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Unified Gross Substitutes and Inverse Isotonicity
for Equilibrium Problems

1 Introduction

This paper proposes the notion of unified gross substitutes for a correspondence

Q : P ⇒ Q. For concreteness we often interpret Q as a supply correspondence

mapping from a set of prices P to a set of quantities Q, though our analysis applies

to correspondences in general. Our analysis encompasses the familiar case in which Q

arises from the optimization problem of a single agent, but unified gross substitutes

need not refer to a single agent’s decision problem, and we are especially interested in

its potential for the study of equilibrium problems.

For functions, the notion of unified gross substitutes is equivalent to the

familiar notion of weak gross substitutes. For correspondences, the notion of unified

gross substitutes implies (but is not equivalent to) Kelso and Crawford’s [22] notion

of gross substitutes for correspondences, which does not suffice for our central result.

Our focus is the inverse isotonicity of the correspondence Q.1 We show that

if the correspondence Q satisfies unified gross substitutes as well as a mild condition

called nonreversingness, then the set Q−1(q) of parameters p associated with an element

q ∈ Q is a sublattice of P and is increasing (in the strong set order, a.k.a. Veinott’s

order, Veinott [36]) in q.

Section 2 presents the framework, the notion of unified gross substitutes, and

the main results. Section 3 develops the following applications of these results.

First, Berry, Gandhi and Haile [3] identify conditions under which a function

q : P → Q has an inverse q−1 that is point-valued and inverse isotone (i.e., q(p) ≤ q(p′)

implies p ≤ p′). Berry, Gandhi and Haile explain that their result is important for

theoretical models that rely on the existence of an inverse demand function or the

uniqueness of equilibrium prices, such as Cournot models of imperfect competition,

and is also important for empirical work on the estimation or identification of demand

and for the testing of revealed preference models.

There are important cases in which demand is specified by a correspondence

rather than a function. For example, quantity-setting models of markets with in-

1See Ortega and Rheinboldt [26] for related work involving functions.
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divisible goods inevitably give rise to demand correspondences, reflecting consumer

indifference between indivisible consumption bundles. The literature typically takes it

for granted that a point-valued inverse demand function exists and exhibits the desired

monotonicity properties (e.g., Davis [7]). Section 3.1 shows that in this setting, unified

gross substitutes implies not only that the demand correspondence Q is inverse isotone,

but is point-valued. This gives us a foundation, in the form of the existence and

isotonicity of inverse demand functions, for quantity-setting models with indivisibilities.

More generally, this result applies to any model of firm competition with limited

dependent variables.

Second, Section 3.2 shows that unified gross substitutes for the argmax

correspondence of a maximization problem is equivalent to the submodularity of the

maximand. This is a familiar result in the case of argmax functions. Auctions for

multiple indivisible goods inevitably give rise to demand correspondences. Ausubel

and Milgrom [2] show that submodularity of the bidders’ maximand is a building

block for showing that sincere bidding is an equilibrium in an ascending proxy auction.

Our result provides alternative conditions for such submodularity.

Third, Section 3.3 supposes Q is the excess supply correspondence of an

economy. If preferences and production sets are only weakly (rather than strictly)

convex, than Q will not in general be a function.2 Let q̃ be the aggregate endowment,

and note that p is a competitive equilibrium price if Q(p) = −q̃, which is to say that

p ∈ Q−1(−q̃). We can then conclude that the set of equilibrium prices is a sublattice.

Moreover, we can derive comparative static results either for the set of equilibrium

prices, using the strong set order, or for the smallest and/or largest equilibrium price

vector.3 For example, an increase in the endowment of (say) good 1 increases (at least

weakly) the equilibrium prices of all other goods. This generalizes results familiar for

economies that generate (point-valued) excess supply functions, and illustrates how

the correspondence Q can be used to generate comparative static results for equilibrium

problems.

Fourth, Section 3.4 introduces a new equilibrium framework, referred to as

2Alternatively, the best response correspondence for an equilibrium problem with finite pure

strategy sets, such as a market entry problem, is a correspondence.
3More precisely, the sublattice Q−1(q) may not be complete, and so may have no smallest or

largest element, but the infimum and supremeum of a sublattice Q−1(q) of RN is contained in the

closure of Q−1(q) (which is not the case in general), and so remain useful tools for characterizing the

set.
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the equilibrium flow problem, that contains a number of familiar settings as special

cases and whose equilibrium correspondence satisfies unified gross substitutes. Section

3.5 shows that a one-to-one matching problem with imperfectly transferable utility is

a special case of the equilibrium flow problem. This gives us versions of lattice and

comparative static results, derived by Demange and Gale [9] for economies with a

finite number of agents, that allow one to accommodate a continuum of each type of

agent. The continuum of types in turn leads to a convenient model of competitive

matching markets (cf. Nöldeke and Samuelson [28]).

Fifth, Section 3.6 shows that hedonic price problems (cf. Rosen [30] and

Ekeland, Heckman and Nesheim [13]) are special cases of the equilibrium flow problem.

This allows us to extend the basic results of Chiappori, McCann and Nesheim [6]

beyond quasilinear utilities, addressing what Ekeland [12] identifies as the primary

limitation of hedonic models and establishing an inverse isotonicity result for such

models.

Section 3.7 notes that time-dependent routing problems are also a special

case of the equilibrium flow problem, allowing us to provide foundations for this

literature.

2 Theory

2.1 Framework

When u and v are two elements of a partially ordered set, we use u < v to express

that u ≤ v and u ̸= v. Recall that a set P is a sublattice of RN if for any pair of

vectors p, p′ ∈ P , the set P also contains their coordinate-wise maximum (denoted by

p ∨ p′) and their coordinate-wise minimum (denoted by p ∧ p′) (Topkis [32, p. 307]).

Let P ⊆ RN and Q ⊆ RN , for some finite N , with generic elements p ∈ P and

q ∈ Q. Let Q : P ⇒ Q be a correspondence. We maintain the following assumption

throughout, without explicit mention:

Assumption 1. P is a sublattice of RN .

In one of our leading interpretations of the correspondence Q, we view the

dimensions of RN as identifying goods and interpret Q as a supply correspondence.

An element p ∈ P = RN is then a price vector, with pz denoting the price of good
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Figure 1: An illustration of the unified gross substitutes property with two goods.

Q is a correspondence between the set of prices on the left and the set of quantities

on the right with q ∈ Q(p) and q′ ∈ Q(p′). Definition 1 imposes that there exists a

q∨ ∈ Q(p ∨ p′), smaller than the top-right border of the rectangle drawn in the set of

quantities, and a q∧ ∈ Q(p ∧ p′) larger than the bottom-left border.

z ∈ {1, . . . , N}. An element q ∈ Q(p) is an allocation, with qz denoting the quantity

of good z supplied at price vector p. No matter what the interpretation, we typically

refer to elements of Q as quantities and elements of P as prices.

2.2 Unified Gross Substitutes

Our basic notion of substitutability for correspondences is:

Definition 1 (Unified Gross Substitutes). The correspondence Q : P ⇒ Q satisfies

unified gross substitutes if, for every p ∈ P, p′ ∈ P , q ∈ Q (p) and q′ ∈ Q (p′), there

exist q∧ ∈ Q (p ∧ p′) and q∨ ∈ Q (p ∨ p′) such that

pz ≤ p′z =⇒ qz ≤ q∧z and q∨z ≤ q′z (1)

p′z < pz =⇒ q′z ≤ q∧z and q∨z ≤ qz. (2)

This definition is appropriate for our interpretation of Q as a supply correspondence,

and would need to be adjusted in a straightforward way for applications to demand
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correspondences.4

Figure 1 gives an illustration of the unified gross substitutes property with

two goods, for the case in which p and p′ are not ordered. Intuitively, there must be at

least one vector q∨ ∈ (p ∨ p′) such that, when moving from either price vector p (and

quantity vector q) or price vector p′ (and quantity vector q′) to price vector p∨ p′, the

quantity does not increase of the good whose price has not increased.

If two price vectors contain no common elements (as in Figure 1), then the

implications of (1)–(2) are the same no matter which price vector is chosen to be p and

which to be p′. When two price vectors exhibit common prices for some dimensions,

unified gross substitutes gains strength from requiring (1)–(2) to hold for both of the

ways that these vectors can be designated as p and p′. To illustrate, consider the price

vectors (4, 5, 6) and (4, 6, 7). When we take p = (4, 5, 6) and p′ = (4, 6, 7), then (1)–(2)

hold trivially (the consequent of (1) can be satisfied by taking q∧ = q and q∨ = q′, and

the antecedent of (2) is empty). When we take p′ = (4, 5, 6) and p = (4, 6, 7), then

(1)–(2) have substantive implications, most notably that as the prices of the other

goods increase, the quantity supplied of good 1 does not increase.

Suppose condition (1) holds. Then by reversing the roles of the price vectors

in (1), we obtain (2) (modulo the appearance of the weak inequality in only one

antecedent). Then why bother to include condition (2)? For a fixed p and p′, we

require that both (1) and (2) hold for a single pair of quantity vectors q∧ ∈ Q (p ∧ p′)

and q∨ ∈ Q (p ∨ p′). To illustrate, suppose N = 2 and we have the price vectors (1, 2)

and (2, 1) as candidates for p and p′. The correspondence

Q(1, 2) = {(3, 9)} Q(2, 2) = {(8, 8)} (3)

Q(1, 1) = {(4, 4)} Q(2, 1) = {(9, 3)} (4)

satisfies unified gross substitutes. In contrast, consider the correspondence

Q(1, 2) = {(3, 9)} Q(2, 2) = {(7, 10), (10, 7)} (5)

Q(1, 1) = {(4, 4)} Q(2, 1) = {(9, 3)}. (6)

4The counterpart of (1)–(2) would then be

pz ≤ p′z =⇒ qz ≥ q∧z and q∨z ≥ q′z

p′z < pz =⇒ q′z ≥ q∧z and q∨z ≥ qz.
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Let (1, 2) = p and (2, 1) = p′. Then (1) is satisfied with q∨ = (7, 10) and (2) is satisfied

with q∨ = (10, 7), but there is no single value q∨ satisfying (1) and (2), and so unified

gross substitutes fails. Imposing (2) as well as (1) for a fixed pair of price vectors p

and p′ thus tightens our definition by comparing q ∈ Q(p) and q′ ∈ Q(p′) to common

(and hence the “unified”) values q∧ and q∨.

One might be tempted to strengthen the definition of unified gross substitutes

yet further by making the antecedents of (1)–(2) both weak inequalities. The resulting,

stronger notion vitiates many of our equivalence results and often fails to hold.

Galichon, Samuelson and Vernet [17, Appendix B.1] provide an example. Notice that,

given the ability to interchange the prices p and p′, it is irrelevant which antecedent

carries the strict inequality.

2.3 Connections

We connect unified gross substitutes to two familiar properties and then provide a

characterization.

First, recall that a function q : RN → RN satisfies weak gross substitutes

if qi (p) is nonincreasing in pj for i ̸= j (e.g., Mas-Colell, Whinston and Green [23,

Definition 17.F.2, p. 611]).5 When Q is a function, the notions of unified gross

substitutes and weak gross substitutes coincide:

Lemma 1. For functions, unified gross substitutes and weak gross substitutes are

equivalent.

Proof. We show that the function q satisfies weak gross substitutes if and only if

the correspondence Q (p) = {q (p)} satisfies unified gross substitutes. First let q satisfy

weak gross substitutes, take q = q (p) and q′ = q (p′), and let q∧ = q (p ∧ p′) and

q∨ = q (p ∨ p′). Then pz ≤ p′z =⇒ (p ∧ p′)z = pz, which combines with p∧ p′ ≤ p and

weak gross substitutes to give qz (p) ≤ qz (p ∧ p′) and hence the first part of (1). The

other requirements in (1)–(2) are dealt with similarly, and hence Q satisfies unified

gross substitutes. Conversely, let Q (p) = {q (p)} satisfy unified gross substitutes, let

5Requiring qi (p) to be strictly decreasing in pj gives strict gross substitutes. Mas-Colell, Whinston

and Green [23] provide the definition of weak gross substitutes for a demand function, namely that

qi (p) is nondecreasing in pj .
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pj ≥ p′j and pi = p′i for all i ̸= j. Then p∧ = p′ and p∨ = p, so that applying (1) to

some i ̸= j gives qi(p) ≤ qi(p
′), and hence q satisfies weak gross substitutes.

Second, translating Kelso and Crawford’s [22, p. 1486] well-known definition

of gross substitutes to our setting of supply correspondences, the correspondence Q

has the Kelso-Crawford gross substitutes property if, given two price vectors p and p′

with p′ ≤ p, (1) for any q ∈ Q (p) there exists q′ ∈ Q(p′) such that pz = p′z =⇒ q′z ≥ qz

and (2) for any q′ ∈ Q (p′) there exists q ∈ Q(p) such that pz = p′z =⇒ q′z ≥ qz.
6 The

following is immediate from the definitions:

Lemma 2. Unified gross substitutes implies the Kelso and Crawford gross substitutes

property.

Turning to the other direction, the correspondence given by (5)–(6) satisfies Kelso

and Crawford’s [22] notion of gross substitutes but does not satisfy unified gross

substitutes.

We can provide an intuitive idea of how unified gross substitutes strengthens

Kelso-Crawford’s gross substitutes notion. Continuing with the correspondence given

by (5)–(6), suppose we decompose the movement from price (1, 2) to price (2, 1) into

an increase in the price of good 1 followed by a decrease in the price of good 2. Unified

gross substitutes requires that there exists a corresponding sequence of quantities

(e.g., from (3, 9) to (8, 8) to (9, 3) in (3)–(4)) that first decreases the quantity of good

2 and then increases the quantity of good 1. In contrast, under the Kelso-Crawford

gross substitutes as in example (5)–(6), constructing a similar sequence requires either

responding to the increase in the price of good 1 by increasing the quantity of good 2

(the sequence (3, 9) to (7, 10) to (9, 3)) or responding to the decrease in the price of

good 2 by decreasing the quantity of good 1 (the sequence (3, 9) to (10, 7) to (9, 3)).

In effect, unified gross substitutes requires some consistency of the quantities verifying

the substitutes conditions that Kelso-Crawford gross substitutes does not impose.

Galichon, Samuelson and Vernet [17, Appendix B.2] show that Kelso and Crawford’s

notion does not suffice for our inverse isotonicity result (Theorem 1).

Galichon, Samuelson and Vernet [17, Appendix B.3] show that a corre-

spondence Q satisfying uniform gross substitutes (and hence Kelso-Crawford gross

6Kelso and Crawford [22, p. 1486] impose only the first condition, which suffices for the price

adjustment process they consider.
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substitutes) need not admit a selection satisfying weak gross substitutes. Say that a

finite sublattice P̃ is of degree n if n is the smallest number such that each element of

P̃ has at most n immediate predecessors and at most n immediate successors. Let QP̃
denote the restriction of Q to the sublattice P̃ . Then a straightforward reformulation

of the definition establishes that the Kelso-Crawford gross substitutes property is

equivalent to the requirement that for any finite sublattice P̃ of degree one and any

point in the graph of P̃ , there exists a selection from QP̃ containing the selected point

and satisfying weak gross substitutes.7 The following, whose conceptually straight-

forward but tedious proof is given in Galichon, Samuelson and Vernet [17, Appendix

B.4], shows that unified gross substitutes has an analogous characterization in terms

of finite sublattices of degree two rather than one:

Lemma 3. The correspondence Q satisfies unified gross substitutes if and only if, for

any finite sublattice P̃ of degree two and any two points drawn from the images of two

nonordered elements of P̃ , there exists a selection from QP̃ containing those points and

satisfying weak gross substitutes.

We thus view unified gross substitutes as the natural strengthening of Kelso-Crawford

gross substitutes.

Polterovich and Spivak [27, Definition 1, p. 118] propose a notion of gross

substitutes for correspondences (see Howitt [21] for an intermediate notion), which

stipulates that if the prices of some set of goods increase while others remain constant,

it cannot be the case that every one of the quantities associated with the latter

set strictly increases. Polterovich and Spivak [27, Lemma 1, p. 123] show that

if the correspondence Q maps from the interior of RN
+ into RN , is convex valued

and closed valued, and maps compact sets into nonempty bounded sets, then their

gross substitutability condition implies (1)–(2). Galichon, Samuelson and Vernet [17,

Appendix B.5] show that our requirement that P be a sublattice of RN does not suffice

for this result, and that in general neither notion implies the other.

2.4 Nonreversingness

Our second condition is a requirement that the correspondence Q cannot completely

reverse the order of two points:

7The correspondence given by (5)–(6) shows that Kelso-Crawford’s gross substitutes does not

ensure sublattices of degree higher than one admit a selection satisfying weak gross substitutes.
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Definition 2 (Nonreversing correspondence). The correspondence Q : P ⇒ Q is

nonreversing if 
q ∈ Q (p)

q′ ∈ Q (p′)

q ≤ q′

p ≥ p′

 =⇒

(
q ∈ Q (p′)

q′ ∈ Q (p)

)
. (7)

Nonreversingness is implied by the (stronger but common) assumption that Q is

increasing in the strong set order.

We view unified gross substitutes as the more substantive of the two condi-

tions, with nonreversingness typically being innocuous. We will subsequently make

use of the following two circumstances under which nonreversingness naturally holds.

First, the correspondence Q satisfies constant aggregate output if there exists

k ∈ RN
++ such that

∑N
z=1 kzqz = 0 holds for all p ∈ P and q ∈ Q (p). One obvious

circumstance in which aggregate output is constant is that in which the bundle of

goods is augmented by an “outside good” whose quantity is the negative of the

sum of the quantities of the original set of goods, as in Berry, Gandhi and Haile

[3]. Alternatively, the correspondence may be describing market shares in a model

of competition, probabilities in a prediction problem, or budget shares in a model of

consumption. Constant aggregate output ensures that the antecedent of (7) can hold

only if q = q′, rendering the consequent immediate, giving:

Lemma 4. Constant aggregate output implies nonreversingness.

Second, the correspondence Q satisfies constant-value output if for all p, and

all q ∈ Q (p), we have p⊤q = 0. If −Q is the excess demand function of an economy

(allowing us to maintain our interpretation of Q as a supply correspondence), then

Walras’ law ensures that Q will satisfy constant-value output.

Given a correspondence Q, consider the associated correspondence measured

in monetary terms,

Q$ (p) =
{
(pzqz)z∈{1,...,N} with q ∈ Q (p)

}
.

Then Q satisfies constant-value output if and only if for all p and all q̃ ∈ Q$ (p), we have

1⊤q̃ = 0. This gives the first statement of the following; the second is straightforward.
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Lemma 5. If Q satisfies constant-value output, then Q$ has constant aggregate output,

and is therefore nonreversing. When the domain P is contained in RN
+ , so that prices

are positive, then Q satisfies unified gross substitutes if and only if Q$ satisfies unified

gross substitutes.

2.5 Inverse Isotonicity

We are interested in conditions under which Q has an isotone (i.e., weakly increasing)

inverse.8

Definition 3 (Totally Isotone Inverse). A correspondence Q : P ⇒ Q has totally

isotone inverse if, whenever q ∈ Q (p) and q′ ∈ Q (p′) are such that there exists

B ⊆ {1, . . . , N} with pz ≤ p′z for all z ∈ B and qz ≤ q′z for all z /∈ B, we have

q ∈ Q (p ∧ p′) and q′ ∈ Q (p ∨ p′) . (8)

If we require (8) to hold only for the case B = ∅, then we say simply that Q is inverse

isotone.

The weaker property of inverse isotonicity, implied by total inverse isotonicity,

is the condition that the inverse correspondence Q−1 is isotone in the strong set order,

i.e, whenever p ∈ Q−1 (q) and p′ ∈ Q−1 (q′) where q ≤ q′, it follows that

p ∧ p′ ∈ Q−1 (q) and p ∨ p′ ∈ Q−1 (q′) .

The following inverse isotonicity result is the building block for subsequent applications.

Theorem 1. Let Q : P ⇒ Q satisfy unified gross substitutes. Then the following

conditions are equivalent:

(i) Q is nonreversing, and

(ii) Q has totally isotone inverse.

8A linear function p = Mq satisfies our condition of totally isotone inverse if and only if the inverse

matrix M−1 is totally positive (i.e., every minor is positive). The analogue between a nonempty B

and a nontrivial minor of the matrix M motivates our “totally” modifier in the following definition.
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Proof Assume (i) and consider q ∈ Q (p), q′ ∈ Q (p′), and B ⊆ {1, ..., N} such that

pz ≤ p′z for all z ∈ B and qz ≤ q′z for all z /∈ B. By unified gross substitutes, one has

the existence of q∧ ∈ Q (p ∧ p′) and q∨ ∈ Q (p ∨ p′) such that

pz ≤ p′z =⇒ qz ≤ q∧z

pz > p′z =⇒ q′z ≤ q∧z .

We have pz > p′z =⇒ z /∈ B, which implies qz ≤ q′z. Combining with the inequalities

above, we see that qz ≤ q∧z holds for any 1 ≤ z ≤ N . But then q ≤ q∧ and p ≥ p ∧ p′,

so by nonreversingness it follows that q ∈ Q (p ∧ p′). A similar reasoning shows that

q′ ∈ Q (p ∨ p′). We have therefore shown statement (ii).

Conversely, we assume statement (ii) holds and show Q is nonreversing. Take

p ≥ p′ and q ≤ q′ such that q ∈ Q(p) and q′ ∈ Q(p′). Letting B = ∅, because Q has

totally isotone inverse, we have that q ∈ Q(p ∧ p′), which is equivalent to q ∈ Q(p′),

and q′ ∈ Q(p ∨ p′), which is equivalent to q′ ∈ Q(p), which shows (i).

It is an immediate implication that:

Corollary 1. Let Q satisfy unified gross substitutes and be nonreversing. Then the set

of prices Q−1(q) associated with an allocation q is a sublattice of P .

Proof Take p ∈ Q−1 (q) and p′ ∈ Q−1 (q). Then q ≤ q yields q ∈ Q (p ∧ p′) and

q′ ∈ Q (p ∨ p′).

3 Applications

3.1 Inverse Demand

Berry, Gandhi and Haile [3], abbreviated as BGH, examine functions q : P → Q.

Given such a function, they introduce an additional good 0, defined by letting q0 (p) =

−
∑N

z=1 qz (p), and direct attention to the function q̃ : {1} × P → R × Q, written

q̃ = q̃(p̃) = (q0(p), q(p)), with p̃ = (1, p) and q̃ = (q0, q). They make the following

assumptions, which allow them to show that an inverse demand function is isotone

and point-valued:

BGH, Assumption 1: q is defined on a Cartesian product of sets.
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BGH, Assumption 2.a: q has the gross substitutes property.

BGH, Assumption 2.b: The function q0 is weakly decreasing in each pz

for z ∈ {1, ..., N}.

BGH, Assumption 3: For all B ⊆ {1, . . . , N} and all p and p′ such that

pz = p′z for all z ∈ B and pz > p′z for all z ̸∈ B, there exists z̃ ∈ B ∪ {0}
such that qz̃(p) < qz̃(p

′).

Berry, Gandhi and Haile’s Assumption 1, that q is defined on a Cartesian

product of Euclidean spaces [3, p. 2094], implies our Assumption 1 that P is a sublattice

of RN . Their second assumption [3, p. 2094] (in our notation, and translating from

their framing in terms of demand functions to our framing in terms of supply functions)

is split here into Assumptions by 2.a and 2.b. Lastly, their Assumption 3 [3, p. 2095]

is a connected strict substitutes assumption which expresses that one cannot partition

the set of goods into two set of products such that no good in the first set is a substitute

for some good in the second set. We have stated this assumption in the equivalent

form established in their Lemma 1.

Applying our Theorem 1 gives a variant of Berry, Gandhi and Haile’s [3]

Theorem 1 which operates under weaker assumptions (more precisely, without their

Assumption 3) but delivers a weaker conclusion:

Corollary 2. Under Berry, Gandhi and Haile’s Assumptions 1, 2.a, and 2.b, the

inverse q−1 of a function q is isotone in the strong set order, that is q(p) ≤ q(p′)

implies q(p) = q(p ∧ p′) and q(p′) = q(p ∨ p′).

Proof Recall that Lemma 1 establishes that if the function q satisfies weak gross

substitutes, which it does under Assumption 2.a, then it satisfies unified gross substi-

tutes. Using Assumption 2.b and Lemma 4 (taking k to be the unit vector), we get

that q is also nonreversing. Theorem 1 then gives the result.

To generalize Berry, Gandhi and Haile’s [3] Theorem 1 and Corollary 1 to

correspondences, we introduce the idea of strong nonreversingness.9

Definition 4 (Strongly nonreversing correspondence). The correspondence

Q : P ⇒ Q is strongly nonreversing if

9Strong nonreversingness implies Sabarwal’s [31] never decreasing property, which he uses to

establish comparative static results.
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q ∈ Q (p)

q′ ∈ Q (p′)

q ≤ q′

p ≥ p′

 =⇒ p = p′.

Strong nonreversingness allows us to strengthen Theorem 1. adding the conclusion

that Q−1 is point-valued as well as isotone. Appendix A.1 proves:

Theorem 2. Let Q : P ⇒ Q satisfy unified gross substitutes. Then the following

conditions are equivalent:

(i) Q is strongly nonreversing

(ii) Q−1 is point-valued and isotone where not empty, i.e. q ∈ Q (p), q′ ∈ Q (p′)

and q ≤ q′ imply p ≤ p′.

We note in passing that for functions, this gives us an alternative proof of

Berry, Gandhi and Haile’s central result:

Corollary 3. Under Berry, Gandhi and Haile’s Assumptions 1, 2.a, 2.b and 3, the

function q has a point-valued inverse and is inverse isotone.

Proof We show that under the additional Assumption 3, the function q is in addition

strongly nonreversing. Indeed, assume q(p) ≤ q(p′) and p ≥ p′. By nonreversingness,

one has q(p) = q(p′). Assume p > p′. Let B = {z : pz = p′} ̸= {1, . . . , N}. By BGH

Assumption 3, there exists z ∈ B ∪ {0} such that qz(p) < qz(p
′), a contradiction.

Hence p = p′, giving strong nonreversingness. Theorem 2 then gives the result.

Turning now to a correspondence Q, let Q̃ : {1} × P ⇒ R × Q be the

correspondence, written q̃ ∈ Q̃(p̃), constructed from Q by letting p̃ = (1, p) and

q̃ = (−
∑N

z=1 qz, q). By construction, the correspondence Q̃ satisfies constant aggregate

output and hence is nonreversing (Lemma 4). An argument analogous to the proof of

Corollary 3 establishes that Q is strongly nonreversing. It is straightforward (Galichon,

Samuelson and Vernet [17, Appendix B.6]) that if Q̃ satisfies unified gross substitutes,

then so does Q. Theorem 2 then immediately gives the following extension of Berry,

Gandhi and Haile’s [3] inverse isotonicity result to correspondences:
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Corollary 4. Let Q̃ satisfy unified gross substitutes. Then Q is inverse isotone

(q(p) ≤ q(p′) implies p ≤ p′) and Q−1 is point-valued.

Section 1 explained how Corollary 4 can be applied to quantity-setting models of

markets with indivisibilities, or to other models of competition with limited dependent

variables.

3.2 Profit Maximization

Suppose a competitive multiproduct firm faces output price vector p ∈ RN and convex

(and hence continuous) cost function c : RN → R. Given a price p, the set of optimal

production vectors Q(p) ⊆ RN is given by

Q(p) = arg max
q∈RN

{
p⊤q − c (q)

}
. (9)

The profit function c∗ is the conjugate of the cost function c, given by

c∗(p) = max
q∈RN

+

{
p⊤q − c (q)

}
.

We note that ∂c∗(p) is the subdifferential of c∗ at p,10 and the inverse correspondence

Q−1 is given by

Q−1(q) = arg max
p∈RN

+

{
p⊤q − c∗ (p)

}
= ∂c(q),

where ∂c(q) is the subdifferential of c at p.

The inverse correspondence Q−1 is isotone in the strong set order if Q is

nonreversing and exhibits unified gross substitutes. Appendix A.2 shows that Q is

nonreversing and proves the following result. The underlying principle is that convex

functions are submodular if and only if their subdifferentials satisfy unified gross

substitutes.

Theorem 3. The following conditions are equivalent:

(i) the profit function c∗ is submodular, and

(ii) the supply correspondence Q(p) = ∂c∗ (p) satisfies unified gross substitutes.

10Given the convexity of the cost function c, the general form of Shephard’s lemma (Rockafellar [34,

Theorem 23.5, p. 218]) gives Q(p) = ∂c∗(p), where ∂c∗(p) is the subdifferential of the profit function.
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Invoking Theorem 1, we thus have that the supply correspondence Q is inverse

isotone if and only if the profit function is submodular.11 Galichon, Samuelson and

Vernet [17, Appendix B.7] extend this result to an imperfectly competitive market.

Ausubel and Milgrom [2, Theorem 10] argue that a demand correspondence

satisfies a weak gross substitutes property (namely that qi (p) is nonincreasing in pj

for i ̸= j and for those p for which q(p) is single-valued) if and only if the associated

indirect utility function is submodular, and use this connection to show that sincere

bidding strategies are an equilibrium of an ascending proxy auction. Theorem 3

provides alternative conditions for such submodularity.

3.3 Competitive Equilibria

If Q is the excess supply correspondence (equivalently, −Q is the excess demand

correspondence) of an economy, then Q satisfies constant-value output. Since constant-

value output implies nonreversingness (Lemma 5), we can conclude that if the excess

supply correspondence Q satisfies unified gross substitutes, then the set of equilibrium

prices is a sublattice.12 As we noted in Section 2.5, this lattice structure allows one to

pursue comparative static analyses of the extreme equilibria or (using the strong set

order) the set of equilibria. For example, if the endowment of good 1 increases, then

the (smallest, or largest, or set of, in the strong set order) relative equilibrium price of

each other good increases.

It is a familiar result that if each agent’s (point-valued) demand function in

an exchange economy satisfies strict gross substitutes, then that economy has a unique

equilibrium (e.g., Arrow and Hahn [1, Chapter 9]), with corresponding comparative

statics (cf. Nachbar [25, Section 3.3]). We thus have the counterpart of this result to

cases in which individual demands are not point-valued, such as when preferences are

11Alternatively, given a submodular profit function c∗, we can note that the function p⊤q − c∗ (p)

is then supermodular in p and exhibits increasing differences, and so Theorem 6.1 of Topkis [32, p.

317] (see also Topkis [33] and Milgrom and Shannon [24]) ensures that Q−1 is increasing in the strong

set order. The key to the applicability of Topkis’s result in this setting is that the correspondence

Q−1 is itself the solution to a maximization problem whose maximand exhibits the needed properties.

We can thus view Theorem 1 as extending familiar monotone comparative statics results beyond the

case in which Q−1 is the solution to a maximization problem.
12Polterovich and Spivak [27, Corollary 1, p. 125] similarly show that the set of equilibrium prices

in an exchange economy satisfying their gross substitutes condition (cf. Section 2.3) is a lattice. Gul

and Stacchetti [19, Corollary 1, p. 105] have a similar result for economies with indivisible goods.

15



weakly but not strictly convex.

3.4 An Equilibrium Flow Problem

We introduce a general structure that naturally leads to a correspondence satisfying

unified gross substitutes. We then illustrate three applications in the following three

subsections.

Consider a network (Z,A) where Z is a finite set of nodes and A ⊆ Z ×Z
is the set of directed arcs. If xy ∈ A, we say that xy is the arc with starting node x

and end node y. We assume there is no arc in A whose starting and ending nodes

coincide.

Let p ∈ RZ be a price vector, where we interpret pz as the price at node

z. To have a concrete description, though we do not require this interpretation, one

may consider a trader who is able to purchase one unit of a commodity at node x,

ship it along arc xy toward node y, and resell it at node y. Given the resale price at

node y, there is a certain threshold value of the price at node x such that the trader

is indifferent between engaging in the trade or not. This value is an increasing and

continuous (but not necessarily linear) function of the price at node y, and can be

expressed as Gxy(py), where for each arc xy ∈ A, the connection function Gxy : R → R
is continuous and increasing.

Let q ∈ RZ attach a net flow to each node z ∈ Z. If qz > 0, then the net

quantity |qz| must flow into node z, while qz < 0 indicates that the net quantity |qz|
must flow away from node z. We let µ ∈ RA

+ be the vector of internal flows along arcs,

so that µxy is the flow through arc xy.

The triple (q, µ, p) ∈ RZ × RA
+ × RZ is an equilibrium flow outcome if it

satisfies three conditions. The first is the feasibility condition that, for any node

z ∈ Z0, the total internal flow that arrives at z minus the total internal flow that

leaves z equals the net flow at z, that is∑
x:xz∈A

µxz −
∑

y:zy∈A

µzy = qz. (10)

The second condition is that there there is no positive rent on any arc, that is:

px ≥ Gxy (py) ∀xy ∈ A. (11)
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Figure 2: A simple example of an equilibrium flow outcome. The three equilibrium

conditions are satisfied as (i) the flow balance condition is satisfied at each node of

the network (ii) there is no positive rent on the network (iii) when there is a trade on

an arc (µ larger than zero on this arc), rent on this arc is nonnegative.

Our third condition is that arcs with negative rents carry no flow, or

µxy > 0 =⇒ px ≤ Gxy (py) . (12)

Figure 2 presents a simple example of an equilibrium flow outcome. Notice

that if (q, µ, p) is a equilibrium flow outcome, then so is (λq, λµ, p) for any nonnegative

scalar λ. Hence, there will either be no equilibrium flow outcome (if there is no p

satisfying (11)) or there will be multiple equilibrium flows outcomes.

Given an equilibrium flow problem, let the equilibrium flow correspondence

associate with a price p the quantities q that appear as part of an equilibrium flow

given p:

Definition 5 (Equilibrium flow correspondence). The equilibrium flow correspondence

is the correspondence Q : RZ ⇒ RZ defined by the fact that for p ∈ RZ , Q(p) is the set

of q ∈ RZ such that there is a flow µ such that (q, µ, p) is an equilibrium flow outcome.

Note that Q may be empty valued. Appendix A.3 proves:

Theorem 4. The equilibrium flow correspondence Q : RZ ⇒ RZ satisfies unified gross

substitutes.

It is immediate that the correspondence Q is nonreversing, since q ∈ Q(p)

implies
∑

z∈Z qz = 0. Hence it follows from Theorem 4, the inverse isotonicity Theorem

1, and Corollary 1 that:
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Corollary 5. The equilibrium flow correspondence Q(p) has totally isotone inverse

and the set of equilibrium prices Q−1 is a sublattice of RZ .

Galichon, Samuelson and Vernet [16] identify conditions under which an equilibrium

flow outcome exists, and hence Q(p) is nonempty, invoking a generalization of Hall’s

[20] conditions and an analogue of Rochet’s [29] cyclical monotonicity condition.

3.5 Matching with (Im)perfectly Transferable Utility

To put our equilibrium flow formulation to work, consider the following one-to-one

matching market. Let X be a finite set of types of workers and Y a finite set of types

of firms. There are nx workers of each type x ∈ X , and my firms of each type y ∈ Y .

A match between worker type x and firm type y is characterized by a wage wxy, in

which case it gives rise to the utilities Uxy (wxy) for the worker and Vxy (wxy) for the

firm. An unmatched worker receives utility Ux0 and an unmatched firm receives utility

V0y. A matching is a pair (µ,w), where w is a vector specifying the wage wxy attached

to each pair xy ∈ X ×Y and µ is a vector identifying the mass µxy of matches between

workers of type x and firms of type y, for each xy ∈ X × Y .

We reformulate this matching problem as an equilibrium flow problem. Let

Z = X ∪ Y ∪ {0}

A = ((X ∪ {0})× (Y ∪ {0})) \ {(0, 0)}

qz = −nz, z ∈ X

qz = mz, z ∈ Y

q0 =
∑
x∈X

nx −
∑
y∈Y

my.

The nodes thus include the sets of types of workers and firms as well as an additional

node 0 designed to allow agents to be unmatched. Each node corresponding to a type

of worker carries a negative net flow equal to the mass of such types, while each node

corresponding to a type of firm carries a positive net flow corresponding to the mass

of such types. There is an arc from every worker-type node to every firm-type node,

as well as arcs from workers to the “unmatched node” and from the unmatched node

to firms. Figure 3 illustrates a simple case. A flow along an arc signifies the mass of

matches between the types residing at each node connected by the arc. The price

attached to a node identifies the utility of the agent at that node (if a worker) or the
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negative of the utility of the agent at that node (if a firm). Given a price vector p, we

define the connection function

Gxy (py) = Uxy ◦ V−1
xy (−py) for x ∈ X , y ∈ Y

Gx0 (p0) = p0 + Ux0 for x ∈ X

G0y (py) = py + V0y for y ∈ Y .

As required, Gxy(py) is increasing in py. We adopt the normalization p0 = 0.13

The matching (µ,w) is stable if∑
y∈Y

µxy + µx0 = nx,
∑
x∈X

µxy = µ0ymy,

as well as

µxy > 0 =⇒

{
Uxy = max {maxỹ∈Y Uxỹ (wxỹ) ,Ux0}
Vxy = max {maxx̃∈X Vx̃y (wx̃y) ,V0y}

}
,

and

µx0 > 0 =⇒ Ux0 = max

{
max
ỹ∈Y

Uxỹ (wxỹ) ,Ux0

}
µ0y > 0 =⇒ V0y = max

{
max
x̃∈X

Vx̃y (wx̃y) ,V0y

}
.

The first condition provides the feasibility condition that the number of each type of

worker and firm that is matched is no more than the number present in the market

(excess agents are unmatched), while the second provides the stability condition that

no worker and firm can improve their utilities by matching with one another at an

appropriate wage or remaining unmatched.

Appendix A.4 proves the following:

Lemma 6. The matching (µ,w) is stable if and only the associated outcome (q, µ, p)

is an equilibrium flow.

13The quantity vector q identifies the negative of the quantity of each type of workers and the

quantity of each type of firm, allowing us to represent a match between a work and a firm as a flow

along the arc connecting the node containing that type of worker to the node representing the firm.

Similarly, the payoff vector p identifies the payoffs of workers and the negative of the payoffs of firms,

so that an increase in the payoff of a firm at node y corresponds to a smaller utility requirement

from the firm at that node, making it more attractive for workers to traverse the arc terminating at

the node, which corresponds to the increasingness of the connection function Gxy(py).
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Figure 3: Network associated with a bipartite matching problem.

The wages in the stable match are related to the prices the equilibrium flow problem

via V−1
xy (−py) ≤ wxy ≤ U−1

xy (pxy), with equality on links exhibiting positive flows.

The equilibrium flow correspondence Q then associates with each utility

vector p the set of of vectors q, i.e., the specifications of the sets of firms and workers,

for which there exists a stable outcome yielding the utilities specified by p. Theorem

4 immediately gives:

Theorem 5. The correspondence that maps the vector of payoffs p to vectors q of

populations is nonreversing and satisfies unified gross substitutes.

It follows from Corollary 5 that, given a specification q of workers and firms,

the set of equilibrium utilities consistent with a stable match constitutes a lattice. The

inverse isotonicity of the equilibrium correspondence then gives comparative static

results. For example, as the number of firms increases, the set of equilibrium payoffs of

firms decreases (in the strong set order) while the set of equilibrium payoffs of workers

increases. An increase in the number of workers has the reverse effects. Galichon,

Samuelson and Vernet [17, Appendix B.8] provide a similar result for the case of

matching without transfers, pioneered by Gale and Shapley [14].

Demange and Gale [9, Lemma 2 and Property 2] (see also Demange, Gale and

Sotomayor [10] and Decker, Lieb, McCann and Stephens [8] for a quasilinear models)

establish similar results for a model in which the quantities attached to the various

nodes must take integer values, which we do not require. Dropping this requirement

is useful in allowing one to accommodate a continuum of each type of agent, as is

common in models of competitive matching (cf. Nöldeke and Samuelson [28]).
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3.6 Hedonic Pricing

The simplest models of a competitive economy assume that each of a finite number of

goods is perfectly divisible and perfectly homogeneous. The hedonic pricing model,

introduced by Rosen [30] and developed by Ekeland, Heckman and Nesheim [13],

examines the opposite extreme, an economy filled with indivisible, idiosyncratic goods.

To reduce the dimensionality of the prices in the latter case, one typically assumes

the goods can be described by the extent to which they exhibit certain characteristics,

with prices determined by these characteristics, thus giving rise to the term hedonic

pricing.

Chiappori, McCann and Nesheim [6] show that the hedonic pricing problem

with quasilinear utilities is equivalent to a matching problem with quasilinear utility,

which is in turn equivalent to an optimal transport problem14. Ekeland [12, p. 295]

comments that the primary limitation of existing hedonic pricing models is the

restriction to quasilinear utilities. Carlier and Ekeland [5] extend the hedonic pricing

analysis by relaxing quasilinearity on one side of the market. In markets providing

the original impetus for hedonic pricing, such as residential housing, one would expect

income effects to arise (and hence quasilinearity to fail) on both sides.

We extend the analysis of hedonic pricing beyond the quasilinear case. Chi-

appori, McCann and Nesheim [6] invoke a twist condition to establish the uniqueness

for equilibrium for the quasilinear case with a continuum of characteristics. Our

contribution to this edifice is to establish that for any equilibrium allocation, the set of

utilities and prices supporting this equilibrium allocation is a lattice. We avoid a host

of technical difficulties, addressed by Chiappori, McCann and Nesheim, by working

with finite sets of types of agents and goods, though again allowing a continuum of

each type.

The basic elements of the model are a finite set X of types of producers and

a finite set Y of types of consumers. There are nx producers of each type x ∈ X and

my consumers of each type y ∈ Y . There is a finite set W of qualities, also sometimes

referred to as contracts or characteristics. Each producer must choose to produce one

of the qualities in W , or to remain inactive. Each consumer must choose to consume

one quality in W or remain inactive.

14In the same vein, Queyranne showed that the problem is equivalent to a min cost flow problem

(see https://www.mit.edu/~dimitrib/PTseng/optsem/optsemWI06_4_rtr.MPG).

21



Let p ∈ RW be a price vector assigning prices to qualities, with pw denoting

the price of quality w. A producer of type x who produces a quality w that bears price

pw earns the profit πxw(pw). A consumer of type y who consumes a quality w bearing

price pw reaps surplus syw(pw). Inactive producers and consumers receive payoff 0.

Let µxw be the quantity of producers of type x producing quality w, and µwy

be the number of consumers of type y consuming quality w. Similarly, µx0 and µ0y

are the quantity of producers of type x and consumers of type y opting out.

A hedonic pricing equilibrium is a price vector pw and a specification of the

production flows µxw and consumption flows µwy such that the quantities supplied

and demanded are feasible,∑
w∈W

µxw + µx0 = nx and
∑
w∈W

µwy + µ0y = my, (13)

markets balance, ∑
x∈X

µxw −
∑
y∈Y

µwy = 0, (14)

and agents maximize,

µxw > 0 =⇒ πxw(pw) = maxw̃∈W πxw̃(pw̃) ≥ 0

µwy > 0 =⇒ syw(pw) = maxw̃∈W syw̃(pw̃) ≥ 0

µx0 > 0 =⇒ 0 ≥ maxw̃∈W πxw̃(pw̃)

µ0y > 0 =⇒ 0 ≥ maxw̃∈W syw̃(pw̃).

(15)

The hedonic pricing problem can be reformulated as an equilibrium flow

problem. Let the set of nodes be Z = X ∪ Y ∪W0, where W0 = W ∪ {0}. The set of

arcs A is given by

A = (X ×W0) ∪ (W0 × Y).

Figure 4 illustrates.

Let ux be a vector of producer utilities and uy a vector of consumer utilities.

Normalize the price p0 = 0 and let the prices of the nodes in X be given by px = ux for

all x ∈ X , and the prices of the nodes in Y be given by py = −vy for all y ∈ Y . Then

the connection functions are given by Gxw (pw) = πxw (pw), Gx0 (p0) = p0, Gwy (py) =

s−1
yw (−py) and G0y (py) = py. The net flows are given by qw =

∑
x∈X µxx −

∑
y∈Y µxy

for all w ∈ W , qx = −nx for all x ∈ X , and qy = my for all y ∈ Y .

It is a straightforward inspection of the definitions to confirm that hedonic

pricing equilibria correspond to equilibria of the equilibrium flow problem. We then
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Figure 4: Network associated with a hedonic model.

examine a correspondence Q that takes in a price vector p specifying the utilities of

the various buyers, the prices of the various qualities and (the negative of) the utilities

of the sellers, and identifies the set of net flows for which there is an internal flow for

which the hedonic pricing equilibrium conditions (13), (14) and (15) are satisfied. It

follows from Theorem 4 that:

Theorem 6. The correspondence Q, associating equilibrium net flows with vectors

(u, p,−v) specifying utilities and prices, is nonreversing and satisfies unified gross

substitutes.

This equilibrium therefore exhibits the lattice structure established in Corollary 1. We

again immediately have some comparative static results. An increase in the quantity

of any one of the types of customers increases (in the strong set order) the set of

equilibrium prices and profits of all of the firms, while an increase in the quantity of

any type of firm decreases prices and increases the utilities of all of the customers.15

3.7 Time-Dependent Routing

Time dependent routing problems, a variant of the classic vehicle routing problem

(Toth and Vigo [35]) in which completion times vary over the course of the planning

horizon, have recently attracted great attention (see Gendreau, Ghiani and Guerriero

[18] for a survey). The time-dependent routing literature has focused on methods for

15Edlefsen [11] refers to a nonlinear constrain as a hedonic price function and examines utility

maximization problems subject to exogenously given hedonic price functions.
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computing solutions. We show that time-dependent routing problems are special cases

of the equilibrium flow problems, adding existence and comparative static results to

the literature.

There is a finite set of nodes Z and arcs A. We interpret a node with a

net flow qz < 0 as a source firm with quantity |qz| of a commodity to be supplied

to the market. A node with a net flow qz > 0 is interpreted as an end firm with a

demand qz to be filled. A node with qz = 0 is a processing firm, that can receive

a good, perform an operation on the good, and pass the processed good on to the

market. We introduce a distinguished node 0, with A containing an arc z0 for every

node with qz < 0 and an arc 0z for every node with qz > 0. The interpretation is

that a shipment to node 0 represents an unsold good, while a shipment from node 0

represents an unfilled demand. It is then innocuous to assume that the demand equal

the supply in the economy:
∑
z

qz = 0. In alternative interpretations the flows along

the arcs might be interpreted as traveling vehicles or messages.

We interpret prices as times, with pz being the time at which the commodity

reaches node z. The differences of prices py − px is then interpreted as the duration

that it takes node x to process the good and deliver it to node y. We define Gxy (py)

as the latest time at which one can to leave node x and arrive at node y at time py. In

the simplest formulation, the travel duration through arc xy would be constant across

time and denoted by cxy, and therefore Gxy (py) = py − cxy. In the time-dependent

formulation, Gxy is a general function of py, such as py − cxy (py) for some cxy (py)

which varies with py, to capture travel duration that may vary with time. We let Gz0

be the identify function.

We assume that there is free disposal of time, but no time travel, so that if

µxy > 0, then px ≤ Gxy (py) holds, meaning that the commodity cannot leave an arc

before being available there. In our previous terms, condition (12) must hold, and

hence arcs with negative rent will carry no flow. We assume that the nodes prefer

to sell as late as possible and buy as early as possible, captured in the form of the

no-positive-rent condition (11). For example, if px < Gxy (py) for an arc xy ∈ A, then

it is possible for the commodity to arrive at node x at time px and then arrive at node

y at time G−1
xy (px) = p′y < p(y), and hence the prices px and py are inconsistent with

an equilibrium. We normalize p0 = 0.

Given the demands and supplied specified by q, an equilibrium flow is a
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triple (q, µ, p) with{
∀xy, px ≥ Gxy (py) , with equality if µxy > 0

∀z ∈ Z,
∑

x µxz −
∑

y µzy = qz
. (16)

We can again formulate an equilibrium flow correspondence Q that associates

with any collection of prices (or times, in this instance) p the set of demands and

supplies q for which there exists an equilibrium consistent with these arrival times.

The correspondence Q satisfies unified gross substitutes and so is inverse isotone. As

before, Theorem 1 and Corollary 1 tell us that for a given market configuration, the

set of equilibrium times p will constitute a lattice, and allows us to derive comparative

statics. For example, suppose we increase the quantity demanded of some end firm.

Then the arrival times of all end firms are delayed (more precisely, the set of vectors of

equilibrium arrival times for end firms shifts upward in the strong set order). Increasing

the supply of some source firm has the opposite effect. Notice that these effects arise

out of competition rather than congestion. In this simple formulation, the processing

times of the various nodes can depend on time in complicated ways, but do not depend

the volume of flow through that node. Instead, increasing the demand of a end firm

causes that seller to bid flows away from other end firms, forcing all to settle for later

arrivals.

4 Conclusion

The concept of weak gross substitutes plays a prominent role in economic theory. We

view the concept of unified gross substitutes as the natural generalization of weak

gross substitutes to correspondences. It connects to the literature in multiple points,

unifying some results and generalizing others.

The concept of unified gross substitutes allows one to derive the inverse

isotonicity and lattice-valued-inverse properties of general correspondences. This

provides a tool that should be useful in a number directions. In some settings it

allows one to establish the existence of an inverse demand function or its functional

equivalent, while in other settings it allows empirical or theoretical research to proceed

without the uniqueness of inverse demand by focusing on the largest or smallest

elements of the inverse. It provides a route to comparative statics when the traditional

methods of monotone comparative statics do not apply, presumably because one is
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dealing with an equilibrium rather than optimization problem. It should be useful in

extending familiar results developed under the assumption of quasilinearity to more

general settings. Finally, we believe there is great potential for formulating a variety

of problems as special cases of the equilibrium flow problem, allowing immediate

application of the implications of unified gross substitutes.

Unified gross substitutes is a sufficient condition for our central results. A

weaker condition would suffice for our inverse isotonicity result, just as a weakening of

Kelso-Crawford gross substitutes would typically suffice in applications where it is used.

We view the sufficiency of unified gross substitutes as analogous to the sufficiency

of single crossing in incentive problems, in the sense that a necessary and sufficient

condition is some version of “single crossing where it counts,” while the standard

sufficient condition is simply single crossing. Section 2.3 explained why we think of

unified gross substitutes as the natural strengthening of Kelso-Crawford substitutes.

In addition, we are induced to regard unified gross substitutes as the condition of

interest by the observation that it often appears as in implication, being implied by the

submodularity of the competitive profit function, equivalent to a continuous version of

Gul and Stacchetti’s [19] no complementarities (cf. Galichon et al. [15]), and implied

by the equilibrium flow correspondence.

A Appendix

A.1 Proof of Theorem 2

Assume (ii) holds, hence Q is inverse isotone, and assume for q ∈ Q (p), q′ ∈ Q (p′),

q ≤ q′ and p ≥ p′. By inverse isotonicity one has p ≤ p′, and thus p = p′, as needed.

Assume (i) holds and so Q is strongly nonreversing and hence nonreversing.

Assume q ∈ Q(p) and q ∈ Q(p′). By unified gross substitutes, we have q∨ ∈ Q(p ∨ p′)

with q∨ ≤ q. Because p ∨ p′ ≥ p, p′, strong nonreversingness gives p = p ∨ p′ = p′.

Hence, p = p′ and thus Q is point valued. To show it is isotone, assume q ∈ Q (p),

q′ ∈ Q (p′) and q ≤ q′. By Theorem 1, we have q ∈ Q (p ∧ p′) and q′ ∈ Q (p ∨ p′).

Because Q is injective, it follows that p = p ∧ p′ and thus p ≤ p′.
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A.2 Proof of Theorem 3

We first show that as soon as Q is defined as (9), Q is nonreversing. Let p ≥ p′,

q ≤ q′, q ∈ Q(p) and q′ ∈ Q(p′). Because Q is the argmax correspondence for the

objective p⊤q− c(q), we have p⊤q− c(q) ≥ p⊤q′ − c(q′) and p′⊤q′ − c(q′) ≥ p′⊤q− c(q).

Rearranging gives

p′⊤(q′ − q) ≥ c(q′)− c(q) ≥ p(q′ − q).

Using p ≥ p′ and q ≤ q′, this can only hold if the two weak inequalities are in fact

equalities, which suffices for q ∈ Q(p′) and q′ ∈ Q(p), as needed for nonreversingness.

We next present a proof of Theorem 3 that establishes the equivalence

between unified gross substitutes of ∂c∗ and the submodularity of c. In order to do

this, we prove a series of lemmas regarding convex functions and how to characterize

their submodularity. Let f be a convex function. Our interpretation will be that

f is a profit function associated with a cost function c(q), but we will not use that

interpretation in the lemmas.

The first result is a well-known result in convex analysis (Theorem 23.4 in

Rockafellar [34]), which essentially asserts that the support function of the subdiffer-

ential of a convex function coincides with the directional derivatives.

Lemma 7. Let f : RN → R be a convex function. We have

∂f (p) =

{
q ∈ RN : q⊤b ≤ d

dt
f (p+ tb) |0+ , ∀b ∈ RN

}
.

Next, for X ⊆ RN , define X̃ as the set of vectors of RN that are dominated

by some vector in X, or more formally:

X̃ =
{
q̃ ∈ RN : ∃q ∈ X s.t. q̃ ≤ q

}
, (17)

and define the support function of X as

hX (b) = sup
q∈X

{
q⊤b
}
. (18)

Let cch (X) be the convex closure of X, which is the closure of the convex hull of X.

It is well-known (Rockafellar [34, Theorem 13.1]) that cch (X) is the set of elements

x ∈ RN such that

x⊤b ≤ hX(b) ∀b ∈ RN . (19)

The next result states that the support function of C̃ is the support function

of C whose domain has been restricted to nonnegative coordinates.
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Lemma 8. If C is a closed convex set of RN , then C̃ as defined in expression (17)

can be expressed as

C̃ =
{
q : q⊤b ≤ hC (b) ,∀b ∈ RN

+

}
where hC has been defined in (18).

Proof of Lemma 8. By the supporting hyperplane theorem, for any convex set C

and any boundary point q0 = argmaxq∈C q⊤b of the boundary of C, there exists a

supporting hyperplane for C at q0. Therefore one has

C =
{
q : q⊤b ≤ hC (b) ,∀b ∈ RN

}
.

Further, note that Ĉ =
{
q̂ : q̂⊤b ≤ ĥC (b) , ∀b ∈ RN

}
, where ĥC (b) = h (b) if b ∈ RN

+

and ĥC (b) = +∞ otherwise, and thus

ĥC (b) = max
q̂∈Ĉ

q̂⊤b.

Now compute h̃ (b) = maxq̃∈C̃ q̃⊤b. One has C̃ =
{
q − δ : q ∈ C, δ ∈ RN

+

}
, and so

h̃ (b) = max
q∈C

max
δ≥0

(q − δ)⊤ b.

Thus, if b ∈ RN
+ , one has h̃ (b) = maxq∈C q⊤b = h (b). Now if bz < 0 for some z, one

has clearly h̃ (b) = +∞. Hence

h̃ (b) = ĥ (b) = h (b) + ιRN
+
(b) ,

where ιK (b) = 0 if b ∈ K and ιK (b) = +∞ otherwise. This implies that Ĉ and C̃

have the same support function, and thus coincide.

From Lemma 8, it follows that:

Lemma 9. The inequality b⊤x ≤ hX (b) holds for all b ∈ RN
+ if and only if there is

x̃ ∈ cch (X) with x ≤ x̃.

Proof of Lemma 9. First, we assume b⊤x ≤ hX (b) for all b ≥ 0, and show that x ∈ Y

where Y = {x′ : ∃x̃ ∈ cch (X) : x′ ≤ x̃}. One has X ⊆ Y . Consider hY (b) for b ∈ RZ .

First, if bz < 0 for some z, then hY (b) = +∞. Next, if b ≥ 0, then hY (b) = hX (b).

Indeed, one has hX (b) ≤ ι∗Y (b), but taking y ∈ Y such that b⊤y attains hY (b), we have

ι∗Y (b) = b⊤y and by definition of y ∈ Y , there is x̃ ∈ cch (X) such that y ≤ x̃. Hence
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as b ≥ 0, b⊤y ≤ b⊤x̃, and as x̃ ∈ cch (X), we get b⊤x̃ ≤ hX (b), thus hY (b) ≤ hX (b).

As a result hY (b) = hX (b) as soon as b ≥ 0, and we have that

b⊤x ≤ hY (b) for all b ∈ RZ

and therefore, given that Y is a closed convex set, this implies that x ∈ Y .

Conversely, assume there is x̃ ∈ cch (X) with x ≤ x̃. Then x̃ =
∫ 1

0
xtdµ (t)

where µ is a probability measure on [0, 1] and xt ∈ X. Then we have x⊤
t b ≤ hX (b)

and thus x⊤b ≤ x̃⊤b =
∫ 1

0
x⊤
t bdµ (t) ≤

∫ 1

0
hX (b) dµ (t) = hX (b).

By combining Lemma 7 and Lemma 8, we get:

Lemma 10. For a convex function f : RN → R, one has{
q̃ ∈ RN : ∃q ∈ ∂f (p) s.t. q̃ ≤ q

}
=

{
q ∈ RN : q⊤b ≤ d

dt
f (p+ tb) |0+ ,∀b ∈ RN

+

}
,

(20)

and both these values coincide with ∂̃f(p).

Proof of Lemma 10. Let the function ĥ in the specification of Ĉ be given by h (b) =
d
dt
f (p+ tb) |0+ . From Lemma 7 and (19), we then have h(b) = maxq∈∂f(p) q

⊤b and

hence can take C = ∂f(p) in the specification of C̃. The equality of Ĉ and C̃

established in Lemma 8 then gives the required identity (20).

In the sequel, we shall consider a pair of prices p and p′ in RN , and for a vector b ∈ RN ,

we define two vectors b> and b≤ in RN such that

b≤z = bz1{pz≤p′z} and b>z = bz1{pz>p′z}. (21)

Lemma 11. A function f : RN → R is submodular if and only if for any p, p′ in RN ,

b ∈ RN
+ such that b> ≤ (p− p′)+, one has

f
(
p+ b≤

)
+ f (p′ + b>) + f (p ∧ p′) ≤ f (p) + f (p′) + f (p ∧ p′ + b) .

Proof of Lemma 11. Suppose f is submodular. Then we have, by the submodularity

of f ,

f (p) + f (p ∧ p′ + b) ≥ f (p ∧ (p ∧ p′ + b)) + f (p ∨ (p ∧ p′ + b)) .

However, p ∧ (p ∧ p′ + b) = p ∧ p′ + b> and p ∨ (p ∧ p′ + b) = p+ b≤, and so

f (p) + f (p ∧ p′ + b) ≥ f (p ∧ p′ + b>) + f
(
p+ b≤

)
.
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This implies

f (p) + f (p′) + f (p ∧ p′ + b) ≥ f (p ∧ p′ + b>) + f (p′) + f
(
p+ b≤

)
.

Again by the submodularity of f , we have

f (p ∧ p′ + b>) + f (p′) ≥ f ((p ∧ p′ + b>) ∧ p′) + f ((p ∧ p′ + b>) ∨ p′) ,

and hence

f (p) + f (p′) + f (p ∧ p′ + b) (22)

≥ f ((p ∧ p′ + b>) ∧ p′) + f ((p ∧ p′ + b>) ∨ p′) + f
(
p+ b≤

)
.

But (p ∧ p′ + b>) ∧ p′ = p ∧ p′ and (p ∧ p′ + b>) ∨ p′ = p′ + b>, and therefore (22)

becomes

f (p) + f (p′) + f (p ∧ p′ + b) ≥ f (p ∧ p′) + f (p′ + b>) + f
(
p+ b≤

)
,

giving the required result.

Conversely, assume we have for all p, p′ and b ≥ 0 that

f (p) + f (p′) + f (p ∧ p′ + b) ≥ f
(
p+ b≤

)
+ f (p′ + b>) + f (p ∧ p′) .

Choose b to be specified by b≤ = (p′ − p)+ and b> = 0. We have

p ∧ p′ + b = p′

p+ b≤ = p ∨ p′

and thus

f (p) + f (p′) ≥ f (p ∨ p′) + f (p ∧ p′) ,

giving the submodularity of f .

Lemma 12. A convex function f : RN → R is submodular if and only if for any

b ∈ RN
+

d

dt
f
(
p+ tb≤

)
|0+ +

d

dt
f (p′ + tb>) |0+ ≤ d

dt
f (p ∧ p′ + tb) |0+ , (23)

where b≤ and b> are defined in equation (21).
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Proof of Lemma 12. Applying Lemma 11, if f is submodular it follows that for t ≥ 0,

we have

f
(
p+ tb≤

)
− f (p) + f (p′ + tb>)− f (p′) ≤ f (p ∧ p′ + tb)− f (p ∧ p′) ,

and thus, using the convexity of f , it follows that

d

dt
f
(
p+ tb≤

)
|0+ +

d

dt
f (p′ + tb>) |0+ ≤ d

dt
f (p ∧ p′ + tb) |0+ .

The converse holds by integration over t ∈ [0, 1].

Proof of Theorem 3, direct implication. We show that if f is submodular then

∂f (p) exhibits unified gross substitutes.

Assume f is submodular. Take q ∈ ∂f (p) and q′ ∈ ∂f (p′). We want to show

that there exists q∧ ∈ ∂f (p ∧ p′) such that

pz ≤ p′z =⇒ qz ≤ q∧z

pz > p′z =⇒ q′z ≤ q∧z .

To show this, we need to show that q1Z≤ + q′1Z> ≤ q∧, where we have defined

Z≤ = {z ∈ Z : pz ≤ p′z} and Z> = {z ∈ Z : pz > p′z}. Equivalently, we need to show

that q1Z≤ + q′1Z> ∈ ∂̃f (p ∧ p′), where the tilde notation ∂̃f was introduced in (17).

By Lemma 10, it suffices to show that

∀b ∈ RN
+ : (q1Z≤ + q′1Z>)

⊤
b ≤ d

dt
f (p ∧ p′ + tb) |0+ .

In order to do this, take b ∈ RN
+ and express that q ∈ ∂f(p) and q′ ∈ ∂f(p′) by writing

q⊤b≤ ≤ d

dt
f
(
p+ tb≤

)
|0+ and q′⊤b> ≤ d

dt
f (p′ + tb>) |0+ ,

and then note that, by summation of these two inequalities we get

(q1Z≤ + q′1Z>)
⊤
b ≤ d

dt
f
(
p+ tb≤

)
|0+ +

d

dt
f (p′ + tb>) |0+ ,

and so by Lemma 12, we have

∀b ∈ RN
+ : (q1Z≤ + q′1Z>)

⊤
b ≤ d

dt
f (p ∧ p′ + tb) |0+ ,

and hence (again, by Lemma 10) q1Z≤ + q′1Z> ∈ ∂̃f (p ∧ p′) as required.
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We set f̂ = f(−p), and we introduce p̂ = p′ and p̂′ = p. We note that f̂

is submodular, and we apply the previous claim to p̂ and p̂′ to get the existence of

q∨ ∈ ∂f(p ∨ p′) such that

pz ≤ p′z =⇒ qz ≥ q∨z

pz > p′z =⇒ q′z ≥ q∨z .

Proof of Theorem 3, backward implication We show that if ∂f (p) satisfies

unified gross substitutes, then f (p) is submodular.

Assume unified gross substitutes holds. Then for q ∈ ∂f (p) and q′ ∈ ∂f (p′),

there exists q∧ ∈ ∂f (p ∧ p′) such that

q1Z≤ + q′1Z> ≤ q∧.

Hence q1Z≤ + q′1Z> ∈ ∂̃f (p ∧ p′), and therefore (using Lemma 8), for all q ∈ ∂f (p)

and q′ ∈ ∂f (p′)

∀b ∈ RZ
+ : q⊤b≤ + q′⊤b< ≤ d

dt
f (p ∧ p′ + tb) |0+ ,

and thus, by maximizing over q ∈ ∂f (p) and q′ ∈ ∂f (p′), we get

d

dt
f
(
p+ tb≤

)
|0+ +

d

dt
f (p′ + tb>) |0+ ≤ d

dt
c∗ (p ∧ p′ + tb) |0+

for all b ≥ 0, hence (by Lemma 12) f is submodular.

A.3 Proof of Theorem 4

Let q ∈ Q (p) and q′ ∈ Q (p′). Rewriting (1)–(2), it suffices for unified gross substitutes

to show that there exists q∨ ∈ Q (p ∨ p′) and q∧ ∈ Q (p ∧ p′) such that for all z ∈ Z,

1{z∈Z≤}qz + 1{z∈Z>}q
′
z ≤ q∧z

1{z∈Z≤}q
′
z + 1{z∈Z>}qz ≥ q∨z ,

where we recall that Z≤ = {z ∈ Z : pz ≤ p′z} and Z> = {z ∈ Z : pz > p′z}.
First, note that µxz > 0 and pz ≤ p′z implies p′x ≥ Gxz(p

′
z) ≥ Gxz(pz) = px,

which implies

µxz1{z∈Z≤} ≤ µxz1{x∈Z≤}. (24)
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Similarly, µ′
xz > 0 and pz > p′z implies px ≥ Gxz(pz) > Gxz(p

′
z) = p′x, thus

µ′
xz1{z∈Z>} ≤ µ′

xz1{x∈Z>}. (25)

Given these results, set:

µ∧
xz = 1{x∈Z≤}µxz + 1{x∈Z>}µ

′
xz

q∧z =
∑
x

µ∧
xz −

∑
y

µ∧
zy.

We have µ∧
xy > 0 implies px = Gxy(py), and, using (24) and (25) for the inequality, we

obtain

q∧z =
∑
x

(1{x∈Z≤}µxz + 1{x∈Z>}µ
′
xz)−

∑
y

(1{z∈Z≤}µzy + 1{x∈Z>}µ
′
zy)

≥
∑
x

(1{z∈Z≤}µxz + 1{z∈Z>}µ
′
xz)−

∑
y

(1{z∈Z≤}µzy + 1{z∈Z>}µ
′
zy)

= 1{z∈Z≤}qz + 1{z∈Z>}q
′
z,

giving the required result for q∧. A similar argument shows that 1{z∈Z≤}q
′
z +

1{z∈Z>}q
′
z ≥ q∨z .

A.4 Proof of Lemma 6

First, let (q, µ, p) be an equilibrium of the equilibrium flow problem. To obtain a

stable matching (µ,w), choose wxy so that V−1
xy (−py) ≤ wxy ≤ U−1

xy (px). Because

we have px ≥ Gxy(py) in equilibrium, this is possible. Then for worker x we have

px = ux ≤ Uxy (wxy) and

µxy > 0 =⇒ px = Gxy (py)

=⇒ wxy = U−1
xy (px)

=⇒ y ∈ argmax
y∈Y

Uxy (wxy)

µx0 > 0 =⇒ px = Gx0(p0) = Ux0

µ0y > 0 =⇒ p0 = G0y(py)

=⇒ −py = V0y.

The argument for firms is similar, giving a stable matching.
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Conversely, suppose we have a stable matching (µ,w). Define qz = −nx for

z ∈ X and qz = my for z ∈ Y . We identify prices p such that (q, µ, p) is an equilibrium

of the equilibrium flow problem. Define the indirect utilities

ux = max
x∈X

{Uxy (wxy) ,Ux0}

vy = max
y∈Y

{Vxy (wxy) ,V0y} .

Then define p by px = ux if x ∈ X , py = −vy if y ∈ Y and p0 = 0, and define qz = −nx

for z ∈ X and qz = my for z ∈ Y. Define the connection functions Gxy as above.

If µxy = 0, then it follows from the stability condition for a stable matching that

px = Gxy(py). For other pairs (x, y), the stability condition implies that there is no

wage wxy at which x and y can match and obtain utilities in excess of ux and vy, which

is equivalent to the statement that px ≥ Gxy(py). We thus have an equilibrium flow.
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