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Abstract

This paper examines the welfare implications of priority service in a frictional search
environment with heterogeneous outside options. Priority search facilitates expedited
matching with public options in the market by charging a service premium. Our main
analysis demonstrates that a profit-maximizing priority search program always induces
the efficient level of market participation. The key insight underpinning our results
is the nonmonotonic relationship between the priority service premium and market
participation, which is driven by the nonexclusivity of priority search. This finding
extends to several market design details and elucidates how to simultaneously generate
revenue and regulate congestion in the presence of matching frictions.
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1 Introduction

Priority service programs are prevalent in many markets with search frictions or congestion,

whereby individuals who pay for premium service are matched more quickly than regular

participants. Notable examples of priority search include advanced booking of train

tickets by waiting lists during peak travel seasons (Hakimov et al., 2021), guaranteed tips

on ride hailing platforms during rush hours (Ashkrof et al., 2022), express toll lanes on

congested highways (Hall, 2018), expedited COVID-19 testing during the pandemic (Yang

et al., 2022), and a variety of premium memberships for services, such as amusement

parks, hotels, airlines and job matching platforms (Cui et al., 2020; Gurvich et al., 2019).1

In these marketplaces, the underlying goods or services (e.g., public transportation or

healthcare) often operate inclusively. In other words, the priority service provider does

not prevent agents from entering the market due to institutional constraints or regulatory

considerations. Instead, the service provider creates a channel for expedited matching.2

A common feature of these congested marketplaces is that individuals differ in their

access to options outside the market, which is often their private information.3 Unequal

outside opportunities may be driven by differences in transaction or participation costs,

heterogeneous waiting costs or the availability of alternatives (Akbarpour et al., 2022;

Gershkov and Winter, 2023). For instance, in a transportation setting, business travelers

have the flexibility to book air tickets at full price without discounts, while the alternatives

for budget or leisure travelers are low-speed trains or long-distance buses (Orhun et al.,

2022). In labor markets, job candidates may conduct an on-the-job or off-the-job

search (Delacroix and Shi, 2006; Faberman et al., 2022; Shi, 2009).

This paper examines the welfare implications of priority service in an environment

with search frictions and unequal outside options. The model is deliberately stylized to

be broadly relevant to many applications of priority search, although it is not intended to

1Specific examples of fee-based premier service include airline elite memberships, which offer priority
seat reservations (see https://www.ana.co.jp/en/us/amc/premium-members/benefits/reservation-priority);
premium subscriptions on job matching platforms, e.g., LinkedIn, helping candidates get hired and advance
in professional life (see https://www.linkedin.com/help/linkedin/answer/71/linkedin-free-accounts-and-
premium-subscriptions); and express passes offered by theme parks, which allow visitors to obtain front-
of-the-line access to all rides and attractions (see https://www.universalorlando.com/web/en/us/tickets-
packages/express-passes).

2For example, Ctrip, a leading online travel agency in China with millions of customers (Bloom et al., 2014),
offers two channels for booking train tickets: a paid expedited service and a standard option with no extra fees.
This arrangement is facilitated in collaboration with the China Railway Corporation, the country’s national
railway operator, which oversees the official train ticketing system.

3In long-term economic relationships, outside opportunities may be common knowledge; see Wang and
Yang (2015) for example.
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capture the details of any specific marketplace. Our analysis elucidates how to regulate

congested markets in the presence of matching frictions, such as medical resource rationing

during pandemics, job hunting and ride hailing during peak times. In our framework, each

public option inside the market involves a homogeneous indivisible good. Each agent with

unit demand has a common value for the public option and access to a private outside

option. Agents simultaneously and independently decide whether to search for public

options in the market or to opt for their heterogeneous outside options.

In a laissez-faire situation, referred to as the baseline search, each public option is

allocated through random rationing among those who visit it. In equilibrium, too many

agents enter the market relative to the efficient level. The reason is that an agent’s decision to

switch from a private outside option to a public option neglects the potential crowding-out

effect of existing matches in the market. Consequently, congestion emerges due to search

frictions and coordination failure, which has detrimental effects on total welfare.

As a natural intervention to alleviate congestion, public options may be managed by

an intermediary service provider (e.g., a platform or a third party), which charges a fee for

each entry. We refer to this arrangement as the entry fee scheme. We show that the revenue-

maximizing entry fee scheme overcorrects the congestion issue in the baseline search and

results in underparticipation relative to the efficient level of market entry. Intuitively, as the

entry fee decreases, the marginal loss in surplus extractable for the service provider is greater

than the marginal social cost. The main reason is that the former accounts for the loss in

revenue from both existing and new (if any) matches, while the social cost reflects only the

forgone outside option value of the marginal agent. Accordingly, the service provider tends

to overcharge and thereby raise the bar for market entry, which undermines social welfare.

Motivated by several practical market designs mentioned above, we introduce the

priority search program to fix these issues. Under this program, the allocation of public

options in the market is administered by a priority service provider, who facilitates expedited

matching with public options by charging a priority membership fee. Before searching

in the market, an agent can pay a fee to become a priority member, which grants him

or her a greater probability of being matched when a public option is visited by multiple

agents. Essentially, priority service reduces competition for public options by increasing

the cost of searching in the market both directly for priority members and indirectly for

nonpriority members. Note that the indirect cost to nonpriority members is embedded in

their disadvantaged matching probability relative to priority members.

Importantly, the priority search program is nonexclusive, allowing agents to freely enter
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the market and search without priority, in contrast to the entry fee scheme. By and large,

this setup accommodates both practical manifestations of the priority search program and

the strategic considerations of the service provider. On the one hand, the nonexclusivity

of priority search largely reflects the inclusivity of the underlying public options in our

motivating examples, such as public transportation or healthcare.4 On the other hand,

the literature suggests various incentives for priority service providers to offer free service

to nonpriority members, including leveraging network effects to create a thick market

(Boudreau et al., 2022; Shi et al., 2019), establishing market dominance and creating barriers

to entry (Caillaud and Jullien, 2003), enhancing user acquisition, engagement and retention

(Belo and Li, 2022), and extracting surplus through user data collection (Fainmesser et al.,

2023).

Priority search leads to three types of equilibrium behavior by agents, contingent on the

priority membership fee. Specifically, if membership is relatively inexpensive, all agents who

search for public options opt for priority service since the marginal benefit of becoming

a priority member exceeds the direct cost of the membership fee. This essentially means

that no one has priority. When the fee is moderate, market entrants adopt a mixed strategy

when making their priority membership decisions, which endogenously creates a two-tier

service queue in the matching process. This novel type of equilibrium arises due to the

nonexclusivity of the priority search program, in contrast to the exclusivity of the entry fee

scheme.5 With a sufficiently high membership fee, none of the agents becomes a priority

member, which degenerates to the case of the baseline search.

Based on the different types of equilibrium behavior, we first establish that the impact

of the priority membership fee on market entry is nonmonotonic. In the case of low

fees, priority service deters market entry monotonically as the direct cost of market entry

increases. However, as the membership fee increases, fewer market entrants become

priority members, which reduces the indirect cost of market entry for nonpriority members,

thereby encouraging greater market entry. This important insight underpins our main result

that the revenue-maximizing priority search program induces the efficient level of market

4Note that we abstract away from the pricing decision of the public option. The reason is that the service
provider acts as an intermediary, facilitating matches between agents and public options without direct control
over their pricing. In practice, the pricing of the public option may be regulated due to its inclusive nature.
Typically, governments allocate limited public resources–such as public housing, vehicle licenses, irrigation
water and land–either at fixed, low prices or through nonprice mechanisms, driven primarily by concerns
for equity (Akbarpour et al., 2024b; Li, 2017; Lui and Suen, 2011; Wade, 1984). For instance, in our motivating
example, train ticket prices in China remain relatively constant and do not fluctuate, even during peak seasons.

5Under the entry fee scheme, the equilibrium behavior of the agents involves only pure strategies of
searching in the market or not, and the entry threshold changes monotonically with respect to the fee.
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participation.

Intuitively, the tradeoff faced by the priority service provider centers on charging a

higher membership fee versus incentivizing membership enrollment, where the latter is

closely aligned with, but not equivalent to, encouraging broader market entry. Notably,

the monopolistic service provider’s market power is constrained by the nonexclusivity of

the priority service in that agents may enter without priority membership and potentially

obtain a public option at no cost. When the membership fee is sufficiently low such that

every entrant opts for priority, the priority search program operates similarly as the entry

fee scheme, and hence, the service provider can increase revenue by charging a higher fee.

However, due to the nonexclusivity of priority search, a higher membership fee triggers

nonpriority search where more agents enter without purchasing priority membership. With

declining membership enrollment, the service provider cannot further boost revenue by

increasing the fee. As a result, the presence of nonpriority search mitigates the monopolist’s

incentive to extract additional surplus. At the threshold for triggering nonpriority search,

the marginal agent is indifferent among three choices, namely, entering the market with

priority, entering without priority, or taking the outside option. In particular, the expected

payoff of an agent entering without priority is determined by the likelihood of a public

option not visited by priority members, which also represents the marginal social benefit of

an additional entry. Consequently, the revenue-maximizing priority membership fee, which

is equal to the difference in the expected payoff of searching with priority and that without

priority at the triggering threshold, fully internalizes the marginal social cost of market entry

and thereby implements the socially efficient level of participation.

Our main results apply to a wide range of settings regardless of the distribution of

outside options. In a richer environment where agents are heterogeneous in both their

outside options and their valuations of public options, our analysis suggests that the priority

search program improves entry efficiency and social welfare more than alternative market

interventions with entry fees do. In several extensions, we show that the welfare-improving

property of the priority search program is robust to the matching technology, the market

size and the timing of membership fee payment.

Overall, our findings indicate that the priority search program is more advantageous

than the entry fee scheme in terms of simultaneously regulating the market density and

improving social welfare. Essentially, under the priority search program, the monopolistic

service provider has less market power characterized by a smaller range of realizable

revenue relative to its counterpart under the entry fee scheme, which prevents the priority
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service provider from overcharging on the membership fee. In this regard, the priority

search program provides a potential channel for simultaneously generating revenue and

regulating congestion, which is a well-recognized challenge that service providers face

when managing service systems (Feldman and Segev, 2022). Moreover, our finding that

the optimality of priority search is achievable by a monopoly, regardless of the market

details, has important antitrust policy implications and provides novel regulatory insights.

Note that by imposing a proper price cap on the entry fee scheme, entry efficiency can

also be achieved. However, such a price regulation would require the market designer or

regulator to obtain precise information about the market primitives, such as the market

size and the distribution of outside options. These details may change frequently and are

often less accessible to regulators than to monopolists (Guo and Shmaya, 2023). Hence,

our study provides novel insights into the classic and challenging problem of monopoly

regulation (Baron and Myerson, 1982) by considering implementable mechanisms rather

than imposing price constraints (Armstrong, 1999; Galenianos et al., 2011; Lewis and

Sappington, 1988a,b).

The remainder of this paper is organized as follows. In the rest of this section, we discuss

the related literature and our contributions. Section 2 presents the model and baseline

analysis. We analyze the priority search program in Section 3. Section 4 generalizes our

framework to accommodate heterogeneous preferences for public options and examines a

multitier priority search program. We explore several extensions in Section 5. Finally, we

offer concluding remarks in Section 6. All proofs are provided in the Appendix.

1.1 Related Literature and Contributions

This paper contributes to a large body of economics research on rationing and priority

service design by analyzing their welfare implications in a search environment with unequal

outside options. The classic works of Harris and Raviv (1981), Chao and Wilson (1987) and

Wilson (1989) examine priority pricing in environments with uncertain supply or demand.

More recent studies have focused on the effect of priority service on consumer surplus in

a queuing framework (Gershkov and Winter, 2023) and the role of priority pricing as an

instrument for a durable goods monopolist to mitigate the inability to commit to future

prices (Correia-da Silva, 2021). Our paper also connects to a parallel line of operations

research literature on pay-for-priority schemes in queuing, where customers who pay a

premium price gain priority over those who do not (Afèche et al., 2019; Cui et al., 2020;

Gurvich et al., 2019; Mendelson and Whang, 1990).
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Priority services sometimes manifest as informal or illegal market arrangements, such as

speed money or bribery (Kleinrock, 1967; Lui, 1985).6 For instance, in the allocation of scarce

public resources, market participants face long waiting times, leading to congestion under

the rationing by waiting system (Barzel, 1974; Nichols et al., 1971; Polterovich, 1993; Sah,

1987). In these marketplaces, the effects of introducing a fee-based priority service into the

system remain controversial and are often context dependent. For instance, Kulshreshtha

(2007) find that speed money reduces the cost of waiting and improves allocation efficiency.

In contrast, Budish et al. (2015) and Hakimov et al. (2021) argue that existing priority-based

services in the form of high-frequency trading arms races in financial exchanges and black

markets for appointments in online booking systems represent a flawed market design. Our

study contributes to these discussions by providing the novel insight that efficient market

entry in a frictional search environment can be achieved by a monopolistic priority service

provider.

Our paper also complements recent market design literature advocating non-fee-based

priority systems in markets without monetary transfers. For instance, in health care,

rationing by priority is effective in promoting aggregate incentives to register as deceased

organ donors and enhancing social welfare (Kessler and Roth, 2012; Kim and Li, 2022; Kim

et al., 2021) as well as reducing organ wastage in transplantation (Tunç et al., 2022). Priority

systems are also useful in the allocation of vaccines, ventilators, and other scarce health

resources (Akbarpour et al., 2024a; Pathak et al., 2020b) and in the design of COVID-19

testing queues (Yang et al., 2022).

A distinct feature of our framework, compared to the extant literature broadly related to

priority services, is the consideration of priority search in the presence of unequal outside

options. A growing body of research has underscored that heterogeneity in outside options

is important in many classical settings and crucially affects standard results. Board and

Pycia (2014) find that when buyers have an outside option that they may exercise each

period, the idea of negative selection that drives the Coase conjecture fails. Hwang and

Li (2017) study the effect of the transparency of outside options in bilateral bargaining.7

Akbarpour et al. (2022) examine the welfare implications of unequal outside options in

centralized school choice.8 Other studies have shown that the presence of outside options

6These services are also known as priority auctions, where priorities in a service system are determined by
a bidding mechanism; see Hassin (1995) and Afèche and Mendelson (2004), among others.

7The effect of outside options in bargaining with asymmetric information has also been examined by
Compte and Jehiel (2002), Fuchs and Skrzypacz (2010), Lee and Liu (2013) and others.

8An increasing number of papers have explicitly modeled or empirically studied outside options in many
other assignment problems without monetary transfers, including Avery and Pathak (2021), Kapor et al. (2020),
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substantially changes the optimal selling mechanism (Chang, 2021).9 We advance this

line of research by studying the welfare implications of priority search in the presence of

heterogeneous outside options.

Finally, the matching process in our model relates to the substantial literature on

search with capacity and mobility constraints, e.g., Peters (1984, 1991), Montgomery (1991),

Acemoglu and Shimer (1999), Burdett et al. (2001) and Lester (2011). By embedding priority-

based allocation mechanisms into a frictional search environment, our study provides novel

insights into analyzing and improving welfare in frictional and congested marketplaces

using a market design approach. More broadly, our focus on entry efficiency in markets

with search and matching frictions is related to the widely discussed Hosios condition

(Hosios, 1990; Mangin and Julien, 2021; Mortensen and Wright, 2002), which characterizes

the condition for efficient market participation in a competitive search framework. The

distinctive feature of our study is that we use a market design approach to resolve the

inefficiency problem through the priority search program. More interestingly, optimality

is achieved mostly by the tangency condition in previous studies, whereas the optimum

occurs at a kink in our paper, which has no analog in the literature.

2 Model and Baseline Analysis

There is a continuum of agents with measure α and a unit mass of public options.10 Each

public option involves one unit of a homogeneous indivisible good. Each agent has a unit

demand, which can be satisfied through either a public option inside the market or the

agent’s private outside option. Agents simultaneously and independently decide where to

visit, namely, whether to stay outside and opt for private outside options or enter the market

and search for a public option, thus forgoing outside options. Along the line of Burdett

et al. (2001), we assume that there is no coordination among agents and focus on symmetric

equilibrium throughout the analysis. Specifically, agents follow a symmetric threshold for

market entry, and upon entry, all entrants adopt a symmetric mixed strategy of visiting each

public option with equal probability.11

If agent i stays with his or her private outside option, his or her utility gain is vi , which is

and Arnosti and Randolph (2022).
9Earlier studies on mechanism design problems with private outside options include Lewis and Sappington

(1989), Rochet and Stole (2002), Jullien (2000), and Lehmann et al. (2011), among others.
10The reciprocal of α is often referred to as market tightness in the labor search literature. Our results carry

over to a finite market scenario with I ≥ 2 agents and J ≥ 1 public options, as discussed in Section 5.2.
11Under the priority search program, market entrants further decide whether to obtain priority membership,

as discussed in Section 3. We focus on symmetric decisions regarding priority membership enrollment.
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independently and identically distributed (iid) onR+ with a smooth cumulative distribution

function (CDF), denoted by F (v), and probability density function (PDF), denoted by f (v). If

he or she obtains a public option, his or her utility gain is normalized to w = 1.12 Otherwise,

he or she gains zero utility.

2.1 Baseline Search Equilibrium

In the laissez-faire situation, referred to as the baseline search, there is no restriction on

market entry, and upon entry, there is no expedited matching service. If a public option is

visited by only one agent, this agent obtains the market good. When multiple agents search

for the same public option, conflicts emerge, and random rationing is applied; that is, one

agent is randomly and uniformly selected to receive the market good. In this regard, the

aggregate meeting process is essentially a limiting case of the canonical urn-ball matching

environment13 and the matching functions are as specified in the following lemma.

Lemma 1. Consider a measure of m agents who enter the market and search for public

options. Under symmetric mixed strategies, the (conditional) matching probability for each

entrant is H(m) = (1− e−m)/m if m > 0 and H(0) = 1, and a public option in the market

remains unmatched with probability S(m) = e−m .

Under the baseline search, a symmetric equilibrium of market entry is characterized by

a threshold outside option value ve such that the optimal strategy for agent i is to enter the

market if vi < ve ; otherwise, the agent should opt for his or her outside option. Intuitively,

agents with poor outside options are more likely to enter the market. When each agent

follows the symmetric market entry threshold ve , the proportion of agents searching for

public options is F (ve ), and the demand-supply ratio in the market is αF (ve ). It follows

that each agent’s conditional matching probability is H(αF (ve )). In the baseline search

equilibrium, we have the following indifference condition for the market entry threshold:

ve = H(αF (ve )). (1)

Since the matching function H(m) is strictly decreasing in m, there always exists a unique

symmetric equilibrium under the baseline search.

12We extend the analysis to a setting with heterogeneous valuations of public options in Section 4.
13The canonical “urn-ball” matching environment (Blanchard and Diamond, 1994; Hall, 1979; Kim and

Camera, 2014; Peters, 1991; Pissarides, 1979) entails a frictional assignment involving I balls (agents) and J
urns (public options), where the balls are assumed to be randomly assigned to the urns.
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2.2 Efficient Market Entry

To determine the efficient level of market entry, we consider the optimal threshold for

entering the market that maximizes the social surplus or welfare, measured by the aggregate

expected utility of agents, subject to coordination frictions. This formulates a constrained

social planning solution similar to that in Mangin and Julien (2021) and Teh et al. (2024).

Given a threshold for market entry, denoted by v , since the measure of public options is

normalized to one, the expected social surplus is given by

W (v) =αF (v)H(αF (v))+α[1−F (v)]E (vi |vi ≥ v) . (2)

Specifically, the first and second terms on the right-hand side of the above equation measure

the total expected utility of agents who search for public options in the market and those

who opt for their private outside options, respectively. Accordingly, the unique threshold for

efficient market entry vs satisfies

vs = S(αF (vs)). (3)

To understand this optimal condition, we consider the social consequences associated

with the entry decision by a marginal agent, who has an outside option value vs . If this agent

enters the market and searches for public option j , he or she makes a positive contribution

to the social surplus only if j is still available, that is, if none of the other entrants visit j ,

which occurs with probability S(αF (vs)) based on Lemma 1. If this agent stays outside the

market, he or she receives vs , which captures the social cost of his or her entry. Equation (3)

essentially means that the expected social surplus is optimized when the social benefit and

cost associated with the entry decision are equal. The following proposition compares the

level of market entry in the baseline equilibrium with the efficient level.

Proposition 1 (Congestion in the baseline equilibrium). The baseline search results in

market congestion relative to the efficient level of market participation, that is, vs < ve .

Proposition 1 indicates that the baseline search intensity of the agents is higher than

the efficient level. This result holds regardless of market tightness, that is, whether there

is a shortage or abundance of market goods. Intuitively, when agent i enters the market

and searches for public option j while forgoing his or her outside option, the individual

opportunity cost is simply the outside option value vi . However, due to possible conflicts

with other agents in the market, the associated social cost additionally accounts for the

expected loss from crowding out a possible match between j and another agent i ′. In other

words, individual entry decisions fail to account for the negative externalities imposed on
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other agents in the market. Both the individual and social benefits are captured by the

enlarged matching opportunity with a public option for the entering agent i . Hence, the

misalignment between the social cost and private cost of market entry triggers coordination

failure among market participants, which leads to overparticipation and market congestion

under the baseline search.

2.3 Entry Fee Scheme

To alleviate congestion, a first natural intervention is to impose an entry fee. We refer to

such a practice as the entry fee scheme and assume that the fee is charged by a third-party

intermediary or a platform that facilitates the matching service for the public options. The

timeline is as follows. The service provider first sets an entry fee p ≥ 0. After observing p,

agents simultaneously and independently decide whether to search for a public option in

the market by paying p or to accept their private outside options. Thereafter, the matching

process is governed by random rationing, similar to that in the baseline environment.

Throughout the analysis, the fee is treated as a transfer from the agents to the service

provider. Hence, the entry fee scheme does not introduce any direct welfare effect.

Under the entry fee scheme, the conditional matching probability for each entrant

follows from that under the baseline search because the service provider does not intervene

in the matching process but only charges a fee for market entrance. Given a fixed fee p, a

symmetric equilibrium among the agents in the second stage is characterized by a threshold

v(p) such that agent i searches for a public option if and only if vi ≤ v(p).14 Accordingly,

v(p) satisfies the following indifference condition:

H(αF (v))−p = v . (4)

Since H(m) is strictly decreasing in m, it follows that for any fixed p ∈ [0,1], there exists a

unique v(p) satisfying the above equation.15

In the first stage, the service provider’s expected revenue is αF (v)p. By backward

induction, we substitute Equation (4) into the service provider’s revenue function, which

hence can be expressed in terms of the entry threshold as

πp (v) = 1−S(αF (v))−αF (v)v . (5)

Intuitively, 1 − S(αF (v)) measures the total surplus gains that can be achieved through

14For notational simplicity, we omit the dependence of v(p) on p whenever it is clear from the context.
15Since the value of the public option is normalized to one, we only need to focus on p ∈ [0,1]. If p > 1, then

v(p) = 0.
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matching each public option with an agent. Based on Equation (4), the last term on the

right-hand side of Equation (5), αF (v)v , represents the total expected payoff of market

entrants. Hence, the difference between 1−S(αF (v)) andαF (v)v represents the total surplus

extractable for the service provider.

Proposition 2 states that under the entry fee scheme, the threshold for entry induced

by the revenue-maximizing fee p∗, denoted by vp ≡ v(p∗), is always lower than the

efficient level of market entry. This result indicates that the entry fee scheme overcorrects

the congestion issue under the baseline search, leading to underparticipation. Figure 1

illustrates the results for Propositions 1 and 2.

Proposition 2 (Overcorrection of the entry fee scheme). Compared to the efficient level of

market entry, the revenue-maximizing entry fee scheme leads to underparticipation, that is,

vp < vs .

v

W
el

fa
re

/R
ev

en
u

e

W (v)

underparticipation

congestion

πp
(
v(p)

)

vevsvp

Figure 1: Overcorrection of the entry fee scheme

Note: This figure plots the service provider’s revenue πp (v(p)) under the entry fee
scheme and the total welfare W (v). The horizontal axis represents the threshold
value of market entry, which indicates that agents whose outside option value is lower
than the threshold search in the market for public options. Specifically, vp and ve

denote the equilibrium thresholds under the entry fee scheme and the baseline search,
respectively, where vs is the threshold of efficient market entry.

To understand the intuition behind this result, we first observe that based on Equation

(4), the threshold for market entry v(p) is decreasing in p. Indeed, a higher entry fee makes

the public option less attractive. Thus, from the service provider’s perspective, choosing p is

strategically equivalent to choosing v(p), as in Equation (5). Next, we consider the tradeoff
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faced by the service provider. On the one hand, by increasing p, or equivalently, raising the

barrier to market entry, fewer agents enter the market; hence, each public option is less likely

to be matched with an agent. On the other hand, a higher p means that each entrant obtains

a lower expected payoff, which, in turn, from the service provider’s perspective, indicates a

gain in surplus extractable from the remaining entrants.

These countervailing forces behind the service provider’s incentive pinpoint the key

force at work in Proposition 2. To illustrate the intuition, we examine the impacts of a

marginal decrease in the entry threshold at the efficient level vs , i.e., a higher p. The

marginal cost of the service provider is captured by the decrease in surplus extractable from

the trading with the marginally exiting agents. Specifically, it is the difference between

the lost matching opportunities and the expected payoff of the marginal agents exiting

the market. The service provider’s marginal benefit comes from the increase in surplus

extractable from the remaining entrants. From a welfare perspective, the social loss,

captured by the lost matching opportunities with public options, is exactly compensated by

the associated social benefit, derived from the outside option value of marginal agents who

stay out of the market. Regarding the trading surplus generated from each trade, because

the compensation guaranteed to each entrant exactly matches his or her outside option

value based on Equation (4), the marginal cost to the service provider is zero; hence, his or

her marginal net benefit is positive when decreasing v at vs . Accordingly, the extra benefit

to the service provider, captured by the gain in surplus extractable from the remaining

entrants, induces him or her to further increase p and hence lower the entry threshold at vs .

Therefore, the revenue-maximizing fee induces a lower threshold for market entry relative

to the efficient level.

3 Priority Search

The priority search program facilitates expedited matching with the public option and

proceeds in two stages. First, the priority service provider sets a priority membership fee

r ≥ 0. In the second stage, after observing r , each agent decides whether to enter the market

to search for a public option and to pay the fee to become a priority member, referred to as

a PM.16 Based on the entry decisions and priority membership statuses, a public option is

first allocated among the PMs (if any) uniformly and randomly and then among all the non-

16Our results are robust to the timing of the payment of the priority service fee. In the main analysis, the
service fee is paid upfront, i.e., before agents and public options are matched. In Section 5.3, we analyze the
priority search scheme with deferred payments, where agents may opt for priority membership first and defer
service fee payments until they are successfully matched with public options.
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PMs in the market. In other words, under priority search, a PM has a greater chance of being

matched than a non-PM does. Moreover, within the same priority status group, the good is

allocated through random rationing. Essentially, the priority search program operates as a

tie-breaking device by differentiating the agents in terms of matching probabilities.

Using backward induction, our analysis begins by deriving agents’ decisions on market

entry and priority membership under different levels of priority fees in the second stage of

the game. Thereafter, we consider the optimal priority membership fee set by the priority

service provider who aims to maximize total revenue. Similar to the previous discussion, the

priority membership fee, as a transfer, does not introduce any direct welfare effect.

3.1 Agents’ Decisions

We use H p and H n to denote the probabilities of being matched with a public option for the

PMs and the non-PMs upon market entry, respectively, which are endogenously determined

by agents’ equilibrium strategies. Since PMs are prioritized over non-PMs during the

matching process under priority search, we must have H p > H n . Given a fixed priority

membership fee r , the payoff of agent i contingent on his or her priority membership status

and entry decision is specified as follows:

Entry decision

In Out

Membership
decision

PM H p − r vi − r

Non-PM H n vi

where H p − r and H n denote the expected payoffs of entering the market as a PM and non-

PM, respectively, and vi − r and vi are the payoffs of the agent choosing his or her outside

option as a PM and a non-PM, respectively. Alternatively, the payoff functions of agent i as a

PM and a non-PM can be expressed as up (vi ) = max{H p−r , vi −r } and un(vi ) = max{H n , vi },

respectively.

To analyze agents’ behavior, we focus on a symmetric equilibrium of agents’ decisions

concerning market entry and priority membership. The following observations based on

the payoff functions are useful for characterizing the equilibrium behavior of the agents.

First, it is a dominated strategy to stay outside the market and become a PM. Second, agents

with attractive outside options, i.e., a high vi , will not enter the market. Third, conditional

on entering the market, an agent’s payoff no longer depends on his or her outside option.

Accordingly, for each fixed r , the equilibrium entry decisions are determined by a

threshold outside option value, denoted by v(r ), below which agents choose to search for
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a public option. Additionally, the decisions regarding priority membership hinge on the

relative sizes of H p − r and H n , as illustrated in Figure 2. Intuitively, when the priority

membership fee r is relatively small, every market entrant has an incentive to become a PM

to gain an advantage in the matching process. In contrast, agents tend to enter the market

without priority membership when r becomes substantially large.

When the priority fee is at an intermediate level, the market entrants are indifferent

between becoming a PM and not. Interestingly, the priority fees that support the

intermediate case, i.e., Figure 2(b), do not constitute a measure-zero set, as shown in our

subsequent analysis. These discussions suggest that in equilibrium, an agent’s priority

membership decision is captured by the likelihood of becoming a PM conditional on

entering the market, denoted by θ(r ) ∈ [0,1].

Given a priority fee r , the second-stage equilibrium is characterized by the threshold

for market entry v(r ) and the likelihood of becoming a PM θ(r ) ∈ [0,1].17 In equilibrium,

an agent enters the market if and only if his or her outside option value is less than v(r );

and conditional on entry, he or she purchases the priority membership with probability

θ(r ). Due to coordination failure, agents in the market visit each public option with equal

probability, regardless of their membership status. The probability of an agent searching

for a public option as a PM is θF (v), whereas that for an agent entering without priority

membership is (1−θ)F (v) . The matching probabilities contingent on membership status

are as follows.

Lemma 2 (Membership-contingent matching probabilities). Let v denote the threshold for

market entry and θ represent the proportion of market entrants with priority membership.

When θ ∈ (0,1], the conditional matching probability for the PMs is

H p (v ,θ) = H(αθF (v)). (6)

When θ ∈ [0,1), the conditional matching probability for the non-PMs is

H n(v ,θ) = S(αθF (v))H(α(1−θ)F (v)). (7)

In the limiting cases, we have H p (v ,0) = 1 and H n(v ,1) = S(αF (v)).

The PMs compete only within their own priority group under priority search; hence, the

demand-supply ratio is αθF (v), which immediately implies Equation (6). To understand

Equation (7), we decompose its right-hand side into two parts. First, for non-PMs, a

necessary condition for having a positive chance of being matched with a public option

17For notational simplicity, we suppress the dependence of v(r ) and θ(r ) on r in the following analysis.
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is that this option is not visited by any priority member, which occurs with probability

S(αθF (v)) based on Lemma 1. In other words, the public option must “survive” the

competition among PMs before being considered by non-PMs. Second, conditional on a

public option being still available, the demand-supply ratio becomes α(1−θ)F (v) among

non-PMs, which leads to a matching probability of H(α(1 − θ)F (v)). Accordingly, the

marginal benefit of becoming a PM for an entrant is H p −H n .18

An immediate observation from Lemma 2 is that H p (v ,1) = H n(v ,0) = H(αF (v)) for

any v . This observation is intuitive because when all the market entrants have the same

priority membership status, i.e., either they are all PMs or they are all non-PMs, the

conditional matching probability with a public option is the same as that under the baseline

search. Accordingly, H p (ve ,1) = H n(ve ,0) = H(αF (ve )) = ve , which follows from the baseline

equilibrium in Equation (1). In the limiting case of θ = 0, namely, no agent purchases a

priority membership, as long as an agent becomes a PM, he or she always obtains a market

good, regardless of which public option he or she visits. Thus, H p (v ,0) = 1. At the other

extreme with θ = 1, that is, when everyone else in the market is a PM, a marginal entrant

without priority membership can be matched with a public option if and only if that option

has not yet been visited by anyone else. Hence, we have H n(v ,1) = S(αF (v)). Accordingly, it

follows from the efficient entry in Equation (3) that H n(vs ,1) = vs .

Based on the cost and benefit of becoming a PM, there are three types of priority search

equilibrium classified by the fraction of entrants with priority membership θ(r ). When r is

relatively small, every agent who enters the market purchases priority membership. As r

increases, only a fraction of the entrants opt for priority membership, while the remainder

enter the market without priority. When r becomes sufficiently large, none of the entrants

chooses to obtain priority membership.

As shown in Figure 2(a), when H p − r > H n , up (v) > un(v) for all v < v(r ); hence, all

the market entrants become PMs. We refer to this case as the type-I equilibrium, in which

θ(r ) = 1 and the entry threshold v(r ) satisfies19

H p (v ,1) = H(αF (v)) = v + r ,

H p (v ,1)−H n(v ,1) > r .
(L1)

When H p − r = H n , we have the type-II equilibrium, as illustrated in Figure 2(b). In this

case, up (v) = un(v) for all v < v(r ), which implies that all the market entrants are indifferent

18For notational simplicity, we omit the dependence of v(r ) and θ(r ) on r in the expressions for
H p (v(r ),θ(r )) and H n(v(r ),θ(r )) in the following analysis.

19Specifically, given a membership fee r , the entry threshold v(r ) is determined by the equality condition in
(L1), and meanwhile, r and v(r ) must satisfy the inequality condition in (L1).
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between obtaining a priority membership and not. Therefore, each agent adopts a mixed

strategy θ(r ) ∈ [0,1] for his or her priority membership decision. Accordingly, the type-II

equilibrium variables v(r ) and θ(r ) are jointly determined by

H p (v ,θ) = H(αθF (v)) = v + r ,

H n(v ,θ) = S(αθF (v))H(α(1−θ)F (v)) = v .
(L2)

Finally, if H p − r < H n , there are no PMs in the type-III equilibrium such that θ(r ) = 0 and

the entry threshold v(r ) satisfies

H n(v ,0) = H(αF (v)) = v ,

H p (v ,0)−H n(v ,0) < r .
(L3)

which is essentially equivalent to the baseline equilibrium.

O
v

H pv(r )H n

H n

H p − r

un(v)

up (v)

(a) Type-I equilibrium

O
v

v(r ) H p

H p − r
= H n

un(v)

up (v)

(b) Type-II equilibrium

Figure 2: Different types of equilibrium under priority search

Based on these equilibrium conditions, we derive the following comparative statics for

the equilibrium variables (v ,θ) with respect to the priority membership fee r .

Proposition 3 (Comparative statics). Consider a symmetric priority search equilibrium

characterized by (v ,θ). If it satisfies the type-I equilibrium condition (L1), then

∂v

∂r
< 0.

If it is a type-II equilibrium as defined by condition (L2), then

∂v

∂r
> 0 and

∂θ

∂r
< 0.

Proposition 3 establishes that the effect of the priority membership fee on the degree

of crowdedness in the market, as measured by αF (v), is not monotonic. Intuitively, both
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a free priority service and a substantially expensive service induce the same threshold for

market entry. This fact also follows from the indifference equations under conditions (L1)

and (L3) since H p (v ,1) = H n(v ,0). As r increases, the priority search equilibrium transitions

from type-I to type-II and then to type-III. Specifically, when r is relatively small, it induces

a type-I equilibrium with θ = 1, in which case the market becomes less congested as r

increases. This result occurs because the priority membership fee directly increases the cost

of market entry by inducing every participant to pay the fee, which reduces the propensity to

compete for public options. In this regard, the type-I equilibrium under the priority search

program is analogous to the entry fee scheme analyzed in Section 2.3. When r increases

further, the equilibrium becomes type-II. In this case, more agents enter the market with

a larger v , whereas fewer market entrants become PMs with a smaller θ as the priority

membership fee escalates. This outcome stands in contrast with the entry fee scheme

because the priority service provider cannot prevent non-PMs from entering the market

and being matched with a public good. A sufficiently large r leads to a type-III equilibrium,

which is essentially equivalent to the baseline equilibrium. In such a scenario, no agents opt

for priority membership, and hence, r no longer has an impact on market entry.

To determine the regions of equilibrium, it follows from the above analysis that the

boundaries of the three types of equilibrium correspond to the type-II equilibrium at θ = 0

and θ = 1. When θ = 1 in a type-II equilibrium, H n(v ,1) = v = S(αF (v)), which coincides

with the efficient entry characterized by Equation (3). Hence, we have v = vs when θ = 1.

Similarly, when θ = 0, H n(v ,0) = H(v) = v , which suggests that v = ve based on Equation

(1). Accordingly, the boundaries of the different types of equilibrium are determined by the

relative gain in becoming a PM over a non-PM at θ = 0 and θ = 1, that is, r = H p (ve ,0)−
H n(ve ,0) and r = H p (vs ,1)− H n(vs ,1), with r < r . These arguments lead to an important

observation that v ∈ [vs , ve ] for all three types of equilibrium. In other words, the effective

domain of the entry threshold induced by the priority search program is bounded below

and above by the agents’ equilibrium behavior. This critical insight underpins our ensuing

analysis of the priority service provider’s optimal decision.

Proposition 4 establishes the existence and uniqueness of a priority search equilibrium

and provides a unified indifference condition for market entry.

Proposition 4 (Priority search equilibrium). For each fixed priority membership fee r ≥ 0,

there exists a unique symmetric equilibrium under priority search, which is characterized by

the threshold entry type v and the fraction of priority members θ ∈ [0,1]. As r increases, the

optimal decisions of agents follow
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• the type-I equilibrium with θ = 1 and v determined by condition (L1) if r < r ;

• the type-II equilibrium with θ and v determined by condition (L2) if r ∈ [r ,r ];

• the type-III equilibrium with θ = 0 and v determined by condition (L3) if r > r ,

where r = H p (vs ,1)− H n(vs ,1) < r = H p (ve ,0)− H n(ve ,0). In each type of priority search

equilibrium, we have

v +θr = H(αF (v)). (8)

In Equation (8), the two sides represent the threshold entrant’s ex ante cost and benefit

of entering the market. Specifically, on the left-hand side, v , as the threshold outside option

value, is the opportunity cost of entering the market, and θr is the expected payment of

the priority membership fee. The right-hand side of Equation (8) represents the expected

matching benefit for an agent searching for a public option, which is contingent on his or her

membership status, i.e., θH p (v ,θ)+ (1−θ)H n(v ,θ). Alternatively, it can be regarded as the

conditional matching probability when all other agents have the same priority membership

status, i.e., H n(v ,0) = H p (v ,1) = H(αF (v)).

3.2 Service Provider’s Decision

Based on the equilibrium behavior of agents corresponding to different levels of the priority

membership fee, we analyze the priority service provider’s optimal decision r ∗ and show

that it leads to the efficient level of market participation. The payoff of the priority service

provider comes from the membership fees collected from the PMs. His objective is to

maximize the expected revenue while accounting for the proportion of agents entering the

market and the probability of each entrant becoming a PM. Given the optimal decisions of

agents in Proposition 4, the priority service provider’s revenue maximization problem can

be formulated as

r ∗ = argmax
r≥0

αθF (v)r ,

where the threshold for market entry v and the proportion of PMs θ are determined by

the conditions (L1) ∼ (L3). Note that since θ = 0 when r > r in the type-III equilibrium,

we only need to focus on the type-I and type-II equilibrium, i.e., r ∈ [0,r ], to analyze the

service provider’s decision. The equilibrium behavior of agents clearly suggests that the

priority service provider faces a tradeoff between a higher priority fee and more membership

enrollment along with increased market entry.
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According to Equation (8), the priority service provider’s decision problem is equivalent

to the following problem expressed in terms of v :

max
v∈[vs ,ve ]

πr (v) =α [H(αF (v))− v]F (v). (9)

This expression suggests that choosing a membership fee is equivalent to choosing an entry

threshold. We use vr ≡ v(r ∗) to denote the solution of the above problem. Interestingly,

the above revenue function πr (v) has the same functional form as πp (v) in Equation (5).

The reason is that the service provider, regardless of whether he imposes an entry fee or

charges a premium membership fee, effectively chooses the threshold for market entry

under both mechanisms. On the right-hand side of Equation (9), the termαH(αF (v))F (v) =
1− S(αF (v)) has the same meaning as in Equation (5), which captures the total expected

utility gains from matching all the public options. Similarly, based on the equilibrium

characterization in Equation (8), the second term, αF (v)v , represents the total expected

utility of the matched agents, that is, the aggregate matching surplus less the total expected

payment of priority membership fees, which is specified byαF (v)v = 1−S(αF (v))−αθF (v)r .

Nevertheless, a critical difference between these two schemes is that the effective domain of

the entry threshold is restricted to v ∈ [vs , ve ] under priority search, in which πr (v) is always

decreasing.

Theorem 1 states our main result that the optimal priority membership fee is at the

margin between the type-I equilibrium and the type-II equilibrium, which induces the

efficient threshold for market entry. This result suggests that for any degree of market

tightness, introducing a monopolistic priority service provider can always remedy the

congestion problem. More crucially, this intervention induces the efficient level of market

entry. A direct implication is that the aggregate surplus under the entry fee scheme analyzed

in Section 2.3 is lower than that under the priority search program.

Theorem 1 (Optimality of priority search). The revenue-maximizing priority membership fee

under the priority search program satisfies r ∗ = r . Accordingly, market participation reaches

the efficient level, i.e., vr = vs .

Compared to the baseline search, providing differentiated services for agents in terms

of matching probabilities increases the cost of market entry for PMs directly and for non-

PMs indirectly. The reason is that agents who enter the market as PMs need to pay

the additional priority membership fee, whereas the additional costs for the non-PMs

are the disadvantaged matching probability relative to the PMs. Hence, introducing the

priority search program can reduce participation and mitigate congestion. From the service
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provider’s perspective, the tradeoff is between a higher priority membership fee and more

priority members along with increased market entry, as shown in the comparative statics of

Proposition 3. Therefore, the service provider’s optimal decision is to set the membership

fee equal to the priority benefit enjoyed by the PMs over the non-PMs, which corresponds

to the enlarged matching probability, i.e., r = H p (v ,θ) − H n(v ,θ). This fee induces the

type-II equilibrium in the second stage of the game. As discussed earlier, the implied

range of the entry threshold is v ∈ [vs , ve ]. Based on Proposition 2, the revenue function

is maximized at vp < vs , and hence, it decreases when v ∈ [vs , ve ]. Therefore, the optimal

priority membership fee induces v(r ∗) = vs with r ∗ = r = H p (vs ,1)−H n(vs ,1).

This optimal priority membership fee, on the one hand, represents the net benefit of an

agent becoming a PM relative to entering the market without priority membership when

all the agents in the market are PMs. On the other hand, it also measures the degree of

negative externality introduced by this agent’s participation in the market. To demonstrate

this fact, we refer to the agent as i and the public option he or she searches for as j .

Note that H p (vs ,1) represents agent i ’s expected payoff from visiting j . As long as agent

i obtains the good, he or she crowds out another agent who makes the same attempt. That

is, H p (vs ,1) is also the expected loss of another agent who is in direct conflict with agent i

when visiting j . The only exception is when agent i is the only agent visiting j , which occurs

with probability H n(vs ,1) = S(αF (vs)). Therefore, the effective social loss induced by agent

i successfully being matched with public option j is H p (vs ,1)− H n(vs ,1), which coincides

with the revenue-maximizing priority membership fee r ∗ = r . In this regard, the revenue-

maximizing priority search program successfully internalizes the social cost of market entry

and, in particular, the extra cost of crowding out other agents. Hence, it fully corrects the

congestion problem under the baseline search without leading to underparticipation and

maximizes aggregate welfare.

Figure 3 provides an illustration of the social welfare and revenue functions to facilitate

comparisons between the priority search and entry fee schemes. When the fees, i.e., p

and r , are relatively low, the revenue functions under entry scheme πp (v) and priority

search program πr (v) overlap in v ∈ [vs , ve ]. However, as the fees increase further, while

the enforcement power of the entry fee scheme remains the same, the priority search

program can no longer induce all market entrants to enroll in priority membership. Instead,

as membership becomes more expensive, agents are more likely to enter as non-PMs,

consistent with the type-II equilibrium under priority search. In particular, when agents’

behavior follows the type-I equilibrium under priority search, an increase in r discourages
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Figure 3: Optimality of the priority search program

Note: This figure plots the priority service provider’s revenue πr (v(r )), represented
by the red segment of the parabola, and the total welfare W (v). The horizontal
axis represents the threshold value of market entry, which indicates that agents with
outside option values lower than the threshold search in the market for public options.
Specifically, vp , vr and ve denote the equilibrium thresholds under the entry fee
scheme, the priority search program and the baseline search, respectively, where vs is
the threshold of efficient market entry.

market entry, and πr (v) increases as v declines from ve to vs . When agents’ behavior enters

the type-II equilibrium regime, the threshold for market entry rises again, and hence, the

revenue decreases, returning to the initial levels. This “backtracking” pattern, similar to

a “U-turn”, is driven mainly by the fact that the priority search program does not exclude

agents from entering markets as non-PMs due to institutional constraints or regulatory

considerations. Consequently, in contrast to the entry fee scheme, under the priority search

program, the service provider has no market power to further increase the fee from r to

extract more surplus from agents. The nonexclusivity feature of the priority search program

prevents the service provider from earning more revenue than his or her counterpart under

the entry fee scheme, which nonetheless addresses the underparticipation issue and results

in efficient market participation.

4 Heterogeneous Preferences for Public Options

This section introduces heterogeneity in the valuations of public options and examines

the welfare implications of priority search in this richer environment.20 For simplicity

20By abuse of notation, in the following analyses, we use the same set of notations as in the previous analysis
to simplify the exposition.
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and tractability, we consider binary types of public option values, denoted by τ ∈ {h, l }.

Each agent’s valuation of a public option is wh = 1+δ > 1 with probability β ∈ (0,1) and

wl = 1 with probability 1 −β. The valuations of outside and public options, i.e., vi and

wτ, respectively, are private information and independent of each other. We assume that

the distribution of outside options is regular; that is, F (v) is logconcave. Throughout the

analysis, we focus on a modest level of δ such that all the mechanisms under consideration

serve both types of agents in equilibrium, which therefore captures the inclusivity feature of

the public options.21

4.1 Priority Search Program

Given the heterogeneous preferences for public options, it is natural for the service provider

to design differentiated priority levels by setting high and low membership fees r h > r l > 0,

resembling “platinum” and “gold” memberships in practice. An agent, if entering the

market, decides whether to enroll in priority membership and, if so, which tier of the

priority service to choose. Agents who pay r h are matched before agents who pay r l , and

the latter are prioritized over non-PMs. Accordingly, the multitier priority search program

separates the market entrants into three groups with high, low and no priority, denoted

by ρ ∈ {h, l ,n}. For notational simplicity in the subsequent analysis, we set r n = 0, which

essentially represents the inclusiveness of the priority search program.

Given (r h ,r l ), an agent’s strategy in the second stage is contingent on his or her valuation

of the public option. Specifically, a type-τ agent’s entry decision is determined by a

threshold vτ, above which an agent stays outside the market. Let v = (vh , vl ) denote the

vector of entry thresholds. Accordingly, the measures of high- and low-type entrants are

mh := αβF (vh) and ml := α(1−β)F (vl ), respectively. Upon entry, a type-τ agent’s decision

regarding priority membership is represented by θτ = (θh
τ ,θl

τ,θn
τ ), where θρτ ∈ [0,1] denotes

the probability of subscribing to ρ-level priority and
∑
ρ θ

ρ
τ = 1 for τ ∈ {h, l }.22 We use

Θ= {θh ,θl } to denote the priority membership decisions of both the high and low types.

Given a strategy (v,Θ), the measure of agents in each priority group ρ ∈ {h, l ,n} is

mρ := θρh mh +θρl ml .

Since the matching process within each priority group is the same as that in our main

21The assumption does not require δ to be close to zero. In fact, our results hold for a wide range of δ, for
instance, for δ ∈ [0,2], as illustrated by the numerical simulation results in Figure 6.

22Throughout this section, we use superscripts to represent the priority levels ρ ∈ {h, l ,n} and subscripts to
denote the agent types τ ∈ {h, l }.
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setup, the conditional matching probabilities for the agents in the three priority groups are

specified and ranked as

Qh(v,Θ) = H(mh) ≥Q l (v,Θ) = S(mh)H(ml ) ≥Qn(v,Θ) = S(mh)S(ml )H(mn).

Contingent on the priority membership status ρ ∈ {h, l ,n}, the payoff function of a type-τ

agent with outside option vi is

uρ
τ (vi ) = max

{
Qρwτ− r ρ, vi

}
.

By examining the optimal choice(s) of ρ for maximizing Qρwτ− r ρ, we can characterize

different types of equilibrium behavior for priority membership decisions among the

agents. According to the previous analysis with homogeneous market value in Section

3.1, as the membership fee increases, the priority search program induces three types

of equilibrium with decreasing rates of membership, from full subscription to partial

subscription and then to null subscription. With heterogeneous market values and multiple

tiers of priority, different combinations of r h and r l result in considerably more types of

equilibrium. Table 1 and Figure 4 present the different types of equilibrium in which both

the high- and low-priority levels receive subscriptions.23 Specifically, type h entrants may

always pay r h to become platinum members or adopt a mixed strategy between paying r h

and r l . We refer to the former and latter as “HP” and “HM”, respectively, indicating that high-

type agents adopt a pure or mixed strategy in their membership decisions. Similarly, for low-

type agents, a pure strategy for membership decisions is denoted by “LP”. There are several

cases of mixed strategies, referred to as “LM”, in which indifference may occur between high

and low priority, between low and no priority, or among all three priority levels.

The priority service provider’s revenue-maximizing decision problem is formulated as

max
r h>r l>0

π(r h ,r l ) = mhr h +ml r l ,

subject to the different types of equilibrium in the second stage, which satisfy

vh = max
ρ∈{h,l ,n}

Qρ(v,Θ)(1+δ)− r ρ and vl = max
ρ∈{h,l ,n}

Qρ(v,Θ)− r ρ.

The first part of Proposition 5 establishes that the revenue-maximizing priority search

program induces a fully separating equilibrium, namely, the HPLP equilibrium, in which

the high- and low-type agents always choose high and low priority, respectively. The

service provider’s optimal strategy is to induce all entrants to subscribe to a priority

23Note that we have ruled out other equilibrium types that are not admissible under any (r h ,r l ), as discussed
in the proof of Proposition 5 in the Appendix, where we also provide detailed characterizations of all the
possible types of priority search equilibrium.
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Table 1: Priority search equilibrium with heterogeneous market values

High-Type Agents Low-Type Agents

θh
h θl

h θn
h θh

l θl
l θn

l

HPLP 1 0 0 0 1 0

HPLM1 1 0 0 0 (0,1) (0,1)

HPLM2 1 0 0 (0,1) (0,1) 0

HPLM3 1 0 0 (0,1) (0,1) (0,1)

HMLP (0,1) (0,1) 0 0 1 0

HMLM (0,1) (0,1) 0 (0,1) (0,1) 0

Note: The table presents the priority membership decisions of the high- and low-type
agents under different types of priority search equilibrium, in which both the high and
low priority levels receive subscriptions. For τ ∈ {h, l } and ρ ∈ {h, l ,n}, θρτ ∈ [0,1] denotes
the probability of type-τ agents getting ρ-level priority.
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Figure 4: Regions of priority search equilibrium with heterogeneous market values

Note: The figure plots the regions of different types of priority search equilibrium in
which both the high- and low-priority levels receive subscriptions and the isoprofit
curves of the service provider with varying membership fees. The black dot represents
the maximum of the service provider’s profit. The parameter values are set as (α,β,δ) =
(2,0.5,0.1) and v ∼U [0,2].

service, similar to our main analysis with homogeneous market value. Moreover, the

multitier priority search program has a sorting effect on the matching process because
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agents’ decisions regarding priority membership perfectly reveal their preferences for

public options. Accordingly, the service provider’s decision problem can be transformed

into choosing two threshold values for market entry. The second part of Proposition 5

characterizes the optimal entry thresholds under the priority search program.

Proposition 5 (Optimal priority search program). The revenue-maximizing priority search

program induces a separating equilibrium such that θh = (1,0,0) and θl = (0,1,0). Under the

optimal priority search program, the entry thresholds vr = (vh,r , vl ,r ) satisfy

vh,r = S(mh,r )H(ml ,r )δ+ vl ,r and vl ,r = S(mh,r +ml ,r ),

where mh,r =αβF (vh,r ) and ml ,r =α(1−β)F (vl ,r ).

4.2 Entry Fee Scheme

With binary types of public option value, the service provider under the entry fee scheme

sets high and low entry fees ph > p l > 0. Market entrants must pay either ph or p l , where

those who pay ph enjoy a higher matching probability than those who pay p l . In this regard,

the entry fee scheme is equivalent to an “entry-priority” mechanism, where all agents must

pay for entry, and each entrant can further purchase priority membership to enjoy an

expedited matching service over those who pay only the entry fee.

Due to the exclusivity of the entry fee scheme, there are only two groups of entrants,

ρ ∈ {h, l }, classified by the entry fee paid. Accordingly, in the second stage, an agent’s strategy

is characterized by the entry threshold values v = (vh , vl ) and the decisions on entry fee

Θ= {θh ,θl }, where θτ = (θh
τ ,θl

τ) ∈ [0,1]2 represents the probabilities of paying ph and p l for

entry by type-τ agents and θh
τ +θl

τ = 1 for τ ∈ {h, l }. Upon entry, the matching probabilities

contingent on the entry fee payment, Qρ(v,Θ) with ρ ∈ {h, l }, are defined in the same way as

those under the priority search program.

The service provider’s revenue maximization problem is formulated similarly to that

under the priority search program as follows:

max
ph>p l>0

mh ph +ml p l ,

subject to the agents’ optimal entry decisions and choices of entry fees, which satisfy

vh = max
ρ∈{h,l }

Qρ(v,Θ)(1+δ)−pρ and vl = max
ρ∈{h,l }

Qρ(v,Θ)−pρ.

Different from the analysis with homogeneous market value, the optimal choice(s) of ρ ∈
{h, l } for maximizing Qρwτ−pρ gives rise to different types of equilibrium under the entry
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Figure 5: Regions of entry fee equilibrium with heterogeneous market values

Note: The figure plots the regions of different types of entry fee equilibrium in which
both high and low entry fees are chosen by some entrants and the isoprofit curves of the
service provider with varying entry fees. The black dot represents the maximum of the
service provider’s profit. For the equilibrium labels, “HPLP” indicates that both types of
agents employ a pure strategy on their entry fee decision with θh = (1,0) and θl = (0,1).
“HMLP” indicates that the high-type agents employ a mixed strategy between ph and p l

with θh = (θ,1−θ), where θ ∈ (0,1) and θl = (0,1). “HPLM” indicates that the low-type
agents employ a mixed strategy between ph and p l with θh = (1,0) and θl = (θ,1−θ),
where θ ∈ (0,1). The parameter values are set as (α,β,δ) = (2,0.5,0.1) and v ∼U [0,2].

fee scheme, distinguished by θρτ = 1 or θρτ ∈ (0,1). These equilibrium types correspond to

whether type-τ agents adopt a pure or mixed strategy for the entry fee choice. With only

two possible choices of ρ, there are fewer types of equilibrium under the entry fee scheme

than under the priority search program, as shown in Figure 5.24 Proposition 6 states that the

optimal entry fee scheme must be separating and provides conditions for the corresponding

entry thresholds.

Proposition 6 (Optimal entry fee scheme). The revenue-maximizing entry fee scheme

induces a separating equilibrium such that θh = (1,0) and θl = (0,1). Under the optimal

entry fee scheme, the entry thresholds vp = (vh,p , vl ,p ) satisfy

vh,p = S(mh,p )H(ml ,p )δ+ vl ,p and vl ,p < S(mh,p +ml ,p ),

24Note that Figure 5 plots the possible types of equilibrium in which both high and low entry fees are chosen
by some entrants. Refer to the proof of Proposition 6 in the Appendix for detailed characterizations and
discussions of all the possible types of equilibrium.
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where mh,p =αβF (vh,p ) and ml ,p =α(1−β)F (vl ,p ).

4.3 Comparison with the Baseline Search and Efficient Entry

When determining the baseline and efficient entry thresholds, to ensure comparability

across different mechanisms, we consider perfect sorting under conflicts such that the

matching probabilities are contingent on the agent type, similar to those under the priority

search program and the entry fee scheme. Specifically, we assume that a public option is

allocated to an agent with the higher market value whenever it is visited by multiple agents.

Under the baseline search, the entry thresholds ve = (vh,e , vl ,e ) satisfy

vh,e = H(mh,e )(1+δ) and vl ,e = S(mh,e )H(ml ,e ).

Given v = (vh , vl ), the expected total surplus is measured by

W (v) = mh H(mh)(1+δ)+ml S(mh)H(ml )+αβ
∫ ∞

vh

vdF (v)+α(1−β)
∫ ∞

vl

vdF (v).

With heterogeneous preferences for public options, the social planning problem needs to

account for the following incentive compatibility constraints:

S(mh)H(ml )δ≤ vh − vl ≤ H(mh)δ,

which are similar to those in the separating equilibrium under priority search and hence

can be induced by a pair of priority service fees.25 Accordingly, the efficient entry thresholds

vs = (vh,s , vl ,s) satisfy

vh,s = S(mh,s)δ+S(mh,s +ml ,s) and vl ,s = S(mh,s +ml ,s).

Specifically, the threshold for low-type agents is equal to the probability that a public option

is not visited by any other agent, which is S(mh + ml ). This indicates that the marginal

social cost associated with a low-type agent forgoing his or her outside option is balanced by

the marginal social benefit introduced by the agent’s entrance. This intuition is consistent

with that in the homogeneous market value case. Regarding the high-type threshold, the

marginal social benefit needs to further account for the additional value of the public option

not being visited by any other high-type agent, represented by S(mh)δ.

Aggregate participation is measured by the total number of high- and low-type market

entrants and is denoted by µφ = mh,φ+ml ,φ, where φ ∈ {r , p,e, s}. Theorem 2 establishes

25Refer to the proof of Proposition 5 for more details. It is worth noting that even without the incentive
compatibility constraints, the efficient entry thresholds remain the same since these constraints are not
binding under the optimal solutions.
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that the priority search program mitigates the underparticipation issue under the entry fee

scheme, although both mechanisms result in less market entry than the efficient level.

Theorem 2 (Comparisons of entry efficiency and welfare). With heterogeneous preferences

for public options, the aggregate levels of market entry under the entry fee scheme (µp ),

priority search program (µr ), efficient entry (µs) and baseline search (µe ) satisfy

µp <µr <µs <µe .

The aggregate welfare under each mechanism satisfies

W (vp ) <W (vr ) <W (vs) and W (ve ) <W (vs).

Intuitively, the priority search program corrects underparticipation in the entry fee

scheme because it does not restrict agents’ entry. With heterogeneous market values,

the monopolistic service provider aims to extract more rent from the high type, which

lowers market entry under priority search compared to the efficient level. Specifically, for

φ ∈ {r , s}, we have vl ,φ = S(mh,φ + ml ,φ) for both the priority search and efficient entry.

Thus, under the priority search program, the participation level of the low type would

be efficient if there were no distortions in high-type participation. However, because of

the potential adverse selection problem with information asymmetry, the service provider

must guarantee incentive compatibility for high-type agents. Hence, compared to vl ,r , the

additional term in vh,r is S(mh,r )H(ml ,r )δ, which is smaller than that at the efficient level.

Hence, underparticipation of the high type indirectly results in a higher entry threshold

for the low type than the efficient level. In aggregate, the direct effect on the high type

dominates, which leads to an overall lower participation level than the efficient level. In

comparison, under the entry fee scheme, since the service provider can exclude agents from

entering the market by imposing a cost on all entrants, the underparticipation problem is

more severe than that under the priority search program.

Regarding the social surplus, Theorem 2 indicates that the relative rankings of different

mechanisms in terms of entry efficiency apply mostly to welfare implications. Specifically,

compared with the entry fee scheme, the priority search program increases the social

surplus whereby both mechanisms underperform compared to efficient entry. Notably,

the overparticipation of low-type agents and underparticipation of high-type agents under

priority search results in more public options being allocated to those who value them less.

Consequently, the welfare loss under priority search is partly driven by such a distortion in

allocation. While it is analytically infeasible to compare the welfare under different market
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Figure 6: Comparisons of entry efficiency and welfare with heterogeneous market values

Note: The figure plots the average market entry and social surplus under different
mechanisms, calculated as the aggregate market entry and aggregate welfare divided
by the total measure of agents. In each set of simulations, we separately vary the market
tightness (α), the proportion of high-type agents (β) and the relative valuation for a
public option by high-type agents (δ). The parameter values, if not varied along the
horizontal axis, are set as (α,β,δ) = (2,0.5,0.1) and v ∼U [0,2].

interventions with the laissez-faire situation, our simulation results in Figure 6 suggest that

the priority search program consistently generates greater social surplus than the baseline
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level. In contrast, the entry fee scheme may either underperform or overperform the

baseline search.

To complement the theoretical analysis, we conduct a series of numerical simulations to

examine the market entry and social surplus under different mechanisms by varying several

key model parameters, as shown in Figure 6.26 These simulation results not only illustrate

the qualitative performance of the priority search compared to the entry fee scheme but

also provide quantitative evaluations of the priority search relative to efficient entry. Under

different sets of parameters, we consistently observe that the priority search program is

approximately efficient in the sense that both market entry and social surplus are very close

to efficient levels, especially compared to those under the entry fee scheme or the baseline

search. This finding of approximate efficiency is robust to model primitives, including

market tightness α, the proportion of high-type agents β and the relative valuation of a

public option by high-type agents δ.

5 Discussion and Extension

Our main analysis demonstrates that the congestion issue in a laissez-faire situation with

a baseline search can be remedied by the revenue-maximizing priority search program

but not by the entry fee scheme. This section discusses several extensions to explore the

robustness of our findings. For simplicity, the extensions are based on our main model with

homogeneous preferences for the public option.

5.1 General Matching Function

The first extension explores whether our results apply to other matching functions. Let

H(m) and G(m) denote the trading probabilities for the agents and public options,

respectively. Similarly, we use S(m) = 1 −G(m) to denote the probability that a public

option is not matched to any agent. We assume that H(m) and G(m) satisfy the following

properties, which are standard in the literature (Galenianos and Kircher, 2012).

Assumption 1. For m > 0, (i) H ′(m) < 0, H ′′(m) > 0; (ii) G ′(m) > 0, G ′′(m) < 0; and (iii)

G(m) = mH(m).

Specifically, the first two assumptions are related to the monotonicity and concavity of

the matching probabilities. The third property implies consistency in expectations; that

26To rule out the direct effect of an increasing number of agents, measured by α, we examine the averages of
these outcome variables, which are calculated as the aggregate market entry and aggregate welfare divided by
the total number of agents.
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is, the probability of a public option being matched equals the probability of an agent

obtaining the public option times the expected number of agents visiting that public option.

Based on these properties of H(m) and G(m), our previous analysis of the baseline search,

the entry fee scheme and efficient market entry is similarly applicable, as stated in the

following corollary.

Corollary 1. Under general matching functions that satisfy Assumption 1, the intensities of

market participation under the baseline search (ve ), the entry fee scheme (vp ) and efficient

entry (vs) always satisfy vp < vs < ve .

Under the priority search program, to rule out any direct efficiency consequences, we

assume that upon entry, the aggregate matching efficiency is not affected by the priority

service. In other words, for a fixed number of market entrants, the expected matching

probability for agents is independent of the share of priority members, denoted by θ ∈ [0,1].

Specifically, the membership-contingent matching probabilities under the priority search,

denoted by H p (m,θ) and H n(m,θ), satisfy the following property.

Assumption 2. For m > 0 and θ ∈ [0,1], we have θH p (m,θ)+ (1−θ)H n(m,θ) = H(m).

Essentially, θH p (m,θ) + (1 − θ)H n(m,θ) measures the expected matching probability

for each entrant when I ′ = m J agents enter the market and each entrant opts for priority

membership with probability θ, and H(m) represents the matching probability for each

entrant when all entrants have the same priority status. This assumption ensures that

the two-tier matching process under the priority search program does not introduce direct

efficiency gains compared to the baseline search or the entry fee scheme.

A large class of matching functions featuring both coordination failure and additional

frictions, summarized by Petrongolo and Pissarides (2001), satisfy the above assumption.

For instance, in addition to the urn-ball matching process described in our main analysis,

each agent who visits a public option may additionally experience a match-specific

qualification shock such that he or she is qualified with probability τ ∈ (0,1). This situation

yields H(m) = (1 − e−τm)/(τm), H p (m,θ) = (1 − e−τθm)/(τθm) and H n(m,θ) = (e−τθm −
e−τm)/(τ(1 − θ)m), which satisfy Assumptions 1 and 2. More generally, the matching

processes for PMs and non-PMs may even be different. Corollary 2 establishes the

optimality of the priority search program under general matching functions using similar

ideas as our main analysis.

Corollary 2. Under matching functions that satisfy Assumptions 1 and 2, the priority search

program induces the efficient level of market participation, that is, vr = vs .
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5.2 Finite Market

We next examine a finite market scenario with I ≥ 2 agents and J ≥ 1 public options. Given

an entry threshold v , the conditional matching probability for an entrant under the baseline

search and entry fee scheme is27

H(v) = J

I F (v)

[
1−

(
1− F (v)

J

)I ]
.

Under the priority search program, given the threshold for market entry v and the

proportion of market entrants with priority membership θ, the conditional matching

probability for PMs is

H p (v ,θ) = J

IθF (v)

[
1−

(
1− θF (v)

J

)I ]
,

when θ ∈ (0,1] and H p (v ,0) = 1. When θ ∈ [0,1), the conditional matching probability for

the non-PMs is

H n(v ,θ) = J

I (1−θ)F (v)

[(
1− θF (v)

J

)I

−
(
1− F (v)

J

)I ]
,

and H n(v ,1) = (1 − F (v)/J )I−1. We observe that these finite-market matching functions

satisfy the properties in Assumptions 1 and 2. Hence, it follows from Corollaries 1 and 2

that our main results hold for any finite I and J .

5.3 Deferred Payment

In the priority search program with deferred payment, agents who sign up for the priority

service pay the membership fee only after being successfully matched with a public option,

instead of providing upfront or immediate payment.28 The matching process is operated

in the same way as in our main setup. The priority service provider charges a (deferred)

priority membership fee d = r /H p (v ,θ), which sets the expected payment of the priority

fee under the deferred payment scheme equal to the priority membership fee under the

immediate payment scheme. The expected payoff functions of an agent with outside option

vi , contingent on his or her priority membership status, are ũp (v) = max{H p (1−d), vi } =
max{H p − r , vi } and ũn(v) = max{H n , vi }. It follows that the second-stage equilibrium

behavior of the agents can be characterized by the same set of conditions as those in (L1) ∼
(L3). Intuitively, agents are indifferent to the timing of the priority membership fee payment

27For derivations of the matching probabilities, refer to the proofs of Lemmas 1 and 2. In fact, the large-
market matching probabilities correspond to the limits of the finite-market probabilities.

28The timing of priority-purchasing behavior has also been examined in the dynamic queuing literature. A
recent study by Wang et al. (2021) allows for priority purchasing at any time in the queuing process.
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as long as the expected amount of the payment remains the same. For the priority service

provider’s optimal decision, we have d∗ = argmaxd≥0 αθF (v)H p (v ,θ)d = αθF (v)r . Hence,

the deferred and immediate payment schemes are strategically equivalent. More generally,

our framework can accommodate many alternative payment schemes. For instance, a

downpayment scheme, where agents first pay a deposit for priority service and obtain a full

refund if not matched, leads to the same outcome as the deferred payment and immediate

payment schemes.

6 Conclusions

How to simultaneously generate revenue and regulate congestion is a well-known challenge

that service providers face when managing service systems. This paper studies the

priority search program in an attempt to resolve the overparticipation issue in a laissez-

faire situation and improve market entry efficiency. Our analysis focuses on a stylized

search framework with heterogeneous outside options that is broadly relevant to various

marketplaces.

Under priority search, a monopolistic priority service provider facilitates expedited

matching with public options by charging a priority membership fee, which raises the cost

of entry directly for agents who opt for priority membership and indirectly for other entrants

by lowering their chances of obtaining public options. Our main analysis establishes that a

revenue-maximizing priority search program always induces the efficient level of market

participation and is superior to alternative market interventions involving entry fees. By

allowing agents to enter the market without paying the priority membership fee, the priority

search program prevents the monopolist from overcharging on the service fee and inducing

underparticipation relative to the entry fee scheme.

Our study provides important insights for regulating congested markets, such as medical

resource rationing, job hunting, ride hailing, and train ticket rationing during peak seasons.

In the presence of heterogeneous outside options, simple fixes that impose a mandatory

entry fee or a uniform transaction cost for public options are not fully effective and are

not desirable if they are operated by a profit-maximizing platform or third party. The

priority search program is an effective resolution since it induces the efficient level of market

participation. More importantly, it can be flexibly designed with respect to the matching

technology, market size, and timing of the membership fee payment.
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Appendix

A Proofs

Proof of Lemma 1

We first consider the matching probabilities for a finite market model. When I ′ > 0 agents

simultaneously and independently search for one of the J public options, the matching

probability for agent i is

I ′−1∑
k=0

(
I ′−1

k

)(
1

J

)k (
1− 1

J

)I ′−k−1 1

k +1
= J

I ′

[
1−

(
1− 1

J

)I ′
]
= 1

m

[
1−

(
1− 1

J

)m J]
,

which accounts for the possible number of competitors visiting the same public option,

denoted by k ∈ {0,1,2, ..., I ′−1}. Each of these k agents visits the same public option as agent

i does with probability 1/J , and agent i is matched with the market good with probability

1/(k +1) under random rationing. Specifically, (1/J)k (1−1/J )I ′−k−1 denotes the probability

that k out of the other (I ′ − 1) agents visit the same market option as agent i does. In

the above equation, the first equality follows from the binomial theorem, and the second

equality is obtained by substituting I ′ = m J with m > 0. As J → ∞, the above probability

converges to

H(m) = 1−e−m

m
.

When m = 0, H(0) = limm→0(1−e−m)/m = 1. The probability that a public option is never

visited by any of the I ′ agents is given by(
1− 1

J

)I ′

=
(
1− 1

J

)m J

,

which converges to S(m) = e−m as J →∞.

Proof of Proposition 1

We first show that the baseline search equilibrium always exists and is unique. Under the

baseline search equilibrium, the right-hand side of Equation (1) decreases in ve since

H ′(m) =−1−e−m −me−m

m2
< 0.

The above inequality holds for m > 0 because 1 − e−m − me−m is increasing in m and

limm→0(1 − e−m − me−m) = 0. In addition, H(αF (ve )) → 1 as ve → 0 and H(αF (ve )) →
(1 − e−α)/α < 1 as ve → ∞. Therefore, there exists a unique baseline search equilibrium

satisfying ve = H(αF (ve )).

The efficient entry threshold can be derived based on the first-order condition of the
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social surplus function as follows:

dW (v)

dv
=α f (v)[H(αF (v))+αF (v)H ′(αF (v))− v] =α f (v)[S(αF (v))− v] = 0,

which implies that vs satisfies vs = S(αF (vs)), as in Equation (3). Note that the stationary

point is unique since S′(m) = −e−m < 0, S(αF (vs)) → 1 as vs → 0, and S(αF (vs)) → e−α < 1

as vs →∞. Because dW /dv > 0 at v = 0, it follows that vs is the global surplus maximizing

threshold. To show that vs < ve for any α > 0, it is sufficient to prove that H(m) > S(m) for

all m > 0. This is true since S(m) = mH ′(m)+H(m) and H ′(m) < 0.

Proof of Proposition 2

Considering the first-order condition of πp (v) = 1 − S(αF (v)) − αF (v)v , the revenue

maximizing vp in the large market satisfies

S(αF (vp ))− F (vp )

f (vp )
= vp .

Compared with efficient entry, which is determined by S(αF (vs)) = vs , we immediately

have vp < vs with F (v)/ f (v) > 0 for any v > 0. Notably, the above first-order condition

is a necessary but not sufficient condition for the revenue maximization problem. More

precisely, without imposing additional assumptions on f (v) and F (v), this equation may

have multiple solutions. Nevertheless, the first-order condition suffices to complete the

proof since our analysis indicates that each solution is less than vs , regardless of the number

of stationary points of πp (v). Hence, this result holds for any continuously differentiable

F (v).

Proof of Lemma 2

The membership-contingent matching probabilities can be derived as the limits of those

in a finite market. In a finite market with I = αJ agents and J public options, given the

threshold for market entry v and the proportion of entrants with priority membership θ, the

probability of a PM receiving a public option upon entry is

H p (v ,θ) =
I−1∑
k=0

(
I −1

k

)(
θF (v)

J

)k (
1− θF (v)

J

)I−k−1 1

k +1
,

where θF (v)/J represents the probability of another PM visiting the same public option and

hence directly competing with him or her. The probability that k out of the other (I − 1)

agents visit the same market option with priority is [θF (v)/J ]k [1−θF (v)/J ]I−k−1. Based on

the binomial theorem,

IθF (v)

J
H p (v ,θ) = 1−

(
1− θF (v)

J

)I

.
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Hence, when θ ∈ (0,1], the conditional matching probability of the PMs is

H p (v ,θ) = J

IθF (v)

[
1−

(
1− θF (v)

J

)I ]
= 1

αθF (v)

[
1−

(
1− θF (v)

J

)αJ]
.

When J →∞, we have

H p (v ,θ) = lim
J→∞

1

αθF (v)

[
1−

(
1− θF (v)

J

)αJ]
= 1−e−αθF (v)

αθF (v)
= H(αθF (v)),

where H(m) = (1−e−m)/m, as defined in Lemma 1.

For a non-PM, the conditional matching probability in a finite market is

H n(v ,θ) =
I−1∑
k=0

(
I −1

k

)(
(1−θ)F (v)

J

)k (
1− F (v)

J

)I−k−1 1

k +1
,

where [(1−θ)F (v)/J ]k [1−F (v)/J ]I−k−1 represents the probability that out of the other (I −1)

agents, exactly k of them enter the market without priority membership and search for the

same public option as he or she does, whereas the remaining (I −k −1) agents stay outside.

Note that non-PMs have no chance of obtaining the market good as long as there is at least

one PM who visits the same public option. By the binomial theorem and simple algebra, we

obtain

I (1−θ)F (v)

J
H n(v ,θ) =

(
1− θF (v)

J

)I

−
(
1− F (v)

J

)I

.

When θ ∈ [0,1), the conditional matching probability of non-PMs in a finite market is

H n(v ,θ) = 1

α(1−θ)F (v)

[(
1− θF (v)

J

)αJ

−
(
1− F (v)

J

)αJ]
.

Taking the limit with J →∞, we have

H n(v ,θ) = e−αθF (v) −e−αF (v)

α(1−θ)F (v)
= e−αθF (v) · 1−e−α(1−θ)F (v)

α(1−θ)F (v)
= S(αθF (v))H(α(1−θ)F (v)),

where H(m) = (1−e−m)/m and S(m) = e−m , as defined in Lemma 1.

Finally, the limiting cases of H p (v ,θ) at θ → 0 and H n(v ,θ) at θ → 1 can be derived by

L’Hôpital’s rule as follows:

H p (v ,0) = lim
θ→0

1−e−αθF (v)

αθF (v)
= lim
θ→0

e−αθF (v) = 1,

H n(v ,1) = lim
θ→1

e−αθF (v) 1−e−α(1−θ)F (v)

α(1−θ)F (v)
= lim
θ→1

e−αθF (v) ·e−α(1−θ)F (v) = e−αF (v).

Proof of Proposition 3

In the type-I equilibrium, since H(αF (v)) is decreasing in v , it follows from H(αF (v)) = v+r

in condition (L1) that v is decreasing in r , that is, ∂v/∂r < 0. This result is also obtained by
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taking the derivative with respect to r as follows:

[H ′(αF (v))α f (v)−1]
∂v

∂r
= 1.

For the type-II equilibrium, we first examine the boundaries corresponding to θ = 0 and

θ = 1. Comparing condition (L2) with Equations (1) and (3), we have v = ve when θ = 0 and

v = vs when θ = 1. The corresponding priority membership fees are

r = H p (ve ,0)−H n(ve ,0) = 1−H(αF (ve )),

r = H p (vs ,1)−H n(vs ,1) = H(αF (vs))−S(αF (vs)).

Furthermore, we can prove r < r as follows. For a fixed v , the function H p (v ,θ)−H n(v ,θ) =
H(αθF (v)) − S(αθF (v))H(α(1 − θ)F (v)) decreases in θ. It follows that r = H p (vs ,1) −
H n(vs ,1) < H p (vs ,0) − H n(vs ,0) = H p (ve ,0) − H(vs) < H p (ve ,0) − H(ve ) = H p (ve ,0) −
H n(ve ,0) = r , where the second and third equalities are based on Lemma 2 and the second

inequality is based on Proposition 1.

Next, to show that v is increasing in r in the type-II equilibrium, we only need to establish

that v is monotonic in r because when r = r , v = ve , and when r = r < r , v = vs < ve . We

prove the monotonicity between v and r by contradiction. Suppose that there exist r1 < r2

such that v(r1) = v(r2). Because v = H p (v ,θ)− r = H n(v ,θ) in the type-II equilibrium, we

have

θH p (v ,θ)+ (1−θ)H n(v ,θ) = H(αF (v)) = v +θr .

For the above equality to hold for r1 < r2 and v(r1) = v(r2), we must have θ1(r1) > θ2(r2).

This result contradicts the fact that both (v(r1),θ1(r1)) and (v(r2),θ1(r2)) should satisfy

S(αθF (v)H(α(1− θ)F (v)) = v under condition (L2). Hence, v must be increasing in r in

the type-II equilibrium, that is, ∂v/∂r > 0.

Finally, we derive the relation between v and θ based on the second equality in condition

(L2), that is, H n(v ,θ) = S(αθF (v))H(α(1−θ)F (v)) = v . Because both S(αθF (v)) and H(α(1−
θ)F (v)) are decreasing in v and S(αθF (v)H(α(1−θ)F (v)) is decreasing in θ, it follows that

v is decreasing in θ. With v increasing in r , we conclude that θ is decreasing in r , that is,

∂θ/∂r < 0.

Proof of Proposition 4

We first show that in any type of equilibrium, Equation (8) must hold. When θ = 0 or 1 in

the type-I or type-III equilibrium, the equation follows from the equalities in conditions (L1)

and (L3). Based on Equations (6) and (7),

θH p (v ,θ)+ (1−θ)H n(v ,θ) = 1−e−αθF (v)

αF (v)
+e−αθF (v) · 1−e−α(1−θ)F (v)

αF (v)
= H(αF (v)).
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In the type-II equilibrium, the two equations under condition (L2) suggest that θH p (v ,θ)+
(1−θ)H n(v ,θ) = v +θr . It follows that H(αF (v)) = v +θr , i.e., Equation (8), holds for any

θ ∈ [0,1].

Next, we derive the regions corresponding to each type of equilibrium and show the

existence and uniqueness of the equilibrium by investigating conditions (L1) ∼ (L3) one by

one. Based on condition (L1), the range of r that supports the type-I equilibrium satisfies

r < H p (v ,1)−H n(v ,1) = v+r−H n(v ,1), which is equivalent to H n(v ,1) = S(αF (v)) > v based

on Lemma 2. This inequality holds when v < vs according to Equation (3). Hence, it follows

from the first part of Proposition 3 that we must have r < H p (vs ,1)− H n(vs ,1) = r . In the

type-I equilibrium, H(αF (v))− v = r . Since H(αF (v))− v decreases in v and is bounded

above by 1 but not bounded below, it follows that the equilibrium threshold v always exists

for any fixed r ∈ [0,r ). Furthermore, the type-I equilibrium (when it exists) is unique because

v is decreasing in r ∈ [0,r ), as established in Proposition 3.

For the type-II equilibrium, we have established in the proof of Proposition 3 that the

range of r supporting the equilibrium is r ∈ [r ,r ]. According to (L2), we have H n(v ,θ)− v =
S(αθF (v))H(α(1−θ)F (v))− v = 0. Since the left-hand side of the equation decreases in v

and is bounded above by 1 but not bounded below, it follows that a unique v always exists

for any θ ∈ [0,1]. Similarly, based on Equation (8), a unique v always exists for any θr ∈ [0,r ].

Because v is increasing in r , whereas θ is decreasing in r , as established in the second part

of Proposition 3, it follows that for each fixed r ∈ [r ,r ], there exists a unique pair of v and θ

satisfying condition (L2).

For the type-III equilibrium, based on condition (L3) and Equation (1), v = ve . Hence,

the range of r that supports the type-III equilibrium is r > H p (ve ,0)−H n(ve ,0) = r . It then

follows from the proof of Proposition 1 that for any fixed r ∈ (r ,∞), a unique equilibrium

threshold v always exists and satisfies H n(v ,0) = H(v) = v .

To complete the proof, we note that the above analysis, on the one hand, shows that

within each range of r , the respective type of priority search equilibrium exists and is unique.

On the other hand, the ranges corresponding to each type of equilibrium form a partition

of the set of nonnegative real numbers, which guarantees the existence and uniqueness of a

priority search equilibrium for any given r ≥ 0.

Proof of Theorem 1

The main idea of the proof is to establish that in the type-I equilibrium, the service

provider’s revenue is increasing in r ∈ [0,r ), whereas in the type-II equilibrium, the revenue

is decreasing in r ∈ [r ,r ]. Note that in the type-III equilibrium, the revenue is always zero

since no agents choose the priority service with θ = 0 when r > r , Hence, we only need to

focus on the type-I and type-II equilibrium.

In both the type-I and type-II equilibrium, according to Equation (8), θr is negatively
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correlated with v , and we can express the priority service provider’s revenue π(r ) =αθF (v)r

in terms of v as πr (v) =α [H(αF (v))− v]F (v), which yields

∂πr (v)

∂v
=α[

S(αF (v))− v
]

f (v)−αF (v).

Based on the proof of Proposition 3, the effective domain of v in the type-I equilibrium and

the type-II equilibrium is [vs , ve ]. Since S(αF (vs)) = vs , we must have S(αF (v)) ≤ v and

∂πr (v)/∂v < 0 when v ∈ [vs , ve ].

According to Proposition 4, v is decreasing in r in the type-I equilibrium and increasing

in r in the type-II equilibrium. Therefore, the priority service provider’s revenue, denoted

by π(r ), first increases in r when r < r and then decreases in r when r ∈ [r ,r ], that is,

∂π(r )

∂r
= ∂πr (v)

∂v

∂v

∂r

 > 0, if r < r ,

< 0, if r ≤ r ≤ r .

Therefore, the optimal r ∗ is located at the boundary between these two types of equilibrium

and can be computed based on condition (L2) with θ(r ∗) = 1. Under the revenue-

maximizing service fee r ∗ = r , we have v = S(αF (v)) and hence vr = v(r ∗) = vs .

Proof of Proposition 5

To determine the equilibrium conditions of agents’ behavior, we establish the following

result for membership decisions.

Lemma A.1. Let ρ ∈ {h, l ,n} denote the lowest priority level with θρh > 0. Then, for any higher

priority level ρ′ with r ρ
′ > r ρ, we have θρ

′
l = 0.

Proof. Suppose that θρ
′

l > 0 for some ρ′ with Qρ′ >Qρ. Then, for low-type agents,

Qρ′ − r ρ
′ ≥Qρ− r ρ.

Since θρh > 0 for high-type agents, we have

Qρ(1+δ)− r ρ ≥Qρ′(1+δ)− r ρ
′
.

Hence, the above two inequalities imply

(Qρ′ −Qρ)(1+δ) ≤ r ρ
′ − r ρ ≤Qρ′ −Qρ,

which cannot hold since δ> 0 and Qρ′ >Qρ. □
In the following analysis, we first consider the possible types of second-stage equilibrium

where the high-type (low-type) agents subscribe to the high (low) priority membership with

a positive probability, i.e., θh
h > 0 and θl

l > 0, respectively. Accordingly, the entry thresholds
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satisfy the following indifference conditions:

vh =Qh(1+δ)− r h ,

vl =Q l − r l .

The membership decisions imply the following set of inequality conditions:

Qh(1+δ)− r h ≥Q l (1+δ)− r l , (ICh)

Q l − r l ≥Qh − r h , (ICl )

Qh(1+δ)− r h ≥Qn(1+δ), (IRh)

Q l − r l ≥Qn , (IRl )

which resemble the incentive compatibility (IC) and individual rationality (IR) constraints in

a typical mechanism design problem. The main difference is that the matching probabilities

Qρ are endogenously determined by (r h ,r l ) instead of being directly chosen by the service

provider. Our next lemma simplifies these inequality conditions.

Lemma A.2. With θh
h > 0 and θl

l > 0 under priority search, (i) condition (IRh) is always slack,

and (ii) conditions (ICh) and (ICl ) cannot be binding simultaneously. Hence, conditions (ICh)

∼ (IRl ) are equivalent to

Q lδ≤ vh − vl ≤Qhδ and vl ≥Qn .

Proof. To prove (i), we have the following:

Qh(1+δ)− r h ≥Q l (1+δ)− r l >Q l (1+δ)− r l (1+δ) ≥Qn(1+δ),

where the first inequality is (ICh) and the third inequality is based on (IRl ). This indicates

that condition (IRh) is always implied by the other conditions and hence is redundant.

To prove (ii), we rewrite (ICh) and (ICl ) as

Qh −Q l ≤ r h − r l ≤ (Qh −Q l )(1+δ).

These two inequalities cannot be binding at the same time since Qh >Q l when θh
h > 0.

Finally, to prove (A.2), we substitute vl = Q l − r l into (ICh) to obtain vh − vl ≥ Q lδ and

substitute vh =Qh(1+δ)− r h into (ICl ) to obtain vh − vl ≤Qhδ. □
Based on Lemma A.1, when θh

h > 0 and θl
l > 0, we have the following six types of

equilibrium, classified by the agents’ priority membership decisions. In the labels of

equilibrium, “H” and “L” represent agents with high and low market values, respectively,

whereas “P” and “M” represent “pure” and “mixed” strategies, respectively.

O. HPLP: θh = (1,0,0),θl = (0,1,0).

I. HPLM1: θh = (1,0,0),θl = (0,θ,1−θ) with θ ∈ (0,1).
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II. HPLM2: θh = (1,0,0),θl = (θ,1−θ,0) with θ ∈ (0,1).

III. HPLM3: θh = (1,0,0),θl = (θ,θ′,1−θ−θ′) with θ,θ′ ∈ (0,1) and θ+θ′ < 1.

IV. HMLP: θh = (θ,1−θ,0),θl = (0,1,0) with θ ∈ (0,1).

V. HMLM: θh = (θ,1−θ,0),θl = (0,θ′,1−θ′) with θ,θ′ ∈ (0,1).

Next, we characterize and rule out the type-I∼V equilibrium by examining the optimal

decision of the priority service provider. Specifically, for each type of equilibrium involving

mixed strategies, we find a profitable deviation for the service provider.

I. HPLM1 When θh = (1,0,0) and θl = (0,θ,1−θ) with θ ∈ (0,1), the measures of agents in

each of the three priority groups are (mh ,ml ,mn) = (mh ,θml , (1−θ)ml ). The market entry

thresholds and θ satisfy

vh = H(mh)(1+δ)− r h , (I-a)

vl = S(mh)H(θml )− r l , (I-b)

vl = S(mh)S(θml )H((1−θ)ml ), (I-c)

where the last two equations indicate that (IRl ) is binding. In addition, we have the following

inequality conditions:

vh ≥ S(mh)H(θml )(1+δ)− r l , (ICh)

vl ≥ H(mh)− r h . (ICl )

By substituting the three equality conditions, the service provider’s payoff π(r h ,r l ) =
mhr h +θml r l can be expressed in terms of (vh , vl ) as follows:

π(vh , vl ) = 1−S(mh)S(ml )+ (1−S(mh))δ− vl ml − vhmh ,

which is independent of θ. Taking the partial derivatives, we have

∂π

∂vh
=αβ f (vh)

(
S(ml )S(mh)+S(mh)δ− F (vh)

f (vh)
− vh

)
,

∂π

∂vl
=α(1−β) f (vl )

(
S(ml )S(mh)− F (vl )

f (vl )
− vl

)
.

Based on Equation (I-c), we have ∂π/∂vl < 0. For the two IC conditions, Lemma A.2 suggests

that we need to consider the following two cases only.

Case (1) If (ICl ) is slack, then a profitable adjustment for the service provider is to

decrease vl while keeping vh unchanged. This adjustment is feasible for the following

reasons. Obviously, the adjustment will not affect Equation (I-a). To satisfy Equation (I-c),

θ needs to increase since S(θml )H((1−θ)ml ) decreases in both θ and ml . When both 1−θ
and ml decrease, H((1−θ)ml ) increases, and hence, S(θml ) must decrease such that θml
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increases. To satisfy Equation (I-b), we need to adjust r l only. For (ICh), since θml increases

and S(mh)H(θml )− r l decreases, S(mh)H(θml )(1+δ)− r l must decrease, which satisfies

condition (ICh).

Case (2) If (ICl ) is binding, then we have one more equality condition as follows:

vl = H(mh)− r h . (I-d)

Taken together with Equation (I-a), we have vh − vl = H(mh)δ. Therefore, we have

∂π

∂vh
<αβ f (vh)

(
S(ml )S(mh)+H(mh)δ− F (vh)

f (vh)
− vh

)
=αβ f (vh)

(
S(ml )S(mh)− F (vh)

f (vh)
− vl

)
< 0.

The first inequality follows since S(m) < H(m) for all m > 0, and the last inequality is based

on Equation (I-c). Therefore, it is profitable to decrease vh and vl simultaneously. This

result suggests a feasible deviation to increase the service provider’s revenue as follows. By

Equations (I-a) and (I-d), we must increase r h . To satisfy Equation (I-b), we can adjust r l ,

and to satisfy Equation (I-c), we need to increase θ.

II. HPLM2 When θh = (1,0,0) and θl = (θ,1− θ,0) with θ ∈ (0,1), (mh ,ml ,mn) = (mh +
θml , (1−θ)ml ,0). The entry thresholds and θ satisfy

vh = H(mh +θml )(1+δ)− r h , (II-a)

vl = H(mh +θml )− r h , (II-b)

vl = S(mh +θml )H((1−θ)ml )− r l , (II-c)

with the last two indicating that (ICl ) is binding. Thus, (ICh) must be slack. In addition, we

need to guarantee (IRl ) as follows:

vl ≥ S(mh +ml ). (IRl )

Based on Equations (II-a) ∼ (II-b), we can rewrite the service provider’s payoff as

π(vh , vl ) = 1−S(mh)S(ml )− vl mh − vl ml .

The partial derivatives are

∂π

∂vh
= S(mh)S(ml )αβ f (vh)− vlαβ f (vh),

∂π

∂vl
= S(mh)S(ml )α(1−β) f (vl )− vlα(1−β) f (vl )−mh −ml .

Based on (IRl ), we have ∂π/∂vh ≤ 0 and ∂π/∂vl < 0. We divide our discussions into the

following two cases depending on whether (IRl ) is binding.

Case (1) If vl > S(mh)S(ml ), a profitable adjustment for the service provider is to
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decrease vl without changing vh . Equation (II-a) implies that H(mh + θml ) and r h must

change in the same direction. Since we require vl to decrease, Equation (II-b) implies that

H(mh +θml ) should increase; hence, θml decreases, which indicates that θ must increase.

To satisfy Equation (II-c), r l must increase since

dr l =−S(mh +θml )
(
H((1−θ)ml )+H ′((1−θ)ml )

)
d(θml )

+S(mh +θml )H ′((1−θ)ml )α(1−β) f (vl )dvl

−S(mh +θml )H((1−θ)ml )αβ f (vh)dvh > 0.

Case (2) If vl = S(mh)S(ml ), then the service provider’s payoff becomesπ(vh , vl ) = 1−vl+
vl ln vl , and dπ/dvl = ln vl < 0 since vl < 1. Hence, a profitable adjustment for the service

provider is to decrease vl while satisfying Equations (II-a) ∼ (II-c) and vl = S(mh)S(ml ). This

outcome can be achieved through the following series of changes. When vl decreases, we

need to increase mh +ml , which implies that mh and vh increase. Furthermore, Equations

(II-a) and (II-b) imply that H(mh + θml ) and r h must both increase. To satisfy Equation

(II-c), we need to adjust r l only.

III. HPLM3 When θh = (1,0,0) and θl = (θ,θ′,1−θ−θ′) with θ,θ′ ∈ (0,1) and θ+θ′ < 1, we

have (mh ,ml ,mn) = (mh +θml ,θ′ml , (1−θ−θ′)ml ). The threshold values satisfy

vh = H(mh +θml )(1+δ)− r h , (III-a)

vl = H(mh +θml )− r h , (III-b)

vl = S(mh +θml )H(θ′ml )− r l , (III-c)

vl = S(mh +θml )S(θ′ml )H((1−θ−θ′)ml ). (III-d)

The above conditions indicate that both (ICl ) and (IRl ) are binding. Hence, Lemma A.2

suggests that (ICh) must be slack.

The service provider’s payoff can be expressed in terms of (vh , vl ) as

π(vh , vl ) = 1−S(mh)S(ml )− vl mh − vl ml ,

which is independent of θ and θ′. Taking the partial derivatives, we obtain

∂π

∂vh
= S(mh)S(ml )αβ f (vh)− vlαβ f (vh),

∂π

∂vl
= S(mh)S(ml )α(1−β) f (vl )− vlα(1−β) f (vl )−mh −ml .

Based on Equation (III-d), vl > S(mh)S(ml ), which implies that ∂π/∂vh < 0 and ∂π/∂vl < 0.

For the service provider, a profitable adjustment is to decrease vh without changing vl . To

satisfy all four conditions, Equation (III-b) implies that H(mh +θml ) and r h must change in

the same direction by the same magnitude. Since we require vh to decrease, Equation (III-a)

implies that H(mh +θml ) needs to decrease; hence, θ must increase. To satisfy Equation
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(III-d), note that S(mh +θml )S(θ′ml )H((1−θ−θ′)ml ) is decreasing in both θ and θ′; hence,

we must decrease θ′. To satisfy Equation (III-c), we can adjust r l .

IV. HMLP When θh = (θ,1−θ,0) and θl = (0,1,0) with θ ∈ (0,1), (mh ,ml ,mn) = (θmh , (1−
θ)mh +ml ,0). The threshold values satisfy

vh = H(θmh)(1+δ)− r h , (IV-a)

vh = S(θmh)H((1−θ)mh +ml )(1+δ)− r l , (IV-b)

vl = S(θmh)H((1−θ)mh +ml )− r l . (IV-c)

The above conditions indicate that (ICh) is binding, and hence, (ICl ) must be slack. In

addition, we need to guarantee (IRl ), which is

vl ≥ S(mh +ml ). (IRl )

The service provider’s payoff can be expressed in terms of (vh , vl ) as follows:

π(vh , vl ) = (1+δ)(1−S(mh)S(ml ))− vhml − vhmh .

The partial derivatives are

∂π

∂vh
= (1+δ)S(mh)S(ml )αβ f (vh)− vhαβ f (vh)−mh −ml ,

∂π

∂vl
= (1+δ)S(mh)S(ml )α(1−β) f (vl )− vhα(1−β) f (vl ).

Because of the slackness of (IRh), i.e., vh > S(ml )S(mh)(1+δ), ∂π/∂vh < 0 and ∂π/∂vl < 0.

Depending on whether (IRl ) is binding, we have the following two cases.

Case (1) If (IRl ) is slack, it is profitable for the service provider to decrease both vh and

vl , which is feasible for the following reasons. Equation (IV-a) can be satisfied by adjusting

r h . To further satisfy Equations (IV-b) and (IV-c), we may decrease S(θmh)H((1−θ)mh+ml )

and increase r l . Since S(θmh)H((1−θ)mh +ml ) decreases in θ, we need θ to increase.

Case (2) If (IRl ) is binding, that is, vl = S(mh)S(ml ), a profitable adjustment for the

service provider needs to guarantee(
1+S(mh)S(ml )α(1−β) f (vl )

)
dvl +S(mh)S(ml )αβ f (vh)dvh = 0.

Thus, vl and vh should change in opposite directions. Specifically, since

1+S(mh)S(ml )α(1−β) f (vl )

S(mh)S(ml )αβ f (vh)
> (1−β) f (vl )

β f (vh)
> ∂π/∂vl

∂π/∂vh
,

we must decrease vh and increase vl to ensure a higher revenue for the service provider.

Equation (IV-a) can be satisfied by adjusting r h . To satisfy (IV-b) and (IV-c), we can adjust r l

and θ. Since dvh −dvl = dS(θmh)H(mh +ml −θmh)δ< 0, we need θ to increase because the

binding (IRl ) implies that mh +ml decreases, and hence, θmh increases.
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V. HMLM When θh = (θ,1 − θ,0) and θl = (0,θ′,1 − θ′) with θ,θ′ ∈ (0,1), we have

(mh ,ml ,mn) = (θmh , (1−θ)mh +θ′ml , (1−θ′)ml ). The threshold values satisfy

vh = H(θmh)(1+δ)− r h , (V-a)

vh = S(θmh)H((1−θ)mh +θ′ml )(1+δ)− r l , (V-b)

vl = S(θmh)H((1−θ)mh +θ′ml )− r l , (V-c)

vl = S(mh +θ′ml )H((1−θ′)ml ). (V-d)

These conditions indicate that (ICh) and (IRl ) are binding, and hence, (ICl ) must be slack.

In this case, the service provider’s payoff depends on vh , vl and θ′ as follows:

π(vh , vl ,θ′) = (1+δ)(1−S(mh)S(θ′ml ))− vhmh −θ′vhml .

By defining x ≡ θ′ml , the service provider’s payoff function and Equations (V-b)∼(V-d) can

be written as π(vh , x) = (1+δ)(1−S(mh)S(x))− vhmh −xvh , where

vh = S(θmh)H((1−θ)mh +x)(1+δ)− r l , (V-b’)

vl = S(θmh)H((1−θ)mh +x)− r l , (V-c’)

vl = S(mh +x)H(ml −x). (V-d’)

We have the following partial derivatives:

∂π

∂vh
=α(1−β) f (vh)

(
(1+δ)S(x)S(mh)− vh − F (vh)

f (vh)

)
−x,

∂π

∂x
= (1+δ)S(x)S(mh)− vh .

We show ∂π/∂x > 0 by contradiction. Suppose vh ≥ (1+δ)S(x)S(mh); then, by Equation

(V-b’), r l ≤ (1+δ) (S(θmh)H((1−θ)mh +x)−S(x)S(mh)) . Equation (V-c’) yields

vl ≥ S(θmh)H((1−θ)mh +x)δ+S(x)S(mh) > S(mh +x)(1+δ).

However, Equation (V-d’) implies that vl = S(mh+x)H((1−θ′)ml ) < S(mh+x), which leads to

a contradiction. Accordingly, a profitable adjustment for the service provider is to increase x

while fixing vh . This adjustment is feasible since Equation (V-d’) can be satisfied by adjusting

x and vl . Equations (V-b’) and (V-c’) can be satisfied by adjusting r l and θ simultaneously.

In the following analysis, we examine the possibilities with θh
h = 0 or θl

l = 0. Based on

Lemma A.1, there are two remaining cases as follows.

Case 1: θh = θl = (1,0,0) or θh = θl = (0,1,0). Under these two possibilities, both types

of entrants choose the same level of priority service, denoted by ρ̃ = h or ρ̃ = l , while the

other level of service receives no subscription at all. They are equivalent to a single priority
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mechanism with r = r ρ̃, under which the threshold values satisfy

vh = H(mh +ml )(1+δ)− r , (1-a)

vl = H(mh +ml )− r , (1-b)

and the following two inequality conditions:

vh ≥ S(mh +ml )(1+δ) and vl ≥ S(mh +ml ).

To find a profitable adjustment, we consider that the service provider introduces another

higher priority service with rate r ′ > r such that vh = (1+δ)− r ′. This scenario is equivalent

to (r h ,r l ) = (r ′,r ) with θh = (θ,1− θ,0) and θl = (0,1,0) where θ = 0, which is essentially

a limiting case of the type-IV equilibrium, i.e., HMLP. Recall that in our previous analysis

of HMLP, a profitable adjustment requires θ to increase. Since θ = 0 in this case, we can

increase θ and hence directly apply the previous analysis to find the profitable adjustment.

Case 2: θh = (1,0,0),θl = (θ,0,1 − θ) or θh = (0,1,0),θl = (0,θ,1 − θ). These two

possibilities indicate that all high-type entrants choose the same level of priority service,

denoted by ρ̃ = h or ρ̃ = l , while low-type entrants are indifferent between ρ̃ and no priority.

The other level of priority service receives zero subscriptions. This scenario is equivalent

to a single priority mechanism with r = r ρ̃, under which high-type agents always pay for

priority, and low-type agents are indifferent between getting priority or not. Accordingly,

the threshold values and θ satisfy

vh = H(mh +θml )(1+δ)− r , (2-a)

vl = H(mh +θml )− r , (2-b)

vl = S(mh +θml )H((1−θ)ml ), (2-c)

and the following inequality condition:

vh ≥ S(mh +θml )H((1−θ)ml )(1+δ).

This scenario is equivalent to the type-II equilibrium, i.e., HPLM2, with (r h ,r l ) = (r ,0) and

vl > S(mh +ml ). Recall that in our previous analysis of HPLM2, a profitable adjustment

requires r l to increase. Since r l = 0 in this case, we can increase r l and hence directly apply

the previous analysis to find a profitable deviation for the service provider.

In the above analysis, we have shown that the optimal priority search program must

induce the fully separating equilibrium, i.e., the HPLP with θh = (1,0,0) and θl = (0,1,0).

Under the HPLP, the entry thresholds satisfy

vh = H(mh)(1+δ)− r h ,

vl = S(mh)H(ml )− r l .
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Accordingly, the service provider’s decision problem can be transformed into choosing

two threshold values of market entry as follows:

max
v
π(v) = 1−S(mh)S(ml )+ (1−S(mh))δ− vl ml − vhmh ,

subject to

vh − vl ≥ S(mh)H(ml )δ, (ICh)

vh − vl ≤ H(mh)δ, (ICl )

vl ≥ S(mh +ml ), (IRl )

based on Lemma A.2. Taking the partial derivatives, we obtain

∂π

∂vh
=αβ f (vh)

(
S(ml )S(mh)+S(mh)δ− F (vh)

f (vh)
− vh

)
,

∂π

∂vl
=α(1−β) f (vl )

(
S(ml )S(mh)− F (vl )

f (vl )
− vl

)
.

In the final part of the proof, we show that both (ICh) and (IRl ) are binding under the

optimal priority search program. First, we note that the three inequality conditions, i.e.,

(ICh), (ICl ) and (IRl ), cannot all be slack. Otherwise, ∂π/∂vh = 0 and ∂π/∂vl = 0 under the

optimal priority search program, which would imply that S(ml )S(mh)−F (vl )/ f (vl )−vl = 0,

violating (IRl ).

Next, we establish that (ICl ) is always slack. If both (ICh) and (IRl ) are slack, whereas

(ICl ) is binding, then vh − vl = H(mh)δ. We form the Lagrangian as follows:

L =π(vh , vl )+λ[vl − vh +H(mh)δ].

The FOCs yield

vh = S(mh)S(ml )+S(mh)δ− F (vh)

f (vh)
+ −λ
αβ f (vh)

+λH ′(mh)δ,

vl = S(mh)S(ml )− F (vl )

f (vl )
+ λ

α(1−β) f (vl )
.

Taking the difference, we have

vh − vl = S(mh)δ− F (vh)

f (vh)
+ F (vl )

f (vl )
+ −λ
αβ f (vh)

+λH ′(mh)δ− λ

α(1−β) f (vl )
< H(mh)δ,

which leads to a contradiction. If (ICh) is binding, then (ICl ) must be slack according to

Lemma A.2. If (ICh) is slack, then (IRl ) must be binding. Under this scenario, (ICl ) is slack

under the optimum, as we show next. The service provider’s problem can be expressed as

the following Lagrangian:

L =π(vh , vl )+λ1[vl −S(mh)S(ml )]+λ2[H(ml )δ− vh + vl ].

Consider a relaxed problem where (ICl ) is slack, i.e., λ2 = 0, then we have λ1 =
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F (vl )
f (vl )

1
S(mh )S(ml )+ 1

α(1−β) f (vl )
and the thresholds (vh , vl ) satisfy

vh − vl = S(mh)δ− F (vh)

f (vh)
+ F (vl )

f (vl )

S(mh)S(ml )

S(mh)S(ml )+ 1
α(1−β) f (vl )

< H(mh)δ.

which implies that (ICl ) must be slack in the original problem.

Finally, to show that both (ICh) and (IRl ) are binding, we first assume that (IRl ) is binding

while (ICh) is slack. In this case,

dπ(vh , vl (vh))

dvh
=αβ(S(mh)δ− vh + vl ) f (vh)−αβF (vh)

+α(1−β)F (vl )
αβvl f (vh)

1+α(1−β)vl f (vl )
< 0,

when δ is relatively small. Therefore, the service provider’s payoff increases as vh decreases

along vl = S(ml +mh). Second, suppose (IRl ) is slack and (ICh) is binding; then,

dπ(vh(vl ), vl )

dvl
→αβ f (vh)

(
S(ml )S(mh)− F (vh)

f (vh)
− vh

)
+α(1−β) f (vl )

(
S(ml )S(mh)− F (vl )

f (vl )
− vl

)
< 0,

when δ is relatively small. Thus, it is profitable for the service provider to decrease vl along

vh − vl = S(mh)H(ml )δ. Therefore, (IRl ) and (ICh) must both be binding under the optimal

priority search program such that the entry thresholds vr = (vh,r , vl ,r ) satisfy

vh,r = S(mh,r +ml ,r )+S(mh,r )H(ml ,r )δ and vl ,r = S(mh,r +ml ,r ).

Proof of Proposition 6

First, we note that the result in Lemma A.1 applies similarly to the entry fee scheme. That is,

if high-type agents choose the low membership fee with a positive probability, i.e., θl
h > 0,

then the low-type will never choose the high membership fee, i.e., θh
l = 0.

Similar to the analysis in Proposition 5, we first consider the possible types of second-

stage equilibrium where the high-type (low-type) agents subscribe to the high (low) priority

membership with a positive probability, i.e., θh
h > 0 and θl

l > 0. Accordingly, we have the

following three possible types of equilibrium.

O. HPLP: θh = (1,0),θl = (0,1).

I. HPLM: θh = (1,0),θl = (θ,1−θ) with θ ∈ (0,1).

II. HMLP: θh = (θ,1−θ),θl = (0,1) with θ ∈ (0,1).

In the following analysis, we show that the type-I equilibrium and the type-II equilibrium

are never optimal for the service provider.
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I. HPLM When θh = (1,0) and θl = (θ,1−θ) with θ ∈ (0,1) under the entry fee scheme, this

situation is the same as the type-II equilibrium under the priority search program without

(IRl ). Specifically, the service provider’s payoff can be expressed in terms of (vh , vl ) as

follows:

π(vh , vl ) = 1−S(mh)S(ml )− vl mh − vl ml ,

subject to

vh = H(mh +θml )(1+δ)−ph , (I’-a)

vl = H(mh +θml )−ph , (I’-b)

vl = S(mh +θml )H((1−θ)ml )−p l . (I’-c)

According to the proof of Proposition 5, a profitable adjustment exists when vl ≥ S(mh+ml ).

Hence, it remains to discuss the case with vl < S(mh +ml ), which results in

∂π

∂vh
= S(mh)S(ml )αβ f (vh)− vlαβ f (vh) > 0.

Thus, a profitable adjustment is to increase vh without changing vl . To satisfy Equations

(I’-a) and (I’-b), we can decrease θ and increase ph . For Equation (I’-c) to hold, we need to

decrease p l .

II. HMLP When θh = (θ,1− θ) and θl = (0,1) with θ ∈ (0,1), this scenario is the same as

the type-IV equilibrium under the priority search program without (IRl ). Specifically, the

service provider’s payoff can be expressed in terms of (vh , vl ) as follows:

π(vh , vl ) = (1+δ)(1−S(mh)S(ml ))− vhml − vhmh ,

subject to

vh = H(θmh)(1+δ)−ph , (II’-a)

vh = S(θmh)H((1−θ)mh +ml )(1+δ)−p l , (II’-b)

vl = S(θmh)H((1−θ)mh +ml )−p l . (II’-c)

Based on the proof of Proposition 5, a profitable adjustment exists if vh > S(mh)S(ml )(1+δ).

Hence, the case in which vh ≤ S(mh)S(ml )(1+δ) remains to be discussed, which yields

∂π

∂vl
= (1+δ)S(mh)S(ml )α(1−β) f (vl )− vhα(1−β) f (vl ) ≥ 0.

If ∂π/∂vl = 0, then

∂π

∂vh
= (1+δ)S(mh)S(ml )αβ f (vh)− vhαβ f (vh)−mh −ml < 0.

Therefore, a profitable adjustment for the service provider is to decrease both vl and vh ,

as discussed in the proof of Proposition 5. If ∂π/∂vl > 0, then a profitable adjustment is
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to increase vl without changing vh . To satisfy Equations (II’-b) and (II’-c), we need p l to

decrease and θ to increase. Furthermore, we can decrease ph to satisfy Equation (II’-a).

Next, we consider the cases in which θh
h = 0 or θl

l = 0. The only remaining possibilities

are that both types of entrants choose the same entry fee, either ρ̃ = h or ρ̃ = l , namely,

θh = θl = (1,0) or θh = θl = (0,1). Similar to the analysis in the priority search program,

such cases are equivalent to a mechanism with a single entry fee p = p ρ̃, under which the

threshold values satisfy

vh = H(mh +ml )(1+δ)−p,

vl = H(mh +ml )−p,

while the IR constraints are relaxed. To find a profitable adjustment, we consider that the

service provider introduces another higher entry fee p ′ > p such that vh = (1 + δ) − p ′.
This case becomes equivalent to a two-tier entry fee scheme with (ph , p l ) = (p ′, p) and

θh = (θ,1− θ),θl = (0,1) with θ = 0, which is the limiting case of the type-II equilibrium,

i.e., the HMLP. Recall that in the previous analysis of the HMLP, the profitable adjustment

under consideration requires θ to increase. Since θ = 0 in this case, we can directly apply the

previous method to find a profitable adjustment.

Now, we have established that the optimal entry fee scheme must induce the HPLP with

θh = (1,0),θl = (0,1). Accordingly, the service provider’s decision problem is

max
v
π(v) = 1−S(mh)S(ml )+ (1−S(mh))δ− vl ml − vhmh ,

subject to (ICh) and (ICl ), while (IRl ) is not applicable; that is,

vh − vl ≥ S(mh)H(ml )δ, (ICh)

vh − vl ≤ H(mh)δ. (ICl )

Since under the optimal priority search program, (IRl ) is binding, we must have

vl ,p < S(mh,p +ml ,p ),

in the entry fee scheme since the constraint is relaxed. In addition, by the same argument,

(ICh) is binding such that

vh,p = vl ,p +S(mh,p )H(ml ,p )δ.

Proof of Theorem 2

We compare the aggregate participation levels by contradiction. First, to compare the

priority search program and efficient entry, suppose µr ≥µs , then we have

vl ,s = S(mh,s)S(ml ,s) ≥ S(mh,r )S(ml ,r ) = vl ,r .
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Thus, we must have vh,s ≤ vh,r . In addition,

vh,r = S(mh,r )S(ml ,r )+S(mh,r )H(ml ,r )δ< S(mh,r )S(ml ,r )+S(mh,r )δ

≤ S(mh,s)S(ml ,s)+S(mh,s)δ= vh,s ,

which leads to a contradiction.

Second, to compare market entry under the priority search program and entry fee

scheme, suppose µp ≥µr , then since vl ,r = S(mh,r +ml ,r ) and vl ,p < S(mh,p +ml ,p ), we have

vl ,r > vl ,p , and hence, vh,r ≤ vh,p . It follows that

vh,p = vl ,p +S(mh,p )H(ml ,p )δ< S(mh,p )S(ml ,p )+S(mh,p )H(ml ,p )δ

≤ S(mh,r )S(ml ,r )+S(mh,r )H(ml ,r )δ= vh,r ,

which gives a contradiction. Note that the last inequality holds because S(mh,p )H(ml ,p ) ≤
S(mh,r )H(ml ,r ), as shown in the following. Since mh,p −mh,r ≥ ml ,r −ml ,p , it follows that

S(mh,p )/S(mh,r ) ≤ S(ml ,r )/S(ml ,p ). Hence, it is sufficient to show that S(ml ,r )/S(ml ,p ) ≤
H(ml ,r )/H(ml ,p ) or, equivalently, S(ml ,r )/H(ml ,r ) ≤ S(ml ,p )/H(ml ,p ), which is true since

S(x)/H(x) is decreasing in x ≥ 0.

Third, to show that the baseline search induces overparticipation, we assume otherwise

that µe ≤µs . Thus,

vl ,e = S(mh,e )H(ml ,e ) > S(mh,e +ml ,e ) ≥ S(mh,s +ml ,s) = vl ,s .

It follows that vh,e ≤ vh,s . Since vh,e = H(mh,e )(1+δ) and vh,s = S(mh,s)δ+S(mh,s +ml ,s) <
S(mh,s)(1+δ) < H(mh,s)(1+δ), we have vh,e > vh,s , which leads to a contradiction.

In terms of the social surplus, we simply need to show that the expected surplus under

the priority search program is larger than that under the entry fee scheme. Given v = (vh , vl ),

the expected total surplus is measured by

W (v) = mh H(mh)(1+δ)+ml S(mh)H(ml )+αβ
∫ ∞

vh

vdF (v)+α(1−β)
∫ ∞

vl

vdF (v).

Taking the derivatives, we obtain

∂W

∂vh
=αβ f (vh) (S(mh)δ+S(mh +ml )− vh) ,

∂W

∂vl
=α(1−β) f (vl ) (S(mh +ml )− vl ) .

Based on Propositions 5 and 6, (ICh) is binding, i.e., vh − vl = S(mh)H(ml )δ, under

both the priority search program and the entry fee scheme. In addition, in the optimal

entry fee scheme, vl ,p < S(mh,p )S(ml ,p ), while (IRl ) is binding in the optimal priority search

program, i.e., vl ,r = S(mh,r )S(ml ,r ). Hence, vl ,p < vl ,r . When δ is relatively small such

that vh − vl = S(mh)H(ml )δ is upward sloping, vh,p < vh,r . Given these facts, we need to

show that as long as vl < S(mh)S(ml ), we can increase the total surplus by increasing both
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vl and vh along the curve of vh − vl = S(mh)H(ml )δ. Specifically, when vl < S(mh)S(ml ),

∂W /∂vl > 0. When vh − vl = S(mh)H(ml )δ and vl < S(mh)S(ml ),

∂W

∂vh
=αβ f (vh) [S(mh)δ+S(mh +ml )−S(mh)H(ml )δ− vl ] > 0.

Hence, W (vp ) <W (vr ).

Proof of Corollary 1

Under the baseline search equilibrium, the threshold for market entry ve is uniquely

determined by H(αF (v)) = v . Given a threshold v , the social surplus is calculated by

W (v) =αF (v)H(αF (v))+α[
1−F (v)

]
E(v |v ≥ v).

To calculate the threshold for efficient entry, we consider the first-order condition of the

social surplus function as follows:

∂W

∂v
=α[−S′(αF (v))− v

]
f (v).

Hence, the social surplus is uniquely maximized at vs , which satisfies −S′(αF (v)) = v . Based

on Assumption 1, −S′(m) =G ′(m) = H(m)+mH ′(m) < H(m), when m > 0. Hence, we must

have vs < ve .

Under the entry fee scheme, the total revenue from imposing an additional fee p on

buyers is π(p) = αF (v)p, where H(αF (v))− p = v . The service provider’s revenue can be

rewritten as πp (v) =α[H(αF (v))− v]F (v). The first-order condition yields

dπp (v)

dv
=α[

H ′(αF (v))αF (v)+H(αF (v))− v
]

f (v)−αF (v) = 0.

Hence, the market entry threshold under the revenue-maximizing entry fee scheme,

denoted by vp , satisfies

−S′(αF (v))− F (v)

f (v)
= v .

By comparing the above equation with that under efficient entry, we obtain vp < vs .

Proof of Corollary 2

Similar to our main analysis, under the priority search scheme, the agents’ decisions

regarding market entry and priority membership are characterized by (v ,θ). In the type-

I equilibrium, all agents enter with priority, i.e., θ = 1, and we have H(αF (v)) = v + r . In

the type-II equilibrium, agents are indifferent between paying for priority membership or

not; hence, we have H p (v ,θ) = v + r and H n(v ,θ) = v . In the type-III equilibrium, no one

enters with priority, i.e., θ = 0, and we have H(αF (v)) = v . Based on Assumption 2, in all

three types of equilibrium, H(αF (v)) = v +θr . Consequently, our previous analyses of the

comparative statics in the proofs of Proposition 3 and Theorem 1 follow similarly. That
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is, the profit-maximizing priority fee induces the boundary between the type-I and type-II

equilibrium, with r ∗ and vr satisfying H p (v ,1) = H(αF (v)) = v + r , and H n(v ,1) = v . Based

on Assumption 2,

H n(v ,1) = lim
θ→1

H(αF (v))−θH p (v ,θ)

1−θ = H(αF (v))+αF (v)H ′(αF (v)) =−S′(αF (v)),

where the second equality follows from the L’Hôpital’s rule and H p (v ,1) = H(αF (v)), and

the last inequality follows from property (iii) in Assumption 1. Since −S′(αF (vs)) = vs based

on the proof of Corollary 1, we must have vr = vs .
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