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Comonotonicity (“same variation”) of random variables minimizes

hedging possibilities and has been widely used, e.g., in Gilboa and

Schmeidler’s ambiguity models. This paper investigates anticomono-

tonicity (“opposite variation”; abbreviated “AC”), the natural counter-

part to comonotonicity. It minimizes leveraging rather than hedg-

ing possibilities. Surprisingly, AC restrictions of several traditional

axioms do not give new models. Instead, they strengthen the foun-

dations of existing classical models: (a) linear functionals through

Cauchy’s equation; (b) Anscombe-Aumann expected utility; (c) as-if-

risk-neutral pricing through no-arbitrage; (d) de Finetti’s bookmak-

ing foundation of Bayesianism using subjective probabilities; (e) risk
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aversion in Savage’s subjective expected utility. In each case, our gen-

eralizations show where the critical tests of classical axioms lie: in the

AC cases (maximal hedges). We next present examples where AC re-

strictions do essentially weaken existing axioms, and do provide new

properties and new models.

KEYWORDS. Comonotonicity, bookmaking, hedging, subjective ex-

pected utility, ambiguity aversion.

JEL CLASSIFICATION. D81, C60, C02.

1. INTRODUCTION

Comonotonicity is widely used in mathematics (Hardy, Littlewood, & Pólya, 1934,

Theorem 236) and in many applied fields, including decision theory.1 Puccetti &

Wang (2015) provided a survey. Comonotonicity was the main tool in Gilboa’s

(1987) and Schmeidler’s (1989) famous ambiguity models. Two variables are

comonotonic if they covary in the same direction. Comonotonicity maximizes

leveraging possibilities while minimizing hedging possibilities (Hoeffding, 1940).

Anticomonotonicity (AC) is a natural counterpart to comonotonicity. Two vari-

ablesX and Y are AC if they covary in the opposite direction; i.e., ifX and−Y are

comonotonic. AC minimizes leveraging possibilities while maximizing hedging

possibilities. Aouani, Chateauneuf, & Ventura (2021) introduced AC diversifica-

tion for Choquet integrals. AC turns out to be of interest in its own right, and this

paper studies it in general. We will shed new light on many classical results, and

provide new models.

Schmeidler (1989) used comonotonicity to weaken Anscombe & Aumann

(AA)’s (1963) classical independence preference condition. The latter condition

1For comonotonicity in decision theory, see Grabisch (2016). Further examples include fuzzy set

theory (Grabisch, Murofushi, & Sugeno, 2000), insurance (Dhaene et al., 2002), labor market equi-

libria (Chade, Eeckhout, & Smith, 2017), multiattribute utility theory (Ekeland, Galichon, & Henry,

2012), optimal transport (Galichon, 2016), risk allocations (Rüschendorf, 2013), risk attitudes (Yaari,

1969, p. 328), risk measures (Föllmer & Schied, 2016), time preference (Bastianello & Faro, 2023), and

welfare theory (Ebert, 2004).

https://econtheory.org
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characterized subjective expected utility. Schmeidler, thus, obtained a new pref-

erence model, Choquet expected utility. It could accommodate ambiguity aver-

sion in Ellsberg’s (1961) paradox. This result, together with Gilboa & Schmeidler

(1989), famously opened the field of decision under ambiguity, a big field today

(Gilboa & Marinacci, 2016; Trautmann & van de Kuilen, 2015). Many papers have

since studied the comonotonic weakening of various axioms.

It is natural to study the counterpart to the Gilboa-Schmeidler approach, now

weakening axioms with the AC rather than the comonotonicity restriction, where

leveraging is now minimized while hedging is maximized rather than the other

way around. The research question then is which models result this way. We

first investigated this question for the most famous result in the literature using

comonotonicity: Schmeidler’s (1989) generalization of AA’s subjective expected

utility. The answer (Theorem 4) surprised us: the AC weakening of independence

does not provide any new (generalized) model at all. It still fully axiomatizes sub-

jective expected utility, as did AA’s full-force independence. This result can be

interpreted negatively because it did not produce any new model. However, a

positive interpretation is that it reinforces the classical result of AA: we generalize

their result and, more specifically, show where its critical test is, namely in the AC

cases. To justify or criticize their model normatively, and to verify or falsify their

model empirically, only the AC cases have to be considered, and they decide.

Next, we investigated our research question for some other famous derivations

of linear/affine2 optimization models. We considered de Finetti’s (1931) book-

making. de Finetti used bookmaking to normatively defend the use of subjec-

tive probabilities and his work is considered one of the three cornerstones of

Bayesianism, together with Ramsey (1931) and Savage (1954). We next consid-

ered as-if risk-neutral pricing by a financial market. Such pricing is necessary

and sufficient to avoid arbitrage possibilities. This result is a cornerstone in fi-

nance, called the fundamental theorem of asset pricing (Björk, 2009). Finally, we

2An affine function on (a subset of) a linear space is a linear function with a constant added. A

linear function assigns value 0 to the origin (0). In all our theorems, representing functionals remain

representing if a constant is added, so that the difference between affine and linear never matters.

https://econtheory.org
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considered Cauchy’s functional equation, which is also widely used (Aczél, 2014).

In all these cases, we found that AC restrictions do not lead to new models but

to generalizations and reinforcements of existing axiomatizations. For all these

classical results, we more precisely identify the critical cases to be tested or inves-

tigated, i.e., when hedging is maximal. Because all these results have the same

format, becoming routine from a mathematical perspective, we present formal

statements of some of them in Appendix A. Demonstrating the unity (“routine”)

of these results, as done in our proofs, is an additional contribution of this pa-

per. de Finetti’s bookmaking, AA’s subjective expected utility, and no-arbitrage in

finance are all cornerstone results in their respective fields, developed indepen-

dently. We show that they all amount to the same mathematical result, and were

all obtained by establishing Cauchy’s equation (Theorem 1) for their certainty

equivalents.

We also investigated our research question for AC restrictions of convexity, in-

volving inequalities rather than the equalities of affinity and linearity. Under ex-

pected utility, we obtain an AC generalization of an appealing characterization

of risk aversion (Theorem 7). Here, as before, we do not develop a new model

or phenomenon but consolidate an existing result. We point out some appeal-

ing features of (our generalization of) the result, a result known to specialists but

not as widely known as it deserves to be (§6). We, finally, consider some ambi-

guity models. Here the AC restrictions do bring new phenomena, as first shown

by Aouani, Chateauneuf, & Ventura (2021), whose result we generalize (Proposi-

tion 8). Further, AC restrictions also bring new models here, more general than

those without these restrictions. We provide a first example, the double-cautious

ambiguity model (Proposition 9), leaving further developments to future studies.

2. ANTICOMONOTONIC RESTRICTIONS FOR FUNCTIONALS: ADDITIVITY AND

LINEARITY

This section presents an AC generalization (Theorem 1) of the well-known

Cauchy functional equation for several variables. Later sections will apply this

generalization to decision theory and, more narrowly, to decision making under

https://econtheory.org
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uncertainty, giving generalizations of several classic representation theorems for

linear/affine functionals (Theorem 4 and Propositions 13 and 15). These results

essentially all follow as corollaries of the Theorem in this section.

We fix (Ω,F), in which Ω is a state space and F a sigma-algebra of subsets of Ω

called events. We denote by B(Ω,F) the set of acts, i.e., all bounded measurable

real-valued functions from Ω to R, equipped with the sup-norm. Two acts X and

Y in B(Ω,F) are comonotonic if

for all ω,ω′ ∈Ω :
(
X(ω)−X(ω′)

) (
Y (ω)− Y (ω′)

)
≥ 0. (1)

Two actsX and Y inB(Ω,F) are anticomonotonic (AC) ifX and−Y are comono-

tonic. Other terms used in the literature are antimonotonicity or counter-

monotonicity. Each constant act is both comonotonic and AC with every other

act.

A functional I :B(Ω,F)→R is additive if

for all X,Y : I(X + Y ) = I(X) + I(Y ). (2)

The equation is also known as Cauchy’s equation (Aczél, 1966). Monotonicity

holds for I if I(X) ≥ I(Y ) whenever X(ω) ≥ Y (ω) for all ω ∈ Ω. The functional

I satisfies comonotonic additivity if Eq. 2 holds only for all pairs of comonotonic

actsX,Y , while I satisfies anticomonotonic additivity (AC additivity) if Eq. 2 only

holds for all pairs of AC acts X,Y . Moreover, I is homogeneous if I(αX) = αI(X)

for all α ∈R and all X ∈B(Ω,F). Positive homogeneity imposes the homogeneity

requirement only for α ≥ 0. The functional I is linear if it is additive and homo-

geneous. The above definitions are extended to I ’s defined on subdomains in

the obvious manner, imposing the requirements only when all acts involved are

contained in the subdomain.

THEOREM 1 (Cauchy’s equation for anticomonotonicity). Under (a) continuity,

(b) monotonicity, or (c) finiteness of Ω, AC additivity of a functional I :B(Ω,F)→
R is equivalent to additivity and, furthermore, to linearity in case of (a) or (b).

https://econtheory.org
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All proofs are in Appendix B. A sketch of the proof of Theorem 1 is as follows.

First, AC additivity implies I(0) = I(0 + 0) = 0, and then AC additivity for X and

−X gives I(−X) = −I(X). Second, for comonotonic acts X,Y , AC additivity for

X + Y and −Y gives I(X + Y ) − I(Y ) = I(X) and, thus, comonotonic additiv-

ity. Third, for general X,Y in a finite space, we can write each of X and Y as

a sum of one act increasing in indexes of the state space and another act de-

creasing, yielding four “index-monotonic” acts. Every pair of those four acts is

either comonotonic or AC. By proper groupings in X + Y , the sum of these four

acts, and repeated application of comonotonic and AC additivity, additivity then

readily follows for general X,Y . Linearity for finite state spaces follows under

minimal extra conditions (Aczél, 1966). The extension of linearity to infinite state

spaces first follows for simple acts and then for general acts from standard inte-

gration techniques using monotonicity or continuity. It follows that homogeneity

is readily implied by additivity together with one of the other (weak) conditions

that imply linearity.

In many applications, a functional I is taken as primitive, for instance in pro-

duction theory, price index theory, finance, or the theory of risk measures. Then

the above theorem can be directly applied. The rest of this paper focuses on de-

cision theory, where a preference relation< is taken as primitive.

3. BASIC DEFINITIONS OF DECISION UNDER UNCERTAINTY

Besides (Ω,F) as before, we consider a set C of outcomes, endowed with a binary

relation <. In the preceding section, C = R and < = ≥. A preference interval in C
is a subset of C that, for each pair of outcomes x< z contained, also contains all

outcomes y with x< y < z.

The set of acts, denoted B(Ω,F), contains all maps X from Ω to C that are

bounded, i.e., there exist outcomes x, z such that x<X(ω)< z for all ω, and mea-

surable, i.e., every inverse of a preference interval is an event. Outcomes are iden-

tified with constant acts, so that < is also a binary relation on constant acts. The

preference relation is an extension of< to all acts, also denoted<—no confusion

will arise. In the rest of this paper, < on acts is taken as primitive, and we seek

https://econtheory.org


Submitted to Theoretical Economics Anticomonotonicity for Preference Axioms 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

to characterize phenomena through directly observable properties of <. Weak

ordering holds if completeness (X < Y or Y <X for all acts X,Y ) and transitivity

hold. It will be implied in all our results. The notation �, ∼, 4, and ≺ is as usual.

We call< trivial if X ∼ Y for all acts X,Y .

Throughout, we assume that C is a mixture space, which provides a convenient

generalization of convex sets. Mixture spaces include money intervals in R, con-

vex sets of probability distributions, and convex sets of commodity bundles. For

simplicity, readers unfamiliar with general mixture spaces may take in mind any

such special case and see that all conditions below are then satisfied. We call C
a mixture space if it is endowed with a mixture operation. A mixture operation

generalizes convex combinations in linear spaces. It maps C × [0,1]× C to C and

is denoted αx+ (1− α)y. It is required to satisfy the following conditions:

(i) 1x+ 0y = x (identity);

(ii) αx+ (1− α)y = (1− α)y + αx (commutativity);

(iii) α(βx+ (1− β)y) + (1− α)y = αβx+ (1− αβ)y (distributivity).

A real-valued functional I represents <, or <maximizes I if the preference do-

main is contained in the domain of I and X < Y ⇔ I(X)≥ I(Y ). A function is an

interval scale if it is unique up to multiplication by a positive factor and addition

of a constant. Subjective expected utility or expected utility, or EU for short, holds

if there exist a probability measure P on F and a utility function U : C → R such

that < maximizes expected utility
∫

ΩU(X)dP , where this integral, called the EU

of X , is assumed to be well-defined and finite.3

In most of this paper, utility U : C →R will be affine, i.e., it satisfies:

For all α ∈ [0,1] and x, y ∈ C : U (αx+ (1− α)y) = αU(x) + (1− α)U(y). (3)

Acts are mixed statewise and, thus, the space of acts is also a mixture space. We

will follow the economic tradition of also calling affine functionals on act spaces

linear . Thus, we say that EU is linear in probability and weights events linearly.

3In decision theory, there is much interest in finite additivity. We, therefore, only require finite

additivity of probability measures. A necessary and sufficient condition for countable additivity can

readily be added in all our results (Wakker, 1993, Proposition 4.4).

https://econtheory.org
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Mixture continuity holds for< if the sets

{α ∈ [0,1] : αX + (1− α)Z < Y } and {α ∈ [0,1] : Y < αX + (1− α)Z}

are closed for all acts X,Y,Z . Together with some other conditions, mixture con-

tinuity implies the existence of a certainty equivalent for each act.

We summarize:

ASSUMPTION 2 (Structural Assumption). A state space Ω is given with a sigma-

algebra F and an outcome set C that is a mixture space. The set of acts, B(Ω,F),

contains all bounded measurable maps from Ω to C, and< is a binary relation on

B(Ω,F).

An outcome x is a certainty equivalent (CE) of an act X if x∼X . In general, it

does not always need to exist or be unique. Monotonicity holds for < if X < Y

whenever X(ω) < Y (ω) for all ω ∈ Ω. The following definitions generalize pre-

vious ones. Two acts X,Y are comonotonic if there are no states ω,ω′ such that

X(ω)�X(ω′) and Y (ω)≺ Y (ω′). Acts X,Y are AC if there are no states ω,ω′ such

that X(ω)�X(ω′) and Y (ω)� Y (ω′).

4. THE INTUITION OF ANTICOMONOTONICITY

This section presents an informal interpretation of the AC condition. The most

famous appearance of comonotonicity was in Schmeidler (1989). He considered

the special case of Structural Assumption 2 where C is a convex set of probability

distributions over prizes, also called lotteries, denoted P,Q,R here. A mixture

αP +(1−α)Q assigns probability αP (E)+(1−α)Q(E) to every prize setE, for 0≤
α≤ 1. Thus, C is a mixture space. Again, mixtures are transferred to acts statewise.

He further assumed EU for risk (lotteries). The above setup is known as the AA

setup. All deviations from EU over acts are then due to ambiguity, facilitating its

analysis.

Under ambiguity, EU over acts is violated by interactions between events.

Thus, the classical independence axiom,

for all acts X,Y,C and 0< α< 1 :X ∼ Y ⇒ αX + (1− α)C ∼ αY + (1− α)C, (4)

https://econtheory.org
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which is the main axiom used by AA to axiomatize EU over all acts, is violated. For

example, C’s events may “interact” with Y ’s events by providing hedges reduc-

ing variations of outcomes without doing so with X ’s events, leading to a strict

preference for the safer αY + (1− α)C in Eq. 4 and a violation of independence.

In Eq. 4, C denotes a “common” new act that is mixed in. Because hedging oc-

curs in mixtures, later modifications of independence in this paper will impose

comonotonicity or AC restrictions on such mixtures and will concern X,C and

Y,C .

We next discuss AC, assuming ambiguity aversion. (For ambiguity seeking,

similar reasonings hold with preferences reversed.) Comonotonicity minimizes

hedging possibilities for acts X,Y . Schmeidler imposed independence (Eq. 4)

only if acts X,C are comonotonic and so are Y,C .4 Then, hedging effects are

minimal and leveraging effects are maximal in both convex combinations in Eq.

4, and one may conjecture that they cancel, so that Eq. 4 then still holds. So

it does under Schmeidler’s Choquet expected utility (CEU), even characterizing

that theory.

For AC, leveraging is minimal and hedging is maximal. We raised the following

research question: what happens if independence (Eq. 4) is only imposed if both

X,C and Y,C are AC? Our first hunch was that interaction effects, extreme again,

may again balance and cancel and that the axiom will give an alternative way to

axiomatize CEU.

We could not have been farther off. As it turned out, AC independence pre-

cludes any non-neutral ambiguity attitude! AA’s EU and full-force independence

follow (Theorem 4 below). This result came as a surprise to us. Whereas with

minimal hedging in Eq. 4 no ambiguity attitude is precluded, minimal leveraging

leaves more space to the extent that all ambiguity attitudes under CEU are pre-

cluded. This result on AC may be taken as negative: AC did not bring any new

model. However, a positive interpretation is that AC provides a new and stronger

axiomatization of existing models, EU in this case. To justify EU normatively or

4Schmeidler also required X,Y to be comonotonic, but this restriction can be omitted (as may be

inferred from the yet weaker Eq. 5 given later), facilitating the following intuitions.

https://econtheory.org
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descriptively, it suffices to justify independence in the AC cases. They provide the

most critical cases and all other cases follow. AC independence leads to Theorem

4 in the following section, and to several related results discussed later.

5. CLASSICAL LINEAR/AFFINE FUNCTIONALS

In the literature using the AA setup, outcome spaces are assumed to be mix-

ture spaces, as in this paper, and an affine utility function U : C → R is assumed.

Mostly, the mixture space is assumed to be a convex set of probability distribu-

tions, with U expected utility, as in the preceding section.

We now formally define independence. We use a weakened version because it

better conveys the intuitions of conditions defined later.5 Independence holds if

for all acts X,C, outcomes x, and 0< α< 1 :

X ∼ x⇒ αX + (1− α)C ∼ αx+ (1− α)C.
(5)

In other words, any act X in any mixture can be replaced by its certainty equiv-

alent x. The condition is seemingly weaker than Eq. 4 in the sense of restricting

general acts Y in Eq. 4 to constant acts x. However, it is readily seen to be equiva-

lent if every act has a certainty equivalent,6 which holds in all results in this paper.

The condition is appealing because it justifies “ironing out” in mixtures (Li, 2020).

It is convenient for comonotonic and AC generalizations because constant acts

are comonotonic and AC with every other act. Schmeidler’s comonotonic inde-

pendence requires Eq. 5 only if X,C are comonotonic.

DEFINITION 3. AC independence holds for< if the implication of Eq. 5 is imposed

only if X and C are AC.

5This weakening avoids an intuitive confusion described in §4 because x does not provide any

hedge or leverage in the right-hand side of Eq. 5 so that any canceling of such effects cannot play any

role.
6In Eq. 4, replace every act with its certainty equivalent (same for X and Y ) and use transitivity.

https://econtheory.org
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In other words, one can replace any act in a mixture with its certainty equiva-

lent only if the acts in the mixture are AC. The following theorem generalizes AA’s

classical characterization of subjective expected utility.

THEOREM 4. Assume Structural Assumption 2. The following three statements are

equivalent.

(i) Weak ordering, monotonicity, mixture continuity, and independence hold.

(ii) Weak ordering, monotonicity, mixture continuity, and AC independence hold.

(iii) Subjective expected utility holds with U affine.

In (iii), U is an interval scale.

We mention two other generalizations of classic representations using linear

functionals to illustrate the wide applicability of AC. The results work similarly

to Theorem 4 and are therefore only stated verbally here for brevity. Appendix A

gives complete formal statements. The first result concerns de Finetti’s (1931) ax-

iomatization of subjective expected value maximization. It rationalized subjec-

tive probabilities, which is well-understood nowadays but was then a conceptual

breakthrough. de Finetti used a bookmaking axiom, another influential innova-

tion: no positive linear combination of acceptable bets should lead to a sure loss.

His result can be generalized like AA’s EU axiomatization above, by adding an

AC restriction to the axiom (Proposition 15 in Appendix A). Here, again, the AC

restriction does not bring new models but simplifies the normative task of de-

fending the rationality of the Bayesian approach. Again, the AC cases are critical

and one can focus on those. The other cases then follow.

A similar generalization can be obtained for as-if risk-neutral pricing in fi-

nance. Now, acts are financial assets and the functional I assigns market prices to

acts. As-if risk-neutral prices are subjective expected values based on as-if sub-

jective probabilities, which are the market probabilities. Such pricing is neces-

sary to avoid arbitrage possibilities. Proposition 13 in Appendix A shows that

arbitrage only needs to be precluded in AC cases, and already as-if risk-neutral

pricing is implied. Again, the essence of no-arbitrage is captured by the AC cases.

And again, minimizing leveraging possibilities, which is what the AC restriction
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does, works differently than minimizing hedging possibilities as comonotonicity

does.

6. ANTICOMONOTONIC CONVEXITY FOR CONCAVITY OF UTILITY

In the remainder of the main text, we consider AC generalizations of convexity

and concavity axioms. This means that we now deal with inequalities rather than

equalities and that we relax some linearities. This section maintains linearity in

events/probabilities by assuming expected utility for acts on Ω. However, un-

like all other sections, it allows for nonlinear utility: U on C need not be EU. We

provide an AC axiomatization of concave utility.

Whereas mixture sets have almost exclusively been studied for affine/linear

utility in the AA setup, they provide a natural domain for studying convexity

and concavity of utility, the topic of this section. We thus define: U is concave

if U(αx + (1 − α)y) ≥ αU(x) + (1 − α)U(y) for all outcomes x, y, and 0 < α < 1.

Convexity has≤ instead of≥. We will maintain continuity:

DEFINITION 5. Utility U on the mixture space C is mixture continuous if, for all

outcomes x, y, U(αx+ (1− α)y) is continuous in α.

The condition is implied by affinity and also by common continuity conditions

on convex subsets of Euclidean spaces. Hence, it is less restrictive than most

other continuity conditions.

DEFINITION 6 (Convexity of preference). Preferences are convex if

for all acts X,Y and 0< α< 1 :X ∼ Y =⇒ αX + (1− α)Y <X. (6)

Preferences are AC convex if the above implication is imposed only for AC acts X ,

Y .

Convexity of preference is a common assumption in consumer theory (Mas-

Colell, Whinston, & Green, 1995). It is also called quasiconvexity or, sometimes,

quasiconcavity because it is equivalent to the quasiconcavity of any represent-

ing function. It reflects a preference for smoothing, diversification, and hedging
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in the models discussed next. It is remarkable that the same mathematical con-

dition that captures the utility of commodity bundles in consumer theory also

provides a characterization of risk aversion in subjective expected utility, as this

section shows. It also captures ambiguity aversion in the currently most popular

ambiguity models, as shown in the following section.

We next present an appealing implication of AC convexity in Savage’s expected

utility, where utility is not assumed to be affine in outcomes, and utility curvature

captures different risk (or uncertainty) attitudes. To avoid triviality, we assume

non-degenerateness, i.e., there exists an event A with 0<P (A)< 1.

THEOREM 7. Assume Structural Assumption 2 with non-degenerate expected util-

ity and a mixture continuous utility function U . The following three statements

are equivalent.

(i) < satisfies convexity.

(ii) < satisfies AC convexity.

(iii) U is concave.

Debreu & Koopmans (1982) showed that (i) and (iii) in the theorem are equiv-

alent, more generally, even without assuming continuity of utility, for Euclidean

spaces instead of mixture spaces. We follow their proof closely, with some mod-

ifications to ensure AC. The main complication in the proof is that some conve-

nient monotonicity properties in Euclidean spaces7 are not available for general

mixture spaces.

Wakker & Yang’s (2019) Corollary 6 shows that the statements in Theorem 7

are equivalent to comonotonic convexity of <. That is, in this case, the comono-

tonic and AC restrictions are equivalent. The characterization in Theorem 7 and,

similarly, in the related works just cited, through convexity of preference with

respect to outcome mixing, is appealing because it makes risk aversion directly

testable for subjective probabilities. To explain this point, we first note that con-

cave utility captures risk aversion under expected utility. In decision under risk,

where probabilities are objective and known beforehand, the conditions most

7For instance, we have no monotonicity of U in α in Eq. 14 in the proof given later.
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commonly used to characterize risk aversion involve a preference for expected

value or an aversion to mean-preserving spreads. Those conditions use proba-

bilities as inputs. This use is problematic for decision under uncertainty because

then probabilities are subjective and not directly observable, as in Savage (1954).

The main purpose of preference axiomatizations is to make theoretical proper-

ties directly observable. Therefore, the aforementioned common conditions for

risk aversion, using probabilities as input, are not well suited for the context of

uncertainty. Theorem 7 and its predecessors make risk aversion directly observ-

able and testable for subjective probabilities.

The contribution of our Theorem 7 to its predecessor Debreu & Koopmans

(1982) is, again, related to the central topic of this paper: we only need to in-

spect the most critical cases with maximal hedging possibilities. If risk aversion

(and convexity, i.e., preference for diversification) passes those tests, then it holds

everywhere.

7. ANTICOMONOTONIC CONVEXITY FOR AMBIGUITY: NEW PROPERTIES

This and the following section, like the preceding one, study AC restrictions for

convexity. However, we now take a dual approach. Contrary to the preceding

section, but as in all other sections, we assume linear/affine utility (e.g., EU) of

outcomes. But now, unlike the preceding sections, we allow for nonlinear event

weighting. That is, we investigate the implications of AC convexity for ambiguity

models, deviating from EU for acts. Now, for the first time in this paper, new

properties and models will result from the AC restriction.

In §5 and Theorem 4, we presented a version of AA’s setup for their axiomatiza-

tion of expected utility. However, this setup has proved extremely useful for de-

veloping deviations from expected utility to capture ambiguity, and this section

will use it. Famous contributions include Gilboa & Schmeidler’s (1989) axiom-

atization of multiple priors and Schmeidler’s (1989) axiomatization of Choquet

expected utility, initiating the field of ambiguity theory.

We present results for Schmeidler’s CEU model. A weighting function W maps

events to [0,1] and satisfies W (∅) = 0, W (Ω) = 1, and A⊃B⇒W (A)≥W (B). We
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callW convex ifW (A∪B) +W (A∩B)≥W (A) +W (B) for all events. This implies

pseudo-convexity: W (A)≤W (A ∪B)−W (B)≤ 1−W (Ac) for all disjoint events

A,B. Choquet expected utility (CEU ) holds if there exists a weighting function W

and an affine utility function U : C → R such that the preference relation maxi-

mizes

X 7→
∫

[0,∞)
W (U(X)≥ x)dx−

∫
(−∞,0]

(1−W (U(X)≥ x))dx. (7)

We again study the convexity of preference. Any utility effect, as in Theorem 7,

has now been ruled out by the affinity assumption of U . Hence, as follows from

Theorem 7, convexities must now speak to deviations from EU. In the first ax-

iomatized ambiguity models (Gilboa & Schmeidler, 1989; Schmeidler, 1989), and

in many that followed later, convexity was found to be equivalent to ambiguity

aversion, explaining Ellsberg’s (1961) famous paradox. Hence, convexity has as

yet been the most central condition in ambiguity theories.

This section presents a case where an AC restriction essentially weakens a pref-

erence condition, i.e., convexity in the AA setup. Aouani, Chateauneuf, & Ventura

(2021) (their Theorem 1 and Corollary 1) first proved the following result for the

special case of C = R and linear utility. Their result is deep, with a complex proof.

We next provide its extension to general mixture spaces, which readily follows,

thus covering AA’s setup.

PROPOSITION 8. Assume Structural Assumption 2 and CEU. Then AC convexity of

< is equivalent to pseudo-convexity of W .

Proposition 8 implies that AC convexity of < is strictly more general than con-

vexity because pseudo-convexity ofW is clearly more general than convexity, and

the latter is equivalent to convexity of < (Schmeidler, 1989). Example 10 below

will confirm that AC convexity is strictly more general.
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8. ANTICOMONOTONIC CONVEXITY FOR AMBIGUITY: NEW MODELS

We now turn to a case where the AC restriction brings a more general model.

We first define the model. It is a subcase of Schmeidler’s CEU. The double-

cautious ambiguity model holds if < maximizes CEU with respect to an affine

utility function U : C → R and a weighting function W that is e(vent)-cautious:

[W (E) > 0⇒ W (Ec) = 0] and w(eight)-cautious: W (E) ≤ 0.5 for all E 6= Ω. As

for the intuition of these two conditions, the proof of Proposition 9 shows that

e-cautiousness is equivalent to the next condition, clarifying its cautiousness in-

terpretation: one is allowed to hope for something good (CEU(X) or more) only

if it is very likely in the sense that getting less is quasi-impossible. Thus, what one

hopes for is cautious in the sense that it can still qualify as a kind of worst-case

scenario.

For all acts X and ε > 0 :W{ω∈Ω : U(X(ω))< CEU(X)− ε}= 0. (8)

For the intuition of w-cautiousness, we define IU(X) := infω∈Ω(U(X(ω)) for each

act X . It is real-valued because acts are bounded. The proof of Proposition 9

shows that w-cautiousness is equivalent to the next condition, clarifying its cau-

tiousness interpretation: if one hopes for something good (εmore than the worst

case), then its bad opposite (even if quasi-impossible), should still receive at least

as much attention (decision

For all acts X and ε > 0 :W{ω∈Ω : U(X(ω))> IU(X) + ε} ≤ 0.5. (9)

We next turn to a preference axiomatization of the double-cautious model.

For a preference axiomatization of CEU in the AA setup, Schmeidler (1989) gave

necessary and sufficient conditions, mainly comonotonic independence. They

could be added in the theorem below to obtain a complete preference axiom-

atization, but for brevity we will not repeat them. By xEy we denote the two-

outcome act that assigns outcome x to event E and y to Ec. We say that < sat-

isfies e-cautiousness if, for all outcomes x� y and events E, [xEy � y⇒ yEx∼ y].

We say that< satisfies w-cautiousness if, for all outcomes x� y and eventsE 6= Ω,

xEy 4 0.5x+ 0.5y.
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PROPOSITION 9. Assume Structural Assumption 2 and CEU. The following three

statements are equivalent.

(i) The double-cautious model holds.

(ii) Conditions (8) and (9) hold.

(iii) < is e-cautious and w-cautious.

Further, the double-cautious model satisfies AC convexity.

E-cautiousness and w-cautiousness only involve AC acts and, hence, the AC

restriction is vacuous for these preference conditions. The convexity preference

condition does involve acts that are not AC and here the AC restriction turns out

to provide a real restriction in the premise, leading to a less restrictive prefer-

ence condition. Thus, the double-cautious model implies AC convexity but not

convexity, as the following example shows.

EXAMPLE 10. Let: Ω = [0,1], F is the usual Lebesgue sigma-algebra, C = R+, and

U is the identity (U(x) = x for all x). To define W , let λ be the usual Lebesgue

measure (uniform distribution). Let g : [0,1]→ [0,1] be nondecreasing, g(p) = 0

for all 0≤ p < 0.5, 0≤ g(p)≤ 0.5 for all 0.5≤ p < 1, g(1) = 1. Further, g is noncon-

vex on [0.5,1), say g(p) =
√

(2p− 1)/2 there. We define W (E) = g(λ(E)) with one

exception: if λ(E) = 1 butE 6= Ω, thenW (E) = 0.5 rather than 1. ThisW is double

cautious so that < is AC convex. Further, W is not convex as readily follows from

nonconvexity, even strict concavity, of g on [0.5,1), and, consequently (Schmei-

dler, 1989) neither is <. The latter claim is verified by calculations in Appendix

B. ♦

In general, Example 10 but with g(p) = (2p − 1)θ/2 on (0.5,1) for some θ > 0,

gives a convenient parametric family for the double-cautious model. Conditions

(8) and (9) are conceptually simpler and easier to implement than convexity: they

are directly imposed on the evaluation made of a relevant act X , rather than in-

volving inspection of mixtures of acts. In this sense, the relaxation of convexity,

maintaining AC convexity, is useful. Further, Example 10 suggests that the extra

caution coming from convexity is not big.
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The results presented in the last two sections primarily serve to demonstrate

the possibility of getting new properties and models from AC. Detailed studies

of the pros and cons of such models and further models and properties to be

derived from AC restrictions are left to future work. The end of Appendix A cites

some results from the literature that may be useful for such future work.

9. CONCLUSION

This paper provides a systematic study of anticomonotonic restrictions of axioms

for preference relations and functionals. Anticomonotonicity is the natural coun-

terpart to the well-known comonotonicity. We obtained many generalizations

of classical theorems, for each showing where the most critical tests are. These

tests concern cases with maximal possibilities for hedging. Our results highlight

the asymmetry between anticomonotonicity and comonotonicity. For ambigu-

ity, anticomonotonicity can serve to bring new phenomena and models.

APPENDIX A: LINEAR/AFFINE FUNCTIONALS

This Appendix presents some results similar to Theorems 1 and 4, for lin-

ear/affine functionals.

The following lemma, repeating part of Theorem 1 and used in its proof, is re-

markable in giving, for finite state spaces, a complete logical equivalence of a

condition and its AC restriction, i.e., (AC) additivity. We do not expect the equiv-

alence to hold for general state spaces without some extra regularity condition,

but this remains to us an open question. We maintain the notation B(Ω,F) be-

low, although this set now contains all maps from Ω to R.

LEMMA 11. Suppose that Ω is finite andF = 2Ω. For I :B(Ω,F)→R, AC additivity

is equivalent to additivity.

Theorem 1, using Lemma 11, assumed a full linear space as domain and only

used an elementary addition operation. The following Proposition considers
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more general convex sets as domain, involving convex combinations. It under-

lies Theorem 4. For simplicity, and because we do not need more, we give it only

for C = R. For later reference, we repeat that, for C = R and a convex set D of acts,

I :D→R is affine or linear if:

For all α ∈ [0,1] and X,Y ∈D : I (αX + (1− α)Y ) = αI(X) + (1− α)I(Y ). (10)

We call I comonotonically affine if Eq. 10 holds for I whenever X,Y are comono-

tonic. We call I AC affine if Eq. 10 holds for I whenever X,Y are AC.

PROPOSITION 12. Assume C = R and a functional I :D→R, where D ⊂B(Ω,F) is

convex and contains a constant act in its interior. Then AC affinity is equivalent to

affinity whenever I is monotonic (with respect to≥ on R) or continuous.

We now turn to an application to finance. Again C = R, and now acts are finan-

cial assets and I reflects the market price. Additivity of I and even linearity are

implied by common market trade assumptions and are thus automatically satis-

fied. Monotonicity is then taken as the critical condition in Proposition 13 below:

a linear combination of trades should never lead to a sure loss (no-arbitrage).

Market prices I are normalized: I(0) = 0 and I(1) = 1, implying, together with

the other conditions, that I(x) = x for all outcomes x. The fundamental theorem

of asset pricing entails that no-arbitrage implies as-if risk-neutral pricing: there

exists a probability measure P on Ω such that I is its expectation, denoted EP
or E for short. We generalize this fundamental theorem of finance. First, for lin-

ear combinations, only additivity is needed, and no scalar multiplication. (This

point has been known for long time.) We further show that additivity can be

weakened to AC acts. That is, the critical test of no-arbitrage in financial markets

occurs in cases where leverage possibilities are maximal. This suffices to ensure

no-arbitrage everywhere.

PROPOSITION 13. There exists a probability measure P such that I = EP (“as-if

risk-neutrality”) if and only if I is normalized and satisfies monotonicity and AC

additivity. Here, P is unique.
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Gilboa & Samuelson (2022) characterized no-arbitrage for arbitrary sets of acts

and discussed its normative status.

In the risk management literature, for a risk measure I , the equality I(X+Y ) =

I(X) + I(Y ) is often interpreted as that no diversification benefit8 is assigned to

the portfolio vector (X,Y ); see Wang & Zitikis (2021) in the context of the Basel

Accords. In this context, Proposition 13 is intuitive: If no portfolio of two AC risks

(representing maximum hedging effect) is assigned a diversification benefit, then

no portfolio should have any diversification benefit, and hence the risk measure

should simply be the expected value. This is in sharp contrast to the idea of as-

signing no diversification benefit to comonotonic risks, which leads to a large

class of risk measures called distortion risk measures; mathematically, they co-

incide with the dual utility functionals of Yaari (1987). See McNeil, Frey & Em-

brechts (2015) for the use of distortion risk measures in risk management.

We next turn to de Finetti’s book making argument. Again, C = R. Subjective

expected value, or expected value (EV ), holds if EU holds withU the identity func-

tion. Additivity holds for< if

for all acts X,Y,Z :X ∼ Y =⇒X +Z ∼ Y +Z. (11)

If a certainty equivalent exists for every act, as is the case in all results in this

paper, then a convenient reformulation is:

for all acts X,Z and outcomes x :X ∼ x=⇒X +Z ∼ x+Z. (12)

The condition at first seems to be weaker than Eq. 11 because of the restriction

to constant Y = x. However, it readily implies Eq. 11 by two-fold application with

the (same) CE for X and Y and transitivity. The condition is well-suited for our

purposes because the constant act x is automatically AC with the other acts.

DEFINITION 14. AC additivity holds for< if Eq. 12 is imposed only if X and Z are

AC.

8The diversification benefit often refers to I(X) + I(Y )− I(X + Y ); see McNeil, Frey & Embrechts

(2015).
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PROPOSITION 15. Assume Structural Assumption 2 with < on C = R the natural

ordering ≥. There exists a probability measure P such that expected value holds

if and only if there exists a certainty equivalent for every act and weak ordering,

monotonicity, and AC additivity hold.

de Finetti and many other authors who have written about bookmaking as-

sumed additivity more or less implicitly9, but emphasized the importance of

monotonicity. They used the above result, without the AC restriction, and several

variations, to argue that it is rational to use subjective probabilities in the context

of uncertainty. Linearity of utility, as implied here, is reasonable for moderate

stakes (l’Haridon & Vieider, 2019, p. 189; Savage, 1954, p. 91). de Finetti’s result

was historically important as a foundation of Bayesianism. Our result shows that

the most critical case of bookmaking occurs when there are maximal possibili-

ties of hedging (AC). That is, de Finetti needed to defend his condition only for

AC cases.

Next, we suggest a generalization of AC, similar to the following generaliza-

tion of comonotonicity that we explain first.10 Two acts X and Y are maxmin

related if for every state ω either X takes its best value or Y takes its worst value,

or vice versa. This implies that X,Y are comonotonic. Remarkably, many results

in the literature using comonotonic preference conditions can be generalized

by imposing the condition only for maxmin related acts. This way, and histor-

ically remarkable, Anger (1977) preceded Schmeidler (1986) by providing a more

general axiomatization of the Choquet integral. Other papers providing such

maxmin generalizations of comonotonicity include Chateauneuf (1991), Aouani,

Chateauneuf, & Ventura (2021), Wakker (1990), Bastianello, Chateauneuf, & Cor-

net (2024), and Cerreia-Vioglio, Maccheroni, & Marinacci (2015), whose put-call

9Whereas this assumption is natural in finance, it is highly restrictive in the present context of indi-

vidual choice. The bookmaking argument usually makes yet stronger assumptions by also incorpo-

rating positive scalar multiplications and, thus, positive linear combinations. Proposition 15 showed

that such assumptions are not needed because they are implied by the other conditions.
10We thank a referee and editor for encouraging us to discuss possible further generalizations.
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parity conditions are equivalent to Anger’s maxmin relatedness. Even if mathe-

matically more general than comonotonicity, maxmin relatedness never became

very popular. We think that this happened because comonotonicity is more intu-

itive and better at capturing conceptual and empirical content. We can similarly

generalize AC, e.g., if C = R, by requiring X,−Y to be maxmin related. That is,

either (1) at every ω, either X or Y is best, or (2) at every ω, either X or Y is

worst. We conjecture that the AC condition can be generalized in this manner

in several results in our paper. We did not pursue this generalization because we

find AC more intuitive, similarly as the literature has preferred comonotonicity to

maxmin relatedness.

Finally, we briefly mention some results from the literature that may be useful

for further studies of AC restrictions. Aouani, Chateauneuf, & Ventura (2021) pro-

vided many related results for superadditivity, supermodularity, and other prop-

erties, and implications for uncertainty attitudes and diversification. Beissner &

Werner (2023) provided optimization techniques for nonexpected utility models

that are neither differentiable nor satisfy convexity of preference. Under some

further assumptions, Castagnoli et al. (2022) axiomatized their star-shaped rep-

resenting functionals through the following condition, weaker than AC convexity.

Uncertainty reduction holds if:

For all acts X, outcomes x, and 0< α< 1 :X ∼ x=⇒ αX + (1− α)x<X. (13)

The condition is weaker than AC convexity because every constant act x is AC

with every other act. Thus, AC convexity is between convexity and uncertainty

reduction. Given the other assumptions, AC convex functionals will thus be in

the “middle” between convex and star-shaped functionals. Interestingly, Castag-

noli et al. (2022) showed that their star-shaped functionals are maxima of con-

cave functionals, a result that can be used to analyze AC convex preferences and

functionals.
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APPENDIX B: PROOFS

We present proofs of results in the order of appearance in the main text and then

in Appendix A. This is not a logical order in the sense that some proofs use results

presented later. We then indicate those in the beginning of proofs.

PROOF OF THEOREM 1. This proof uses Lemma 11.

It is direct that linearity implies additivity, which implies AC additivity. We,

therefore, assume the latter and derive linearity.

For any fixed finite partition, AC additivity implies additivity for the simple acts

defined on that partition by Lemma 11. Theorem 5.1.1 in Aczél (1966) shows that

linearity follows for these acts under mild extra conditions such as continuity (at

one point suffices) or monotonicity. Linearity follows for all simple acts because

any pair of simple acts is measurable w.r.t. a joint simple partition. Finally, by

standard integration techniques, linearity extends to all bounded acts: each can

be “sandwiched” between dominating and dominated simple functions. By con-

tinuity or monotonicity, its I value then is the limit of the I values of the limiting

simple acts. �

PROOF OF THEOREM 4. This proof uses Proposition 12.

That (iii) implies (i), and (i) implies (ii), is direct. We, therefore, assume (ii)

and derive (iii). If all outcomes are indifferent then so are, by monotonicity, all

acts and, hence, the result is trivial, with U constant. So, we assume nontrivi-

ality. On the outcome set standard mixture independence axioms hold because

AC does not impose any restriction. By Herstein & Milnor (1953), there exists an

affine representation on outcomes. We, until further notice, fix two outcomes

M �m, and consider only acts X with M < X(ω) <m for all ω. By monotonic-

ity and mixture continuity, for each such act there exists a 0 ≤ p ≤ 1 such that

pM + (1 − p)m ∼ X . By Theorem 4 of Herstein & Milnor (1953), p is uniquely

determined and represents preferences over acts. We denote it by MP(X), the

matching probability of X . It can be taken as a certainty equivalent for each act.
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We next show that MP is an expectation representation for all acts (by, essentially,

establishing Cauchy’s equation for it).

We write p∗ = pM+(1−p)m for all p ∈ [0,1]. The idea of the proof is to replace all

outcomes by their equivalent p∗, which by monotonicity does not affect prefer-

ence, and then by isomorphisms everything follows from preceding results. The

switches between isomorphic spaces below involve some notational burden.

We first show that MP is AC affine. Assume X and Y AC and α ∈ (0,1). Write

p= MP(X) and q = MP(Y ). Now

αX + (1− α)Y ∼ αp∗ + (1− α)Y ∼ αp∗ + (1− α)q∗ = (αp+ (1− α)q)∗,

where the first two equivalences follow from AC independence and the last equal-

ity from affinity of MP on outcomes (also readily and more basically from dis-

tributivity in mixture spaces). The equality

MP(αX + (1− α)Y ) = αp+ (1− α)q

follows: MP is AC affine.

To invoke Proposition 12, we adjust the domain of MP to become a subset of

B(Ω,F). For each act X , we define X ′ : Ω→ [0,1] by X ′(ω) = MP(X(ω)) for all ω.

This X ′ is measurable because every inverse of a preference interval is an event,

and X ′ is also bounded. Define I by I(X ′) = MP(X). This I is well-defined be-

cause all X with the same X ′ are indifferent by monotonicity. This I inherits

monotonicity from MP. It is also AC affine: Consider AC X ′, Y ′ and 0< α< 1. We

take underlyingX,Y withX(ω) =X ′(ω)∗ and Y (ω) = Y ′(ω)∗; they are also AC. For

every ω,

(αX(ω) + (1− α)Y (ω))′ = αX ′(ω) + (1− α)Y ′(ω)

because MP is affine on outcomes. Hence,

I(αX ′ + (1− α)Y ′) = MP(αX + (1− α)Y ).

By AC affinity of MP, this is αMP(X) + (1− α)MP(Y ) = αI(X ′) + (1− α)I(Y ′); I is

AC affine. It is affine by Proposition 12. It is normalized.
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By standard techniques (e.g., I ’s affinity implies strong independence) I is EP
for a probability measure P , first for all indicator functions, then for all simple

X ′, and then, by monotonicity, for all X ′. Because MP(X) = I(X ′), MP is the EU

functional with MP on outcomes as affine utility function U . We have obtained

the desired representation for all acts with outcomes between m and M .

We now turn to acts with outcomes not between m and M . For any other out-

comes M∗ <M <m<m∗ we can similarly obtain an expectation representation.

We can rescale all these to take value 0 at m and value 1 at M . They then all agree

on common domain and are all part of one expectation functional defined on the

whole domain. �

PROOF OF THEOREM 7. It is clear that (iii) implies (i), and (i) implies (ii). We,

therefore, assume (ii), and derive (iii). Assume, for contradiction, that U is not

concave. Then there are outcomes M ′,m′ and 0< gl′ < 1 such that

U(α′M ′ + (1− α′)m′)< α′U(M ′) + (1− α′)U(m′).

By mixture continuity, we can find the largest 0≤ σ < α′ such thatm= σM ′+ (1−
σ)m′ satisfies U(m) = σU(M ′) + (1−σ)U(m′) and the smallest 1≥ τ > α′ such that

M = τM ′ + (1− τ)m′ satisfies U(M) = τU(M ′) + (1− τ)U(m′). We have

for all 0< α< 1 : U(αM + (1− α)m)< αU(M) + (1− α)U(m). (14)

By non-degenerateness, we can take A ∈ F with 0 < P (A) = p < 1. We write

(x, y) for xAy and in the rest of this proof use only such acts. First assume (M,m)∼
(m,M). This occurs if P (A) = 0.5 or U(m) = U(M). Note that the two acts are AC.

By AC convexity,

((m+M)/2, (m+M)/2)< (m,M),

implying

U((m+M)/2)≥ (U(m) +U(M))/2,
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contradicting Eq. 14. From now on we may assume U(M)>U(m) and p= P (A)>

0.5. Otherwise we would interchange M and m, and/or A and Ac. We have

(M,m) � (m,M). In the remainder of this proof, we will only use outcomes x

of the form x= αM + (1− α)m for some α. We assume without further mention

that al outcomes are of this form. Mapping α to α(x) provides an isomorphism

of interval [0,1] to the outcome space.11 We use it for defining average increases

below.

We define x0 =m. By mixture continuity, there existsm≺ x1 ≺M with (x1,m)∼
(x0,M). If there are several such, we take the one closest to m, i.e., we take x1 =

αM+(1−α)mwithαminimal (existing by continuity ofU ). By mixture continuity

we can inductively define a “standard sequence” m = x0, x1, x2, . . . , xn such that

(xj+1,m) ∼ (xj ,M) for all j < n each xj closest to m so that α(xj+1) > α(xj) and

(M,m)≺ (xn,M). We have

for all j : U(xj+1)−U(xj) =
(1− p)(U(M)−U(m))

p
. (15)

We first consider the case xn ≺M . We then similarly define a “standard sequence”

M = yn+1, yn, yn−1 . . . , y1 such that (yj−1,M) ∼ (yj ,m) and α(yj−1) < α(xj−1) <

α(yj) and yj closest to m for all j. We have (m,M)� (y1,m) and

for all j : U(yj)−U(yj−1) =
(1− p)(U(M)−U(m))

p
. (16)

For every j we have xj−1 ≺ yj ≺ xj and, further, there exists a 0< α < 1, depen-

dent on j, such that yj = αxj + (1− α)xj−1. By m4 xj−1 4 xj ≺M , we have AC of

(xj−1,M) and (xj ,m). AC convexity and (xj−1,M)∼ (xj ,m) imply

α(xj ,m) + (1− α)(xj−1,M)< (xj ,m)∼ (xj−1,M). (17)

We next show that, because the triple of outcomes m, αM + (1−α)m, M on Ac in

Eq. 17 bring in a kind of strict convexity, the triple xj−1, yj(= αxj + (1− α)xj−1),

11In general, the only way in which the mixture space of all x = αM + (1 − α)m may not be iso-

morphic to [0,1] is by having x= αM + (1− α)m= α′M + (1− α′)m for all 0<α< α′ < 1, as follows

mainly from distributivity. This case is excluded by Eq. 15 below.
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xj on A must bring in a kind of concavity, and enough so to maintain the afore-

mentioned AC convexity. This point is elaborated on next.

The U value of the left act in Eq. 17 exceeds the U value of the other two acts

and, therefore, also the α/1 − α convex combination of the latter two U values.

That is,

pU(αxj + (1− α)xj−1) + (1− p)U(αm+ (1− α)M)

≥ p(αU(xj) + (1− α)U(xj−1)) + (1− p)(αU(m) + (1− α)U(M)).

This and

(1− p)U(αm+ (1− α)M)< (1− p)(αU(m) + (1− α)U(M))

(implied by Eq. 14) imply (dropping p)

U(αxj + (1− α)xj−1)> αU(xj) + (1− α)U(xj−1).

The triple xj−1, yj (which equals αxj + (1− α)xj−1), and xj exhibit a kind of con-

cavity.

Using the above isomorphism with [0,1], the aforementioned “concavity”

means that the average increase of U over [xj−1, yj ] exceeds that over [yj , xj ]:

(U(yj)−U(xj−1))α > (U(xj)−U(yj))/(1− α).

A similar proof shows that the average increase of U over [yj , xj ] exceeds that

over [xj , yj+1]. In this proof, write xj = α′yj + (1− α′)yj+1 and proceed as above

with yj for xj−1, xj for yj , yj+1 for xj , Eq. 16 for Eq. 15, and α′ for α. The two

results together imply that the average increase over an interval decreases as we

move from m to M from [yj , xj ] to [xj , yj+1], to [yj+1, xj+1], and so on.

By Eq. 14, the average U increase over [m,y1] is strictly below that of [m,M ]. But

we have, just, partitioned that interval [m,M ] into 2n+ 1 intervals that all have a

strictly smaller average increase than [m,y1]. A contradiction has resulted.

We, finally, turn to the case of xn ∼M . We take z0, . . . , z2n such that zj = αjM +

(1− αj)m, z2j = xj , U(z2j+1) = (U(xj) + U(xj+1))/2, zj closest to m, αj+1 > αj for

all j. We also define m′ = αM + (1− α)m such that U(m′) = (U(M) +U(m))/2. By
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Eq. 14, α > 0.5. We have (zj ,M) ∼ (zj+1,m
′) ∼ (zj+2,m) for all j. By AC convex-

ity, α(zj ,M) + (1− α)(zj+2,m)< (zj ,M) and, hence, α(zj ,M) + (1− α)(zj+2,m)<

(zj+1,m
′). Hence, U(αzj + (1 − α)(zj+2) ≥ (U(zj) + U(zj+2))/2 whereas α < 0.5.

Given that zj+1 was chosen closest to m, αj+1 < 0.5αj + 0.5αj+2. The average in-

crease of U over [zj , zj+1] strictly exceeds that over [zj+1, zj+2]. This holds for all

j. It is in contradiction with the average increase of U over [z0, z1] strictly being

below that over [m,M ] (remember: z0 =m) as follows from Eq. 14. �

PROOF OF PROPOSITION 8. In words, we replace all outcomes by their U values,

extend U(C) to all of R using positive homogeneity of the Choquet integral, and

then use Aouani, Chateauneuf, & Ventura (2021).

We may assume that 0 is in the interior of the range of U , by setting U(x) >

0 > U(y) for some outcomes x � y. Define Ω′ = Ω, C′ = R, and F ′ is the set of all

measurable bounded maps from Ω′ to C′. DefineU ′ onF ′ as the identity function,

and let <′ on F ′ maximize CEU′ w.r.t. U ′ and W ′ = W . Then for all acts X,Y

and new acts X ′, Y ′ with U(X(ω)) =X ′(ω) and U(Y (ω)) = Y ′(ω) for all ω, we have

X < Y ⇔ X ′ < Y ′. In this way the new structure agrees with the original one

and extends it. By positive homogeneity of CEU′, the new structure satisfies AC

convexity if and only if it does in a neighborhood around the constant new act

0.12 That is, if and only if the original structure does. Our Proposition now follows

from Aouani, Chateauneuf, & Ventura (2021). �

PROOF OF PROPOSITION 9. Eq. 8 implies e-cautiousness of W : Assume W (E)> 0.

Take outcomes x � y and the act X = xEy. Then CEU(X) > U(y). Take 0 < ε <

CEU(X)−U(y). By Eq. 8, W (Ec) = 0, as required by e-cautiousness of W .

E-cautiousness of W implies Eq. 8: Assume, for contradiction, W (U(X) <

CEU(X) − ε) > 0 for some ε > 0. Then e-cautiousness of W implies W (U(X) ≥
CEU(X)− ε) = 0, giving the contradiction CEU(X)≤ CEU(X)− ε.

12 Multiply any pair of acts by α > 0 small enough to take them into that small neighborhood and

verify AC convexity there.
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We have shown that Eq. 8 is equivalent to e-cautiousness ofW , which is trivially

equivalent to e-cautiousness of<.

Eq. 9 implies w-cautiousness of W : Assume E 6= Ω. Take outcomes x� y, X =

xEy, and 0 < ε < U(x) − U(y). By Eq. 9, with IU(X) = U(y), W (E) ≤ 0.5. W is

w-cautiousness.

W-cautiousness ofW implies Eq. 9: for ε > 0, {ω∈Ω : U(X(ω))> IU(X) + ε} 6= Ω

so that, by W-cautiousness, its W value does not exceed 0.5. We have proved Eq.

9.

Eq. 9 is equivalent to w-cautiousness of W , which is trivially equivalent to w-

cautiousness of<.

We have shown equivalence of Statements (i), (ii), and (iii) without the AC con-

vexity claim. We finally show that AC convexity can be added to Statement (iii).

LEMMA 16. The double-cautious model satisfies AC convexity.

PROOF. By Proposition 8, it suffices to derive pseudo-convexity of W . Assume

disjoint events A,B, nonempty to avoid triviality. If A ∪B = Ω then W (A ∪B)−
W (B) ≤ 1−W (Ac) follows trivially. Otherwise, it follows from double cautious-

ness because 0.5 then is in between. We, finally, deriveW (A)≤W (A∪B)−W (B).

It is trivial if W (A) = 0 and, hence, assume W (A)> 0. Then, by double cautious-

ness,W (B) = 0. We haveW (A∪B)−W (B) =W (A∪B)≥W (A) and we are done.

QED

The proof of Proposition 9 is done. �

PROOF OF NONCONVEXITY IN EXAMPLE 10. First, W violates convexity: take

A = [0,0.58),B = [0,0.5) ∪ [0.58,0.66). Then W (A ∪B) +W (A ∩B) =
√

0.08 + 0 <

W (A) + W (B) =
√

0.04 +
√

0.04 = 0.4, violating convexity. Further, < also vio-

lates convexity: Assume X(ω) = Y (ω) = 2 for all ω < 0.5, X(ω) = 1 for all 0.50 ≤
ω < 0.58, X(ω) = 0 for all ω ≥ 0.58, Y (ω) = 0 for all 0.50 ≤ ω < 0.58, Y (ω) = 1

for all 0.58 ≤ ω < 0.66, Y (ω) = 0 for all ω ≥ 0.66. Now CEU(X) = CEU(Y ) =

(g(0.50) − g(0)) × 2 + (g(0.58) − g(0.50)) × 1 + 0 = 0 + 0.2 + 0 = 0.2. However,
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CEU((X + Y )/2) = (g(0.66) − g(0.50)) × 1/2 =
√

0.08/2 =
√

0.02 < 0.2. Hence,

X ∼ Y � (X + Y )/2, violating convexity of<. �

PROOF OF LEMMA 11. We assume AC additivity and derive additivity. Write Ω =

{ω1, . . . , ωn}.
STEP 1 [Additivity for X and its AC−X]

Because X and−X are AC,

I(0) = I(0 + 0) = I(0) + I(0) = 0

and

0 = I(0) = I(X −X) = I(X) + I(−X),

implying I(−X) =−I(X).

STEP 2 [Comonotonic additivity for X and Y from AC additivity for X + Y and

−Y ]

For any comonotonic X and Y , X +Y and Y are comonotonic so that X +Y and

−Y are AC. Hence,

I(X) = I(X + Y − Y ) = I(X + Y ) + I(−Y ) = I(X + Y )− I(Y ).

Comonotonic additivity follows.

STEP 3 [Additivity for general X and Y by writing as sums of increasing and de-

creasing functions and then comonotonic and AC additivity pairwise]

Consider two generalX,Y . With Ω = {ω1, . . . , ωn}, we can writeX =X↑+X↓ with

X↑(ωi) weakly increasing and X↓(ωi) weakly decreasing in i, and Y = Y ↑ + Y ↓

similar. By comonotonic additivity (CA) and AC additivity (ACA):

I(X + Y )
(def)

===== I(X↑ +X↓ + Y ↑ + Y ↓)

(ACA)
====== I(X↑ + Y ↑) + I(X↓ + Y ↓)

(CA)
===== I(X↑) + I(Y ↑) + I(X↓) + I(Y ↓)

(ACA)
====== I(X↑ +X↓) + I(Y ↑ + Y ↓) = I(X) + I(Y ).
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This shows that I is additive. �

PROOF OF PROPOSITION 12. This proof uses Theorem 1.

We assume AC affinity and derive affinity under continuity or monotonicity.

The reversed implication is trivial.

We may assume 0 ∈ intD and I(0) = 0. To see this point, take a constant k∈
intD. Define D′ = D − k: D′ contains all acts resulting from subtracting k from

acts in D. Next define I ′ on D′ correspondingly: I ′(X) = I(X + k)− I(k). These

I ′ and D′ share all relevant properties, including AC, with I and D. It suffices to

prove our results for I ′ and D′. We may omit primes.

The functional I is positively homogeneous: For each 0< α< 1 and X ∈D,

I(αX) = I(αX + (1− α)0) = αI(X) + (1− α)I(0) = αI(X),

using AC of X and 0.

We next extend I to I∗ defined on the whole vector space B(Ω,F) using posi-

tive homogeneity. That is, for each X ∈ B(Ω,F) we can find α > 0 so small that

αX ∈D, and then define I∗(X) = I(αX)/α. By associativity of scalar multiplica-

tion, I∗ is well-defined (independent of the particular α chosen) and positively

homogeneous. Further, I∗ is AC affine because AC and AC affinity are compati-

ble with multiplication by a common scalar. We next derive AC additivity of I∗.

Consider AC X,Y ∈B(Ω,F). Using positive homogeneity:

I∗(X + Y ) = 2I∗(X/2 + Y/2) = 2(I∗(X)/2 + I∗(Y )/2) = I∗(X) + I∗(Y ).

AC additivity holds for I∗.

Continuity of I on D implies continuity of I∗ on B(Ω,F), and monotonicity

of I similarly extends to I∗. Hence, under continuity, I∗ is linear by Theorem 1.

Under monotonicity, I∗ is linear by Proposition 13 applied to the normalization

of I∗ (dividing it by I∗(1)). Affinity of I∗ and I follows. �

PROOF OF PROPOSITION 13. This proof uses Theorem 1.
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It is direct that I = EP implies the conditions of I . We, therefore, assume those

conditions and derive I = EP .

For any fixed finite partition, AC additivity implies linearity for the simple acts

defined on that partition. This follows from Theorem 1. Linearity follows for

all simple acts because any pair of simple acts is measurable w.r.t. a joint finite

partition. To obtain the EP representation for all simple acts, define P (E) = I(1E)

for all E, which is nonnegative by monotonicity. It uniquely determines P . We

have P (Ω) = 1 because I is normalized. Linearity implies additivity of P , and

I = EP for all simple functions.

Next, by standard integration techniques, the expectation is extended to all

bounded acts: Each can be “sandwiched” between dominating and dominated

simple acts. Its I value is the limit of the I values of the limiting simple acts, that

is, EP , as we show in the remainder of this proof. For some ε > 0 and simple acts

X and Y , assume |X(ω)− Y (ω)| ≤ ε for all ω. Then

|I(X)− I(Y )|= |I(X − Y )| ≤ I(|X − Y |)≤ I(ε)

by monotonicity, and the latter tends to 0 for ε tending to 0 by linearity of I on

simple (including constant) acts. �

PROOF OF PROPOSITION 15. This proof uses Proposition 13.

EV directly implies the other conditions. We next assume the other conditions

and derive EV. To derive AC additivity of the certainty equivalent (CE) functional

(uniquely defined given that < coincides with ≥ on outcomes), assume X,Y AC.

ThenX ∼ CE(X) impliesX+Y ∼ CE(X)+Y and Y ∼ CE(Y ) implies Y +CE(X)∼
CE(Y ) + CE(X). By transitivity, X + Y ∼ CE(X) + CE(Y ). Thus, CE is AC additive.

Further, it is monotonic and normalized. By Proposition 13, it is EP . It represents

<. �

https://econtheory.org
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