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Abstract

An extension rule assigns to each fractional tournament x (specifying, for every pair

of social alternatives a and b, the proportion xab of voters who prefer a to b) a random

choice function y (specifying a collective choice probability distribution for each subset of

alternatives) which chooses a from {a, b} with probability xab.
There exist multiple neutral and stochastically rationalizable extension rules. Both Lin-

earity (requiring that y be an affi ne function of x) and Independence of Irrelevant Compar-

isons (asking that the probability distribution on a subset of alternatives depend only on

the restriction of the fractional tournament to that subset) are incompatible with very weak

properties implied by Stochastic Rationalizability.

We identify a class of maximal domains, which we call sequentially binary, guaranteeing

that every fractional tournament arising from a population of voters with preferences in such

a domain has a unique admissible stochastically rationalizable extension.
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1 Introduction

Randomizing collective decisions helps reconcile fairness and rationality. The random dictatorship

mechanism treats all participating individuals equally and produces collective choices that are

rationalizable in the sense of the random utility model pioneered by Block and Marschak (1960).

Moreover, as Barberà and Sonnenschein (1978) and McLennan (1980) point out, the probability
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of selecting an alternative a from a pair {a, b} only depends on the restriction of the preference
profile to that pair of alternatives1.

Applying the random dictatorship mechanism, however, requires to know the distribution of

preferences in the population. In practice, voters are often asked to cast secret ballots on binary

choice problems. In such cases, the information available to the collective decision maker takes

the form of a fractional tournament giving, for any alternatives a and b, the proportion xab of

voters who support a against b. This is more informative than a majority tournament (recording

only whether or not a majority supports a against b) but less informative than a preference

distribution. Based on the fractional tournament x, what randomized choice behavior should the

collective decision maker adopt?2

If the choice is between a and b, she should arguably respect x and pick a with probability

xab.3 But what are the appropriate randomized choices from larger agendas? Answering that

question amounts to constructing an extension rule that transforms x into a collective random

choice function y. The subject of this paper is the axiomatic analysis of such rules.

The central axiom we are interested in stipulates that y should be (stochastically) rationalizable.

In contrast to the deterministic setup where the majority tournament arising from a population of

rational voters cannot generally be extended to a deterministic rational choice function, Stochastic

Rationalizability is feasible. But because the distribution of preferences generating x cannot

generally be recovered uniquely, x admits several stochastically rationalizable extensions: see

Section 3. This multiplicity problem can be handled in two ways. One consists in imposing

axioms that complement Stochastic Rationalizability, the other is to identify domain conditions

under which x does possess a unique stochastically rationalizable extension.

Section 4 follows the first route. We start with the basic axiom of Neutrality and show that

there exist multiple neutral and stochastically rationalizable extension rules. See Theorem 1 and

the Appendix.

Several other natural axioms are incompatible with very weak properties implied by Stochastic

Rationalizability. Linearity (requiring that y be an affi ne function of x) conflicts with the require-

ment that y be rationalizable when x is generated by a population of unanimous voters. This

incompatibility persists if Linearity is replaced with the related property of Betweenness Preser-

vation (asking that the extension of a fractional tournament x′′ that is between x and x′ should

be between the extensions of x and x′). See Theorem 2.

Next, the important axiom of Independence of Irrelevant Comparisons (asking that the proba-

bility distribution recommended by y on a subset of alternatives be determined by the restriction

1This natural stochastic generalization of Arrow’s IIA axiom and the obvious unanimity condition essentially
characterize the random dictatorship rules: see McLennan (1980) for details.

2In practice, the number xab may be known only for some pairs (a, b). Dealing with incomplete fractional
tournaments is beyond the scope of this paper.

3Note that this is indeed the outcome of the random dictatorship mechanism for any distribution of preferences
generating x.
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of x to that subset) is incompatible with Agenda Monotonicity (requiring that the probability of

selecting an alternative does not increase when the agenda expands). See Theorem 3.

Section 5 follows the second route. We study a class of preference domains that we call

sequentially binary. Each ordering in such a domain is constructed from bottom to top through a

sequence of m − 1 binary choices, where m denotes the number of alternatives. The first choice

determines which of two exogenously specified alternatives is the worst alternative in the ordering.

The second binary choice (which depends upon the outcome of the first) determines the second-

worst alternative, and so on. There are restrictions tying the successive choices, which will be

explained in Section 5.

Although a fractional tournament x may be generated by several probability distributions on

a given sequentially binary domain, it turns out that all such distributions generate the same

random choice function. This implies that there is a unique admissible extension rule on the set of

fractional tournaments generated by preferences in a sequentially binary domain: see Theorem 4

and its corollary. Theorem 5 states that this rule satisfies Linearity and Independence of Irrelevant

Comparisons.

2 Extension rules

Given a finite set A ⊆ N = {1, 2, ...} containing m ≥ 2 alternatives, let BA = {(a, b) ∈ A × A |
a 6= b}, and let

X =
{
x ∈ [0, 1]BA | x(a, b) + x(b, a) = 1 for all (a, b) ∈ BA

}
.

For every (a, b) ∈ BA, we write x(a, b) as xab and interpret this number as the proportion of voters

who prefer alternative a to b. A point x = (xab)(a,b)∈BA ∈ X is a fractional tournament (on A).

We restrict our attention to the fractional tournaments that are generated by a population

of rational voters. Formally, let P denote the set of (linear) preference orderings4 on A and let

∆(P) = {α ∈ [0, 1]P |
∑

P∈Pα(P ) = 1} denote the set of probability distributions on P . The
fractional tournament x∗(α) generated by α ∈ ∆(P) is defined by

x∗ab(α) =
∑

P∈P: aPb

α(P ) (1)

for all (a, b) ∈ BA. We call a fractional tournament x ∈ X rationalizable if x = x∗(α) for some

α ∈ ∆(P). We denote by X∗ the set of rationalizable fractional tournaments (on A). Identifying

4A linear ordering on A is a binary relation P ⊆ A × A that is complete (for all distinct a, b ∈ A, (a, b) ∈
P or (b, a) ∈ P ), asymmetric (for all a, b ∈ A, (a, b) ∈ P ⇒ (b, a) /∈ P ), and transitive (for all a, b, c ∈ A,
[(a, b) ∈ P and (b, c) ∈ P ] ⇒ (a, c) ∈ P ). Our use of the term “linear ordering” is slightly non-standard. In
particular, P is irreflexive (for all a ∈ A, (a, a) /∈ P ).
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the distribution putting probability one on a single ordering P with P itself, x∗(P ) denotes the

(degenerate) rationalizable fractional tournament

x∗ab(P ) =

{
1 if aPb,

0 otherwise.

Since x∗(P ) is generated by a population of voters having the same preference, we call it a unan-

imous tournament. By definition,

x∗(α) =
∑
P∈P

α(P ) x∗(P ).

Thus, X∗ = co {x∗(P ) | P ∈ P}: the rationalizable fractional tournaments form the convex hull

of the unanimous tournaments.

For m = 3, X∗ consists of all x ∈ X such that 1 ≤ x12 + x23 + x31 ≤ 2. In general, X∗ is a

convex polytope of dimension m(m− 1)/2.5

Let SA = {B ⊆ A | |B| ≥ 2} . For each agenda B ∈ SA, let ∆(B) = {yB ∈ [0, 1]B |
∑

a∈B yaB =

1} be the set of probability distributions on B, and let

Y =
∏

B∈SA
∆(B).

A point y = (yB)B∈SA ∈ Y is a random choice function (on A). For each B ∈ SA and a ∈ B, the
number yaB is the probability with which society chooses a when the set of feasible alternatives is

B.

A random choice function y ∈ Y extends (or is an extension of) a rationalizable fractional

tournament x ∈ X∗ if ya{a,b} = xab for all (a, b) ∈ BA. An extension rule is a function f : X∗ → Y

such that f(x) extends x for every x ∈ X∗.

An extension rule is a mathematical object that formally describes a particular type of collective

decision mechanism. We submit that (i) the input of a collective decision mechanism is often

adequately described by a rationalizable fractional tournament x, and (ii) a random choice function

y extending x may be a sensible output of a collective decision mechanism.

(i) From a positive viewpoint, modeling the input of a collective choice mechanism as a frac-

tional tournament makes sense because real-life procedures often request voters to secretly express

their opinion on binary agendas. The restriction to binary agendas may stem from the concern

that voters might find it diffi cult to elicit their preference ranking over larger agendas, and from

5For any m, it is easy to see that x ∈ X∗ only if 1 ≤ xab + xbc + xca ≤ 2 for all distinct a, b, c ∈ A. Didri (1980)
proved that these triangle inequalities imply x ∈ X∗ when m ≤ 5, but not when m > 5. Identifying a minimal
set of linear inequalities guaranteeing that a fractional tournament is rationalizable remains an open problem for
m > 6. See Fishburn (1992) and Martí and Reinelt (2011).
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the resulting willingness to submit a simple question to the popular vote. Secrecy may reflect an

effort to avoid attempts by some voters to influence the vote of others. Whatever the reasons for

using a secret binary protocol are, the information revealed by such a protocol is very close to a

fractional tournament. The collective decision maker knows, for each pair of alternatives {a, b}
submitted to the voters, the number of those who prefer a to b, the number of those who prefer b

to a, and the number of those who did not express a valid preference.

Admittedly, this is not quite a fractional tournament. On the one hand, by restricting attention

to the proportion of valid ballots in favor of each alternative in the pair {a, b} , a fractional
tournament ignores the (arguably irrelevant) size of the electorate and the (possibly relevant)

fraction of voters who did not submit a valid ballot. On the other hand, a fractional tournament

assumes that voters are consulted on all pairs of alternatives, which is not the case in practice.

We view the analysis of extension rules as a step in the analysis of secret binary protocols.

There is a sizable literature on what Fishburn (1977) dubs C2 (or pairwise) social choice

functions. These are decision mechanisms which require more information than the majority

relation generated by the voters’ preference profile, yet only use the matrix p = (pab)(a,b)∈BA

generated by that profile, where pab is the number of voters who prefer a to b. Compared to p,

the fractional tournament x is a slightly less informative summary of the voters’preference profile

that ignores the total number of voters.6

The foregoing discussion vindicates our interest in fractional tournaments. The rationalizable

ones arise if voters’preferences are assumed to be linear orderings over the set of alternatives.

This rationality assumption is central in deterministic social choice theory. Indeed, a fundamental

insight of the theory is that a deterministic mechanism taking into account the diverse prefer-

ences of rational individuals cannot produce rationalizable collective decisions. We maintain the

individual rationality assumption because we wish to examine to what extent the tension between

representativeness and collective rationality persists when collective choices can be randomized.

As we shall see, stochastic collective rationalizability is achievable.

(ii) This brings us to the issue of modeling the output of collective decision mechanisms. As

suggested in the previous paragraph, our motivation for studying random choice functions that

extend a rationalizable fractional tournament is normative.

It is generally impossible to derive a satisfactory deterministic choice function from a rational-

izable fractional tournament because of the possibility of Condorcet cycles: if two thirds of the

voters prefer alternative 1 to alternative 2, two thirds prefer 2 to 3, and two thirds prefer 3 to

1, there is no neutral and anonymous way of selecting a single alternative from the set {1, 2, 3}.
Randomized collective choices are therefore necessary to ensure impartiality. See Fishburn (1984)

6The matrix of majority margins q = (qab)(a,b)∈BA := (pab − pba)(a,b)∈BA is a weighted tournament, i.e., a point
q ∈ NBA such that qab + qba = 0 for all distinct a, b ∈ A. Debord (1987) shows that if all components qab of
a weighted tournament q have the same parity, there is a profile of linear preference orderings whose matrix of
majority margins coincides with q. Recent work on weighted tournaments and pairwise social choice functions
includes De Donder, Le Breton and Truchon (2000) and Fischer, Hudry and Niedermeier (2016).
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and Brandl, Brandt and Seedig (2013) for a more detailed discussion.

The study of randomized collective choice mechanisms is not new. Zeckhauser (1969) was

the first to formalize them as mappings from preference profiles to lotteries over the (fixed) set

of alternatives. Some of these mechanisms only use the information contained in the associated

matrix of majority margins: an important example are the mechanisms selecting amaximal lottery,

namely, one that is weakly preferred to every other by an expected majority of voters: see Kreweras

(1965), Fishburn (1984), and Brandl, Brandt and Seedig (2013).

Randomization, however, is generally regarded as a necessary evil: its only purpose is the

impartial resolution of ties. The current paper takes the view that lotteries are also useful as a tool

to reflect the diversity of voters’opinions and avoid the “tyranny of the majority”. This motivates

our search for an extension of the fractional tournament generated by the voters’preferences: even

if a majority prefers alternative 1 to alternative 2, it may make sense to choose 2 with a probability

equal to the proportion of voters who prefer 2 to 1.

Extension rules have not received much attention in the literature. The only example we are

aware of is the proportional Borda rule mentioned by Brandt (2017), which selects alternative a

from agenda B with a probability equal to a’s Borda score relative to B. It can be computed from

the fractional tournament x generated by the voters’preferences:

fBordaaB (x) =

∑
c∈B\a xac∑

b∈B
∑

c∈B\b xbc
=

∑
c∈B\a xac(|B|

2

)
for all B ∈ SA and a ∈ B.7 As we shall see in the next section, this random choice function is not

stochastically rationalizable in the sense usually given to that term.

3 Stochastic rationalizability

Over sixty years ago, Block and Marschak (1960) formulated a stochastic generalization of the

notion of rationality known in mathematical psychology as the random utility model. The model

spurred enormous interest and constitutes today the conventional interpretation of stochastic

rationalizability. Luce and Suppes (1965) is a classic introduction to the literature. A random

choice function is (stochastically) rationalizable if it maximizes a randomly selected ordering: there

exists a probability distribution α over the set of linear orderings on A such that the probability

of choosing alternative a from an agenda B coincides with the probability of drawing at random

(according to the distribution α) a linear ordering whose best alternative in B is a.

7Brandt (2017) considers fixed-agenda mechanisms, that is, functions mapping each fractional tournament to a
probability distribution over the set A. The rule fBorda is a variable-agenda version of the mechanism he describes.
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Formally, the random choice function y∗(α) ∈ Y generated by α ∈ ∆(P) is given by

y∗aB(α) =
∑

P∈P: aPb for all b∈B\{a}

α(P ) (2)

for all B ∈ SA and a ∈ B. A random choice function y ∈ Y is (stochastically) rationalizable if

y = y∗(α) for some α ∈ ∆(P). We let Y ∗ denote the set of (stochastically) rationalizable random

choice functions. Identifying the distribution putting probability one on P with P itself, y∗(P )

denotes the random choice function which selects the best feasible alternative according to P with

probability one:

y∗aB(P ) =

{
1 if aPb for all b ∈ B \ {a} ,
0 otherwise.

Using this notation,

y∗(α) =
∑
P∈P

α(P ) y∗(P ).

The random choice function y∗(α) can be interpreted as a “random dictatorship”maximizing each

preference P with probability α(P ).

Throughout this paper, we focus on extension rules that produce rationalizable random choice

functions.

Stochastic Rationalizability f(X∗) ⊆ Y ∗.

Recall that X∗ stands for the set of rationalizable fractional tournaments. The above axiom

thus stipulates that deterministic rationality at the voters’level should translate into stochastic

rationalizability at the collective level. Our insistence on collective rationalizability follows the

Arrovian tradition. It is motivated by the view that, in order to ensure the continuing participation

of rational voters, collective decisions should be reasonably consistent across agendas. For instance,

the probability of choosing an alternative should not increase when the agenda expands. Stochastic

rationalizability guarantees several such consistency properties; in fact, it is uniquely characterized

by a collection of consistency properties identified by Falmagne (1978).

Stochastic Rationalizability is not an innocuous requirement. The proportional Borda rule,

for instance, violates it. To see why, suppose A = {1, 2, 3} and write an ordering by listing
(without commas) the alternatives from best to worst: for instance, 123 denotes the ordering

P = {(1, 2), (2, 3), (1, 3)} . The only stochastically rationalizable extension of the unanimous tour-
nament x∗(123) is the degenerate random choice function y∗(123). From the set A, this ran-

dom choice function picks 1 with probability 1. By contrast, the Borda random choice function

fBorda(x∗(123)) picks 1 with probability 2/3 and 2 with probability 1/3.

Yet, Stochastic Rationalizability is feasible. Indeed, any probability distribution generating

a given fractional tournament also generates a stochastically rationalizable extension of it: for

any x ∈ X∗ and any α ∈ ∆(P) such that x = x∗(α), the random choice function y∗(α) is a
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stochastically rationalizable extension of x.

The central diffi culty is that different probability distributions generating the same fractional

tournament may generate different random choice functions. As an illustration, suppose A =

{1, 2, 3} and recall from Footnote 5 thatX∗ can be identified with the set of all x = (x12, x23, x31) ∈
[0, 1]3 such that 1 ≤ x12 + x23 + x31 ≤ 2. Using this notation, the fractional tournament x =(

1
2
, 1

2
, 1

2

)
∈ X∗ can be written as

x =
1

2
(1, 1, 0) +

1

2
(0, 0, 1) =

1

2
x∗(123) +

1

2
x∗(321) (3)

or

x =
1

2
(1, 0, 0) +

1

2
(0, 1, 1) =

1

2
x∗(132) +

1

2
x∗(231). (4)

Under the first decomposition, x is generated by a population α in which one half of the voters

have preference 123 and the other half have the opposite preference 321. Under the second de-

composition, x is generated by a population α′ in which one half of the voters have preference

132 and the other half have preference 231. Although x∗(α) = x∗(α′) = x, the random choice

functions y∗(α), y∗(α′) generated by the two distributions α, α′ differ. The random choice function

y∗(α) = 1
2
y∗(123) + 1

2
y∗(321) chooses alternatives 1 and 3 from the set {1, 2, 3} with probability

1/2 each whereas y∗(α′) = 1
2
y∗(132) + 1

2
y∗(231) picks alternatives 1 and 2 with probability 1/2

each.

The multiplicity of stochastically rationalizable extensions is the rule rather than an exception.

When m = 3, x ∈ X∗ has several stochastically rationalizable extensions if and only if x belongs
to the interior of X∗. To see why, check first that any interior x can be generated by different

distributions: there exist α, α′ ∈ ∆(P), α 6= α′, such that x = x∗(α) = x∗(α′). Since the random

utility model is identified when there are only three alternatives (Block and Marschak, 1960),

y∗(α) 6= y∗(α′). But both y∗(α) and y∗(α′) extend x. Conversely, any x not in the interior of X∗ is

generated by a unique distribution and possesses a unique stochastically rationalizable extension.

4 Results

Stochastic Rationalizability is a property of the random choice function y associated with a given

fractional tournament x. We now explore the possibility of combining Stochastic Rationalizability

with restrictions on how y changes with x.
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4.1 Neutral extension rules

The axiom of Neutrality requires that all alternatives be treated equally. Formally, let Π denote

the set of bijections from A to itself. For every π ∈ Π, x ∈ X∗, and y ∈ Y ∗, define xπ ∈ X by

xππ(a)π(b) = xab for all (a, b) ∈ BA,

and define yπ ∈ Y by

(yπ)π(a)π(B) = yaB for all B ∈ SA and all a ∈ B.

Observe that xπ ∈ X∗ and yπ ∈ Y ∗.

Neutrality For all x ∈ X∗ and π ∈ Π, f(xπ) = (f(x))π.

Theorem 1 There exists an extension rule satisfying Stochastic Rationalizability and Neutrality.

Proof For any x ∈ X∗, define a carrier of x to be an inclusion-minimal set D ⊆ P such that
x ∈ co {x∗(P ) | P ∈ D} . By minimality, the points x∗(P ) (P ∈ D) are affi nely independent8 and

there exists a unique collection of strictly positive weights αD(P ) (P ∈ D) summing up to one

such that

x =
∑
P∈D

αD(P ) x∗(P ).

The random choice function

fD(x) =
∑
P∈D

αD(P ) y∗(P )

is a stochastically rationalizable extension of x. Let Dx denote the set of carriers of x and define

f(x) =
1

|Dx|
∑
D∈Dx

fD(x).

The extension rule f : X∗ → Y satisfies Stochastic Rationalizability and Neutrality. �

There exist other stochastically rationalizable and neutral extension rules than the rule f

defined in the proof above. For each x ∈ X∗, define ∆x = {α ∈ ∆(P) | x = x∗(α)} and call the
elements of ∆x decompositions of x: these are the probability distributions that generate x. The

set ∆x is a convex polytope included in ∆(P). Its extreme points are the decompositions whose

support is a carrier of x, i.e., ∆x = co {αD | D ∈Dx} .
Perhaps the most natural stochastically rationalizable and neutral extension rule is

f(x) =

∫
∆x

y∗(α) dµ(α),

8By definition, x∗(P ) ∈ {0, 1}BA for each P ∈ P. A collection of points x1, ..., xK ∈ {0, 1}BA are affi nely

independent if
[∑K

k=1 αkx
k = 0 and

∑K
k=1 αk = 0

]
⇒ [α1 = ... = αK = 0] .
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where µ is the uniform probability measure on ∆x. This rule assigns to x the uniform average of

the random dictatorships generated by all the possible decompositions of x. By contrast, f(x) is

the uniform average of the random dictatorships generated by the extreme decompositions of x.

The rule f is diffi cult to compute and it is not obvious whether it differs from f.

For yet another example, let L denote the leximax ordering9 on ∆(P), let αLx be the unique

minimal element of L in the compact and convex set ∆x, and define fL(x) = y∗(αLx ). It is easy to

see that the extension rule fL satisfies the two axioms in Theorem 1. We show in the Appendix

that it differs from f.

4.2 Incompatibilities

This subsection shows that several natural axioms are incompatible with (weak versions of) Sto-

chastic Rationalizability. We begin with a property suggested by the algebraic structure of the

sets X∗ and Y .

Linearity The map f : X∗ → Y is an affi ne function, i.e.,

f(λx+ (1− λ)x′) = λf(x) + (1− λ)f(x′) (5)

for all x, x′ ∈ X∗ and λ ∈ [0, 1] .

The fractional tournament λx+ (1− λ)x′ is generated by an electorate composed of two con-

stituencies: one containing a fraction λ of the total population and generating the fractional

tournament x, the other containing a fraction 1 − λ of the population and generating the frac-
tional tournament x′. In the aggregate electorate, Linearity recommends to use the random choice

function employed in each constituency with a probability equal to the weight of that constituency

in the total population.10

An important motivation for this axiom comes from the linearity of the random utility model

itself. That is, the function y∗ : ∆(P)→ Y defined by (2) satisfies

y∗(λα + (1− λ)α′) = λy∗(α) + (1− λ)y∗(α′) (6)

for all α, α′ ∈ ∆(P) and λ ∈ [0, 1] . It follows that on any subset of X∗ admitting a unique sto-

chastically rational extension rule, that extension rule is an affi ne function. Formally, let D ⊆ P
be a domain of preferences such that x∗(P ) (P ∈ D) are affi nely independent, and define X∗D :=

9For any α ∈ ∆(P), let α̂ be the vector obtained from α by arranging its coordinates in nondecreasing order,
i.e., α̂ = (α̂(1), ..., α̂(m!)) = (α(π(1)), ..., α(π(m!))) for any bijection π : {1, ...,m!} → P such that α(π(1)) ≤ ... ≤
α(π(m!)). The leximax ordering L on ∆(P) is defined by letting αLβ if and only if either α̂ = β̂ or there exists
k ∈ {1, ...,m!} such that α̂k > β̂k and α̂k′ = β̂k′ for all k′ > k.
10This can be regarded as a strengthening of Young’s (1975) Reinforcement axiom. In our setting, Reinforcement

stipulates that for all x, x′ ∈ X∗, [f(x) = f(x′)] ⇒ [f(λx + (1 − λ)x′) = f(x) for all λ ∈ [0, 1]]. Notice that every
extension rule f trivially satisfies Reinforcement since [f(x) = f(x′)]⇒ [x = x′] for all x ∈ X∗.

10



co {x∗(P ) | P ∈ D} and Y ∗D := co {y∗(P ) | P ∈ D} . Since for any x ∈ X∗D there is a unique proba-
bility distribution α on D such that x =

∑
P∈Dα(P )x∗(P ), the function x 7→

∑
P∈Dα(P )y∗(P ) is

the unique admissible extension rule on X∗D, i.e., the only function f : X∗D → Y ∗D such that f(x)

extends x for every x ∈ X∗D. Because of (6), it is an affi ne function.
Linearity embodies a natural idea of “betweenness preservation”: since αx+(1−α)x′ describes

a society that lies between those described by x and x′, the random choice function associated

with αx+ (1−α)x′ should lie between those associated with x and x′. Note that the proportional

Borda rule, for instance, satisfies Linearity:

fBordaaB (λx+ (1− λ)x′) =

∑
c∈B\a(λxac + (1− λ)x′ac)(|B|

2

)
= λ

∑
c∈B\a xac(|B|

2

) + (1− λ)

∑
c∈B\a x

′
ac(|B|

2

)
= λfBordaaB (x) + (1− λ)fBordaaB (x′)

for all x, x′ ∈ X∗, λ ∈ [0, 1] , B ∈ SA, and a ∈ B.
Of course, convex combinations express a specific, “cardinal” form of betweenness. A more

abstract, “ordinal”version of betweenness preservation may be defined by using only the order

structure of the sets X∗ and Y . For any x, x′, x′′ ∈ X∗ and y, y′, y′′ ∈ Y , write x′′ ∈ [x, x′]

whenever min {xab, x′ab} ≤ x′′ab ≤ max {xab, x′ab} for all (a, b) ∈ BA and y′′ ∈ [y, y′] whenever

min {yaB, y′aB} ≤ y′′aB ≤ max {yaB, y′aB} for all B ∈ SA and a ∈ B.

Betweenness Preservation For all x, x′, x′′ ∈ X∗, [x′′ ∈ [x, x′]] ⇒ [y′′ ∈ [y, y′]] .

Linearity and Betweenness Preservation are very demanding. Both are incompatible with

Stochastic Rationalizability. In fact, they conflict with the following very mild consequence of the

latter axiom.

Rationalizability for Unanimous Tournaments For all P ∈ P , f(x∗(P )) ∈ Y ∗.

Observe that this axiom is also a consequence of the unanimity principle: since x∗(P ) arises

from a population of voters sharing the common preference ordering P , f(x∗(P )) should select the

best feasible alternative according to P, that is, f(x∗(P )) = y∗(P ). This implies f(x∗(P )) ∈ Y ∗.

Theorem 2 If m ≥ 3, no extension rule satisfies (i) Rationalizability for Unanimous Tournaments

and (ii) Linearity or Betweenness Preservation.

Proof Let us first show that Rationalizability for Unanimous Tournaments is incompatible with
Linearity. Suppose, by way of contradiction, that f satisfies both axioms. Focusing on the case

A = {1, 2, 3} , consider again the decompositions (3) and (4) of the fractional tournament x =

(1
2
, 1

2
, 1

2
). Since the only stochastically rationalizable extension of a unanimous tournament x∗(P ) is

y∗(P ), applying Linearity and Rationalizability for Unanimous Tournaments to (3) yields f(x) =

11



1
2
f(x∗(123)) + 1

2
f(x∗(321)) = 1

2
y∗(123) + 1

2
y∗(321). Likewise, applying the axioms to (4) yields

f(x) = 1
2
f(x∗(132)) + 1

2
f(x∗(231)) = 1

2
y∗(132) + 1

2
y∗(231). Since 1

2
y∗{1,2,3}(123) + 1

2
y∗{1,2,3}(321) =(

1
2
, 0, 1

2

)
and 1

2
y∗{1,2,3}(132) + 1

2
y∗{1,2,3}(231)) =

(
1
2
, 1

2
, 0
)
, we conclude that f(x) 6= f(x), which is

impossible.

The incompatibility between Rationalizability for Unanimous Tournaments and Betweenness

Preservation is even more radical: it holds on the subset of unanimous tournaments. Indeed,

x∗(213) = (0, 1, 0) ∈ [x∗(123), x∗(321)] = [(1, 1, 0), (0, 0, 1)] but y∗(213) /∈ [y∗(123), y∗(321)] since

y∗{1,2,3}(213) = (0, 1, 0) /∈
[
y∗{1,2,3}(123), y∗{1,2,3}(321)

]
= [(1, 0, 0), (0, 0, 1)] . �

We conclude this section by studying a variant of Arrow’s Independence of Irrelevant Alterna-

tives stipulating that the probability of choosing an alternative from an agenda should only depend

on the restriction of the fractional tournament to that agenda. For any B ∈ SA and x ∈ X∗, let
BB = {(a, b) ∈ B ×B | a 6= b} and let xB = (xab)(a,b)∈B(B) denote the restriction of the fractional

tournament x to the alternatives in B.

Independence of Irrelevant Comparisons For all x, x′ ∈ X∗ and B ∈ SA,

[xB = x′B]⇒ [fB(x) = fB(x′)]. (7)

The motivation is the same as for Arrow’s axiom. Young (1995) summarizes it as follows:

“There are at least two reasons why this is desirable from a practical standpoint. First,

if it does not hold, then it is possible to manipulate the outcome by introducing extra-

neous alternatives. [...] Second, independence allows the electorate to make sensible

decisions within a restricted range of choices without worrying about the universe of

all possible choices. It is desirable to know, for example, that the relative ranking of

candidates for political offi ce would not be changed if purely hypothetical candidates

were included on the ballot.”

The following extension rule shows that Independence of Irrelevant Comparisons is compatible

with Rationalizability for Unanimous Tournaments: for all B ∈ SA and a ∈ B, let

faB(x) =

 y∗aB(P ) if xB = x∗B(P ) for some P ∈ P ,
1

(|B|2 )

∑
b∈B\axab otherwise.

This rule is well defined because y∗B(P ) is identical for all P ∈ P such that xB = x∗B(P ).

Unfortunately, Independence of Irrelevant Comparisons clashes with another elementary conse-

quence of Stochastic Rationalizability known as Agenda Monotonicity. A random choice function

y is agenda-monotonic if the probability of choosing an alternative from an agenda does not in-

crease when that agenda expands: yaB ≥ yaB′ whenever a ∈ B ⊆ B′ ⊆ A. This property is the

12



natural counterpart of Chernoff’s (1954) axiom (or Sen’s (1970) condition α) for deterministic

choice correspondences, which requires that a should not be chosen from B′ if it is not chosen

from B. Let Y mon denote the set of agenda-monotonic random choice functions.

Agenda Monotonicity f(X∗) ⊆ Y mon.

It is well known that Y ∗ is a proper subset of Y mon whenm ≥ 4. In fact, Falmagne’s (1978) clas-

sic characterization of the rationalizable random choice functions shows that Agenda Monotonicity

is much weaker than Stochastic Rationalizability.

Theorem 3 If m ≥ 4, no extension rule satisfies Agenda Monotonicity and Independence of

Irrelevant Comparisons.

Proof It is enough to establish the incompatibility when m = 4. Suppose, contrary to the claim,

that f : X∗ → Y satisfies Agenda Monotonicity and Independence of Irrelevant Comparisons.

Consider the fractional tournament

x =


− .5 .5 .6

.5 − .5 .1

.5 .5 − .1

.4 .9 .9 −

 .

To check that x ∈ X∗, note that x is generated by the following (10-voters) profile11 P =

(P 1, ..., P 10) :

P 1 P 2 P 3, P 4 P 5, P 6 P 7, P 8 P 9, P 10

3 2 1 1 4 4

1 1 4 4 3 2

4 4 3 2 2 3

2 3 2 3 1 1

Since f satisfies Agenda Monotonicity,

f2{1,2,3,4}(x) ≤ x24 = .1,

f3{1,2,3,4}(x) ≤ x34 = .1,

f4{1,2,3,4}(x) ≤ x41 = .4.

Since
∑4

a=1 fa{1,2,3,4}(x) = 1, the three inequalities above imply f1{1,2,3,4}(x) ≥ .4, hence, by Agenda
Monotonicity,

f1{1,2,3}(x) ≥ .4. (8)

11Alternatively, it suffi ces to check that x satisfies the triangle inequalities. See Footnote 5.
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Next, applying the same argument to the fractional tournaments

x′ =


− .5 .5 .1

.5 − .5 .6

.5 .5 − .1

.9 .4 .9 −

 , x′′ =


− .5 .5 .1

.5 − .5 .1

.5 .5 − .6

.9 .9 .4 −

 ,

leads to the inequalities

f2{1,2,3}(x
′) ≥ .4, (9)

f3{1,2,3}(x
′′) ≥ .4. (10)

But since xab = x′ab = x′′ab for all (a, b) ∈ B{1,2,3}, Independence of Irrelevant Comparisons
implies f{1,2,3}(x) = f{1,2,3}(x

′) = f{1,2,3}(x
′′). Hence, (8), (9), and (10) imply

∑3
a=1 fa{1,2,3}(x) ≥

1.2, which is impossible. �

Two remarks are in order.

(1) Theorem 3 follows from a result of Pattanaik and Peleg (1986).12 In Pattanaik and Peleg’s

setting, there is a given finite set of voters, N = {1, ..., n} , n ≥ 2, and a probabilistic voting

procedure (PVP) is a function g : PN → Y. Say that such a PVP g satisfies Agenda Monotonicity*

if

g(PN) ⊆ Y mon

for every preference profile PN ∈ PN . For any B ∈ SA and PN ∈ PN , let PN
B denote the restriction

of PN to B and say that g satisfies Independence of Irrelevant Comparisons* if

[PN
B = P

N

B ] ⇒ [gB(PN) = gB(P
N

)]

for all PN , P
N ∈ PN and all B ∈ SA. Finally, call g Paretian if[

gaB(PN) > 0
]
⇒

[
@b ∈ B such that bP ia for all i ∈ N

]
for all PN ∈ PN , B ∈ SA, and a ∈ B. Let ∆(N) = {β ∈ [0, 1]N |

∑
i∈Nβ(i) = 1} be the set of

probability distributions on the set of voters N. Pattanaik and Peleg (1986) prove the following

result.13

Theorem (Pattanaik and Peleg) If m ≥ 4 and g : PN → Y is a Paretian PVP satisfying

Agenda Monotonicity* and Independence of Irrelevant Comparisons*, there exists β ∈ ∆(N) such

12I am grateful to a referee for pointing out this connection and suggesting the argument that follows.
13This is Pattanaik and Peleg’s Theorem 4.11, restated using our terminology and notation.

14



that

gB(PN) =
∑
i∈N

β(i) y∗B(P i)

for all PN ∈ PN and all B ∈ SA such that B 6= A.

This theorem implies Theorem 3. To see why, let m ≥ 4 and suppose, by way of contradiction,

that f : X∗ → Y is an extension rule satisfying Agenda Monotonicity and Independence of

Irrelevant Comparisons. Let N = {1, 2, ..., 10} . For every preference profile PN = (P 1, ..., P 10) ∈
PN , denote by αPN ∈ ∆(P) the probability distribution assigning to each linear ordering the

fraction of voters in N whose preference coincides with that ordering, i.e.,

αPN (P ) =
|{i ∈ N | P i = P}|

|N |

for all P ∈ P. Define the PVP g : PN → Y by

g(PN) = f(x∗(αPN )) (11)

for all PN ∈ PN , where x∗(αPN ) is the fractional tournament generated by αPN , as defined in (1).

It is straightforward to check that g satisfies Agenda Monotonicity* and Independence of

Irrelevant Comparisons*. To check that g is Paretian, let PN ∈ PN , B ∈ SA, a, b ∈ B, and

suppose that bP ia for all i ∈ N. By definition, x∗ab(αPN ) = 0. By (11) and because f is an extension

rule, ga{a,b}(PN) = fa{a,b}(x
∗(αPN )) = x∗ab(αPN ) = 0. Since g satisfies Agenda Monotonicity*,

gaB(PN) ≤ ga{a,b}(P
N), hence gaB(PN) = 0.

By Pattanaik and Peleg’s theorem, there exists β ∈ ∆(N) such that gB(PN) =
∑

i∈N β(i)y∗B(P i)

for all PN ∈ PN and all B ∈ SA \ {A} . Next, note that g is anonymous in the traditional sense:
for every (P 1, ..., P 10) ∈ PN and every bijection σ from N to N, α(Pσ(1),...,Pσ(10)) = α(P 1,...,P 10) ⇒
x∗(α(Pσ(1),...,Pσ(10))) = x∗(α(P 1,...,P 10)) ⇒ g(P σ(1), ..., P σ(10)) = g(P 1, ..., P 10). Because g is anony-

mous, it is easy to see that β must be uniform, that is,

gB(PN) =
1

10

10∑
i=1

y∗B(P i) (12)

for all PN ∈ PN and all B ∈ SA \ {A} .
Applying (12) to the preference profile PN = (P 1, ..., P 10) defined in the proof of Theorem 3

and B = {1, 2, 3} yields
g{1,2,3}(P

N) = (.4, .3, .3).
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Similarly, applying (12) to the profile PN given by

P
1
P

2
P

3
, P

4
, P

5
P

6
P

7
P

8
, P

9
, P

10

3 2 1 1 4 4

1 1 4 4 3 2

4 4 3 2 2 3

2 3 2 3 1 1

and B = {1, 2, 3} yields
g{1,2,3}(P

N
) = (.4, .4, .2).

Thus, g(PN) 6= g(P
N

). Check, however, that x∗(αPN ) = x∗(α
P
N ). It follows from (11) that

g(PN) = g(P
N

), a contradiction.

(2) Moulin (1986) proves a variant of Theorem 3 for a rule ϕ associating a deterministic

choice correspondence to every pure tournament (i.e., every fractional tournament belonging to

{0, 1}BA). He shows that no such rule satisfies Condorcet Consistency, Arrow’s IIA, and Chernoff.
Condorcet Consistency can be weakened to the requirement that ϕ is an extension rule, that is,

alternative a is the unique choice from {a, b} whenever a beats b. Arrow’s IIA is the deterministic
counterpart of Independence of Irrelevant Comparisons. As mentioned earlier, Chernoff requires

that an alternative rejected from an agenda be rejected from any superset of that agenda, and

our axiom of Agenda Monotonicity may be regarded as a very weak random version of Chernoff.

Moulin’s result holds if m ≥ 3 while Theorem 3 requires m ≥ 4.14

5 Sequentially binary domains

In this section, we explore preference domains generating fractional tournaments that have a

unique stochastically rationalizable extension with support in that domain. If voters’preferences

belong to such a domain, the information revealed by the associated fractional tournament to

a decision maker who subscribes to the Stochastic Rationalizability axiom fully pins down her

random choices from all agendas. The approach adopted here thus complements the axiomatic

analysis of Section 4 by identifying conditions under which the search for axioms supplementing

Stochastic Rationalizability is unnecessary. We note that the theory of majority voting is similarly

divided into two strands: the core of the theory, which proposes methods for making deterministic

choices extending an arbitrary majority tournament, is complemented by a domain-restriction lit-

erature studying conditions ensuring the transitivity of the majority tournament. See, for instance,

chapter 10 of Moulin (1988).

14When m = 3, every stochastically rationalizable extension rule f satisfies Independence of Irrelevant Compar-
isons (because the requirement fa{a,b}(x) = xab implies fa{a,b}(x) = fa{a,b}(x

′) for all x, x′ such that x{a,b} = x′{a,b})
and Agenda Monotonicity (because that axiom is implied by Stochastic Rationalizability).
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A domain (onA) is a setD ⊆ P. In some contexts, the collective decision maker may know that
the support of the probability distribution α ∈ ∆(P) generating x is included in a given domain

D of admissible preferences, and this may suffi ce to guarantee that x has a unique admissible

stochastically rationalizable extension.

A trivial case occurs when the fractional tournaments x∗(P ) corresponding to the orderings

P belonging to the domain D are affi nely independent. The distribution α itself is then unique.
But since the dimension of X∗ is m(m − 1)/2, the domain D contains at most m(m − 1)/2 + 1

orderings. The single-crossing domains discussed in Apesteguia, Ballester and Lu (2017) are an

example.

This section studies a class of domains that we call sequentially binary. A sequentially binary

domain contains 2m−1 orderings. Each ordering results from m− 1 successive binary choices. The

first binary choice determines the worst alternative. The second binary choice, which depends

upon the outcome of the first, determines the second-worst alternative. The last binary choice

is conditional upon the outcome of the m − 2 preceding choices and determines the second-best

alternative, hence also the first-best alternative. There are restrictions tying the successive choices,

which will be described shortly.

Although a fractional tournament x may be generated by several probability distributions with

support in a given sequentially binary domain, we will show that all such distributions generate

the same random choice function. This means that the random choices from agendas of all sizes

are completely determined by the requirement of stochastic rationalizability.

For each m ∈ N, let Sm = {0, 1}m and S(m) = ∪mk=1S
k. Write S = ∪k∈NSk. An element of

Sm is a sequence s = (s1, ..., sm) of m numbers in {0, 1} . We call it binary and refer to m as

its length. An element of S(m) is a binary sequence of length at most m, and an element of S

is a binary sequence of finite length. For convenience, we denote by s0 the “empty sequence”

(of zero length) and define S(m)
0 = S(m) ∪ {s0} and S0 = S ∪ {s0} . We say that s = (s1, ..., sk)

precedes s′ = (s′1, ..., s
′
k′) (or, equivalently, s

′ follows s) if k < k′ and s = (s′1, ..., s
′
k), which we

write s ≺ s′. By convention, s0 ≺ s for every s ∈ S. The direct followers of s = (s1, ..., sk) ∈ S are
(s, 0) := (s1, ..., sk, 0) and (s, 1) := (s1, ..., sk, 1). By convention, the direct followers of s0 are the

two sequences (0) and (1).

One can think of (S
(m−1)
0 ,≺) as a binary tree whose nodes are the sequences s ∈ S(m−1)

0 . The

tree is rooted at s0 and its terminal nodes are the binary sequences of length m − 1. Figure 1

depicts the case m = 3; an edge is drawn between each non-terminal node and its direct followers.

Insert Figure 1 here.
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Definition 1 A selection function (into A) is a function g : S(m−1) → A such that

g(s) 6= g(s′) for all s, s′ ∈ S(m−1) such that s ≺ s′, (13)

g(s, 0) 6= g(s, 1) for all s ∈ S(m−2)
0 . (14)

We will again write an ordering P ∈ P by listing the m alternatives in A from best to worst:

thus, P = a1a2...am is the ordering according to which a1 is the best alternative in A, a2 is the

second best, and so on. For each s = (s1, ..., sm−1) ∈ Sm−1, define Pg(s) ∈ P by

Pg(s) := ag(s)g(s1, ..., sm−1)...g(s1, s2)g(s1),

where ag(s) is the unique alternative in A\{g(s1, ..., sm−1), ..., g(s1, s2), g(s1)} . This is well defined
because condition (13) ensures that g(s1, ..., sm−1), ..., g(s1, s2), g(s1) are distinct alternatives. One

can think of Pg(s) as constructed “from bottom to top”by filling up the successive ranks: at each

node (s1, ..., sk) ≺ s, the two alternatives g(s1, ..., sk, 0) and g(s1, ..., sk, 1) are offered to fill rank

m− k, and the successive choices determine Pg(s).
Condition (14) implies that Pg(s) 6= Pg(s

′) if s 6= s′. It follows that

Dg :=
{
Pg(s) | s ∈ Sm−1

}
contains exactly 2m−1 distinct orderings on A. To get a grasp on the domain Dg, it may be helpful
to identify the orderings that do not belong to it. All orderings for which the worst alternative is

neither g((0)) nor g((1)) are excluded. Among the orderings whose worst alternative is g((0)), all

those for which the second-worst alternative is neither g((0, 0)) nor g((0, 1)) are ruled out. And

so on.

The sequentially binary domains are generated by a subclass of selection functions that we now

describe. For any s, s′ ∈ S, let us write s - s′ if s ≺ s′ or s = s′, and letWP (s) = {s′ ∈ S | s′ - s}
be the set of binary sequences that weakly precede s. The twin of s = (s1, ..., sk) ∈ S is the sequence
tw(s) = (s1, ..., sk−1, s

′
k) ∈ S such that s′k 6= sk. For each s ∈ S(m−2)

0 , let Og(s) = {g(s, 0), g(s, 1)} .
This may be interpreted as the “option set”generated by g at s : it contains the two alternatives

competing to fill the rank open at s.

Definition 2 A selection function g into A is consistent if

g(s) ∈ Og(tw(s)) for all s ∈ S(m−2) (15)

and

Og(s) = Og(s
′) for all s, s′ ∈ S(m−2) such that g(WP (s)) = g(WP (s′)). (16)

Condition (15) says that an alternative offered to fill the rank open at a node must be offered
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again at the node reached by rejecting that alternative. Condition (16) says that the pair of

alternatives offered at a node s may only depend upon the set of alternatives that were selected

at the nodes preceding s, but not upon the order in which they were selected.

Definition 3 Let GA be the set of consistent selection functions into A. A domain D ⊆ P is

sequentially binary if D = Dg for some g ∈ GA.

When m = 3, it is easy to see that a domain is sequentially binary if and only if it is a maximal

single-peaked domain in the sense of Black (1948).15

Two examples of sequentially binary domains are illustrated in Figure 2 for the case m = 4.

For each node s other than the root, g(s) is indicated next to s. For each terminal node s, the

ordering Pg(s) is recorded below s by listing the alternatives from best to worst.

Insert Figure 2 here.

At each node in Figure 2(a), the choice is between the smallest and the largest alternatives

that remain to be ranked. The resulting domain Dg contains the eight orderings that are single-
peaked with respect to the ordering 1234. The domain in Figure 2(b) is inspired by the successive

elimination voting rule (Moulin, 1988, page 241). In stage k = 1, ...,m − 1, the largest two

alternatives among those remaining to be ranked are paired and compete for rank m− k + 1. Up

to a relabeling of the alternatives, these are the only two sequentially binary domains whenm = 4.

Figure 3 depicts two domains that are not sequentially binary.

Insert Figure 3 here.

In Figure 3(a), the underlying selection function violates condition (15). Indeed, g((1)) = 4 /∈
Og((0)) = {1, 2} : alternative 4 is offered to fill rank 4 at the root but is not offered to fill rank 3

at the sequence s = (0) that is reached by rejecting 4. Indeed, g(WP ((0, 1))) = g(WP ((1, 0))) =

{1, 5} but O((0, 1)) = {2, 3} 6= O((1, 0)) = {2, 4} . Note that condition (15) implies a form of

connectedness of Dg: if an alternative is ranked last by an ordering in the domain, it is ranked
at any possible rank by an ordering in the domain. Condition (16) is vacuous when m ≤ 4. In

Figure 3(b), m = 5 and the selection function g satisfies condition (15) but not (16). Indeed,

g(WP ((0, 1))) = g(WP ((1, 0))) = {1, 5} but O((0, 1)) = {2, 3} 6= O((1, 0)) = {2, 4} .

For any D ⊆ P , let ∆(D) = {α ∈ [0, 1]D |
∑

P∈Dα(P ) = 1} be the set of probability dis-
tributions on D. For any α ∈ ∆(D), we slightly abuse our earlier notation and write x∗(α) =∑

P∈D α(P )x∗(P ) and y∗(α) =
∑

P∈D α(P )y∗(P ).

15A domain D ⊆ P is single-peaked with respect to a linear ordering > on A if [b > a > maxA P or maxA P >
a > b] ⇒ [aPb] for all P ∈ D, where maxA P denotes the best alternative in A according to P. We call a domain
single-peaked if it is single-peaked with respect to some linear ordering.
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Theorem 4 If D is a sequentially binary domain and α, α′ ∈ ∆(D), then [x∗(α) = x∗(α′)] ⇒
[y∗(α) = y∗(α′)] .

In words: two distributions on a sequentially binary domainD that generate the same fractional
tournament also generate the same random choice function. Thus, if a fractional tournament arises

from a population of voters with preferences in D, it has a unique admissible extension, namely,
a unique extension generated by a population of voters with preferences in D.
To state this formally, recall our notationX∗D = {x∗(α) | α ∈ ∆(D)} and Y ∗D = {y∗(α) | α ∈ ∆(D)} .

By an extension rule on X∗D we mean a function f : X∗D → Y such that f(x) extends x for all

x ∈ X∗D. We call f admissible if f(X∗D) ⊆ Y ∗D.

Corollary to Theorem 4 If D is a sequentially binary domain, there is a unique admissible

extension rule on X∗D.

Note that a fractional tournament x ∈ X∗D may have multiple stochastically rationalizable

extensions. What the corollary above states is that exactly one such extension is admissible.

Consider the three-alternative case and let D = {123, 213, 231, 321} . This is the single-peaked
domain with respect to the natural ordering of the alternatives, an example of a sequentially

binary domain. Clearly, x = (1
2
, 1

2
, 1

2
) = 1

2
x∗(123) + 1

2
x∗(321) ∈ X∗D. Yet,

1
2
y∗(123) + 1

2
y∗(321)

and 1
2
y∗(132) + 1

2
y∗(231) are two different stochastically rationalizable extensions of x. The first is

admissible because 123, 321 ∈ D; the second is not because 132 /∈ D.

The proof of Theorem 4 is given in the Appendix and the corollary follows directly from the

theorem.

Two of the incompatibilities identified in Theorems 2 and 3 vanish on the fractional tourna-

ments generated by preferences in a sequentially binary domain. Formally, say that an extension

rule f on X∗D satisfies Linearity on X
∗
D if property (5) holds for all x, x

′ ∈ X∗D and λ ∈ [0, 1] , and

say that f satisfies Independence of Irrelevant Comparisons on X∗D if property (7) holds for all

x, x′ ∈ X∗D and B ∈ SA.

Theorem 5 If D is a sequentially binary domain, the unique admissible extension rule f on X∗D
satisfies Linearity and Independence of Irrelevant Comparisons on X∗D.

Note that f does not satisfy Betweenness Preservation on X∗D. Indeed, the argument es-

tablishing the incompatibility of Betweenness Preservation and Rationalizability for Unanimous

Tournaments in the proof of Theorem 2 only uses preferences in the single-peaked domain D =

{123, 213, 231, 321} .

The proof in the Appendix actually establishes a stronger statement than Theorem 5. For

any P ∈ P and B ∈ SA, let PB denote the restriction of P to B. For any D ⊆ P, define DB :=

{PB | P ∈ D} and let X∗DB denote the set of fractional tournaments on B that are generated by a

probability distribution on DB.
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We show that (i) for any domain D ensuring the existence of a unique admissible extension

rule on X∗D, this extension rule satisfies Linearity on X
∗
D, and (ii) for any domain D ensuring that

for every B ∈ SA there is a unique admissible extension rule on X∗DB , the extension rule on X
∗
D

satisfies Independence of Irrelevant Comparisons on X∗D.

As an illustration of Theorem 5, suppose that D is the set of single-peaked preferences with
respect to the natural ordering of the alternatives. It is not diffi cult to check that the unique

admissible extension rule f on X∗D is then given by

faB(x) = xa min{b∈B|b>a} − xmax{b∈B|a>b} a

for all x ∈ X∗D, B ∈ SA, and a ∈ B (with the convention xa min∅ = 1 and xmax∅ a = 0). This rule

obviously satisfies the two axioms in Theorem 5.

The sequentially binary domains are maximal domains generating fractional tournaments with

a unique admissible extension. To state this formally, let ⊂ denote strict inclusion. The proof of
the following result is in the Appendix.

Proposition If D is a sequentially binary domain and D ⊂ D′ ⊆ P, there exist α, α′ ∈ ∆(D′)
such that x∗(α) = x∗(α′) and y∗(α) 6= y∗(α′).

6 Further connections to the literature and concluding re-

marks

Throughout this paper we interpreted an extension rule as a mechanism for making randomized

social choices based on the fractional tournament generated by the voters’preferences. But an

individual choice interpretation also makes sense: a fractional tournament encodes the randomized

binary choices of a single stochastically rational individual, and an extension rule is a procedure

for inferring from that information the individual’s randomized choices from larger agendas.

It is worth recalling that deterministic rationalizable choice functions are completely deter-

mined by their restriction to binary agendas. This property is arguably their greatest advantage:

it tremendously simplifies both the decision maker’s problem and the external analyst’s task of

predicting the decision maker’s choices.16 Since stochastically rationalizable random choice func-

tions too are based on orderings, i.e., on binary comparisons, it is natural to inquire to what extent

stochastic choices from arbitrary agendas can be inferred from stochastic binary choices.

The corollary to Theorem 4 may be reinterpreted as a partial answer to that question. Under

the individual choice interpretation, however, conditions for a unique extension to a rationalizable

fractional tournament x need not take the form of restrictions on the support of the distribution

16As Moulin (1988), page 306, points out, a binary relation on A is determined by only m(m − 1)/2 pairwise
comparisons whereas a choice function involves nearly 2m free parameters.
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of preferences generating x. The more general problem, phrased in the language of individual

choice theory, consists of determining which submodels of the random utility model possess the

“unique extension property”that a random choice function is fully determined by its behavior on

the binary agendas.

The issue received some attention in the literature. Marley (1982) notes that in the strict

utility model proposed by Luce (1959), the choice probabilities on a subset B of alternatives are

a rational function of the binary choice probabilities between alternatives in B. He shows that

this property is shared by the so-called independent Thurtonian models, and also by some non-

independent random utility models. Apesteguia, Ballester and Lu (2017) show that the unique

extension property holds for the single-crossing model.

A related issue is that of identification. The question here is whether the probability distribu-

tion generating a random choice function is unique. If m ≥ 4, a stochastically rationalizable choice

function is typically unidentified: see Barberà and Pattanaik (1986), Fishburn (1988), and Mc-

Clellon (2015). Turansick (2022) offers a complete characterization of the random choice functions

that are generated by a unique distribution.

The unique extension issue is linked to that of identification. Indeed, if a rationalizable frac-

tional tournament x is identified —i.e., if the probability distribution generating x is unique—, then

x has a unique stochastically rationalizable extension y.

But it is neither necessary nor suffi cient that a random choice function y be identified to

guarantee that it is the unique stochastically rational extension of the fractional tournament x it

generates.

To see that identification of y is not suffi cient, observe that the three-alternative random choice

function y uniquely generated by the distribution α(123) = α(321) = 1
2
generates the fractional

tournament x = (1
2
, 1

2
, 1

2
), which admits the random choice function y′ uniquely generated by

α′(132) = α′(231) = 1
2
as an alternative stochastically rational extension. Note that x is not

identified, although y, y′ are.

To see that identification of y is not necessary, consider the four-alternative example discussed

in Fishburn (1988). Although the two distributions α(1234) = α(2143) = 1
2
and α′(1243) =

α(2134) = 1
2
generate the same random choice function y, it is easy to see that y is the unique

stochastically rationalizable extension of the fractional tournament x it extends. Neither x nor y

is identified.

Ultimately, the quest for identified models proceeds from an intention to predict choice behav-

ior. As Turansick (2022) argues,

“Identification guarantees that counterfactual analysis will be accurate up to the choice

of model. When choice behavior has multiple representations, counterfactuals may take

on different values for each one of these representations.”
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But there seems to be little room for counterfactuals if the random choice function is completely

known. Identification matters when the analyst observes choice frequencies from a restricted set

of agendas: counterfactual analysis then consists of predicting choice from other agendas.17 An

extension rule performs precisely that task for the particular case where choice frequencies are

observed for binary agendas. The general problem of extending a random choice function defined

on an arbitrary incomplete collection of agendas deserves further study.

7 Appendix

7.1 More on Neutrality

We check that the leximax extension rule fL differs from the extension rule f. Consider the

three-alternative rationalizable fractional tournament x = (x12, x23, x31) =
(

2
3
, 1

3
, 2

3

)
. Write any

distribution α ∈ ∆(P) as α = (α(123), α(132), α(312), α(321), α(231), α(213)).

To compute f(x), check first that the carriers of x are

D1 = {123, 312, 321} ,
D2 = {132, 312, 231} ,
D3 = {312, 213} ,

and the corresponding decompositions of x are αD1 =
(

1
3
, 0, 1

3
, 1

3
, 0, 0

)
, αD2 =

(
0, 1

3
, 1

3
, 0, 1

3
, 0
)
, and

αD3 =
(
0, 0, 2

3
, 0, 0, 1

3

)
. The probability distribution on {1, 2, 3} prescribed by f(x) is

f {1,2,3}(x) =
1

3
fD1{1,2,3}(x) +

1

3
fD2{1,2,3}(x) +

1

3
fD3{1,2,3}(x)

=
1

3

(
1

3
, 0,

2

3

)
+

1

3

(
1

3
,
1

3
,
1

3

)
+

1

3

(
0,

1

3
,
2

3

)
=

(
2

9
,
2

9
,
5

9

)
.

To compute fL(x), check that minimizing the leximax ordering over ∆x = co{αD1 , αD2 , αD3}
gives αLx =

(
1
6
, 1

6
, 1

3
, 1

6
, 1

6
, 0
)
. The probability distribution on {1, 2, 3} prescribed by fL(x) is there-

17As Turansick (2022) points out, identification is also important from a theoretical viewpoint:

“One of the main goals of choice theory is to provide simplified approximations of reality in an attempt
to explain observed choice behavior. Identification of a model allows us to do exactly this.”

This theoretical motivation for identification is compelling even for choice functions defined on all agendas.
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fore

fL{1,2,3}(x) =
∑
P∈P

αLx (P ) y∗{1,2,3}(P )

=
1

6
(1, 0, 0) +

1

6
(1, 0, 0) +

1

3
(0, 0, 1) +

1

6
(0, 0, 1) +

1

6
(0, 1, 0)

=

(
1

3
,
1

6
,
1

2

)
.

To understand the difference with the distribution prescribed by the rule f , notice that the

latter can be written f {1,2,3}(x) =
∑
P∈P

αx(P ) y∗{1,2,3}(P ) where αx =
(

1
9
, 1

9
, 4

9
, 1

9
, 1

9
, 1

9

)
maximizes the

leximin ordering on ∆x.

7.2 Proof of Theorem 4

For any P ∈ P and B ∈ SA, recall that PB denotes the restriction of P to B and, for any D ⊆ P,
DB = {PB | P ∈ D} . As before, ⊂ denotes strict inclusion.

Lemma 1 If D ⊆ P is a sequentially binary domain on A and B ∈ SA, then DB is a sequentially
binary domain on B.

Proof Let D ⊆ P be a sequentially binary domain on A, |A| = m. By definition, there exists a

function g ∈ GA such that Dg= D. We fix an alternative a ∈ A, without loss of generality a = 1,

and prove that there exists a function g′ ∈ GA\{1} such that DA\{1} = Dg′ . The function g′ is
constructed from g through a sequential process. We define a finite sequence (Vt, ht)

T
t=1 such that

S(m−1) = V1 ⊃ ... ⊃ VT = S(m−2) and each ht is a function from Vt to A. The function h1 coincides

with g, and each function ht+1 is defined by altering its predecessor ht. The construction ensures

that g′ := hT belongs to GA\{1} and Dg′ = DA\{1}.

Step 1 Preliminaries.

Call a set V ⊆ S(m−1) comprehensive if (i) [s ∈ V, s′ ∈ S, s′ ≺ s] ⇒ [s′ ∈ V ] and (ii) for all

s ∈ S0, [(s, 0) ∈ V ] ⇔ [(s, 1) ∈ V ] . Note that S(m−1) and S(m−2) are comprehensive. Given a

comprehensive set V, write V0 = V ∪ {s0} and let ∂V be the set of terminal sequences in V,

namely, ∂V = {s ∈ V | (s, 0), (s, 1) /∈ V } . For any function h : V → A and any s ∈ V0 \ ∂V , let
Oh(s) = {h(s, 0), h(s, 1)} .
Let HV be the set of functions h : V → A satisfying the following properties:

h(s) 6= h(s′) for all s, s′ ∈ V such that s ≺ s′, (17)

h(s, 0) 6= h(s, 1) for all s ∈ V0 \ ∂V, (18)

24



and

h(s) ∈ Oh(tw(s)) for all s ∈ V such that h(s) 6= 1, (19)

Oh(s) = Oh(s
′) for all s, s′ ∈ V0 \ ∂V such that

h(WP (s)) \ {1} = h(WP (s′)) \ {1} .
(20)

These properties generalize the conditions defining a consistent selection function, namely,

(13),(14),(15),(16). In particular, observe that HS(m−1) = GA and HS(m−2) = GA\{1}.

Step 2 Defining the sequence (Vt, ht)
T
t=1 and the function g

′.

First, define

(V1, h1) = (S(m−1), g).

To complete the definition of the sequence, proceed inductively. Let T := |g−1(1)| , fix t ∈
{1, ..., T − 1} , and suppose (V1, h1), ..., (Vt, ht) have been defined. In order to define (Vt+1, ht+1),

we introduce additional notation. For any s = (s1, ..., sk) ∈ Vt, let NFt(s) = Vt \ {s′ ∈ Vt | s ≺ s′}
denote the set of sequences in Vt that do not follow s. For any s′ = (s′1, ..., s

′
k′) ∈ S, let ss′ :=

(s1, ..., sk, s
′
1, ..., s

′
k′) be the sequence obtained by appending s

′ to s. If S ′ ⊆ S, we write sS ′ =

{ss′ | s′ ∈ S ′} (and assume, by convention, s∅ = ∅). The set of continuations of s in Vt is

Cot(s) = {s′ ∈ S | ss′ ∈ Vt} .
Pick a sequence of last occurrence of 1 in Vt, that is, a sequence s1 ∈ Vt such that ht(s1) = 1

and ht(s) 6= 1 for all s ∈ Vt such that tw(s1) ≺ s. Define the direct predecessor of a node

s = (s1, ..., sk) ∈ S to be dp(s) = (s1, ..., sk−1) if k > 1 and dp(s) = s0 if k = 1. Let

Vt+1 = NFt(dp(s
1)) ∪ dp(s1)Cot(s

1). (21)

Note that the two sets on the right side of this equation are disjoint. For each s ∈ dp(s1)Cot(s
1),

let σ(s) be the sequence in Cot(s1) such that s = dp(s1)σ(s). Define ht+1 : Vt+1 → A by

ht+1(s) =

{
ht(s) if s ∈ NFt(dp(s1)),

ht(s
1σ(s)) if s ∈ dp(s1)Cot(s

1).
(22)

The construction of (Vt+1, ht+1) is illustrated in Figure 4.

Insert Figure 4 here.

In essence, it consists in picking a sequence s1 of last occurrence of 1 in Vt and replacing the

sub-tree rooted at the direct predecessor of s1 (and the alternatives selected by ht at the nodes

of that sub-tree) by the sub-tree rooted at s1 (and the alternatives selected by ht at the nodes of
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that sub-tree).

Observe that S(m−1) = V1 ⊃ ... ⊃ VT = S(m−2), each Vt is comprehensive, and each ht is a

function from Vt to A. Moreover,
∣∣h−1
t+1(1)

∣∣ =
∣∣h−1
t (1)

∣∣ − 1 for each t ∈ {1, ..., T − 1} , i.e., the
number of nodes where alternative 1 is selected decreases by one at each step along the sequence

(Vt, ht)
T
t=1. Since T = |g−1(1)| , it follows that

∣∣h−1
T (1)

∣∣ = 0,meaning that the range of hT is A\{1} .
Define g′ : S(m−2) → A \ {1} by g′ = hT .

Step 3 Proving that g′ ∈ GA\{1}.

By definition, h1 = g ∈ GA = HV1 . Proceeding inductively, we now fix t ∈ {1, ..., T − 1} ,
assume that ht ∈ HVt , and show that ht+1 ∈ HVt+1 . It then follows that g

′ := hT ∈ HVT = GA\{1}.

Since ht : Vt → A satisfies (17) and (18), it is clear that ht+1 : Vt+1 → A also does. It remains

to show that ht+1 satisfies (19) and (20).

Step 3.1 ht+1 satisfies (19).

Let s ∈ Vt+1, and suppose ht+1(s) 6= 1 and tw(s) ∈ Vt+1 \ ∂Vt+1. We claim that ht+1(s) ∈
Oht+1(tw(s)).

If s ∈ NFt(dp(s1)), then ht+1(s) = ht(s). Since tw(s) /∈ ∂Vt+1, we have tw(s) /∈ ∂Vt. By the
induction hypothesis, ht(s) ∈ Oht(s). Since Oht(tw(s)) = Oht+1(tw(s)), the claim follows.

If s ∈ dp(s1)Cot(s
1), there exists σ(s) such that s = dp(s1)σ(s) and we have ht+1(s) =

ht(s
1σ(s)). By the induction hypothesis, ht(s1σ(s)) ∈ Oht(tw(s1σ(s))) = Oht+1(tw(s))), and the

claim follows again.

Step 3.2 ht+1 satisfies (20).

Let s, s′ ∈ Vt+1 \ ∂Vt+1 and suppose

ht+1(WP (s)) \ {1} = ht+1(WP (s′)) \ {1} . (23)

We claim that Oht+1(s) = Oht+1(s
′).

Case (i) s, s′ ∈ NFt(dp(s1)).

Then v ∈ NFt(dp(s
1)) for all v ∈ WP (s) ∪WP (s′). From (22), ht+1(WP (s)) = ht(WP (s))

and ht+1(WP (s′)) = ht(WP (s′)). Hence, by (23), ht(WP (s)) \ {1} = ht(WP (s′)) \ {1} . By the
induction hypothesis, Oht(s) = Oht(s

′). Since by definition Oht+1(s) = Oht(s) and Oht+1(s
′) =

Oht(s
′), the claim follows.

Case (ii) s, s′ ∈ dp(s1)Cot(s
1).

Then there exist σ(s), σ(s′) ∈ Cot(s
1) such that s = dp(s1)σ(s) and s′ = dp(s1)σ(s′). For

any two sets A,B, write C = A ] B if C = A ∪ B and A ∩ B = ∅. Observe that WP (s) =

WP (dp(s1))]dp(s1)WP (σ(s)). SinceWP (dp(s1)) ⊆ NFt(dp(s
1)), (22) implies ht+1(WP (dp(s1)))

= ht(WP (dp(s1))). Since dp(s1)WP (σ(s)) ⊆ dp(s1)Cot(s
1), (22) implies ht+1(dp(s1)WP (σ(s))) =
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ht(s
1WP (σ(s))). Hence,

ht+1(WP (s)) = ht(WP (dp(s1))) ] ht(s1WP (σ(s))).

Likewise,

ht+1(WP (s′)) = ht(WP (dp(s1))) ] ht(s1WP (σ(s′))).

Combining these statements with (23), we get ht(s1WP (σ(s))) \ {1} = ht(s
1WP (σ(s′))) \ {1} . It

follows that

[
ht(WP (s1)) ] ht(s1WP (σ(s)))

]
\ {1} =

[
ht(WP (s1)) ] ht(s1WP (σ(s′)))

]
\ {1} ,

hence, [ht(WP (s1σ(s)))]\{1} = [ht(WP (s1σ(s′)))]\{1} . By the induction hypothesis, Oht(s
1σ(s))

= Oht(s
1σ(s′)), and the claim follows by definition of ht+1.

Case (iii) s ∈ NFt(dp(s1)) and s′ ∈ dp(s1)Cot(s
1).

In this case we have

ht+1(WP (s)) = ht(WP (s)),

ht+1(WP (s′)) = ht(WP (dp(s1))) ] ht(s1WP (σ(s′))),

and (23) implies

ht(WP (s)) \ {1} =
[
ht(WP (dp(s1))) \ {1}

]
]
[
ht(s

1WP (σ(s′))) \ {1}
]

=
[
ht(WP (s1)) \ {1}

]
]
[
ht(s

1WP (σ(s′))) \ {1}
]

= ht(WP (s1σ(s′))) \ {1} ,

where the second equality holds because ht(s1) = 1. By the induction hypothesis, Oht(s) =

Oht(s
1σ(s′)), and the claim follows again by definition of ht+1.

Step 4 Proving that Dg′ = DA\{1}.
For each t ∈ {1, ..., T} , every sequence s ∈ ∂Vt has length m − 1 or m − 2. If s has length

m− 1, say, s = (s1, ..., sm−1), then

Pht(s) := aht(s)ht(s1, ..., sm−1)...ht(s1, s2)ht(s1) ∈ PA = P ,

where aht(s) is the unique alternative in A \ {ht(s1, ..., sm−1), ..., ht(s1, s2), ht(s1)} . If s has length
m− 2, say, s = (s1, ..., sm−2), then ht(WP (s)) = A \ {1} and

Pht(s) := at(s)ht(s1, ..., sm−2)...ht(s1, s2)ht(s1) ∈ PA\{1},
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where aht(s) is the unique alternative in A \ {ht(s1, ..., sm−2), ..., ht(s1, s2), ht(s1)} .

Let Pt,1(s) be the restriction of Pht(s) to A \ {1} and define

Dt,1 = {Pt,1(s) | s ∈ ∂Vt} .

Note that D1,1 = Dg = DA\{1} and DT,1 = Dg′ . In order to prove that Dg′ = DA\{1}, it therefore
suffi ces to establish that Dt+1,1 = Dt,1 for each t = 1, ..., T − 1.

Fix t ∈ {1, ..., T − 1} and recall the definition of Vt+1 from (21), where s1 is a sequence of last oc-

currence of 1 in Vt. LetWFt(s
1) = {s ∈ Vt | s1 - s} andWFt+1(dp(s1)) = {s ∈ Vt+1 | dp(s1) - s} .

Partition ∂Vt into the following components:

At = ∂Vt ∩NFt(dp(s1)),

Bt = ∂Vt ∩WFt(s
1),

Ct = ∂Vt ∩NFt(tw(s1)),

and partition ∂Vt+1 into the components:

At+1 = ∂Vt+1 ∩NFt+1(dp(s1)),

B̃t+1 = ∂Vt+1 ∩WFt+1(dp(s1)).

See Figure 5 for an illustration; note that some of the components may be empty.

Insert Figure 5 here.

Recalling the definition of ht+1 given in (22), we make three observations.

First, At+1 = At and

Pt,1(s) = Pt+1,1(s) for all s ∈ At+1 = At. (24)

Second, let ∂Cot(s1) = {s′ ∈ S | s1s′ ∈ ∂Vt} . By definition, Bt = s1∂Cot(s
1) and B̃t+1 =

dp(s1)∂Cot(s
1). For each σ ∈ ∂Cot(s

1), we have s1σ ∈ Bt, dp(s
1)σ ∈ B̃t+1, and Pt,1(s1σ) =

Pt+1(dp(s1)σ). It follows that

{Pt,1(s) | s ∈ Bt} =
{
Pt+1,1(s) | s ∈ B̃t+1

}
. (25)

Third, the orderings Pt,1(s) associated with the sequences s ∈ Ct are redundant. Indeed,

because ht satisfies (19), there exists s̃ ∈ {(s1, 0), (s1, 1)} such that ht(s̃) = ht(tw(s1)). By (20),
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Oht(s̃) = Oht(tw(s1)), and it follows that

{Pt,1(s) | s ∈ Ct} =
{
Pt,1(s) | tw(s1) ≺ s

}
= {Pt,1(s) | s̃ ≺ s}
⊆ {Pt,1(s) | s ∈ Bt} . (26)

It follows from (24), (25), (26) that Dt,1 = {Pt,1(s) | s ∈ ∂Vt = At ∪Bt ∪ Ct} = {Pt+1,1(s) |
s ∈ ∂Vt+1 = At+1 ∪ B̃t+1} = Dt+1,1. �

Proof of Theorem 4

Theorem 4 is trivially true if m := |A| = 2. Proceeding by induction, fix m > 2 and make the

induction hypothesis that Theorem 4 is true whenever m < m. Fix A such that |A| = m, say,

A = {1, ...,m} . Let D ⊆ P be a sequentially binary domain on A, and let α, α′ ∈ ∆(D) be such

that x∗(α) = x∗(α′).

Step 1 y∗B(α) = y∗B(α′) for all B ⊂ A.

Let B ⊂ A and define αB, α′B ∈ ∆(DB) as follows: for all P̃ ∈ DB,

αB(P̃ ) =
∑

P∈D:PB=P̃

α(P ) and α′B(P̃ ) =
∑

P∈D:PB=P̃

α′(P ). (27)

Let x∗(αB), x∗(α′B) be the fractional tournaments on B generated by αB, α′B, and let y
∗(αB),

y∗(α′B) be the random choice functions on B generated by αB, α′B. Since x
∗(α) = x∗(α′), we have

x∗(αB) = x∗(α′B). Since, by Lemma 1, DB is a sequentially binary domain on B, the induction
hypothesis implies that y∗(αB) = y∗(α′B). This in turn implies

y∗B(α) = y∗B(α′).

Step 2 y∗A(α) = y∗A(α′).

Because D is a sequentially binary domain on A, there exists g ∈ GA such that D = Dg.
Without loss of generality, assume that g((0)) = 1 and g((1)) = 2. For any P ∈ P and B ∈ SA,
let maxB P denote the best alternative in B according to P.

Because of (15), there is a unique ordering P ∈ Dg = D such that maxA P = 1. Call this

ordering P(1). Likewise, let P(2) denote the unique ordering P ∈ D such that maxA P = 2. Observe

that for all P ∈ D,

max
A\{2}

P = 1 ⇔ P = P(1), (28)

max
A\{1}

P = 2 ⇔ P = P(2). (29)
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From (28) we have

y∗1A(α) = y∗1A\{2}(α) = α(P(1)), (30)

y∗1A(α′) = y∗1A\{2}(α
′) = α′(P(1)). (31)

Since y∗1A\{2}(α) = y∗1A\{2}(α
′) by Step 1, we conclude that y∗1A(α) = y∗1A(α′). Likewise, it follows

from (29) that y∗2A(α) = y∗2A(α′).

To complete the proof, consider now any a ∈ A \ {1, 2} . Distinguish two cases.

Case (i) maxA\{1} P(1) 6= a or maxA\{2} P(2) 6= a.

Without loss of generality, suppose maxA\{1} P(1) 6= a. This means that a is not ranked second

in P(1). Since P(1) is the only P ∈ D such that maxA P = 1, it follows that for every P ∈ D,

max
A

P = a ⇔ max
A\{1}

P = a.

Therefore,

y∗aA(α) = y∗aA\{1}(α),

y∗aA(α′) = y∗aA\{1}(α
′).

Since y∗aA\{1}(α) = y∗aA\{1}(α
′) by Step 1, we conclude that y∗aA(α) = y∗aA(α′).

Case (ii) maxA\{1} P(1) = a and maxA\{2} P(2) = a.

Then, for every P ∈ D, (15) implies

max
A\{1}

P = a ⇔
[
either max

A
P = a or P = P(1)

]
.

It follows that

y∗aA(α) = y∗aA\{1}(α)− α(P(1)),

y∗aA(α′) = y∗aA\{1}(α
′)− α′(P(1)).
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Using (30), (31), we obtain18

y∗aA(α) = y∗aA\{1}(α)− y∗1A\{2}(α),

y∗aA(α′) = y∗aA\{1}(α
′)− y∗1A\{2}(α′),

and it follows again from Step 1 that y∗aA(α) = y∗aA(α′). �

7.3 Proof of Theorem 5

Let D ⊆ P be a sequentially binary domain and let f : X∗D → Y ∗D be the unique admissible

extension rule on X∗D.

Step 1 f satisfies Linearity on X∗D.

The crucial observation is that the map y∗ : ∆(D)→ Y, y∗(α) =
∑

P∈Dα(P )y∗(P ), is an affi ne

function. That is,

y∗(λα + (1− λ)α′) = λy∗(α) + (1− λ)y∗(α′) (32)

for all α, α′ ∈ ∆(D) and λ ∈ [0, 1] .

To prove that f : X∗D → Y is an affi ne function, fix x, x′ ∈ X∗D and λ ∈ [0, 1] . Let α, α′ ∈ ∆(D)

be any probability distributions on D such that x = x∗(α) and x′ = x∗(α′). Since y∗(α), y∗(α′) are

admissible extensions of x, x′ and f is the unique admissible extension rule on X∗D,

f(x) = y∗(α) and f(x′) = y∗(α′). (33)

Next, observe that λx+(1−λ)x′ = x∗(λα+(1−λ)α′). Since λα+(1−λ)α′ ∈ ∆(D), y∗(λα+(1−λ)α′)

is an admissible extension of λx + (1 − λ)x′ and, since f is the unique admissible extension rule

on X∗D,

f(λx+ (1− λ)x′) = y∗(λα + (1− λ)α′). (34)

Combining (32), (33), and (34) yields f(λx+ (1− λ)x′) = λf(x) + (1− λ)f(x′).

Step 2 f satisfies Independence of Irrelevant Comparisons on X∗D.

Let x, x′ ∈ X∗D, B ∈ SA, and assume xB = x′B. Let α, α
′ ∈ ∆(D) be such that x = x∗(α) and

x′ = x∗(α′), so that, in particular,

x∗B(α) = x∗B(α′). (35)

18Permuting 1 and 2 in the above argument leads to the equally valid formulas

y∗aA(α) = y∗aA\{2}(α)− y∗2A\{1}(α),

y∗aA(α′) = y∗aA\{2}(α
′)− y∗2A\{1}(α′).
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By definition of f ,

fB(x) = y∗B(α) and fB(x′) = y∗B(α′). (36)

We prove that y∗B(α) = y∗B(α′).

Let αB, α′B ∈ ∆(DB) be the probability distributions defined in (27) and let x∗(αB), x∗(α′B) be

the fractional tournaments on B generated by αB, α′B. Since for all distinct a, b ∈ B

x∗ab(αB) =
∑

P̃∈DB :aP̃ bαB(P̃ ) =
∑

P̃∈DB :aP̃ b

∑
P∈D:PB=P̃α(P ) =

∑
P∈D:aPbα(P ) = x∗ab(α),

we have x∗B(α) = x∗(αB). Likewise, x∗B(α′) = x∗(α′B). Hence, from (35),

x∗(αB) = x∗(α′B). (37)

Let y∗(αB), y∗(α′B) be the random choice functions on B generated by αB, α′B. Since, by Lemma

1, DB is a sequentially binary domain on B, (37) and Theorem 4 imply

y∗(αB) = y∗(α′B). (38)

Since for all a ∈ B

y∗aB(αB) =
∑

P̃∈DB :

a=maxB P̃

αB(P̃ ) =
∑

P̃∈DB :

a=maxB P̃

∑
P∈D:PB=P̃α(P ) =

∑
P∈D:

a=maxB P
α(P ) = y∗aB(α),

we have y∗B(α) = y∗(αB). Likewise, y∗B(α′) = y∗(α′B). From (38) we conclude that y∗B(α) = y∗B(α′),

as was to be proved. �

7.4 Proof of the Proposition

The proof relies on two lemmas. The first establishes a richness property of the sequentially binary

domains.

Lemma 2 For any sequentially binary domain D ⊆ P and any distinct a, b ∈ A, there exist

distinct P, P ′ ∈ D such that cPd⇔ cP ′d for all {c, d} 6= {a, b} .

Proof Let D be a sequentially binary domain and let a, b ∈ A. Let g be a consistent selection

function such that D = Dg.

Step 1 There exists sab ∈ S(m−2)
0 such that Og(s

ab) = {a, b} .

For any c ∈ A, define k(c) := min
{
k ∈ {1, ...,m− 1} | c ∈ Og(s) for some s ∈ Sk−1

}
.Without

loss of generality, assume k(a) ≤ k(b). Also without loss of generality, suppose that for all s ∈
S

(m−2)
0 ,

a ∈ Og(s) ⇒ g(s, 0) = a. (39)
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By definition of k(a), there exists sa ∈ Sk(a)−1 such that g(sa, 0) = a. Because g satisfies (15),

g(sa, 1, 0) = ... = g(sa, 1, ..., 1, 0︸ ︷︷ ︸
m−1

) = a. (40)

Since k(a) ≤ k(b), g(s) 6= b for all s - sa. By (40) and because g satisfies (13), there exists

l ∈ {1, ...,m− k(a)} such that
g(sa, 1, ..., 1︸ ︷︷ ︸

l

) = b.

Let sab = (sa, 1, ..., 1︸ ︷︷ ︸
l−1

). By (40), Og(s
ab) = {g(sa, 1, ..., 1, 0︸ ︷︷ ︸

l

), g(sa, 1, ..., 1︸ ︷︷ ︸
l

)} = {a, b} .

Step 2 There exist distinct P, P ′ ∈ D such that cPd⇔ cP ′d for all {c, d} 6= {a, b} .

Let sab ∈ S
(m−2)
0 be such that Og(s

ab) = {a, b} , say, g(sab, 0) = a and g(sab, 1) = b. Since g

satisfies (15), a ∈ Og(s
ab, 1) and b ∈ Og(s

ab, 0). Without loss, assume

g(sab, 1, 0) = a, g(sab, 0, 1) = b. (41)

Let k(a, b) be the length of the sequences (sab, 1, 0) and (sab, 0, 1). For any P = a1a2...am ∈ D
and k ∈ {2, ...,m} , let Tk(P ) := {am−k+1, ..., am} denote the set containing the k lowest-ranked
alternatives in P , the “k-tail”of P.

Fix s, s′ ∈ Sm−1 such that (sab, 1, 0) - s, (sab, 0, 1) - s′, and write Pg(s) = P, Pg(s
′) = P ′. By

definition, P 6= P ′, Tk(a,b)(P ) = Tk(a,b)(P
′) =: Tk(a,b), and cPd ⇔ cP ′d for all {c, d} ⊆ Tk(a,b) such

that {c, d} 6= {a, b} . If |k(a, b)| = m, we are done.

If |k(a, b)| < m, a simple induction completes the proof. Since g(WP (sab, 1, 0)) = g(WP (sab, 0, 1)),

condition (16) implies

Og(s
ab, 0, 1) = Og(s

ab, 1, 0).

Pick c ∈ Og(s
ab, 0, 1) = Og(s

ab, 1, 0). Without loss, assume g(sab, 0, 1, 0) = g(sab, 1, 0, 0) = c. For

any s, s′ ∈ Sm−1 such that (sab, 0, 1) - s and (sab, 1, 0) - s′, write Pg(s) = P, Pg(s
′) = P ′, and

observe that Tk(a,b)+1(P ) = Tk(a,b)+1(P ′) =: Tk(a,b)+1, and cPd⇔ cP ′d for all {c, d} ⊆ Tk(a,b)+1 such

that {c, d} 6= {a, b} . Repeating this argument eventually produces distinct P, P ′ ∈ D such that
cPd⇔ cP ′d for all {c, d} 6= {a, b} . �

The next lemma requires additional terminology. Recall that for any P ∈ P and B ∈ SA, PB
denotes the restriction of P to B. Call B a triple if |B| = 3. Following Puppe and Slinko (2022), call

D ⊆ P an Arrow single-peaked (ASP) domain if DB := {PB | P ∈ D} is a single-peaked domain
for every triple B.

Lemma 3 Every sequentially binary domain is a maximal ASP domain.

Proof Let D ⊆ P be a sequentially binary domain. For any triple B ∈ SA, Lemma 1 implies that
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DB is a sequentially binary domain on B, hence (as noted in the paragraph following Definition
3), a (maximal) single-peaked domain on B. It follows that D is an ASP domain. Slinko (2019)
shows that all maximal ASP domains have cardinality 2m−1. Since |D| = 2m−1, D is a maximal
ASP domain. �

Proof of the Proposition

Let D be a sequentially binary domain and let D ⊂ D′ ⊆ P. By Lemma 3, D is a maximal
ASP domain. Since D ⊂ D′, D′ is not an ASP domain. Thus there exists a triple B ⊆ A such

that DB is a (maximal) single-peaked domain on B and DB ⊂ D′B. Choose Q0 ∈ D′ \D such that
Q0
B ∈ D′B \ DB. Without loss of generality, suppose that B = {1, 2, 3} and

D{1,2,3} = {123, 213, 231, 321} , Q0
{1,2,3} = 132.

Let P 0 ∈ D be such that P 0
{1,2,3} = 123. Since P 0 6= Q0, there exist K ≥ 1 pairs of alternatives

{a1, b1} , ...,
{
aK , bK

}
such that (i) akQ0bkP 0ak if k ∈ {1, ..., K} , and (ii) aP 0b⇔ aQ0b if {a, b} 6={

ak, bk
}
for all k ∈ {1, ..., K} .

For each k ∈ {1, ..., K} , Lemma 2 ensures that there exist P k, Qk ∈ D such that akP kbkQkak

and aP kb⇔ aQkb if {a, b} 6=
{
ak, bk

}
. Define the probability distributions α, α′ ∈ ∆(D′) by

α(P ) =
1

K + 1

∣∣{k ∈ {0, 1, ..., K} | P k = P
}∣∣ ,

α′(P ) =
1

K + 1

∣∣{k ∈ {0, 1, ..., K} | Qk = P
}∣∣

for all P ∈ D′.
It is straightforward to check that x∗(α) = x∗(α′). To complete the proof, we show that

y∗(α) 6= y∗(α′). Since P 0
{1,2,3} = 123 and Q0

{1,2,3} = 132, (i) there exists k ∈ {1, ..., K} such that{
ak, bk

}
= {2, 3} and (ii)

{
ak, bk

}
6= {1, 2} , {1, 3} for all k ∈ {1, ..., K} .Without loss of generality,

assume {a1, b1} = {2, 3} . Note that P k
{1,2,3} = Qk

{1,2,3} for all k ∈ {2, ..., K} . Thus,

max
{1,2,3}

P 0 = 1 = max
{1,2,3}

Q0,

max
{1,2,3}

P 1 = 2 6= 3 = max
{1,2,3}

Q1,

max
{1,2,3}

P k = max
{1,2,3}

Qk for all k ∈ {2, ..., K} .

It follows that y∗2{1,2,3}(α) < y∗2{1,2,3}(α
′) and y∗3{1,2,3}(α) > y∗3{1,2,3}(α

′). �
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The binary tree �𝑆𝑆0
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A single-peaked domain 

Figure 2(b) 
A successive elimination domain 
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  Figure 3(a) 
A domain violating condition (15) 

Figure 3(b) 
A domain violating condition (16) 
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Figure 4 
Constructing the sequence (𝑉𝑉𝑡𝑡, ℎ𝑡𝑡) 
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