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Abstract

We study equilibrium behavior in incomplete-information games under two in-

formation constraints: seeds and spillovers. The former restricts which agents can

initially receive information. The latter specifies how this information spills over to

other agents. Our main result characterizes the equilibrium outcomes under these

constraints, without making additional assumptions about the agents’ initial infor-

mation. This involves deriving a “revelation-principle” result for settings in which

a mediator cannot communicate directly or privately with the agents. Our model

identifies which spillovers are more restrictive and which seeds are more impactful.

We apply our results to a problem of optimal organization design.
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1 Introduction

An analyst wants to predict the behavior of a group of agents who interact in a game

of incomplete information. In general, this behavior will hinge on details of the agents’

information that the analyst can hardly observe. A cautious analyst may then be reluctant

to make assumptions about this information, which comes at the cost of being left with

coarse predictions. In many practical settings, however, the analyst is not entirely in the

dark. The social context where agents interact can provide insights into what they may

know about each other’s information. For instance, the analyst may infer that an agent is

always more informed than another, like a supervisor relative to her subordinate, or that

some agents consistently share information with each other, like co-workers in an office.

Although the analyst remains agnostic about what exactly this information is, she can

leverage such observables to improve her predictions. This paper studies how to do so.

To illustrate, consider an organization that develops software products for its clients.

The software is divided into modules that are designed by different teams. These teams

need to coordinate the modules to ensure their compatibility, while also tailoring them to

the needs of each client, which are ex-ante unknown. An analyst—for example, the or-

ganization’s manager—wants to predict the probability of a coordination failure among

the teams, which may occur as a result of the information they will receive from each

client. Realistically, the manager lacks detailed knowledge of this information. Yet, she

knows the organization well. First, she knows which teams are client-facing and thus

can obtain some information about the clients’ needs. These are the only teams who can

seed information into the organization. Second, she knows which teams must report to

others and which do not and thus how the seeded information spills over to the other

teams. How does this knowledge about the organization’s structure help the manager

make better predictions?

To address these questions, we model a group of agents who interact in a game of

incomplete information. Before the game begins, some agents—referred to as seeds—

receive a signal about a payoff-relevant state. These signals then spill over from the

seeds to other agents, following the links of a spillover network. Specifically, if a path

connects one agent to another in this network, the latter will observe the signal of the

former. Finally, the agents participate in the game using all the information they have
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thus obtained. In our model, the seeds and the spillover network act as an exogenous

constraint on what the agents know about each other’s information. They restrict the set

of information structures the analyst should consider when predicting the outcome of

the game. Our main goal is to characterize the outcomes that can arise in a Bayes-Nash

equilibrium given a set of seeds and a spillover network.

The typical approach to achieve such a goal is to imagine a mediator who can flex-

ibly provide information to the agents about the state (Bergemann and Morris, 2016).

This approach is powerful when the mediator is unconstrained—i.e., when every agent

can be seeded and there are no spillovers. Rather than working with information struc-

tures, one can conveniently focus on “obedient” recommendation mechanisms, in which

each agent is recommended an action by the mediator and is willing to follow it. How-

ever, when the mediator faces seeding or spillover constraints, this approach is no longer

valid. We show that, fixing those constraints, there can be outcomes that the mediator

can induce using information structures but not using obedient recommendation mech-

anisms. To see why, note that in our setting the mediator can only directly communi-

cate with the seeds and must rely on spillovers to indirectly communicate with the other

agents. Thus, she cannot communicate directly and privately with all agents. In these

cases, the richness of information structures grants the mediator more flexibility com-

pared to the narrower class of recommendation mechanisms. As a consequence, seeding

and spillover constraints significantly complicate the analyst’s problem.

To overcome these challenges, we show how to recast the problem in a way that en-

ables the characterization of all feasible outcomes in terms of obedient-recommendation

mechanisms, despite the presence of constraints. Although more general, our approach

retains some of the analytical convenience of the unconstrained characterization of Berge-

mann and Morris (2016), including a representation in terms of linear inequalities. We

achieve this in two steps. First, we fully relax the seeding constraint by allowing the

mediator to directly convey information to all agents. At the same time, we tighten the

spillover constraint by expanding the original spillover network with new links. In The-

orem 1, we show how to expand the original network so as to exactly offset the removal

of the seeding constraint, in the sense that the set of feasible outcomes is unchanged.

Second, under these modified constraints, we show in Theorem 2 that we can character-

ize all these outcomes by focusing on a mediator who directly recommends a (possibly
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mixed) action to each agent. The recommendations must be obedient in a robust sense:

Each agent follows the recommended action conditional on knowing not only her rec-

ommendation but also the recommendations of those agents from whom there is a path

to her in the expanded network.

These two results enable us to study how equilibrium outcomes change when we mod-

ify the seeds or the spillover network. For instance, in the context of our leading exam-

ple, we may ask how the probability of a coordination failure changes if an additional

team is required to report to another—i.e., if we add a new link to the network. Adding

links can have ambiguous effects on the set of feasible outcomes. On the one hand, it

makes obedience more demanding, as some agents know more about others; on the other

hand, it can relax obedience by changing the expanded network, as the mediator can

reach the same agent through more channels and hence with a higher degree of privacy.

To characterize this trade-off, we introduce an order on seeds and networks that explic-

itly builds on the aforementioned concept of network expansions, which underpins our

notion of obedience. We then show in Proposition 1 that when the seeds and the network

become “more connected,” according to this order, the set of feasible outcomes shrinks

for all games; the converse holds as well. Thus, our order exactly characterizes when

seeding and spillover constraints become tighter. As an application of this order, we

identify conditions under which one group of agents is more impactful than another—in

the sense that, if the former group is seeded, it induces a larger set of outcomes than that

induced by the latter, for all games.

To illustrate our results, we study a problem of organization design. We consider an

effort-provision game among various teams in an organization. Its manager can choose

once and for all which teams are tasked with sourcing information from the outside

(the seeds) and which teams have to report their information to which other teams (the

spillovers). The manager’s goal is to design an organization that performs well across

all possible outcomes of the teams’ interactions as driven by the information they obtain

on a daily basis. Our exercise offers insights into when it is optimal to mandate full

transparency between teams, or to institute a “firewall” that prevents them from sharing

information, or to impose a hierarchy in which lower teams must report their information

to higher teams.1

1In practice, organizations manage information flows in starkly different ways. Examples include Nin-
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Related Literature. Our work introduces information constraints—specifically, seeding

and spillovers—in a setting that builds on Bergemann and Morris (2016). Conveniently,

our characterization of feasible outcomes reduces to theirs when these constraints are ab-

sent. Indeed, the feasible outcomes in our setting refine the set of Bayes Correlated Equi-

libria (BCE). An alternative interpretation of our contribution is to provide tools to study

“constrained” information-design problems (see Bergemann and Morris (2019) and Ka-

menica (2019) for surveys). From this perspective, our results can be useful to assess

the robustness of unconstrained solutions to the possibility that some agents share their

information. Mathevet and Taneva (2022) also characterize feasible outcomes under in-

formation constraints but focus on constraints—single-meeting schemes and delegated

hierarchies—that differ from ours. They consider strategic incentives to share informa-

tion and identify a class of games where constrained and unconstrained solutions coin-

cide. Candogan (2020) and Babichenko, Talgam-Cohen, Xu, and Zabarnyi (2022) study

optimal information structures under information spillovers. They characterize when

spillovers make finding the optimal solution computationally hard. They introduce al-

gorithms that efficiently find solutions for certain spillover networks. Finally, our seed-

ing and spillover constraints induce a particular “information hierarchy” by which each

agent is more informed than all of her sources; Brooks, Frankel, and Kamenica (2022)

provide a general characterization of these hierarchies.

In the literature on secure information transmission, Renault, Renou, and Tomala

(2014) study the problem of a sender who wishes to communicate a secret to a receiver

through a network of adversaries, while preventing the latter from learning and tamper-

ing with the secret. They identify necessary and sufficient conditions on the network

for a secure communication protocol to exist.2 Closer to our work, Renou and Tomala

(2012) and Rivera (2018) study mechanism design problems in which the communica-

tion between the mediator and the agents is strategic and occurs on a network that may

be incomplete. They observe that the revelation principle can fail. They find conditions

tendo, which imposed an information firewall between the marketing and the game-development divisions

(Brandenburger, Kou, and Burnett, 1995), and Capital One, which imposed full transparency between the

marketing and the risk-analysis divisions (Lattin and Rierson, 2007).
2Earlier work in this literature includes Dolev, Dwork, Waarts, and Yung (1993), Franklin and Wright

(2000), and Desmedt and Wang (2002).
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on the network that ensure secure communications and thus guarantee the applicability

of the revelation principle. From this perspective, our goal is opposite to theirs: We seek

to characterize feasible outcomes for networks where the revelation principle fails. La-

clau, Renou, and Venel (2024) study a game in which a sender and a receiver communi-

cate indirectly through a network of self-interested intermediaries. They identify condi-

tions under which these networks can replicate all the equilibrium outcomes achievable

through direct communication between the sender and the receiver.

Our work also relates to the literature on strategic communication in networks, e.g.,

Hagenbach and Koessler (2010), Galeotti, Ghiglino, and Squintani (2013), and Calvó-

Armengol, Marti Beltran, and Prat (2015). These papers study agents who receive ex-

ogenous signals and then strategically communicate with each other before participating

in a final incomplete-information game. They seek to characterize the resulting commu-

nication network, which is an equilibrium object. In general, this is a challenging prob-

lem, which they tackle by focusing on specific games and initial information structures.

Our approach differs in that we consider nonstrategic communication but allow for arbi-

trary games and information structures.

Finally, our main application is inspired by a literature that studies information flows

within organizations (e.g., see seminal contributions of Radner (1992), Radner (1993),

and Bolton and Dewatripont (1994)). In this tradition, Dessein and Santos (2006), Des-

sein, Galeotti, and Santos (2016), and Matouschek, Powell, and Reich (2023) study a

team-theoretic model and assume the manager can dictate the information flows. In these

papers, the optimal organization design is nontrivial due to external constraints, such as

the costs of establishing a link. In our case, it is nontrivial due to incentive conflicts be-

tween teams. Additionally, these papers study organization design under a specific ini-

tial information structure, which is given exogenously. By contrast, we take a robust ap-

proach. Our manager does not know which distribution describes the teams’ informa-

tion and aims to design an organization that performs adequately across all of them.
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2 Model

We are interested in studying the behavior of a group of players who interact in a game

of incomplete information. Before the game begins, some players (the seeds) privately

receive a signal about the state of the world. These signals then spill over to other players

following the links of a given network. Finally, using all information obtained, either

from the initial signal or from others, players interact in the game.

Let I be a finite set of players andΩ be a finite set of states of the world. Players have a

common, full-support, prior belief about the state, denoted by µ ∈ ∆(Ω). An information

structure is a pair (T, π) consisting of a finite signal space T = ×i∈ITi and a function

π : Ω → ∆(T ). For convenience, we assume that each Ti is a subset of an infinite set T̄

and denote the set of all information structures by P.3

The information that players have before playing the game is constrained in two ways.

First, only the players in the set S ⊆ I—called seeds—can receive initial information.

We model this by requiring that the initial information structure (T, π) satisfy |Ti| = 1

for all i < S . We denote the set of such information structures by PS ⊆ P. Second, a

spillover network N ⊆ I2 determines how the initial signal realizations spill over to other

players. When ( j, i) ∈ N, there is a link from j to i, and we assume j’s signal spills over

to i. More generally, we assume that player i learns j’s signal t j if there is a path from

j to i in the network N.4 In this case, we call j a source of i. We denote by Ni ⊆ I the

set that contains i and all of i’s sources. Therefore, given any signal profile t from (T, π),

player i learns tNi := (t j) j∈Ni .

Hereafter, we refer to the pair (N, S ) as a network–seed system. Throughout, we main-

tain the assumption that such a system is connected, in the sense that every player has at

least one seeded source, i.e., Ni ∩ S , ∅ for all i. This implies that every player can re-

ceive some information, either directly or indirectly.5

3The restriction Ti ⊂ T̄ is expositional. It guarantees that the set P is well-defined, thus avoiding set-

theoretic issues related to self-referential sets (i.e., Russell’s paradox).
4A path from j to i in the network N is a sequence of players (ι1, . . . , ιm) such that ι1 = j, ιm = i, and

(ιk, ιk+1) ∈ N for all k = 1, . . . ,m − 1.
5We discuss how to relax this assumption in Online Appendix D.1, which is available in Galperti and

Perego (2023).
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A network–seed system (N, S ) transforms every initial information structure (T, π) ∈

PS into a final one (T ′, π′) ∈ P, which is defined by T ′i = × j∈NiT j for all i and, for all ω,

π′(t′|ω) = π(t|ω) when t′i = tNi for all i. Denote by P(N,S ) ⊆ P the set of final information

structures that can arise under the system (N, S ).

Given a final information structure (T ′, π′), the players then interact in a game. Let Ai

be a finite set of actions for player i and let her utility function be ui : A×Ω→ R, where

A = ×i∈IAi. Let G = (Ω, µ, (Ai, ui)i∈I) denote the base game. The base game G and a final

information structure (T ′, π′) ∈ P(N,S ) define a Bayesian game (G, (T ′, π′)). Given such a

game, we denote a strategy of player i by σi : T ′i → ∆(Ai) and its Bayes–Nash equilibria

by BNE(G, (T ′, π′)).

The main goal of this paper is to characterize the set of all possible Bayes–Nash equi-

libria of a base game G given the restrictions imposed by a network–seed system (N, S )

on what information the players have. In other words, we characterize the equilibria that

can arise from any information structure (T ′, π′) ∈ P(N,S ).

Discussion. Before proceeding, it is instructive to consider two extreme cases of

network–seed systems. First, suppose there are no information spillovers and every

player is a seed; that is, N = ∅ and S = I. Clearly, this system does not constrain the

final information structure in any way. In particular, it allows for arbitrary correlation

between the players’ signals. In this case, the set of possible Bayes-Nash equilibrium

outcomes is equal to the set of Bayes correlated equilibria (BCE) defined in Bergemann

and Morris (2016). Conversely, suppose that the network is complete and at least one

player is seeded; that is, N = I2 and S , ∅. This system only allows for final informa-

tion structures that are “public,” in the sense that the players’ signals are perfectly corre-

lated. In this case, the only possible Bayes–Nash equilibrium outcomes are those corre-

sponding to public information. This paper considers any network–seed system defined

by combinations of N and S between these extreme cases, which is a disciplined way of

restricting how players’ information is correlated. While arbitrary restrictions may ren-

der the equilibrium analysis intractable, we show in the next section that the restrictions

imposed by network–seed systems induce a refinement of the set of BCE that preserves

some of its tractability.
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3 Constrained Feasible Outcomes

This section characterizes the equilibrium behavior in a base game G that is feasible

given a network–seed system (N, S ).

We begin by defining the notion of a feasible outcome. Fix a final information struc-

ture (T ′, π′) ∈ P(N,S ), an equilibrium of the ensuing Bayesian game, and a state ω. Note

that each realization t′ ∈ T ′ induces an equilibrium profile of possibly mixed actions

of the players. Let A := ×i∈I∆(Ai) be the set of mixed-action profiles and α a generic

element. Since t′ is random and T ′ is finite, the information structure induces a finite-

support distribution over these mixed-action profiles. We call the mapping from states

to such distributions an “outcome.”

Definition 1 (Outcome). An outcome for G is a mapping x : Ω → ∆(A), where x(·|ω)

has finite support for every ω ∈ Ω.

An outcome is feasible if it can arise as equilibrium play given some initial information

structure and how it is transformed by the system (N, S ).

Definition 2 (Feasible Outcome). An outcome x is feasible for a base game G and a

network–seed system (N, S ) if there is an information structure (T ′, π′) ∈ P(N,S ) and an

equilibrium σ ∈ BNE(G, (T ′, π′)) such that

x(α|ω) =
∑
t′∈T ′

π′(t′|ω)
∏
i∈I

I{σi(t′Ni
) = αi}, ∀ ω ∈ Ω, α ∈ A, (1)

where I{·} is the indicator function. Let X(G,N, S ) denote the set of feasible outcomes

for G and (N, S ).

The goal of this section is to characterize X(G,N, S ). As observed earlier, when N = ∅

and S = I, the network–seed system imposes no constraints on the final information

structure. In this case, X(G,N, S ) is the set of BCE outcomes, which can be conveniently

characterized via incentive-compatible pure-action recommendations that a mediator

sends directly to the players (Bergemann and Morris (2016)). In general, we will show

that the network–seed system imposes constraints that refine the set BCE outcomes.

However, the constraints imposed by the network–seed systems make the character-

ization of X(G,N, S ) challenging. The standard approach based on recommendation
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mechanisms is not directly applicable because the mediator may be unable to commu-

nicate privately (if N , ∅) or directly (if S ⊊ I) with some players. Section 3.1 il-

lustrates these challenges. To address them, we develop an alternative approach, which

has two parts. First, we show that any network–seed system is equivalent to an auxil-

iary one that relaxes the seeding constraint but features additional information spillovers

(Section 3.2). Second, we characterize all feasible outcomes for this auxiliary system

in terms of mixed-action recommendation mechanisms that are robust to information

spillovers (Section 3.3).

3.1 Challenges with the Standard Approach

The constraints imposed by a network–seed system create two challenges when trying

to characterize feasible outcomes in terms of incentive-compatible, pure-action recom-

mendations. The first is due to information spillovers: When N , ∅, restricting the me-

diator to recommending only pure actions is with loss of generality. The following ex-

ample illustrates this in intentionally simple terms.

Example 1. Consider a two-player, two-action, “matching pennies” game with com-

plete information (i.e., |Ω| = 1). Suppose S = I. In the unique feasible outcome, each

player mixes uniformly and independently between the two actions. With no informa-

tion spillovers (N = ∅), the mediator can replicate this outcome by flipping a coin on

behalf of each player and recommending to her a different pure action for each side of

her coin. Such recommendations are obedient. By contrast, if the spillover network is

N = {(1, 2), (2, 1)}, no incentive-compatible, pure-action recommendation mechanism

can replicate the unique feasible outcome of the game. Given N, any recommended ac-

tion would become common knowledge, causing at least one of the players to disobey

the mediator’s recommendation. △

Without information spillovers, it is well-known that the mediator can always random-

ize on behalf of the players, so focusing on pure-action recommendations is without loss.

This is no longer true with information spillovers because recommendations may not be

private. To address this challenge, we allow the mediator to recommend mixed actions,

thus delegating some of the randomizations to the players. Therefore, in our setting, a
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recommendation mechanism maps states into distributions over mixed-action profiles.

Conveniently, such mechanisms coincide with how we defined outcomes (Definition 1).

The second challenge when trying to characterize feasible outcomes using recommen-

dation mechanisms is more substantive. Due to the seeding constraint, the mediator can-

not directly recommend actions to non-seed players but has to indirectly deliver such

recommendations through the seeds (who then observe them). As a consequence, there

can be outcomes the mediator can induce with information structures but not with the

narrower class of obedient recommendation mechanisms.

Example 2. As in Figure 1(a), let I = {1, 2, 3}, S = {1, 2}, and N = {(1, 3), (2, 3)}. Let

the state ω = (ω1, ω2) ∈ Ω = {0, 1}2 be the outcome of two independent tosses of a

fair coin. Each player wants her action to match the state: A = Ω and ui(ai, a−i;ω) =

−
∑

k(ωk − aik)2. Consider an initial information structure (T, π) ∈ PS such that, for all

ω, player 1 learns ω1 and player 2 learns ω2. Given N, player 3 always learns ω. The

following is then a feasible outcome: a1 = (ω1, 0), a2 = (0, ω2), and a3 = (ω1, ω2)

for all ω. Note that keeping players 1 and 2 uncertain about a3 is necessary to sustain

this outcome. Therefore, an incentive-compatible recommendation mechanism that is

constrained by (N, S ) cannot achieve this outcome. The mediator would need to deliver

player 3’s recommendation via, say, player 1. This would reveal information to player

1, who then would want to deviate from the recommended a1 = (ω1, 0) when ω2 = 1. △

Example 2 illustrates how a non-seed player j can receive from each of her sources

only part of the information determining her behavior. By delivering j’s recommendation

through her sources, the mediator may reveal too much information to them, thereby

changing their behavior. In other words, the language of recommendations is not rich

enough to replicate all feasible outcomes.

3.2 Network Expansion and Outcome Equivalence

This section explains how we address the challenge illustrated by Example 2. We show

that, for any network–seed system (N, S ), there is an auxiliary system (N′, I) that allows

all players to be seeded and yet, it induces the same outcomes as (N, S ). To guarantee that

(N, S ) and (N′, I) are outcome-equivalent, we need to appropriately tighten the spillover
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Figure 1: Three network–seed systems. Seed players are depicted in gray. An arrow

from i to j indicates that (i, j) ∈ N, i.e., i’s information spills over to j.

constraint by adding links to N, i.e., N′ ⊇ N. We will show that, instead of focusing

on (N, S ), we can equivalently study (N′, I) and let the mediator directly recommend

actions to each player, without the need for intermediaries. We introduce the logic of

this construction in two illustrative steps and then present the general treatment.

The first step illustrates that, for some (N, S ), expanding S to I does not change the fea-

sible outcomes (i.e., X(G,N, S ) = X(G,N, I)). For example, consider again the system

(N, S ) of Figure 1(a). The mediator can deliver player 3’s recommendation via players 1

and 2 in such a way that neither 1 nor 2 learns that recommendation. In other words, it

is as if the mediator could communicate directly with player 3, even if she is not a seed.

This can be done via the standard technique of “secret sharing” (Shamir, 1979), an in-

stance of which appears in the next example.6

Example 3. Let (N, S ) be as in Figure 1(a). Let Ω = {0, 1}. We construct an initial

information structure (T, π) ∈ PS such that both t1 and t2 are uninformative, while the

pair (t1, t2) fully reveals ω. Let T1 = T2 = {0, 1} and π be such that t1 is distributed

uniformly and independently of ω and t2, whereas t2 = 1 if and only if ω + t1 = 1.

Clearly, t1 is uninformative. Signal t2 is uninformative because, for every ω, t2 has an

equal chance of being 0 or 1. Therefore, players 1 and 2 learn nothing about ω from

their signals. Instead, player 3 observes (t1, t2) and learns the state: ω = 1 if and only if

t1 , t2. In words, t2 is an encrypted version of ω, and t1 is the key to deciphering it. △

6These techniques are commonly used in computer science and economics, see, e.g., Dolev, Dwork,

Waarts, and Yung (1993), Franklin and Wright (2000), and Desmedt and Wang (2002), Renou and Tomala

(2012), Renault, Renou, and Tomala (2014), and Rivera (2018).
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Unfortunately, it is not true that for all (N, S ) we can expand S without changing the

set of feasible outcomes. The next example illustrates this problem but also indicates a

solution.

Example 4. As in Figure 1(b), let I = {1, 2, 3}, S = {1, 2}, and N = {(1, 3), (2, 3), (2, 1)}.

The information structure we constructed in the previous example no longer allows

player 3 to learn something player 1 does not. Therefore, for some G, adding player

3 to the seed set would allow the mediator to achieve outcomes that are infeasible un-

der (N, S ), i.e., X(G,N, S ) ⊊ X(G,N, I). For example, under (N, I) the mediator can re-

veal the state to 3 while leaving 1 in the dark, which is unfeasible under (N, S ). How-

ever, imagine that we not only add player 3 to S , but also add link (3, 1) to N (see Fig-

ure 1(c)). Let us denote this expanded network by NS . Under (NS , I), players 1 and 3

are both seeded; yet, since (3, 1) ∈ NS , they always share the same final information, as

they did in the original (N, S ). One may then expect that (N, S ) and (NS , I) induce the

same outcomes for all G, as we will show shortly. △

We now formalize and generalize these ideas.

Definition 3 (S-expansion). The S-expansion of N is the network NS that contains N and

is obtained as follows: If i < N j, we add link (i, j) to N if and only if Ni ∩ S ⊆ N j.

To fix ideas, note that the S -expansion leaves unchanged the network–seed system

depicted in Figure 1(a), whereas it transforms the one of Figure 1(b) into that of Figure

1(c).

The logic of Definition 3 is that if all seeded sources of i (i.e., Ni ∩ S ) are also sources

of j (i.e., Ni ∩ S ⊆ N j) , then j must infer all the information i could ever get. Adding a

link from i to j should not affect j’s behavior, and thus the set of feasible outcomes (i.e.,

X(G,N, S ) = X(G,NS , S )).

Our first main result follows. It shows that, for all base games G, we can fully relax the

seeding constraint provided that we appropriately tighten the spillover constraint. This

equivalence is crucial for the rest of our analysis.

Theorem 1 (Equivalence). Fix a base game G and a network–seed system (N, S ). The

set of feasible outcomes for G under (N, S ) is equal to the set of feasible outcomes for G

under the auxiliary system (NS , I)—i.e., X(G,N, S ) = X(G,NS , I).
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In other words, to characterize the set of feasible outcomes, we can allow the medi-

ator to communicate directly with all players, even those not in S . To do so, how-

ever, we must consider a richer class of spillovers, specifically those defined by the S-

expansion of N. Theorem 1 constitutes one side of the “revelation principle” result that

we will establish in the next subsection. Its proof builds on the insights discussed above.

We first show that the S-expansion does not change the seeded sources of any player

and, hence, the information on which she can ultimately act. Therefore, X(G,N, S ) =

X(G,NS , S ). We then show by induction that under NS we can expand S to I, i.e.,

X(G,NS , S ) = X(G,NS , I). The key step in the induction argument consists in showing

that X(G,NS , S ) = X(G,NS , S ∪ { j}), where j has a direct source belonging to the seed

set—formally, ∃ i ∈ S such that (i, j) ∈ NS . This requires showing that the outcomes

induced by an initial information structure (T, π) ∈ PS∪{ j} can also be induced by an ap-

propriately defined initial information structure (T̂ , π̂) ∈ PS . In the latter, we replace

each signal realization t j from the former by breaking it into as many pieces as there are

seeded sources of j, so that each of j’s seeded sources receives exactly one piece. Using

a randomization similar to that of Example 3, we ensure that a player i learns t j if and

only if i = j or j is a source of i, just as under (T, π).

3.3 Spillover-Robust Obedience

We now describe the second part of our approach. Using Theorem 1, we can restrict at-

tention to network–seed systems where all players are seeded. We show that it is pos-

sible to characterize the feasible outcomes for such systems via obedient recommenda-

tions that are robust to information spillovers.

To do so, we first need to introduce some notation. Define the mixed-action extension

of the utility function as ui(αi, α−i;ω) =
∑

a∈A ui(a;ω)
∏

j∈I α j(a j), for all α ∈ A. Given

an outcome x : Ω → ∆(A), define its supported mixed-action profiles as supp x = {α :

∃ω ∈ Ω s.t. x(α|ω) > 0} ⊆ A. LetANi = × j∈Ni∆(A j) and define the projection of supp x

onANi as suppNi
x = {αNi ∈ ANi : ∃α−Ni ∈ A−Ni s.t. (αNi , α−Ni) ∈ supp x}.7

Definition 4 (Spillover-Robust Obedience). An outcome x is spillover-robust obedient

7Recall that Ni includes i and all of her sources, i.e., all j for which there exists a path from j to i.

14



for a base game G given a spillover network N if, for all i and αNi ∈ suppNi
x,∑

ω∈Ω
α−Ni ∈ supp−Ni

x

(
ui(αi, α−i;ω) − ui(ai, α−i;ω)

)
x(αi, α−i|ω)µ(ω) ≥ 0, ∀ ai ∈ Ai. (2)

To interpret condition (2), imagine dividing both sides by the total probability that αNi

arises under x and µ. The resulting condition requires that after observing αNi—namely,

the recommendations for herself and her sources—player i be willing to play αi rather

than deviating to action ai.

This leads to our second main result.

Theorem 2 (Feasibility). An outcome x is feasible for a base game G and a network–

seed system (N, I)—i.e., x ∈ X(G,N, I)—if and only if x is spillover-robust obedient for

G given N.

Robust obedience captures the basic economic trade-off caused by information spillovers.

The signal for each player not only directly influences her beliefs—like in Bergemann

and Morris (2016)—but can also influence the beliefs of her followers in the network.

This curbs the scope for keeping them uncertain about that player’s behavior. Thus,

spillovers render it harder—in the sense of incentive compatibility captured by (2)—to

implement joint behaviors that require some dependence on ω and mutual uncertainty

among players.

The intuition for Theorem 2 is as follows. Suppose x is feasible. Note that by learning

her sources’ signals through N, player i also learns the signals of her sources’ sources and

so on. Since in equilibrium i knowsσ, she can predict the mixed action of all her sources.

In equilibrium, she must best respond to this behavior as well as to her belief about all

other players’ behavior and the state. But this property is robust obedience. Conversely,

suppose x is robust obedient. We can view the outcome itself as an information structure,

where T = supp x and π = x : Ω→ ∆(A). It is then a BNE for each player to follow her

recommendation, given what she learns through the spillovers and given that the others

follow their recommendations.

The combination of Theorem 1 and 2 provides a “revelation-principle” characteriza-

tion of the feasible outcomes of game G under any system (N, S ).

Corollary 1. x ∈ X(G,N, S ) if and only if x is spillover-robust obedient for G given NS .
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This result allows us to study feasible outcomes as if the mediator could directly recom-

mend to each player how to play in G, subject to appropriately defined obedience con-

straints.

3.4 Feasible Outcomes in Pure Strategies

The linearity of the spillover-robust obedience constraints opens the door to using linear-

programming methods to characterize feasible outcomes. The application of these meth-

ods, however, is complicated by the fact that the characterization may require allow-

ing for recommendations of mixed actions. As a result, the linear program induced by

spillover-robust obedience has an infinite-dimensional nature: While the outcome x must

have finite support (Lemma 1 in Appendix A.1), the set of mixed-action profiles that

could be potentially supported is infinite. Computationally, this can make the linear pro-

gram hard to solve.8

To address this concern, we can use Theorem 1 and 2 to offer an alternative character-

ization of feasible outcomes. This characterization, while more restrictive, is computa-

tionally simpler and, thus, suitable for applications. Imagine that rather than being inter-

ested in the entire set of feasible outcomes X(G,N, S ), the analyst only wants to charac-

terize outcomes that are “feasible in pure strategies.” That is, specializing Definition 2,

the analyst is interested in outcomes that are induced by an initial information structure

and a pure-strategy BNE. We denote the set of such outcomes by Xpure(G,N, S ). The

next result characterizes Xpure(G,N, S ) in terms of pure-recommendation mechanisms,

that is, mechanisms that only recommend pure actions to the players.

Corollary 2. Let x be a pure-recommendation mechanism. Then, x ∈ Xpure(G,N, S ) if

and only if x is spillover-robust obedient for G given NS .

Since this alternative characterization relies on pure-recommendation mechanisms, it

is computationally tractable because the set of pure actions is finite, and the support

of the mechanisms must belong to this set. In particular, an optimization over the set

8Lemma 1 in Appendix A.1 shows that it is without loss of generality to focus on outcomes whose

support is no larger than a finite exogenous bound, which depends only on A. This property is useful as it

implies, for instance, that maximizations over X(G,N, S ) admit a solution (see Corollary 4). Nonetheless,

the aforementioned dimensionality problem persists.
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Xpure(G,N, S ) amounts to solving a standard, finite-dimensional, linear program. The

characterization of Corollary 2 can be useful in applied work, where the focus on pure-

strategy equilibria is common.9 Additionally, this characterization suggests that check-

ing whether Xpure(G,N, S ) = X(G,N, S ) is a useful step to achieve a characterization that

is both general and, via Corollary 2, computationally simple. Section 4.3 showcases an

application in which this is the case.

4 The Effects of Network–Seed Systems

In this section, we put our theorems to work and analyze several applications. Sec-

tion 4.1 studies how feasible outcomes change as we modify the seeding and spillover

constraints. Building on this, Section 4.2 proposes a notion of “impact” of a group of

players and offers insights into optimal seeding. Finally, Section 4.3 applies our results

to study a problem of organization design.

4.1 More-Connected Systems

What happens to the set of feasible outcomes when the network–seed system changes,

e.g., when new players join the seed set S or new links form in the network N? These

changes can give rise to nontrivial trade-offs. For instance, suppose S ⊊ I. Richer

spillovers can curb the mediator’s ability to influence players’ behavior, shrinking the set

of feasible outcomes; but they can also open new channels for the mediator to reach the

players, expanding the set of feasible outcomes. To organize these trade-offs, we intro-

duce the notion of “more-connected” network–seed systems, building on our previous

notion of network expansion.

Definition 5. (N, S ) is more connected than (N̂, Ŝ )—denoted by (N, S ) ⊵ (N̂, Ŝ )—if

i’s sources in N̂ Ŝ are also i’s sources in NS for all i ∈ I; that is, if N̂ Ŝ
i ⊆ NS

i for all i ∈ I.

This order accounts for the constraints imposed by both the information spillovers

and the limited seeds. To build intuition, suppose first that S = Ŝ = I. In this case,

9Note that Xpure(G,N, S ) can be empty (see Example 1), which can be easily checked with linear-

programming methods. In this case, any feasible outcome must involve some mixed recommendation.
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Figure 2: Network–seed systems that are not ranked

the expansions of N and N̂ are equal to the original networks: NS = N and N̂ Ŝ = N̂.

Therefore, (N, I) is more connected than (N̂, I) if N̂i ⊆ Ni for all i. For any base game

G, fewer outcomes should then be feasible under (N, I) than (N̂, I), as in the former

each player observes the recommendations sent to a larger set of other players. That

is, consider a player i for which N̂i ⊊ Ni. The recommendations for this player need to

satisfy more constraints: Under (N̂, I), she may not always know the behavior of players

in Ni \ N̂i, while under (N, I) she does. This greater ability to adjust to what other players

do renders obedience more demanding, shrinking the set of feasible outcomes. Consider

now the case of S ⊊ I. To learn about the set of feasible outcomes, it is no longer

sufficient to check whether N̂i ⊆ Ni for all i. For example, the systems in Figure 2 satisfy

N̂i ⊆ Ni for all i, yet Example 3 indicates there could be outcomes under (N, S ) that are

not feasible under (N̂, S ). This suggests that, in addition to the spillovers N, we need

to consider the informational role played by the seeds S . Definition 5 does so by using

the notion of network expansion. As it turns out, this order exactly characterizes when

changes in the network–seed system shrink the set of feasible outcomes.

Proposition 1. X(G,N, S ) ⊆ X(G, N̂, Ŝ ) for all G if and only if (N, S ) ⊵ (N̂, Ŝ ).

When a network–seed system becomes more connected in the sense of Definition 5,

“local” information received by the seeds can more easily spread “globally.” This shrinks

the set of equilibria that can be achieved, irrespective of the game being played.10

Finally, we clarify how Definition 5 relates to the primitives of our model.

Proposition 2. (N, S )⊵(N̂, Ŝ ) if and only if N̂i∩Ŝ ⊆ N̂ j implies Ni∩S ⊆ N j for all i, j ∈ I.

10Related to this, it can be shown that (N, S ) ⊵ (N̂, Ŝ ) if and only if (N, S ) “better aggregates” the

information received by the players. We formalize this point in Online Appendix D.2, which is available

in Galperti and Perego (2023).
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Figure 3: S = {3, 4} is more impactful than S ′ = {1, 2}.

Intuitively, if in (N̂, Ŝ ) all seeded sources of player i are also sources of player j, then

j knows i’s information. This should also be true in a more connected system (N, S ).

Therefore, in (N, S ) either i is already a source of j, or all seeded sources of i must again

be sources of j.

4.2 Seeds’ Impact

When is a group of players more impactful than another, in the sense of inducing a larger

set of feasible outcomes for a given game? We can study this question through the lens

of our model and develop a notion of group impact. More precisely, let us fix a spillover

network N. We would like to know when a set of seeds is more impactful than another

set in the following sense:

Definition 6 (Impact). Fix N. S is more impactful than S ′ if X(G,N, S ) ⊇ X(G,N, S ′)

for all G.

In other words, S is more impactful than S ′ if, for any base game, nothing that could

occur under (N, S ′) is precluded under (N, S ). This notion of impact is absolute: It cannot

depend on the details of the strategic interactions among players, but can only depend on

the information constraints induced by the systems (N, S ) and (N, S ′). It is easy to see

that if S ⊇ S ′, then S is more impactful than S ′. However, S and S ′ can be ranked even

if S ′ is not included in S . The next result provides a tight characterization of these cases.

Corollary 3. Fix N. S is more impactful than S ′ if and only if (N, S ′) ⊵ (N, S ).

The question of which seed set is more impactful boils down to which leads to a less

connected system. For example, consider Figure 3. On the left panel, S ′ = {1, 2} and
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NS ′ = I2; on the right panel, S = {3, 4} and NS ⊊ I2. Therefore, (N, S ′) ⊵ (N, S ) and

players 3 and 4 are more impactful than players 1 and 2.

This result has implications for the design of optimal network–seed systems. For

example, a manager may need to choose which divisions in an organization should be

assigned the task of obtaining outside information, e.g., by interacting with the client.

This consists of choosing the set S . This choice can depend on complex aspects of the

organization (such as the incentives of its members—i.e., G). However, if the manager

can establish that divisions in S are more impactful than divisions in S ′, then her choice

can be simplified. For instance, suppose the manager wants to make a decision that

performs well in the worst-case scenario (i.e., the worst feasible outcome, under some

objective). In that case, she would prefer the least impactful divisions, i.e., S ′, as they

can induce only a subset of the outcomes that can be induced by S . We will analyze a

related problem of optimal design in the next subsection.

This perspective is also related to the “seeding problem,” which has received consider-

able attention in the network literature—in economics and beyond.11 Similarly to this pa-

per, this literature has introduced several notions of nodes’ impact (or influence) that de-

pend only on properties of the network N (e.g., centrality). However, unlike this paper—

which focuses on all feasible outcomes for all games—this literature has typically fo-

cused on specific games or specific objectives (e.g., maximizing diffusion). Unsurpris-

ingly, our notion of impact can disagree with notions based on network centrality. As a

simple example, in Figure 4, player 2 is strictly more central than player 1 according to

Bonacich centrality, but players 1 and 2 are equally impactful according to our notion.

2
43

1

2
43

1

Figure 4: Seeds’ Impact and Bonacich Centrality

11See, for example, Morris (2000), Ballester, Calvó-Armengol, and Zenou (2006), Banerjee, Chan-

drasekhar, Duflo, and Jackson (2013), Akbarpour, Malladi, and Saberi (2018), Galeotti, Golub, and Goyal

(2020), and Sadler (2020). Valente (2012) provides a review of the literature outside economics.
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4.3 An Application to Organization Design

The last two results offered absolute comparisons of network–seed systems that hold

independently of the specifics of the base game. In some cases, however, an analyst may

be interested in a particular base game and have a specific objective in mind to further

refine the ranking of network–seed systems. For instance, she may want to identify

which system guarantees the highest probability that an action profile is played. We can

use our results to study such problems.

To illustrate, fix a base game G and let v : Ω × A → R+ be the objective function the

analyst uses to evaluate outcomes. Given a system (N, S ), let the expected value of v

given an outcome x ∈ X(G,N, S ) be

Ex(v) =
∑

α ∈ supp x
ω ∈ Ω, a ∈ A

v(a, ω)α(a)x(α|ω)µ(ω).

The analyst may be interested in computing the highest (or lowest) value of Ex(v) across

all feasible outcomes. This problem has a linear-programming formulation due to the

structure of X(G,N, S ) as characterized by Theorem 2.12 Moreover, this problem offers

another criterion for ranking network–seed systems. This is useful in applications, as

illustrated by the next example.

Consider the manager (the analyst) of an organization with two divisions (the players),

denoted by I = {1, 2}. On a daily basis, each division has to perform a distinct task.

Division i chooses whether to exert observable effort in its task, denoted by ai ∈ {y, n}.

The cost of effort, denoted by ci(ω), depends on both the division’s task and the state

of the environment where the organization operates: ω ∈ {B,H}, where B stands for

“benign” and H for “hostile.” Suppose that if ω = H, both tasks are equally hard to

perform and ci(H) = 2 for both i. Instead, if ω = B, the task of division 1 is easier to

perform: ci(B) = ci, where 0 < c1 < c2 < 1. Exerting no effort costs zero. Division i

gets a bonus of 1 if and only if it exerts effort (ai = y). In addition, suppose each division

likes to stand out in the eyes of the manager so that, if both exert effort, then each suffers

12Information design is an example of this problem. In this paradigm, it is as if an information designer

could choose to implement the outcome that maximizes Ex(v). Relative to the information design liter-

ature, the novelty of our setting is that the designer cannot freely choose any information structure in P.

Instead, she is constrained by the network–seed system to choose in P(N,S ).
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a2 = y a2 = n

a1 = y 1 − ε − c1 , 1 − ε − c2 1 − c1, 0

a1 = n 0 , 1 − c2 0 , 0

ω = Benign

a2 = y a2 = n

−1 − ε , −1 − ε − 1 , 0

0 , −1 0 , 0

ω = Hostile

Table 1: Effort-Game Payoffs

a small disutility ε.13 Table 1 summarizes these payoffs. Before choosing whether to

exert effort, the divisions obtain information about ω; in the language of our model, they

are both seeds, S = I.

The manager would like each division to exert effort, which we can capture with the

function v(a1, a2, ω) =
∑

i I{ai = y} for all ω. The manager can design her organization

to incentivize effort provision. In particular, she can specify whether one division has

to share its information with the other or not (the spillover network). If N = ∅, she in-

stitutes a “firewall”: No information can leak between divisions. If N = {(1, 2), (2, 1)},

she mandates full transparency: All information must be shared between divisions. If

N = {(i,−i)}, she places division i under the oversight of division −i so that the latter au-

tomatically observes the former’s information. Which organizational design best serves

the manager’s goals?14

If the manager is reluctant to make assumptions about the information the divisions

will obtain, she may choose a network N that performs well across many different fea-

sible outcomes. For example, a pessimistic manager may want to choose N that maxi-

mizes Ex(v) under the worst-case feasible outcome. In this case, she would find it opti-

13Specifically, 0 < ε < min{1 − c2, (c2 − c1)/(2 − c2)}. Since ε > 0, effort provision is a strategic

substitute. The case of strategic complements, ε < 0, can be analyzed following similar steps.
14This question stems from a literature in organizational economics that studies how a manager should

design the information flows among the divisions of an organization (see, e.g., Dessein and Santos (2006),

Dessein, Galeotti, and Santos (2016), and Matouschek, Powell, and Reich (2023)). We depart from this

literature in two ways: we consider incentive conflicts between the divisions and take a robust approach

by making minimal assumptions about what initial information divisions have.
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mal to mandate full transparency (i.e., N = {(1, 2), (2, 1)}), as it induces the smallest set

of outcomes by Proposition 1. Conversely, an optimistic manager may want to choose N

that maximizes Ex(v) under the best-case feasible outcome. In this case, she would find

it optimal to institute a firewall (i.e., N = ∅), as it induces the largest set of outcomes by

Proposition 1. More generally, the manager may want to use a more flexible max-min

criterion (see, e.g., Ghirardato, Maccheroni, and Marinacci (2004)):

γ max
x∈X(G,N,S )

Ex(v) + (1 − γ) min
x∈X(G,N,S )

Ex(v), (3)

where 0 < γ < 1. In this case, Proposition 1 no longer comes to the rescue and find-

ing the optimal network requires characterizing the set X(G,N, I). To do so, we can

use Theorem 2 to derive the set of feasible outcomes X(G,N, I) for each N. Analyti-

cally, this is complicated by the fact that the set of mixed-action recommendations has

an infinite-dimensional nature. Yet, we make progress by first showing that X(G,N, I) =

Xpure(G,N, I) for each N (see Appendix C.5). That is, it is without loss of generality to

focus on pure-action recommendations and, thus, we can use Corollary 3.4 to tractably

characterize X(G,N, I). After doing so, we can then project this set on the two dimen-

sions that matter for the manager, namely the probability that each division exerts ef-

fort: Pr(ai = y) =
∑
ω,a−i

x(ai = y, a−i|ω)µ(ω) for i ∈ I. Figure 5 shows the resulting

projections for different prior probabilities that the environment is benign: µ(B) = 1/2

(left panel) and µ(B) = 5/6 (right panel). Appendix C contains the formal derivations of

these projections.

To gain intuition, let us discuss a few properties of these sets. First, the sets corre-

sponding to the full and empty networks are nested as a consequence of Proposition 1.

That result, however, does not rank the other two networks, {(1, 2)} and {(2, 1)}. Second,

the sets in the two panels are “flipped” because, when the divisions get no information,

in the unique equilibrium of the ensuing game they exert effort if and only if the prior

µ(B) is high. Third, there is a trade-off between increasing Pr(a1 = y) and Pr(a2 = y)

along the boundaries of these sets due to strategic substitutability (ε > 0). Lastly, when

the prior is low (resp. high) network N = {(2, 1)} shrinks the feasible set more (resp.

less) than N = {(1, 2)} does. Since c2 > c1, inducing a2 = y (resp. a1 = n) requires a

more informative signal, which when leaked constrains behavior more.

Figure 5 shows the range of outcomes that can occur under each organization design.
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Figure 5: Feasible effort probabilities under different priors and networks. Left panel:

N = ∅: A+B+C+D; N = {(1, 2)}: A+B+C; N = {(2, 1)}: A+B; N = I2: A. Right

panel: N = ∅: A+B+C+D; N = {(1, 2)}: A+B; N = {(2, 1)}: A+B+C; N = I2: A.

This figure was drawn using parameters c1 = 0.20, c2 = 0.50, and ε = 0.19. The scale

has been modified to enhance the qualitative differences between the regions.

When µ(B) is small (Figure 5, left panel), the manager then prefers N = ∅ to N = {(1, 2)}

and the latter to either N = {(2, 1)} or N = {(1, 2), (2, 1)}. When µ(B) is large (Figure 5,

right panel), she instead prefers N = {(1, 2), (2, 1)} or N = {(1, 2)} to N = {(2, 1)} and the

latter to N = ∅. The reason is twofold. First, due to strategic substitutability, knowing

that division −i will (not) exert effort weakens i’s incentives to (not) exert effort. Second,

since the manager cares only about effort (and not the state), the best scenario is when

each division gets just enough positive news to weakly prefer exerting effort. However,

this threshold is higher for division 2, which renders spillovers of good news from 2 to 1

worse than those in the opposite direction. When µ(B) is low, the divisions are ex-ante

pessimistic and they would not exert effort without information. In this case, the manager

is concerned about their becoming too optimistic, which explains the first ranking. By

contrast, when µ(B) is high, the divisions are ex-ante optimistic and they would exert

effort without information. In this case, the manager is concerned about their becoming

too pessimistic, which explains the second ranking.

These results imply that, in both cases, the manager is better off when division 1 re-
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ports to division 2, rather than the opposite. An insight from this discussion is that, when

effort is a strategic substitute, divisions handling harder tasks (higher cost) should over-

see divisions handling easier ones (lower cost), to better leverage the resulting informa-

tion flows and robustly induce effort.

Before concluding, we note that these rankings of networks can be useful also in set-

tings in which the manager has limited control over her organization’s hierarchy, but she

can choose the task allocation. For instance, suppose that in the organization division 1

oversees division 2 (i.e., N = {(2, 1)}) and this cannot be changed. She can, however, as-

sign tasks to the divisions. In particular, it is optimal to allocate the harder task to divi-

sion 1 and the easier one to division 2. This is isomorphic to changing the spillover net-

work, as considered above.

5 Concluding Remarks

This paper studies equilibrium behavior in incomplete-information games under two in-

formation constraints: seeding and spillovers. These constraints offer a flexible, yet

tractable, way to encode restrictions on what agents know about each other’s informa-

tion. Our framework is especially suited to applications in which the analyst can observe

the bare bones of the informational environment in which agents interact: Who can get

information and how it spills over to others. In particular, we used it to revisit the clas-

sic question of how information flows affect the performance of an organization and its

optimal design.

More applications could be studied thanks to the methods developed in this paper. For

example, in a trade setting, buyers and sellers hold private information about tastes and

costs, respectively. In some situations, sellers are mandated to disclose their private in-

formation to the buyers, or vice versa. In others, trade associations may force sellers to

disclose information to each other. These various configurations can be modeled using

a network–seed system. Our results help characterize the achievable welfare outcomes

from trade in these configurations. Similarly, in a political-economy setting, news out-

lets seed information to voters about competing political candidates. Which news out-

lets a voter follows determines the information the voter has. These outlet-voter connec-
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tions can be modeled as a network–seed system. Our results help characterize the set of

feasible electoral outcomes that arise given an arbitrary configuration of the news-media

market. This helps the analyst gauge a news outlet’s ability to sway the electoral out-

comes, that is, its political power (see, Prat, 2018).

We hope our approach can be useful in empirical work by helping the econometrician

better exploit observables in the data, while still making minimal assumptions about the

information that agents might have. A growing set of empirical papers has done so, using

the concept of BCE. For example, Syrgkanis, Tamer, and Ziani (2021) estimate models

of auctions; Canen and Song (2023) develop a simple approach to counterfactual predic-

tions; Gualdani and Sinha (2024) estimate static discrete choice models. More specifi-

cally, in an application like that of Magnolfi and Roncoroni (2023)—who model compe-

tition in the supermarket industry—it may be possible to assume that stores belonging to

the same chain share the same information, whereas stores belonging to different chains

do not. Our results could then be used to sharpen predictions and facilitate identification.

This paper leaves two open questions for future research. First, as a consequence of

the information constraints considered in this paper, we know that the mediator may find

it optimal to use mixed-action recommendations. This can lead to computational com-

plexity. In some settings, such as the one in Section 4.3, it is without loss of general-

ity to focus on pure recommendations, which makes the problem simpler. It would be

valuable to find general conditions on the base game and the network-seed system un-

der which this is the case. Second, our maintained assumption throughout the paper is

that information spillovers are deterministic. What if instead information spills over ran-

domly along the links of the network, or if the agents communicate strategically with

their neighbors? Capturing these scenarios is challenging but often important for appli-

cations. Galperti and Perego (2023, Section 5) present results that partially accommo-

date this richer class of spillovers, but more work is needed in this direction.
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Appendix

A Additional Material

A.1 Finite-Support Outcomes and Existence of Optimal Outcomes

In this paper, we focused attention on information structures (T, π) where T is finite. Be-

cause of this, the outcome they induce must have finite support (Definition 1). How large

does this support need to be? The answer to this question is important for computing the

set of feasible outcomes. The answer is simple in the standard case studied by the liter-

ature, namely when S = I and N = ∅. In this case, we know it is without loss of gener-

ality to focus on outcomes x that involve only pure-action recommendations. Therefore,

the support of an outcome has at most cardinality |A|. By contrast, when N , ∅, we ar-

gue that recommendations need to belong to the setA = ×i∈I∆(Ai), which is not finite.

In the following, we use Theorem 2 to show that we can identify a finite, exogenous,

upper bound on the outcomes’ support, which only depends on G. Fix (G,N, S ). By

Theorem 1, it is without loss of generality to focus attention on the case S = I. It is

convenient to rewrite the robust-obedience condition (2) as follows: For every i ∈ I,

αNi ∈ suppNi
x, and ai, a′i ∈ Ai,∑

ω ∈ Ω
α−Ni ∈ supp−Ni

x

(
ui(ai, α−i, ω) − ui(a′i , α−i, ω)

)
αi(ai)x(αi, α−i|ω)µ(ω) ≥ 0. (A.1)

This highlights that for each player i robust obedience ultimately involves her primitive

pure actions. To willingly implement any mixed action, i must deem all pure actions in

its support optimal given her information. This information is provided by the realization

of αNi . Each αNi then pins down a subset of optimal actions for i. Since Ai is finite, there

can only be finitely many such subsets.

Lemma 1. Suppose x ∈ X(G,N, I). There exists x′ ∈ X(G,N, I) such that |supp x′i | ≤ |2
Ai |

for every i ∈ I and x and x′ induce the same joint distribution over A for every ω ∈ Ω:∑
α′∈supp x′

α′(a)x′(α′|ω) =
∑

α∈supp x

α(a)x(α|ω), a ∈ A.

This lemma has two implications. First, it implies that it is without loss of generality

to focus on information structures such that |Ti| ≤ |2Ai | for all i ∈ I. Second, it implies
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that given any objective v : Ω × A → R, there exists an optimal outcome. Consider the

information-design problem

V∗(G,N, S ) = sup
x ∈ X(G,N, S )

∑
ω ∈ Ω, a ∈ A
α ∈ supp x

v(ω, a)α(a)x(α|ω)µ(ω). (A.2)

Corollary 4 (Existence). For every base game G, objective v, and network–seed system

(N, S ), there exists a feasible outcome x∗ ∈ X(G,N, S ) such that∑
ω ∈ Ω, a ∈ A
α ∈ supp x∗

v(ω, a)α(a)x∗(α|ω)µ(ω) = V∗(G,N, S )

This follows from Lemma 1 because the objective in (A.2) and the linear constraints

defining X(G,N, S ) are continuous functions and the space of outcomes with finite sup-

port is compact. Indeed, this space is isomorphic to ∆({1, . . . , κ}) × Aκ, where κ is the

maximal finite support needed by Lemma 1 and both ∆({1, . . . , κ}) and A := ×i∈I∆(Ai)

are compact sets.

In some settings with information spillovers (i.e., N , ∅), the solution to the de-

signer’s problem may involve only pure-action recommendations. One simple example

of this is when the base game is actually a collection of single-agent decision problems:

ui(ai, a−i, ω) does not depend on a−i for all i ∈ I. Intuitively, in this case we cannot relax

condition (A.1) by keeping player i uncertain about other players’ behavior whose ran-

domness is independent of the state. Thus, mixed-action recommendations are useless.

More generally, we can always search for a candidate solution within the space of out-

comes that only recommend pure actions. Galperti and Perego (2018) show how to ver-

ify that this candidate solves the overall problem using linear-programming duality.

B Main Proofs

To prove Theorem 1, we first introduce and prove Lemmas 2, 4, and 5, and the interme-

diate equivalence result of Lemma 3. Lemma 2 characterizes NS . It shows that in NS ,

while a player may have new sources relative to N (formally, Ni ⊆ NS
i ), none of them is

a seed (i.e., NS
i ∩ S = Ni ∩ S ).

Lemma 2. Fix (N, S ). For all i, NS
i ∩ S = Ni ∩ S .
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Proof of Lemma 2. Fix N and i. First, we show that Ni ∩ S ⊆ NS
i ∩ S . To see this,

note that N ⊆ NS , by definition of S-expansion. This implies that Ni ⊆ NS
i . Hence,

Ni ∩ S ⊆ NS
i ∩ S . Second, we show that NS

i ∩ S ⊆ Ni ∩ S . Note that it is enough to show

that NS
i ∩ S ⊆ Ni. Suppose not, NS

i ∩ S ⊈ Ni, there is j ∈ NS
i ∩ S such that j < Ni. Since

j ∈ NS
i , there exists a path in NS from j to i. That is, a sequence P = (k1, . . . km) of dis-

tinct kl for 1 ≤ l ≤ m, such that k1 = j, km = i, and (kl, kl+1) ∈ NS , for all l ≤ m− 1. Since

j < Ni, it must be that (kl, kl+1) < N, for at least one l ≤ m− 1. We refer to these l’s as the

gaps of P. Let P = (k1, . . . km) be a path from j to i in NS with the property that its number

of gaps is smaller or equal than the number of gaps in any other path P from j to i in NS .

Note that P is well-defined since I is finite. Denote l the gap in P with the smallest index.

By construction, we have that (1) j ∈ S , (2) j ∈ Nkl
, (3) (kl, kl+1) ∈ NS , (4) j < Nkl+1

, and

(5) (kl, kl+1) < N. Points (1) and (2) imply that j ∈ Nkl ∩S . By Definition 3, Point (3) im-

plies that Nkl
∩S ⊆ Nkl+1

. However, j < Nkl+1 , by point (4). Thus, Nkl
∩S ⊈ Nkl+1

. Finally,

by (5), (kl, kl+1) < N. We conclude that NS is not the expansion of N, a contradiction. □

Lemma 2 shows that the set of i’s seeded sources is the same in N and NS . Therefore,

any initial information structure will lead to the same final information structure in these

two cases. Thus, they should induce the same outcome, as the next result shows.

Lemma 3. Fix (N, S ). Then for all G, X(G,N, S ) = X(G,NS , S ).

Proof of Lemma 3. Fix G, i and the information structure (T, π) ∈ PS . Note that

(NS
i \ Ni) ∩ S = (NS

i ∩ S ) \ (Ni ∩ S ) = ∅. The first equality derives from the dis-

tributive property of set intersection over set difference. The second equality derives

from Lemma 2. This implies that TNS
i \Ni

is a singleton. Fix t := (t1, . . . , tI), such that∑
ω µ(ω)π(t|ω) > 0. We want to show that Prπ(t|tNi) = Prπ(t|tNS

i
). Namely, conditioning

on tNS
i

rather than tNi does not change the probability assessment over t. Thus, vectors tNi

and tNS
i

are identical up to tNS
i \Ni

, which realizes with probability 1 under π, since TNS
i \Ni

is a singleton. Hence Prπ(t|tNi) = Prπ(t|tNS
i
). Since i, t, and π were arbitrary, we have that

P(N,S ) = P(NS ,S ) and, thus X(G,N, S ) = X(G,NS , S ). □

The next result shows that NS is the S-expansion of itself, thus proving the uniqueness

of the expansion of a network.
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Lemma 4. (i, j) ∈ NS if and only if NS
i ∩ S ⊆ NS

j .

Proof of Lemma 4 Only if. Let (i, j) ∈ NS . Then, NS
i ⊆ NS

j , hence NS
i ∩ S ⊆ NS

j . If.

Suppose NS
i ∩ S ⊆ NS

j . Then, NS
i ∩ S ⊆ NS

j ∩ S . By Lemma 2, Ni ∩ S ⊆ N j ∩ S . Thus,

Ni ∩ S ⊆ N j. By Definition 3, this implies (i, j) ∈ NS . □

The next result constitutes the building block for the proof of Theorem 1. It shows

that, given the network expansion NS , adding an additional player (call her j) to the

seed set does not affect the set of feasible outcomes. More specifically, given any initial

information structure that seeds j, we can construct an initial information structure that

does not seed j but, through the spillovers in NS , provides the same information to all

players as the one that seeds j. We do so by using a secret sharing technique à la Shamir

(1979), similar to the one used in Example 3.

Lemma 5. Fix (G,N, S ) and S ⊆ S ′ ⊆ I. Let i ∈ S ′ and (i, j) ∈ NS . Then X(G,NS , S ′) =

X(G,NS , S ′ ∪ { j}).

Proof of Lemma 5.

(⊆). This direction is immediate since, by the definition of PS , it follows that PS ′ ⊆

PS ′∪{ j}. Therefore, P(NS ,S ′) ⊆ P(NS ,S ′∪{ j}).

(⊇). If j ∈ S ′ there is nothing to prove since, in such case, S ′ ∪ { j} = S ′. Therefore, let

j < S ′. Fix any (T, π) ∈ PS ′∪{ j}. Using a secret-sharing technique (Shamir, 1979), we will

construct a (T̂ , π̂) ∈ PS ′ such that (T, π) and (T̂ , π̂) induce the same set of equilibria. Let

B(κ) := {0, 1}κ and κ := min{κ ∈ N : |T j| ≤ |B(κ)|}. For notational convenience, denote

B := B(κ). Let Z : T j → B be an arbitrary injective function. It represents a “public

key,” that univocally transforms j’s signals from (T, π) into binary numbers. Define the

“exclusive or” operation ⊕ as 0⊕ 0 = 1⊕ 1 = 0 and 0⊕ 1 = 1⊕ 0 = 1. For any b, b′ ∈ B,

define b⊕b′ := (b1⊕b′1, . . . , bκ⊕b′κ) ∈ B. For notational convenience, denote Q := NS
j ∩S ′,

the seeded sources of player j. Recall that, by assumption, j < Q. We now construct the

type space T̂ from T . Let T̂ j := {t̂ j} be a singleton. Let T̂i := Ti for all i < Q ∪ { j}. Let

T̂i := Ti × B× {Z} for all i ∈ Q. Note that, by construction, T̂ is such that T̂i = {t̂i} for all

i < S ′. That is, (T̂ , π̂) ∈ PS ′ , i.e., it seeds only players in S ′. Next, we construct π̂ from

π. Fix a realization t ∈ T under π. The realized t̂ ∈ T̂ under π̂ is determined as follows:

Since T̂ j is a singleton, player j must observe t̂ j; for each i < Q ∪ { j}, t̂i = ti; for each
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i ∈ Q, t̂i = (ti, bi,Z). The vector bi is determined as follows. Let q := max{i : i ∈ Q}. If

i ∈ Q \ {q}, bi ∈ B is drawn at uniform random from B, independently of (ω, t); instead,

if i = q, bq := Z(t j) ⊕
(
⊕i∈Q\{q} bi

)
. There are two cases to consider, |Q| = 1 and |Q| > 1.

− If |Q| = 1, bq = Z(t j) and observing t̂q reveals t j. Thus, an arbitrary player i learns

t j if and only if {q} = Q ⊆ NS
i .

− If |Q| > 1, instead, observing all but one element in (bi)i∈Q carries no information

about t j. Instead, observing the whole sequence (bi)i∈Q fully reveals t j. This is

because:

Z−1
(
⊕i∈Q bi

)
= Z−1

((
⊕i∈Q\{q} bi

)
⊕ bq

)
= Z−1

((
⊕i∈Q\{q} bi

)
⊕

(
Z(t j) ⊕

(
⊕i∈Q\{q} bi

)))
= Z−1

(
Z(t j)

)
= t j.

The third equality comes from the fact that bi⊕bi = 0 andZ(t j)⊕0 = Z(t j). Thus,

an arbitrary player i learns t j if and only if Q ⊆ NS
i .

Therefore, irrespective of whether or not Q is a singleton, player i learns t j if and only

if Q ⊆ NS
i . However, note that Q ⊆ NS

i if and only if j ∈ NS
i . In fact, if Q ⊆ NS

i ,

NS
j ∩ S ⊆ NS

j ∩ S ′ = Q ⊆ NS
i and, by Lemma 4, ( j, i) ∈ NS and, thus, j ∈ NS

i . Con-

versely, if j ∈ NS
i , then NS

j ⊆ NS
i , and therefore Q ⊆ NS

i . We conclude that under the

constructed (T̂ , π̂) player i learns t j if and only if j ∈ NS
i , just like under the original

(T, π). Therefore, any outcome x induced by (T, π) can be also induced by (T̂ , π̂). Since

(T, π) was arbitrary, this shows that X(G,NS , S ′ ∪ { j}) ⊆ X(G,NS , S ′). □

Proof of Theorem 1. Fix (G,N, S ). By Lemma 3, X(G,N, S ) = X(G,NS , S ). We are

left to show that X(G,NS , S ) = X(G,NS , I). If S = I there is nothing to prove, so let

S ⊊ I. The following induction argument proves the claim.

Basis Step. Let S 1 = S . By assumption, (N, S ) is connected. Therefore, there exist

i, j ∈ I such that i ∈ S 1, j < S 1, and (i, j) ∈ N. Since N ⊆ NS , (i, j) ∈ NS . Let

S 2 := S 1 ∪ { j}. Since S 1 ⊆ S 2 ⊆ I, i ∈ S 2 and (i, j) ∈ NS , we can invoke Lemma 5 to

show that X(G,NS , S 1) = X(G,NS , S 2). Finally, it is straightforward to see that (N, S 2)

is connected.
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Inductive Step. Suppose that X(G,NS , S 1) = X(G,NS , S k) for S k := S 1 ∪ { j1, . . . , jk}.

If S k = I there is nothing to prove. Hence, let S k ⊊ I. (N, S k) is connected. Hence, there

are i, j ∈ I such that i ∈ S k, j < S k, and (i, j) ∈ N. Since N ⊆ NS , (i, j) ∈ NS . Denote

S k+1 := S k ∪ { j}. Since S k+1 ⊇ S k, i ∈ S k+1, and (i, j) ∈ NS , we can invoke Lemma 5 to

show that X(G,NS , S k+1) = X(G,NS , S k) = X(G,NS , S 1).

Since I is finite, this procedure stops after k̄ = |I \ S | steps. We conclude that

X(G,NS , S ) = X(G,NS , I). □

In what follows, a (behavioral) strategy of player i in (G, (T, π)) is σi : Ti → ∆(Ai).

We write σi(ai|ti) instead of σ(ti)[ai]. A profile σ = (σi)i∈I belongs to BNE(G, (T, π)) if

for each i, ti ∈ Ti, and ai ∈ Ai with σi(ai|ti) > 0,∑
a−i,t−i,ω

(
ui(ai, a−i, ω) − ui(a′i , a−i, ω)

)
σ(ai, a−i|ti, t−i)π(ti, t−i|ω)µ(ω) ≥ 0

for all a′i ∈ Ai, where σ(ai, a−i|ti, t−i) :=
∏I

j=1 σ j(a j|t j).

Proof of Theorem 2. Part 1 (⇒): Suppose (T, π) ∈ P and σ ∈ BNE(G, (T, π)) induce

x. Then, for every i and tNi ∈ TNi ,∑
ω,t′

(
ui(σi(tNi), σ−i(t′N−i

), ω) − ui(ai, σ−i(t′N−i
), ω)

)
Prπ(ω, t′|tNi) ≥ 0, ai ∈ Ai.

where σ−i(t′N−i
) = (σ j(t′N j

)) j,i. Using π, we can write this condition as, for every i and tNi ,∑
ω,(t′N j

) j,i

(
ui(σi(tNi), σ−i(t′N−i

), ω) − ui(ai, σ−i(t′N−i
), ω)

) π(tNi , (t
′
N j

) j,i|ω)µ(ω)∑
ω′,(t′′N j

) j,i
π(tNi , (t

′′
N j

) j,i|ω′)µ(ω′)
≥ 0,

for all ai ∈ Ai, or equivalently,∑
ω,(t′N j

) j,i

(
ui(σi(tNi), σ−i(t′N−i

), ω) − ui(ai, σ−i(t′N−i
), ω)

)
π(tNi , (t

′
N j

) j,i|ω)µ(ω) ≥ 0,

for all ai ∈ Ai. Note that, for every i and t, by knowing tNi player i knows the mixed

action σ j(tN j) for all j ∈ Ni.

Given this and using the definition of x in (1), the last family of inequalities can be

written as follows: For all i and αNi ,∑
ω,α−Ni

(
ui(αi, α−i, ω) − ui(ai, α−i, ω)

)
x(αi, α−i|ω)µ(ω) ≥ 0, ai ∈ Ai.

Thus, we conclude that if x is feasible, then it is robustly obedient.
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Part 2 (⇐): Suppose x is robustly obedient. Recall that supp x = {α : ∃ω ∈ Ω s.t. x(α|ω) >

0} ⊆ A is finite. Note that (supp x, x) ∈ P. Given this, for every i, consider the strategy

σi : suppNi
→ ∆(Ai) defined as σi(αNi) = αi, for all αNi ∈ suppNi

. Optimality for each i

requires that, for every αNi ,∑
ω,α′

−Ni

(
ui(σi(αNi), σ−i(α′N−i

), ω) − ui(ai, σ−i(α′N−i
)), ω)

)
Prx(ω, α′|αNi) ≥ 0, ai ∈ Ai,

where σ−i(α′N−i
) = (σ j(α′N j

)) j,i. Given our construction of σ, this is equivalent to, for

every αNi and ai ∈ Ai,∑
ω,α′

−Ni

(
ui(αNi , α

′
−Ni
, ω) − ui(ai, αNi\i, α

′
−Ni
, ω)

) x(αNi , α
′
−Ni
|ω)µ(ω)∑

ω′,α′′
−Ni

x(αNi , α
′′
−Ni
|ω′)µ(ω′)

≥ 0,

which holds because x is robustly obedient. □

Proof of Proposition 1. We begin with two preliminary observations. First, note that

by Theorem 1 we only need to show that X(G,N, I) ⊆ X(G,N′, I) for all G if and only

if (N, I) ⊵ (N′, I). Second, spillover-robust obedience is equivalent to requiring that, for

every i and δi : ANi → Ai,∑
ω∈Ω,α∈suppx

(
ui(αi, α−i;ω) − ui(δi(αNi), α−i;ω)

)
x(αi, α−i|ω)µ(ω) ≥ 0. (B.1)

Part 1 (⇐): Suppose (N, I)⊵(N′, I) and x ∈ X(G,N, I) for some G. Then, by Theorem 2,

x satisfies (B.1) for all i and δi ∈ Di = {δ̂i : ANi → Ai}. Let D′i = {δi : AN′i → Ai}. To

prove that x ∈ X(G,N′, I), it suffices to show that the set of available deviations D′i is

smaller than Di, for all i ∈ N. To show this, consider any δi ∈ D′i and define δ̂i : ANi → Ai

as δ̂i(αN′i , αNi\N′i ) = δi(αN′i ), for all αNi ∈ ANi . Since Ni ⊇ N′i for all i, δ̂i is a well-defined

function and δ̂i ∈ Di.

Part 2 (⇒): We prove this with a contrapositive argument. The only relevant case to

consider is that (N, I) ̸ ⊵ (N′, I) and (N, I) ̸⊴ (N′, I). This implies that for some i, there

exists a k such that k ∈ N′i and k < Ni, and for some j (possibly i = j), there exists m

such that m ∈ N j and m < N′j. It follows that there exists a player ik such that ik , k and

there is a direct link from k to ik in N′ but not in N, and there exists a player im such that

im , m there is a direct link from m to im in N but not in N′. Now consider the following

game G. Let Ω = {0, 1} and µ(0) = µ(1) = 1
2 . Let Ai = {0, 1

2 , 1} for all i ∈ N. For all

j < {k,m, ik, im}, let the payoff function u j be such that action a j =
1
2 is strictly dominant.
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For j ∈ {k,m, ik, im}, the payoff function is u j(a, ω) = −(a j −ω)2. Consider the following

two cases.

Case 1: Suppose that all players in {k,m, ik, im} are distinct. Consider x such that player

k always matches the state, while all other players choose a = 1
2 . Thus, x ∈ X(G,N, I),

but clearly does not belong to X(G,N′, I). This is because in N′ player ik has to choose

aik =
1
2 after learning ak = ω, which renders aik =

1
2 strictly suboptimal. Thus, x violates

robust obedience for (G,N′, I). Now consider x′ such that player m always matches

the state, while all the other players choose a = 1
2 . This x′ belongs to X(G,N′, I), but

clearly does not belong to X(G,N, I). This is because in N player im has to choose

a = 1
2 after learning am = ω, which renders a = 1

2 strictly suboptimal and so x′ violates

obedience. The same arguments work for the following four alternative configurations

of the network that satisfy the aforementioned properties: (1) m = ik and k , im; (2)

m , k and ik = im; (3) k = im and m = ik; (4) im = k and m , ik.

Case 2: Suppose that m = k and ik , im. Consider x such that m and im always match

the state, while all other players choose a = 1
2 . This x belongs to X(G,N, I), but clearly

does not belong to X(G,N′, I). This is because in N′ player ik has to choose aik =
1
2 after

learning ak = ω, which renders aik =
1
2 strictly suboptimal. Thus, x violates obedience

for (G,N′, I). Alternatively, consider x′ such that player m and ik always match the state,

while all the other players choose a = 1
2 . This x′ belongs to X(G,N′, I), but clearly

does not belong to X(G,N, I). This is because in N player im has to choose aim =
1
2

after learning that am = ω, which renders aim =
1
2 strictly suboptimal. Thus, x′ violates

obedience for (G,N, I). □

Proof of Proposition 2. Part 1 (⇒): Suppose N̂ Ŝ
i ⊆ NS

i for all i. Consider i, j ∈ I that

satisfy N̂i ∩ Ŝ ⊆ N̂ j and so i ∈ N̂ Ŝ
j by Definition 3. It follows that i ∈ NS

j . If i ∈ N j, then

Ni ∩ S ⊆ N j holds automatically. If i < N j, we must have added links to N according to

Definition 3 that result in i ∈ NS
j . For this to be the case, there must exist some sequence

{ jk}
m
k=0 which satisfies j0 = i, jm = j, and N jk ∩ S ⊆ N jk+1 . This implies Ni ∩ S ⊆ N j.

Part 2 (⇐): Now suppose that N̂i ∩ Ŝ ⊆ N̂ j implies Ni ∩ S ⊆ N j for all i, j ∈ I. We

need to show that i ∈ N̂ Ŝ
j implies i ∈ NS

j . Fix any i and j that satisfy i ∈ N̂ Ŝ
j . If i ∈ N̂ j,

then we automatically have N̂i ∩ Ŝ ⊆ N̂ j and so Ni ∩ S ⊆ N j by assumption. Thus, if

i < N j (which is the only relevant case), we must add (i, j) to N according to Definition 3,
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implying i ∈ NS
j . Next, suppose that i ∈ N̂ Ŝ

j \ N̂ j. By Definition 3, there must exist a

sequence { jk}
m
k=0 which satisfies j0 = i, jm = j, and N̂ jk ∩ Ŝ ⊆ N̂ jk+1 . Therefore, it must

be that N̂i ∩ Ŝ ⊆ N̂ j and, by assumption, Ni ∩ S ⊆ N j. If again i < N j, it follows that

(i, j) ∈ NS , which implies i ∈ NS
j . □

Proof of Lemma 1.

Step 1. Fix an information structure (T, π). Denote by (T ′, π′) ∈ P(N,S ) the information

structure induced by (T, π) under N. Let σ be the designer-preferred equilibrium in game

(G, (T ′, π′)). For every i, every tNi determines a non-empty subset of optimal actions:

Ai(tNi) = arg max
ai∈Ai

Eπ,σ

(
ui(ai, a−i, ω)

∣∣∣ tNi

)
.

Since Ai is finite, every ((T, π), σ) can determine at most finitely many subsets Ai(tNi)

for every player i. This requires no more than |2Ai | signals for player i. Therefore, every

(πI , σ) can determine at most finitely many profiles of optimal-action sets of the form

A(t) = ×iAi(tNi). We conclude that if we are interested in only such profiles, it is enough

to consider information structures that satisfy |Ti| = |2Ai | for every i.

Step 2. We now need to transition from profiles of optimal-action sets to distributions

over pure-action profiles, which is what ultimately matters for the designer. To this end,

we use Theorem 2. Recall that each recommendation profile α can be interpreted, first of

all, as a signal realization from the information structure x. Step 1 shows that, if we are

interested only in spanning the profiles of optimal-action sets, it is enough to consider

xs with finite support. But this may not be enough for the entire set of feasible outcomes

intended as joint distributions between actions and states that satisfy obedience.

Suppose that x is a feasible outcome, hence it satisfies obedience. That is, for every i,

αNi ∈ suppNi
x, and ai, a′i ∈ Ai,∑

ω,α−Ni

(∑
a−i

(
ui(ai, a−i, ω) − ui(a′i , a−i, ω)

)
αNi(aNi)α−Ni(a−Ni)

)
x(αNi , α−Ni |ω)µ(ω) ≥ 0,

where αNi(aNi) = (α j(a j)) j∈Ni and α−Ni(a−Ni) = (α j(a j)) j<Ni . We want to construct an

alternative x′ that is also feasible and induces the same joint distribution between pure-

action profiles and states as does x.

From step 1, we know that we can identify finitely many profiles of sets Ax(α) =

×i∈N Ax
i (αNi), where we treat each α as a signal realization from x. Let Ax be the finite
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collection of such profiles determined by x. In particular, we know that |Ax| ≤
∏

i∈N |2Ai |

independently of x. For every ω, construct x′ as follows. For every Ax ∈ Ax, define

αAx,ω(a) =
∑
α∈Ax

α(a)
x(α|ω)∑

α′∈Ax x(α′|ω)
, a ∈ A.

This is the average mixed-action profile in state ω, conditional on α belonging to Ax.

Given this, for every αAx,ω so identified, let

x′(αAx,ω|ω) =
∑
α∈Ax

x(α|ω), ω ∈ Ω.

It is immediate to see that x and x′ induce the same joint distribution over pure-action

profiles for every state: For every a and ω,∑
α′∈suppx′

α′(a)x′(α′|ω) =
∑

Ax∈Ax

αAx,ω(a)x′(αAx,ω|ω)

=
∑

Ax∈Ax

∑
α∈Ax

α(a)
x(α|ω)∑

α′∈Ax x(α′|ω)

 ∑
α̂∈Ax

x(α̂|ω)

=
∑

Ax∈Ax

∑
α∈Ax

α(a)x(α|ω)

 = ∑
α∈suppx

α(a)x(α|ω).

Let’s now consider obedience. If we can show that x′ also satisfies obedience, we are

done. Fix any player i, any α′Ni
∈ suppNi

x′, and ai, a′i ∈ Ai. Note that α′Ni
must equal αAx,ω

Ni

for some some Ax and ω. LetAx(α′Ni
) contain all the profiles Ax that are compatible with

α′Ni
, i.e., that satisfy αAx,ω

Ni
= α′Ni

. Letting ∆ui(ai, a′i ; a−i, ω) = ui(ai, a−i, ω) − ui(a′i , a−i, ω),

we have∑
ω,α′

−Ni

∑
a−i

∆ui(ai, a′i ; a−i, ω)α′Ni
(aNi)α

′
−Ni

(a−Ni)

 x′(α′Ni
, α′−Ni

|ω)µ(ω)

=
∑

ω,Ax∈Ax(α′Ni
)

∑
a−i

∆ui(ai, a′i ; a−i, ω)αAx,ω
Ni

(aNi)α
Ax,ω
−Ni

(a−Ni)

 x′(αAx,ω
Ni

, αAx,ω
−Ni
|ω)µ(ω)

=
∑

ω,Ax∈Ax(α′Ni
)

∑
a−i

∆ui(ai, a′i ; a−i, ω)
∑
α∈Ax

αNi(aNi)α−Ni(a−Ni)
x(αNi , α−Ni |ω)∑
α′∈Ax x(α′|ω)

×
×

∑
α∈Ax

x(αNi , α−Ni |ω)µ(ω)

=
∑

ω,Ax∈Ax(α′Ni
)

∑
α∈Ax

∑
a−i

∆ui(ai, a′i ; a−i, ω)αNi(aNi)α−Ni(a−Ni)x(αNi , α−Ni |ω)

 µ(ω)

=
∑

Ax∈Ax(α′Ni
)

∑
α∈Ax

∑
ω,a−i

∆ui(ai, a′i ; a−i, ω)αNi(aNi)α−Ni(a−Ni)x(αNi , α−Ni |ω)µ(ω)

 .
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Now, recall that for every α ∈ Ax, we have that the set of optimal actions for player i con-

ditional on αNi is the same. Since x satisfies obedience for player i, her αi assigns posi-

tive probability only to actions that are optimal conditional on αNi . Therefore, the entire

sum must be non-negative. This shows that x′ satisfies obedience for player i and every

α′Ni
∈ suppNi

x′. By the same argument, x′ satisfies obedience for all players. □

B.1 Proof of Corollary 2

Before proving Corollary 2, we introduce some notation. Denote by δa ∈ A to be the

degenerate mixed-action profile that assigns probability 1 to a ∈ A. Let D := {δa|a ∈

A} ⊂ A. An outcome x : Ω → ∆(A) is pure if supp x ⊆ D. An outcome x is feasible in

pure strategies for a base game G and a system (N, S ) if there is an information structure

(T ′, π′) ∈ P(N,S ) and a pure-strategy equilibrium σ ∈ BNE(G, (T ′, π′)) such that equation

(1) holds. We denote the resulting set of outcomes by Xpure(G,N, S ).

Lemma 6. A feasible outcome is pure if and only if it is feasible in pure strategies.

Proof of Lemma 6. Suppose x ∈ Xpure(G,N, S ). Since Xpure(G,N, S ) ⊆ X(G,N, S ), we

only need to show x is pure. Since x ∈ Xpure(G,N, S ), there is (T, π) ∈ P(N,S ) and a pure-

strategy BNE such that:

x(α|ω) =
∑
t∈T

π(t|ω)
∏
i∈I

I{σi(tNi) = αi}, ∀ ω ∈ Ω, α ∈ A, (B.2)

Since σ is a pure-strategy equilibrium—i.e. σ = (σi : T → Ai)i∈I—x(α|ω) = 0 for all

α < D. Therefore, supp x ⊆ D. That is, x is simple.

Conversely, let x be feasible and pure. Since x ∈ X(G,N, S ), there is (T, π) ∈ P(N,S ) and

a (possibly mixed) BNE σ such that equation (B.2) holds. Since x is pure, supp x ⊆ D.

That is, for all α < D and ω, x(α|ω) = 0. Equivalently, there is i such that σi(ti) , αi for

all ti. Therefore, supp σi(ti) ⊆ Di for all i. That is, σ is a pure-strategy BNE and, thus,

x ∈ Xpure(G,N, S ). □

Proof of Corollary 2. Suppose x ∈ Xpure(G,N, S ). Then, x ∈ X(G,N, S ). By Corol-

lary 1, x is spillover-robust obedient for G given NS . Conversely, suppose x is pure and

spillover-robust obedient for G given NS . By Corollary 1, x is feasible. By Lemma 6,
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x ∈ Xpure(G,N, S ). □

C Analysis for the Application of Section 4.3

In this Appendix, we characterize the feasible outcomes depicted in Figure 5. For nota-

tional convenience, let γi := 1 − ci and χi := Pr(ai = y). Given this, note that 0 < γ2 <

γ1 < 1 and ε < min{γ2, (γ1−γ2)/(1+γ2)}. Moreover, we abuse notation and write yi and

ni instead of ai = y and ai = n, respectively. We begin by focusing on recommendation

mechanisms that only recommend pure actions. In Section C.5, we show this is without

loss of generality.

C.1 Empty Network: N = ∅

In this case, players observe only their own recommendations. Their obedience con-

straints given yi and ni are, respectively:(
(γi − ε)x(yi, y−i|B) + γix(yi, n−i|B)

)
µ(B) −

(
(1 + ε)x(yi, y−i|H) + x(yi, n−i|H)

)
µ(H) ≥ 0,

−
(
(γi − ε)x(ni, y−i|B) + γix(ni, n−i|B)

)
µ(B) +

(
(1 + ε)x(ni, y−i|H) + x(ni, n−i|H)

)
µ(H) ≥ 0.

Letting x(ai|ω) := x(ai, y−i|ω) + x(ai, n−i|ω) and using the fact that x(·|ω) is a probability

distribution, we can rewrite these two obedience constraints as:

χi ≤ (γi + 1)x(yi|B)µ(B) − ε
(
x(y1, y2|B)µ(B) + x(y1, y2|H)µ(H)

)
(C.1)

and

χi − ε
(
x(y−i|B)µ(B) + x(y−i|H)µ(H)

)
≤ (γi + 1)x(yi|B)µ(B) − ε

(
x(y1, y2|B)µ(B) + x(y1, y2|H)µ(H)

)
+ µ(H) − γiµ(B)

(C.2)

When µ(B) = µ(H) = 1/2, which we refer to as the low-prior case, (C.2) is slack

because ε > 0; When γ2µ(B) ≥ µ(H) + ε, which we refer to as the high-prior case, (C.1)

is slack. We will discuss the two cases separately below.

C.1.1 Low-Prior Case

We will prove that the four extreme points in Figure 5 (Left Panel) that refer to N = ∅ are

P1 = (0, 0), P2 = ((1 + γ1)/2, 0), P3 = (0, (1 + γ2)/2), and P4 = ((1 + γ1 − ε)/2, (1 + γ2 − ε)/2).
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We first show that these points are feasible. To do so, note that the following recommen-

dation mechanisms induce these probabilities and satisfy (C.1) hold.

− P1: x(n1, n2|B) = x(n1, n2|H) = 1;

− P2: x(y1, n2|B) = 1, x(y1, n2|H) = γ1, x(n2|H) = 1;

− P3: x(n1, y2|B) = 1, x(n1, y2|H) = γ2, x(n1|H) = 1;

− P4: x(y1, y2|B) = 1, x(y1, y2|H) = 0, x(n1, y2|H) = γ2 − ε, x(y1, n2|H) = γ1 − ε.

Next, we argue that the feasible set cannot be larger than the convex hull of these

points. From (C.1), we have that:

χ1 ≤
1 + γ1 − ε

2
x(y1, y2|B) +

1 + γ1

2
x(y1, n2|B), (C.3)

χ2 ≤
1 + γ2 − ε

2
x(y1, y2|B) +

1 + γ2

2
x(n1, y2|B)

≤
1 + γ2

2
−
ε

2
x(y1, y2|B) −

1 + γ2

2
x(y1, n2|B).

(C.4)

The last inequality uses the fact that x(n1, y2|B) ≤ 1 − x(y1, y2|B) − x(y1, n2|B).

Fixing any 0 ≤ χ1 ≤ (1 + γ1)/2, we want to choose x to maximize the RHS of (C.4)

while satisfying (C.3). Since ε is small (satisfying our maintained assumptions), to max-

imize the RHS of (C.4) while satisfying (C.3), one should first increase x(y1, y2|B) until

either (C.3) is satisfied or x(y1, y2|B) = 1. In the former case, the RHS of (C.4) is one line

segment connecting P3 and P4; In the latter case, x(y1, n2|B) should be increased until

(C.3) is satisfied. In this case, the RHS of (C.4) is one line segment connecting P2 and P4.

C.1.2 High-Prior Case

We will prove that the four extreme points in Figure 5 (Right Panel) that refer to N = ∅

are Q1 = (1, 1),

Q2 = (1,
γ2µ(B) − µ(H) − ε

γ2
− ε),Q3 = (

γ1µ(B) − µ(H) − ε
γ1 − ε

, 1),

and

Q4 = (
µ(B)(γ1 − ε) − µ(H)

γ1 − ε
,
µ(B)(γ2 − ε) − µ(H)

γ2 − ε
).

The following recommendation mechanisms induce these probabilities and satisfy (C.2).

− Q1: x(y1, y2|B) = x(y1, y2|H) = 1;
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− Q2: x(y1, n2|H) = 1, x(y1, y2|B) = γ2µ(B)−µ(H)−ε
(γ2−ε)µ(B) , x(y1|B) = 1;15

− Q3: x(n1, y2|H) = 1, x(y1, y2|B) = γ1µ(B)−µ(H)−ε
(γ1−ε)µ(B) , x(y2|B) = 1;

− Q4: x(n1, n2|H) = 1, x(n1, n2|B) = 0, x(ni|B) = µ(H)
µ(B)(γi−ε) .

To show these are the extreme points, rewrite (C.2) as follows:

(γi − ε)(1 − χi) ≤ (1 + γi)x(ni|H)µ(H) − ε
(
x(n1, n2|B)µ(B) + x(n1, n2|H)µ(H)

)
≤ (1 + γi)x(ni|H)µ(H) − εx(n1, n2|H)µ(H),

which implies:

1 − χ1 ≤
(1 + γ1)µ(H)

γ1 − ε
x(n1, y2|H) +

(1 + γ1 − ε)µ(H)
γ1 − ε

x(n1, n2|H), (C.5)

1 − χ2 ≤
(1 + γ2)µ(H)

γ2 − ε
x(y1, n2|H) +

(1 + γ2 − ε)µ(H)
γ2 − ε

x(n1, n2|H)

≤
(1 + γ2)µ(H)

γ2 − ε
−

(1 + γ2)µ(H)
γ2 − ε

x(n1, y2|H) −
εµ(H)
γ2 − ε

x(n1, n2|H).
(C.6)

Fixing any 1 ≥ χ1 ≥ (γ1µ(B) − µ(H) − ε)/(γ1 − ε), we want to choose x to maximize

the RHS of (C.6) while satisfying (C.5). Since ε is small (satisfying our maintained

assumptions), to maximize the RHS of (C.6) while satisfying (C.5), one should first

increase x(n1, n2|H) until either (C.5) is satisfied or x(y1, y2|B) = 1. In the former case,

the RHS of (C.6) is one line segment connecting Q3 and Q4; In the latter case, x(n1, y2|B)

should be increased until (C.5) is satisfied. In this case, the RHS of (C.6) is one line

segment connecting Q2 and Q4.

C.2 Partial Network: N = {(1, 2)}

In this case, the obedience constraints for player 1 are still (C.1) and (C.2). Player 2’s

obedient constraints, instead, are:

(γ2 − ε)x(y1, y2|B)µ(B) − (1 + ε)x(y1, y2|H)µ(H) ≥ 0

γ2x(n1, y2|B)µ(B) − x(n1, y2|H)µ(H) ≥ 0

−(γ2 − ε)x(y1, n2|B)µ(B) + (1 + ε)x(y1, n2|H)µ(H) ≥ 0

−γ2x(n1, n2|B)µ(B) + x(n1, n2|H)µ(H) ≥ 0

(C.7)

15We note that 0 ≤ γ2µ(B)−µ(H)−ε
(γ2−ε)µ(B) ≤ 1 because of our restriction ε ≤ γiµ(B) − µ(H) and ε > 0.

43



C.2.1 Low-Prior Case

We will prove that the four extreme points in Figure 5 (Left Panel) when N = {(1, 2)} are

P1 = (0, 0), P2 = ((1 + γ1)/2, 0), P3 = (0, (1 + γ2)/2), and

P5 = (
1 + γ1 − ε

2
−
ε(γ2 − ε)
2(1 + ε)

,
1 + γ2

2(1 + ε)
).

The constructions for P1, P2, and P3 are the same as in Section C.1.1. To induce

P5, instead, let x(y1, y2|B) = 1, x(y1, y2|H) = (γ2 − ε)/(1 + ε), x(n1, y2|H) = 0, and

x(y1, n2|H) = γ1 − γ2.

Next, we show that the feasible set is no larger than the convex hull of these points.

For player 1, (C.1) implies

χ1 ≤
1 + γ1

2
x(y1, n2|B) +

1 + γ1 − ε

2
x(y1, y2|B) −

ε

2
x(y1, y2|H). (C.8)

For player 2, the first two inequalities of (C.7) imply

x(y1, y2|H) ≤
γ2 − ε

1 + ε
x(y1, y2|B), (C.9)

χ2 ≤
1 + γ2

2
x(n1, y2|B) +

1
2

x(y1, y2|B) +
1
2

x(y1, y2|H)

≤
1 + γ2

2
−

1 + γ2

2
x(y1, n2|B) −

γ2

2
x(y1, y2|B) +

1
2

x(y1, y2|H).
(C.10)

Fixing any 0 ≤ χ1 ≤ (1 + γ1)/2, we want to choose x to maximize the RHS of (C.10)

while satisfying (C.8). First, we observe that it is optimal to choose x such that (C.9)

binds. This is because if (C.9) does not bind, we can increase x(y1, y2|H) by a small

amount, and then decrease x(y1, y2|B) and increase x(y1, n2|B) by the same amount. In

this way, the RHS of both (C.8) and (C.10) will remain unchanged. We can plug the

binding constraint (C.9) in (C.8) and (C.10) to obtain:

χ1 ≤
1 + γ1

2
x(y1, n2|B) + (

1 + γ1 − ε

2
−
ε(γ2 − ε)
2(1 + ε)

)x(y1, y2|B), (C.11)

χ2 ≤
1 + γ2

2
−

1 + γ2

2
x(y1, n2|B) − ε

1 + γ2

2(1 + ε)
x(y1, y2|B). (C.12)

Since ε is small (satisfying our maintained assumptions), to maximize the RHS of (C.12)

while satisfying (C.11), one should first increase x(y1, y2|B) until either (C.11) is satisfied

or x(y1, y2|B) = 1. In the former case, the RHS of (C.12) is one line segment connecting

P3 and P5; In the latter case, x(y1, n2|B) should be increased until (C.11) is satisfied. In

this case, the RHS of (C.12) is one line segment connecting P2 and P5.
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C.2.2 High-Prior Case

We will prove that the four extreme points in Figure 5 (Right Panel) when N = {(1, 2)} are

Q1 = (1, 1), Q2 = (1, (γ2µ(B) − µ(H) − ε)/γ2−ε), Q3 = ((γ1µ(B) − µ(H) − ε)/(γ1 − ε), 1),

and Q5 = (1 − (1 + 1/γ1)µ(H), 1 − (1 + 1/γ1)µ(H)). The constructions for points Q1,

Q2, and Q3 are the same as in Section C.1.2. To induce Q5, instead, let x(n1, n2|H) = 1,

x(n1, n2|B) = µ(H)/(γ1µ(B)), x(y1, n2|B) = x(n1, y2|B) = 0.

Next, we show that the feasible set is no larger than the convex hull of these points.

From (C.2), we obtain,

χ1 ≥ 1 −
1 + γ1

γ1 − ε
x(n1, y2|H)µ(H) −

1 + γ1 − ε

γ1 − ε
x(n1, n2|H)µ(H) +

ε

γ1 − ε
x(n1, n2|B)µ(B).

(C.13)

Moreover, notice that χ1 ≤ 1 − x(n1, n2|B)µ(B) − x(n1, n2|H)µ(H). Putting these two

constraints together, we get:

x(n1, n2|B)µ(B) ≤
1
γ1

x(n1, n2|H)µ(H). (C.14)

From the third inequality of (C.7) we get:

χ2 ≥1 −
1 + γ2

γ2 − ε
x(y1, n2|H)µ(H) − x(n1, n2|B)µ(B) − x(n1, n2|H)µ(H)

≥1 −
1 + γ2

γ2 − ε
µ(H) +

1 + γ2

γ2 − ε
x(n1, y2|H)µ(H) +

1 + ε
γ2 − ε

x(n1, n2|H)µ(H) − x(n1, n2|B)µ(B),

(C.15)

Fixing any 1 ≥ χ1 ≥ (γ1µ(B) − µ(H) − ε)/(γ1 − ε), we want to choose x to mini-

mize the RHS of (C.15) while satisfying (C.13). First, we observe that it is optimal

to choose x such that (C.14) binds. This is because if (C.14) does not bind, we can

increase x(n1, n2|B)µ(B) by a small amount, and then decrease x(n1, n2|H)µ(H) and in-

crease x(n1, y2|H)µ(H) by the same amount. In this way, the RHS of both (C.13) and

(C.15) will remain unchanged. We can plug the binding constraint (C.14) in (C.13) and

(C.15) to obtain:

χ1 ≥ 1 −
1 + γ1

γ1 − ε
x(n1, y2|H)µ(H) − (

1 + γ1 − ε

γ1 − ε
−

ε

γ1(γ1 − ε)
)x(n1, n2|H)µ(H), (C.16)

χ2 ≥ 1 −
1 + γ2

γ2 − ε
µ(H) +

1 + γ2

γ2 − ε
x(n1, y2|H)µ(H) + (

1 + ε
γ2 − ε

−
1
γ1

)x(n1, n2|H)µ(H), (C.17)

Since ε is small (satisfying our maintained assumptions), to minimize the RHS of (C.17)

while satisfying (C.16), one should first increase x(n1, n2|H) until either (C.16) is satis-

fied or x(n1, n2|H) = 1. In the former case, the RHS of (C.17) is one line segment con-
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necting Q2 and Q5; In the latter case, x(n1, y2|H) should be increased until (C.16) is sat-

isfied. In this case, the RHS of (C.12) is one line segment connecting Q3 and Q5.

C.3 Partial Network: N = {(2, 1)}

In this case, the obedience constraints for player 2 are still (C.1) and (C.2). Player 1’s

obedient constraints, instead, are:

(γ1 − ε)x(y1, y2|B)µ(B) − (1 + ε)x(y1, y2|H)µ(H) ≥ 0

γ1x(y1, n2|B)µ(B) − x(y1, n2|H)µ(H) ≥ 0

−(γ1 − ε)x(n1, y2|B)µ(B) + (1 + ε)x(n1, y2|H)µ(H) ≥ 0

−γ1x(n1, n2|B)µ(B) + x(n1, n2|H)µ(H) ≥ 0

(C.18)

C.3.1 Low-Prior Case

We will prove that the four extreme points in Figure 5 (Left Panel) when N = {(2, 1)} are

P1 = (0, 0), P2 = ((1 + γ1)/2, 0), P3 = (0, (1 + γ2)/2), and

P6 =

(
1 + γ2

2(1 + ε)
,

1 + γ2

2(1 + ε)

)
.

The constructions for points P1, P2, and P3 are the same as in Section C.1.1. To in-

duce P6, instead, let x(y1, y2|B) = 1, x(y1, y2|H) = (γ2 − ε)/(1 + ε), and x(y1, n2|H) =

x(n1, y2|H) = 0.

Next, we show that the feasible set is no larger than the convex hull of these points.

For player 2, (C.1) implies

χ2 ≤
1 + γ2

2
x(n1, y2|B) +

1 + γ2 − ε

2
x(y1, y2|B) −

ε

2
x(y1, y2|H). (C.19)

Moreover, non-negativity of x(n1, y2|ω) implies that 1
2 (x(y1, y2|B) + x(y1, y2|H)) ≤ χ2.

Putting these two constraints together, we obtain:

x(y1, y2|H) ≤
γ2 − ε

1 + ε
x(y1, y2|B). (C.20)

The second inequality of (C.18) implies:

χ1 ≤
1 + γ1

2
x(y1, n2|B) +

1
2

x(y1, y2|B) +
1
2

x(y1, y2|H)

≤
1 + γ1

2
−

1 + γ1

2
x(n1, y2|B) −

γ1

2
x(y1, y2|B) +

1
2

x(y1, y2|H).
(C.21)

Fixing any 0 ≤ χ2 ≤ (1 + γ2)/2, we want to choose x to maximize the RHS of (C.21)

while satisfying (C.19). First, we observe that it is optimal to choose x such that (C.20)
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binds. This is because if (C.20) does not bind, we can increase x(y1, y2|H) by a small

amount, and then decrease x(y1, y2|B) and increase x(n1, y2|B) by the same amount. In

this way, the RHS of both (C.19) and (C.21) will remain unchanged. We can plug the

binding constraint (C.20) in (C.19) and (C.21) to obtain:

χ2 ≤
1 + γ2

2
x(n1, y2|B) +

1 + γ2

2(1 + ε)
x(y1, y2|B), (C.22)

χ1 ≤
1 + γ1

2
−

1 + γ1

2
x(n1, y2|B) − (

γ1

2
−

γ2 − ε

2(1 + ε)
)x(y1, y2|B). (C.23)

Since ε is small (satisfying our maintained assumptions), to maximize the RHS of (C.23)

while satisfying (C.22), one should first increase x(y1, y2|B) until either (C.22) is satisfied

or x(y1, y2|B) = 1. In the former case, the RHS of (C.23) is one line segment connecting

P2 and P6; In the latter case, x(n1, y2|B) should be increased until (C.22) is satisfied. In

this case, the RHS of (C.23) is one line segment connecting P3 and P6.

C.3.2 High-Prior Case

We will prove that the four extreme points in Figure 5 (Right Panel) when N = {(2, 1)}

are Q1 = (1, 1),

Q2 = (1,
γ2µ(B) − µ(H) − ε

γ2
− ε),Q3 = (

γ1µ(B) − µ(H) − ε
γ1 − ε

, 1),

and

Q6 = (1 − (1 +
1
γ1

)µ(H), 1 − (
1 + γ2 − ε

γ2 − ε
−

ε

γ1(γ2 − ε)
)µ(H)).

The constructions for points Q1, Q2, and Q3 are the same as in Section C.1.2. To induce

Q6, instead, let x be such that x(n1, n2|H) = 1, x(n1, n2|B) = µ(H)/(γ1µ(B)), x(n1, y2|B) =

0, and

x(y1, n2|B) =
(γ1 − γ2)µ(H)
γ1(γ2 − ε)µ(B)

.

Next, we show that the feasible set is no larger than the convex hull of these points.

From (C.2), we get:

χ2 ≥ 1 −
1 + γ2

γ2 − ε
x(y1, n2|H)µ(H) −

1 + γ2 − ε

γ2 − ε
x(n1, n2|H)µ(H) +

ε

γ2 − ε
x(n1, n2|B)µ(B).

(C.24)

From the last two inequalities of (C.18) we get:

χ1 ≥1 −
1 + γ1

γ1 − ε
x(n1, y2|H)µ(H) − x(n1, n2|B)µ(B) − x(n1, n2|H)µ(H)

≥1 −
1 + γ1

γ1 − ε
µ(H) +

1 + γ1

γ1 − ε
x(y1, n2|H)µ(H) +

1 + ε
γ1 − ε

x(n1, n2|H)µ(H) − x(n1, n2|B)µ(B),

(C.25)
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x(n1, n2|B)µ(B) ≤
1
γ1

x(n1, n2|H)µ(H). (C.26)

Fixing any 1 ≥ χ2 ≥ (γ2µ(B) − µ(H) − ε)/(γ2 − ε), we want to choose x to mini-

mize the RHS of (C.25) while satisfying (C.24). First, we observe that it is optimal

to choose x such that (C.26) binds. This is because if (C.26) does not bind, we can

increase x(n1, n2|B)µ(B) by a small amount, and then decrease x(n1, n2|H)µ(H) and in-

crease x(y1, n2|H)µ(H) by the same amount. In this way, the RHS of both (C.24) and

(C.25) will remain unchanged. We can plug the binding constraint (C.26) in (C.24) and

(C.25) to obtain:

χ2 ≥ 1 −
1 + γ2

γ2 − ε
x(y1, n2|H)µ(H) − (

1 + γ2 − ε

γ2 − ε
−

ε

γ1(γ2 − ε)
)x(n1, n2|H)µ(H), (C.27)

χ1 ≥ 1 −
1 + γ1

γ1 − ε
µ(H) +

1 + γ1

γ1 − ε
x(y1, n2|H)µ(H) +

ε(1 + γ1)
γ1(γ1 − ε)

x(n1, n2|H)µ(H), (C.28)

Since ε is small (satisfying our maintained assumptions), to minimize the RHS of (C.28)

while satisfying (C.27), one should first increase x(n1, n2|H) until either (C.27) is satis-

fied or x(n1, n2|H) = 1. In the former case, the RHS of (C.28) is one line segment con-

necting Q3 and Q6; In the latter case, x(y1, n2|H) should be increased until (C.27) is sat-

isfied. In this case, the RHS of (C.23) is one line segment connecting Q2 and Q6.

C.4 Complete Network: N = {(1, 2), (2, 1)}

In this case, the obedience constraints are (C.7) and (C.18). We make several observa-

tions to reduce the inequalities:

- The first inequality of (C.7) implies the first of (C.18);

- The last inequality of (C.18) implies the last of (C.7);

- Under our assumption on ε, the second inequality of (C.7) and the third inequality

of (C.18) imply x(n1, y2|B) = x(n1, y2|H) = 0.

Since x(n1, y2|B) = x(n1, y2|H) = 0, player 1 has to take action y whenever player 2

does so. Therefore, we conclude χ2 ≤ χ1 by definition.
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C.4.1 Low-Prior Case

We will prove that the three extreme points in Figure 5 (Left Panel) when N = I2 are

P1 = (0, 0), P2 = ((1 + γ1)/2, 0), and P6 = ((1 + γ2)/(2(1 + ε)), (1 + γ2)/(2(1 + ε))). The

constructions are the same as Section C.3.1.

Next, we argue the feasible set is no larger than the convex hull of these points. From

the first inequality of (C.7) and the second inequality of (C.18) we have:

χ2 ≤
1 + γ2

2(1 + ε)
x(y1, y2|B)

χ1 ≤
1 + γ2

2(1 + ε)
x(y1, y2|B) +

1 + γ1

2
x(y1, n2|B)

≤
1 + γ1

2
− (

1 + γ1

2
−

1 + γ2

2(1 + ε)
)x(y1, y2|B)

Therefore, the feasible set of (χ1, χ2) must be a subset of the convex hull of P1, P2, and

P6.

C.4.2 High-Prior Case

We will prove that the three extreme points in Figure 5 (Right Panel) when N = I2 are

Q1 = (1, 1), Q2 = (1, (γ2µ(B) − µ(H) − ε)/γ2 − ε), Q6 = (1 − (1 + 1/γ1)µ(H), 1 − (1 +

1/γ1)µ(H)). The constructions are the same as Section C.2.2.

Next, we argue the feasible set is no larger than the convex hull of these points. From

the last inequality of (C.18) and the third inequality of (C.7) we have:

1 − χ1 ≤ (1 +
1
γ1

)x(n1, n2|H)µ(H)

1 − χ2 ≤ (1 +
1
γ1

)x(n1, n2|H)µ(H) +
1 + γ2

γ2 − ε
x(y1, n2|H)µ(H)

≤
1 + γ2

γ2 − ε
µ(H) + (1 +

1
γ1
−

1 + γ2

γ2 − ε
)x(n1, n2|H)µ(H)

Therefore, the feasible set of (χ1, χ2) must be a subset of the convex hull of Q1, Q2, and

Q6.

C.5 Reduction to Pure Recommendation

To complete the derivation, we need to show that it is without loss of generality to focus

on pure-action recommendations. For notational convenience, denote by ψ(α, ω) :=

x(α|ω)µ(ω) the joint distribution over (α, ω) induced by an outcome x.
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We first point out that when the information of a player is private, it is without loss to

recommend pure actions to that player. Specifically, let R ⊆ I be the set of players whose

information is private—that is, R = {i : (i, j) < N,∀ j ∈ I, j , i}.16 We have:

Lemma 7. Fix any feasible outcome x∗. There exists an obedient recommendation x

such that (i) players in R are recommended pure actions and (ii) x and x∗ induce the

same joint distribution over (a, ω) as x∗.

Proof. Fix any obedient recommendation x∗(α|ω), where α is a mixed action profile. We

define a new recommendation x where players in R are recommended pure actions. Let

x(aR, α−R|ω) :=
∑

αR∈suppR x∗
αR(aR)x∗(αR, α−R|ω),

where aR and a−R denote the action profile of players in R and I\R, respectively. By

definition, x induces the same joint distribution over (a, ω). Next we show x is still an

obedient recommendation.

Since x∗ is obedient, it holds that for every player i, for all αNi , ai, a′i such that αi(ai) >

0:17 ∑
α−Ni ,ω

∑
a−i

ui(ai, a−i, ω)α−i(a−i)ψ∗(αNi , α−Ni , ω)

≥
∑
α−Ni ,ω

∑
a−i

ui(a′i , a−i, ω)α−i(a−i)ψ∗(αNi , α−Ni , ω)
(C.29)

For player i < R, we have R ⊂ −Ni, so in (C.29) we can first sum over αR, and then over

aR, to get for all αNi , ai, a′i such that αi(ai) > 0:∑
α−Ni\R,ω

∑
a−i

ui(ai, a−i, ω)α−i\R(a−i\R)ψ(αNi , α−Ni\R, aR, ω)

≥
∑

α−Ni\R,ω

∑
a−i

ui(a′i , a−i, ω)α−i\R(a−i\R)ψ(αNi , α−Ni\R, aR, ω),

which implies that players not in R are obedient. For all i ∈ R, we can sum (C.29) over

αi ∈ suppi ψ
∗ to get:∑

αi

∑
α−Ni ,ω

∑
a−i

αi(ai)ui(ai, a−i, ω)α−i(a−i)ψ∗(αNi , α−Ni , ω)

≥
∑
αi

∑
α−Ni ,ω

∑
a−i

αi(ai)ui(a′i , a−i, ω)α−i(a−i)ψ∗(αNi , α−Ni , ω)

16Recall that when S = I, NS = N. Therefore, feasibility is determined by N.
17For brevity, we write

∑
αNi∈suppNiψ∗ as

∑
αNi

in what follows.
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which can be written as:∑
α−Ni\R,ω

∑
a−i

ui(ai, a−i, ω)α−R(a−R)ψ(αNi\i, α−Ni\R, aR, ω)

≥
∑

α−Ni\R,ω

∑
a−i

ui(a′i , a−i, ω)α−R(a−R)ψ(αNi\i, α−Ni\R, aR, ω).

This implies player i is obedient under x. □

An immediate and well-known consequence of Lemma 7 is that, since N = ∅ implies

R = I, it is without loss to focus on pure recommendations in this case. In the rest of this

section, we shall prove a similar result for the other networks. Before that, we first make

a simple observation whose proof is immediate, hence omitted: Convex combinations of

obedient recommendations are obedient.

Remark 1. Suppose {ψ∗λ(α, ω)}λ∈Λ is a finite family of obedient distributions for some

network and q is a probability distribution on Λ. Then

ψ(α, ω) :=
∑
Λ

ψ∗λ(α, ω)q(λ)

is also an obedient distribution under that network.

With Lemma 7 and Remark 1, we are ready to show that, as far as the joint distribution

of (a1, a2) is concerned, it is without loss to focus on pure recommendations when ε is

small. We will show this separately for the partial networks and the complete network.

C.5.1 Partial Networks: N = {(i,−i)}

By Lemma 7, it is without loss of generality to consider recommendations of the form

of x∗(αi, a−i|ω). From now on, let’s focus on a particular αi and use ψ∗αi
to denote the

conditional distribution over (a−i, ω). Abusing notation, we will use αi to denote the

probability on action y.

We first state a useful lemma:

Lemma 8. If player−i is obedient under ψ∗αi
, then ψ∗αi

can be decomposed into αiψ(yi, a−i, ω)+

(1 − αi)ψ(ni, a−i, ω) such that ψ is a well-defined joint distribution that preserves the

marginals of ω and (ai, a−i), and player −i is obedient after both (yi, a−i) and (ni, a−i).
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Proof. (Case 1: a−i = y). Let’s first focus on the case a−i = y. The fact that y−i is obedient

under ψ∗αi
means

ψ∗αi
(y−i,H)

ψ∗αi
(y−i, B)

≤
γ−i − αiε

1 + αiε
. (C.30)

We want to find ψαi such that:

ψαi(yi, y−i,H)
ψαi(yi, y−i, B)

≤
γ−i − ε

1 + ε
ψαi(ni, y−i,H)
ψαi(ni, y−i, B)

≤ γ−i

and ψαi is a well-defined joint distribution that preserves the marginals over ω and

(ai, a−i). To do this, we first define ψαi without changing the likelihood ratio of the ω’s:

ψαi(yi, y−i, ω) := αiψ
∗
αi

(y−i, ω), ψαi(ni, y−i, ω) := (1 − αi)ψ∗αi
(y−i, ω).

If player −i is already obedient, there is nothing to prove.

Therefore, suppose not—that is, after (yi, y−i) player −i finds it suboptimal to choose

y. In other words:
ψ∗αi

(y−i,H)
ψ∗αi

(y−i, B)
>
γ−i − ε

1 + ε
.

Now we choose 0 < ∆ ≤ αiψ
∗
αi

(y−i,H) such that

ψαi(yi, y−i,H)
ψαi(yi, y−i, B)

:=
αiψ

∗
αi

(y−i,H) − ∆
αiψ∗αi

(y−i, B) + ∆
=
γ−i − ε

1 + ε
. (C.31)

Intuitively, we compensate player −i such that after receiving (yi, y−i) she is indifferent

between y and n. Our last piece is to show

ψαi(ni, y−i,H)
ψαi(ni, y−i, B)

:=
(1 − αi)ψ∗αi

(y−i,H) + ∆
(1 − αi)ψ∗αi

(y−i, B) − ∆
≤ γ−i (C.32)

Note that since we are using the same ∆, the marginals of ω and (ai, a−i) are preserved.

From (C.31) we know that:

(γ−i + 1)∆ = (1 + ε)αiψ
∗
αi

(y−i,H) − (γ−i − ε)αiψ
∗
αi

(y−i, B)

Plugging this into (C.32), we can derive that our desired inequality is exactly (C.30),

which finishes the last piece.

We still need to check (1 − αi)ψ∗αi
(y−i, B) − ∆ ≥ 0. By (C.30), we know

(γ−i+1)∆ ≤ ((1+ε)αi
γ−i − αiε

1 + αiε
− (γ−i−ε)αi)ψ∗αi

(y−i, B) =
αiε(γ−i + 1)(1 − αi)

1 + αiε
ψ∗αi

(y−i, B),

which simplifies to:

∆ ≤ (1 − αi)
αiε

1 + αiε
ψ∗αi

(y−i, B).
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This implies ∆ ≤ (1 − αi)ψ∗αi
(y−i, B) as ε > 0.

(Case 2: a−i = n). The argument for this case is almost the same as before with all

inequalities reversed. The fact that n−i is obedient under ψ∗αi
means:

ψ∗αi
(n−i,H)

ψ∗αi
(n−i, B)

≥
γ−i − αiε

1 + αiε
. (C.33)

We want to find ψαi such that:
ψαi(yi, n−i,H)
ψαi(yi, n−i, B)

≥
γ−i − ε

1 + ε
ψαi(ni, n−i,H)
ψαi(ni, n−i, B)

≥ γ−i

and ψαi is a well-defined joint distribution that preserves the marginals over ω and

(ai, a−i).

To do this, we first decompose ψαi without changing the likelihood ratio of the ω’s:

ψαi(yi, n−i, ω) := αiψ
∗
αi

(n−i, ω), ψαi(ni, n−i, ω) := (1 − αi)ψ∗αi
(n−i, ω).

If player −i is already obedient, then we are done. Suppose not, then it must be the case

that after (ni, n−i) player −i finds it suboptimal to choose n. In other words:
ψ∗αi

(n−i,H)
ψ∗αi

(n−i, B)
< γ−i.

Now we choose 0 < ∆ such that:
ψαi(ni, n−i,H)
ψαi(ni, n−i, B)

:=
(1 − αi)ψ∗αi

(y−i,H) + ∆
(1 − αi)ψ∗αi

(y−i, B) − ∆
= γ−i. (C.34)

Intuitively, we compensate player −i such that after receiving (ni, n−i) she is indifferent

between y and n. Our last piece is to show:
ψαi(yi, n−i,H)
ψαi(yi, n−i, B)

:=
αiψ

∗
αi

(n−i,H) − ∆
αiψ∗αi

(n−i, B) + ∆
≥
γ−i − ε

1 + ε
(C.35)

Note since we are using the same ∆, we are preserving the marginals of ω and (ai, a−i).

From (C.34) we know that:

(γ−i + 1)∆ = γ−i(1 − αi)ψ∗αi
(n−i, B) − (1 − αi)ψ∗αi

(n−i,H)

Plugging this into (C.35), we can derive that our desired inequality is exactly (C.33),

which finishes the last piece.

We still need to check αiψ
∗
αi

(y−i,H) − ∆ ≥ 0. By (C.33), we know:

(γ−i+1)∆ ≤ (γ−i(1−αi)
1 + αiε

γ−i − αiε
− (1−αi))ψ∗αi

(n−i,H) =
αiε(γ−i + 1)(1 − αi)

γ−i − αiε
ψ∗αi

(n−i,H),

which simplifies to:

∆ ≤
(1 − αi)ε

γ−i + (1 − αi)ε − ε
αiψ

∗
αi

(y−i,H).

This implies ∆ ≤ αiψ
∗
αi

(y−i,H) as 0 < ε ≤ γ−i. □
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Lemma 8 states that we can concentrate on each ψ∗αi
and find the corresponding ψαi

that is obedient and preserves the marginals over (ai, a−i) and ω. We still need to check

that player i is obedient after both recommendations yi and ni. This is easy to see.

In the construction of ψαi (equation C.31), we have decreased the likelihood of H and

increased the likelihood of B when the recommendation is yi, for both a−i = y and a−i =

n. Meanwhile, when receiving yi, the likelihood of y−i and n−i has not been changed,

so player i’s obedience constraint is relaxed. Similar arguments hold for ni. Therefore,

player i is still obedient under ψαi .

Finally, after doing this for every αi, we have decomposed ψ∗αi
to the corresponding

ψαi and each of these are obedient. Now we can apply Remark 1 by choosing Λ = {αi :

αi ∈ suppψ∗} and q(λ) = ψ∗(αi). The resulting aggregated distribution is obedient and

replicates the marginal distribution over ω and (ai, a−i).

C.5.2 Complete Network: N = {(1, 2), (2, 1)}

In this case, information is public. Consider any mixed recommendation x∗(α1, α2|ω).

First, we argue that when ε is small, player 1 and 2 cannot use mixed strategies simulta-

neously. When player 1 uses strategy α1, player 2 is indifferent between y and n when:

ψ∗(α1, α2,H)
ψ∗(α1, α2, B)

=
γ2 − α1ε

1 + α1ε
;

Similarly, when player 2 uses strategy α2, player 1 is indifferent between y and n when:

ψ∗(α1, α2,H)
ψ∗(α1, α2, B)

=
γ1 − α2ε

1 + α2ε
.

Therefore, when

γ2 <
γ1 − ε

1 + ε
⇐⇒ ε <

γ1 − γ2

1 + γ2

we know player 1 and 2 cannot use strategies simultaneously. In particular, when 0 <

α1 < 1, we must have a2 = n, and when 0 < α2 < 1, we must have a1 = y.

For recommendation x∗(α1, n2|ω), if the designer instead uses pure recommendation

x(y1, n2|ω) = α1x∗(α1, n2|ω), x(n1, n2|ω) = (1 − α1)x∗(α1, n2|ω),

player 1 will be obedient because player 2’s strategy and the likelihood of ω are un-

changed. For player 2, since

ψ(a1, n2,H)
ψ(a1, n2, B)

= γ1 >
γ1 − ε

1 + ε
> γ2 ≥

γ2 − α1ε

1 + α1ε
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for all α1 ∈ [0, 1], player 2 will also be obedient given ε < (γ1 − γ2)/(1 + γ2).

Similarly, for recommendation x∗(y1, α2|ω), if the designer instead uses pure recom-

mendation

x(y1, y2|ω) = α2x∗(y1, α2|ω), x(y1, n2|ω) = (1 − α2)x∗(y1, α2|ω)

player 2 will be obedient because player 1’s strategy and the likelihood of ω are un-

changed. For player 1, since

ψ(y1, a2,H)
ψ(y1, a2, B)

=
γ2 − ε

1 + ε
< γ2 <

γ1 − ε

1 + ε
≤
γ1 − α2ε

1 + α2ε

for all α2 ∈ [0, 1], player 1 will also be obedient given ε < (γ1 − γ2)/(1 + γ2).

Finally, after doing this for every (α1, α2), we have decomposed ψ∗(α1, α2, ·) to corre-

sponding ψ(α1, α2, ·) and each of these are obedient. Now we can apply Remark 1 by

choosing Λ = {(α1, α2) : (α1, α2) ∈ suppψ∗} and q(λ) = ψ∗(α1, α2). The resulting aggre-

gated distribution is obedient and replicates the joint distribution of (a1, a2, ω).
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