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1 Introduction

In standard Expected Discounted Utility, the inverse of the elasticity of intertemporal

substitution (EIS) coincides with the coefficient of relative risk aversion. However,

an enormous literature in macroeconomics, finance, and behavioral economics has

pointed to the need to separate them on empirical and conceptual grounds. Empir-

ically, observations from lab experiments, longitudinal microdata, and the desire to

fit macroeconomic and financial data require a higher coefficient of risk aversion than

the inverse of EIS.1 Conceptually, attitudes toward risk and intertemporal smoothing

belong to different domains, and there is no compelling reason why they must be

equal. These observations led to models that separate risk attitudes from EIS, such

as the CRRA-CES version of Epstein and Zin (1989) and the Risk Sensitive prefer-

ences of Hansen and Sargent (1995). But does allowing for this separation have other

implications? Can we develop simple, one-question tests of such separation?

This paper shows that a large enough difference between risk aversion and the

inverse of EIS violates a behavioral postulate we call Stochastic Impatience. To illus-

trate, consider the choice between:

A. With equal probability, permanently increase consumption by either 20% starting

today, or by 10% starting next year; and

B. With equal probability, permanently increase consumption by either 10% starting

today, or by 20% starting next year.

Both options involve identical benefits, odds, and dates. However, option A pairs the

highest increase (20%) with the earlier date, whereas B pairs it with the later date. If

an individual prefers to associate the higher payment with the earlier date, she may

choose option A.

One way to see this is by decomposing each alternative into two parts. Both

A and B offer a basic lottery with an increase of 10% either today or next year.

The difference between them is when the additional increase of 10% is made. In

Option A, the prize is increased if the realization is today, whereas in Option B it is

increased if the realization is next year. An individual who prefers to associate the

higher payment with the sooner realization would prefer option A. This property is a

1For example, Barsky et al. (1997) study a cross-section of American households and find that

risk aversion and EIS are uncorrelated. See Bansal and Yaron (2004); Hansen et al. (2007); Barro

(2009); Andreoni and Sprenger (2012); Nakamura et al. (2017) and references therein.
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version of impatience (preference for earlier payments) for risky environments, hence

the name Stochastic Impatience. Indeed, it coincides with impatience in the standard

model: when preferences are represented by the expectation of discounted utility,

E
[∑

t∈ND(t)u(xt)], Stochastic Impatience holds if (and only if) D is decreasing.

However, the two notions may differ when time and risk preferences are separated.

Our main result shows that, under very general conditions, Stochastic Impatience is

violated if risk aversion and the inverse of EIS are sufficiently different.

We first consider the widely used CRRA-CES version of Epstein and Zin (1989)

(henceforth EZ). We show that Stochastic Impatience fails if the coefficient of risk

aversion exceeds both the inverse of EIS and one; or if risk aversion is below the

inverse of EIS and that is also below one. All applications of EZ we are aware of

use parameters in this range—indeed, with typical parameters, individuals would

prefer option B in the example above, violating Stochastic Impatience. For the Risk

Sensitive preferences of Hansen and Sargent (1995) (henceforth HS), we show that

Stochastic Impatience fails if the range of utilities of consumption is large enough.

For example, with the parameters of Tallarini Jr (2000), option B is again chosen.

We then establish a more general result. Consider any preference relation over

lotteries over consumption streams.2 Assume that (i) without risk, preferences admit

a Discounted Utility representation
∑
D(t)u(xt) for a D decreasing over time and

u increasing over consumption; and (ii) with risk, preferences satisfy the Expected

Utility postulates. These assumptions hold for most models, including EZ and HS.

In the space we consider, any preference relation that satisfies these two assumptions

can be represented by the expectation of φ
(∑

tD(t)u(xt)∑
tD(t)

)
, where φ is some increasing

function over discounted utils. Known as the Kihlstrom-Mirman (KM) representa-

tion, this model is similar to Expected Discounted Utility except for the additional

curvature φ. Since φ affects risk aversion but not EIS, it captures the separation

between the two. The KM representation thus gives a convenient way to discuss the

gap between time and risk attitudes.3

Our general result shows that Stochastic Impatience imposes a bound on the

2Instead of considering dynamic preferences over temporal lotteries, as in EZ, it suffices to consider

their static implications—how they evaluate lotteries over consumption streams at a given point in

time and for a given date of resolution of uncertainty. This contains all relevant information for our

analysis.
3The preferences implied in our setup by EZ and HS admit a KM representation with convenient

functional forms (φ being CRRA or CARA, respectively). Of course, this does not mean that EZ

and HS are special cases of KM—see below for a discussion.
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curvature of φ, that is, on the separation of risk aversion and inverse EIS: φ cannot

be either too convex or too concave.4 We also provide our results in terms of a

behavioral notion that captures the separation of risk and intertemporal preferences,

which we call Residual Risk Aversion.

Our results have two implications. First, if Stochastic Impatience is taken as

appealing, our results point to an issue with all common parametrizations of all

leading approaches. In Section 5 we discuss possible ways to maintain Stochastic

Impatience without sacrificing the fit of empirical data.

Second, independently of the normative appeal of Stochastic Impatience, our re-

sults provide a convenient, one-question empirical test. To verify that risk aversion is

sufficiently different from the inverse of EIS, it is sufficient to document a violation of

Stochastic Impatience. This is a more direct test than typical ones that involve esti-

mating the two parameters separately using multiple questions and assuming specific

functional forms.

We are not the first to point out implications of how the separation between time

and risk attitudes is modeled. Epstein et al. (2014) argue that common parameter-

izations of EZ imply unrealistic preferences for early resolution of uncertainty. We

show that they also violate Stochastic Impatience, a property distinct from prefer-

ence over the timing of resolution of uncertainty. Bommier et al. (2017) show that

many models that separate time and risk preferences, including common specifica-

tions of EZ, violate a monotonicity property. The latter is unrelated to Stochastic

Impatience: for example, EZ with both risk aversion and the inverse of EIS less than

1 satisfies Stochastic Impatience but not Monotonicity; conversely, HS always satis-

fies Monotonicity but violates Stochastic Impatience when the utility range is large

enough. Lastly, a companion paper, DeJarnette et al. (2020), studies theoretically

and experimentally risk attitudes towards time lotteries, including their relationship

with Stochastic Impatience.5 That paper does not discuss the implications of this

property on the separation of time and risk preferences, which is instead the main

goal of the present paper.

4In Appendix A, we provide an extension to continuous time, showing that equivalent results

hold. In Appendix B we extend to non-Expected Utility, where we show that Stochastic Impatience

is violated with either First-Order Risk Aversion or Seeking.
5DeJarnette et al. (2020) show experimentally that the majority of individuals are not risk seek-

ing over time lotteries, as implied by EDU with convex discounting (e.g., exponential or quasi-

exponential discounting); but also establish that this is incompatible with Stochastic Impatience

within a broad class of models. They further suggest generalizations to accommodate both.
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2 Framework and Stochastic Impatience

We study preferences on lotteries over consumption streams. With per-period con-

sumption in the interval C ⊆ R+, a consumption program x = (xt)t∈N is a sequence

in C corresponding to the consumption in each period.6 Let X := CN be the set of

all consumption programs and ∆ be the set of all probability measures over X with

finite support. Let < be a complete and transitive preference relation over ∆.

We consider the static space of lotteries over streams, and not the more complex

space of temporal lotteries used in Kreps and Porteus (1978) or EZ, because this

subdomain is much simpler yet sufficient for our purposes. Any model over temporal

lotteries induces preferences over ∆ and, crucially, these static preferences contain

all the information on the separation of time and risk preferences relevant to our

analysis.7 Moreover, restricting attention to this subdomain allows us to derive results

for a richer class of models, independently of how they are defined dynamically.

Abusing notation, let x ∈ X denote both the consumption program and the lottery

that gives this program with certainty. Let 〈x, t; c, δ〉 denote the stream that gives x

starting in period t and lasting for δ periods and c otherwise. For example, 〈x, 3; c, 5〉
is the program

(c, c,
3︷︸︸︷
x ,

4︷︸︸︷
x , ...,

7︷︸︸︷
x︸ ︷︷ ︸

δ=5

, c, c, ...).

We now introduce the central property of this paper:

Definition 1 (Stochastic Impatience). The relation < satisfies Stochastic Impatience

if for any t, t′ ∈ N with t < t′, any δ ∈ N ∪ {∞}, and any c, x, x′ ∈ C with x > x′,

1

2
〈x, t; c, δ〉+

1

2
〈x′, t′; c, δ〉 < 1

2
〈x, t′; c, δ〉+

1

2
〈x′, t; c, δ〉. (1)

Stochastic Impatience states that the individual prefers the lottery that associates

the higher prize with the earlier date. It can be seen as a stochastic counterpart of

standard impatience—associating the higher payment with the sooner date. As men-

tioned in the introduction, Stochastic Impatience can be interpreted by decomposing

6We focus on discrete time and real-valued consumption for simplicity. Appendix A presents

the extension to continuous time. We start from date one, but when required, we also consider an

additional consumption at time zero that is not subject to uncertainty.
7Formally, lotteries over streams are embedded within temporal lotteries once we fix a start date

and a time of resolution of uncertainty. For example, if we start from preferences over temporal

lotteries, hold the time-zero consumption fixed, and assume that uncertainty is resolved between

periods zero and one, we obtain preferences over ∆.
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each lottery into two parts. Both options offer the same basic lottery that replaces

c with x′ for δ periods starting at either t or t′, as well as an increment of x − x′.

The difference is about when the increment is paid: on the left hand side of (1), it

is paired with the earlier-dates realization {t, t + 1, ...t + δ − 1}; on the right, with

the later-dates realization {t′, t′ + 1, ..., t′ + δ − 1}. Insofar as the individual prefers

to associate this increment with the sooner dates, the option on the left is preferred;

this is what Stochastic Impatience prescribes. Note that x and x′ can be above or

below c, meaning that the changes x− c and x′ − c can be positive or negative.8

Stochastic Impatience is related to multivariate risk aversion (Richard, 1975;

Wakker et al., 2004) and, more generally, to supermodularity. What distinguishes

it is the specification of one dimension as prize and the other as time. A version of

Stochastic Impatience appears in DeJarnette et al. (2020).9 Existing evidence ap-

pears to support Stochastic Impatience. Lanier et al. (2020) find evidence in favor of

it in an experiment with assets that pay in different dates and states.

In Expected Discounted Utility, Stochastic Impatience is equivalent to impatience—

a preference for earlier rewards:

Observation 1. Suppose < is represented by E
[∑

t∈ND(t)u(xt)] with u strictly in-

creasing. Then, < satisfies Stochastic Impatience if and only if D is weakly decreasing.

We henceforth refer to Expected Discounted Utility (as in Observation 1) with

any strictly decreasing discount function as EDU.

3 Stochastic Impatience in EZ and HS

3.1 Epstein-Zin preferences

We first consider the most widely used model that separates time and risk preferences:

the CRRA-CES version of Epstein-Zin preferences (EZ). Letting C = R++ and fixing

8One may want to consider a weaker version of Stochastic Impatience where changes are per-

manent (δ = ∞). All our results below remain true as stated with this weaker version. This is

because the two versions of the axiom are equivalent in many special cases we consider (e.g., under

the assumptions of Proposition 1 or 2). They are not equivalent under our Assumptions 1 and 2

only because of the discreteness of time. When we consider continuous time in Appendix A, we

show that the two versions of the axioms are equivalent under these assumptions (Proposition 6).
9DeJarnette et al. (2020) consider a setup of prize-date pairs instead of streams (hence δ = 1 and

c = 0) and their version of Stochastic Impatience assumes only positive prizes (x, x′ > 0).
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(any) deterministic consumption x0 ∈ C for time 0, consider the following recursive

representation:

Vt =

{
(1− β)x

1− 1
ψ

t + β
[
Et
(
V 1−α
t+1

)] 1− 1
ψ

1−α

} 1

1− 1
ψ

(2)

where α ∈ R+\{1} is the coefficient of relative risk aversion and ψ ∈ R+\{1} is the

EIS. When α = 1
ψ

, the model is a special case of EDU.

The following result characterizes Stochastic Impatience in this model.

Proposition 1. Suppose < admits the representation in (2). Stochastic Impatience

holds if and only if either 1 > α ≥ 1
ψ

or 1 < α ≤ 1
ψ

.

Proposition 1 shows that Stochastic Impatience constrains how risk aversion and

inverse EIS can differ. If α > 1, as commonly assumed, Stochastic Impatience implies

that inverse IES must be at least as high as risk aversion—the opposite of what is typ-

ically assumed. Under Stochastic Impatience, Risk aversion can be above the inverse

EIS only when both are below 1. As discussed below, this implies that Stochastic

Impatience is violated in all common parametrizations of the model.

For an intuition, consider again the choice between lotteries A and B given in the

introduction:

A. With equal probability, permanently increase consumption by either 20% starting

today, or by 10% starting next year; or

B. With equal probability, permanently increase consumption by either 10% starting

today, or by 20% starting next year.

Stochastic Impatience prescribes that A should be preferred. Of the four possible

outcomes, the best is 20% starting today, the worst is 10% next year, while the other

two are intermediate. Option A involves the best and the worst outcomes; option

B the two ‘intermediate’ ones. Thus, option A has more spread but also a higher

expected discounted utility—since the higher discounting is applied to the smaller

amount. When α = 1
ψ

, i.e., under EDU, the agent cares only about the expected

discounted utility, thus strictly prefers option A. But when risk aversion is increased

fixing EIS, the individual dislikes spread in discounted utilities. When risk aversion

is high enough, this second effect prevails, leading the individual to prefer option B

and violate Stochastic Impatience. This shows how α cannot be much higher than 1
ψ

.
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For an intuition of why α cannot be much lower than 1
ψ

, consider the following

options, which now decrease rather than increase the baseline consumption:

C. With equal probability, permanently decrease consumption by either 20% starting

today, or by 10% starting next year; or

D. With equal probability, permanently decrease consumption by 10% starting today,

or by 20% starting next year.

Now Stochastic Impatience prescribes that D should be preferred. In this case, D has

a higher expected discounted utility and a lower spread. If α is below 1
ψ

, the agent

likes the spread, increasing the appeal of C. If it is sufficiently below 1
ψ

, this effect

dominates and Stochastic Impatience is violated.

The relevance of this result should be understood in light of the parameters used

in the wide literature that adopts EZ. All applications we are aware of assume α >

max{ 1
ψ
, 1}. Stochastic Impatience is therefore violated. Indeed, the possibility of

incorporating risk aversion greater than the inverse of EIS is a primary reason for

adopting this model, and relative risk aversion above one is also typically imposed

to fit macroeconomics and finance data. For example, Bansal et al. (2016) estimate

α = 9.67 and ψ = 2.18 (see Example 1 below for other references). Another strand of

the literature (typically not adopting EZ) has instead argued for ψ < 1, thus 1
ψ
> 1.10

With this restriction, EZ necessarily violates Stochastic Impatience if α > 1
ψ

.

Proposition 1 shows when there exist violations of Stochastic Impatience. We now

provide an example of such a violation.

Example 1. Consider again lotteries A and B described above. Stochastic Impatience

implies A preferred to B. However, B is preferred adopting the EZ model with the

parameters of many known papers: Bansal and Yaron (2004) (α = 10, β = 0.998,

ψ = 1.5), Bansal et al. (2016) (α = 9.67, β = .999, ψ = 2.18), Nakamura et al. (2017)

(α = 9, β = 0.99, ψ = 1.5), and Colacito et al. (2018) (α = 10, β = 0.97, ψ = 1.1).11

10See Campbell (1999), Attanasio and Weber (2010), Campbell (2003) and, more recently, Gruber

(2013); Ortu et al. (2013); Crump et al. (2015); Best et al. (2017).
11Even with ψ < 1, B is preferred to A if α is high enough. With α = 10 and β = 0.998, B is

preferred if ψ > 0.2576. With lower risk aversion, violations of Stochastic Impatience require higher

prizes. For example, with the parameters of Nakamura et al. (2013) (α = 6.4, β = 0.967, ψ = 2), a

violation is observed with low prize of 20% and high prize of 30% of per-period consumption. With

the parameters of Barro (2009) (α = 4, β = 0.948, and ψ = 2), with low prize of 35% and high prize

of 40%. With even less risk aversion, closer to one, violations require higher and higher prizes.
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Finally, in EZ α and ψ also determine the preference over the timing of resolution

of uncertainty: The individual prefers early (late) resolution of uncertainty whenever

α is higher (smaller) than 1
ψ

(Epstein and Zin, 1989). By imposing a bound on α given

ψ, Stochastic Impatience limits the strength of the preference for early resolution of

uncertainty, even though these are conceptually independent notions. This links our

results to Epstein et al. (2014), who argue that the parameters used in much of the

literature generate an implausibly high preference for early resolution of uncertainty.

Here we show that these same parameters imply a violation of Stochastic Impatience.

3.2 Risk Sensitive preferences

In the same setting of the previous section, consider the Risk Sensitive preferences of

Hansen and Sargent (HS), which admit the recursive representation:

Vt = u(xt)− β ·
1

k
· log

(
Et
[
e−kVt+1

])
, (3)

where k > 0 increases risk aversion relative to standard expected utility.

Proposition 2. Suppose < admits the representation in (3). Stochastic Impatience

holds if and only if sup{u(x)}x∈C − inf{u(x)}x∈C ≤ − log(β)
kβ

.

Under HS, Stochastic Impatience is violated if the utility range of prizes is large

enough. This is necessarily the case if u is unbounded above or below on an unbounded

domain (such as with a CARA utility and an unbounded consumption space). Oth-

erwise, Stochastic Impatience requires both the utility range (sup{u(x)}− inf{u(x)})
and risk sensitivity k to be small enough.

We now illustrate examples of violations of Stochastic Impatience using an influ-

ential parameterization:

Example 2. Tallarini Jr (2000) uses HS preferences with C = R++, u(x) = log(x),

and k = (1−β)(ξ−1). Since u is unbounded, Stochastic Impatience fails. Tallarini Jr

(2000) shows that the model can match key moments in asset pricing for some (ξ, β) ∈
[46, 180]× [.991, .999]. Consider again options A and B used in Example 1. With any

of the parameters above, option B is preferred, violating Stochastic Impatience.

4 General results

We now generalize the previous results beyond EZ and HS. We first present a con-

venient functional form to analyze the separation of time and risk preferences in a
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general setup and show the bounds imposed by Stochastic Impatience. Next, we

introduce a behavioral counterpart of this separation, which we call Residual Risk

Aversion, and show the bounds imposed by Stochastic Impatience in this context.

4.1 The KM model

For simplicity, in the remainder we assume that the interval of per-period consumption

is compact: C = [x, x̄].12 We focus on preferences that satisfy the following two

assumptions.

Assumption 1 (Discounted Utility without risk). There exist a strictly increasing

and continuous function u : C → R+ and a strictly decreasing function D : N→ [0, 1]

with
∑

t∈ND(t) < +∞ such that for all x,y ∈ X

x < y ⇔
∑
t∈N

D(t)u(xt) ≥
∑
t∈N

D(t)u(yt).

Assumption 2 (Expected Utility). The following hold:

(i) For all p, q, r ∈ ∆ and λ ∈ (0, 1), p < q ⇔ λp+ (1− λ)r < λq + (1− λ)r;

(ii) For all p, q, r ∈ ∆ with p � q � r, there exist λ, γ ∈ (0, 1) such that λp + (1 −
λ)r � q � γp+ (1− γ)r.

Assumption 1 posits that in the absence of risk, preferences can be modeled using

Discounted Utility with a generic discount function D. This allows for many types

of discounting (e.g., exponential and quasi-hyperbolic). Assumption 2 posits the

postulates of Expected Utility, satisfied by most models in the literature.

Assumptions 1 and 2 yield the following representation:

Observation 2. The relation < satisfies Assumptions 1 and 2 if and only if there

exists a strictly increasing and continuous u : C → R, a strictly decreasing D : N→
[0, 1] with

∑
t∈ND(t) < +∞, and a strictly increasing φ : u(C) → R such that < is

represented by

V (p) = Ep
[
φ
(∑

t∈ND(t)u(xt)∑
t∈ND(t)

)]
. (4)

12This assumption is for convenience only. All our results hold if C is unbounded, as long as the

sums of discounted utilities in Assumption 1 are well-defined.
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Conditional on u and D, φ is unique up to a positive affine transformation.13

This representation is known as the Kihlstrom-Mirman (KM) representation, as

it can be seen as an application to time of the multi-attribute function of Kihlstrom

and Mirman (1974).14 Fixing D, the curvature of u captures EIS; risk aversion is

captured by φ ◦ u. Thus, φ is the additional curvature that separates between risk

aversion and EIS.

Observation 2 highlights that the KM model is characterized by Assumptions 1

and 2 and thus provides a convenient functional form to study the static implications

of commonly used models, including EZ and HS—as their static implications satisfy

both assumptions. Importantly, the function φ contains all the information on the

separation of time and risk preferences. Note that EDU corresponds to the case in

which φ is an affine function. Note also that whenever preferences admit a recursive

formulation of the form

Vt = φ
(
(1− β)u(c) + βφ−1 (E[Vt+1])

)
,

then the corresponding preferences over ∆ admit a KM representation with the same

φ, that is, E [φ ((1− β)
∑
βtu(xt))]. This shows how one can map many recursive

representations into a KM one on ∆ and use our results.

As we show next, EZ and HS correspond to CRRA and CARA functions φ.15

13Assumption 1 guarantees a Discounted Utility representation without risk; Assumption 2 guaran-

tees an Expected Utility representation with a given Bernoulli utility v over consumption programs.

Since v and the Discounted Utility representation must be ordinally equivalent, there exists a strictly

increasing function φ that makes them equal.
14See, for example, Epstein and Zin (1989). This functional form is derived, in a different setup,

in DeJarnette et al. (2020). A similar functional form is used in Edmans and Gabaix (2011); Garrett

and Pavan (2011); Abdellaoui et al. (2017); Andersen et al. (2017); Apesteguia et al. (2019).
15We should stress that this does not imply that the KM model includes EZ and HS as special

cases. Rather, it implies that the static implications of EZ and HS on ∆ admit a KM representation.

If applied dynamically on the space of temporal lotteries with different current-period consumption,

the models are not nested (e.g., EZ and HS are dynamically consistent, while KM is not if ap-

plied dynamically without modification). These differences are inconsequential in our setup, and

the observation highlights that one can view EZ or HS as being composed of a collection of KM

representations, where φ varies with the timing of resolution of uncertainty and with current con-

sumption in order to allow for recursivity and dynamic consistency. As mentioned above, we confine

our attention to KM because of its simplicity and because the space of lotteries over consumption

streams at a given date of resolution of uncertainty contains all relevant information for our analysis,

namely tying Stochastic Impatience to parametric restrictions.
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Example 3 (EZ with CRRA-CES). Fix a consumption at time zero and consider a

preference relation < over ∆ generated by (2). As we show in the Online Appendix,

< admits a KM representation with u(x) = x
1− 1

ψ

1− 1
ψ

, D(t) = βt−1, and

φ (z) =



z
1−α
1− 1

ψ if α < 1 < ψ

− (−z)
1−α
1− 1

ψ if α > 1 > ψ

−z
1−α
1− 1

ψ if 1 < α, 1 < ψ

(−z)
1−α
1− 1

ψ if α < 1, ψ < 1

. (5)

Example 4 (HS). Fix a consumption at time zero and consider a preference relation

< over ∆ generated by (3). As we show in the Online Appendix, < admits a KM

representation with D(t) = βt−1 and φ(z) = − exp
(
− kz

1−β

)
.

4.2 General Implications of Stochastic Impatience

We now present our first general result. Recall that x and x̄ are the lower and upper

bounds of the consumption space C. As usual, we say that φ is (strictly) more

concave/convex than g if φ = f ◦ g for some (strictly) concave/convex f . Lastly, let

φ̄ and φ be the functions given by φ̄(v) := − log(u(x)− v) and φ(v) := log(v− u(x)),

respectively.

Proposition 3. Let < be a preference relation that satisfies Assumptions 1 and 2

and let (φ, u,D) be a KM representation. The following are true:

(i) The relation < satisfies Stochastic Impatience if the function φ is more convex

than φ and more concave than φ̄.

(ii) There exist v1, v2, v3, v4 ∈ u(C) such that preferences violate Stochastic Impa-

tience if either

(a) φ is strictly more concave than φ on [v1, v2], or

(b) φ is strictly more convex than φ̄ on [v3, v4].

Proposition 3 shows that Stochastic Impatience restricts the curvature of φ, which

determines how risk aversion and EIS can differ. The intuition generalizes the one

from EZ. In KM, individuals’ tastes over spreads in discounted utilities depend on

the curvature of φ. When φ is concave, they dislike this spread. If it is sufficiently

11



concave, they violate Stochastic Impatience with positive changes (x, x′ > c). When

φ is convex, they like this spread. If it is sufficiently convex, they violate Stochastic

Impatience with negative changes (x, x′ < c).

Note that parts (i) and (ii) of the proposition together do not provide an if and

only if statement: (ii) shows that Stochastic impatience fails if the curvature of φ is

too high in specific ranges, while the negation of (i) suggests it should be enough for

it to hold in (the neighborhood of) a single point. This is due to the discreteness

of time intervals. In Appendix A, we consider a continuous time version of KM and

show that, in that case, the sufficient conditions in part (i) are also necessary for

Stochastic Impatience. That is, in continuous time, Stochastic Impatience holds if

and only if φ is more convex than φ and more concave than φ̄.

We conclude this discussion by connecting Proposition 3 with Propositions 1 and

2. In particular, we show that the sufficient conditions from Proposition 3 are also

necessary in the case of EZ but not in the case of HS:

Example 5 (EZ). Consider the KM representation of EZ in Example 3. Using Equa-

tion (5), the coefficient of absolute risk aversion of φ is −φ′′(v)
φ′(v)

= 1
v
· α−

1
ψ

1− 1
ψ

. Comparing

with the coefficients of φ and φ̄, it follows that φ is more convex than φ and more

concave than φ̄ if either 1 > α ≥ 1
ψ

or 1 < α ≤ 1
ψ

(see Online Appendix for detailed

calculations). Therefore, the sufficient conditions from Proposition 3 coincide with

the necessary and sufficient conditions found in Proposition 1.

Example 6 (HS). Consider the KM representation of HS in Example 4. The coef-

ficient of absolute risk aversion of φ(z) = − exp
(
− kz

1−β

)
is −φ′′(z)

φ′(z)
= k

1−β > 0. Since

φ is concave, it is always more concave than the convex function φ̄. Comparing with

the coefficient of absolute risk aversion of φ, we find that φ is more convex than φ if

and only if

sup{u(x)}x∈C − inf{u(x)}x∈C ≤
1− β
k

.

This (sufficient) condition from Proposition 3 (part i) is stronger than the necessary

and sufficient condition from Proposition 2.

4.3 Residual Risk Aversion

We now introduce a behavioral notion that captures the additional risk aversion

relative to EIS.

12



Definition 2. The relation < displays Residual Risk Aversion if for any a, b, c, d, x ∈
C such that

(a, d, x, x, . . . ) ∼ (b, b, x, x, . . . ) and (d, a, x, x, . . . ) ∼ (c, c, x, x, . . . )

we have
1

2
(b, b, . . . ) +

1

2
(c, c, . . . ) <

1

2
(a, a, . . . ) +

1

2
(d, d, . . . ).

Similarly, < displays Residual Risk Seeking/Neutrality if the above is instead 4/∼.

Residual Risk Aversion is an adaptation to our framework of Traeger (2014)’s

notion of Intertemporal Risk Aversion.16 Suppose < satisfies Assumption 1 with u

and D. If (a, d, x, x, . . . ) ∼ (b, b, x, x, . . . ) and (d, a, x, x, . . . ) ∼ (c, c, x, x, . . . ),

D(1)u(a)+D(2)u(d) = [D(1)+D(2)]u(b) and D(1)u(d)+D(2)u(a) = [D(1)+D(2)]u(c).

Thus, u(a) + u(d) = u(b) + u(c). Moreover, either a > b > c > d or a < b < c < d.

Consider a lottery that returns with equal chances the constant streams a or d; and

a lottery that returns with equal chances the constant streams b or c. If all risk

aversion is included in the curvature of u, these two lotteries must be indifferent,

since u(a) + u(d) = u(b) + u(c). With additional risk aversion, because a > b > c > d

or a < b < c < d, the individual should prefer the lottery between b and c, in which

the utility spread is smaller.

We first link Residual Risk Aversion to the curvature of φ in the KM representa-

tion:

Proposition 4. Suppose < admits a KM representation (φ,D, u). Then, < displays

Residual Risk Aversion/Seeking/Neutrality if and only if φ is concave/convex/affine.

It follows that Residual Risk Neutrality characterizes EDU given Assumptions 1

and 2, and that EZ allows for Residual Risk Aversion/Seeking:

16Similar to Proposition 4 and Observation 5 below, Traeger also gives a functional characterization

of attitudes towards intertemporal risk aversion in his framework. Relative Risk Aversion is related to

correlation aversion (Richard 1975; Epstein and Tanny 1980; see also Stanca 2023), which postulates

1

2
(a, d, x, x, . . . ) +

1

2
(d, a, x, x, . . . ) <

1

2
(a, a, x, x, . . . ) +

1

2
(d, d, x, x, . . . )

for all a, d, x. While the two notions are in general distinct (Traeger, 2014), it can be shown they

are equivalent within the KM model. Therefore, all results below could be equivalently stated using

correlation aversion. On the relation between correlation aversion and the separation of time and

risk preferences, see also Bommier 2007.
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Observation 3 (EDU is characterized by Residual Risk Neutrality). Suppose <

satisfies Assumptions 1 and 2. Then, it admits an EDU representation if and only if

it displays Residual Risk Neutrality.

Observation 4 (EZ preferences). Suppose < admits a representation as in (2). Then

< displays Residual Risk Aversion/Neutrality/Seeking if and only if α ≥ / = / ≤ 1
ψ

.17

Finally, we can introduce a comparative notion.

Definition 3. Let <1 and <2 be preference relations over ∆. We say that <1 has

more Residual Risk Aversion than <2 if they coincide on degenerate lotteries and if,

for all a > b > c > d,

1

2
(b, b, . . . ) +

1

2
(c, c, . . . ) <2

1

2
(a, a, . . . ) +

1

2
(d, d, . . . )

implies
1

2
(b, b, . . . ) +

1

2
(c, c, . . . ) <1

1

2
(a, a, . . . ) +

1

2
(d, d, . . . ).

This comparative notion parallels standard ones for risk and ambiguity (Epstein,

1999; Ghirardato and Marinacci, 2002). It has an immediate counterpart in KM

representations.

Observation 5. Let<1 and<2 be two preferences with KM representations (φ1, u,D)

and (φ2, u,D). Then, <1 has more Residual Risk Aversion than <2 if and only if there

exists a strictly increasing and concave function f : R→ R such that φ1 = f ◦ φ2.

We are now ready to discuss the implications of Stochastic Impatience on Residual

Risk attitude.

Proposition 5. Let <, <1, and <2 be preference relations over ∆ that satisfy As-

sumptions 1 and 2 and coincide on degenerate lotteries. Suppose <1 displays Residual

Risk Aversion and <2 displays Residual Risk Seeking. The following are true:

(i) Suppose both <1 and <2 satisfy Stochastic Impatience. If < has less Residual

Risk Aversion than <1 and more Residual Risk Aversion than <2, then it also

satisfies Stochastic Impatience.

17Recall that the CRRA-CES version of EZ displays a preference for early (late/neutrality towards)

resolution of uncertainty if α > (< / =) 1
ψ . Therefore, in this model, < displays Residual Risk

Aversion (Seeking/Neutrality) if and only if, in the space of temporal lotteries, there is a preference

for early (a preference for late/neutrality towards) resolution of uncertainty.
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(ii) Suppose both <1 and <2 violate Stochastic Impatience. If < has more Residual

Risk Aversion than <1 or has less Residual Risk Aversion than <2, then it also

violates Stochastic Impatience.

(iii) There exist <3 and <4 that satisfy Assumptions 1 and 2 and coincide with <

on degenerate lotteries such that:

(a) <3 has more Residual Risk Aversion than < and violates Stochastic Impa-

tience, and

(b) <4 has less Residual Risk Aversion than < and violates Stochastic Impa-

tience.

Proposition 5 is the behavioral counterpart of Proposition 3, showing how Stochas-

tic Impatience restricts Residual Risk Aversion/Seeking. If < has Residual Risk Aver-

sion/Seeking in between that of two preferences that satisfy Stochastic Impatience,

it will also satisfy it (part i). If it is more extreme than preferences that violate it,

it will also violate it (part ii). Finally, part (iii) shows that large enough changes in

Residual Risk Aversion alone generate violations of Stochastic Impatience.

5 Discussion

We have shown that within a broad class of models, Stochastic Impatience restricts

risk aversion relative to EIS, ruling out the parameters used in virtually all applica-

tions of EZ and HS. This has two implications. First, independently of the appeal

of Stochastic Impatience, it provides a simple way to test common parametrizations

of existing models: they imply that Stochastic Impatience must be violated. Second,

it implies that if we want to preserve Stochastic Impatience, we need to either con-

sider a class of models where our results do not hold or find different ways to match

empirical patterns while keeping risk aversion close enough to the inverse EIS. We

conclude with a discussion of these two possibilities.

Beyond our assumptions. Our results assume Expected Utility under risk and

Discounted Utility without risk. Do they hold more broadly?

There are two natural ways to extend beyond Expected Utility. First, adopt-

ing models of non-Expected Utility developed in the atemporal environment. In

Appendix B, we consider a very broad class that includes probability weighting and
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Disappointment Aversion.18 We show that, in a continuous time setting, these models

violate Stochastic Impatience whenever they exhibit (even a local version of) First-

Order Risk Attitudes (Segal and Spivak, 1990)—as is the case in most specifications

that use them.

Alternatively, one can consider models that maintain Expected Utility within each

period but violate it across periods. While this avenue has received little attention

in the literature on non-Expected Utility, there are models that fit into this cate-

gory. One example is the Dynamic Ordinal Certainty Equivalent model (Selden, 1978;

Selden and Stux, 1978), where the individual first calculates the per-period certainty

equivalents using one utility function, and then calculates their discounted value us-

ing a different utility. This model satisfies Stochastic Impatience while allowing for

a separation of time and risk preferences (DeJarnette et al., 2020; Selden and Wei,

2019). A discussion of the appeal of this model is beyond our scope, although some

papers pointed to concerns with dynamic consistency and notions of monotonicity

(Epstein and Zin, 1989; Chew and Epstein, 1990; Bommier et al., 2017).

Our other assumption is Discounted Utility without risk. Going beyond it re-

quires dropping additive separability, as in models of habit formation or memorable

consumption. Our results qualitatively extend, in the sense that, for any such model,

Stochastic Impatience imposes a bound on risk aversion for a fixed EIS.19 However,

this bound depends on the specifics of the preferences considered.

Beyond high risk aversion. Models in finance and macroeconomics often require

high risk aversion to capture the unwillingness to take financial risks. Other features

have the same effect, like ambiguity aversion/robustness, incorrect beliefs about stock

returns, rational inattention, or inertia. If these aspects are relevant but omitted from

the model, risk aversion may be overestimated.

For example, if some equity premium is due to ambiguity aversion, incorporating

it may allow for much lower coefficients of risk aversion (Barillas et al., 2009). This

would reduce the preference for early resolution of uncertainty to more realistic levels

(Epstein et al., 2014) and allow for Stochastic Impatience: since the latter is based

on objective lotteries, it is unaffected by ambiguity aversion. In general, any feature

18Applications of these models have been suggested, starting in the original paper of Epstein and

Zin (1989). See Backus et al. (2004) and references therein.
19Even weakening Assumption 1 while maintaining Assumption 2, a concave enough φ makes the

value of any lottery arbitrarily close to the value of its worst outcome, thus generating a violation

of Stochastic Impatience.
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that reduces the individual’s willingness to undertake financial risk without modifying

her attitude towards objective lotteries, as discussed in the surveys of Backus et al.

(2004), Epstein and Schneider (2010), and Hansen and Sargent (2014), could provide

a way to reconcile the empirical fit of the model with more moderate levels of risk

aversion and—as we show in this paper—also with Stochastic Impatience.
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Appendices

A Continuous time and additional results

We now consider a continuous time formulation of the model from Section 4. A

consumption program is now a function: x : R+ → [x, x]. For each δ > 0, let

〈x, t; c, δ〉 denote the consumption function that gives the constant consumption c

except for dates in [t, t+ δ), where it gives x.

We consider preferences < over lotteries over streams that can be represented by

V (p) = Ep
[
φ
(∫ +∞

0
D(t)u(x(t))dt∫ +∞
0

D(t)dt

)]
,

where u : [x, x] → R is continuous and strictly increasing, D : R+ → [0, 1] is con-

tinuous and strictly decreasing,
∫ +∞
0

D(t)dt < +∞, and φ : [u(x), u(x)] is strictly

increasing. Stochastic Impatience then becomes:

Definition 4 (Stochastic Impatience’). The relation < satisfies Stochastic Impa-

tience’ if for any t, t′ ∈ R+ with t < t′, δ ∈ R+ ∪ {∞} and any c, x, x′ ∈ C with

x > x′,
1

2
〈x, t; c, δ〉+

1

2
〈x′, t′; c, δ〉 < 1

2
〈x, t′; c, δ〉+

1

2
〈x′, t; c, δ〉. (6)

In this context, we can also define a weaker version of stochastic impatience in

which we restrict δ to be ∞.

Definition 5 (Stochastic Impatience”). The relation < satisfies Stochastic Impa-

tience” if for any t, t′ ∈ R+ with t < t′, and any c, x, x′ ∈ C with x > x′,

1

2
〈x, t; c,∞〉+

1

2
〈x′, t′; c,∞〉 < 1

2
〈x, t′; c,∞〉+

1

2
〈x′, t; c,∞〉. (7)

Recall that φ̄(v) := − log(u(x) − v) and φ(v) := log(v − u(x)). We now show

that with continuous time, the bounds on the curvature of φ are both necessary

and sufficient for Stochastic Impatience, and that the two versions of the axiom are

equivalent to each other.

Proposition 6. Suppose time is continuous and let (φ, u,D) be a KM representation

of <. The following statements are equivalent:

(i) The relation < satisfies Stochastic Impatience’;

(ii) The relation < satisfies Stochastic Impatience”;

(iii) The function φ is weakly more convex than φ and weakly more concave than φ̄.
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B Beyond Expected Utility

In this section, we show that the tension between Stochastic Impatience and the

separation of time and risk preferences goes beyond Expected Utility.

We extend beyond Expected Utility by assuming that preferences are at least

locally bilinear at 1
2
. This generalization includes as special cases popular models

such as those of probability weighting (Rank-Dependent Utility, Quiggin 1982, and

Cumulative Prospect Theory, Tversky and Kahneman 1992) and Disappointment

Aversion (Gul, 1991).20 In general, bilinearity holds if there is an increasing onto

function π : [0, 1] → [0, 1] , and a function f that evaluates (arbitrary) prizes, such

that, for any x, y such that f(x) > f(y), the prospect that yields x with probability λ

and y otherwise is evaluated by π (λ) f (x)+[1− π (λ)] f (y). Since our goal is to be as

general as possible, we only require preferences to be bilinear for equally likely binary

lotteries (λ = 1
2
)—the local bilinear model (Dean and Ortoleva, 2017).21 Applying

it to our setting, we obtain the following generalization of the KM model using the

continuous time setup of Appendix A.

Definition 6. We say that < admits a local bilinear KM representation if there exist

strictly increasing and continuous u : C → R+, a strictly decreasing D : R+ → R+

with
∫ +∞
0

D(t)dt < +∞, a strictly increasing and differentiable φ : u(C) → R, and

π(1
2
) ∈ (0, 1), such that for all x, y ∈ X , p = 1

2
x + 1

2
y with

∫ +∞
0

D(t)u(x(t))dt ≥∫ +∞
0

D(t)u(y(t))dt is evaluated according to:

V (p) = π
(1

2

)
φ
(∫ +∞

0
D(t)u(x(t))dt∫ +∞
0

D(t)dt

)
+
[
1− π

(1

2

)]
φ
(∫ +∞

0
D(t)u(y(t))dt∫ +∞
0

D(t)dt

)
.

In a local bilinear KM representation, Residual Risk Aversion/Seeking can be

achieved either by adding curvature to φ, as in the KM representation, or by adding

local First-Order Risk Attitudes (π(1
2
) 6= 1

2
; see Segal and Spivak 1990).22 Preferences

display local First-Order Risk Aversion if π(1
2
) < 1

2
(the best outcome is under-

20It also allows for generalizations of Rank-Dependent Expected Utility, e.g., the minimum from a

set of probability distortions (Dean and Ortoleva, 2017). On the other hand, it does not encompass

all models of risk preferences (e.g., it does not encompass Cautious Expected Utility, Cerreia-Vioglio

et al. 2015).
21This is a local specification of the bilinear (or biseparable) model of Ghirardato and Marinacci

(2001) for objective risk. Here, preferences are not restricted to be bilinear in general, but only that

there is some bilinear representation for 50/50 lotteries.
22Global First-Order Risk Attitude is implied whenever π(γ) 6= γ for all γ ∈ (0, 1).
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weighted) and local First-Order Risk Seeking if π(1
2
) > 1

2
(the best outcome is over-

weighted).

Proposition 7. Suppose time is continuous and let (π, φ, u,D) be a local bilinear KM

representation of <. If π(1
2
) 6= 1

2
, then < violates Stochastic Impatience’.

The result above shows that, in continuous time, in the broad class of local bilin-

ear models, displaying local First-Order Risk Attitudes always leads to violations of

Stochastic Impatience, independently of the shape of φ. Intuitively, local First-Order

Risk Aversion (π(1
2
) < 1

2
) implies extreme amounts of risk aversion in a neighborhood

around certainty and, as seen before, Stochastic Impatience fails if risk aversion is

high enough. Similarly, local First-Order Risk Seeking (π(1
2
) > 1

2
) implies extreme

amounts of risk seeking in a neighborhood around certainty, which also leads to vio-

lations of Stochastic Impatience.

C Proofs

C.1 Proof of Observation 1

To simplify notation, let dδ(t̃) ≡
∑t̃+δ−1

t=t̃ D(t) and d̄ ≡
∑∞

t=1D(t). Take x1 > x2 and

t1 < t2. The utility of lottery 1
2
〈c, x1, t1, δ〉+ 1

2
〈c, x2, t2, δ〉 is

u(x1) · dδ(t1) + u(c) ·
[
d̄− dδ(t1)

]
2

+
u(x2) · dδ(t2) + u(c) ·

[
d̄− dδ(t2)

]
2

,

and the utility of lottery 1
2
〈c, x1, t2, δ〉+ 1

2
〈c, x2, t1, δ〉 equals

u(x2) · dδ(t1) + u(c) ·
[
d̄− dδ(t1)

]
2

+
u(x1) · dδ(t2) + u(c) ·

[
d̄− dδ(t2)

]
2

.

Stochastic Impatience holds if the first expression is weakly greater than the second

one. Algebraic manipulations show that this is true if and only if:

[u(x1)− u(x2)] · [dδ(t1)− dδ(t2)] ≥ 0,

which holds if and only if dδ(t1) ≥ dδ(t2) (since u is strictly increasing). Using the

definition of dδ, we find that Stochastic Impatience holds if and only if
∑t1+δ−1

t=t1
D(t) ≥∑t2+δ−1

t=t2
D(t) for all t1 < t2 and all δ, which is true if and only if D(t) is weakly

decreasing. �
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C.2 Proof of Proposition 1

To simplify notation, let ρ ≡ 1
ψ

denote the inverse of EIS. It is without loss of

generality to consider lotteries in which the earliest prize is paid in period t = 1

(making the earliest date t > 1 only adds to each prospect a discounted sum of some

deterministic stream, that will be canceled out in all comparisons). Let c0 denote an

arbitrary but fixed consumption in period 0.

As we show in the online appendix, using the EZ recursion, we can write the value

of the lottery

1

2
(

0︷︸︸︷
c0 ,

1︷︸︸︷
x ,

2︷︸︸︷
x , ...,

δ︷︸︸︷
x︸ ︷︷ ︸

δ

,

δ+1︷︸︸︷
c , c, ...) +

1

2
(

0︷︸︸︷
c0 ,

1︷︸︸︷
c , ...,

τ−1︷︸︸︷
c ,

τ︷︸︸︷
y , y, ...,

τ+δ−1︷︸︸︷
y︸ ︷︷ ︸

δ

, c, ...)

as

V0 =


(1− β)c1−ρ0 + β


{(1− βδ)x1−ρ + βδc1−ρ}

1−α
1−ρ

+
{
c1−ρ + βτ−1(1− βδ) (y1−ρ − c1−ρ)

} 1−α
1−ρ

2



1−ρ
1−α


1
1−ρ

.

Using Definition 1, Stochastic Impatience holds if and only if
(1− β)c1−ρ0 + β


{(1− βδ)x1−ρ + βδc1−ρ}

1−α
1−ρ

+
{
c1−ρ + βτ−1(1− βδ) (y1−ρ − c1−ρ)

} 1−α
1−ρ

2



1−ρ
1−α


1
1−ρ

≥
(1− β)c1−ρ0 + β


{(1− βδ)y1−ρ + βtc1−ρ}

1−α
1−ρ

+
{
c1−ρ + βτ−1(1− βδ) (x1−ρ − c1−ρ)

} 1−α
1−ρ

2



1−ρ
1−α


1
1−ρ

for all τ, δ ∈ N and for all x, y, c ∈ R+ with x > y.

In the online appendix, we use the previous inequality to obtain the following

result:
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Lemma 1. Suppose < admits the representation in (2). Stochastic Impatience holds

if and only if{
(1− βδ)z1−ρ + βδ

} ρ−α
1−ρ ≥ βτ

{
1 + βτ (1− βδ)

(
z1−ρ − 1

)} ρ−α
1−ρ

for all δ, τ ∈ N and all z ∈ R+.

Straightforward calculations show that the condition in Lemma 1 hold if and only

if either 1 > α ≥ ρ or 1 < α ≤ ρ (the online appendix includes a detailed calculation).

C.3 Proof of Proposition 2

As in the proof of Proposition 1, it is without loss of generality to consider lotteries

in which the earliest price is paid at t = 1. Let c0 denote an arbitrary but fixed

consumption in period 0.

Let px,x′;c,δ,t′ denote the lottery that pays either the prize x starting in period 1 or

x′ starting in period t′, where each prize lasts for δ periods. That is:

px,x′;c,δ,t′ ≡
1

2
(

0︷︸︸︷
c0 ,

1︷︸︸︷
x ,

2︷︸︸︷
x , ...,

δ︷︸︸︷
x︸ ︷︷ ︸

δ

, c, ...)+
1

2
(

0︷︸︸︷
c0 ,

1︷︸︸︷
c , ...,

t′−1︷︸︸︷
c ,

t′︷︸︸︷
x′ , x′, ...,

t′+δ−1︷︸︸︷
x′︸ ︷︷ ︸

δ

, c, ...).

Stochastic Impatience holds if and only if px,x′;c,t,t′ % px′,x;c,t,t′ for all δ ∈ N, all

t′ ∈ {2, 3, ...} and all x, x′, c ∈ C with x > x′.

By the additive separability of current-period consumption in the HS representa-

tion and the fact that all lotteries considered here have the same period-0 consump-

tion, we can omit the the period-0 utility u(c0) from the expressions, focusing only in

the continuation utility starting in period 1:

−β
k

logE0

[
e−kV1

]
.

Moreover, because β
k
> 0 and the logarithm is an increasing function, it suffices to

evaluate the following expression for each of the lotteries:

E0

[
−e−kV1

]
.

For the lottery px,x′;c,δ,t′ , we have:

E0

[
−e−kV1

]
= −1

2

 exp
(
−k ·

[∑δ
t̃=1 β

t̃u (x) +
∑∞

t̃=δ+1 β
t̃u (c)

])
+ exp

(
−k ·

(∑
t̃ /∈{t′,...,t′+δ−1} β

t̃u (c) +
∑

t̃∈{t′,...,t′+δ−1} β
t̃u (x′)

))  ,
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which, with some algebraic manipulations, can be rewritten as

−
exp

{
ku (c) β

1−β

}
2

 exp
{
−k · β

1−β · [u (x)− u (c)] ·
(
1− βδ

)}
+ exp

{
−k · β

1−β · [u (x′)− u (c)] ·
(
βτ − βτ+δ

)}
 ,

where τ ≡ t′ − 1 ∈ N.

Performing the same calculations for lottery px′,x;c,δ,t′ , we obtain:

E0

[
−e−kṼ1

]
= −

exp
{
ku (c) β

1−β

}
2

 exp
{
−k · β

1−β · [u (x′)− u (c)] ·
(
1− βδ

)}
+ exp

{
−k · β

1−β · [u (x)− u (c)] ·
(
βτ − βτ+δ

)}
 .

Dividing both expressions by − exp{ku(c) β
1−β}

2
< 0, we find that px,x′;c,δ,t′ % px′,x;c,δ,t′ if

and only if

exp

{
−k · β

1− β
· [u (x)− u (c)] ·

(
1− βδ

)}
+exp

{
−k · β

1− β
· [u (x′)− u (c)] ·

(
βτ − βτ+δ

)}

≤ exp

{
−k · β

1− β
· [u (x′)− u (c)] ·

(
1− βδ

)}
+exp

{
−k · β

1− β
· [u (x)− u (c)] ·

(
βτ − βτ+δ

)}
.

Rearranging this expression gives

exp

{
−k · β

1− β
· [u (x)− u (c)] ·

(
1− βδ

)}
−exp

{
−k · β

1− β
· [u (x)− u (c)] ·

(
βτ − βτ+δ

)}

≤ exp

{
−k · β

1− β
· [u (x′)− u (c)] ·

(
1− βδ

)}
−exp

{
−k · β

1− β
· [u (x′)− u (c)] ·

(
βτ − βτ+δ

)}
,

which holds for all x > x′ if and only if

∂

∂x

 exp
{
−k · β

1−β · [u (x)− u (c)] ·
(
1− βδ

)}
− exp

{
−k · β

1−β · [u (x)− u (c)] ·
(
βτ − βτ+δ

)}
 ≤ 0

for all x. Evaluating the derivative and rearranging, we find that Stochastic Impa-

tience holds if and only if for all c, x ∈ C and all τ, δ ∈ N,

− log β ≥ k · β

1− β
· [u (x)− u (c)] ·

(
1− βδ

)
(1− βτ )
τ

.

Since supδ∈N
(
1− βδ

)
= limδ↗+∞ 1 − βδ = 1, Stochastic Impatience holds if and

only if for all c, x, and τ ,

− log β ≥ k · β

1− β
· [u (x)− u (c)] · 1− βτ

τ
.
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Note also that supτ∈N
1−βτ
τ

= 1 − β (which is obtained by taking τ = 1). Thus, the

condition becomes

− log β

k · β
≥ u (x)− u (c)

for all c, x, and τ , which holds if and only if

− log β

k · β
≥ sup{u(x)}x∈C − inf{u(x)}x∈C .

�

C.4 Proof of Observation 2

For necessity, note that, when restricted to degenerate streams, the representation is a

monotone transformation of
∑∞

t=1D(t)u(xt), so preferences must satisfy Assumption

1. Moreover, since risky lotteries are evaluated by taking expectations, preferences

satisfy Assumption 2 as in Expected Utility Theory.

For sufficiency, by Assumption 1, there exist a strictly increasing and continuous

u : [x, x] → R and a strictly decreasing D : N → [0, 1] with
∑∞

t=1D(t) < +∞ such

that < restricted to X is represented by

F ∗(x) :=
∞∑
t=1

D(t)u(xt).

Applying a positive transformation, the same preference is also represented by

F (x) :=

∑∞
t=1D(t)u(x(t))∑∞

t=1D(t)
,

Note that F (X ) = u(C). By Assumption 2, there exists U : X → R such that < is

represented by

V (p) := Ep
[
U
]
.

It follows that U and F represent the same preferences over X , i.e., for all x, y ∈ X ,

U(x) ≥ U(y)⇔ x < y⇔ F (x) ≥ F (y). (8)

Therefore, there must exist an increasing φ : u(C)→ R such that U = φ ◦ F .

We claim that φ must be strictly increasing. Suppose not. Then, there are a, b ∈
u(C) with a > b and φ(a) = φ(b). Consider the streams x and y that return u−1(a)

and u−1(b) each period, respectively. Since a > b we must have F (x) = a > b = F (y).
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At the same time, since φ(a) = φ(b), we have U(x) = φ(F (x)) = φ(a) = φ(b) =

φ(F (y)) = U(y), violating (8).

The uniqueness claims follow from the same arguments as in the Expected Utility

Theorem. �

C.5 Proof of Proposition 3

To simplify notation, let u := u(x) and ū := u(x̄), so the space of per-period utility

is u(C) = [u, ū]. Let D ≡
{∑t+τ

t̃=t
D(t̃)∑∞

t̃=1
D(t̃)

: t, τ ∈ N
}

denote the space of discount factors.

By definition, Stochastic Impatience holds if

φ
(
d1H + (1− d1) C̄

)
+ φ

(
d2L+ (1− d2) C̄

)
≥

φ
(
d1L+ (1− d1) C̄

)
+ φ

(
d2H + (1− d2) C̄

) (9)

for all H,L, C̄ ∈ [u, ū] with H > L, and all d1, d2 ∈ D with d1 > d2.

Proof of part (i).

Since D ⊂ [0, 1], it suffices to show that (9) holds for all d1, d2 ∈ (0, 1] with d1 > d2

and all H,L, C̄ ∈ [u, ū] with H > L. Since φ is less concave than ln(v − u) and more

concave than − ln(ū− v), there exist increasing functions f and g, with f convex and

g concave, such that

φ(v) = f(log(v − u)) = g(− log(ū− v)).

There are three cases depending on the value of C̄.

Case 1: H > L ≥ C̄.

Substitute φ(v) = f(log(v − u)) in inequality (9) to obtain:

f
[
log
(
d1H + (1− d1) C̄ − u

)]
+ f

[
log
(
d2L+ (1− d2) C̄ − u

)]
≥

f
[
log
(
d1L+ (1− d1) C̄ − u

)]
+ f

[
log
(
d2H + (1− d2) C̄ − u

)] .

Since the sum of logarithms is equal to the logarithm of the product, algebraic ma-

nipulations show that sum of terms being evaluated on the LHS is greater than those

on the RHS:

log
(
d1H + (1− d1) C̄ − u

)
+ log

(
d2L+ (1− d2) C̄ − u

)
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≥ log
(
d1L+ (1− d1) C̄ − u

)
+ log

(
d2H + (1− d2) C̄ − u

)
⇐⇒ (d1 − d2) (H − L) C̄ ≥ 0.

Moreover, the terms on the LHS also have a higher spread than the ones on the RHS:

d1H + (1− d1) C̄ − u > d1L+ (1− d1) C̄ − u ⇐⇒ H > L

d1H + (1− d1) C̄ − u > d2H + (1− d2) C̄ − u ⇐⇒ H > C̄

d2H + (1− d2) C̄ − u > d2L+ (1− d2) C̄ − u ⇐⇒ H > L

d1L+ (1− d1) C̄ − u ≥ d2L+ (1− d2) C̄ − u ⇐⇒ L ≥ C̄

Since φ(v) = f(log(v)) where f is convex, it follows from Jensen’s inequality that (9)

holds.

Case 2: C̄ ≥ H > L.

Using φ(v) = g(− log(ū− v)), inequality (9) becomes:

g
[
− log

(
ū−

(
d1H + (1− d1) C̄

))]
+ g

[
− log

(
ū−

(
d2L+ (1− d2) C̄

))]
≥ g

[
− log

(
ū−

(
d1L+ (1− d1) C̄

))]
+ g

[
− log

(
ū−

(
d2H + (1− d2) C̄

))]
.

As in case 1, using the fact that the sum of logarithms equals the logarithm of the

product and algebraic manipulations, we find that the sum of terms on the LHS is

higher than the sum of terms on the RHS:[
− log

(
ū−

(
d1H + (1− d1) C̄

))]
+
[
− log

(
ū−

(
d2L+ (1− d2) C̄

))]
≥
[
− log

(
ū−

(
d1L+ (1− d1) C̄

))]
+
[
− log

(
ū−

(
d2H + (1− d2) C̄

))]
.

Moreover, the terms on the RHS have a higher spread since:

− log
(
ū−

(
d2H + (1− d2) C̄

))
> − log

(
ū−

(
d1H + (1− d1) C̄

))
⇐⇒ H < C̄

− log
(
ū−

(
d2H + (1− d2) C̄

))
> − log

(
ū−

(
d2L+ (1− d1) C̄

))
⇐⇒ L < H

− log
(
ū−

(
d1L+ (1− d1) C̄

))
< − log

(
ū−

(
d2L+ (1− d2) C̄

))
⇐⇒ L < C̄

− log
(
ū−

(
d1L+ (1− d1) C̄

))
< − log

(
ū−

(
d1H + (1− d1) C̄

))
⇐⇒ L < H

Since φ(v) = g(− log(ū− v)), where g is concave, Jensen’s inequality implies that (9)

holds.
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Case 3: H ≥ C̄ ≥ L.

Note that H ≥ C̄ implies

d1H + (1− d1) C̄ ≥ d2H + (1− d2) C̄,

whereas C̄ ≥ L implies

d2L+ (1− d2) C̄ ≥ d1L+ (1− d1) C̄.

Since φ is increasing, it follows that (9) holds.

Proof of part (ii).

(a). Suppose there exist H,L ∈ [u, ū] and d1, d2 ∈ D with H > L and d1 > d2,

such that φ(z) is strictly more concave than log(z − u) on the interval [v1, v2] ≡
[d2L+(1−d2)u, d1H+(1−d1)u]. Then, there exists a strictly increasing and strictly

concave function f : [v1, v2]→ R such that

φ(z) = f(log(z − u))

for all z ∈ [v1, v2]. By the properties of the log,

log (d1H + (1− d1)u− u) + log (d2L+ (1− d2)u− u) =

log (d1(H − u)) + log (d2(L− u)) =

log (d2(H − u)) + log (d1(L− u)) =

log (d2H + (1− d2)u− u) + log (d1L+ (1− d1)u− u) .

By the strict concavity of f and the fact that d1 > d2 and H > L, it follows that:

f (log(d1(H − u)) + f (log (d2(L− u)) < f (log (d2(H − u)) + f (log (d1(L− u)) ,

establishing that Stochastic Impatience fails.

(b). Suppose there exist H,L ∈ [u, ū] and d1, d2 ∈ D with H > L and d1 > d2,

such that φ(z) is strictly more convex that − log(ū − z) on the interval [v3, v4] ≡
[d1L+(1−d1)ū, d2H+(1−d2)ū]. Then, there exists a strictly increasing and strictly

convex function f : [v3, v4]→ R such that

φ(z) = g(− log(ū− z))
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for all z ∈ [v3, v4]. Again, by the properties of the log,

− log [ū− (d1H + (1− d1) ū)]− log [ū− (d2L+ (1− d2) ū)]

= − log [ū− (d1L+ (1− d1) ū)]− log [ū− (d2H + (1− d2) ū)] .

Note that, for any A ∈ [u, ū], we have

− log [ū− (d2A+ (1− d2) ū)] > − log [ū− (d1A+ (1− d1) ū)]

⇐⇒ − log

(
d2(ū− A)

d1(ū− A)

)
> 0 ⇐⇒ d2 < d1,

which is true by assumption. It follows that, for d ∈ {d1, d2} and A ∈ {H,L}, the

expression

− log [u(x̄)− (dA+ (1− d)u(x̄))]

takes its highest value when d = d2 and A = H and its lowest value when d = d1 and

A = L. Then, by the strict convexity of g, we have

g (− log [ū− (d1H + (1− d1) ū)]) + g (− log [ū− (d2L+ (1− d2) ū)])

< g (− log [ū− (d1L+ (1− d1) ū)]) + g (− log [ū− (d2H + (1− d2) ū)]) ,

showing that Stochastic Impatience fails. �

C.6 Proof of Proposition 4

The proof will be presented in three lemmas.

Lemma 2. Preferences are Residual Risk Averse (Seeking) if for all v1, v2 ∈ [u(x), u(x)],

φ (γv1 + (1− γ) v2) + φ (γv2 + (1− γ) v1) ≥ (≤)φ (v1) + φ (v2) (10)

where γ ≡ D(1)
D(1)+D(2)

∈ (1
2
, 1).

Proof. Note that by Definition 2 and the KM representation, preferences display

Residual Risk Aversion whenever:

φ

(
D(1)u(a) +D(2)u(d) +

∑
t/∈{1,2}D(t)u(x)∑∞

t=1D(t)

)

= φ

(
[D(1) +D(2)]u(b) +

∑
t/∈{1,2}D(t)u(x)∑∞

t=1D(t)

)

28



and

φ

(
D(1)u(d) +D(2)u(a) +

∑
t/∈{1,2}D(t)u(x)∑∞

t=1D(t)

)

= φ

(
[D(1) +D(2)]u(c) +

∑
t/∈{1,2}D(t)u(x)∑∞

t=1D(t)

)

imply
φ (u(b)) + φ (u(c))

2
≥ φ (u(a)) + φ (u(d))

2
.

Since φ is strictly increasing, the first two equations can be simplified as:

u(b) =
D(1)u(a) +D(2)u(d)

D(1) +D(2)
and u(c) =

D(1)u(d) +D(2)u(a)

D(1) +D(2)
.

Therefore, Residual Risk Aversion holds if and only if, for all a and all d,

φ

(
D(1)u(a) +D(2)u(d)

D(1) +D(2)

)
+φ

(
D(1)u(d) +D(2)u(a)

D(1) +D(2)

)
≥ φ (u(a))+φ (u(d)) . (11)

Letting γ ≡ D(1)
D(1)+D(2)

, v1 ≡ u(a), and v2 ≡ u(d) concludes the proof.

Lemma 3. Let (φ, u,D) be a KM representation of <.

• If φ is discontinuous at any point v 6= u (x), then < is not Residual Risk Averse.

• If φ is discontinuous at any point v 6= u (x), then < is not Residual Risk Seeking.

Proof. Suppose φ is discontinuous at v > u (x). Let {hn} ↘ v be a non-increasing se-

quence that converges to v and {ln} ↗ v be a non-decreasing sequence that converges

to v. Let

φ+ := lim
n→∞

φ(hn) > lim
n→∞

φ(ln) = φ−.

For each n, let uan := hn and udn := ln−γhn
1−γ . Note that

udn < γudn + (1− γ)uan < γuan + (1− γ)udn = ln < v < hn = uan .

Since φ is bounded (by φ(u(x) and φ(u(x)), we can assume that the sequences

{φ (γuan + (1− γ)udn)}, {φ (γudn + (1− γ)uan)}, {φ (uan)}, and {φ (udn)} are con-

vergent (taking a subsequence if necessary). Therefore,

lim
n→∞

φ(udn) = lim
n→∞

φ (γudn + (1− γ)uan) = lim
n→∞

φ (γuan + (1− γ)udn) = φ−,
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and

lim
n→∞

φ(uan) = φ+ > φ−.

Therefore, there exists n̄ such that for all n > n̄,

φ (γuan + (1− γ)udn) + φ (γudn + (1− γ)uan) < φ (uan) + φ (udn) ,

which, by (10), shows that preferences are not Residual Risk Averse.

Next, suppose φ is discontinuous at v < u (x). Let {hm} ↘ v be a non-increasing

sequence that converges to v, let {lm} ↗ v be an increasing sequence that converges

to v. As before, let

φ+ := lim
m→∞

φ(hm) > lim
m→∞

φ(lm) = φ−,

where the limits exist by the Monotone Convergence Theorem.

For each m, take udm := lm and take uam = hm−γlm
1−γ . Note that

uam > γuam + (1− γ)udm > γudm + (1− γ)uam = hm > x > lm = udm .

As before (taking a subsequence if necessary), we have

lim
m→∞

φ (uam) = lim
m→∞

φ (γuam + (1− γ)udm) = lim
m→∞

φ (γudm + (1− γ)uam) = φ+,

and

lim
m→∞

φ (udm) = φ− < φ+.

Thus, there exists m̄ such that for all m > m̄,

φ (γuam + (1− γ)udm) + φ (γudm + (1− γ)uam) > φ (uam) + φ (udm) ,

showing that preferences are not Residual Risk Seeking.

Lemma 4. Let (φ, u,D) be a KM representation of <.

• < is Residual Risk Averse if and only if φ is concave.

• < is Residual Risk Seeking if and only if φ is convex.

Proof. To establish sufficiency, suppose, without loss of generality, that v > w, so

that

v > γv + (1− γ)w > γw + (1− γ)v > w.
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It follows from the definition of concavity (convexity) and inequality (10) that prefer-

ences are Residual Risk Averse (Seeking) if φ is concave (convex). We now establish

necessity. Suppose preferences are Residual Risk Averse. By the Lemma 3, φ must

be continuous at any point v > u(x). We need to show that φ is concave. Suppose

not. Then, there exist v, w ∈ [u(x), u(x)] with v > w and λ ∈ (0, 1) such that

λφ(v) + (1− λ)φ(w) > φ (λv + (1− λ)w) . (12)

Let F : [0, 1]→ R given by

F (λ̃) ≡ φ
(
λ̃v +

(
1− λ̃

)
w
)
−
[
λ̃φ(v) +

(
1− λ̃

)
φ(w)

]
,

and note that F (λ) < 0, while F (1) = F (0) = 0. Since φ can only be discontinuous

at u(x), F (λ̃) is continuous at all λ̃ > 0. It is continuous at λ̃ = 0 if either w > u(x)

or if φ is continuous at u(x).

Let

L ≡
{
λ̃ ∈ [0, λ] : F (λ̃) ≤ 0

}
and H ≡

{
λ̃ ∈ [λ, 1] : F (λ̃) ≥ 0

}
.

Let

l ≡ supL and h ≡ inf H.

Because F (λ̃) is continuous at all λ̃ > 0 and F (λ) < 0, it follows that l < λ < h.

Moreover, it follows from the definitions of the supremum and infimum that

F
(
λ̃
)
< 0 ∀λ̃ ∈ (l, h).

We claim that F (l) = 0. There are two cases to consider. If F is continuous at 0,

then L is a compact and non-empty set (0 ∈ L), which implies that F (l) = 0. Suppose,

instead, that F is discontinuous at 0, which can only happen if w = u(x) and φ is

discontinuous at u(x). Because φ is increasing, the discontinuity must correspond to

an upwards jump: φ(u(x)) < limz↘u(x) φ(z) =: φ(u(x)+). Since

lim
λ̃↘0

F (λ̃) = lim
λ̃↘0

{
φ
(
λ̃v +

(
1− λ̃

)
w
)
−
[
λ̃φ(v) +

(
1− λ̃

)
φ(w)

]}
= φ (u(x)+)− φ(u(x)) > 0,

and F is continuous at any λ̃ > 0, there exists λ̄ > 0 such that F (λ̃) > 0 for all

λ̃ ∈ (0, λ̄). Hence,again by continuity of F for λ̃ > 0, l ≥ λ̄ by the definition of

supremum. Therefore,

l ≡ supL = sup
{
λ̃ ∈ [λ̄, λ] : F (λ̃) ≤ 0

}
.

31



Because
{
λ̃ ∈ [λ̄, λ] : F (λ̃) ≤ 0

}
is compact (F (λ̃) is continuous for all λ̃ > 0) and

non-empty (λ belongs to it), it again follows that F (l) = 0.

Next, we show that F (h) = 0. Because F (λ) < 0 and F (0) = 0, (12) implies that

λ > 0. Therefore, F (λ̃) is continuous at [α, 1], implying that H is a compact set.

Because it is also non-empty (1 ∈ H), we must have F (h) = 0.

Substituting the definition of F , we have shown:

lφ(v) + (1− l)φ(w) = φ (lv + (1− l)w) , (13)

hφ(v) + (1− h)φ(w) = φ (hv + (1− h)w) , (14)

and

λ̃φ(v) +
(

1− λ̃
)
φ(w) > φ

(
λ̃v +

(
1− λ̃

)
w
)

(15)

for all λ̃ ∈ (l, h).

Let w′ ≡ lv + (1 − l)w and v′ ≡ hv + (1 − h)w, so that w < w′ < v′ < v. Note

that, for all λ ∈ (0, 1), we have

λw′ + (1− λ) v′ = λ [lv + (1− l)w] + (1− λ) [hv + (1− h)w]

= [λl + (1− λ)h] v + {1− [λl + (1− λ)h]}w
. (16)

Since λl + (1− λ)h ∈ (l, h), we have

φ (λw′ + (1− λ) v′) = φ ([λl + (1− λ)h] v + {1− [λl + (1− λ)h]}w)

< [λl + (1− λ)h]φ(v) + {1− [λl + (1− λ)h]}φ (w)

= λ [lφ(v) + (1− l)φ(w)] + (1− λ) [hφ(v) + (1− h)φ(w)]

= λφ (lv + (1− l)w) + (1− λ)φ (hv + (1− h)w)

= λφ (w′) + (1− λ)φ (v′)

for all λ ∈ (0, 1), where the first line uses (16), the second line uses equation (15), the

third line follows from algebraic manipulations, the fourth line uses (13) and (14),

and the last line substitutes the definitions of v′ and w′. Since this inequality holds

for all λ ∈ (0, 1), in particular, it must hold for γ and 1− γ:

φ (γw′ + (1− γ) v′) < γφ (w′) + (1− γ)φ (v′)

and

φ (γv′ + (1− γ)w′) < γφ (v′) + (1− γ)φ (w′) .

Combining these two inequalities, gives

φ (γw′ + (1− γ) v′) + φ (γv′ + (1− γ)w′) < φ (w′) + φ (v′) ,
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showing that Residual Risk Aversion fails. The proof for Residual Risk Seeking is

analogous.

This concludes the proof of Proposition 4. �

C.7 Proof of Proposition 5

Recall from Proposition 3 that Stochastic impatience holds if

φ
(
d1H + (1− d1) C̄

)
+ φ

(
d2L+ (1− d2) C̄

)
≥

φ
(
d1L+ (1− d1) C̄

)
+ φ

(
d2H + (1− d2) C̄

) (17)

for all H,L, C̄ ∈ U ≡ u(C) with H > L, and all d1, d2 ∈ D with d1 > d2.

Proof of part (i). Let (φi, ui, Di) and (φ, u,D) be the KM representations of <i,

for i = 1, 2, and <. Since all relations agree on the ranking of degenerate lotteries,

we have that ui = u and Di = D. We need to show that (17) holds. There are three

cases: (1) H > L > C̄, (2) C̄ > H > L, and (3) H > C̄ > L.

Suppose first that H > L > C̄. Since < has less residual risk aversion than <1, it

must be the case that φ = g ◦ φ1 for an increasing and convex function g. Since <1

satisfies Stochastic Impatience, we have

φ1

(
d1H + (1− d1) C̄

)
+ φ1

(
d2L+ (1− d2) C̄

)
≥

φ1

(
d1L+ (1− d1) C̄

)
+ φ1

(
d2H + (1− d2) C̄

) (18)

for all d1, d2 ∈ D with d1 > d2.

We need to show that

g(φ1

(
d1H + (1− d1) C̄

)
) + g(φ1

(
d2L+ (1− d2) C̄

)
) ≥

g(φ1

(
d1L+ (1− d1) C̄

)
) + g(φ1

(
d2H + (1− d2) C̄

)
).

As in the proof of Proposition 3, it can be checked that the terms on the LHS of the

expression have a higher mean (by equation (18)) and a higher spread than the terms

on the RHS (since H > L > C̄ and d1 > d2). Then, the result follows by Jensen’s

inequality (since g is convex).

Next, suppose that C̄ > H > L. Since < has more residual risk aversion than <2,

it must be the case that φ = g ◦ φ2 for an increasing and concave function g. Since

<2 satisfies Stochastic Impatience, we have

φ2

(
d1H + (1− d1) C̄

)
+ φ2

(
d2L+ (1− d2) C̄

)
≥

φ2

(
d1L+ (1− d1) C̄

)
+ φ2

(
d2H + (1− d2) C̄

) (19)
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for all d1, d2 ∈ D with d1 > d2.

We need to show that

g(φ2

(
d1H + (1− d1) C̄

)
) + g(φ2

(
d2L+ (1− d2) C̄

)
) ≥

g(φ2

(
d1L+ (1− d1) C̄

)
) + g(φ2

(
d2H + (1− d2) C̄

)
).

As in the proof of Proposition 3, the terms on the LHS of the expression have a

higher mean (by equation (19)) and a lower spread than the terms on the RHS (since

C̄ > H > L and d1 > d2). The result then follow by Jensen’s inequality (since g is

concave).

Finally, note that when H > C̄ > L, we have

d1H + (1− d1) C̄ ≥ d2H + (1− d2) C̄ ⇐⇒ H ≥ C̄

and

d2L+ (1− d2) C̄ ≥ d1L+ (1− d1) C̄ ⇐⇒ C̄ ≥ L.

Therefore, for any increasing φ, equation (17) holds.

Proof of part (ii). Let (φ1, u1, D1) and (φ, u,D) be the KM representations of <1

and <. Since both relations agree on degenerate lotteries, we have that u1 = u and

D1 = D. We need to show that (17) fails.

Suppose first that < has more residual risk aversion than <1, so that φ = g◦φ1 for

an increasing and concave function g. Since<1 does not satisfy Stochastic Impatience,

we have
φ1

(
d1H + (1− d1) C̄

)
+ φ1

(
d2L+ (1− d2) C̄

)
<

φ1

(
d1L+ (1− d1) C̄

)
+ φ1

(
d2H + (1− d2) C̄

) (20)

for some H > L and some d1, d2 ∈ D with d1 > d2. Take C̄ < L. By Jensen’s

inequality, it follows that

g(φ1

(
d1H + (1− d1) C̄

)
) + g(φ1

(
d2L+ (1− d2) C̄

)
) <

g(φ1

(
d1L+ (1− d1) C̄

)
) + g(φ1

(
d2H + (1− d2) C̄

)
),

where we used the fact that the terms on the LHS of the expression have a lower mean

(by equation (20)), a higher spread than the terms on the RHS (since H > L > C̄

and d1 > d2), and g is concave. The proof of (φ2, u1, D1) is analogous.

Proof of part (iii). For (iii.a), let φ3 = g · φ. If g(v) is more concave than

φ−1(log(v− u((x))) on U , then by Proposition 3 (part ii) it violates Stochastic Impa-

tience. The result for (iii.b) is analogous.

This concludes the proof of Proposition 5. �
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C.8 Proof of Observations 3, 4, and 5

Observation 3 is due to Proposition 4 and the fact that KM coincides with EDU if and

only if φ is affine. Observation 4 follows from Proposition 4 and the KM representation

of EZ given in Example 3. Observation 5 follows directly from Proposition 4. �

C.9 Proof of Proposition 6

Let D′ ≡
{∫ t+τ

t̃=t
D(t̃)dt̃∫∞

t̃=0D(t̃)dt̃
: t, τ ∈ R+

}
and note that, by definition, Stochastic impatience’

holds if
φ
(
d1H + (1− d1) C̄

)
+ φ

(
d2L+ (1− d2) C̄

)
≥

φ
(
d1L+ (1− d1) C̄

)
+ φ

(
d2H + (1− d2) C̄

) (21)

for all H,L, C̄ ∈ [0, 1] with H > L, and all d1, d2 ∈ D′ with d1 > d2. Similarly, let

D′′ ≡
{ ∫∞

t̃=tD(t̃)dt̃∫∞
t̃=0D(t̃)dt̃

: t ∈ R+

}
and note that Stochastic impatience” holds if

φ
(
d1H + (1− d1) C̄

)
+ φ

(
d2L+ (1− d2) C̄

)
≥

φ
(
d1L+ (1− d1) C̄

)
+ φ

(
d2H + (1− d2) C̄

) (22)

for all H,L, C̄ ∈ [0, 1] with H > L, and all d1, d2 ∈ D′′ with d1 > d2.

Observe that D′ = (0, 1) = D′′. This implies that Stochastic Impatience’ and

Stochastic Impatience” are equivalent, proving (i) ⇔ (ii).

Following the exact same steps as in the proof of part (i) of Proposition 3 but

replacing D with D′, we find that Stochastic Impatience’ holds if φ is more convex

than φ and more concave than φ̄.

To establish that the converse is also true, note that, unlike in Proposition 3, D′

is now an open interval. Therefore, whenever there is a point v in which φ is either

strictly more concave than φ or strictly more convex than φ̄, we can find d1, d2 ∈ (0, 1)

and H,L ∈ U ≡ u(C) such that φ is either strictly more concave than φ on the interval

[d2L+(1−d2)u(x), d1H+(1− d1)u(x)] or strictly more convex than φ̄ on the interval

[d1L+ (1− d1)ū, d2H + (1− d2)ū]. The result then follows from part (ii) of the proof

of Proposition 3. �

C.10 Proof of Proposition 7

Let x ∈ (x, x̄) be such that φ′(u(x)) > 0 (which exists because φ is differentiable and

strictly increasing). Without loss of generality, let u(x) = 0. Pick an arbitrary δ > 0
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and an arbitrary t′ > 0 and let x′ be the value such that

u (x′) = u (x) ·
∫ t′+δ
t′

D(s)ds∫ δ
0
D(s)ds

. (23)

Note that x′ ∈ (x, x) exists by the continuity of u(·) and the fact that D(·) is decreas-

ing.

Lemma 5. Stochastic Impatience’ fails if π(1
2
) < 1

2
.

Proof. We claim that if t′ is close enough to zero, then

1

2
(x, 0;x, δ) +

1

2
(x′, t′;x, δ) ≺ 1

2
(x, t′;x, δ) +

1

2
(x′, 0;x, δ),

violating Stochastic Impatience’ (with c = x and t = 0). Writing in terms of the

representation, this means that for t′ close enough to 0,

π

(
1

2

)
φ

(
u(x)

∫ δ
0
D(s)ds∫ +∞

0
D(s)ds

)
+

[
1− π

(
1

2

)]
φ

(
u(x′)

∫ t′+δ
t′

D(s)ds∫ +∞
0

D(s)ds

)

< φ

(
u (x) ·

∫ t′+δ
t′

D(s)ds∫ +∞
0

D(s)ds

)
,

where we use (23) for the RHS (note that with the normalization of u(x), we have that

(x, t′;x, δ) ∼ (x′, 0;x, δ)). Substitute (23) on the LHS of this inequality to rewrite it

as:

π

(
1

2

)
φ

(
u(x)

∫ δ
0
D(s)ds∫ +∞

0
D(s)ds

)
+

[
1− π

(
1

2

)]
φ

u (x) ·

[∫ t′+δ
t′

D(s)ds
]2

∫ δ
0
D(s)ds ·

∫ +∞
0

D(s)ds


< φ

(
u (x) ·

∫ t′+δ
t′

D(s)ds∫ +∞
0

D(s)ds

)
. (24)

First, note that both sides of (24) equal φ
(
u (x)

∫ δ
0 D(s)ds∫+∞

0 D(s)ds

)
when t′ = 0. We now

show that the LHS falls faster than RHS when we increase t′ slightly, so that (24)

holds for t′ ≈ 0.

Use Liebniz’s rule to write the derivative of the expression on the LHS of (24)

with respect to t′ evaluated at 0 equals

−
[
1− π

(
1

2

)]
φ′

(
u (x) ·

∫ δ
0
D(s)ds∫ +∞

0
D(s)ds

)
2u (x)∫ +∞

0
D(s)ds

[D(0)−D(δ)] ,
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and the derivative of the expression on the RHS of (24) with respect to t′ evaluated

at 0 equals

−φ′
(
u (x) ·

∫ δ
0
D(s)ds∫ +∞

0
D(s)ds

)
u (x)∫ +∞

0
D(s)ds

[D(0)−D(δ)] .

Thus, (24) holds for t′ > 0 small enough if

−
[
1− π

(
1

2

)]
φ′

(
u (x) ·

∫ δ
0
D(s)ds∫ +∞

0
D(s)ds

)
2u (x)∫ +∞

0
D(s)ds

[D(0)−D(δ)]

< −φ′
(
u (x) ·

∫ δ
0
D(s)ds∫ +∞

0
D(s)ds

)
u (x)∫ +∞

0
D(s)ds

[D(0)−D(δ)] ,

which can be simplified to π
(
1
2

)
< 1

2
. Therefore, Stochastic Impatience’ fails whenever

π
(
1
2

)
< 1

2
.

Lemma 6. Stochastic Impatience’ fails if π(1
2
) > 1

2
.

Proof. The value of the lottery 1
2
(x, 0; x̄, δ) + 1

2
(x′, t′; x̄, δ) is

π

(
1

2

)
φ

(
u(x)

∫ δ
0
D(s)ds∫ +∞

0
D(s)ds

+ u(x̄)

∫ +∞
δ

D(s)ds∫ +∞
0

D(s)ds

)

+

[
1− π

(
1

2

)]
φ

(
u(x′)

∫ t′+δ
t′

D(s)ds∫ +∞
0

D(s)ds
+ u(x̄)

∫
s/∈[t′,t′+δ]D(s)ds∫ +∞

0
D(s)ds

)
,

which, using (23), can be written as:

π

(
1

2

)
φ

(
u(x)

∫ δ
0
D(s)ds∫ +∞

0
D(s)ds

+ u(x̄)

∫ +∞
δ

D(s)ds∫ +∞
0

D(s)ds

)
+

[
1− π

(
1

2

)]
φ

u(x) ·

[∫ t′+δ
t′

D(s)ds
]2

∫ δ
0
D(s)ds ·

∫ +∞
0

D(s)ds
+ u(x̄)

∫
s/∈[t′,t′+δ]D(s)ds∫ +∞

0
D(s)ds

 . (25)

The value of the lottery 1
2
(x, t′; x̄, δ) + 1

2
(x′, 0; x̄, δ) is

π

(
1

2

)
φ

(
u(x′)

∫ δ
0
D(s)ds∫ +∞

0
D(s)ds

+ u(x̄)

∫ +∞
δ

D(s)ds∫ +∞
0

D(s)ds

)
+

[
1− π

(
1

2

)]
φ

(
u(x)

∫ t′+δ
t′

D(s)ds∫ +∞
0

D(s)ds
+ u(x̄)

∫
s/∈[t′,t′+δ]D(s)ds∫ +∞

0
D(s)ds

)
,

37



which, again using (23), becomes

π

(
1

2

)
φ

(
u(x)

∫ t′+δ
t′

D(s)ds∫ +∞
0

D(s)ds
+ u(x̄)

∫ +∞
δ

D(s)ds∫ +∞
0

D(s)ds

)
+

[
1− π

(
1

2

)]
φ

(
u(x)

∫ t′+δ
t′

D(s)ds∫ +∞
0

D(s)ds
+ u(x̄)

∫
s/∈[t′,t′+δ]D(s)ds∫ +∞

0
D(s)ds

)
. (26)

At t′ = 0, both expressions equal φ
(
u(x)

∫ δ
0 D(s)ds∫+∞

0 D(s)ds
+ u(x̄)

∫∞
δ D(s)ds∫+∞
0 D(s)ds

)
. As in the proof

of Lemma 5, it can be verified that if π
(
1
2

)
> 1

2
then (25) increases slower than (26)

when we increase t′ slightly. Therefore, for sufficiently small t′ > 0,

1

2
(x, 0; x̄, δ) +

1

2
(x′, t′; x̄, δ) ≺ 1

2
(x, t′; x̄, δ) +

1

2
(x′, 0; x̄, δ),

violating Stochastic Impatience’ (with c = x̄ and t = 0).

This concludes the proof of Proposition 7. �
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Online Appendix

Detailed Calculations in Examples 3 and 5

As in the proof of Proposition 1, let ρ ≡ 1
ψ

. Recall that, in EZ, lotteries are evaluated

according to the recursion

Vt =
{

(1− β)C1−ρ
t + β

[
Et
(
V 1−α
t+1

)] 1−ρ
1−α
} 1

1−ρ
.

It can be verified that the EZ value of the stream (x2, x3, x4, ...) is:

V2 =

{
(1− β) ·

[
x1−ρ2 +

∞∑
t=3

βt−2x1−ρt

]} 1
1−ρ

.

In our domain, all uncertainty is resolved in period 1 and all streams have the same

period-1 consumption (x1 = c). So, the EZ utility of the lottery with random pay-

ments {x̃t} in periods t ≥ 2 is:

V1 =

(1− β) c1−ρ + β

E1

{(1− β) ·
∞∑
t=2

βt−2x1−ρt

} 1−α
1−ρ


1−ρ
1−α


1
1−ρ

. (27)

It is convenient to split in two cases depending on whether ρ < 1 or ρ > 1.

Case 1: ρ < 1

Since x
1

1−ρ is a strictly increasing function of x for ρ < 1, it follows that preferences

can be represented by

Ṽ1 = (1− β) c1−ρ + β

E1

{(1− β) ·
∞∑
t=2

βt−2x1−ρt

} 1−α
1−ρ


1−ρ
1−α

.

Since all lotteries have the same period-1 consumption c and β > 0, they are also

represented by

˜̃V1 =

E1

{(1− β) ·
∞∑
t=2

βt−2x1−ρt

} 1−α
1−ρ


1−ρ
1−α

. (28)

There are two subcases.

1



Case 1a: α, ρ < 1.

If α < 1, so that 1−ρ
1−α > 0, we can raise the expression above by 1−α

1−ρ > 0 (which is a

monotone transformation) to obtain the following equivalent representation for EZ:

V̂1 = E1


[

(1− β) ·
∞∑
t=2

βt−2x1−ρt

] 1−α
1−ρ
 .

Dividing this expression by (1− ρ)
1−α
1−ρ > 0, we obtain

ˆ̂
V1 = E1


[

(1− β) ·
∞∑
t=2

βt−2 · x
1−ρ
t

1− ρ

] 1−α
1−ρ
 ,

which is a KM representation with φ(z) = z
1−α
1−ρ and u(x) = x1−ρ

1−ρ . Note that φ is

indeed increasing and its coefficient of absolute risk aversion of φ is −φ′′(z)
φ′(z)

= 1
z
· α−ρ
1−ρ .

Case 1b: ρ < 1 < α.

Next, suppose α > 1 > ρ. Applying the increasing transformation g(z) ≡ −

(
z
1−α
1−ρ

)
(1−ρ)

1−α
1−ρ

to (28), we find that preferences can be represented by:

V̂ = E1

−
[

(1− β) ·
∞∑
t=2

βt−2
x1−ρt

1− ρ

] 1−α
1−ρ
 ,

giving a KM representation with φ(z) = −
(
z

1−α
1−ρ

)
and u(x) = x1−ρ

1−ρ . Note that φ is

increasing (since 1−α
1−ρ < 0) and its coefficient of absolute risk aversion is −φ′′(z)

φ′(z)
=

1
z
· α−ρ
1−ρ .

Case 2: ρ > 1

We now consider the case of ρ > 1. Since f(x) = x
1

1−ρ is a decreasing function when

ρ > 1, it follows from (27) that preferences can be represented by

Ṽ1 = − (1− β) c1−ρ − β

E1

{(1− β) ·
∞∑
t=2

βt−2x1−ρt

} 1−α
1−ρ


1−ρ
1−α

.
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As before, since the first term, − (1− β) c1−ρ, is the same in all lotteries in our domain

(the first-period consumption c is constant) and since β > 0 is a constant, preferences

in this case can be represented by

−

E1

{(1− β) ·
∞∑
t=2

βt−2x1−ρt

} 1−α
1−ρ


1−ρ
1−α

. (29)

There are two subcases: α, ρ > 1 and ρ > 1 > α.

Case 2a: α, ρ > 1

Suppose first α, ρ > 1, so that 1−ρ
1−α > 0. Applying the increasing transformation

f(x) = x
1−α
1−ρ , we find that preferences can also be represented by

−

E1

{(1− β) ·
∞∑
t=2

βt−2x1−ρt

} 1−α
1−ρ
 .

Dividing by the constant (ρ− 1)
1−α
1−ρ > 0, establishes that preferences can be repre-

sented by

E1

−
[
− (1− β) ·

∞∑
t=2

βt−2
x1−ρt

1− ρ

] 1−α
1−ρ
 ,

which is a KM representation with φ(z) = − (−z)
1−α
1−ρ and u(x) = x1−ρ

1−ρ . Note that φ

is increasing (since 1−ρ
1−α > 0) and the coefficient of absolute risk aversion is −φ′′(z)

φ′(z)
=

1
z
· α−ρ
1−ρ .

Case 2b: ρ > 1 > α

Since 1−ρ
1−α < 0, it follows from (29) that preferences can be represented by

E1

{(1− β) ·
∞∑
t=2

βt−2x1−ρt

} 1−α
1−ρ
 .

Dividing this expression by (ρ− 1)
1−α
1−ρ > 0, we obtain

E1


[
− (1− β) ·

∞∑
t=2

βt−2
x1−ρt

1− ρ

] 1−α
1−ρ
 ,

which is a KM representation with φ(z) = (−z)
1−α
1−ρ and u(x) = x1−ρ

1−ρ . Again, the

coefficient of absolute risk aversion is −φ′′(z)
φ′(z)

= 1
z
· α−ρ
1−ρ .
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SI conditions for EZ using the KM representation

From Proposition 3, a sufficient condition for SI is that φ is more convex than φ(z) =

log(z−u) and more concave than φ̄(z) ≡ − log (ū− z). As calculated previously, the

coefficients of relative risk aversion of φ equals −φ′′(z)
φ′(z)

= 1
z
· α−ρ
1−ρ , whereas:

− φ̄
′′(z)

φ̄′(z)
= − 1

ū− z
and −

φ′′(z)

φ′(z)
=

1

z − u
.

Therefore, the sufficient condition for SI from from Proposition 3 is

− 1

ū− z
≤ 1

z
· α− ρ

1− ρ
≤ 1

z − u
(30)

for all z ∈ u(R+), where ū ≡ sup{u(c) : c ∈ R+} and u ≡ inf{u(c) : c ∈ R+}.
Note that when ρ < 1, we have u(R+) = [0,+∞), so that ū = +∞ and u = 0.

Then, condition (30) becomes

0 ≤ α− ρ
1− ρ

≤ 1 ⇐⇒ ρ ≤ α ≤ 1.

When, instead, ρ > 1, we have u(R+) = (−∞, 0], so that ū = 0 and u = −∞. Then,

condition (30) becomes

0 ≤ α− ρ
1− ρ

≤ 1 ⇐⇒ ρ ≥ α ≥ 1.

Noting that since in EZ α 6= 1, these are the same as the necessary and sufficient

conditions from Proposition 1.

Detailed Calculations in Examples 4 and 6

Recall that the Risk Sensitive preferences of Hansen and Sargent (HS) admit the

following recursive representation:

Vt = u(xt)−
β

k
log
[
Et
(
e−kVt+1

)]
.

In our setting, all lotteries have the same consumption in period 0 and all uncertainty

is resolved in period 1. Since consumption is deterministic after the realization of

uncertainty at the start of period 1, we have:

Vt = u(xt) + βVt+1

4



for all t ≥ 1. It can be verified that the following expression solves this equation:

V1 =
∞∑
t=1

βt−1u(xt).

Taking expectations in period 0 (before uncertainty is resolved), we obtain the fol-

lowing expression:

V0 = u(x0)−
β

k
log
[
E0

(
e−k

∑∞
t=1 β

t−1u(xt)
)]
.

Since all lotteries have the same consumption in period 0 in the domain we con-

sider, we can omit the period-0 consumption. Moreover, since β
κ
> 0 is a constant

and the logarithm function is strictly increasing, HS preferences over lotteries in our

domain can be also represented by:

Ṽ0 = E0

(
−e−k

∑∞
t=1 β

t−1u(xt)
)

= E0

(
−e−κ(1−β)

∑∞
t=1 β

t−1u(xt)
)
,

where κ ≡ k
1−β . This coincides with the KM representation for φ(z) ≡ − exp

(
− kz

1−β

)
.

SI conditions for HS using the KM representation

The coefficient of absolute risk aversion of φ equals:

−φ
′′(z)

φ′(z)
=

k

1− β
.

Since −φ′′(z)
φ′(z)

> 0, the sufficient conditions from Proposition 3 hold if and only if φ is

less concave than φ. Recall that the coefficient of absolute risk aversion of φ equals:

−
φ′′(x)

φ′(x)
=

1

x− u
.

Therefore, the sufficient conditions from Proposition 3 hold if and only if:

k

1− β
≤ 1

x− u
∀x ∈ u(X) ⇐⇒ ū− u ≤ 1− β

k
, (31)

where ū ≡ sup{u(x)}x∈C and u ≡ inf{u(x)}x∈C .

Contrast (31) with the necessary and sufficient condition from Proposition 2:

ū− u ≤ − log(β)

β

1

k
. (32)
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We claim that the sufficient condition from Proposition 3 is strictly weaker than the

necessary and sufficient condition from Proposition 2, so there exist preferences that

satisfy SI but do not satisfy the sufficient condition from Proposition 3. To establish

this, we need to show that the bound in (32) is higher than the bound in (31):

− log(β)

β

1

k
>

1− β
k

⇐⇒ β2 − β − log(β) > 0.

We claim that this inequality holds for all β ∈ [0, 1). To see this first note that at

β = 1, the LHS equals 0 so both bounds coincide. Moreover the derivative is negative

for all β ∈ [0, 1):

2β − 1− 1

β
< 0 ⇐⇒ β2 − β

2
− 1

2
< 0,

which is true since the expression on the LHS is an upward facing parabola with roots

−1
2

and +1.

Proof of Proposition 1 (detailed calculations)

Recall that with EZ, lotteries are evaluated according to

Vt = {(1− β)x1−ρt + β[Et(V 1−α
t+1 )]

1−ρ
1−α}

1
1−ρ . (33)

Substitution verifies that the value of a constant stream that pays c is c:

V0 = {(1− β)c1−ρ + βc1−ρ}
1

1−ρ = c.

Next, consider a stream that pays (
1︷︸︸︷
x , x, ...,

t︷︸︸︷
x︸ ︷︷ ︸

t

,

t+1︷︸︸︷
c , c, c, ...). By the previous

expression, the continuation value at t + 1 is c. Using the expression in (33), we

obtain:

Vt = {(1− β)x1−ρ + βc1−ρ}
1

1−ρ .

Substituting this expression for Vt−1, gives:

Vt−1 = {(1− β)x1−ρ + βV 1−ρ
t }

1
1−ρ = {(1− β)(1 + β)x1−ρ + β2c1−ρ}

1
1−ρ .

Substituting recursively s times, gives the following expression:

Vt−s = {(1− β)x1−ρ(1 + β + β2 + ...+ βs) + βs+1c1−ρ}
1

1−ρ .
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In particular, taking s = t− 1, gives value of the stream:

V1 = {(1−β)x1−ρ(1+β+β2+...+βt−1)+βtc1−ρ}
1

1−ρ = {(1−βt)x1−ρ+βtc1−ρ}
1

1−ρ . (34)

Next, consider the stream (
1︷︸︸︷
c , ...,

τ−1︷︸︸︷
c ,

τ︷︸︸︷
x , x, ...,

τ+t−1︷︸︸︷
x︸ ︷︷ ︸

t

, c, c, ...). Note that the

stream starting at τ is the same as the one evaluated in the previous parargaph.

Therefore, by the previous calculations, we have

Vτ = {(1− βt)x1−ρ + βtc1−ρ}
1

1−ρ .

Using the expression in (33), we obtain the value in period τ − 1:

Vτ−1 = [(1− β)c1−ρ + βV 1−ρ
τ ]

1
1−ρ = [c1−ρ + β(1− βt)(x1−ρ − c1−ρ)]

1
1−ρ .

Substituting recursively s times, gives

Vτ−s = {c1−ρ + βs(1− βt)(x1−ρ − c1−ρ)}
1

1−ρ .

Taking s = τ − 1 gives

V1 = {c1−ρ + βτ−1(1− βt)(x1−ρ − c1−ρ)}
1

1−ρ . (35)

Let c0 be an arbitrary but fixed consumption in period 0. We are interested in

the lottery that pays either

(
0︷︸︸︷
c0 ,

1︷︸︸︷
x , x, ...,

t︷︸︸︷
x︸ ︷︷ ︸

t

,

t+1︷︸︸︷
c , c, c, ...)

or

(
0︷︸︸︷
c0 ,

1︷︸︸︷
c , ...,

τ−1︷︸︸︷
c ,

τ︷︸︸︷
y , y, ...,

τ+t−1︷︸︸︷
y︸ ︷︷ ︸

t

, c, c, ...)

with 50-50 chance each. From the recursion in (33), the value of this lottery is:

V0 =
{

(1− β)c1−ρ0 + β[E0(V
1−α
1 )]

1−ρ
1−α

} 1
1−ρ

.

Using expressions in (34) and (35), we obtain

E0(V
1−α
1 ) =

{(1− βt)x1−ρ + βtc1−ρ}
1−α
1−ρ + {c1−ρ + βτ−1(1− βt) (x1−ρ − c1−ρ)}

1−α
1−ρ

2
.
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Substituting in the expression for V0, gives

V0 =


(1− β)c1−ρ0 + β


{(1− βt)x1−ρ + βtc1−ρ}

1−α
1−ρ

+ {c1−ρ + βτ−1(1− βt) (y1−ρ − c1−ρ)}
1−α
1−ρ

2



1−ρ
1−α


1
1−ρ

.

Using this formula, we can write the condition for Stochastic Impatience in EZ

as: 
(1− β)c1−ρ0 + β


{(1− βt)x1−ρ + βtc1−ρ}

1−α
1−ρ

+ {c1−ρ + βτ−1(1− βt) (y1−ρ − c1−ρ)}
1−α
1−ρ

2



1−ρ
1−α


1
1−ρ

≥
(1− β)c1−ρ0 + β


{(1− βt)y1−ρ + βtc1−ρ}

1−α
1−ρ

+ {c1−ρ + βτ−1(1− βt) (x1−ρ − c1−ρ)}
1−α
1−ρ

2



1−ρ
1−α


1
1−ρ

for all t ∈ N all τ ∈ {2, 3, ...} and all x, y, c ∈ R+ with x > y. Letting τ̃ ≡ τ − 1, we

can rewrite this condition as:
(1− β)c1−ρ0 + β


{(1− βt)x1−ρ + βtc1−ρ}

1−α
1−ρ

+
{
c1−ρ + β τ̃ (1− βt) (y1−ρ − c1−ρ)

} 1−α
1−ρ

2



1−ρ
1−α


1
1−ρ

≥
(1− β)c1−ρ0 + β


{(1− βt)y1−ρ + βtc1−ρ}

1−α
1−ρ

+
{
c1−ρ + β τ̃ (1− βt) (x1−ρ − c1−ρ)

} 1−α
1−ρ

2



1−ρ
1−α


1
1−ρ
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for all t, τ̃ ∈ N and all x, y, c ∈ R+ with x > y.

First, suppose ρ < 1. The condition becomes[
{(1− βt)x1−ρ + βtc1−ρ}

1−α
1−ρ +

{
c1−ρ + β τ̃ (1− βt)

(
y1−ρ − c1−ρ

)} 1−α
1−ρ
] 1−ρ

1−α

≥[
{(1− βt)y1−ρ + βtc1−ρ}

1−α
1−ρ +

{
c1−ρ + β τ̃ (1− βt)

(
x1−ρ − c1−ρ

)} 1−α
1−ρ
] 1−ρ

1−α
.

Next, suppose ρ > 1. The condition becomes[
{(1− βt)x1−ρ + βtc1−ρ}

1−α
1−ρ +

{
c1−ρ + β τ̃ (1− βt)

(
y1−ρ − c1−ρ

)} 1−α
1−ρ
] 1−ρ

1−α

≤[
{(1− βt)y1−ρ + βtc1−ρ}

1−α
1−ρ +

{
c1−ρ + β τ̃ (1− βt)

(
x1−ρ − c1−ρ

)} 1−α
1−ρ
] 1−ρ

1−α
.

Note that c0 does not enter this expressions, so the period-0 consumption does not

affect the conditions for Stochastic Impatience.

It is straightforward to see that (by homotheticity) we can take c = 1 without loss

of generality (express x ≡ λxc and y ≡ λyc for λx, λy ∈ (0,+∞), then note that c1−ρ

cancels out in all expressions). So the conditions become[
{(1− βt)x1−ρ + βt}

1−α
1−ρ +

{
1 + β τ̃ (1− βt)

(
y1−ρ − 1

)} 1−α
1−ρ
] 1−ρ

1−α

≥[
{(1− βt)y1−ρ + βt}

1−α
1−ρ +

{
1 + β τ̃ (1− βt)

(
x1−ρ − 1

)} 1−α
1−ρ
] 1−ρ

1−α

if ρ < 1, and[
{(1− βt)x1−ρ + βt}

1−α
1−ρ +

{
1 + β τ̃ (1− βt)

(
y1−ρ − 1

)} 1−α
1−ρ
] 1−ρ

1−α

≤[
{(1− βt)y1−ρ + βt}

1−α
1−ρ +

{
1 + β τ̃ (1− βt)

(
x1−ρ − 1

)} 1−α
1−ρ
] 1−ρ

1−α

if ρ > 1.

There are 4 cases.
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Case 1: α, ρ < 1.

Here, the condition becomes

{(1− βt)x1−ρ + βt}
1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
x1−ρ − 1

)} 1−α
1−ρ

≥

{(1− βt)y1−ρ + βt}
1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
y1−ρ − 1

)} 1−α
1−ρ

for all x > y and all t, τ̃ . This holds iff

d

dz

{
{(1− βt)z1−ρ + βt}

1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
z1−ρ − 1

)} 1−α
1−ρ
}
≥ 0

for all z ∈ R+.

Case 2: α, ρ > 1.

{(1− βt)x1−ρ + βt}
1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
x1−ρ − 1

)} 1−α
1−ρ

≤

{(1− βt)y1−ρ + βt}
1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
y1−ρ − 1

)} 1−α
1−ρ

for all x > y and all t, τ̃ . This holds iff

d

dz

{
{(1− βt)x1−ρ + βt}

1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
x1−ρ − 1

)} 1−α
1−ρ
}
≤ 0

for all z ∈ R+.

Case 3: α > 1 > ρ.

{(1− βt)x1−ρ + βt}
1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
x1−ρ − 1

)} 1−α
1−ρ

≤

{(1− βt)y1−ρ + βt}
1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
y1−ρ − 1

)} 1−α
1−ρ

for all x > y and all t, τ̃ . This holds iff

d

dz

{
{(1− βt)z1−ρ + βt}

1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
z1−ρ − 1

)} 1−α
1−ρ
}
≤ 0

for all z ∈ R+.
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Case 4: α < 1 < ρ.

{(1− βt)x1−ρ + βt}
1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
x1−ρ − 1

)} 1−α
1−ρ

≥

{(1− βt)y1−ρ + βt}
1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
y1−ρ − 1

)} 1−α
1−ρ

for all x > y and all t, τ̃ . This holds iff

d

dz

{
{(1− βt)z1−ρ + βt}

1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
z1−ρ − 1

)} 1−α
1−ρ
}
≥ 0

for all z ∈ R+.

To combine all cases, let

Φ(z) ≡
{

(1− βt)z1−ρ + βt
} 1−α

1−ρ −
{

1 + β τ̃ (1− βt)
(
z1−ρ − 1

)} 1−α
1−ρ .

We have shown that Stochastic Impatience requires Φ′(z) ≥ 0 if either α, ρ < 1 or

α < 1 < ρ, and Φ′(z) ≤ 0 if either α, ρ > 1 or α > 1 > ρ. That is, Stochastic

Impatience holds if and only if:

• Φ′(z) ≥ 0 for all z if α < 1

• Φ′(z) ≤ 0 for all z if α > 1

But note that

Φ′(z) = (1− α) (1− βt)z−ρ
{
{(1− βt)z1−ρ + βt}

ρ−α
1−ρ

−
{

1 + β τ̃ (1− βt) (z1−ρ − 1)
} ρ−α

1−ρ β τ̃

}
.

Moreover, (1 − βt)z−ρ > 0 for all z ∈ R+. Combining the two cases for α, we find

that Stochastic Impatience holds if and only if:{
(1− βt)z1−ρ + βt

} ρ−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
z1−ρ − 1

)} ρ−α
1−ρ β τ̃ ≥ 0.

We have therefore shown the following lemma:

Lemma 7. Stochastic Impatience holds if and only if{
(1− βt)z1−ρ + βt

} ρ−α
1−ρ ≥ β τ̃

{
1 + β τ̃ (1− βt)

(
z1−ρ − 1

)} ρ−α
1−ρ

for all t, τ̃ and all z ∈ R+.

Now we need to verify when this condition holds.
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Case 1: α > 1 > ρ.

Taking t→∞, Stochastic Impatience becomes

zρ−α ≥
{

1 + β τ̃
(
z1−ρ − 1

)} ρ−α
1−ρ β τ̃

Since ρ− α < 0, the condition becomes

z ≤
{

1 + β τ̃
(
z1−ρ − 1

)} 1
1−ρ β

τ̃
ρ−α

⇐⇒
[
1− β( 1−ρ

ρ−α+1)τ̃
]
≤ β

1−ρ
ρ−α τ̃

1− β τ̃

z1−ρ
.

Note that the RHS converges to zero as z ↗ +∞ and the LHS is bounded away from

zero since

1 > β( 1−ρ
ρ−α+1)τ̃ ⇐⇒ α− 1

α− ρ
> 0.

Therefore, Stochastic Impatience fails in this case.

Case 2: α > ρ > 1.

Here, we can rearrange the Stochastic Impatience condition as:{
(1− βt)z1−ρ + βt

} ρ−α
1−ρ ≥ β τ̃

{
1 + β τ̃ (1− βt)

(
z1−ρ − 1

)} ρ−α
1−ρ

for all t, τ̃ and all z ∈ R+. Take t→∞, so the condition becomes

zρ−α ≥ β τ̃
{

1 + β τ̃
(
z1−ρ − 1

)} ρ−α
1−ρ

⇐⇒ 1− β τ̃
1−ρ
ρ−α+τ ≥ β τ̃

1−ρ
ρ−α
(
1− β τ̃

)
zρ−1.

Taking z ↗ ∞, we find that the RHS converges to +∞, violating Stochastic Impa-

tience.

Case 3: 1 > α ≥ ρ.

Here, we can rearrange the Stochastic Impatience condition as:

(1− βt)z1−ρ + βt ≤ β τ̃
1−ρ
ρ−α
{

1 + β τ̃ (1− βt)
(
z1−ρ − 1

)}
for all t, τ̃ and all z ∈ R+. Rearrange this condition as:

[
1− β τ̃(

1−ρ
ρ−α+1)

]
z1−ρ ≤ β τ̃

1−ρ
ρ−α − βt

1− βt
− β τ̃(

1−ρ
ρ−α+1)
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Note that

1− β τ̃(
1−ρ
ρ−α+1) < 0 ⇐⇒ 1− α

ρ− α
< 0,

which is true.

Note that β
τ̃
1−ρ
ρ−α−βt
1−βt is decreasing in t whenever β τ̃

1−ρ
ρ−α > 1, which is true since

1−ρ
ρ−α < 0. Thus, Stochastic Impatience holds if and only if the condition above holds

for t =∞. Take t→ +∞, so it becomes:[
1− β τ̃(

1−ρ
ρ−α+1)

]
z1−ρ ≤ β τ̃

1−ρ
ρ−α − β τ̃(

1−ρ
ρ−α+1).

This is true if and only if

βτ(
1−ρ
ρ−α+1) − βτ

1−ρ
ρ−α ≤ 0 ⇐⇒ β ≤ 1,

verifying that Stochastic Impatience holds.

Case 4: 1 < α ≤ ρ.

Recall the condition for Stochastic Impatience to hold:{
(1− βt)z1−ρ + βt

} ρ−α
1−ρ ≥ β τ̃

{
1 + β τ̃ (1− βt)

(
z1−ρ − 1

)} ρ−α
1−ρ

for all t, τ̃ and all z ∈ R+.

Since ρ−α
1−ρ < 0, we can rewrite this condition as

(1− βt)z1−ρ
(

1− β τ̃
1−ρ
ρ−α+τ̃

)
≤ β τ̃

1−ρ
ρ−α − β τ̃

1−ρ
ρ−α+τ̃ (1− βt)− βt.

Note that the LHS is negative since (1− βt)z1−ρ > 0 and

1− β τ̃
1−ρ
ρ−α+τ̃ < 0 ⇐⇒ 1− α

ρ− α
< 0,

which is true. Note also that the RHS is positive:

β τ̃
1−ρ
ρ−α − β τ̃

1−ρ
ρ−α+τ̃ (1− βt)− βt > 0

⇐⇒ β τ̃
1−ρ
ρ−α
(
1− β τ̃

)
> βt

(
1− β τ̃

1−ρ
ρ−α+τ̃

)
,

but

β τ̃
1−ρ
ρ−α
(
1− β τ̃

)
> 0 > βt

<0 by our previous calculations︷ ︸︸ ︷(
1− β τ̃

1−ρ
ρ−α+τ̃

)
.

This establishes that Stochastic Impatience holds.
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Case 5: α < ρ < 1.

Recall the condition for Stochastic Impatience to hold:{
(1− βt)z1−ρ + βt

} ρ−α
1−ρ ≥ β τ̃

{
1 + β τ̃ (1− βt)

(
z1−ρ − 1

)} ρ−α
1−ρ

for all t, τ̃ and all z ∈ R+. Since ρ−α
1−ρ > 0, we can rewrite this condition as

(1− βt)
(

1− β τ̃
1−ρ
ρ−α+τ̃

)
z1−ρ ≥ β τ̃

1−ρ
ρ−α − β τ̃

1−ρ
ρ−α+τ̃ (1− βt)− βt.

Recall that

1− β τ̃
1−ρ
ρ−α+τ̃ > 0 ⇐⇒ 1− α

ρ− α
> 0,

which is true here. Therefore, the LHS is positive. Because ρ < 1, the condition holds

if and only if it holds as z ↘ 0. Since

lim
z↘0

(1− βt)z1−ρ
(

1− β τ̃
1−ρ
ρ−α+τ̃

)
= 0,

Stochastic Impatience holds if and only if

β τ̃
1−ρ
ρ−α − β τ̃

1−ρ
ρ−α+τ̃ (1− βt)− βt ≤ 0

for all t, τ̃ . Rearrange this inequality as

β τ̃
1−ρ
ρ−α − β τ̃

1−ρ
ρ−α+τ̃ ≤ βt

(
1− β τ̃

1−ρ
ρ−α+τ̃

)
︸ ︷︷ ︸

+

.

Since the RHS is decreasing in t, it holds for all t if and only if it holds as t↗ +∞.

Thus, Stochastic Impatience holds if and only if

β τ̃
1−ρ
ρ−α − β τ̃

1−ρ
ρ−α+τ̃ ≤ 0 ⇐⇒ τ̃

1− ρ
ρ− α

≥ τ̃
1− ρ
ρ− α

+ τ̃ ,

which is false. Therefore, Stochastic Impatience fails.

Case 6: α < 1 < ρ.

Since ρ−α
1−ρ < 0, the condition for Stochastic Impatience to hold becomes

(1− βt)z1−ρ + βt ≤ β τ̃
1−ρ
ρ−α + β τ̃

1−ρ
ρ−α+τ̃ (1− βt)

(
z1−ρ − 1

)
for all t, τ̃ and all z ∈ R+. Rearrange it as

(1− βt)
(

1− β τ̃
1−ρ
ρ−α+τ̃

)
z1−ρ ≤ β τ̃

1−ρ
ρ−α − β τ̃

1−ρ
ρ−α+τ̃ (1− βt)− βt.
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Recall that

1− β τ̃
1−ρ
ρ−α+τ̃ > 0 ⇐⇒ 1− α

ρ− α
> 0,

which is true here. Therefore, the LHS is positive and decreasing in z. It follows that

Stochastic Impatience holds if and only if the condition holds as z ↘ 0. Since

lim
z↘0

(1− βt)
(

1− β τ̃
1−ρ
ρ−α+τ̃

)
z1−ρ = +∞,

Stochastic Impatience fails in this case.

Combining all cases, Stochastic Impatience holds if and only if either 1 > α ≥ ρ

or 1 < α ≤ ρ.

15


