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Abstract. We study static binary coordination games with random utility played
on networks. In equilibrium, each agent chooses an action only if a fraction of her
neighbors choosing the same action is higher than an agent-specific i.i.d. threshold. A
fuzzy convention x is a profile where (almost) all agents choose the high action if their
threshold is smaller than x and the low action otherwise. The random-utility (RU)
dominant outcome x∗ is a maximizer of an integral of the distribution of thresholds.
The definition generalizes Harsanyi-Selten’s risk dominance to coordination games
with random utility. We show that, on each sufficiently large and fine network, there
is an equilibrium that is a fuzzy convention x∗. On some networks, including a city
network, all equilibria are fuzzy conventions x∗. Finally, fuzzy conventions x∗ are the
only behavior that is robust to misspecification of the network structure.

1. Introduction

An individual’s behavior in social or economic situations is often positively influenced
by similar decisions made by their friends, acquaintances, or neighbors. An important
recent example is the post-Covid-era mask-wearing: some people wear masks to protect
themselves or others, others don’t wear them because of inconvenience or personal
beliefs, and many, including the author of this paper, are positively affected by how
many people around them wear masks. Other examples include the decision to maintain
a neat front yard, to obey speed limits or tax laws, to engage in criminal activity, or
to adopt a technology with network externalities. A large literature has established
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conditions under which a particular behavior becomes a convention: it is adopted by
everyone (see Young (1993), Ellison (1993), Morris (2000), among many others). These
results typically assume that agents have almost identical preferences, and show that
a contagion-like process, possibly initiated by a small perturbation to the preferences,
leads to uniformity.

At the same time, completely uniform behavior is rarely observed in the real world.
Even in situations which clearly involve positive externalities, there will often be inter-
actions in which neighbors make opposite choices. An obvious reason is that individuals
are different and their tastes and unique circumstances play just as important role in
determining their decisions as the behavior of their neighbors. The goal of this paper
is to study coordination games with heterogeneous payoffs with the following questions
in mind. Is there a useful and coherent way in which heterogeneous-behavior equilib-
ria can be understood as conventions? Can we explain how people coordinate on a
convention? Are some conventions more natural than others?

For this purpose, we study a random utility binary coordination game played in a
network. Each network node contains a single agent who interacts with her neighbors.
We are interested in the asymptotic of equilibrium behavior as the network becomes
arbitrarily large and, importantly, as the graph becomes sufficiently fine, that is, the
weight of the largest neighbor in the neighborhood of each agent becomes sufficiently
small. The latter ensures that no single individual has a disproportionate impact on
another, and it is the first key assumption in our model.

Each agent chooses a binary (high or low) action, and the relative gain from the
action is increasing in the fraction of neighbors who make the same choice. Each
agent has an individual threshold τi, with the interpretation that the high action is the
agent’s best response if and only if more than fraction τi of her neighbors do the same.
Thresholds are distributed i.i.d., with distribution given by cdf P (.). The independence
assumption is the second key assumption of our model and it is appropriate for some
but not all applications. An example of cdf P (.) is drawn on Figure 1; for each
x, P (x) is the fraction of the population with a threshold equal to or smaller than
x. Importantly, unlike in the coordination literature mentioned above, the level of
preference heterogeneity captured by P (.) is non-zero and and non-disappearing.
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Figure 1. Threshold cdf P .

A conceptual contribution of this paper is a definition of a convention appropriate
for large random utility coordination games. Define a fuzzy convention x as an action
profile where almost all agents choose the high action if τi < x and the low action if
τi > x. If x is an atom of distribution P (.), the definition allows for randomization
at τi = x. Our assumptions on networks imply that, in a fuzzy convention, almost
all agents observe approximately P (x) fraction of their neighbors choosing the high
action. This definition captures individual heterogeneity of actions, with two types
of uniformity: (a) almost all agents choose their action as the same function of their
threshold and (b) almost all agents experience almost the same average behavior of
their neighbors. For a fuzzy convention x to be an equilibrium, the choice in (a) must
be a best response, which implies that it is an intersection with 45◦ line, x = P (x).
Figure 1 illustrates with multiple candidate solutions.

Next, we define a particular fixed point. Let random utility-dominant, or RU-
dominant, outcome x∗ be a solution to the maximization problem

x∗ ∈ arg max
x

xˆ

0

(
y − P −1 (y)

)
dy. (1)
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The definition implies that P (x∗) = x∗. Geometrically, the maximized objective on
the right-hand side is equal to the area above the 45◦ line and below function P (blue
area on Figure 1) minus the area below the 45◦ line and above P (red area). The RU-
dominant outcome depends on the threshold distribution, and generically, it is unique.
Two observations about special cases of our model motivate this definition further.
First, (1) is equivalent to a formula from Morris and Shin (2006), where it is derived as
a potential function for the continuum population version of the model where agents
treat the entire population as their neighbors. Second, if the threshold distribution is
concentrated on a single outcome (i.e., all agents’ preferences are identical), then the
RU-dominant outcome is equivalent to the standard risk-dominant outcome of a 2 × 2
coordination game (Harsanyi and Selten (1988)).

The results of the paper show that fuzzy convention x∗ is the “right” solution: In-
formally, all networks have an equilibrium that is a fuzzy convention x∗, and, on some
networks, there are no other equilibria. More precisely, first, we show that for each
network that is sufficiently large and fine, with a probability close to 1 (i.e., for almost
all realizations of thresholds), there is an equilibrium that is a fuzzy convention x∗.
The proof relies on a characterization of coordination games as potential games. (For
an arbitrary network, a potential function is necessarily different than the one in (1).)
Such games are introduced in Monderer and Shapley (1996), where it is shown that
any profile that is a local maximizer of the potential function is an equilibrium of the
underlying game. In the proof, we show that, regardless of the structure of the net-
work, with a probability close to 1, the global maximizer of the potential function is a
fuzzy convention x∗. The difficult part of the proof is to derive a version of a uniform
law of large numbers and to show that it guarantees that action profiles that are not
fuzzy conventions x∗ cannot maximize the potential.

Second, we show there exist networks, where, with a large probability, all equilibria
are fuzzy conventions x∗. An example of such a network is a city-like network, where
agents live on a 2-dimensional grid lattice and they interact with agents in a sufficiently
large neighborhood. The idea of the proof is to show that, for each profile with an av-
erage behavior that is not RU -dominant, contagion-like best response dynamics would
bring the behavior close to x∗. The proof uses an idea from Blume (1995a) and Lee and
Valentinyi (2000) (see also Morris (2000)) to show how a contagion wave spreads across
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lattice networks. There are two novel difficulties relative to earlier literature. First,
unlike in the earlier literature, the agent preferences are random and heterogeneous.
Instead of a binary wave (where there is a sharp separation between risk-dominated
and risk-dominant regions), the contagion wave here has multiple values as it describes
the fraction of agents that adopt the high action. Second, we must compare the like-
lihood that a favorable configuration of payoff shocks may initiate such a wave, with
the likelihood that such a wave would not be stopped by an unfavorable configuration
of payoff shocks. The problem with the latter is the reason why the 1-dimensional
network of Ellison (1993) is not a good example for the result and a 2- (or more)
dimensional lattice is needed.

The two results together suggest that RU-dominant outcome x∗ is the only predic-
tion of aggregate equilibrium behavior that is network-independent. We formalize this
through a definition that is inspired by Kajii and Morris (1997): Consider an analyst
who predicts agents’ behavior but she is not certain whether her model correctly spec-
ifies the network interactions, or whether the agents know the entire network. We say
that the behavior is robust to misspecifications if, even if she or the agents are wrong,
her prediction is close to some equilibrium of the true model. Our results imply that
fuzzy convention x∗ is the only robust prediction.

1.1. Literature review. This is the first paper with predictions about behavior in
static complete-information random-utility games on networks. The model and tech-
niques used draw from two strands of the literature: random utility games on networks
and models of learning (or evolution) in games.

The first random-utility coordination model was introduced in Granovetter (1978).
Granovetter works with a complete (continuum) network, where the agents’ payoffs
depend on the average behavior in the entire population. A large literature gener-
alized Granovetter’s model to networks. Typically, each agent is a single node on a
network and adopts the new behavior (for example, wears a mask) only if the fraction
of her neighbors doing the same is larger than her threshold. Many papers, like Watts
(2002) or López-Pintado (2008) (among many others) study Granovetter’s model on
an Erdos-Renyi style of a random graph with heterogeneous degree distribution. The
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limitation of such models is that they do not capture many important aspects of real-
world networks, like clustering, or overlapping neighborhoods, which are known to play
important role in coordination or contagion phenomena.

Jackson and Yariv (2007) (see also Galeotti et al. (2010)) analyzes a Bayesian equi-
librium, where the agents choose their action without knowing the thresholds of their
neighbors. This assumption improves the model’s tractability as the agent’s behavior
does not depend on the individual thresholds of her neighbors. At the same time, this
assumption is not satisfactory if the equilibrium is to be interpreted as a long-term
process as each agent may change her behavior when she observes the actions of her
neighbors. This is the first key difference from our model, where an equilibrium is
a steady-state behavior after the thresholds are realized and actions are chosen. Be-
cause our model is a static, complete information equilibrium for a given realization
of thresholds, it is also much more difficult to analyze. Further, because the neighbors
in the Bayesian equilibrium of Jackson and Yariv (2007) are selected at random, the
neighborhood structure looks like a random graph. Like other random-graph-based
models, there are typically multiple equilibria. In contrast, in this paper, we are seri-
ous about the topology of the network and explain an important role of overlapping
neighborhoods that cannot be captured in random graphs models.

The results of this paper are closely related to the literature on evolutionary learning
and contagion in networks. Evolutionary game theory (Kandori et al. (1993), Young
(1993), Blume (1993), Newton (2021), and many others) studies the long-run behavior
of perturbed best response processes, where agents commit mistakes with a small
probability, and instead of choosing a best response, take some other action.

A major contribution of this literature is a demonstration of a contagion phenome-
non. Ellison (1993) (see also Ellison (2000)) shows that a best response may spread a
risk-dominant action from a small initial set of deviators to the rest of a 1-dimensional
lattice network. Blume (1995b) and Lee and Valentinyi (2000) extend this observation
to higher-dimensional lattices. Morris (2000) describes general properties of networks
for which Ellison’s contagion wave exists. Morris (2000) also shows that risk-dominated
actions cannot spread through a best response process regardless of the geometry of
the network.
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A strand of the literature studies evolutionary equilibrium selection in games with
heterogeneous populations. For instance, Friedman (1991) describes a general frame-
work with multiple continuum populations choosing actions and receiving payoffs and
studies evolutionary steady states of continuous time adjustment dynamics. More
closely related to this paper is Neary (2012), which studies a similar model to ours but
with two payoff shocks (more precisely, two subpopulations of deterministic size) and
agents located on a complete graph. The paper presents conditions under which the
evolutionary dynamics of Kandori et al. (1993) selects a fuzzy convention, that is, an
equilibrium where members of different subpopulations play different actions. Neary
and Newton (2017) studies general payoff shocks and presents a sufficient condition
under which the logit dynamics of Blume (1993) select a fuzzy convention.

Our current results (specifically, Theorems 1 and 2) are related, but with some key
differences. First, here, we are interested in static equilibria instead of a dynamic
adjustment process. The evolutionary literature is subject to the criticism that one
may need to wait for a very long time before reaching a stochastically stable outcome
(Ellison (1993)). That criticism does not apply to our static model. Second, the
previous papers study games with homogeneous payoffs and a behavior that is subject
to small and disappearing perturbations: small and disappearing shocks in the case of
Ellison (1993) or Blume (1995b), and a finite and small fraction of society modifying
their actions in Lee and Valentinyi (2000) or Morris (2000). Instead, the payoff shocks
in our model are significant, and, as a result, we are serious about heterogeneity.
The non-trivial payoff shocks make our model more difficult to analyze, but they also
render it closer to reality. Third, the evolutionary literature results show convergence
to Harsanyi and Selten (1988)’s risk-dominance. Here, due to payoff heterogeneity, we
need a new solution concept in the form of the RU-dominance. We show that the RU-
dominance becomes equivalent to the risk-dominance when payoffs are homogeneous.
Finally, the network topology plays an important role in both evolutionary models
and in the current paper. In evolutionary models, the network affects the time for
the coordination on the risk-dominant outcome. However, it does not affect the final
outcome: one of the key results of this literature is that risk-dominant coordination is
(uniquely) stochastically stable on all networks (Peski (2010)). In our case, similarly
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to Lee and Valentinyi (2000) and Morris (2000), the network topology affects the
equilibrium outcome.

In a recent contribution, Leister et al. (2022) study coordination games with a fixed
network and a fixed (not random) threshold distribution. The paper works with arbi-
trary networks. To deal with a possible multiplicity of equilibria, they use global games
as an equilibrium selection device. The authors develop an algorithm to compute the
equilibrium adoption. The outcome of the algorithm depends on the details of payoff
heterogeneity and how they interact with the topology of the network. In contrast,
in our paper, the assumption that thresholds are randomly and independently drawn
from the same distributions allows us to separate the effects of the payoff distributions
and the topology of the network.

2. Numerical example

Although our results are asymptotic, the coordination on RU-dominant outcome as
well as the role of the networks can be demonstrated through simulations in a numerical
example.

We compare the behavior under two threshold distributions. In both cases, the high
action is strictly dominant for 30% of the population and the low action is strictly
dominant for another 30%. Under P1, the remaining 40% plays the high action only if
at least 0.55 of their neighbors do the same. Under P2, the remaining 40% plays the
high action only if at least 0.4 of their neighbors do the same. The distributions are
drawn in the top row of Figure 2.

If, like in Granovetter (1978), the population is a continuum, and all agents play
against the entire population, the equilibrium average behavior can be found as a fixed
point of P (.), that is, an intersection of P (.) with the 45◦ line. In both cases, there
are two stable equilibria: A with 0.3 and B with 0.7 fractions playing high. (In each
case, there is also an unstable equilibrium in between.) For each distribution, only one
of these outcomes is RU-dominant - A in the case of distribution P1 and B in the case
of P2.

Instead, consider a population of agents living on one of two networks. Both networks
have ∼ 60, 000 agents and each agent has, on average, ∼ 120 neighbors.
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Figure 2. Monte-Carlo simulations of average equilibrium behavior in
the lowest (blue, “\” hatch areas) and the highest equilibria (yellow, “/”
hatch areas). The distributions substantially overlap (brown color) in
the last row, corresponding to the city network.

• In a random graph (Erdős and Rényi (1959)), neighbors are randomly selected
from the population.

• In a “city” network, people are located on a two-dimensional grid. Each agent
neighborhood is a square of agents with a side equal to 11, centered at the
agent.

We use Monte-Carlo simulations to estimate the probability distributions of average
equilibrium behavior. In each simulation, we draw i.i.d. thresholds for all agents.
For each realization of thresholds, we find the highest and lowest equilibria. Such
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equilibria are well defined for binary coordination games. For example, to find the
highest equilibrium, we start with a profile where all agents play the high action, and
then run the best response process until none of the agents wants to change their
action. Next, for each equilibrium, we compute the average equilibrium behavior. By
combining average behaviors in two equilibria across different threshold realizations,
we obtain the Monte-Carlo estimates.

These distributions for each network, each threshold distribution, and each equi-
librium type (the lowest is marked with blue, “\” hatch areas and the highest with
yellow, “/” hatch areas) are plotted in the two bottom rows of Figure 2. Because both
distributions are highly concentrated around 0.3 (i.e., A) and 0.7 (i.e, B) values, for
clarity, we only show regions around these two values.

There is a significant difference between random and city networks. In the random
graph, the lowest and the highest equilibria correspond to the lowest (A) and highest
(B) equilibria from the population model of Granovetter (1978), regardless of the
threshold distribution. This is not unexpected as a random graph with a relatively
large number of agents is a good approximation of the continuum model.

On the city network, the range of equilibrium behaviors is much smaller and it de-
pends on a threshold distribution. Under P1, the lowest and the majority of realizations
of the highest equilibria are concentrated around A. Under P2, the average behavior
in the highest and lowest equilibria is essentially equal to B. In other words, for a
significant majority of threshold realizations, all equilibria on the city network have
aggregate behavior consistent with the RU-dominant prediction.

The goal of the rest of the paper is to explain this pattern.

3. Model

3.1. Model. We are studying agents living in the nodes of a network. The network
is defined as an undirected weighted graph with weights gij = gji ≥ 0 for i, j ≤ Ng,
where Ng is the size of the network. The weights can be interpreted as a frequency of
interactions between two agents and we assume that gii = 0. Let gi = ∑

j gij > 0 for
each agent i. Each agent i has a threshold τi drawn i.i.d. from probability distribution
P . Each network g, and each realization of thresholds τ defines a complete information
static game G (g, τ).
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Each agent chooses a binary action ai ∈ {0, 1} and uses it in each interaction. The
payoff in interaction with agent j is equal to ui (ai, aj, τi) = aiaj − aiτi , and the total
payoff of agent i in all (weighted) interactions is equal to ∑j gijui (ai, aj, τi). For each
action profile a, let βa = (βa

i ) be a profile of average neighborhood fractions of agents
who play action 1, i.e., βa

i = 1
gi

∑
j gijaj. An action profile is a Nash equilibrium if all

agents best respond, or alternatively, if each agent plays action 1 (resp. 0) if the average
action in their neighborhood is strictly larger (resp., smaller) than their threshold, i.e.,
for each i,

1 {τi < βa
i } ≤ ai ≤ 1 {τi ≤ βa

i } . (2)

The model is strategically equivalent to general random-utility binary-action coordi-
nation games on networks.1 The notion of equilibrium is a standard, static equilibrium
of a complete information game. Although it is convenient to assume that agents know
the thresholds and the network structure of the entire society, this assumption is neither
realistic nor necessary. For the interpretation of the equilibrium, it is sufficient that
agents observe the actions of their neighbors. Because ours is a coordination game,
we can safely think about an equilibrium as a steady state of myopic best response
adjustment process.

Two special cases are worth mentioning:

• homogeneous payoffs: Suppose that τi = τ for all agents i (i.e., P is degenerate -
see Figure 3 for τ = 0.4 and 0.6). This is a standard model of coordination game
on networks (Ellison (1993), Blume (1993), Lee and Valentinyi (2000), and oth-
ers). Peski (2010) showed that, regardless of the network, various evolutionary
dynamics select coordination on risk-dominant action as a stochastically stable
outcome,

1A general model is as follows: For each agent i and j, i’s payoff from interaction with agent j is equal
to u (ai, aj , εi), where ai, aj ∈ {0, 1} are actions and εi is a random shock to agent i’s utility drawn
from some distribution F . Assume that, for each ε,

∆ (ε) := u (1, 1, ε) + u (0, 0, ε) − u (1, 0, ε) − u (0, 1, ε) > 0.

In order to translate this model to the threshold model, for each x, let τi =
1

∆(ε) (u (1, 0, εi) − u (0, 0, εi)).
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• complete graph: Suppose that gij = 1 for each i ̸= j. In the continuum limit
Ng → ∞, our model becomes equivalent to Granovetter (1978). Complete
graphs share similar features with Erdos-Renyi style random graphs.

We assume that none of the agents has significantly more connections than others,
maxi,j gi/gj ≤ w∗, where w∗ < ∞ is an (arbitrary) constant fixed throughout the
paper. This paper is concerned with asymptotic results when the network becomes
sufficiently large and fine.

3.2. Fuzzy convention. For ε > 0 and x ∈ [0, 1], a profile a is ε-fuzzy convention x

if all but ε fraction of agents play 1 if and only if their threshold is strictly below x:
1

Ng

|ai − 1 (τi ≤ x)| ≤ ε. (3)

In a fuzzy convention, the behavior of almost all agents can be deduced from their
threshold alone. Denote the 0-fuzzy convention of x as a profile ax, where, for each
agent i, ax = 1 (τi ≤ x).

A fuzzy convention allows for a substantial heterogeneity of the behavior on a micro
level: individuals with different thresholds may choose different actions. At the same
time, almost all agents use approximately the same procedure of determining their
action as a function of their thresholds. Because the thresholds are i.i.d., for any
large group of agents, with a large probability, fraction P (x) of them will play 1.
Thus, fuzzy conventions do not exhibit macro-level heterogeneity, with differences of
aggregate behavior across different parts of the network.

An important feature of a fuzzy convention is that it is network independent: (al-
most) all agents choose their actions purely based on their own threshold. Such strate-
gies are necessarily employed in models like Jackson and Yariv (2007) and Galeotti
et al. (2010), where agents choose their action before their neighbors are drawn ran-
domly from the rest of the population. In principle, there is no reason why such
strategies should play any role in our paper, which is concerned with static complete
information equilibrium and where actions must be best responses after the network
and all thresholds are determined.

In a fuzzy convention x, the expected fraction of neighbors who play 1 is equal to
P (x). It turns out that if the agents’ neighborhoods are sufficiently large, the expected
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Figure 3. RU- and risk-dominance when P is degenerate for τ = 0.4
(left panel) and τ = 0.6 (right panel).

fraction is also close to the observed one. If the fuzzy convention is also an equilibrium,
we expect that x ∼ P (x).

3.3. RU-dominant outcome. An outcome x∗ ∈ [0, 1] is random utility (RU) domi-
nant if

x∗ ∈ arg max
x

xˆ

0

(
y − P −1 (y)

)
dy. (4)

(When P is not invertible, we define P −1 (y) = inf {(x : P (x) ≥ y)}.) It is strictly
RU-dominant if it is the unique maximizer. Graphically, the integral (4) is equal to
the sum of signed measures of areas between the cdf P (.) and the 45◦ line: the area
below the 45◦ line and above P (.) is added with a “−” sign and the area above the 45◦

line and below P (.) is added with the “+” sign. Fig. 1 illustrates such a calculation
for generic function P (.).

Any maximizer of (4) is a non-atomic fixed point of P (x) = x. However, even if
there are multiple stable fixed points, generically, there exists a unique RU -dominant
outcome.

In a special case of homogeneous payoffs (see Section 3.1), the definition of RU-
dominance reduces to the risk-dominance of Harsanyi and Selten (1988). To see that,
suppose that P (.) is degenerate and concentrated on a single threshold τ (i.e., there is
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no uncertainty about thresholds). Figure 3 shows the distribution P for two values of
τ . In both cases, the integral from expression (4) is equal to 1

2x2 − τx = x
(

1
2 − τ

)
and

• when τ = 0.4, the integral is maximized at x∗ = 1,
• when τ = 0.6, the integral is maximized at x∗ = 0.

In both cases, the RU-dominant outcome is identical to the risk-dominant one.
For future reference, note that any strictly RU-dominant outcome is also a unique

maximizer of

ν (x) = 1
2 (P (x))2 −

xˆ

0

ydP (y) . (5)

Indeed, the maximizer of (5) must satisfy P (x) = x, and a change of variables shows
that the two expressions are equal for such x.

4. RU-dominant fuzzy convention

This section contains the first main result of the paper: all sufficiently large and
fine networks have an equilibrium that is fuzzy convention x∗. Define a bound on the
importance of a single agent in another agent’s neighborhood as

d (g) = max
i,j

gij

gi

∈ [0, 1] .

For d (g) to be small, each agent must have many neighbors. In the next result,
the phrase “with probability” refers to the probability distribution over all threshold
profiles:

Theorem 1. Suppose that x∗ is the strictly RU-dominant outcome. For each η > 0,
there is d > 0 such that, for each network g st. d (g) ≤ d, with probability 1 − η, there
is an equilibrium that is η-fuzzy convention x∗.

If the network is sufficiently fine, i.e. when d (g) is small, then, for almost all real-
izations of thresholds, there is an equilibrium where almost all agents behave as if they
were playing fuzzy convention x∗.

It is worth pointing out that the Theorem is not true for any other x ̸= x∗. This is
because there are networks on which there are no other equilibria than fuzzy conven-
tions x∗ (see Theorem 2 below). The fact that the result does not hold for any other
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fixed point of P (.) but x∗ should caution the reader that there is no “straightforward”
or “immediate” proof based on Granovetter (1978) or convergence to random graphs.

At the same time, the Theorem does not say that the equilibrium is unique, or that
all equilibria are fuzzy conventions x∗, or even that all equilibria are fuzzy conventions.
None of it is true. For example, one can easily show that the Granovetter’s analysis of
the continuum population extends to complete or random graphs: If the population is
sufficiently large, for a large probability set of thresholds realizations, a complete graph
has multiple equilibria, including x-fuzzy convention for each x that is a fixed point of
P (.). Even more, denoting by xmin and xmax the smallest and the largest fixed points
of P (.), there are networks where, with a large probability, there is an equilibrium with
average behavior close to x for each x ∈ [xmin, xmax] and there are many equilibria that
are not fuzzy conventions.2

The condition that d (g) is small corresponds to requirements of vanishing influence
in social learning literature (for instance, Jackson (2010) or Mossel et al. (2015)). In
our case, we require that each agent has a vanishing influence on every other agent.
This ensures that the empirical (i.e., realized) distribution of thresholds in each agent
neighborhood weighted by the link weights is close to distribution P (.). This is related

2An example is a network consisting of K complete graphs, each of size N , disconnected from each
other. Then, for each k ≤ K, if N is sufficiently large, there is an equilibrium where agents in the
first k complete graphs play fuzzy convention xmin (restricted to this complete graph) and agents in
the remaining K − k complete graphs play fuzzy convention xmax. Such a profile is an equilibrium,
but it is not a fuzzy (or any other) convention in the network as a whole. The average behavior in
such a profile is k

K xmin + K−k
K xmax. An example where K = 8 and k = 2 can be found below.

xmin xmax
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to the role of this condition in social learning literature, where it is important that a
random signal observed by one agent does not unduly affect the rest of the society.

The proof of Theorem 1 relies on the fact that the threshold model is a potential
game (Monderer and Shapley (1996)). For each action profile a and threshold profile
τ , define

V (a; τ) = 1
2
∑
i,j

gijaiaj −
∑

giaiτi. (6)

Then, V (ai, a−i; τ)−V (a′
i, a−i; τ) = gi (βa

i − τi) (ai − a′
i), which implies that V (1, a−i; τ)−

V (0, a−i; τ) ≥ 0 if and only if βa
i ≥ τi, or if and only if 1 is a best response for agent

i. In other words, V is an (ordinal) potential function. Monderer and Shapley (1996)
shows that a profile is an equilibrium profile of a potential game if and only if it is a
local maximizer of a potential function.

We emphasize that (6), not the expression in (4), is the potential of the game for
a given network. The latter can be shown to be a (some type of) potential of the
continuum limit of complete graphs. Formula (6) applies to all networks.

The proof consists of four steps. First, we show that, if the network is sufficiently
large and fine, then, with a large probability, the potential of profile ax∗ is very close to
the maximum value of (5). In the next two steps, we consider all profiles a such that
a is an equilibrium that is not ε-fuzzy convention. In the second step, we show that, if
inequality (3) fails, neighborhood averages βa

i must be significantly different from x∗.
Third, we estimate potential for all such profiles a and show that it is approximately
equal to the value that depends on βa

i and it is strictly smaller than the maximum
of (5) for βa

i ̸= x∗. Finally, we recall that any maximizer of the potential must be
an equilibrium. Together with the previous steps, this observation implies that the
maximizer must be a fuzzy convention x∗.

The fourth step is immediate. The first step is a relatively straightforward applica-
tion of a standard concentration inequality (i.e., a version of the law of large numbers).
The second and the third steps are relatively straightforward calculations that rely on
a version of the concentration inequality that holds uniformly across all profiles a. The
proof of the latter is the most difficult part of the entire argument. The reason why
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we need a uniform concentration inequality is that the bounds used in computations
in the second and the third steps must simultaneously hold for all profiles a. 3

4.1. Concentration inequalities. We sketch the main steps of the proof. We start
with a concentration inequality. Let F be the set of measurable functions f : [0, 1]2 →
[0, 1]. For each f ∈ F and each b, let E f (., b) =

´
f (x, b) dP (x) denote the expectation

of f (., b) with respect to the distribution of thresholds P . The Hoeffding inequality
implies that there exist constants B < ∞ and cε > 0 such that for each profile a and
measurable function f (τ, β) ∈ [0, 1],

Prob
(∣∣∣∣∣∑

i

gif (τi, βa
i ) −

∑
i

gi E f (., βa
i )
∣∣∣∣∣ ≥ ε

∑
gi

)
≤ Bexp (−cεNg) . (7)

(Here, and below, Prob is the probability over the realizations of threshold profiles.)
Similarly, the Hanson-Wright inequality says that, for possibly different constants B

and cε,

Prob
∣∣∣∣∣∣
∑
i,j

gij

 ∏
k=i,j

f (τk, βa
k)
−

∑
i,j

gij

 ∏
k=i,j

E f (., βa
k)
∣∣∣∣∣∣ ≥ ε

∑
gi

 ≤ Bexp (−cεNg) .

(8)
The above inequalities hold for each profile a separately. The next Lemma shows

that they can be strengthened to hold uniformly across all profiles.

Lemma 1. There exist constants B < ∞ and c (ε, K, d) for each ε > 0, K < ∞, and
d > 0 such that lim infd→0 cε,K,d > 0 and such that if f ∈ F is a K-Lipschitz function,

3To see the difference between the two types of probabilistic inequalities, consider the following prob-
lem. Suppose that ai, τi ∈ {0, 1} , and τis are i.i.d., uniformly distributed on {0, 1}. Consider a
function V0 (a, τ) = 1

N

∑
aiτi. Then, for each arbitrarily small ε > 0, there exists Nε such that for

each N > Nε,

sup
a

P

(∣∣∣∣V0 (a, τ) − 1
2

∣∣∣∣ > ε

)
< ε.

At the same time, the uniform version of the above inequality is not valid: for any N ,

P

(
sup

a

∣∣∣∣V0 (a, τ) − 1
2

∣∣∣∣ > ε

)
> 1 − ε.

In fact, supa

∣∣V (a, τ) − 1
2
∣∣ = 1

2 and it can be attained by a = τ .
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then

Prob
(

sup
a

∣∣∣∣∣∑
i

gif (τi, βa
i ) −

∑
i

gi E f (., β)
∣∣∣∣∣ ≥ ε

∑
gi

)

≤Bexp
(
−cε,K,d(g)Ng

)
, (9)

Prob
sup

a

∣∣∣∣∣∣
∑
i,j

gij

 ∏
k=i,j

f (τk, βa
k)
−

∑
i,j

gij

 ∏
k=i,j

E f (., βa
k)
∣∣∣∣∣∣ ≥ ε

∑
gi


≤Bexp

(
−cε,K,d(g)Ng

)
. (10)

The proof of the Lemma establishes probabilistic bound (9) (resp., (10)) as a product
between bound (7) (resp., (8)) and a measure of the size of the set of neighborhood
profiles B = {βa : a is a profile}. To explain the idea, notice that, for any function
F (βa) of the neighborhood profile βa, we get:

Prob
(

sup
a

F (βa)
)

= Prob
(

sup
β∈B

F (β)
)

≤ |B| sup
β∈B

Prob (F (β)) = |B| sup
a

Prob (F (βa)) .

In other words, the uniform probabilistic bound is a product of the individual bound
and the counting measure of set B. It turns out that the counting measure is too large
(|B| ∼ exp (2Ng)) for our purposes. Instead, the proof relies on the metric entropy
of set B (see Appendix A.1 for details). We show the metric entropy of B is of order
exp (d (g) N), which, when d (g) is small, leads to bounds that are sufficient to conclude
the proof of Lemma 1. The use of metric entropy requires some modifications to the
above argument, including the restriction to Lipschitz functions f .

4.2. Estimates of the potential function. We use Lemma 1 in three calculations
below. In all cases, we assume that the network is sufficiently large and fine and the
thesis of the Lemma holds. First, we find the potential of 0-fuzzy convention x∗ profile
a∗ = ax∗ : for each i, a∗

i = 1 {τi ≤ x∗} .
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Note that E 1 {. ≤ x∗} = P (x∗). Lemma 1 implies the following estimate:

V (a∗; τ) = 1
2
∑
i,j

gijaiaj −
∑

giaiτi

= 1
2
∑
i,j

gij1 {τi ≤ x∗} 1 {τj ≤ x∗} −
∑

gi1 {τi ≤ x∗} τi

≈ 1
2
∑
i,j

gi (P (x∗))2 −
∑

gi

x∗ˆ

0

ydP (y) =
∑

giν (x∗) .

(Because 1 {. ≤ x∗} is not Lipschitz, the Lemma is applied to a Lipschitz approximation
- the details are left for the Appendix.)

Second, take an arbitrary equilibrium profile that is not ε-fuzzy convention of x∗.
Because of (2) and (3), we get

ε ≤ 1
Ng

|ai − 1 (τi ≤ x∗)|

≤ 1
Ng

∑
i

(
1βa

i ≤x∗1 (τi ∈ [βa
i , x∗]) + 1βa

i ≥x∗1 (τi ∈ [βa
i , x∗])

)
.

By Lemma 1, with a large probability, the following bound holds:
1

Ng

∑
i

|P (βa
i ) − P (x∗)| ≥ 1

2ε. (11)

Third, we estimate the potential for such a profile a. Applying Lemma 1 once more,
we obtain

V (a; τ) = 1
2
∑
i,j

gijaiaj −
∑

giaiτi

= 1
2
∑
i,j

gi1 (τi ≤ βa
i ) 1

{
τj ≤ βa

j

}
−
∑

gi1 (τi ≤ βa
i ) τi

≈ 1
2
∑
i,j

gijP (βa
i ) P

(
βa

j

)
−
∑

gi

βa
iˆ

0

ydP (y) .
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Because 2P (βa
i ) P

(
βa

j

)
≤ P (βa

i )2 + P
(
βa

j

)2
, the potential of a is not larger than

≤ 1
2
∑
i,j

gij (P (βa
i ))2 −

∑
gi

βa
iˆ

0

ydP (y) =
∑

i

giν (βa
i ) .

By the remark at the end of Section 3.3, unless βa
i = x∗, the above is strictly smaller

than the potential of a∗. Hence, together with the estimate of potential for profile
a∗, the bound (11) implies that an arbitrary equilibrium profile that is not ε-fuzzy
convention of x∗ cannot maximize potential.

Finally, recall that any potential maximizer must be an equilibrium. It follows that
the potential maximizer must be ε-fuzzy convention of x∗.

5. RU-dominant selection

In the previous section, we showed that all sufficiently fine networks have equilibria
that are fuzzy conventions x∗. Here, we show that there are networks where, with a
large probability, all equilibria are fuzzy conventions x∗:

For each η > 0, the proof constructs a “city” network, where agents live on a 2-
dimensional grid and interact with other agents who live around them. The network
is parameterized with M and m. There are M2 agents living on square

[
0, M

m

]2
⊆ R2

at fractional points
(

k
m

, l
m

)
for k, l = 1, ..., M . Any two agents i and j are connected,

gij = 1, if the (Euclidean) distance between them is no larger than 1. To avoid
separately dealing with border cases, we assume that all distance calculations are done
modM

m
, which transforms the square

[
0, M

m

]2
into a torus.

Theorem 2. Suppose that x∗ is the strictly RU-dominant outcome and that either (a)
x∗ ∈ (0, 1) and 0 < P (0) ≤ P (1) < 1, (b) x∗ = 1 and P (0) > 0, or (c) x∗ = 0 and
P (1) < 1. For each η > 0, if m and M

m
are sufficiently large, then with probability

1 − η, each equilibrium on (M, m) city network is η-fuzzy convention x∗.

The Theorem says that there exist networks where all equilibria are fuzzy conventions
x∗, or that all equilibria have a form identified by Theorem 1.

We emphasize that the Theorem makes a statement about static, complete infor-
mation game equilibria. At the same time, the proof relies on a dynamic technique
of contagion waves (Ellison (1993); Morris (2000)). We show that if an action profile
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initial infectors 0

a1

a2

a

Figure 4. Contagion wave.

is, in some sense, higher (resp., lower) than fuzzy convention x∗, then best response
dynamics will push the profile below (resp., above) x∗. This shows that the original
profile could not have been an equilibrium. We describe the intuition behind the proof,
including the relation to the maximization problem, below.

If P (0) > 0 (resp., P (1) < 1), then, with a positive probability, there are agents for
whom action 1 (resp., 0) is strictly dominant and it is played in any equilibrium. The
only assumption of the Theorem is that there is a positive probability of such agents.
The role of such agents is similar to the role of initial infectors in Lee and Valentinyi
(2000) and Morris (2000) or the role of small probability mistakes in evolutionary
models.

The city network is an example of a 2-dimensional lattice. The proof could easily
extend to K > 2 dimensional lattices (but, as we explain below, not to K = 1). After
we describe the proof, we point to the properties of multi-dimensional lattices that are
important for the proof. Extending the Theorem to other networks is beyond the goals
of this paper.

5.1. Contagion on line. Next, we describe the intuition for the proof. We assume
that x∗ = 0 and P (1) < 1.

We start with the intuition behind the contagion argument. It is useful initially to
work with a toy version of the line network from Ellison (1993) (the general argument
does not work on a line and it requires at least 2-dimensional lattices). Suppose that
agents are distributed uniformly along a line at discrete and equally spaced locations.
Each location contains a continuum population of mass 1. The populations in locations
i and j are connected with each other, with weights that depend only on the distance



22 MARCIN PĘSKI

gij = gi−j =: gj−i. We assume there are no connections between agents in the same
location, i.e., g0 = 0, and the weights are normalized so that ∑ gd = 1. Finally, we
assume that there are no connections between agents at distance larger than d: gi−j = 0
for |i − j| > d.

Take an action profile a0 such that agents in locations i ∈ [−2d, 0] play action 0 and
all other agents play 1. In our model (but not its continuum toy version), assumption
P (1) < 1 implies that there is a positive probability that a contiguous group of agents
have 0 as a strictly dominant action. If the line network is long enough, the existence
of a group of 2d agents who play 0 for sure can be guaranteed with a probability
arbitrarily close to 1.

Going back to the toy line with a continuum of agents in each location, consider a
revision process in which agents in all locations apart from i ≥ 0 switch to their myopic
best responses. Complementarities imply that they can switch at most once, and if
they do, they switch from action 1 to 0. Figure 4 illustrates the first two stages of such
a process. In the first stage, actions are changed by agents in locations i > 0 for whom
action 0 is strictly dominant, as well as high-threshold agents in locations i ∈ [0, d] for
whom 0 is a best response given a0. In the second stage, additional agents in locations
i ≤ 2d may change actions. And so on. The process will continue until a stable point
where no more agents i ≥ 0 want to switch to 0. Denote the fraction of agents who
play 1 in location i in stage n as an

i and the limit fraction as limn an
i = ai. Due to the

payoff complementarities, profiles an
i for each n and ai must be increasing in i.

In this toy version, the continuum law of large numbers allows us to express the
fraction of agents for whom 1 is a best response given profile a as P (∑d gdai+d). Given
that a is the limit of the best response dynamics, we have, for each location i ≥ −2d,

ai ≤ P

(∑
d

gdai+d

)
.

Taking the inverse, we obtain

P −1 (ai) ≤
∑

d

gdai+d =
∑

j

 ∑
d≥j−i

gd

 (aj+1 − aj) ,

where the equality is due to a discrete version of the integration-by-parts formula and
the fact that ai ≥ 0 for each i. After multiplying by ai+1 − ai ≥ 0, and summing up
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across all locations i, we get

∑
i

P −1 (ai) (ai+1 − ai) ≤
∑
i,j

 ∑
d≥j−i

gd

 (ai+1 − ai) (aj+1 − aj) . (12)

The left-hand side of the inequality is approximately equal to
´ a

0 P −1 (y) dy when the
distance between locations is small and for large m. To compute the right-hand side,
notice that we can switch the roles of i and j in the summation without affecting its
value. Together with the fact that ∑d≥j−i gd +∑

d≥i−j gd = ∑
gd = 1, we get

∑
i,j

 ∑
d≥j−i

gd

 (ai+1 − ai) (aj+1 − aj)

=1
2

∑
i,j

 ∑
d≥j−i

gd +
∑

d≥i−j

gd

 (ai+1 − ai) (aj+1 − aj)


=1
2

∑
i,j

(ai+1 − ai) (aj+1 − aj)
 = 1

2a2

=1
2a2 =

aˆ

0

ydy.

Putting the two sides together, inequality (12) implies that
aˆ

0

(
y − P −1 (y)

)
dy ≥ 0.

If a > 0, this contradicts the fact that x∗ = 0 is the unique maximizer of the integral
on the right-hand side of (4). Thus, in the limit of best response revision process, it
must be that all locations play ai = 0.

The contagion argument extends from a line to higher-dimensional lattices due to an
elegant argument from Blume (1995b) (see also Lee and Valentinyi (2000) and Morris
(2000)). The idea is that if the initial group is sufficiently large, we can approximate
it using a set with a smooth (i.e., low curvature) boundary. Then, we can analyze the
spread of the contagion wave behavior in the direction that is normal to the boundary.
This trick turns the problem into a one-dimensional one, and the above argument
applies.
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initial infectors

Line

initial infectors

Lattice

Figure 5. Obstacles to the contagion wave.

5.2. Obstacles. Although the continuum assumption is useful in explaining the intu-
ition, the argument needs to be modified for our model. For example, the assumption
ignores a positive probability of a contiguous group of “bad” agents for whom 1 is the
strictly dominant action. If sufficiently large, such a group of “bad” agents will stop
the best response revisions towards action 0 and block the contagion wave (see the left
panel of Figure 5).

“Bad” sets cannot be eliminated or avoided in the one-dimensional “line” network.
However, “bad” sets are intuitively less likely to block the contagion wave on higher-
dimensional lattices (see the right panel of Figure 5). The reason is that to block the
wave, the “bad” sets would have to be arranged so as to surround it. We show that,
on a two-dimensional lattice, if m and M

m
are sufficiently large, the likelihood of “bad”

sets surrounding the initial infectors is very small.

5.3. Proof summary. More generally, without the continuum assumption, the argu-
ment behind contagion waves must work with finite laws of large numbers. Below,
we sketch the main ideas of how we do it. The details of the proof can be found in
Appendix B.

The lattice is divided into large and small cubes so that the number of large cubes
in the lattice is very large, each large cube contains a very large number of disjoint
neighborhoods, each neighborhood contains a very large number of small cubes, and
each small cube contains a very large number of agents (see Figure 6). These numbers
are chosen so that the following series of claims holds:
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Large cubeLattice Large cube

NeighborhoodSmall cube

Figure 6. Lattice division.

(1) The number of agents in a small cube and the number of small cubes in a
neighborhood are sufficiently large, so that the fraction of shared agents and
the fraction of shared small cubes in the neighborhoods of any two agents i and
j is well approximated by the area of the intersection of two 1-radius circles
with centers at i and j (Lemma 3).

(2) The size of each small cube is sufficiently large so that, for each small cube,
with a probability close to 1, the empirical distribution of payoff shocks within
the cube is close to the true distribution. We say that a small cube is (γ-)bad
if, for some fraction x, the average best response action of the agents within
the cube is (γ-)larger than P (x). Agents in bad cubes may tilt toward higher
best responses than a statistical agent. Agents in a small cube that is not bad
are well approximated by the continuum assumption in the following sense: the
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average best response in the small cube is not higher than P (β), where β is
the average “belief” (i.e., the average neighborhood action) for members of the
cube.

(3) A large cube is good if it contains no bad small cubes. The ratio of the size of
a small cube (i.e., the number of agents within each small cube) to the number
of small cubes in a large cube is sufficiently large, so that the probability p that
the large cube is good is arbitrarily close to 1.
A large cube is extraordinary if it contains only agents for whom 0 is the strictly
dominant action. Extraordinary cubes play the role of initial infectors. The
number of large cubes is sufficiently large, so that the probability that an ex-
traordinary large cube exists is arbitrarily close to 1.

(4) Two large cubes are connected if they share a wall. The number of large cubes
is sufficiently large, and the probability p that a large cube is not good is
sufficiently small, so that there exists a giant component of good large cubes -
a set of good large cubes that contains almost all large cubes on the lattice and
such that all of its elements are connected with each other by paths of good
large cubes that share a wall. This argument is the content of Lemma 7 and
it relies on definitions and results from the percolation theory (Bollobás et al.
(2006)).
(a) First, we show that each connected set S can be surrounded by a connected

“boundary” ∂S that isolates set S (and, possibly, some other large cubes)
from the remaining large cubes. The total number of large cubes isolated
away from set S is not larger than |S|2. (On a two-dimensional lattice,
the worst-case scenario bound comes from elements of set S arranged in
a way that surrounds an interior proportional in size to the square of its
perimeter.)

(b) For a collection of connected sets S1, ..., SJ that are not connected with
each other, the giant connected component that omits all sets Sj contains
all but at most ∑ |Sj|2 large cubes.

(c) Let S1, ..., SJ be the collection of all maximally connected collections of
large bad cubes. We estimate the expected value of ∑ |Sj|2 as proportional
to the number of all large cubes multiplied by the probability p that a single
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large cube is bad (Lemma 5). An application of the Markov inequality
shows that, if p is sufficiently small, the giant connected component that
contains only good cubes contains a fraction of all large cubes that is
arbitrarily close to 1.

(5) Using the ideas from Blume (1995b), we show that if the curvature of the two-
dimensional contagion wave is sufficiently small relative to the curvature of an
individual neighborhood, the contagion wave will spread, as long as its path
contains only good small cubes (Lemma 9).

Putting it together, the contagion wave is going to spread through a vast majority of
the giant connected component of good large cubes, and thus a vast majority of the
lattice. Hence, with a large probability, the average action in the largest equilibrium
on a sufficiently large two-dimensional lattice is close to x∗.

5.4. Key properties of the city network. We summarize the above discussion by
identifying four properties of (M, m)-city network that play key roles in the proof.

(1) Large number of connections m allows us to approximate the empirical distri-
bution of thresholds in an agent’s neighborhood by the model distribution P .
This approximation forms a basis for the continuum model discussed in section
5.1.

(2) Large network: The population must be sufficiently large to ensure that, for each
action, with a high probability, there is a sufficiently large number of agents
for whom this action is strictly dominant. Such agents start the contagion
argument and they play a similar role as initial infectors in Lee and Valentinyi
(2000) or Morris (2000). In the city network, we require that M

m
is sufficiently

large.
(3) Slow neighborhood growth: For the contagion argument of section 5.1 to hold,

the size of neighborhoods must grow sufficiently slowly (see Morris (2000) for
the definition and properties).

(4) Percolation property: The contagion cannot be obstructed by the obstacle phe-
nomenon described in section 5.2. Using the language introduced above, the
good set of cubes must contain a large connected component of the graph.
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It is not immediately obvious how to formalize the last property in a simple way. (A
non-simple way is to assume that the thesis of Lemma 4 from the Appendix must hold.)
We leave this task for future research.

6. Equilibrium selection

In this section, we point out two equilibrium selection theories that select fuzzy
convention x∗ as the unique solution for random utility coordination games on networks.

6.1. Evolutionary stability. The proof of Theorem 1 shows that fuzzy convention
x∗ is, with a large probability, a global maximizer of a potential function for the
coordination game. Recall that global maximizers of the potential function are selected
in complete information static coordination games by two different equilibrium selection
theories: robustness to incomplete information (Ui (2001)) and stochastic stability
under logistic dynamics (Blume (1993), Blume (2018)).

6.2. Robust behavior. Next, we explain that fuzzy convention x∗ is the only behavior
that is robust to incomplete information about the network. The idea is parallel to the
definition of robustness to incomplete information from Kajii and Morris (1997). We
take a perspective of a researcher/analyst who observes a large population of agents and
attempts to predict individual behavior αi (τi) ∈ [0, 1], where αi (τ) is the probability of
playing action 1, as a function of individual thresholds τi. The researcher understands
that the agents play a coordination game with their neighbors on some large and fine
network and she understands the parameters of the game, but she does not necessarily
understand the details of the network topology. She would like her prediction to be
robust to a misspecification of the network.

Definition 1. A threshold behavior (αi (.))i is robust to the misspecification of the
network if and only if, for each η, there exists d > 0, such that for each network g, if
d (g) < d, with probability at least 1 − η (over the realization of thresholds τi) , there
exists an equilibrium ai ∈ {0, 1} of the network game G (g, τ) such that

1
Ng

∑
i≤Ng

|ai − αi (τi)| ≤ η.
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To interpret the definition, notice that threshold behavior (αi (.))i is network-independent:
each agent’s action depends on their own threshold and not to whom they are connected
and what their neighbors are doing. If the behavior is robust to misspecification, it
prescribes a best response behavior for a great majority of agents, whatever is the true
network of interactions, and whether the agents know the network or not. In other
words, the behavior is approximately an equilibrium on the true network regardless of
whether the researcher or the agents know the true network.

Recall that the 0-fuzzy convention of x∗ is a network-independent profile where
agents play 1 if and only if their threshold is smaller than x, a∗ (τi) = 1 (τi ≤ x∗).

Theorem 3. Suppose that x∗ is the strictly RU-dominant outcome. Then, a threshold
behavior α is robust to misspecification of the network if and only if it is the 0-fuzzy
convention of x∗.

The above result shows that playing a∗ is the only profile that is robust to misspec-
ification of the network.

Proof. The “if” direction follows from Theorem 1. The “only if” direction follows from
Theorem 2. □

7. Conclusions

This paper presented a theory of behavior in random utility binary coordination
games on large networks. We showed that on some networks, with a large probability,
large coordination games have essentially a unique equilibrium. Because this equi-
librium exhibits micro-, but not macro-level heterogeneity of behavior, we refer to it
as a fuzzy convention. The average behavior in such a convention corresponds to a
natural extension of risk-dominance from deterministic to random-utility coordination
games. We also showed that, with a large probability, all sufficiently fine networks (i.e.,
networks where each agent has sufficiently many neighbors), coordination on the spe-
cial fuzzy convention of RU-dominant outcome is always an approximate equilibrium,
regardless of the network structure.

The paper leaves many important questions unanswered. First, how do the results
extend to small-degree networks? Second, in real applications, both macro- and micro-
level heterogeneity are observed. Likely, the latter is due to systematic differences in
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preferences (perhaps differences in the threshold distributions) across different parts of
the network. Can the two idiosyncratic and systematic differences be combined in a
single model? Third, and related, can real-world data be used to estimate parameters
of the model, like the threshold distribution function P (.)? We leave these questions
for future research.

Appendix A. Proof of Theorem 1

A.1. Proof of Lemma 1. Define a distance on the space of (mixed) profiles: For any
a, b ∈ [0, 1]N , let

d (a, b) =
√

1∑
g2

i

∑
g2

i (ai − bi)2.

Recall that B = {βa : a is action profile} is the space of neighborhood fractions. For
each δ > 0, let N (δ, B) be the covering number of B, i.e., the smallest cardinality
n of a list of profiles b1, ..., bn ∈ B such that, for each b ∈ B, there is l ≤ n so that
d
(
b, bl

)
≤ δ.

Lemma 2. There exists a universal constant c < ∞ such that, for each δ > 0, and
each network g,

N (δ, B) ≤ exp
( 1

δ2 cw∗2d (g) N
)

.

Proof. We will use Sudakov’s Minoration Inequality (Theorem 7.4.1 from Vershynin
(2018)), which provides an upper bound on the covering number via the expectation
of a certain Gaussian process. For this, let Zi for each agent i be an i.i.d. standard
normal random variable. For each (possibly mixed) profile a ∈ A, define

Xa = 1√∑
i g2

i

∑
i

giaiZi.

For any two profiles a, b ∈ A,
√

E (Xa − Xb)2 =

√√√√ 1∑
g2

i

E

(∑
i

gi (ai − bi) Zi

)2

=
√√√√ 1∑

g2
i

∑
i

gi (ai − bi)2 = d (a, b) .
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Given the definition and the above property, Sudakov’s Minoration Inequality implies
that, for some universal constant c1 > 0 (i.e., a constant that is independent of param-
eters and the current problem),

log N (δ, B) ≤ c1
(E supb∈B Xb)2

δ2 .

We compute

E sup
b∈B

Xb = E sup
a∈A

Xβa = E

sup
a∈A

1√∑
i g2

i

∑
i

giZi

(
1
gi

∑
gijaj

)
= 1√∑

i g2
i

E

sup
a∈A

∑
i

ai

∑
j

gijZj

 ≤ 1√∑
i g2

i

E
∑

i

∣∣∣∣∣∣
∑

j

gijZj

∣∣∣∣∣∣
≤
√

2
π

1√∑
i g2

i

∑
i

√∑
j

g2
ij,

where the last inequality is due to a bound on the expectation of the absolute value of
the normal variable ∑ gijZj via its standard deviation σi =

√∑
j g2

ij. Because ∑j g2
ij ≤

d (g) g2
i and (∑i gi)2 ≤ N2w∗2g2

min ≤ Nw∗2∑ g2
i , we have

log N (δ, B) ≤
√

2
π

c1
1
δ2

1∑
i g2

i

(∑
i

√
d (g)gi

)2

d (g) ≤ 1
δ2

√
2
π

c1w
∗2d (g) N.

□

We proceed with the proof of Lemma 1. For the first inequality, suppose f is K-
Lipschitz. Fix ε > 0 and δ > 0 so that δ = 1

12K
√

w∗ ε. Find δ-cover b1, ..., bn of B.
Because n ≤ N (δ, B), Lemma 2 implies that

Prob
(

sup
l≤n

∣∣∣∣∣∑
i

gif
(
τi, bl

i

)
−
∑

i

gi E f
(
., bl

i

)∣∣∣∣∣ ≥ 1
2ε
∑

gi

)

≤nBexp
(

−c
(1

2ε
)

N
)

≤ Bexp
(

−
(

c
(1

2ε
)

− 1
δ2 cw∗2d (g)

)
N
)

.

Assume that the complement of the event in the parentheses of the first line of the
above inequality holds. For each action profile a, find l so that d

(
bl, βa

)
≤ δ. Then,
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by the Jensen’s inequality, and because gi∑
gi

≤ w∗ g2
i∑
g2

i
,

∑
i

gi∑
i gi

∣∣∣βa
i − bl

i

∣∣∣ ≤
√∑ gi∑

gi

(
βa

i − bl
i

)2
≤

√√√√∑w∗ g2
i∑
g2

i

(
βa

i − bl
i

)2
≤

√
w∗δ.

Hence, ∣∣∣∣∣∑
i

gif (τi, βa
i ) −

∑
i

gi E f (., βa
i )
∣∣∣∣∣

≤
∣∣∣∣∣∑

i

gif
(
τi, bl

i

)
−
∑

i

gi E f
(
., bl

i

)∣∣∣∣∣+ 2K

∣∣∣∣∣∑
i

gi

∣∣∣βa
i − bl

i

∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∑

i

gif
(
τi, bl

i

)
−
∑

i

gi E f
(
., bl

i

)∣∣∣∣∣+ 2K
√

w∗δ

(∑
i

gi

)
≤ ε

∑
i

gi.

Take c (ε, K, d) = c
(

1
2ε
)

− 1
ε2 c (6Kw∗)2 d. The claim follows.

For the second inequality, we first derive a version of (7): we show that there exist
constants B < ∞ and c (ε) > 0 such that, for each profile a and measurable function
f (τ, β) ∈ [0, 1],

Prob
∣∣∣∣∣∣
∑

i

gij

 ∏
k=i,j

f (τk, βa
k)
−

∑
i

gij

 ∏
k=i,j

E f (., βa
k)
∣∣∣∣∣∣ ≥ ε

∑
gi

 ≤ B exp (−c (ε) N) .

(13)
Indeed, suppose that Xi ∈ [−1, 1] is a collection of independent mean zero random
variables. The Hanson-Wright inequality (Theorem 6.2.1 Vershynin (2018)) implies
that there exists a universal constant c > 0 such that, for each t > 0,

P
(∣∣∣∑ gijXiXj − E

∑
gijXiXj

∣∣∣ ≥ t
)

≤ 2 exp
(

−c min
(

t2

∥G∥2
F

,
t

∥G∥

))
, (14)

where G = [gij] is the adjacency matrix, ∥G∥F is the Frobenius norm and ∥G∥ is the
operator L2-norm. Let Xi = f (τi, βa

i ) − E f (., βa
i ) and t = εi

∑
gi. Recall that random
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variables Xi are independent and that gij = gji and gii = 0 to obtain∑
gijXiXj − E

∑
gijXiXj =

∑
gijXiXj

=
∑

gij

 ∏
k=i,j

f (τk, βa
k)
−

∑
i

gij

 ∏
k=i,j

E f (., βa
k)


− 2
∑

gi

(
E f

(
., βa

j

))
(f (τi, βa

i ) − E f (., βa
i )) .

Hence,

Prob
∣∣∣∣∣∣
∑

i

gij

 ∏
k=i,j

f (τk, βa
k)
−

∑
i

gij

 ∏
k=i,j

E f (., βa
k)
∣∣∣∣∣∣ ≥ ε

∑
gi


≤Prob

(∣∣∣∑ gijXiXj − E
∑

gijXiXj

∣∣∣ ≥ 1
2ε
∑

gi

)
+ Prob

(∣∣∣∑ gi

(
E f

(
., βa

j

))
(f (τi, βa

i ) − E f (., βa
i ))
∣∣∣ ≥ 1

4ε
∑

gi

)
.

We apply (14) to the first bound (notice that ∥G∥ ≤ ∥G∥F ≤
√

N ∥G∥ and gmin ≤
∥G∥ ≤ w∗gmin, where gmin = mini gi) and Hoeffding’s inequality (7) to the second
bound to obtain

≤2 exp
(

−c min
(

ε2 (∑ gi)2

Nw∗2g2
min

, ε

∑
gi

w∗gmin

))
+ Bexp

(
−c

(1
4ε
)

N
)

≤2 exp
(

−c
1

w∗2 ε2N
)

+ Bexp
(

−c
(1

4ε
)

N
)

.

This concludes the proof of (13).
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Given (13), we conclude the proof of the second inequality of Lemma 1 in the same
manner as in the case of the first inequality. In particular, if d

(
bl, βa

)
≤ δ,∣∣∣∣∣∣

∑
gij

 ∏
k=i,j

f (τk, βa
k) −

∏
k=i,j

f
(
ak, bl

k

)∣∣∣∣∣∣
≤
∑

gijf (τi, βa
i )
∣∣∣f (τj, βa

j

)
− f

(
τk, bl

j

)∣∣∣+∑
gijf

(
τj, bl

j

) ∣∣∣f (τi, βa
i ) − f

(
τi, bl

i

)∣∣∣
≤K

∑
j

(∑
i

gijf (τi, βa
i )
) ∣∣∣βa

j − bl
j

∣∣∣+∑
i

∑
j

gijf
(
τj, bl

j

) ∣∣∣βa
i − bl

i

∣∣∣


≤2K
∑

i

gi

∣∣∣βa
i − bl

i

∣∣∣ ≤ 2K
√

w∗δ
∑

i

gi ≤ 1
2ε
∑

i

gi.

Similar calculations apply to ∑i gij

(∏
k=i,j E f (., βa

k)
)
. Hence, if

sup
l≤n

∣∣∣∣∣∣
∑

i

gij

∏
k=i,j

f
(
τk, bl

k

)
−
∑

i

gij E
∏

k=i,j

f
(
., bl

k

)∣∣∣∣∣∣ ≥ 1
2ε
∑

gi for each l,

then ∣∣∣∣∣∣
∑

i

gij

 ∏
k=i,j

f (τk, βa
k)
−

∑
i

gij

 ∏
k=i,j

E f (., βa
k)
∣∣∣∣∣∣ ≤ ε

∑
i

gi.

The rest of the argument follows.

A.2. Proof of Theorem 1. Fix η > 0. For each δ > 0, let ν0
δ = maxx:|x−x∗|≤δ (ν (x∗) − ν (x))

and let ν1
δ = minx:|x−x∗|≥δ (ν (x∗) − ν (x)). Because x∗ is the unique maximizer of ν (.),

ν1
δ > 0 for each δ. Moreover, limδ→0 ν0

δ > 0.
Let κ > 0 and define 1

κ
-Lipshitz functions:

1− (τ, β) = max
(

0, min
(

1,
1
κ

(β − τ)
))

,

1+ (τ, β) = max
(

0, min
(

1, 1 + 1
κ

(β − τ)
))

.

Then, 1 (τ ≤ β − κ) ≤ 1− (τ, β) ≤ 1 (τ ≤ β) ≤ 1+ (τ, β) ≤ 1 (τ ≤ β + κ).
For any equilibrium profile ai = 1 (τ ≤ βa

i ), we have

V (a; τ) ≤1
2
∑

gij1+ (τi, βa
i ) 1+

(
τj, βa

j

)
−
∑

gi1− (τi, βa
i ) τi.



RANDOM UTILITY COORDINATION GAMES ON NETWORKS 35

An application of probabilistic bounds (7) and (13) shows that, if N is sufficiently
large, then, with a probability of at least 1 − ε,

V (a∗; τ) ≥1
2
∑

gijP (x∗ − κ) P (x∗ − κ) −
∑

gi

ˆ x∗+κ

0
ydP (y) − ε

∑
gi

=
∑

gi (ν (x∗ − κ) − ε − 2κ)

≥
∑

gi (ν (x∗)) − κNw∗gminν0
κ − (ε + 2κ) Nw∗gmin,

where in the last inequality, we use constants ν0
. .

Because E 1− (., b) ≥ P (b − κ) and E 1+ (., b) ≤ P (b + κ), an application of Lemma
1 shows that, for each ε > 0, there is d > 0 small enough such that if d (g) < d

(hence N is sufficiently large), then with probability of at least 1 − ε, we have for each
equilibrium profile a,

V (a; τ) ≤1
2
∑

gijP (βa
i + κ) P

(
βa

j + κ
)

−
∑

gi

ˆ bi−κ

0
ydP (y) + ε

∑
gi

≤1
2
∑

gi (P (βa
i + κ))2 −

∑
gi

ˆ bi−κ

0
ydP (y) + ε

∑
gi

=
∑

gi (ν (βa
i + κ) + ε + 2κ) .

If an equilibrium profile a = 1 (τi ≤ βa
i ) is not a η-fuzzy convention, then we get

V (a; τ) ≤
∑

gi (ν (x∗)) + Nw∗gmin (ε + 2κ) − ηNgminν1
1
2 η,

where we used the definition of constants ν1
. . If κ and ε ≤ 1

2η (and d (g)) are sufficiently
small, V (a; τ) < V (a∗; τ) with a probability of at least 1 − 2ε ≥ 1 − η. In such a case,
the potential maximizer must be an η-fuzzy convention x∗.

Appendix B. Proof of Theorem 2

In part B.1 of this Appendix, we formally define the city network (M, m) and also
develop some of its properties. Part B.2 contains the probabilistic part of the proof:
We establish the existence of a large connected component of the network that is also
obstacle-free, i.e., without “bad” groups of agents. The last part elaborates on the
contagion argument from the main body of the paper to conclude the proof of the
Theorem.
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B.1. Lattice. We start by formally defining the city network. For each M ≥ m, the
(M, m)-lattice is a network with

• N = M2 nodes from the set IM = {1, ..., M}2. We define a distance on IM by

d (i, j) = 1
m

√∑
l

((il − jl) mod M)2,

and a ball in this metric as B (i, r) = {y : d (x, y) ≤ r} . The subtraction “modM”
turns the lattice into a subset of “discrete Euclidean torus”

[
0, M

m

]2
, and

• connections gi,j = 1 ⇐⇒ j ∈ B (i, 1).

For each i ∈ IM , and two sets U, W ⊆ IM , let

d (i, W ) = min
j∈W

d (i, j) and d (U, W ) = min
i∈U

min
j∈W

d (i, j) . (15)

For each set W , and each r, define the r-neighborhood of W :

B (W, r) = {i : d (i, W ) ≤ r} =
⋃

i∈W

B (i, r) .

B.1.1. Large m approximations. For large m, the neighborhoods of each agent have
similar properties as open balls on a Euclidean plane. This is formalized as follows.
Let BR2 (x, r) be the ball on the plane with center x ∈ R2 and radius r. Let |A| be a
Lebesgue measure of a measurable set A ⊆ R2. Let

f0 (d, r1, r2) = 1
π

|BR2 ((0, 0) , r1) ∩ BR2 ((d, 0) , r2)|

be the mass of the intersection of two balls, with radii r1 and r2, respectively, separated
by distance d, and normalized by the mass of the unit ball B ((0, 0) , 1).

Lemma 3. The following holds:

• For each ρ > 0, there exists Cρ < ∞ such that if m ≥ Cρ, then for any two
agents i, j, for any r1 ≤ 1 ≤ r2, we have∣∣∣∣∣ |B (i, r1) ∩ B (j, r2)|

|B (i, 1)| − f0 (d (i, j) , r1, r2)
∣∣∣∣∣ ≤ ρ.

• Function f0 has the following properties:
– f0 is Lipschitz over d and r1 ≤ 1 ≤ r2,
– f0 is decreasing in d, and
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r1

r2−x

f1(−x, r1, r2)

f(x)
x 1

Figure 7. Illustrations of functions f1 and f .

– f0 (d, r1, r2) = 0 if r1+r2 ≤ d, and f0 (d, r1, r2) = 1 if r1 = 1 and d ≤ r2−r1.
• Functions f1 (x, r1; r2) = f0 (r2 − x, r1, r2) for r1 ≤ 1 and x ∈ R converge uni-

formly to function limr2→∞ f1 (x, r1; r2) = f2 (x, r1). In particular, for each
ρ > 0, there exists Rρ such that, if r1 ≤ 1 and r2 ≥ Rρ, then,

sup
r1≤1,x

|f2 (x, r1) − f1 (x, r1; r2)| ≤ ρ.

Functions f1 and f2 are Lipschitz over d and r1 ≤ 1 and increasing in x.
• Let f (x) = f2 (x, 1). Then, f (x) + f (−x) = 1.

Proof. The properties of f0, f1, f2, and f follow from their geometric interpretations
and from the fact that the counting measure on IM converges weakly to the Lebesgue
measure on the torus. For example, f2 (x, r1) is a segment of radius r1 ball with height
equal to r1 + x for x ∈ (−r1, r1). See Figure 7. □

B.1.2. Cubes. Let G be a (M, m)-lattice. We divide the lattice into disjoint areas that
we refer to as cubes. We will assume there exist values b such that 0 ≪ b ≪ m, and M is
divisible by b. (This divisibility assumption simplifies the proof. The theorem remains
valid without it, but the proof requires small modifications due to the existence of non-
zero remainders from the division by b. We omit the details.) Each cube has b2 elements
and, because b ≪ m, it is much smaller than the diameter of the neighborhood of each
node so that the neighborhoods of nodes in the same cube are largely overlapping.
At the same time, each cube contains a sufficiently large number of nodes so that the
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distribution of thresholds within the cube can be probabilistically approximated by its
expected distribution.

Formally, for each real number x, let ⌊x⌋ be the largest integer no larger than x. For
each node i, the set of nodes

cb (i) =
{
j ∈ {1, ..., M}2 : ∀l ⌊il/b⌋ = ⌊jl/b⌋

}
is referred to as a cube that contains i. Any two cubes are either disjoint or identical.
Each cube c is uniquely identified by a pair of numbers cl = ⌊il/b⌋ for each l = 1, 2 and
any i ∈ c. Due to the divisibility assumption, there are

(
M
b

)2
cubes on the (M, m)-

lattice.
Let Gb =

{
cb (i) : i ∈ G

}
be the set of all cubes. We refer to the elements of Gb as

cubes. The network of cubes Gb consists of cubes as vertices and edges between any
two cubes that share one of their sides: for any c, c′ ∈ Gb, gb

c,c′ = 1 iff for some l = 1, 2,
cl = c′

l and
∣∣∣(c−l − c′

−l

)
mod M

b

∣∣∣ = 1. Thus, each cube shares an edge with four other
cubes.

Say that set S ⊆ Gb is r-connected if for any subset A ⊆ S, A ̸= S, there is c ∈ A,
c′ ∈ S\A, and at most an r-element path between c and c′. (A path is a tuple of cubes
connected by the edges of the cube network.) S is connected if it is 1-connected.

For any two cubes, define a distance db (c, c′) = maxl

∣∣∣(cl − c′
l) modM

b

∣∣∣. For any
S, S ′ ⊆ Gb, let db (S, S ′) = minc∈S,c′∈S′ db (c, c′) be the distance between two sets of
cubes. Let U (c, r) = {c′ : d (c, c′) ≤ r} be the r-neighborhood of c. Thus, each cube
has 8 other cubes in its 1-neighborhood.

B.2. Probabilistic part. We will show that if the lattice is sufficiently large then,
with arbitrarily high probability, we can find a set W of cubes that (a) contains almost
all cubes and (b) is connected in the cube network, where (c) each cube in the set
is far away from bad cubes, and (d) contains a large set of agents for whom action
0 is dominant. Properties (b)-(c) will allow the contagion wave to spread across the
entire set W , property (a) will ensure that spreading to set W means spreading almost
everywhere, and property (d) will ensure that the set contains sufficiently many “initial
infectors” to start the contagion wave.
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For each realization of threshold profile τ , define the empirical cdf of best response
thresholds in cube c ∈ Gb:

Pc (x|τ) = 1
|c|
∑
i∈c

1 {τ i < x} .

For γ > 0, say that a cube c is γ-bad if there exists x such that Pc (x|τ) > P (x) + γ;
otherwise, the cube is γ-good.

Agent x is extraordinary if action 0 is strictly dominant for such an agent. A cube
c ∈ Gb is extraordinary if it only consists of extraordinary agents. In any equilibrium,
a (c) = 0 for extraordinary cube c. Clearly, an extraordinary cube is γ-good for each
γ ≥ 0.

Say that set W ⊆ Gb of cubes is (γ, R)-good if
(a) W contains at least a fraction (1 − γ) of cubes, |W | ≥ (1 − γ)

∣∣∣Gb
∣∣∣,

(b) W is connected as a subset of the cube network,
(c) if c ∈ Gb is γ-bad, then db (c, c′) > 3R for each c′ ∈ W (in particular, each cube

in W is γ-good), and
(d) W contains a cube c0 such that each cube c s.t. d (c, c0) ≤ R is extraordinary.

We show that large good sets of cubes exist with high probability.

Lemma 4. For each γ, ρ > 0, and R < ∞, there exist mγ,ρ,R > 0, and for each
m > mγ,ρ,R, there exist Mγ,ρ,R (m) such that, if m ≥ mγ,ρ,R and M ≥ Mγ,ρ,R (m), then,
if G is an (M, m)-lattice, b = ⌊ρm⌋, and Gb is the associated cube network, then

P
(
there exists (γ, R) -good set W ⊆ Gb

)
≥ 1 − γ.

B.2.1. Intermediate results. We need two intermediate results. The first result provides
a bound on the size of the largest connected component of the graph obtained from
the network of cubes after removing a group of smaller and connected sets of cubes.

Lemma 5. Suppose that {S1, ..., SJ} is a collection of connected subsets of Gb such
that Si ∪ Sj are not 2-connected for any i ̸= j. Then, there is a connected subset
V ⊆ Gb\⋃Sj such that

∣∣∣Gb\V
∣∣∣ ≤ ∑

j |Sj|2.

Proof. First, observe that for each connected set S such that |S|2 <
∣∣∣Gb
∣∣∣, there is a set

S ′ and a loop (i.e., a path with the same beginning and ending) cS
0 , ..., cS

n = c0 of cubes
cS

l /∈ S ′ such that
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• S ′ ⊇ S and|S ′| ≤ |S|2, and
• loop cS

0 , ..., cS
n tightly surrounds set S ′ and separates it from the rest of the

graph: |{c : d (c, S ′) = 1}| ⊆
{
cS

l

}
⊆ |{c : d (c, S ′) ≤ 2}|.

This observation follows from the Jordan Curve Theorem and from the fact that each
connected set S such that |S|2 <

∣∣∣Gb
∣∣∣ can be contained in a |S ′2|-element “square” of

cubes such that the set outside the square is connected.
For each set Si from the hypothesis of the Lemma, find loop ci and set S ′

i as in the
observation above. We will show that set Gb\⋃S ′

j is connected, which will conclude
the proof of the Lemma. Take any two cubes c, c′ ∈ Gb\⋃S ′

j and an arbitrary path
c = c0, ..., cn = c′ between them. We will modify this path so that it avoids each
set Si. For each i, either the existing path avoids set S ′

i, or it intersects it. Find
li
0 = min {l : d (cl, Si) = 1} and li

1 = max {l : d (cl, Si) = 1}. Then, replace the interval
cli0

, ..., cli1
of the path with the path from cli0

to cli0
along path ci. The new path

avoids set S ′
i. Because the modified part of the path stays within 2-distance of set S ′

i,
the modification does not create new intersections with other sets S ′

j. After possibly
modifying the path for any i, we obtain a path between c and c′ that avoids each set
S ′

i. Thus, set Gb\⋃S ′
j is connected. □

The second result provides an upper bound on the number of different r-connected
sets of cubes.

Lemma 6. The number of r-connected sets in Gb of cardinality n is not larger than
22n (2r + 1)n |Gb|.

Proof. We first find an encoding for each r-connected tuple. Let mr be the size of
the r-neighborhood of an element of Gb. Then, mr ≤ (2r + 1)2. Consider tuples
(s1, (l2, ..., ln) , (k2, ..., kn)) such that s1 ∈ Gb, ki ∈ {1, .., mr}, and li ≤ i and li ≤ lj for
each 2 ≤ i ≤ j.

We show that each r-connected set can be encoded as one of the above tuples in
such a way that any two different r-connected sets must have a different encoding.
Let e : Gb →

{
1, ...,

∣∣∣Gb
∣∣∣} be an enumeration of set Gb. For each s ∈ Gb, let es :

{s′ : d (s, s′) = 1} → {1, ..., 4} be the enumeration of the immediate neighborhood of
s that has the same ranking in the neighborhood as enumeration e. Choose s1 =
arg mins∈S e (s). Suppose that s1, ...si−1 are chosen for 1 < i < n. For each x ∈
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S\ {s1, ..., si−1}, let l (x) = mind(x,sl)=1 l and let it equal ∞ if the set is empty. Then,
l (x) < i for at least one x. Let k (x) = esl(x) (x). Choose

si = arg min
lexicograpically,x∈S

(l (x) , k (x)) ,

so as to minimize lexicographically (l (x) , k (x)) among all x ∈ S\ {s1, ..., si−1}. Let
li = l (si) and ki = k (si).

We derive an upper bound on the number of encoding tuples. Say that a sequence
li, ..., ln is (i, m)-sequence if it is increasing, lj < j for each j, and li = i − m − 1. Let
S (i, m) denote the number of different (i, m)-sequences. It is easy to see that

S (i, m) =
m+1∑
p=0

S (i + 1, p) ,

where S (n, m) = 1. We check by induction on i that S (i, n) ≤ 22(n−i)+m.
The number of choices for s1 is not larger than |Gb|. By the above, the number of

(2, 0)-sequences is not larger than 22(n−2). The number of choices of k2, ..., kn is not
larger than (2r + 1)n−1. It follows that the total number of encodings, and hence the
number of connected sets, is not larger than 22n (2r + 1)n |Gb|. □

B.2.2. Proof of Lemma 4. Lemma 4 follows from the following two results. The first
result establishes the existence of a large connected component that is far from bad
cubes. Let Bγ =

{
c ∈ Gb : c is γ-bad

}
be the (random) set of γ-bad cubes.

Lemma 7. For each γ > 0 and R < ∞, there exists bγ,R > 0 such that if b > bγ,R,
then

P
(
∃W 0 ⊆ Gb, st. W 0 is connected,

∣∣∣W 0
∣∣∣ ≥ (1 − γ)

∣∣∣Gb
∣∣∣ , db

(
W 0, Bγ

)
≥ 5R

)
≥ 1−1

4γ.

Proof. Let pγ > 0 be the probability that a cube is γ-bad. Due to the Dvoretzky–
Kiefer–Wolfowitz–Massart inequality, the probability that a cube c is γ-bad is bounded
by

pγ ≤ Ce−2b2γ2

for some universal constant C.
Let S0

1 , ..., S0
n be the smallest division of the set of bad cubes Bγ = ⋃

S0
i into sets

that are 11R-connected and such that S0
i ∪ S0

j are not 11R-connected for i ̸= j. Let
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X = ∑ |S0
i |2. We compute the expected value of X. Let mn = (22n (11R + 1)n |Gb|) be

an upper bound on the cardinality of all 11R-connected sets (obtained from Lemma
6). Then,

E X ≤
∑
n≥1

n2mnpn
γ ≤ |Gb|

∑
n≥1

2n22n (6R + 1)n pn
γ

= |Gb|
8 (11R + 1) pγ

1 − 8 (11R + 1) pγ

.

Let S1
i ⊇ S0

i be the smallest connected set such that sets S1
i ∪ S1

j are not 11R-
connected for i ̸= j and such that |S1

i | ≤ 11R |S0
i |. Such sets can be constructed by

connecting elements of S0
i by a path inside the intersection of the 11R-neighborhood

of the two sets.
Let Si be the 5R-neighborhood of set S1

i . Clearly, sets Si are disjoint (and separated
by R). Because each 5R-neighborhood of an element of a set S1

i has no more than
(11R + 1)2 |S1

i | cubes, the cardinality of Si is at most (11R + 1)2 |S1
i | ≤ (11R + 1)3 |S0

i |.
Let W 0 be the largest connected component of Gb that does not contain elements of

sets Si. By construction, each set Si is connected, but sets Si ∪ Sj are not 2-connected.
By Lemma 5, the cardinality of W 0 is at least

∣∣∣Gb
∣∣∣− 4 (11R + 1)6 X. By the Markov’s

inequality,

P
(∣∣∣W 0

∣∣∣ ≥ (1 − γ)
∣∣∣Gb
∣∣∣) ≤ P

(
4 (11R + 1)6 X ≤ γ

∣∣∣Gb
∣∣∣)

≤4 (11R + 1)6 E X

γ |Gb|
≤ 1

γ

32 (11R + 1)7 pγ

1 − 8 (11R + 1) pγ

.

Assume that bγ,R > 0 is large enough so that for each b > bγ,R, 1
γ

32(11R+1)7Ce−2b2γ2

1−8(11R+1)Ce−2b2γ2 ≤
1
4γ. □

Say that cube c ∈ GR is an extraordinary center if all cubes in U (c, R) are extraor-
dinary.

Lemma 8. There exists Kγ,R < 0 large enough so that if M
b

> Kγ,R, then

P

∃W ⊆ Gb, st.
W ⊇ W 0, W is connected, db (W, Bγ) ≥ 3R

and W contains an extraordinary center

 ≥ 1 − γ,

where W0 inside the probability satisfies the conditions from Lemma 7.
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Proof. Recall that K = M
b

is the number of cubes. If K is divisible by (2R + 1),
we can find a grid of cubes GR ⊆ Gb such that any two c, c′ ∈ G, d (c, c′) = 2R

and Gb = ⋃
c∈GR

U (c, R). Because the U (c, R) neighborhoods are disjoint,
∣∣∣Gb
∣∣∣ =

|GR| (2R + 1)2, where (2R + 1)2 is the size of each neighborhood. For simplicity, the
rest of the arguments rely on the divisibility assumption. The argument is easily
modified for the case when the divisibility does not hold (and b and M

b
are sufficiently

large).
Let W 0 be the (random) set from Lemma 7. Let W 1 = ⋃

c U (c, R + 1) and W =⋃
c U (c, 2R + 1). Then, d (W, Bγ) > 2R. Because for each c′ ∈ U (c, r) there is a path

between c and c′ that is inside set U (c, r), W is connected.
We show that |GR ∩ W 1| ≥ (1 − γ) |GR|. On the contrary, suppose that |GR\W 1|>γ |GR|.

Then, A = ⋃
c∈GR\W U (c, R) ⊆ Gb\W 0. Moreover, |A| > γ |GR| (2R + 1)2 = γ

∣∣∣Gb
∣∣∣.

However, this contradicts
∣∣∣Gb\W 0

∣∣∣ ≤ γ
∣∣∣Gb
∣∣∣.

Let q > 0 be the probability that a cube c is an extraordinary center. Then,
q ≥ P (0)(2R+1)2b2

. Let q∗ be the probability that cube c is an extraordinary cen-
ter, conditional on c ∈ W 1. Because being in c ∈ W 1 provides no other information
about the distribution of taste shocks apart from c is not γ-bad and γ-bad cubes are
not extraordinary, it must be that q∗ ≥ q. Similarly, conditional on c, c′ ∈ W 1, if c

and c′ are separated by 2R + 1, the events that the two are extraordinary centers are
independent. Hence, the probability that none of the cubes in c ∈ GR ∩ W1 is an
extraordinary center is at most

(1 − q∗)|GR∩W 1| ≤
(

1 − P (0)(2R+1)2b2
)(1−γ)K2(2R+1)−2

≤ e−(1−γ)Kγ,R(2R+1)−2P (0)(2R+1)2b2

.

If K is sufficiently large, the above is smaller than 1
4γ. □

To conclude the proof of the Lemma, we set mγ,ρ,R > 1
ρ
bγ,R and then Mγ,ρ,R (m) ≥

ρmKγ,R.

B.3. Proof of Theorem 2. Below, we will show the following Lemma.
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Lemma 9. For each ε > 0, there exists sufficiently small γ, ρ > 0 and sufficiently large
R > 0 so that if b = ⌊ρm⌋, W is a (γ, R)-good set in the network of cubes Gb, and a is
an equilibrium profile, then for each i ∈ c ∈ W , βa

i ≤ x∗ + ε.

Together with Lemma 4, Lemma 9 shows that for each ε > 0, if m and M
m

are
sufficiently large, with probability of at least 1 − ε, if a is an equilibrium profile,
thenβa

i ≤ x∗ + ε for all agents i but a ε-fraction of the population (i.e., all members of
the “good” set W ).

A similar argument shows that βa
i ≥ x∗ − ε for elements of an analogously defined

“good” set (with the appropriate modification of what good and extraordinary cubes
are). Together, the two arguments show that, with probability of at least 1 − 2ε, for
each agent in the good set, the agent’s average neighborhood behavior is within ε of x∗.
All such agents, if they have a threshold outside interval [x∗ − ε, x∗ + ε], will choose
best response as in 0-fuzzy convention x∗ profile ax∗ .

Finally, choose ε small enough so that P (x∗ + ε) − P (x∗ − ε) ≤ 1
4η. Then, if the

network is sufficiently large, the probability that the fraction of agents with threshold
τi ∈ [x∗ − ε, x∗ + ε] is larger than 1

2η is smaller than ε.
Take ε = 1

4η. Then, with a probability of at least 1 − η, at most η
2 agents have

thresholds in the ε−interval, and at most 2ε = η
2 agents observe equilibrium neighbor-

hood behavior that is outside the ε−interval. All the other agents choose the same
behavior as in profile ax∗ .

Proof. We divide the proof of the Lemma into two steps.
Preparation. Find ε0 > 0, such that

σ∗ = max
a≥x∗+ ε

2

aˆ

x∗+ε0

(
P −1 (y) − y

)
dy > 0.

The existence of such ε0 ∈
(
0, ε

2

)
comes from the definition of x∗ as the unique maxi-

mizer of
´ a

x∗ (y − P −1 (y)) dy. Let δρ be a fraction of neighbors of i who are not members
of a cube that is fully contained in the neighborhood of i. It is easy to see that δρ → 0
as ρ → 0.
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Let a be an equilibrium profile. For each cube c, define

ac = 1
|c|
∑
j∈c

aj and βc = 1
|c|
∑
j∈c

βa
j .

Then, |βc − βa
i | ≤ δρ, and

βc ≤ δρ + |c|
|B (i, 1)|

∑
c⊆B(i,1)

ac. (16)

If cube c is γ-good, then

ac = 1
|c|
∑
i∈c

1 {τ i < βa
i } ≤ 1

|c|
∑
i∈c

1 {τ i < βc + δρ} ≤ P (βc + δρ) + γ. (17)

From now on, assume that W ⊆ Gb is (γ, R)-good. If db (c, W ) ≤ 3R, then cube c is
γ-good.

Define
C0 = {c : ∀c′ d (c, c′) ≤ R =⇒ ac ≤ x∗ + ε0} .

For each i ∈ C0, the average behavior in all the cubes fully contained in the neighbor-
hood of i is ≤ x∗ + ε0, which, together with (16), implies that

βa
i ≤ (x∗ + ε0) (1 − δρ) + δρ ≤ x∗ + ε.

The last inequality holds when ρ is sufficiently small so that δρ ≤ ε
2 . Hence, to establish

our claim, it is enough to show that W ⊆ C0.
Notice that C0 cannot be empty as it contains at least one extraordinary cube. For

each a > x∗ + ε
2 , define

d (a) = min
c∈W :ac≥a

db (c, C0) ≥ R,

where the value is ∞ if the set over which the distance is minimized is empty.
On the contrary to our claim, suppose that there is a cube c ∈ W0 such that ac >

a > x∗ + ε
2 . Then, there exists a > x∗ + ε

2 such that d (a) < ∞. Find a∗ ≥ x∗ + ε0 such
that d (a∗) ≤ 2R and d

(
a∗ + 1

R

)
≥ d (a∗) + 1. Such a∗ exists: otherwise, if for each a

such that d (a) ≤ 2R, d
(
a + 1

R

)
≤ d (a) + 1, then d (a + 1) ≤ 2R, which is impossible

(as there is no cube with the action average strictly larger than 1).
Contagion wave. Notice that ac takes discrete values a ∈ A =

{
0, 1

|c| , ..., 1
}
, where

|c| is the size of a cube. Let ak = k
|c| be the enumeration of set A ∩

{
a : a ≥ x∗ + ε

2

}
.
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For each such cube c, and each i ∈ c, (16) implies

βc ≤δρ + |c|
|B (i, 1)|

∑
c⊆B(i,1)

ac

≤δρ +
∑
a∈A

a
|{c ⊆ B (i, 1) : ac = a}|

|B (i, 1)| /c

≤δρ + x∗ + ε0 +
∑

k

(ak+1 − ak) |{c ⊆ B (i, 1) : ac ≥ a}|
|B (i, 1)| /c

≤δρ + δR,ρ + x∗ + ε0 +
∑

k

(ak+1 − ak)
(
1 − f

(
d (ak) − db (c, C0)

))
,

where the third inequality is a consequence of a discrete version of the integration by
parts (i.e., ∑xi (yi − yi+1) = ∑ (xi+1 − xi) yi+1), and the fourth one is due to Lemma 3,
where δR,ρ → 0 as R is sufficiently large and ρ is sufficiently small. Let δ1

R,ρ = δρ + δR,ρ.
Additionally, for each al ∈ A, al ≤ a∗, find a cube c such that db (c, C0) = dR (al) <

2R and ac ≥ al. Using the above inequality and (17), we obtain

P −1 (al − γ) ≤ P −1 (ac − γ) ≤ βc + δρ

≤δ1
R,ρ + x∗ + ε0 +

∑
k

(ak+1 − ak) (1 − f (d (ak) − d (al))) .

Let k∗ = max {k : ak ≤ a∗}. Then, the right-hand side is not larger than

≤δ1
R,ρ + x∗ + ε0 +

∑
k≤k∗

(ak+1 − ak) (1 − f (d (ak) − d (al)))

+
∑

k>k∗:ak≤a∗+ ε
10

(ak+1 − ak) (1 − f (d (ak) − d (al)))

+
∑

k:ak>a∗+ ε
10

(ak+1 − ak) (1 − f (d (ak) − d (al)))

≤δ1
R,ρ + x∗ + ε0 + 1

R
+
∑

k≤k∗
(ak+1 − ak) (1 − f (d (ak) − d (al))) ,

due to the second term in the first line being not larger than ε
10 , and the third term

being equal to 0 (as f (d (ak) − d (al)) ≥ f (1) = 1).
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Let ∆ = a∗ − (x∗ + ε0). Multiplying by (al+1 − al) and summing across l ≤ k∗, we
obtain∑

l≤K∗
P −1 (al − γ) (al+1 − al)

≤
(
δ1

R,ρ+ 1
R

+ x∗
)

∆ +
∑

l≤K∗

∑
k≤K∗

(ak+1 − ak) (al+1 − al) (1 − f (dR (al) − dR (ak)))

=
(

δ1
R,ρ + 1

R
+ x∗

)
∆ + 1

2
∑

l,k≤K∗
(ak+1 − ak) (al+1 − al) =

(
δ1

R,ρ + 1
R

+ x∗ + ε0

)
∆ + 1

2∆2

≤δ1
R,ρ + 1

R
+

a∗ˆ

x∗+ε0

ydy.

To obtain the equality, we use the fact that f is balanced.
Because P −1 (. − γ) ∈ [0, 1] and al+1 − al = 1

|c| , the left-hand side of the above
inequality is smaller than

a∗ˆ

x∗+ε0

P −1
(

y − γ − 1
|c|

)
dy ≥

a∗−γ− 1
|c|ˆ

x∗+ε0−γ− 1
|c|

P −1 (y) dy.

Assuming that b is large enough so that 1
|c| ≤ γ, the above is not smaller than´ a∗

x∗+ε0
(P −1 (y) − y) dy − 2γ. Putting it back into the main inequality, we obtain

a∗ˆ

x∗+ε0

(
P −1 (y) − y

)
dy ≤ δ1

R,ρ + 1
R

+ 2γ.

If γ, ρ > 0 are sufficiently small and R sufficiently large, δ1
R,ρ + 1

R
+ 2γ < σ∗. The

contradiction shows that W ⊆ C0, which concludes the proof of the Lemma. □

Appendix C. Proof of Theorem 3

For each η > 0, define Pη = P (x : |x − x∗| ≤ η) as the probability that the threshold
realization is within η of x∗. If P does not have an atom at x∗, then, we can choose ηδ

such that Pηδ
≤ 1

30δ. Assume w.l.o.g. that ηδ ≤ δ. Let

Tδ =
{

τ : 1
N

|{τi : |τi − x∗| ≤ ηδ}| ≤ 1
3δ
}

.
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The Law of Large Numbers implies that for sufficiently high N , Prob (Tδ) ≥ 1 − δ.
Fix threshold profile τ ∈ Tδ. Let I0 = {i : |τi − x∗| ≤ ηδ}. Suppose that a is 1

3ηδ-
fuzzy convention x∗. Let I (g) =

{
i : |βa

i − x∗| > 1
3ηδ

}
be the set of agents that is an

equilibrium in game G (g, τ). Let I = I0 ∩ I (g). Then, 1
N

|I| ≤ 2
3δ. For each i /∈ I,

either
• τi > x∗ + ηδ and βa

i ≤ x∗ + 1
3ηδ, which implies ai = a∗

i = 0, or
– τi < x∗ − ηδ and βa

i ≥ x∗ − 1
3ηδ, which implies ai = a∗

i = 1.
Hence, for any i /∈ I, ai = a∗

i . This concludes the proof of the Theorem.
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