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Abstract

This paper studies a large class of multi-agent contracting models with the property
that agents� payo¤s constitute a weighted potential game. Multiple equilibria arise
due to agents�strategic interactions. I fully characterize a contracting scheme that is
optimal for the principal for all equilibrium selection criteria that are more pessimistic
than potential maximization. This scheme ranks agents in ascending order of their
weights in the weighted potential game and then induces them to accept their o¤ers in
a dominance-solvable way, starting from the �rst agent. I apply the general results to
networks, public goods/bads, and a class of binary-action applications.
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1 Introduction

Many contracting situations involve multiple agents, and in most of these situations, an

agent�s payo¤ depends on other agents�actions. For example, the value of joining a platform

increases with the number of users; the return from an investment is a¤ected by others�in-

vestment decisions; the incentive to work varies with co-workers�e¤orts. A natural question

arises: How does the principal�s optimal contracting scheme take into account these (po-

tentially very complex) interactions among agents? Moreover, agents�strategic interactions

often generate multiple equilibria. All the above examples may have (at least) a high- and

a low-participation/investment/e¤ort equilibrium. The principal�s payo¤ typically di¤ers

across equilibria. In other words, one contracting scheme possibly maps to multiple payo¤

levels. This raises a more fundamental issue: How should we de�ne the optimality of a

contracting scheme when there are multiple equilibria? Ultimately, what contracts should

the principal o¤er when there are multiple agents?

To deal with the fundamental issue, the conventional approach is to specify an equilibrium

selection criterion and get rid of multiple equilibria. However, this approach is not fully

satisfactory because it replaces the issue of multiple equilibria with the issue of multiple

equilibrium selection criteria. Speci�cally, the optimal contracts for the best-case scenario

are likely rejected by agents in less favorable scenarios. On the other hand, the optimal

contracts for the worst-case scenario likely forgo huge pro�ts in more favorable scenarios.

What if the principal (or we as researchers) is uncertain about the equilibrium selection

criterion? In this situation, can we still con�dently recommend (or predict) what contracts

the principal should (or would) o¤er?

This paper provides a partial positive answer to the above question for a large class of

multi-agent contracting models with complete information. The timing is standard: The

principal o¤ers each agent a menu of publicly observable bilateral contracts in stage 1, and

then each agent simultaneously chooses a contract (or rejects all contracts) in stage 2. Each

agent has a general (i.e., possibly multi-dimensional) action set. Regarding their interactions,

some agents�actions can be strategic complements while others can be strategic substitutes.
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The principal has a general preference (say, can be self-interested or benevolent). The only

key assumption is that agents� payo¤s constitute a weighted potential game. Unlike the

conventional approach, I do not pre-specify the equilibrium selection criterion but instead

examine the principal�s optimal contracting scheme under various equilibrium selection cri-

teria. One criterion is said to be more pessimistic than the other if, in every subgame, the

selected equilibrium gives the principal a weakly lower payo¤.

The main result of this paper (Theorem 1) is that for all equilibrium selection criteria

that are more pessimistic than potential maximization (a criterion originated from potential

game theory), the principal optimally o¤ers weight-ranked divide-and-conquer (w-DC) con-

tracts. The w-DC contracts rank agents in increasing order of their weights in the weighted

potential game and then o¤er each agent one contract asking him to take a speci�ed action.

The associated contract prices/subsidies are set in a way that the �rst agent has a weakly

dominant strategy to accept his o¤er; given the �rst agent accepts, the second agent has an

(iterated) weakly dominant strategy to accept as well, and so on. Thus, the w-DC contracts

induce all agents to accept their o¤ers as a dominance-solvable equilibrium in this particular

order. Moreover, Proposition 2 shows that the w-DC contracts are possibly suboptimal for

all equilibrium selection criteria that are not more pessimistic than potential maximization.

Therefore, I have identi�ed the complete set of equilibrium selection criteria for which the

principal always o¤ers the w-DC contracts.

Section 4 applies the general results to three special cases: networks, public goods/bads

(hereafter goods for simplicity), and a class of binary-action games. The general undirected

network I consider allows for multi-dimensional actions for agents and the coexistence of

positive and negative links. In addition, agents can be heterogeneous, among others, in

their (i) network positions, (ii) valuations of network bene�ts/costs, and (iii) importance

to their linked agents regarding network bene�ts/costs. The w-DC contracts rank agents

in increasing valuation-to-importance ratio. In contrast to the conventional wisdom in the

economics of networks literature (see, e.g., the surveys by Bloch 2016 and Section 7 of

Jackson et al. 2017) that the principal should o¤er more favorable contracts to agents with
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high centrality, the network structure plays no role in agents�ranking. I further derive a

natural network formation process and show that under this process, agents with many

(positive) links are those with high valuations and with either high or low importance.

In the public good application, agents can be heterogeneous, among others, in their (i)

valuations of the public good and (ii) importance of their contributions to the public good. In

contrast to the network application, the w-DC contracts rank agents in increasing valuation

regardless of their importance. The reason for these opposing results is that the public good

is non-excludable whereas the �network good� is excludable. The class of binary-action

games I consider is applicable to most traditional applications such as network externalities,

exclusive dealing, takeovers, and vertical contracting.

This paper primarily contributes to the literature on multi-agent contracting. Various

contracting schemes are derived under di¤erent equilibrium selection criteria in the litera-

ture. For example, the seminal works of Segal (1999, 2003) study the same model but derive

very di¤erent contracting schemes under the most optimistic and pessimistic criteria, respec-

tively (Section 3.3 closely compares his latter work with mine). The primary contribution

of this paper is to show that one contracting scheme� the w-DC contracts� is relatively

robust because it is optimal for a large class of criteria. This result helps us make better

predictions and policy advice on multi-agent contracting problems, especially when we as

researchers do not know which equilibrium selection criterion prevails. Despite some model

variations, speci�c divide-and-conquer (DC) contracts are derived (e.g., Segal 2003; Winter

2004; Bernstein and Winter 2012; Sakovics and Steiner 2012; Halac et al. 2020; Nora and

Winter 2024) under (i) binary/one-dimensional actions for agents, (ii) strategic complemen-

tarities among all agents, and (iii) the most pessimistic criterion. This paper contributes by

uncovering the generality and robustness of DC contracts by relaxing all three restrictions

substantially and deriving the general form of DC contracts. As a further contribution, this

paper is the �rst to derive the optimal ranking for DC contracts in a general framework and,

thus, fully characterize the optimal contracting scheme: the w-DC contracts.

This paper also advances the analysis of multi-agent contracting problems. Although my
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primary focus is the w-DC contracts, the general framework and tools developed are applica-

ble to all such problems. In particular, the novel interaction structure among agents� derived

from two binary relations� is considerably more �exible than the conventional strategic com-

plementarity/substitutability structure, enabling us to study a wider range of contracting

environments. In addition, a methodological contribution of this paper is to fully exploit po-

tential game theory in the study of multi-agent contracting. The concept of potential games

was introduced by Rosenthal (1973) and formalized by Monderer and Shapley (1996). Poten-

tial maximization re�nes Nash equilibrium in (weighted) potential games.1 Sections 2 and

3.1 will explain both concepts. As Section 4 reveals, agents�payo¤s constitute a weighted

potential game in many contracting models. By exploiting this meaningful property, one

may be able to derive stronger results as this paper does.

Beyond the above contributions to multi-agent contracting, Section 4 contributes to the

economics of networks and public goods. One contribution common to both strands of

literature is to show the optimality and robustness of the corresponding w-DC contracts in

each environment. As an independent contribution, to my knowledge this paper (Lemma 4)

is the �rst to show that a general class of undirected networks with multi-dimensional actions

are weighted potential games.2 Overall, Section 4 demonstrates how seemingly contradictory

�ndings across applications are reconciled with the unifying theories developed in this paper.

1Although inconsequential to my main result, this re�nement is justi�ed by many theoretical and experi-

mental studies; see Chan (2021, Related Literature) for a summary of established justi�cations. In particular,

it coincides with global-game selection in supermodular weighted potential games (Frankel et al. 2003) and

risk dominance in two-agent two-action games.
2Bramoulle et al. (2014) show that a class of undirected networks with one-dimensional actions are exact

potential games (i.e., weighted potential games with all weights equal to one) and then pioneeringly utilize

potential game theory to analyze networks. Bourles et al. (2017) show that a class of directed networks with

multi-dimensional actions are best-response potential games (Voorneveld 2000), which generalize weighted

potential games. However, many important properties of weighted potential games, in particular the validity

of potential maximization as a re�nement of Nash equilibrium (which is proved in Appendix B for weighted

potential games), do not carry over to best-response potential games.
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2 Model

A principal (�she�) contracts with n � 1 agents (�he�). Let N � f1; : : : ; ng denote the set

of agents. Let Ai denote agent i�s set of actions with oi 2 Ai denoting the outside option of

rejecting the principal�s o¤ers. To avoid technical complications (mainly existence issues),

assume each Ai is �nite. Let a � (ai)i 2
Q
iAi � A denote agents� action pro�le, and

a�i 2
Q
j 6=iAj � A�i and a�ij 2

Q
k=2fi;jgAk � A�ij are de�ned in the usual way. The

game has two stages. In stage 1, the principal sets a price function pi 2 Pi � fpi : Ai !

Rjpi(oi) = 0g for each agent i. This is equivalent to o¤ering each agent a menu of bilateral3

contracts (ai; pi(ai)) given that she can always prevent an agent from taking a certain action

ai 2 Ainfoig by charging an arbitrarily high price pi(ai) for that action.4 In stage 2, every

agent observes the menu pro�le p 2
Q
i Pi � P and simultaneously chooses an action ai 2 Ai.

Each agent i�s payo¤ is linear in money ui(a)� pi(ai) where ui : A! R measures his gross

utility. The principal�s payo¤ is U(a;
P

i pi(ai)) where U : A � R ! R is non-decreasing in

her total revenue. The function U is su¢ ciently general to represent a self-interested (e.g.,

U =
P

i pi(ai)) or benevolent (e.g., U =
P

i ui(a)) principal.

The results in the next section hold for all agents�(gross) utilities u � (ui)i satisfying

the following three assumptions.

Assumption 1 (weighted potential game) There exists a (weight) vector w � (wi)i 2

Rn++ and a (potential) function � : A! R such that for all i 2 N ,

ui(ai; a�i)� ui(a0i; a�i) = wi[�(ai; a�i)� �(a0i; a�i)] for all ai; a0i 2 Ai and a�i 2 A�i: (1)

Assumption 1 (hereafter A1; similarly for A2 and A3) states that agents� utilities u

constitute a weighted potential game. Verbally, there exists a real-valued function � de�ned
3As pointed out by the literature (e.g., Bernstein and Winter 2012; Halac et al. 2020), the principal can

only rely on bilateral contracts in many real-world contracting situations. If the principal is allowed to o¤er

multilateral contracts (i.e., contracts that can condition on others�actions), she can easily induce a unique

equilibrium that fully extracts all agents�surplus in most such models.
4For example, if she o¤ers only one contract to i asking him to take action âi at price/subsidy p̂i, the

corresponding price function is pi(oi) = 0, pi(âi) = p̂i, and pi(ai)!1 for all ai =2 foi; âig.
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on the set of agents�action pro�les such that the change in any agent�s utility by unilaterally

switching actions is proportional (with proportion wi for i) to the corresponding change in

�. Thus, all agents�strategic considerations, which concern only unilateral deviations, are

summarized by �. Observe that (1) holds if and only if there exists a (pure externality)

function �i : A�i ! R such that

ui(a) = wi�(a) + �i(a�i) for all a 2 A:5 (2)

Many contracting models satisfy A1. For example, suppose oi = 0 2 Ai � Rn+ (0 is a

vector of n zeros; analogously for 1) and ui takes the following form:

ui(a) = ci(ai) + vi
X
j

gij�jaijaji; (3)

where gij = gji 2 f�1; 0; 1g indicates i and j are negatively, not, or positively linked, respec-

tively (gii = 0 by convention); ai � (aij)j where aij is i�s action on j; ci : Ai ! R measures

his stand-alone bene�t/cost; vi 2 R++ measures his valuation of network bene�ts/costs; and

�j 2 R++ measures the relative importance of j�s actions to his linked agents (aka neigh-

bors). Agents can di¤er in �ve dimensions in this general example: (Ai; ci; vi; �i) and how

they are linked as described by g � (gij)i;j. Thus, this example in turn covers a wide variety

of contracting environments. In particular, if Ai � fai 2 Rn+jaij = aii 8jg (or equivalently,

ci(ai) ! �1 if aij 6= aii for some j) then it reduces to a network with one-dimensional

actions. Section 4.1 analyzes (3) and (Lemma 4) shows that it satis�es A1. Sections 4.2 and

4.3 study two other examples that satisfy A1.

To state the other two assumptions on agents�utilities u, �rst we need to de�ne two

binary relations C and S between any two distinct agents�action sets Aj and Ai.

De�nition 1 The expression ajCai (ajSai) stands for

ui(ai; oj; a�ij)� ui(oi; oj; a�ij) � (�) ui(ai; aj; a�ij)� ui(oi; aj; a�ij) 8a�ij 2 A�ij: (4)

5The �if� part is trivial. For the �only if� part, the function �i(a�i) � ui(a) � wi�(a) is well de�ned

because, by (1), ui(ai; a�i)� wi�(ai; a�i) = ui(a0i; a�i)� wi�(a0i; a�i) for all ai; a0i 2 Ai.
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In words, ajCai (ajSai) means aj always strategically complements (substitutes) ai rel-

ative to the outside option. For the example (3), observe that ajCai if gij 6= �1 and ajSai
if gij 6= 1. The second assumption (clearly satis�ed by (3)) is stated as follows.

Assumption 2 (sign independence of others�actions) For each a 2 A and distinct

i; j 2 N , ajCai or ajSai.

To better understand A2, think of a scenario in which agents i and j consider between

a particular action (say, ai for i and aj for j) and the outside option, and all other agents

decide to take the outside option (i.e., a�ij = o�ij). In this scenario, aj either strategically

complements or substitutes ai because ui(ai; oj; o�ij)� ui(oi; oj; o�ij) is either less or greater

than ui(ai; aj; o�ij) � ui(oi; aj; o�ij). A2 implies if aj complements (substitutes) ai in this

scenario then aj complements (substitutes) ai regardless of others�actions a�ij 2 A�ij.

Observe from (1) and (4) that A1 implies C and S are symmetric, i.e., ajCai (ajSai)

if and only if aiCaj (aiSaj). In other words, any two agents�actions either strategically

complement or substitute each other relative to the outside option. This is also the reason

for restricting (3) to undirected networks: A1 is violated if gij 6= gji for some i; j. I write

aj �Cai if ajCai and not ajSai. Clearly, �C is also symmetric. The last assumption is stated

as follows.

Assumption 3 (weak transitivity for C) For each a 2 A and distinct i1; i2; : : : ; im 2 N

(m � n), if ai1 �Cai2 �C � � � �Caim then ai1Caim.

Observe that A3 is weaker than assuming C ( �C) is transitive, which replaces all �C (C)

in A3 with C ( �C). Analogously, (3) satis�es A3 if gi1im 6= �1 whenever gi1i2 = gi2i3 =

� � � = gim�1im = 1. A2 and A3 are relatively weak. They are vacuous if there are only two

agents. For more agents, they impose no restrictions on any two actions ai; a0i 2 Ainfoig

from the same agent. In particular, they allow ajCai for some ai but ajSa0i for some other

a0i. Furthermore, even if A2 and A3 are strengthened to ajCai (analogously for ajSai) for all

i; j 2 N and a 2 A, this is still much weaker than the following strategic complementarity
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(analogously for substitutability) assumption as conventionally imposed by most of this

literature.

Condition 1 (strategic complementarities) For all i 2 N , oi = 0 2 Ai � R+ and for

all ai; a0i 2 Ai with ai > a0i, ui(ai; a�i)� ui(a0i; a�i) is non-decreasing in a�i 2 A�i.

Observe that Condition 1 (hereafter C1) restricts agents�actions to be one-dimensional

and imposes restrictions on every two pairs of actions (ai; a0i) and (aj; a
0
j) from any two agents.

Unlike A2 and A3, C1 is far from vacuous when n = 2. Therefore, the extra �exibility of

A2 and A3 enables us to study many more contracting environments such as the network

application (3).6

3 Analysis

In this two-stage model, each menu pro�le p 2 P leads to a di¤erent subgame, and some

subgames exhibit multiple equilibria. Therefore, depending on her beliefs about agents�

behavior in stage 2, the principal may o¤er di¤erent menu pro�les in stage 1. For example,

if she believes agents always coordinate on the best (worst) equilibrium for her whenever

multiple equilibria are present, she will charge them a lot (less). Section 3.1 (Proposition

1) �rst derives a menu pro�le (10) that is optimal under an equilibrium selection criterion

called potential maximization. This result is the stepping stone to prove the main result

(Theorem 1) in Section 3.2, which states that (10) is actually optimal for a large class of

beliefs held by the principal.

6In a binary-action setting, Bernstein and Winter (2012, Section III.D) also allow some actions to be

strategic substitutes but require C to be transitive. This strengthening of A3 is quite restrictive when

applied to (3). Consider a three-agent example where 1 and 2 are negatively linked and 3 is not linked. It

(does not) violates (weak) transitivity for C because both 1 and 2�s actions weakly complement 3�s. Overall,

my interaction structure generalizes (beyond binary actions) and relaxes theirs.
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3.1 Potential Maximization

It is known that for a weighted potential game, the maximizer of the potential function

(which exists because A is �nite) is generically unique and is a Nash equilibrium.7 This

equilibrium re�nement is called potential maximization. It is also known to coincide with

risk dominance (Harsanyi and Selten 1988) in 2 � 2 games (i.e., n = jA1j = jA2j = 2). As

the �rst step of the analysis, I show that if agents�utilities u constitute a weighted potential

game, any subgame with an arbitrary menu pro�le p 2 P o¤ered by the principal is also

a weighted potential game. Thus, we can (and this subsection will) select the potential

maximizer in every subgame.8 All omitted proofs are in Appendix A.

Lemma 1 Suppose A1 holds. Every subgame is a weighted potential game with the same

weight vector w given in A1 and the potential function

�p(a) = �(a)�
X
i

pi(ai)

wi
: (5)

Under potential maximization, the principal�s problem can be formulated as the following

two-step optimization problem. In step 1, given a target action pro�le â 2 A, she chooses

the optimal menu pro�le p� 2 P such that â is the potential maximizer in the subgame, i.e.,

max
p2P

U(â;
X
i

pi(âi)) s.t. �p(â) � �p(a) for all a 2 A: (6)

In step 2, she chooses the optimal action pro�le a� 2 A, i.e.,

max
a2A

U(a;
X
i

p�i (ai)): (7)

7See Appendix B for generic uniqueness of the potential maximizer. It is a Nash equilibrium: If someone

deviates from the potential maximizer, the potential will decrease, and by (1), the deviator will have a lower

payo¤. For more interpretations of weighted potential games, see Chan (2021, Section 2).
8Note however that some non-generic subgames admit multiple potential maximizers (just as risk domi-

nance works only generically). I resolve this technical issue by allowing the principal to select among potential

maximizers; see footnote 12 for the formal treatment.
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The main analysis is on the step-1 problem (6). Observe that given a �xed â, the principal�s

objective is to maximize her total revenue. Also, the constraints can be simpli�ed with (5).

Thus, (6) is simpli�ed to

max
p2P

X
i

pi(âi) s.t.
X
i

pi(âi)� pi(ai)
wi

� �(â)� �(a) for all a 2 A: (8)

Now observe that charging arbitrarily high prices pi(ai) (equivalent to not o¤ering the con-

tract (ai; pi(ai)) to agent i) for all ai =2 foi; âig of every i 2 N relaxes all constraints involving

ai =2 foi; âig and has no impact on her total revenue. Therefore, we have the following lemma

(p. 17 explains why this result fails in general).

Lemma 2 Suppose A1 holds. Under potential maximization, the principal can restrict her-

self to o¤ering (at most) one contract to each agent without loss of optimality.

Under this restriction, agent i only chooses between the contract o¤er (âi; pi(âi)) and

the outside option (oi; pi(oi) = 0) (if âi = oi then the principal is not o¤ering him any

contract). Denote N̂ � fi 2 N jâi 6= oig as the set of agents whom she wants to contract

with, p̂i � pi(âi) as the contract price, and p̂ � (p̂i)i2N̂ as the price vector. The step-1

problem (8) is further simpli�ed as follows.

Lemma 3 Suppose A1 holds. For any target action pro�le â 2 A, the principal�s optimal

contracts under potential maximization solve the following linear program:

max
p̂2RjN̂j

X
i2N̂

p̂i s.t.
X

i2N̂ :ai=oi

p̂i
wi
� �(â)� �(a) for all a 2

Y
i

foi; âig: (9)

The proof of the following proposition shows that, together with A2 and A3, the set of

feasible solutions of (9) is equivalent to a submodular polyhedron. Therefore, the optimal

solution can be obtained by Lovasz�s (1983) result.

Proposition 1 Suppose A1�A3 hold and w1 � � � � � wn. For any target action pro�le

â 2 A, the principal�s optimal contracts under potential maximization are

p̂�i = ui(â1; : : : ; âi�1; âi; b̂i+1; : : : ; b̂n)� ui(â1; : : : ; âi�1; oi; b̂i+1; : : : ; b̂n) for all i 2 N; (10)
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where b̂j = oj if âjCâi and b̂j = âj otherwise.9 If w1 < � � � < wn, the above contracts are the

unique optimal solution to (9).

For submodular polyhedra, Lovasz proves that a feasible solution generated by the greedy

algorithm is optimal. I now illustrate this algorithm with N̂ = N for convenience. Observe

from (9) that agents with higher weights are less sensitive to price changes. Therefore,

�rst choose p̂n as large as possible. There is an upper bound given by the inequality with

a = (â1; : : : ; ân�1; on), i.e., p̂n=wn � �(â) � �(â1; : : : ; ân�1; on), so set p̂n at this bound.

Observe that by (1) p̂n = p̂�n in (10), implying n is indi¤erent between accepting and rejecting

his o¤er given all others accept theirs. Next choose p̂n�1 as large as possible. There are

now two upper bounds given by the inequalities with a = (â1; : : : ; ân�2; on�1; ân) and a =

(â1; : : : ; ân�2; on�1; on), so set p̂n�1 at the minimum of these two. Observe that with some

simpli�cations p̂n�1 = p̂�n�1, implying n� 1 has a weakly dominant strategy to accept given

agents 1 to n � 2 accept. The remaining prices p̂n�2; : : : ; p̂1 are chosen analogously. Note

however that without A2 and A3, possibly p̂i 6= p̂�i for some i � n�2 (p. 18 provides further

details).10 Nevertheless, A2 and A3 guarantee p̂i = p̂�i for all i, implying every agent has a

weakly dominant strategy to accept given all his preceding agents accept. In other words,

the contracts in (10) implement â as a dominance-solvable equilibrium in a particular order,

and I call them weight-ranked divide-and-conquer (w-DC) contracts. If âjCâi for all i; j 2 N ,

the w-DC contracts reduce to

p̂�i = ui(â1; : : : ; âi; oi+1; : : : ; on)� ui(â1; : : : ; âi�1; oi; : : : ; on) for all i 2 N: (11)

I call the above weight-ranked simple divide-and-conquer (w-SDC) contracts.11

The proof of Proposition 1 shows that under A1�A3, agents can be partitioned into

several groups where their target actions âi are strategic complements within a group and
9For notational convenience, the optimal contracts also include agents with âi = oi. For these agents, we

have p̂�i = 0, which coincides with the requirement that pi(oi) = 0.
10A2 and A3 are not needed to show p̂n�1 = p̂�n�1 because when the algorithm chooses p̂n�1, it is as if

there are only two agents n� 1 and n. Recall from p. 8 that A2 and A3 are vacuous in this case.
11Recall that most of the literature imposes C1, which implies all target actions strategically complement

each other. Therefore, their derived DC contracts take (variants of) this simpli�ed form.
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substitutes across groups. The idea behind the rest of the proof (written slightly di¤erently

for brevity) is that the greedy algorithm can then be optimally applied to each group, and

the collection of these solutions yields the w-DC contracts.

We now proceed to the principal�s step-2 problem (7). By implementing â with the w-DC

contracts, she receives a payo¤ of

U(â;
X
i

[ui(â1; : : : ; âi�1; âi; b̂i+1; : : : ; b̂n)� ui(â1; : : : ; âi�1; oi; b̂i+1; : : : ; b̂n)])

= U(â;
X
i

wi[�(â1; : : : ; âi�1; âi; b̂i+1; : : : ; b̂n)� �(â1; : : : ; âi�1; oi; b̂i+1; : : : ; b̂n)]): (by (1))

She then chooses the optimal action pro�le a� 2 A to maximize the above. If âjCâi for all

i; j 2 N and all agents�weights are equal to w, the above is simpli�ed to U(â; w[�(â)��(o)]).

Hence, we have the following corollary.

Corollary 1 If ajCai and wi = w for all i; j 2 N and a 2 A, the principal�s optimal action

pro�le is

a� 2 argmax
a2A

U(a; w[�(a)� �(o)]):

When all agents have the same weight, w can be normalized to 1 by rescaling the potential

function � to w�; after normalization it is called an exact potential game.

3.2 General Beliefs

The previous analysis restricts attention to potential maximization because we need Propo-

sition 1 to prove the main result. This subsection considers the general case where the

principal holds a belief � : P ! �(A) that assigns a probability distribution over agents�

action pro�les for each menu pro�le p. This formulation is more �exible and thus often more

plausible than imposing an equilibrium selection criterion (e.g., potential maximization), in

which �(p) must assign probability 1 to a Nash equilibrium of that subgame. In particular,

a belief allows the principal to consider the possibility of miscoordination among agents,

which is reasonable especially when multiple equilibria exist. A weak and natural restriction
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maintained throughout is that beliefs are rationalizable, i.e., the support of �(p) contains

only rationalizable action pro�les of that subgame.

Intuitively, the principal is pessimistic (optimistic) if she believes action pro�les that are

bad (good) for her are likely to arise. I now de�ne a preorder on her beliefs; this relation

will help us state the main result concisely.

De�nition 2 One belief � is more pessimistic than the other �0 if the principal receives a

weakly lower expected payo¤ at �(p) than at �0(p) for each p 2 P .

Before proceeding, I �rst deal with a technical issue that frequently appears in contracting

problems. This �open set�issue can be easily seen in a one-agent example where A1 = fo1 =

0; 1g, u1(0) = 0, u1(1) = 1, and U(a1; p1(a1)) = p1(a1). Every belief puts probability 1 on

a1 = 1 (a1 = 0) for all p1(1) < 1 (p1(1) > 1). However, if a belief does not put probability 1

on a1 = 1 when p1(1) = 1 then an optimal contracting scheme does not exist. The solution

is standard: To guarantee existence, I allow the principal to implement a1 = 1 also with

p1(1) = 1. This footnote provides the formal treatment.12

We are ready to derive the main result. Recall from p. 12 that the w-DC contracts

implement the target action pro�le â as a dominance-solvable equilibrium. This is a property

of the w-DC contracts, i.e., unrelated to the principal�s belief. In other words, regardless of

her belief, she always has the option to o¤er the w-DC contracts and implement â in the

same dominance-solvable way.13 In addition, for any belief that is more pessimistic than

potential maximization, by de�nition the principal cannot do better than she does under

12Let B(�) � fp 2 P j�(p) = �g denote the set of menu pro�les implementing � 2 �(A) given the belief

is �. Thus, any belief can be expressed as an implementation requirement, which is fully characterized by

B � (B(�))�2�(A). An optimal contracting scheme may not exist because B(�) is not always closed. To

guarantee existence, I slightly relax each requirement B by enlarging B(�) to its closure for every �. Note

that after applying this enlargement to potential maximization, the principal can select among potential

maximizers in a non-generic subgame.
13Notice that â becomes the unique rationalizable action pro�le if she charges each agent a price slightly

lower than that of the w-DC contracts; any belief must then assign probability 1 to â. Enlarging B(â) to its

closure in footnote 12 guarantees she can implement â with the w-DC contracts for any belief.
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potential maximization. Given the w-DC contracts are optimal under potential maximization

(Proposition 1), they remain optimal for all these beliefs.

Theorem 1 Suppose A1�A3 hold. The w-DC contracts are optimal for the principal for all

beliefs that are more pessimistic than potential maximization.

In the presence of multiple equilibria, most of this literature (including all those cited in

this paper) speci�es the principal�s belief and then searches for the corresponding optimal

contracting scheme like what Section 3.1 does. However, in practice and applications we

as researchers often have no access to her actual belief. To overcome this challenge, which

is also the conceptual novelty of this paper, Theorem 1 does not pre-specify her belief but

instead derives a contracting scheme that is optimal for a large class of her beliefs. With

this main result, we can con�dently predict/advise that the principal would/should o¤er the

w-DC contracts as long as she is relatively pessimistic. The literature (see p. 4) derives

speci�c divide-and-conquer contracts under the requirement of unique implementation, i.e.,

the principal can only choose from contracting schemes p that induce a unique Nash equilib-

rium in the stage-2 subgame. This requirement is generally more demanding than (but often

equivalent to) the most pessimistic criterion. Theorem 1 reveals that, for a large class of

contracting models, the use of the w-DC contracts is actually robust to various beliefs.14 In

other words, these contracts need not be justi�ed by extreme pessimism or very demanding

implementation requirements.

Theorem 1 does not exclude the possibility that the w-DC contracts remain optimal even

if the principal is more optimistic (or not more pessimistic) than potential maximization. A

natural question is then whether the main result can be further generalized to include more

beliefs. It turns out this is di¢ cult without making additional assumptions. In particular,

the following proposition shows that this is infeasible if we restrict attention to beliefs being

(pure- or mixed-strategy) equilibrium selection criteria.

14Given the w-DC contracts implement â as a dominance-solvable equilibrium, they remain feasible and

thus optimal under unique implementation (after enlarging to its closure as in footnote 12).

15



Proposition 2 There exists a game satisfying A1�A3 in which the w-DC contracts are

suboptimal for the principal for all equilibrium selection criteria that are not more pessimistic

than potential maximization.

The example is a symmetric 2� 2 coordination game with two pure equilibria (namely,

acceptance and rejection equilibria) and one mixed as long as neither action is dominant.

The key is to construct the principal�s payo¤U in a way that both the acceptance and mixed

equilibria give her the same expected payo¤. Thus, for any criterion not more pessimistic

than potential maximization, there must exist a price vector p for which the potential max-

imizer is the rejection equilibrium but this criterion selects either the acceptance or mixed

equilibrium; either gives her a payo¤ higher than what the w-DC contracts can achieve.

Theorem 1 and Proposition 2 together imply we have identi�ed the entire set of equi-

librium selection criteria for which the principal always o¤ers the w-DC contracts. The

watershed� potential maximization� is typically not too optimistic or pessimistic because,

like risk dominance, this criterion is dictated by agents�payo¤s u but not the principal�s

payo¤ U , whereas �more pessimistic�is de�ned according to U but not u. This also implies

how large is the set of beliefs more pessimistic than potential maximization depends on the

relationship between u and U . This set is small (precisely, a singleton) in the practically rare

case where wi = 1 for all i and U = ��(a) +
P

i pi(ai) = ��p(a) by (5), i.e., the principal

and agents (proxied by �p) have exactly opposite preferences. In this case, argmaxa2A�p(a)

always corresponds to the worst action pro�le for the principal, i.e., potential maximization

coincides with the most pessimistic belief. When applied to this case, Theorem 1 is not more

robust than the unique implementation approach in the literature. The set of beliefs more

pessimistic than potential maximization becomes larger when departing from the above case;

Appendix C illustrates this with the (generalized) example in Proposition 2.

3.3 Discussion

Comparison to Segal�s (2003) Lemma 4 The closest work is Segal (2003), who ana-

lyzes the same model under C1 (he does not impose A1 except for Lemma 4) and unique
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implementation. His Lemma 3 �rst shows that under unique implementation, any feasible

contracting scheme p must implement the target action pro�le â via a divide-and-conquer

path, i.e., to induce â as a dominance-solvable equilibrium in stage 2. There are many choices

of DC paths, and his Lemma 4 shows that all paths (e.g., the w-DC contracts) are equally

optimal if agents�utilities u constitute an exact potential game (i.e., A1 with wi = 1 for all

i). However, his results are silent on the set of feasible contracting schemes if the principal

holds other beliefs. In particular, observe from (9) that the feasible set is much larger under

potential maximization, i.e., she need not restrict attention to DC contracting schemes. By

solving a linear program (no similar problem arises in Segal�s analysis), Proposition 1 �nds

that a DC contracting scheme� the w-DC contracts� remains optimal in this larger feasible

set.

Single Contract Lemma 2 and Theorem 1 together imply the principal can, without

loss of optimality, o¤er one contract to each agent for a large class of beliefs. This is not

a trivial result: Segal�s principal is generally better o¤ o¤ering multiple contracts to each

agent because these contracts enable her to induce complex DC paths where some agents

�move�more than once (see Appendix D for an example).15 It turns out imposing A1�A3

rules out this possibility.16

15Solving for the optimal DC contracting scheme is therefore intractable, motivating Bernstein and Winter

(2012) to solve for that in Segal�s special case where actions are binary Ai = f0; 1g and externalities are

linear, i.e., ui(1; a�i) � ui(0; a�i) = fii +
P

j 6=i fijaj for some fij . Note that externalities are linear in the

network application (3) but not necessarily in the other two applications.
16Intuition can be gained by building on Segal�s Lemma 4: All DC paths are equally optimal in exact

potential games. When instead all agents have di¤erent weights, the total revenue is maximized with the

DC path that has agents with lower weights (who are more sensitive to price changes) moving before those

with higher weights. This further implies each agent moves only once (i.e., receives a single contract): All

his moves occur after those of agents with lower weights and before those of agents with higher weights, and

thus they can be combined into a single move.
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Violation of A2 or A3 For Proposition 1, A2 and A3 guarantee the greedy algorithm is

optimal and generates DC contracts. Without these assumptions, Appendix E demonstrates

with examples that the algorithm need not be optimal. Moreover, even when it is optimal,

the generated contracts need not take a DC form. Nevertheless, there are also cases where

the algorithm remains optimal and generates DC contracts, and therefore Theorem 1 re-

mains true in these cases. Hence, a future research direction is to identify other meaningful

assumptions that ensure the validity of Theorem 1.

4 Applications

This section applies the previous results (in particular, Theorem 1) to (i) networks, (ii) public

goods, and (iii) a class of binary-action applications. The issue of equilibrium multiplicity

naturally arises in each application. Hence, one contribution shared by all applications is to

partially resolve this issue by showing the optimality and robustness of the corresponding

w-DC contracts in each setting. Additional application-speci�c contributions are discussed

in each subsection. These applications together demonstrate how the general results in the

previous section can unify apparently con�icting results across applications.

4.1 Networks

We now revisit the network game (3). For tractability, the economics of networks liter-

ature typically assumes all agents� actions are both one-dimensional and either strategic

complements (i.e., C1) or strategic substitutes.17 By contrast, (3) can accommodate multi-

dimensional actions and a mix of complements and substitutes. A classic application that

17Regarding one-dimensional actions, the survey by Bramoulle and Kranton (2016, p. 109) writes: �In

some contexts, players�actions are naturally multidimensional. [...] multidimensional strategies emerge when

players can play di¤erent actions with di¤erent neighbors. Little research has been conducted to date on

such games.�Regarding strategic complementarities (or substitutabilities) among all agents, the survey by

Jackson and Zenou (2015, p. 97) writes: �Without focusing in on speci�c structures in terms of the games,

it is hard to draw any conclusions. The literature has primarily taken three approaches to this challenge,

[...] One involves looking at games of strategic complements and strategic substitutes...�
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can exploit the full generality of (3) is R&D networks (e.g., Goyal and Moraga-Gonzalez

2001; Goyal et al. 2008; Konig et al. 2019): Each �rm i may exert di¤erent e¤orts aij on

di¤erent joint projects with his positively linked �rms j; these e¤orts intensify global com-

petition and thus reduce the pro�ts of distant �rms (who are therefore negatively linked to

i).18 Recall from p. 8 that agents�utilities u satisfy A2; they also satisfy A3 if positive links

are weakly transitive. For example, A3 holds if the links among R&D �rms are non-negative

within a city and non-positive across cities. The following lemma shows that u also satisfy

A1.

Lemma 4 Agents�utilities constitute a weighted potential game with w = (vi=�i)i and

�(a) =
X
i

�ici(ai)

vi
+
1

2

X
i;j

gij�i�jaijaji: (12)

Therefore, as long as A3 holds then all previous results apply to this network game.

Theorem 1 implies the following.

Corollary 2 Suppose A3 holds. A principal holding beliefs more pessimistic than potential

maximization o¤ers the w-DC contracts where w = (vi=�i)i.

The w-DC contracts rank agents in increasing order of valuation-to-importance ratio vi=�i

regardless of Ai, ci, or g. Perhaps surprisingly, the entire network structure g of how agents

are positively/negatively linked plays no role in the ranking. This is in stark contrast to

the conventional wisdom that the principal should prioritize agents with important network

positions (e.g., the center agent in a star network), especially in the absence of negative links.

Intuitively, although a central agent delivers network bene�ts (or costs) to many neighbors,

at the same time he receives network bene�ts (or costs) from all neighbors; these two e¤ects

o¤set each other perfectly in the ranking decision.

18There are functional forms di¤ering from (3) that also involve multi-dimensional actions in networks;

see, e.g., Chen et al. (2018) and Demange (2024). The general results remain applicable as long as A1�A3

hold.
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When all agents have the same weight, they can still di¤er in all other three dimensions

(Ai; ci; g). This literature often assumes for simplicity that vi = �i = 1 for all i. This

assumption implies wi = 1 for all i, and therefore the principal�s optimal action pro�le a� is

characterized by Corollary 1 if all links are non-negative. Moreover, observe from Proposition

1 that the principal can also rank agents in an arbitrary order. This echoes the previous

�nding: She has no strict incentive to prioritize and o¤er more favorable contracts to agents

with high centrality.19

With respect to the literature, Corollary 2 multi-dimensionally generalizes and thus uni-

�es Proposition 1 of Nora and Winter (2024) and Proposition 2 of Sakovics and Steiner

(2012). The former study a special case of (3) with no negative links, binary actions

Ai = f0;1g, ci = 0, vi = f(
P

j gij) with non-increasing f > 0, and �i = 1. They show

that under unique implementation (which is equivalent to the most pessimistic equilibrium

selection criterion as stated on p. 15), the principal optimally ranks agents in decreasing

degree centrality
P

j gij (which corresponds to increasing vi) and then o¤ers SDC contracts

(see also footnote 11). The latter study a variant20 of (3) with a complete positive network

(i.e., gij = 1 for all j 6= i) and binary actions. They show that under global-game selec-

tion (which is equivalent to potential maximization as stated in footnote 1), the principal

optimally ranks agents in increasing vi=�i and then o¤ers SDC contracts.

I now discuss some implications on network formation. For expositional convenience,

assume no negative links, Ai = f0;1g, v1=�1 < � � � < vn=�n (implying w1 < � � � < wn), and
19My network irrelevance result is fundamentally di¤erent from those of Candogan et al. (2012, Corollary

1) and Bloch and Querou (2013, Proposition 3.2). In their base models, a monopoly charges symmetric

consumers (i.e., they di¤er only in network positions) the same price regardless of the network structure. By

contrast, the w-DC contracts charge symmetric consumers di¤erent prices.
20In their main text, each agent�s payo¤ is binary (their common project either succeeds with a high payo¤

or fails with a low payo¤). But in the online appendix, they prove their results with more general payo¤

functions. To apply global-game selection, they consider the limiting case where every agent observes the

state of the world almost perfectly, i.e., their agents play a nearly complete information subgame in stage 2.
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â = a� = (1; : : : ;1). The w-SDC contracts (11) are given by

p�i (1) = ci(1)� ci(0) + vi
X

j:wj<wi

gij�j for all i 2 N:

Hence, agent i�s equilibrium payo¤ is

ui(1; : : : ;1)� p�i (1) = ci(0) + vi
X

j:wj>wi

gij�j:

Now consider a scenario in which i is linked to an additional agent j (i.e., switching from

gij = 0 to gij = 1). Agent i is strictly better o¤if wj > wi: He pays the same price but receives

additional network bene�ts. Conditional on wj > wi, he most prefers the additional agent

with the highest importance �j. By contrast, i is just as well o¤ if wj < wi: The principal

raises his price by an amount equal to his additional network bene�ts. In either case, i does

not mind having more neighbors. Therefore, if the network is endogenously formed in stage

0, a natural formation process is that each agent unilaterally forms a few links. Under this

process, agents with high weights vi=�i and/or importance �i end up having many neighbors

in equilibrium. In other words, popular agents are those who value the network a lot and

with either high or low importance. If all agents have the same valuation and can only form

one link, an assortative line network is formed in which i chooses i+1 (agent n is indi¤erent

between choosing any agent). To my knowledge, these �ndings are novel to the literature on

network formation.

4.2 Public Goods

Consider a public good/bad (hereafter good for simplicity) application in which each agent

i�s utility takes the following form:

ui(a) = ci(ai) + vih(a); (13)

where ci : Ai ! R measures his stand-alone bene�t/cost; vi 2 R++ measures his valuation

of the public good; and h : A ! R measures the size of the public good. Agents can di¤er

in four dimensions: (Ai; ci; vi) and how each agent�s actions Ai a¤ect h. For example, if
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oi = 0 2 Ai � R+ and h(a) = (
P

j �jaj)
2 then �j 2 R++ measures the relative importance

of j�s actions as in the network application (3).

For tractability, most of the literature on public goods (see, e.g., the book by Batina and

Ihori 2005) assumes actions are one-dimensional Ai � R+ and the function h takes certain

aggregate forms (e.g., summation h(
P

i ai) in the canonical model of Bergstrom et al. 1986;

weakest-link h(minifaig) and best-shot h(maxifaig) pioneered by Hirshleifer 1983). I make

neither assumption but make other assumptions on h instead, as stated shortly. Thus, my

formulation enables the study of public goods problems (e.g., air pollution) involving multi-

dimensional actions (e.g., emissions of di¤erent pollutants such as particulate matter, CO,

O3, NO2, and SO2) in practice. The following lemma shows that agents�utilities u satisfy

A1.

Lemma 5 Agents�utilities constitute a weighted potential game with w = (vi)i and

�(a) =
X
i

ci(ai)

vi
+ h(a):

To state the condition for u to satisfy A2 and A3, I �rst de�ne the modi�ed binary

relations Ch and Sh as follows.

De�nition 3 The expression ajChai (ajShai) stands for

h(ai; oj; a�ij)� h(oi; oj; a�ij) � (�) h(ai; aj; a�ij)� h(oi; aj; a�ij) 8a�ij 2 A�ij:

We can easily verify that ajCai (ajSai) if and only if ajChai (ajShai). Therefore, A2

and A3 hold if and only if they remain true when C and S are replaced by Ch and Sh,

respectively. For one-dimensional actions, they hold if (but not only if) h is supermodular

(i.e., C1) or submodular or (recall from p. 8 that) there are only two agents. Theorem 1

implies the following.

Corollary 3 Suppose A2 and A3 hold. A principal holding beliefs more pessimistic than

potential maximization o¤ers the w-DC contracts where w = (vi)i.
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The w-DC contracts rank agents in increasing order of valuation vi regardless of Ai, ci,

or h. In contrast to the network application where the optimal ranking depends crucially on

agents�importance �i (Corollary 2), the ranking is now independent of their importance to

the public good (as captured by h). The reason for these opposing results is that the public

good is non-excludable whereas the �network good�is excludable, in that an agent receives

zero network bene�t/cost whenever he rejects the o¤er.

If agents have di¤erent marginal utilities of money �i 2 R++ (the higher the poorer), after

normalization (dividing ui by �i) the w-DC contracts rank agents in increasing vi=�i. This

result uni�es existing as well as o¤ers new insights into various applications as demonstrated

below.

Vote Buying (Dal Bo 2007; Dekel et al. 2008) An interest group bribes n voters to

vote against their preferred party in a two-party election. Let Ai = foi = 0; 1; : : : ; �aig where

�ai 2 Z++ is the total number of votes i holds, and ai is the number of bribed votes from

i. Voter i�s utility is given by (13), where h(
P

i ai) 2 [0; 1] is decreasing and is the winning

probability of voters�preferred party; vi measures his preference over the voting outcome;

and ci measures his expressive preference (i.e., caring about how he votes independent of the

outcome). Corollary 3, adjusted accordingly, implies the group prioritizes voters who care

little about the outcome (as in Lindbeck and Weibull 1987) and/or are poor (as in Dixit and

Londregan 1996). Interestingly, the number of votes �ai and expressive preference ci play no

role in their ranking.21

21In fact, agents�action sets Ai play no role in the optimal ranking in the general model. In the context

of capital raising, this implies the optimal ranking to o¤er DC contracts is independent of agents�capital

endowments; this is opposite to the main �nding of Halac et al. (2020). This is due to a few modeling

di¤erences. In particular, their principal has a budget constraint, and therefore their agents receive payments

only if the principal�s project succeeds (the success probability depends on all agents�investment decisions).

By contrast, my principal has no budget constraint, and therefore her payments to agents do not depend on

other agents�actions, i.e., payments are deterministic rather than stochastic.
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Yellow Dog Contracts (Neeman 1999; Posner et al. 2010) An employer rewards

n workers for not joining a union. Let Ai = foi = 0; 1g where �0� (�1�) represents (not)

joining. Worker i�s utility is again given by (13), where h(a) is decreasing and measures

the union�s bargaining power; and vi and ci are interpreted analogously. Recall that h can

capture the di¤erences in workers�importance to the union (say, highly visible workers are

more important). Corollary 3 implies the employer prioritizes those who bene�t little from

the union (say, highly skilled workers) and/or earn low wages but not necessarily those who

are important to the union.

4.3 A Class of Binary-Action Applications

Consider the class of binary-action games Ai = foi = 0; 1g where agents�utilities satisfy

ui(1; a�i)� ui(0; a�i) = ci + vih(
X
j 6=i

aj); (14)

for some ci 2 R, vi 2 R++, and h : Z+ ! R. This class contains (but not limited to) all

symmetric binary-action games, i.e., games satisfying Condition S in Segal (1999, 2003), and

therefore can be applied to his 10 applications (e.g., network externalities, exclusive dealing,

takeovers, vertical contracting) when (14) holds. The following lemma shows that agents�

utilities u satisfy A1.

Lemma 6 Agents�utilities constitute a weighted potential game with w = (vi)i and

�(a) =
X
i

ciai
vi
+

P
i ai�1X
m=0

h(m):

We can easily verify that A2 and A3 (C1) hold if and only if h is monotone (increasing),

which is the case in most of Segal�s applications. Hence, for each application, the following

corollary characterizes the respective contracting scheme that is optimal for a large class of

beliefs.22

22Recall from p. 16 and footnote 15 that Segal solves for the optimal DC contracting scheme only in exact

potential games, whereas Bernstein�Winter consider only linear externalities. Moreover, both consider only

unique implementation.
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Corollary 4 Suppose h is monotone. A principal holding beliefs more pessimistic than

potential maximization o¤ers the w-DC contracts where w = (vi)i.

One might wonder if h(
P

j 6=i aj) could be generalized to h(
P

j 6=i �jaj) where �j measures

j�s importance as before. It turns out A1 would generally be violated with exceptions such

as (i) h is linear or (ii) n = 2. The former essentially reduces to a special case of the network

game (3), and the latter is analyzed in this footnote.23 Both demonstrate that, unlike the

public good game (13), the principal also prioritizes agents with high importance �i.

23Consider the more interesting case where h is (strictly) increasing. It is easy to verify that this 2 � 2

game is a weighted potential game with wi = vi=[h(�i) � h(0)] and �(0; 0) = 0, �(1; 0) = [c1 + v1h(0)]=w1,

�(0; 1) = [c2 + v2h(0)]=w2, and �(1; 1) = [c1 + v1h(�2)]=w1 + [c2 + v2h(0)]=w2.
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Appendix
A Proofs

Proof of Lemma 1 For all p 2 P , i 2 N , and a 2 A,

ui(a)� pi(ai) = wi�(a) + �i(a�i)� pi(ai) (by A1 and (2))

= wi�p(a) + wi
X
j 6=i

pj(aj)

wj
+ �i(a�i) (by (5))

= wi�p(a) + �
0
i(a�i): (�0i(a�i) = wi

X
j 6=i

pj(aj)

wj
+ �i(a�i))

Proof of Proposition 1 The target action pro�le â is �xed throughout the proof. For

notational convenience, the optimal contracts (10) include all agents, but only those with

âi 6= oi (i.e., belonging to N̂) matter in the linear program (9); see also footnote 9. Wlog

assume N̂ = f1; : : : ; jN̂ jg. I �rst re-express (9) in a well-known form. De�ne epi � p̂i=wi ande� : 2N̂ ! R where e�(X) = �(a) with ai = âi if i 2 X and ai = oi otherwise. Further de�ne

	(X) � e�(N̂)� e�(N̂nX). Thus, (9) is re-expressed as
maxep2RjN̂j

X
i2N̂

wiepi s.t.
X
i2X

epi � 	(X) for all X � N̂ : (15)

The set of feasible solutions is now a polyhedron associated with the set function 	. Lovasz

(1983) derives the the optimal solution ep� for submodular 	. Observe that 	 is submodular
if âjCâi for all i; j 2 N̂ because, by (1), e� is supermodular in this case. However, 	 is not
submodular if âjSâi (and not âjCâi) for some i; j 2 N̂ . The idea of solving for ep� in the
general case is to show that, under A1�A3, 	 in (15) can be replaced by another function

	, which is submodular, without altering the feasible set. Lovasz�s result then applies.

First, I derive some properties of 	 implied by A1�A3. Recall from p. 8 that A1 implies

�C is symmetric. Therefore, agents can be partitioned into several groups so that for any two

group members i and j, there exist mutual group members k1; : : : ; km 2 N̂ (m � 0) such

that âj �Câk1 �C � � � �Câkm �Câi.24 Let L � 1 be the number of groups and N̂l denote the set of
24In graph theory terms, each vertex represents an agent, and agents i and j are linked i¤ âj �Câi. Every
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group-l agents (l = 1; : : : ; L). Clearly,
S
l N̂l = N̂ and N̂l\N̂l0 = ; for all l 6= l0. Analogously,

we can express each X =
S
lXl where Xl � N̂l. For each group l, A3 implies âjCâi for all

i; j 2 N̂l. This in turn implies 	 is submodular on the restricted domain 2N̂l, i.e.,

	(Xl) + 	(X
0
l) � 	(Xl [X 0

l) + 	(Xl \X 0
l) for all Xl; X

0
l � N̂l: (16)

For each i 2 N̂l, A2 implies âjSâi for all j 2 N̂nN̂l � N̂�l. This in turn implies for all

Xl � N̂lnfig, 	(X�l [ Xl [ fig) � 	(X�l [ Xl) is non-decreasing in X�l � N̂�l, further

implying for all Xl � N̂l,

	(X�l [Xl)�	(X�l) is non-decreasing in X�l � N̂�l: (17)

Next, I de�ne 	(X) �
P

l	(Xl) and show it is submodular. Notice that 	(Xl) =

	(X \ N̂l) � 	l(X). Given the sum of submodular functions is submodular, it su¢ ces to

show each 	l is submodular: For all X;X 0 � N̂ ,

	l(X) + 	l(X
0)�	l(X [X 0)�	l(X \X 0)

= 	(Xl) + 	(X
0
l)�	(Xl [X 0

l)�	(Xl \X 0
l) � 0: (by (16))

Then, I show that the feasible set of (15), denoted by F (	), is the same as that with 	

replaced by 	, denoted by F (	). I �rst show F (	) � F (	) by showing 	 � 	. For each

X � N̂ , (17) implies

	(Xl) = 	(Xl)�	(;) � 	(X1 [ � � � [Xl)�	(X1 [ � � � [Xl�1) for l = 1; : : : ; L:

Summing the above L inequalities yields 	(X) =
P

l	(Xl) � 	(X). I next show F (	)

� F (	). If ep 62 F (	), there exists X � N̂ in whichX
l

X
i2Xl

epi =X
i2X

epi > 	(X) =X
l

	(Xl):

Therefore,
P

i2Xl epi > 	(Xl) for some l, implying ep 62 F (	).
undirected graph can be decomposed into several connected components, which are the groups I have de-

scribed.
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Finally, I apply Lovasz�s (1983, Section 3) result to (15) with 	 replaced by 	. Wlog

assume w1 � � � � � wjN̂ j. The optimal solution ep� is given by his Equation (6):
ep�i = 	(fi; : : : ; jN̂ jg)�	(fi+ 1; : : : ; jN̂ jg) for all i 2 N̂ :

It remains to simplify the above to see that ep�i = p̂�i =wi where p̂�i is given by (10). Let l(i)
denote the group agent i belongs to. The above becomes

ep�i =
X
l

	(fi; : : : ; jN̂ jg \ N̂l)�
X
l

	(fi+ 1; : : : ; jN̂ jg \ N̂l)

= 	(fi; : : : ; jN̂ jg \ N̂l(i))�	(fi+ 1; : : : ; jN̂ jg \ N̂l(i))

= e�(N̂n(fi+ 1; : : : ; jN̂ jg \ N̂l(i)))� e�(N̂n(fi; : : : ; jN̂ jg \ N̂l(i)))
= e�(f1; : : : ; ig [ N̂�l(i))� e�(f1; : : : ; i� 1g [ N̂�l(i)):

Hence, by (1), it is easy to see that ep�i = p̂�i =wi.
Last, I show that ep� is the unique optimal solution to (15) (and therefore p̂� is the unique

optimal solution to (9)) if w1 < � � � < wjN̂ j. The necessary and su¢ cient condition provided

byMangasarian (1979, Theorem 1) is that ep� remains optimal for all linear programs obtained
from (15) by an arbitrary but su¢ ciently small perturbation of the vector (wi)i2N̂ . This

condition is satis�ed because any su¢ ciently small perturbation does not alter the ranking

of wi and, therefore, ep� remains optimal.
Proof of Proposition 2 Consider a symmetric two-agent game with Ai = foi = 0; 1g,

ui(a) = 1 if a = (1; 1) and ui(a) = 0 otherwise, and U(a; p1(a1) + p2(a2)) = V (a) + p1(a1) +

p2(a2) where V (0; 0) = V (1; 1) = 0 and V (1; 0) = V (0; 1) = 1. Recall from p. 8 that A2 and

A3 are vacuous for n = 2; A1 also holds with wi = 1 and � = ui. For notational convenience,

denote pi � pi(1).

There are exactly three types of price vectors (p1; p2) leading to multiple equilibria in

stage 2: (i) pi � 0 and pj = 1, (ii) pi � 1 and pj = 0, and (iii) (p1; p2) 2 [0; 1] � [0; 1].

For the �rst type, there is a continuum of mixed equilibria in which ai = 1 with probability

1 and aj = 1 with any probability. Similarly, for the second type, there is a continuum of
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mixed equilibria in which ai = 0 with probability 1 and aj = 1 with any probability. For the

third type, there are three equilibria: (0; 0), (1; 1), and the mixed one in which ai = 1 with

probability pj.

For the �rst (second) type, all equilibria have the same potential of �pi (0). Recall

from footnote 8 that the principal can select among potential maximizers under potential

maximization. Therefore, she can always select the best equilibrium for her for both types.

For the third type, we can easily show that (i) her expected payo¤s in those three equilibria

are 0, p1+p2, and p1+p2, respectively, and (ii) the potential maximizer is (0; 0) if p1+p2 � 1

and (1; 1) if p1 + p2 � 1. Observe that potential maximization selects the best equilibrium

for her if and only if p1 + p2 � 1.

If an equilibrium selection criterion is not more pessimistic than potential maximization,

there exists a non-empty subset of the third type of price vectors f(p1; p2) 2 (0; 1]�(0; 1]jp1+

p2 > 1g in which either (1; 1) or the mixed equilibrium is selected; both yield the same payo¤

of p1+p2 > 1. If instead she o¤ers the w-DC contracts, the optimal action pro�les are (1; 0),

(0; 1), and (1; 1) by Corollary 1; in either case, her payo¤ is only 1.

Proof of Lemma 4 First, note thatX
j;k

gjk�j�kajkakj =
X
k

gik�i�kaikaki +
X
j 6=i;k

gjk�j�kajkakj

=
X
k

gik�i�kaikaki +
X
j 6=i

gji�j�iajiaij +
X

j 6=i;k 6=i

gjk�j�kajkakj

=
X
k

gik�i�kaikaki +
X
j

gij�i�jaijaji +
X

j 6=i;k 6=i

gjk�j�kajkakj (gji = gij and gii = 0)

= 2
X
j

gij�i�jaijaji +
X

j 6=i;k 6=i

gjk�j�kajkakj:
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For all i 2 N and a 2 A,

wi�(a) =
vi
�i
(
X
j

�jcj(aj)

vj
+
1

2

X
j;k

gjk�j�kajkakj) (by (12))

= ci(ai) +
vi
�i

X
j 6=i

�jcj(aj)

vj
+ vi

X
j

gij�jaijaji +
vi
2�i

X
j 6=i;k 6=i

gjk�j�kajkakj

= ui(a)� �i(a�i): (by (3) and �i(a�i) = �
vi
�i

X
j 6=i

�jcj(aj)

vj
� vi
2�i

X
j 6=i;k 6=i

gjk�j�kajkakj)

Proof of Lemma 5 For all i 2 N and a 2 A,

wi�(a) = vi(
X
j

cj(aj)

vj
+ h(a)) = ci(ai) + vi

X
j 6=i

cj(aj)

vj
+ vih(a)

= ui(a)� �i(a�i): (by (13) and �i(a�i) = �vi
X
j 6=i

cj(aj)

vj
)

Proof of Lemma 6 For all i 2 N and a�i 2 A�i,

wi[�(1; a�i)��(0; a�i)] = vi[
ci
vi
+h(1+

X
j 6=i

aj�1)] = ci+vih(
X
j 6=i

aj) = ui(1; a�i)� ui(0; a�i):

B Generic Uniqueness of the Weighted Potential Maximizer

This appendix proves that the potential maximizer of a weighted potential game is generically

unique. Suppose a game � � hN;A; ui is a weighted potential game. Given a potential

function � (together with a weight vector w 2 Rn++) of �, the maximizer of � is clearly

generically unique. However, it is unclear whether another potential function �0 (together

with another weight vector w0 2 Rn++) of � has the same maximizer(s). Therefore, the exact

statement to prove is the following. To my knowledge, this paper is the �rst to give a direct

proof of this statement.

Lemma 0 The potential maximizer(s) of a weighted potential game is independent of the

choice of the potential function.
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Proof. Suppose (w;�) and (w0;�0) are two choices of �weight-potential�pairs. By the

de�nition of weighted potential games (A1), for all i 2 N , ai; a0i 2 Ai, and a�i 2 A�i,

ui(ai; a�i)� ui(a0i; a�i) = wi[�(ai; a�i)� �(a0i; a�i)] = w0i[�0(ai; a�i)� �0(a0i; a�i)]: (18)

Denote ewi � w0i=wi. Clearly, ewi > 0 for all i. Wlog assume ew1 � � � � � ewn. It remains to
show �a 2 argmaxa2A�0(a) implies �a 2 argmaxa2A�(a). To see this, for each a 2 A,

�(�a)� �(a)

=

nX
i=1

[�(�a1; : : : ; �ai; ai+1; : : : ; an)� �(�a1; : : : ; �ai�1; ai; : : : ; an)]

=
nX
i=1

ewi[�0(�a1; : : : ; �ai; ai+1; : : : ; an)� �0(�a1; : : : ; �ai�1; ai; : : : ; an)] (by (18))

�
n�1X
i=1

ewi[�0(�a1; : : : ; �ai; ai+1; : : : ; an)� �0(�a1; : : : ; �ai�1; ai; : : : ; an)] (�a 2 argmax
a2A

�0(a))

+ ewn�1[�0(�a)� �0(�a1; : : : ; �an�1; an)]
=

n�2X
i=1

ewi[�0(�a1; : : : ; �ai; ai+1; : : : ; an)� �0(�a1; : : : ; �ai�1; ai; : : : ; an)]
+ ewn�1[�0(�a)� �0(�a1; : : : ; �an�2; an�1; an)]
�

n�2X
i=1

ewi[�0(�a1; : : : ; �ai; ai+1; : : : ; an)� �0(�a1; : : : ; �ai�1; ai; : : : ; an)] (�a 2 argmax
a2A

�0(a))

+ ewn�2[�0(�a)� �0(�a1; : : : ; �an�2; an�1; an)]
� � � � � ew1[�0(�a)� �0(a)] � 0: (�a 2 argmax

a2A
�0(a)) �

C Beliefs More Pessimistic than Potential Maximization: An Example

This appendix illustrates with an example how the set of beliefs more pessimistic than

potential maximization varies with the principal�s payo¤ function. Revisit the example on p.

28 and allow for a general V (normalize V (0; 0) = 0). Restrict attention to (p1; p2) 2 [0; 1]�

[0; 1] where all four action pro�les are rationalizable. Recall that the potential maximizer

is (0; 0) if p1 + p2 � 1 and (1; 1) if p1 + p2 � 1. It is easy to verify that the potential

maximizer is always the worst action pro�le for the principal if V = ��. As V (1; 0) or V (0; 1)
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decreases, the set of beliefs more pessimistic than potential maximization becomes larger

because those assigning positive probabilities to non-equilibria become more pessimistic. The

set also becomes larger as V (1; 1) departs from ��(1; 1) = �1. In particular, if V (1; 1) �

maxf0; V (1; 0); V (0; 1)g then the potential maximizer is the best for the principal for all

p1+p2 � 1. Hence, any belief yielding non-positive expected payo¤s for all p1+p2 � 1 is more

pessimistic than potential maximization. Similarly, ifmaxfV (1; 1); V (1; 0)�1; V (0; 1)�1g �

�2 then the potential maximizer is the best for all p1 + p2 � 1. Hence, any belief yielding a

payo¤ lower than V (1; 1) + p1 + p2 for each p1 + p2 � 1 is more pessimistic than potential

maximization.

D Suboptimality of Single Contract: An Example

This appendix illustrates with an example how o¤ering one contract to each agent might be

suboptimal. Consider a 2� 3 example where the two agents�payo¤s are given as follows:

2 1 0

1 1� p1(1); 2� p2(2) 1� p1(1);�p2(1) �p1(1); 0

0 0;�p2(2) 0;�p2(1) 0; 0

It is easy to verify that this example satis�es C1 but not A1. Suppose the principal wants

to implement â = (1; 2) as a dominance-solvable (or the unique Nash) equilibrium. If she

restricts herself to o¤ering one contract to each agent (i.e., setting p2(1)!1), she optimally

sets p1(1) = 0 (�rst to make a1 = 1 dominant) and p2(2) = 2 and obtains a revenue of 2.

The corresponding DC path is (0; 0) ! (1; 0) ! (1; 2). However, she can obtain a revenue

of 3 by setting p2(1) = 0 (�rst to make a2 = 0 dominated by a2 = 1), p1(1) = 1 (next

to make a1 = 1 iteratively dominant), and p2(2) = 2. The corresponding DC path is

(0; 0)! (0; 1)! (1; 1)! (1; 2) where agent 2 �moves�twice.
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E Violation of A2 or A3: Examples

This appendix illustrates with examples how the main result of this paper might or might

not break down if A2 or A3 is violated. Suppose N̂ = f1; 2; 3g and ui = wi� for all i wheree� (de�ned on p. 26) is given by e�(X) = 0 if jXj � 1, e�(f1; 2g) = �1, and e�(X) = 1

otherwise. Hence, 	(X) = 1 if jXj � 2, 	(f3g) = 2, and 	(X) = 0 otherwise. Observe

that â1 �Câ3 �Câ2 but â1Sâ2 (and not â1Câ2), and therefore only A3 fails. Applying the greedy

algorithm to (15) need not generate DC contracts: If w1 > w2 > w3 then it (optimally)

generates ep = (0; 0; 1), but none has a dominant strategy to accept his o¤er. Furthermore,
the algorithm need not be optimal: If w1 < w2 < w3 then it generates ep = (�1;�1; 2) (which
are the w-DC contracts (10) because epi = p̂�i =wi), but the unique optimal solution to (15) isep = (0; 0; 1) if w1 + w2 > w3.
Now make one modi�cation to e�: e�(f1; 2g) = 1 (i.e., 	(f3g) = 0). Observe that A2 fails

for every pair of target actions, and therefore A3 holds vacuously. It is easy to verify that

the unique optimal solution to (15) is ep = (0; 0; 0) for all w, and every agent has a weakly
dominant strategy to accept. Hence, the greedy algorithm is trivially optimal and generates

DC contracts.
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