efficiency considerations
without reference to social preferences for redistribution. Finally, the “new dynamic
public finance” literature (Golosov, Kocherlakota, and Tsyvinski (2003)) considers mod-
els, where at each period, there is a new productivity drawn (a new dimension of un-
observed heterogeneity) and agents make a labor supply and a saving decision at each
period, such that n = 2p where p is equal to the number of periods. The inverse Eu-
ler equation then describes how the planner should allocate consumption between the
present period and each state of nature of the following period at the lowest cost. The
finding that such supplementary efficiency conditions arise when n > p is summarized
in Corollary 1.

Corollary 1. When n > p, subprogram (21) implies n−p supplementary efficiency con-
ditions describing how to decentralize a given mapping w �→U(w) at the lowest cost.

An additional advantage of our approach is that it becomes straightforward to pro-
vide conditions under which the government’s necessary conditions (22) are also unique
and sufficient. We do so in the following proposition.

Proposition 5. Under Assumption 4, if for each type w ∈ W and each λ ∈ R+ the map-
ping (U , z) �→ L(U , z; w, λ) is concave and if an allocation w �→ (U�(w), C�(w), X�(w))
verifies Assumption 3 and Equations (22), then it is the unique solution to the govern-
ment’s problem.

This result is especially important for our numerical simulations. We will demon-
strate the use of Proposition 5 in Section 6, where we prove that in our simulations the
mapping (U , z) �→ L(U , z; w, λ) is concave. As we find in the simulations an allocation
that verifies the necessary conditions, Proposition 5 then ensures that this allocation is
the unique solution to the government’s problem.

We now provide a microfoundation to show the plausibility of Assumption 4. This
additional assumption allows us to retrieve the optimal tax formula in the type space
provided by Proposition 3 using the FOMD approach, instead of the TP approach.

10See, for example, Saez (2002), Cremer, Pestieau, and Rochet (2003), Diamond and Spinnewijn (2011),
Gahvari and Micheletto (2016), Kristjánsson (2016), Saez and Stantcheva (2018), Gerritsen et al. (2025),
Ferey, Lockwood, and Taubinsky (2022), Boadway and Spiritus (2024), and Zanoutene (2023).
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Assumption 4′ . The number of incomes equals the number of unobserved characteris-
tics, that is, n = p, and the mapping

(u, x; w) �→ (
Uw1

(
C(u, x; w), x; w

)
, � � � , Uwp

(
C(u, x; w), x; w

))
is twice continuously differentiable in (u, x, w), and bijective in x with an invertible Jaco-
bian.

When the utility function is of the additively separable form described in (14), As-
sumption 4′ is equivalent to υi

xi ,wi
�= 0. Hence, Assumption 4′ is a way to extend the sin-

gle crossing condition to a multidimensional context. Recall that in subprogram (21),
for given type w, utility level u and utility gradient z, the government chooses the incen-
tive compatible allocation x that maximizes the government’s revenues. Because of the
incentive constraints of subprogram (21), Assumption 4′ implies that for each type w,
the value of (u, z) uniquely determines the allocation x. The subprogram thus admits a
single solution and Assumption 4 is verified. When the number of incomes is equal to
the number of unobserved characteristics (n = p), the incentive constraints of subpro-
gram (21) imply that Assumption 4 also leads to Assumption 4′, so both assumptions are
equivalent.

The fact that Assumptions 4 and 4′ are equivalent when n = p enables us to show
that the formulation of the optimality conditions in Proposition 3 can also be derived
using the MD approach. We prove the following proposition in Appendix B.2.

Proposition 6. Under Assumption 4′, if among the allocations that verify the first-order
incentive constraints (17), the optimal one verifies Assumption 3, then the optimum veri-
fies the Euler–Lagrange equation (15a) in the type space with Boundary conditions (15b),
and the Lagrange multiplier λ is determined by (15d).

We have thus shown that with the right assumptions, the same optimal-tax equa-
tions can be derived in the type space using either the FOMD approach or the TP ap-
proach. We elaborate further on the correspondence between the two approaches in
the next section.

5. Comparing the TP and MD approaches

We now compare TP and MD approaches. In Section 5.1, we focus on the case when the
numbers of incomes and characteristics are equal (n = p), before turning our attention
to the settings where incomes outnumber characteristics (n > p, Section 5.2) and where
characteristics outnumber incomes (p> n, Section 5.3).

5.1 Equal numbers of incomes and characteristics (n = p)

When the number of incomes n is equal to the number of characteristics p, we show
in Propositions 3 and 6 that the same optimal tax formulas (15a)–(15c) can be obtained
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using either the TP or the MD approach. We thus show the consistency of both ap-
proaches for n = p> 1, as Saez (2001) does for n = p = 1. This result may not seem sur-
prising in light of the taxation principle (Hammond (1979)), which states that choosing
an incentive-compatible allocation is equivalent to choosing a tax function. However,
neither the TP nor the MD approaches in the literature solve the fully general case, as
they both adopt smoothness assumptions.

For tractability reasons, we conduct both approaches under extensions of the
single crossing condition to the multidimensional n = p > 1 case, namely Assump-
tion 2′ in the TP approach, versus Assumption 4′ in the MD approach. Assump-
tion 2′ states that for each (c, x), the mapping w �→ (S1(c, x; w), � � � , Sn(c, x; w)) is
globally invertible, that is, each bundle of marginal rates of substitution corresponds
to at most one type. Assumption 4′ states that for each (u, w), the mapping x �→
(Uw1 (C(u, x; w), x; w), � � � , Uwp(C(u, x; w), x; w)) is globally invertible, that is, each gra-
dient of the utility profile corresponds to at most one vector of incomes. Note that local
invertibility of both mappings are equivalent since the marginal utility of consumption
times the Jacobian of w �→ (S1(c, x; w), � � � , Sn(c, x; w)) is equal to minus the transpose
of the Jacobian of x �→ (Uw1 (C(u, x; w), x; w), � � � , Uwp(C(u, x; w), x; w)). Furthermore,
if preferences are additively separable as in Equation (14), Assumptions 2′ and 4′ are
equivalent to the single crossing assumptions υi

xi ,wi
�= 0 for i = 1, � � � , n. Otherwise, when

preferences are not additively separable, the two assumptions differ only by assuming
global invertibility of different mappings. From here on, we compare the TP and MD
approaches when n = p assuming preferences satisfy both Assumptions 2′ and 4′.

When the tax schedule is smooth in the sense of Assumption 1, we show in Ap-
pendix A.2 that the allocation is smooth in the sense of Assumption 3. Conversely, com-
bining Assumption 3 with the left-hand side of individual first-order condition (3) im-
plies that the marginal tax rates are only once-differentiable functions of type w, while
Assumption 1 requires they are twice-differentiable in incomes x. Therefore, provided
that the FOMD approach is valid, the TP approach is slightly more demanding than the
MD approach as it requires stronger differentiability assumptions on the tax function.

A fundamental difference between the TP and MD approaches is the way they deal
with bunching and jumping. Bunching and jumping are sometimes confused in the lit-
erature, but are actually polar issues. For instance, consider the case n = p = 1 with a
single crossing condition in place. It follows that w �→ X(w) is nondecreasing.11 In that
case, bunching arises when the optimal mapping w �→ X(w) becomes constant. Con-
versely, jumping arises when w �→ X(w) is upward discontinuous. From a tax function
perspective, bunching implies the presence of a kink, and hence a nondifferentiability
in the tax function. Jumping can arise even if the tax function is smooth, for instance,
if the tax function is so concave in some region that taxpayers’ second-order conditions
cannot be met and they prefer to locate elsewhere. It is difficult to address jumping in
an MD approach, since this requires optimization over non-continuous allocations.12

11See, for instance, Salanié (2003) for a formal proof.
12To our knowledge, only Hellwig (2010) addresses jumping with an MD approach, and he focuses only

on the case n= p= 1.
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Conversely, it is feasible to address bunching in the MD approach by adopting a second-
order MD approach (see, e.g., Lollivier and Rochet (1983), Ebert (1992); and Boerma,
Tsyvinski, and Zimin (2022)). On the other hand, the TP approach is better equipped to
handle jumping, since jumping does not require a nondifferentiability in the tax func-
tion (see, e.g., Bergstrom and Dodds (2021)). Equivalence between the two approaches
only arises when (i) one makes no smoothness assumptions whatsoever as in the taxa-
tion principle, or (ii) one makes sufficient assumptions to rule out both bunching and
jumping as we do here.

A famous result in the multidimensional screening literature states that bunching is
generic in the multidimensional nonlinear monopoly model of Armstrong (1996) and
Rochet and Choné (1998). The latter state that bunching occurs “because of a strong
conflict between participation constraints and second- order incentive compatible con-
ditions.” However, as there are no participation constraints in our optimal tax problem,
the argument of Rochet and Choné (1998) for bunching does not apply to our model.

The absence of a participation constraint does not necessarily imply the absence of
bunching. Boadway and Jacquet (2008) show that when the government’s objective is
maximin, the dual of the optimal tax problem consists in maximizing tax revenue sub-
ject to incentive constraints and a lower bound at the lowest utility level. The latter
constraint is mathematically equivalent to the participation constraint in the monopoly
model of Rochet and Choné (1998). In addition, Proposition 4 in Dodds (2023) shows
that bunching is optimal in the optimal tax problem if preferences are sufficiently close
to maximin, using a continuity argument. Conversely, under an additive social welfare
function and quasilinear preferences in consumption, no bunching occurs. It follows,
as argued by continuity by Kleven, Kreiner, and Saez (2007), that a range of moderate in-
equality aversions exists for which no bunching occurs. In our simulations, we address
this by considering relatively light preferences for redistribution.

5.2 Incomes outnumber characteristics (n > p)

We now consider cases where incomes outnumber unobserved characteristics. The
MD approach extends to the case where n > p. The n first-order conditions (22a)
given in Proposition 4 can be decomposed into p conditions characterizing the optimal
w �→U(w) profile and n−p supplementary efficiency conditions describing how to de-
centralize the mapping w �→ U(w) at the lowest cost. These supplementary conditions
can be reinterpreted in a TP approach as describing how to minimize tax distortions
while keeping the utility profile w �→ U(w) unchanged.

It is much more difficult to apply the TP approach in this setting. This is because
the range X of the type set under the allocation w �→ X(w) has a lower dimension
than its containing space. Our definitions of the boundary ∂X and of the unit vector
e(x) = (e1(x), � � � , en(x)) normal to it in Proposition 1 are no longer meaningful and
Proposition 1 loses its validity. More specifically, the divergence theorem used in the
proof to Proposition 1 no longer applies.

Even if the TP approach as introduced by Golosov, Tsyvinski, and Werquin (2014),
that we investigate in this paper, can no longer directly be applied in the context
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where n > p, imposing additional assumptions may still enable the use of some ver-
sion of the TP approach. Doing so generally requires assumptions that project the n-
dimensional income space on the p-dimensional range X of the type set under the al-
location. For instance, in the context n = 2 > p = 1, Gerritsen et al. (2025) assume that
all incomes are increasing in ability, allowing them to project n-dimensional income to
one-dimensional type. Ferey, Lockwood, and Taubinsky (2022) make a similar assump-
tion in their Theorem 1 (see their Condition 2-UD) when they assume n = 2 > p = 1.
Under their assumptions, one can retrieve the supplementary efficiency conditions by
considering tax reforms that increase marginal tax rates on labor income and decrease
marginal tax rates on capital income (or vice versa) for some taxpayers without chang-
ing tax liabilities for the others. Finding restrictions that allow for the projection of
the n-dimensional income space to the p-dimensional type space is significantly more
complicated when n > p > 1. Contrarily, the MD-approach naturally applies in the p-
dimensional type space and, therefore, does not require such a projection when n > p.

5.3 Characteristics outnumber incomes (p> n)

When the number of characteristics is larger than the number of incomes, p > n, the
TP approach continues to apply if one averages sufficient statistics among the different
types assigned to the same income bundles. This averaging procedure enables project-
ing the p-dimensional type space into the n-dimensional income space. Assumption 2
ensures this projection can be done is a smooth way. Hence, we here generalize find-
ings of Saez (2001), Scheuer and Werning (2016), and Jacquet and Lehmann (2021) to
the case with multiple incomes n ≥ 2.

Conversely, the MD approach does not immediately apply since subprogram (21)
admits more constraints than free variables. This implies that starting from a utility
profile w �→ U(w), which satisfies the incentive constraints, there exist perturbations
to w �→ U(w) that cannot be made incentive compatible by changing the allocation
w �→ (C(w), X(w)). This imposes additional constraints on the first stage (19) of the op-
timization problem (18). In the case where p > n = 1, there are different approaches
to making these constraints tractable. First, Choné and Laroque (2010), Rothschild and
Scheuer (2013, 2014, 2016) assume that labor supply decisions depend only on a one-
dimensional function of type. Second, Jacquet and Lehmann (2023) assume preferences
are additively separable between consumption and pre-tax income. Moreover, they as-
sume that types matter only for the utility cost of earning pre-tax income. In all of these
papers, restrictions on preferences imply that the type space can be projected onto a
single dimension, thereby making the MD approach tractable. To the best of our knowl-
edge, the literature has not yet been able to derive optimal tax formulas using the MD
approach without such further assumptions on preferences when p> n. Moreover, this
hurdle is even more difficult to overcome in the case where the types are multidimen-
sional. While we do not exclude that ways can be found to apply the MD approach more
generally to the cases where p > n, the TP approach deals with this case most naturally
and Proposition 1 can be readily applied.
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6. Numerical simulations

If both the type space and the income space are multidimensional, the optimal-tax for-
mulas do not take the form of ordinary differential equations as in Mirrlees (1971), Dia-
mond (1998), and Saez (2001), but they take the form of a second-order partial differen-
tial equation, as in Mirrlees (1976) and Golosov, Tsyvinski, and Werquin (2014). This sig-
nificantly complicates the process of solving the optimal tax equations. To understand
this, it helps to consider the effects of a tax perturbation from a geometric perspective. In
the one-dimensional case, the change in the marginal tax rate at a given income level is
directly connected to changes in tax liabilities at all higher incomes. In the multidimen-
sional case, the relation is more complicated. To change the gradient of the tax function
at a given point, one must change the tax liabilities near that point, causing changes in
the tax gradient elsewhere; see, for instance, the graphical proof in the working paper
version of this article, Section III.3 of Spiritus et al. (2022). To deal with this complexity,
we rely on numerical simulations.

We develop a new numerical algorithm and apply it to the optimal taxation of cou-
ples. We consider an economy where couples differ in the productivity of females (wf )
and males (wm), so unobserved heterogeneity is bi-dimensional (p = 2). Each couple
chooses the labor supply of both spouses, so there are two incomes (i.e., n = p = 2).
Preferences over the couple’s consumption c, female income xf and male income xm
are quasilinear in consumption, additively separable, and isoelastic in each income:

U(c, xf , xm; wf , wm ) = c − εf

1 + εf
x

1+εf
εf

f w
− 1

εf

f − εm

1 + εm
x

1+εm
εm

m w
− 1

εm
m . (23)

The quasilinearity of taxpayers’ preferences implies that there are no income effects
(i.e., ∂Xf (w)/∂ρ = ∂Xm(w)/∂ρ = 0). Moreover, one can verify that if the tax sched-
ule is additively separable, the cross-responses are equal to zero (i.e., ∂Xf (w)/∂τm =
∂Xm(w)/∂τf = 0). Finally, εf and εm, respectively, denote the direct elasticities of male
and female incomes with respect to their own net-of-marginal-tax rates. Our baseline
values are εf = 0.43 and εm = 0.11, which correspond to the mean labor supply elastic-
ity for married women and for men in the meta-analysis of Bargain and Peichl (2016,
Figure 1).

We calibrate the skill density f (·) using the Current Population Survey (CPS) of the
US census of March 2016. We focus on married, mixed-gender couples that live together.
We only consider income from labor. We drop couples in which either partner earns less
than $1000 per year or in which either of the partners’ incomes is top-coded. We drop
same-sex couples because in our simulations we attach labor elasticities based on gen-
der in each couple. From each observed couple, we recover their type (wf , wm ) from
their labor earnings (xf , xm ) by inverting the first-order conditions (3). For this pur-
pose, we use a rough approximation of the current tax schedule in the US by assuming
a constant marginal tax rate of 37%, a figure which is consistent with Barro and Redlick
(2011, Table 1). Next, we estimate the type density through a bi-dimensional kernel.
We specify the social welfare function to be CARA with �(u, w1, w2 ) = 1 − exp(−β u)/β,
where β> 0 stands for the degree of inequality aversion. For our baseline simulation, we
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select β such that the assumed 37% tax rate coincides with the optimal linear tax rate.
This leads to β = 0.0061. Throughout the simulations, we assume that the government’s
revenue requirement equals 15% of GDP, which is close to the observed share of public
spending in GDP for the US.

With our functional specifications, the government’s Lagrangian (20) becomes

L(u, z; w, λ) =
[ ∑
i=f ,m

(
(1 + εi )

εi
1+εi wi z

εi
1+εi
i − εi zi wi

) − u− exp(−β u)
λ

]
f (w),

which is concave in (u, zf , zm ). Since the Lagrangian is concave, Proposition 5 applies,
meaning that our optimal tax formulas are both necessary and sufficient for the unique
optimum.

We first give an overview of the simulation algorithm, in Section 6.1. Next, in Sec-
tion 6.2, we report the results of the simulations for the baseline calibration.

6.1 Simulation algorithm

The idea of our numerical algorithm is to first solve an optimal tax formula for given val-
ues of sufficient statistics, then to update the sufficient statistics using the tax schedule
derived from the optimal tax formula, and to repeat this procedure until it converges
to the optimal tax schedule. To do so, we can a priori use three optimal tax formulas,
namely (12), (22), and (15). Let us explain why we choose (15). The optimal formula in
(22) takes the form of a second-order nonlinear partial differential equation in the type
space, which is numerically much more challenging than solving a linear second-order
partial differential equation. Conversely, the optimal formula in Equations (12) is a lin-
ear second-order partial differential equation. However, it is defined in the income set
X . Hence, if one solves the optimal tax formula (12a) using the same income set from
one iteration to the next, which is required given the boundary conditions (12b), then
the corresponding typeset is changing from one iteration to the next. This is problem-
atic when, for instance, comparing the values obtained for the tax revenue or for the
social objective from one iteration to the next. Finally, the partial differential equation
described in (15) is linear, provided that the sufficient statistics g(w) and A(w) are taken
as given. In addition, it is defined over the fixed type set W .

Here again, there is a difficulty. Equations (15a)–(15b) are defined in the type space,
while (Tx1 , � � � , Txn ) stands for the gradient of tax liability with respect to incomes. How-
ever, one can rewrite (15a)–(15b) in terms of the gradient of tax liability in the skill space
by scaling matrix A by the matrix [∂Xj(w)/∂wi]

−1
i,j . We then iterate by (i) finding the

mapping w �→ T (X(w)) that solves Equations (15a)–(15b) for given matrix A, Jacobian

[∂Xj(w)/∂wi]i,j and type density f (w) and getting a tax schedule x �→ T (x) from this so-
lution, and (ii) updating the matrix A and the Jacobian [∂Xj(w)/∂wi]i,j given the new tax
schedule. This hybrid approach thus combines the strength of the MD approach (a fixed
typeset over which to integrate), with the strength of the TP approach (a linear PDE).
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We describe the algorithm in more detail in the Supplementary Materials (available at
http://econtheory.org/supp/5479/supplement.pdf).

6.2 Results

Figure 1 displays the solution to the optimal tax problem using our baseline calibration.
The optimal tax schedule is represented by the isotax curves, which are the loci of in-
comes for which the tax liability is constant at a given value. Male income is shown on
the horizontal axis, while female income is shown on the vertical axis. The left panel
displays the whole domain of the simulations running up to $500,000, while the right
panel zooms in at incomes below $200,000, where we find most taxpayers, roughly 97%
of males and 99% of females.

Strikingly, isotax curves are almost linear and parallel, except close to the bound-
aries. There, isotax curves are curved to satisfy boundary constraints (12b). This curva-
ture pattern is most notable at high income levels where there are very few taxpayers. For
lower incomes, the curvature only affects isotax curves very close to the lower bound.

Compared with the current economy, which is approximated by a linear tax rate of
37%, the optimal tax schedule leads to an improvement of the social objective equiv-
alent to 0.82% of GDP in monetary terms. To understand which forces drive this
gain, we decompose the welfare gain in different steps. Going from our approxima-
tion of the current economy (where we assume linear tax rates) to the optimal joint tax
(xf , xm ) �→ T (xf + xm ) captures the welfare gain of allowing the joint income tax sched-
ule to be nonlinear. We find this welfare gain to be only 0.03%. If we now maintain the
requirement that the isotax curves are linear and parallel but remove the requirement
that both marginal tax rates are equal, so (xf , xm ) �→ T (xf +α xm ) where α is optimized,
we obtain a welfare gain from the current economy equal to 0.81%. The optimal value of
α is 2.13, which implies that female income is discounted by 53%. Hence, while the gain

Figure 1. Isotax curves in the baseline case.

http://econtheory.org/supp/5479/supplement.pdf
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Figure 2. Optimal jointness.

of optimizing the slope of the isotax curves (optimizing α) is economically significant,
the welfare gain of relaxing the constraint that isotax curves must be linear and parallel
appears to be small.

Kleven, Kreiner, and Saez (2007) show that under our individual and social prefer-
ences, when the abilities of both spouses are not correlated, the optimal marginal tax
rates of each partner decrease in the income of the other partner. This is the so-called
negative jointness of the optimal tax system. In a separate simulation with a population
that replicates the moments of male and female incomes, but removes any correlation
between the two, we confirm the optimality of the negative jointness of the tax system.
In reality, however, the assumption that the skills of both partners are not correlated
does not hold. We show in Figure 2 that the optimality of negative jointness is not ro-
bust to using more realistic type densities with positive assortative matching. Figure 2a
(resp., Figure 2b) displays the marginal tax rate for females (males) as a function of their
own income. Each curve graphs this marginal income while fixing male (female) income
at the 10th, 50th, and 90th percentile of the male (female) income distribution. In case
of negative jointness, the curve corresponding to male (female) income at the 10th per-
centile should be everywhere above the curve corresponding to male (female) income
at 50th and 90th percentiles of the distribution. Figures 2a and 2b contradict this predic-
tion, thereby rejecting the idea that negative jointness holds at the optimum. We rather
find that, except at the very bottom of the income distribution, marginal tax rates exhibit
minimal jointness, since in Figures 2a and 2b the three lines are close.13

13Golosov and Krasikov (2023) show that when ability is correlated between spouses, optimal jointness
depends on a complex interplay between redistributive and efficiency motives. Hence, except in the tails
of the distribution (Lemma 7 and 8 of Golosov and Krasikov (2023)), there is little theoretical guidance on
whether jointness should be positive or negative. Since we estimate the type density using a bi-dimensional
kernel instead of a parametric distribution with a Pareto tail, we are unable to verify the asymptotic prop-
erties presented by Golosov and Krasikov (2023).
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7. Conclusion

We study the optimal tax problem with multiple incomes and multiple dimensions of
unobserved heterogeneity. We identify assumptions on the smoothness of the alloca-
tion and of the tax schedule, and multidimensional extensions of the single crossing
assumptions, that enable the use of variational calculus to characterize the optimum.
When comparing the MD approach to the TP approach, we demonstrate that when the
numbers of types and of incomes are equal, the latter implies slightly more demanding
restrictions on the smoothness of the tax schedule. When there are more unobserved
characteristics than incomes, the TP approach is more suitable than the MD approach.
Conversely, when there are more incomes than unobserved characteristics, the TP ap-
proach as we apply it cannot be used to solve the problem. We show that in terms of
rigor, the TP method is on par with the MD method.

We propose a numerical algorithm that addresses the difficulties inherent to the
multidimensional tax problem. We apply this algorithm to the optimal taxation of cou-
ples. Our findings indicate that the optimal isotax curves are nearly linear and parallel.
We show that the optimal negative jointness of the tax schedules when skills are uncor-
related does not hold up when a more realistic distribution is introduced.

In addition to our primary findings, we obtain several theoretical results. First, we
identify a necessary condition for the tax schedule to be Pareto efficient. If this condition
is not met, we describe a Pareto-improving tax reform. Second, we identify conditions
that ensure the necessary conditions of the optimal tax problem are unique and suffi-
cient. Third, we contribute to the TP approach by proposing conditions under which
income bundles respond smoothly to small tax reforms. Fourth, we introduce a MD ap-
proach that encapsulates not only incentive constraints, but also the implementability
constraints embedded in the multidimensional optimal tax problem. Lastly, we examine
the cases where the number of incomes differs from the number of characteristics.

Appendix A: TP approach

A.1 Convexity of the indifference sets

We verify that assuming convex indifference sets implies that the second-order condi-
tions of the taxpayers’ program strictly hold when the tax schedule is linear. On the one
hand, the indifference sets are defined by c = C(u, x; w). Applying the implicit function
theorem to the definition of C(u, x; w), we find the gradient of the indifference sets:

Cxi(u, x; w) = −Uxi

(
C(u, x; w), x; w

)
Uc

(
C(u, x; w), x; w

) .

The Hessian is therefore a matrix with ith row and jth column:

Cxi ,xj = −
Uxi ,xjUc − Uc,xi

Uxj

Uc
Uc − Uc,xjUxi + Uc,c

Uxj

Uc
Uxi

U2
c

.
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On the other hand, from (2), we get

S i
xj

+ SjS i
c = −Uxi ,xjUc − Uc,xjUxi

U2
c

+ Uxj

Uc

Uc,xiUc − Uc,cUxi

U2
c

= Cxi ,xj . (24)

The assumption that indifference sets are convex thus implies that the matrix [S i
xj

+
SjS i

c ]i,j is symmetric and positive definite. If then taxes are linear, so Txixj = 0, Assump-
tion 1 is fulfilled.

A.2 Behavioral responses

Assumption 1 enables differentiating (8) with respect to t, x and w to get

[Cxjxi + Txjxi ]j,i · [dxi]i = [
Rxj

(
X(w)

)]
j

dt − [
Sj
c

]
j
R

(
X(w)

)
dt

− [
Sj
wk

]
j,k · [dwk]k, (25)

where the expressions are evaluated at t = 0, x = X(w), and c = C(w), and we use (3) and
(24).

A compensated reform of the jth marginal tax rate for taxpayers of type w is defined
by

R(x) = xj −Xj(w), (26a)

where we use τj to denote the magnitude of these specific perturbations. It implies
R(X(w)) = 0, Rxj (X(w)) = 1 and Rxk(X(w)) = 0 for k �= j. Using (25), the matrix of com-
pensated responses for type w is[

∂Xi(w)
∂τj

]
i,j

=
[
∂Xj(w)
∂τi

]
i,j

= [Cxjxi + Txjxi ]
−1
j,i . (26b)

Since the matrix of compensated responses is the inverse of the symmetric and positive
definite matrix [Cxjxi + Txjxi ]j,i, it is also symmetric and positive definite.

A lump-sum perturbation of the tax function is defined by

R
(
X(w)

) = 1, (26c)

where we use ρ to denote the magnitude of this specific perturbation. It is characterized
by Rxj (X(w)) = 0. Using (25), the vector of income responses of type w is therefore given
by [

∂Xi(w)
∂ρ

]
i

= −[Cxjxi + Txjxi ]
−1
j,i · [Sj

c

]
j
= −

[
∂Xi(w)
∂τj

]
i,j

· [Sj
c

]
j
. (26d)

Multiplying both sides of (25) by the matrix [Cxjxi + Txjxi ]
−1
j,i and using (26b)–(26d) leads

to (9).
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Finally, the implicit function theorem ensures that the mapping w �→ X(w) is differ-
entiable for all w ∈ W with a Jacobian given by[

∂Xi(w)
∂wk

]
i,k

= −[Cxjxi + Txjxi ]
−1
j,i · [Sj

wk

]
j,k = −

[
∂Xi(w)
∂τj

]
i,j

· [Sj
wk

]
j,k. (26e)

Equation (26e) shows that when the tax schedule verifies Assumption 1 and individual
preferences verify Assumption 2′, the ensuing allocation w �→ X(w) verifies Assump-
tion 3.

A.3 The derivative of the perturbed Lagrangian

We first compute the response of tax liabilities T (X̃R(w, t )) − t R(X̃R(w, t )) to a change
in the magnitude t of the tax perturbation. Using (9) yields at t = 0:

∂T
(
X̃R(w, t )

) − t R
(
X̃R(w, t )

)
∂t

=
[
−1 +

n∑
i=1

Txi

(
X(w)

) ∂Xi(w)
∂ρ

]
R

(
X(w)

)
+

∑
1≤i,j≤n

Txi

(
X(w)

) ∂Xi(w)
∂τj

Rxj

(
X(w)

)
. (27)

Next, we evaluate the effect of the tax perturbation on the social objective. Apply the
envelope theorem to (7) and use (6) to find at t = 0:

1
λ

∂�
(
ŨR(w, t ); w

)
∂t

= g(w) R
(
X(w)

)
. (28)

To find the derivative of (10) with respect to t, we add (27) to (28). We integrate the
result over all types w to obtain (11). The above derivation is valid if Assumption 1 holds,
regardless of whether n⋚ p.

A.4 Proof of Proposition 1

We rewrite (11) in terms of the income density h(·) (which is well-defined under As-
sumption 2):

∂L̃R(t )
∂t

=
∫
X

{[
g
(
X(w)

) − 1 +
n∑

i=1

Txi(x)
∂Xi(x)
∂ρ

]
R(x)

+
∑

1≤i,j≤n

Txi(x)
∂Xi(x)
∂τj

Rxj (x)

}
h(x) dx. (29)

When n ≤ p, the set X has the same dimensions as its containing space, and we can
use the divergence theorem to integrate the term on the second line of this equation by
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parts. Rearranging terms yields

∂L̃R(t )
∂t

=
∮
∂X

∑
1≤i,j≤n

Txi(x)
∂Xi

(
X(w)

)
∂τj

h(x) ej(x) R(x) d�(x)

−
∫
X

{[
1 − g

(
X(w)

) −
n∑

i=1

Txi(x)
∂Xi(x)
∂ρ

]
h(x)

+
∑

1≤i,j≤n

∂

[
Txi(x)

∂Xi

(
X(w)

)
∂τj

h(x)

]
∂xj

}
R(x) dx. (30)

If the tax schedule T (·) is optimal, (30) must equal 0 for all possible directions R(·). This
is only possible if the Euler–Lagrange partial differential equation (12a) and the bound-
ary conditions (12b) are both satisfied. Using the divergence theorem, Equations (12a)
and (12b) implies (12c). Alternatively, we can use the lump-sum perturbation in (11),
that is, we set R(X(w)) = 1 and Rxj (X(w)) = 0 in (11) to retrieve (12c).

A.5 Proof of Proposition 2

Under Assumptions 1 and 2, the revealed welfare weights ĝ(·) are defined such that 0 =
∂LR/∂t for any perturbation R. However, using (28), we get that

∂LR

∂t
=

∫
X
ĝ(x) R(x) h(x) dx +

∫
X

∂
(
T

(
X̃R(w, t )

) − t R
(
X̃R(w, t )

))
∂t

h(x) dx.

Therefore, for any perturbation R, its effects on tax revenue are simply given by∫
X

∂T
(
X̃R(w, t )

) − t R
(
X̃R(w, t )

)
∂t

h(x) dx = −
∫
X
ĝ(x) R(x) h(x) dx. (31)

Note that the right-hand side of (13), and thus also ĝ(·), is continuous with respect
to x. Consider a tax perturbation x �→ T (x) − t R(x) where R(·) is twice continuously
differentiable, positive where ĝ(x) < 0 and nil otherwise. Implementing such a per-
turbation with a small positive t increases taxpayers’ welfare for those earning income
bundles such that ĝ(x) < 0, and leave the other welfare unchanged, according to (28).
Moreover, such perturbation is self-financed according to (31). It is therefore Pareto
improving.

A.6 Proof of Lemma 1

Given that X is defined as the range of the typeset W under the allocation w �→ X(w),
it is sufficient to show that the mapping w �→ X(w) is injective to establish that it is a
bijection. Assume there exists x ∈ X and w, ŵ ∈ W such that X(w) = X(ŵ) = x. From
Assumption 1, the first-order conditions (3) must be verified both at (c, x; w) and at
(c, x; ŵ), so we get S i(c, x, w) = S i(c, x, ŵ) for all i ∈ {1, � � � , n}. According to part (iii)
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of Assumption 2′, these n equalities imply that w = ŵ. Differentiability of w �→ X(w)
is ensured under Assumption 1 by the implicit function theorem applied to (3). Part
(ii) of Assumption 2′ then ensures the Jacobian of w �→ X(w) is invertible (see (26e) in
Appendix A.2).

Because the mapping w �→ X(w) is injective, we get that g(X(w)) = g(w), ∂Xi(X(w))/
∂τj = ∂Xi(w)/∂τj and ∂Xi(X(w))/∂ρ = ∂Xi(w)/∂ρ. According to Equations (6), (26b), and
(26d), g(w), ∂Xi(w)/∂τj and ∂Xi(w)/∂ρ are continuously differentiable functions of c, x,
w, and for the latter two of the terms Txixj in the Hessian of the tax schedule. Hence,
because the mapping w �→ X(w) is continuously differentiable and invertible, and be-
cause of part (iv) of Assumption 2′, ∂Xi(x)/∂τj , ∂Xi(x)/∂ρ and g(x) are continuously
differentiable in x. Finally, the income density is given by

h
(
X(w)

) = f (w)

∣∣∣∣det
[
∂Xi(w)
∂wj

]
i,j

∣∣∣∣−1

, (32)

which ensures the income density is also continuously differentiable in income. Hence,
Assumption 2 holds.

A.7 Proof of Proposition 3

To get an optimal tax formula in the type space, we need to rewrite the derivative of
the perturbed Lagrangian, (11), in the type space rather than in the income space. To

reparametrize the direction of a tax perturbation as a function of types, define R̂(w)
def≡

R(X(w)). Differentiating both sides with respect to wj yields

R̂wj (w) =
n∑

i=1

(
∂Xi(w)/∂wj

)
Rxi

(
X(w)

)
.

In matrix notation, the latter equality becomes

[
R̂wj (w)

]T
j

= [
Rxi

(
X(w)

)]T
i

·
[
∂Xi(w)
∂wj

]
i,j

⇔ [
Rxi

(
X(w)

)]T
i

= [
R̂wj (w)

]T
j

·
[
∂Xi(w)
∂wj

]−1

i,j
,

where we use parts (i) and (ii) of Assumption 2′ and Equation (26e) to ensure that matrix
[∂Xi(w)/∂wj ]i,j is invertible. Using the symmetry of the matrix of compensated effects
[∂Xi(w)/∂τj ]i,j , we can rewrite the last term of (11):

∑
1≤i,j≤n

Txi

(
X(w)

)∂Xi(w)
∂τj

Rxj

(
X(w)

)
= [

Rxj (X(w)
]T
j

·
[
∂Xi(w)
∂τj

]
i,j

· [Txi

(
X(w)

)]
i
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= [
R̂wj (w)

]T
j

·
[
∂Xi(w)
∂wj

]−1

i,j
·
[
∂Xi(w)
∂τj

]
i,j

· [Txi

(
X(w)

)]
i

= −[
R̂wj (w)

]T
j

· [S i
wj

]−1
i,j · [Txi

(
X(w)

)]
i
,

where the last equality follows from (26e). Using the definition of matrix Ai,j(w) in (15c),
Equation (11) can be rewritten as

∂L̃R(t )
∂t

=
∫
W

{[
g(w) − 1 +

n∑
i=1

Txi

(
X(w)

)∂Xi(w)
∂ρ

]
R̂(w)

−
∑

1≤i,j≤n

Txi

(
X(w)

)
Aj,i(w) R̂wj (w)

}
f (w) dw.

Using the divergence theorem to perform integration by parts, we get

∂L̃(t )
∂t

= −
∮
∂W

∑
1≤i,j≤n

Txi

(
X(w)

)
Aj,i(w) ej(w) f (w) R̂(w) d�(w)

−
∫
W

{[
1 − g(w) −

n∑
i=1

Txi

(
X(w)

)∂Xi(w)
∂ρ

]
f (w)

+
∑

1≤i,j≤n

∂
(
Txi

(
X(w)

)
Aj,i(w) f (w)

)
∂wj

}
R̂(w) dw.

This partial derivative equals zero for any direction of tax perturbation R̂(·) if and only
if Euler–Lagrange Equation (15a) and boundary conditions (15b) are verified.

Appendix B: FOMD approach

B.1 Proof of Proposition 4

Let R be a twice differentiable function defined over W into R. We consider the effects
of perturbing the utility profile w �→U(w) in the direction R. Using (20), define

L̃R(t )
def≡

∫
W

L
(
U(w) + t R(w), Uw1 (w) + t Rw1 (w), � � � ,

� � � , Uwp(w) + t Rwp(w); w, λ
)

dw. (33)

Applying the chain rule and denoting 〈w〉 as a shortcut to denote that a function is eval-
uated at (U(w), Uw1 (w), � � � , Uwp(w); w, λ), we obtain at t = 0:

∂L̃R(t )
∂t

=
∫
W

{
Lu〈w〉R(w) +

p∑
j=1

Lzj 〈w〉 Rwj (w)

}
dw.
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Applying integration by parts using the divergence theorem leads to

∂L̃R(t )
∂t

=
∫
W

{
Lu〈w〉 −

p∑
j=1

∂Lzj 〈w〉
∂wj

}
R(w) dw +

∮
∂W

p∑
j=1

Lzj 〈w〉ej(w)R(w) d�(w).

At the optimal allocation, the latter expression is nil for any perturbation R.14 Using
(22d), we find boundary conditions (22c), and the Euler–Lagrange equation

∀w ∈ W :
p∑

j=1

∂θj(w)
∂wj

= −Lu〈w〉. (34)

Using incentive compatibility constraint (17), we can rewrite (20) as[ p∑
i=1

Xi(w) − C
(
U(w), X(w); w

) + �
(
U(w); w

)
λ

]
f (w)

= L
(
U(w), Uw1

(
C
(
U(w), X(w); w

)
, X(w); w

)
, � � � ,

� � � , Uwn

(
C
(
U(w), X(w); w

)
, X(w); w

)
; w, λ

)
. (35)

Differentiating both sides of (35) with respect to Xi(w) and using (2) and (22d):

(
1 − S i〈w〉)f (w) = −

p∑
j=1

θj(w)
[
Uxiwj 〈w〉 + S i〈w〉Ucwj 〈w〉],

which leads to (22a) given that S i
wj

= (Ucwj Uxi − Uxiwj Uc )/U2
c = −[Uxiwj + S i Ucwj ]/Uc .

Differentiating (35) with respect to U(w) and using Cu = 1/Uc and (22d) leads to:(
− 1
Uc〈w〉 + �u

(
U(w); w

)
λ

)
f (w) =Lu〈w〉 −

p∑
j=1

θj(w)
Uc,wj 〈w〉
Uc〈w〉 . (36)

Substituting (34) into (36) yields (22b).

B.2 Derivation of the optimal tax formula in the type space

Using (3), Equation (22a) leads to

Txi

(
X(w)

)
f (w) =

p∑
j=1

μj(w) S i
wj

〈w〉, (37)

where we denote μj(w)
def≡ θj(w) Uc(C(w), X(w); w). This can be rewritten

[Txi(X(w))]if (w) = [S i
wj

]i,j · [μj(w)]j in matrix notation, which leads to [μj(w)]j =
14Depending on the specification of the utility function, the image of the functions U and the Uwi may

be a finite interval, implying that the domain of L may be restricted. We assume the optimum exists and is
interior. Note that this is impossible if there are more types than incomes (p> n). Investigating cases where
the optimum binds feasibility constraints is beyond the scope of the present paper.
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[S i
wj

]−1
i,j · [Txi(X(w))]if (w). Using (15c), we therefore get

∀w ∈ W , ∀i ∈ {1, � � � , p} : μi(w) =
n∑

j=1

Ai,j(w) Txj

(
X(w)

)
f (w). (38)

Combining (22c) with (38) thus leads to (15b). Using (6), Equation (22b) implies that

p∑
j=1

∂μj(w)
∂wj

= (
1 − g(w)

)
f (w) −

p∑
j=1

θj(w) Ucwj 〈w〉

+
p∑

j=1

θj(w)

[
Ucc〈w〉∂C(w)

∂wj
+

n∑
i=1

Ucxi〈w〉∂Xi(w)
∂wj

+ Ucwj 〈w〉
]

= (
1 − g(w)

)
f (w) +

p∑
j=1

θj(w)

[
Ucc〈w〉∂C(w)

∂wj
+

n∑
i=1

Ucxi〈w〉∂Xi(w)
∂wj

]
. (39)

Differentiating C(w) = C(U(w), X(w); w) with respect to wj and using Cu = 1/Uc , Cxi =
−Uxi/Uc , Cwj = −Uwj/Uc and (17) leads to

∂C(w)
∂wj

= Uwj 〈w〉
Uc〈w〉 −

n∑
i=1

Uxi〈w〉
Uc〈w〉

∂Xi(w)
∂wj

− Uwj 〈w〉
Uc〈w〉 = −

n∑
i=1

Uxi〈w〉
Uc〈w〉

∂Xi(w)
∂wj

.

Plugging this equality into (39) leads to

p∑
j=1

∂μj(w)
∂wj

= (
1 − g(w)

)
f (w) +

p∑
j=1

n∑
i=1

θj(w)

[
Ucxi〈w〉 − Uxi〈w〉

Uc〈w〉 Ucc〈w〉
]
∂Xi(w)
∂wj

= (
1 − g(w)

)
f (w) −

p∑
j=1

n∑
i=1

μj(w) S i
c〈w〉 ∂Xi(w)

∂wj
. (40)

Substituting (26e) into (40) yields

p∑
j=1

∂μj(w)
∂wj

= (
1 − g(w)

)
f (w) +

p∑
j=1

n∑
i=1

n∑
k=1

μj(w) S i
c〈w〉 ∂Xi(w)

∂τk
Sk
wj

(w). (41)

Substituting (26d) into (41) and using ∂Xi(w)
∂τk

= ∂Xk(w)
∂τi

yields

p∑
j=1

∂μj(w)
∂wj

= (
1 − g(w)

)
f (w) −

p∑
j=1

n∑
k=1

μj(w) Sk
wj

(w)
∂Xk(w)

∂ρ
. (42)

Plugging (37) into (42) leads to

p∑
j=1

∂μj(w)
∂wj

=
(

1 − g(w) −
n∑

k=1

Txk

(
X(w)

) ∂Xk(w)
∂ρ

)
f (w). (43)

Plugging (38) into (43) leads to (15a). The last equality in (15c) follows from (26e).
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B.3 Proof of Proposition 5

If (u, z) �→ L(u, z; w, λ) is concave, then for any perturbation p, the function t �→ L̃R(t )
defined in (33) is concave. Let w �→ U(w) be another utility profile that verifies (22a) and
take the perturbation R(w) = U(w) − U�(w). As the utility profile w �→ U(w) verifies
(22), we get that function t �→ L̃R(t ) admits a zero derivative at t = 0 and is concave. So,
L̃R(0) > L̃R(1) and U�(·) provides a strictly higher welfare than U(·).

If two distinct allocations w �→ U�(w) and w �→ U(w) verify (22), then following the
reasoning above, U(·) strictly dominates U�(·) and U�(·) strictly dominates U(·), a con-
tradiction. So, at most one allocation can verify (22).
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