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Abstract
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1. Introduction

Multi-valued vector functions, or correspondences, play an important role in many ar-

eas of economics, including consumer and producer choice, general equilibrium, game

theory, and mechanism design. For instance, proving existence of equilibrium typically

rests on Kakutani’s (1941) generalization of Brouwer’s fixed-point theorem to corre-

spondences. In a variety of optimization problems, single-valued solutions satisfy an

integrability condition: they are gradients of convex (or concave) functions known as

potentials.1 Specifically, a single-valued function is the gradient of a differentiable

potential if and only if it is conservative, i.e. its integral along every closed path van-

ishes. This result is known as the “Gradient Theorem” (also known as the fundamental

theorem of calculus for line integrals, e.g. Stewart, 2003).

When is a correspondence equal to the subdifferential of a potential? Rockafel-

lar (1970) shows that a necessary and sufficient condition is that the correspondence

is maximal and cyclically monotone. To relate cyclical monotonicity to the more geo-

metric notion of conservativeness, we build on Aumann’s (1965) work on integrals of

correspondences defined on the unit interval. The Aumann integral generally yields a

convex set but we show that for a monotone correspondence this set is a singleton. We

extend this uniqueness result to closed-path integrals of monotone correspondences in

arbitrary dimensions, which allows us to define conservativeness – a monotone corre-

spondence is conservative if and only if its integral along any closed path vanishes –

and establish the Subgradient Theorem – a monotone correspondence is equal to the

subdifferential of some potential if and only if it is conservative.

Conversely, integrating the conservative monotone correspondence enables us to

recover the potential – the Potential Theorem. The usefulness of the Potential Theorem

is that the dual of a convex (concave) potential is a concave (convex) potential and its

subdifferential defines a maximal conservative monotone correspondence inverse to

the original correspondence – the Duality Theorem. This theorem allows us to solve

problems in one domain that seem intractable in the dual domain.

1For instance, Hotelling’s (1932) lemma dictates that the supply function is the gradient of the profit
function. Shephard’s (1970) lemma dictates that Hicksian demand is the gradient of the expenditure
function and that factor demand is the gradient of the cost function. Finally, with quasilinear pref-
erences, Roy’s (1947) identity dictates that Marshallian demand is minus the gradient of the indirect
utility function, see Section 3. In mechanism design, the optimal allocation rule often corresponds to the
gradient of a convex potential, see e.g. Rochet and Choné (1998); Manelli and Vincent (2007); Goeree
and Kushnir (2023).
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We use our duality result in an application that is based on an inspiring recent con-

tribution by Baldwin and Klemperer (2019) who use insights from tropical geometry

to study consumer choice when goods are indivisible and preferences are quasilinear.

They show that the graph of Marshallian demand in price space forms a polyhedral

complex, the “price complex,” and that its facets, on which demand is multi-valued,

form a tropical curve.2 Conversely, they show that a price complex arises from max-

imization of a concave utility if and only if the tropical curve formed by its weighted

facets is “balanced” (Mikhalkin, 2004). Finally, they show that the price complex is

dual to a polyhedral complex in quantity space, the “demand complex,” but note that

its nature is more “abstract” in the sense that it is associated to a class of utility func-

tions rather than a specific valuation.

We show that the geometric duality outlined by Baldwin and Klemperer (2019) is a

reflection of the usual duality between demand and inverse demand and that balanced-

ness of their price and demand complexes is a reflection of conservativeness of demand

and inverse demand. Specifically, we show that the price complex is equivalent to the

subdifferential of indirect utility – the Equivalence Theorem – and that Mikhalkin’s

(2004) balancing condition is a tropical version of conservativeness. Since the inverse of

a subdifferential correspondence is itself a subdifferential correspondence, it is equiv-

alent to another polyhedral complex dual to the original. This dual complex is equiv-

alent to the subdifferential of utility and generalizes Baldwin and Klemperer’s (2019)

demand complex in that it is not “abstract,” but contains the same information as the

price complex. We relate our findings to classical results in consumer demand theory:

in price space, demand follows from Roy’s (1947) identity and in quantity space inverse

demand follows from the usual premise that marginal utilities equal prices.

Section 2 defines conservative monotone correspondences and derives the Subgra-

dient, Potential, and Duality Theorems. Section 3 reexamines demand with indivisible

goods and derives the Equivalence Theorem. Section 4 concludes. The Appendix con-

tains the proofs.

2A polyhedral complex is a collection of polyhedra that form a partition of the space. The tropical
graph is where the polyhedra meet.
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2. Conservative Monotone Correspondences

We assume agents have quasilinear preferences U(q)−p ·q where the utility U(q) over

bundles is concave. The indirect utility V (p) = maxqU(q)−p ·q is convex and deter-

mines demand Q(p) via Roy’s lemma. However, since indirect utility is not necessarily

everywhere differentiable, e.g. when goods are indivisible as in the next section, we

need a generalized notion of derivatives.

Let C ⊆Rn be a convex set and let V : C →R be a convex function. Recall that v ∈Rn

is a subgradient of V at p ∈ C if for all p′ ∈ C

V (p′)−V (p) ≥ v · (p′−p)

The set of all subgradients at p is called the subdifferential of V at p and is denoted

∂V (p). This set is non-empty, convex, and compact for any p ∈ C. Below we demon-

strate that ∂V : C →Rn is a maximal conservative monotone correspondence.

Recall that a correspondence M : C →Rn is monotone if and only if

(m2 −m1) · (p2 −p1) ≥ 0

for all p1,p2 ∈ C, m1 ∈ M(p1), m2 ∈ M(p2). A correspondence is maximal if its graph is

not properly contained in the graph of another monotone correspondence.3

We next show that a monotone correspondence is conservative if and only if it is

equal to the subdifferential of some convex function – called the potential. We charac-

terize this potential and establish properties of its dual. These are novel results in the

mathematics literature and in Section 3 we apply them to study important economic

environments where differentiability cannot be assumed.

Definition 1 A maximal monotone correspondence, M, is conservative if and only if,

for any closed path Γ⊂ C where C is a convex subset of Rn,∮
Γ

M(p) ·dp = 0 (1)

We show in Appendix A that the path integral in (1) is unique, i.e. independent of the

selection from M used to compute it, and therefore (1) is well defined.

3E.g., a univariate M is maximal if its graph can be drawn without lifting one’s pen from the paper.
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Theorem 1 (Subgradient Theorem) If V : C → R is convex then M = ∂V is a maxi-

mal conservative monotone correspondence on C. Conversely, if M is a maximal conser-

vative monotone correspondence on C then M= ∂V for some convex V : C →R.

Remark 1 To the best of our knowledge Theorem 1 has not been stated in the litera-

ture. However, its proof (see Appendix) can be obtained by combining prior work. The

“if” part follows from Krishna and Maenner (2001, Th. 1). The “converse” part requires

several steps. First, Kenderov (1975) showed that the integral of a maximal monotone

correspondence M(t) on the unit interval t ∈ [0,1] is single valued and independent

of the selection used to calculate it. Second, this uniqueness result can be extended

to the integral of a maximal monotone correspondence M : C → Rn along the line seg-

ment from p1 ∈ C to p2 ∈ C by parameterizing this segment as Γ(p1,p2)= (1− t)p1+ tp2

for t ∈ [0,1]. Uniqueness maintains when combining several line segments to form a

closed polyline, i.e. Γ=Γ(p1,p2)∪Γ(p2,p3)∪. . .∪Γ(pK ,p1). Summing the results for the

different segments and using monotonicity of M(p) yields the inequality

K∑
k=1

mk · (pk+1 −pk) ≥
∮
Γ

M(p) ·dp

for pK+1 =p1 and any mk ∈M(pk). If M(p) is conservative the right side is zero and the

inequality implies M(p) is cyclically monotone. Rockafellar (1970, Th. 24.8, 24.9) shows

that M(p) is a maximal cyclically monotone correspondence if and only if M(p)= ∂V (p)

for some convex V . ■

Remark 2 Convex functions are differentiable almost everywhere so the gradient ∇V

is the unique selection from ∂V almost everywhere, see Rockafellar (1970, Thm. 25.5)

and Rockafellar and Wets (2009, Thm. 9.60). But one cannot use the gradient theorem

to establish conservativeness because the path Γ might be partly, or completely, con-

tained in a lower-dimensional set of non-differentiability. For instance, if V (p1, p2) =
max(p2

1 + p2
2,1) and Γ is the unit circle, then the gradient does not exist anywhere

along the path. However, the difference between any two selections from ∂V (p1, p2) =
α(p1, p2) for 0 ≤ α ≤ 2 is a vector normal to the path. So while ∂V is multi-valued,

the inner product of ∂V with the path’s tangent is single valued along the entire path.

Hence, different selections yield the same result for the path integral in (1). See the

proof of Theorem 1 for details. ■

We can be more specific about the “some convex V ” in the converse part of Theorem 1.
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Pick some p1 ∈ C and some finite value for V (p1). Let Γ(p1,p2) denote a path from p1

to p2. If M is conservative then

V (p2) = V (p1)+
∫
Γ(p1,p2)

M(p) ·dp (2)

is independent of Γ(p1,p2). This function is known as the potential for M.

Theorem 2 (Potential Theorem) If M is a maximal conservative monotone corre-

spondence then M= ∂V with the potential V defined in (2).

An important property of subdifferential mappings is that they can be inverted in the

sense of multi-valued mappings. If M = ∂V then there exists another maximal mono-

tone correspondence, M∗ = ∂V∗, such that p ∈M∗(m) if and only if m ∈M(p), see Rock-

afellar (1970, Cor. 23.5.1). Here V∗(m) = maxp 〈p|m〉−V (p) is the Fenchel dual of V .

Since M∗ is a subdifferential mapping it is a maximal conservative monotone corre-

spondence by Theorem 1. We thus have:

Theorem 3 (Duality) Let M be a maximal conservative monotone correspondence with

potential V . Then its inverse M∗ is a maximal conservative monotone correspondence

with potential V∗, which is the Fenchel dual of V .

Theorem 3 expresses duality between two convex potentials. In economics, the con-

vention is to define duality between a concave utility and a convex indirect utility. In

particular, for a concave utility U(q) the indirect utility V (p)=maxqU(q)−p ·q is con-

vex. Conversely, for a convex indirect utility V (p) the dual

U(q) = min
p

V (p)+〈p |q〉 (3)

is the original concave utility.4 The associated conservative monotone correspondences

are the Marshallian demand correspondence Q(p) = −∂V (p) and the inverse demand

correspondence P(q) = ∂U(q).5 In the next section, we study these correspondences in

economics problems with indivisibilities, e.g. the assignment of a discrete set of goods.

In such problems, the potentials are typically finitely generated, or polyhedral.

4It is readily verified that the two duality notions are related via U(q)=−V∗(−q).
5Some authors use the terminology superdifferential for concave functions. We follow Rockafellar

(1970) who uses subdifferential for both convex and concave functions.
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U1 = 0

q1 = (0,0)

U2 = 16

q2 = (2,0)

U3 = 24

q3 = (1,1)

U4 = 28

q4 = (0,2)

U5 = 34

q5 = (2,2)

Figure 1: Example of a finite bundle set, Q = {qk}5k=1, where the value of qk is Uk.

3. Economies with Indivisible Goods

Economies with indivisible goods pose an obvious technical challenge, even with a sin-

gle consumer. The usual approach of equating marginal rates of substitution to price

ratios seems impossible with only a finite set of values for a discrete set of bundles. To

deal with this challenge, Baldwin and Klemperer (2019) use insights from the math-

ematics literature on tropical geometry. In this section we show that the duality they

exploit, between demand in terms of prices and (inverse) demand in terms of quanti-

ties, fits squarely in the domain of convex analysis using our results from Section 2.6

In particular, the geometric duality they outline is a reflection of the usual duality be-

tween demand and inverse demand and the balancedness of their price and demand

complexes is a reflection of the conservativeness of demand and inverse demand.

We begin with an example to illustrate the equivalence between Baldwin and Klem-

perer’s (2019) price and quantity complexes and the subdifferential mappings that

yield demand and inverse demand. Consider the set of bundles shown in Figure 1

for which a consumer with quasilinear preferences has the indicated utilities. The

indirect utility follows by simply enumerating over the possible bundles

V (p) = max(0,16−2p1,24− p1 − p2,28−2p2,34−2p1 −2p2) (4)

and the demand function follows from Roy’s identity Q(p) = −∂V (p). Since indirect

utility is piecewise linear, its subdifferential is piecewise constant.

6The terminology “tropical analysis” reflects the overlap between results in tropical geometry and
convex analysis.
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Figure 2: The left panel shows −∂V and the right panel shows ∂U . Vertices in one
graph correspond to regions in the dual graph and their locations produce the labels of
the dual regions. In both graphs, the difference in labels between two adjacent regions
is the weight (the white number in the blue disk) times the normal to the regions’
common edge. Edges in one graph correspond to perpendicular edges in the dual graph,
and their weights equal the dual edge’s length.

The left panel of Figure 2, coined the “price complex” by Baldwin and Klemperer

(2019), shows the price regions where the demand correspondence is single-valued. The

regions are separated by a “tropical graph,” which contains prices at which demand is

multi-valued.7 Each region is labeled by the associated demand vector −∂V (p). The

difference in labels between two adjacent regions is a vector perpendicular to the edge

they share. The greatest common divisor of this difference vector defines the weight

(indicated by the white number in the blue disk).8 Dividing the difference vector by the

weight yields a primitive integer normal vector whose entries have a greatest common

divisor of 1. This primitive integer normal vector can be used to define lengths. For

instance, the edge connecting the leftmost vertex p1 = (1,9) with the topmost vertex

p2 = (8,16) in the left panel of Figure 2 has length seven since the difference p2 −p1 is

seven times the integer normal vector (1,1).

The dual U(q) is the lowest concave function everywhere above the discrete valua-

tions, i.e. U(q)≥Uq for all q ∈ Q . It is given by

U(q) = min(14+ q1 +9q2,14+3q1 +7q2,8q1 +16q2,10q1 +14q2) (5)

7Baldwin and Klemperer (2019) refer to this tropical graph as the “locus of indifference prices.” At
these prices, demand equals −∂V (p)∩ZK

≥0 to reflect indivisibility.
8For edges without a blue disk the weight is equal to one.
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for q = (q1, q2) ∈ [0,2]2. The resulting price function P(q) = ∂U(q) yields the “demand

complex” shown in the right panel of Figure 2. This graph shows bundles of demand

among which the consumer is indifferent for some price vector. Each region of indif-

ference is annotated with the price vector P(q) = ∂U(q) that induces this indifference.

As explained in the figure’s caption, the graphs in the left and right panels are dual,

which is a consequence of the fact that −∂V (p) and ∂U(q) are inverses in the sense of

multi-value mappings, i.e. q ∈−∂V (p) if and only if p ∈ ∂U(q).

The price complex in the left panel of Figure 2 coincides with the description of

Baldwin and Klemperer (2019) but the demand complex in the right panel adds detail

to their abstract version. Baldwin and Klemperer (2019, p. 881) write that the price

complex “shows the actual prices at which bundles are demanded, whereas a demand

complex shows only collections of bundles among which the agent is indifferent for

some prices,” and that there does not “seem to be any simple check of which polyhedral

complexes in quantity space correspond to any valuation.”

However, the inverse nature of the price and demand complexes implies they con-

tain the same information. Hence, the demand complex does indicate the prices at

which a consumer demands certain bundles. For example, at the price vector (8,16),

the consumer is different between bundles (0,0), (1,1) and (2,0), see the lower triangle

in the right panel of Figure 2; for any price vector that is a strict convex combination

of (8,16) and (10,14), the consumer is indifferent between bundles (0,0) and (1,1); at

any price vector that is a strict convex combination of (8,16), (10,14), (3,7) and (1,9),

the consumer demands the bundle (1,1). This shows that the prices at which bundles

are demanded can be inferred from the demand complex.

Moreover, Baldwin and Klemperer’s (2019, Th. 2.14) criterion for whether a price

complex stems from utility maximization is that its facet subcomplex satisfies a bal-

ancedness condition due to Mikhalkin (2004).9 To illustrate, consider a tiny circle

around the leftmost vertex (1,9) in left panel of Figure 2, which is at the intersec-

tion of the (2,0), (2,2), and (1,1) regions. This circle crosses three edges. Balancedness

9The question whether demand can be rationalized by utility maximization has a long history in
economics (dating back to Afriat, 1967) and has been raised across a variety of contexts. For instance,
Green and Park (1996) analyze whether alternative models for choice under uncertainty yield contingent
plans that can be rationalized by maximization of conditional expected utility.

8



requires that the edges’ weighted normals sum to zero, i.e.

2
( 0

1

)
+

( 1

−1

)
+

( −1

−1

)
= 0

However, the same balancedness condition applies to the demand complex. Starting at

the top and going counterclockwise around the (1,1) vertex in the right panel of Figure

2 we have

7
( 1

1

)
+2

( −1

1

)
+7

( −1

−1

)
+2

( 1

−1

)
= 0

The reason the demand complex is balanced is that P(q) is conservative by Theorem

1, i.e.
∮
ΓP(q) ·dq= 0 along any closed path Γ. To summarize, indivisible goods pose no

problem for solving the consumer’s problem, either in price space via Roy’s lemma or in

quantity space by equating marginal utilities to prices. The reason we can use either

space is that the price and demand complexes contain the same information.

To show equivalence of the price (demand) complex and the subdifferential of indi-

rect (direct) utility more generally we need two definitions. Recall that a polyhedron is

the intersection of finitely many half-spaces.10

Definition 2 A polyhedral complex Π is a finite set of polyhedra in Rn such that:

(i) if P ∈Π then any face of P is also in Π;

(ii) if P,Q ∈Π then P ∩Q is a face of both P and Q.

Π is a polyhedral subdivision of Rn if the union of its polyhedra covers Rn.

Definition 3 The pair (Π,Λ) defines a normally labeled polyhedral subdvision of Rn

if Π is a polyhedral subdivision of Rn and Λ a set of labels, one label ℓP ∈ Rn for each

P ∈Π, such that for all P,Q ∈Π with F = P∩Q ̸= ; (i.e. P and Q are adjacent and share

a facet F), the vector n= ℓQ −ℓP points from Q to P and is normal to F.

Definition 3 allows for non-integer labels so that we can establish a more general equiv-

alence result. Recall that V :Rn →R is a polyhedral convex function if it is the pointwise

10A face of a polyhedron P ⊊Rn is any intersection of P with the boundary of a closed half-space that
contains P; the dimension of a face is the dimension of its affine hull; 0-dimensional faces are points
in Rn called vertices – throughout we identify a vertex with its position in Rn; 1-dimensional faces are
called edges; the empty set is also a face of P with dimension −1; a proper face of P is a face that is
not P itself; a facet is a maximal proper face; the boundary ∂P of P is the union of its facets; if P is
n-dimensional then its interior is int(P)= P \∂P, otherwise its relative interior is relint(P)= P \∂P.
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maximum of a finite set of affine functions. We say V (p) is irreducible if each of the

affine functions exceeds the others for some p ∈Rn.

Theorem 4 (Equivalence) A normally labeled polyhedral subdivision of Rn is equiv-

alent to the subdifferential of an irreducible polyhedral convex function in that:

(i) An irreducible polyhedral convex function V (p) = maxℓ∈Λ (cℓ−ℓ ·p), with Λ⊂ Rn

finite, generates the normally labeled polyhedral subdvision (Π,Λ) = {(Pℓ,ℓ)}ℓ∈Λ
where the

Pℓ = {p ∈ Rn |ℓ ∈ −∂V (p)} (6)

are n-dimensional polyhedra that subdivide Rn.

(ii) Conversely, let (Π,Λ) be a normally labeled polyhedral subdivision of Rn then it is

generated by the irreducible polyhedral convex function

V (p) = max
P ∈Π

(cP −ℓP ·p) (7)

where the constants {cP }P∈Π satisfy cP − cQ = ℓ∗ · (ℓP −ℓQ) whenever P,Q ∈Π are

adjacent and ℓ∗ is any vertex in P ∩Q.

Theorem 4 only specifies the differences cP − cQ so the convex potential in (7) is de-

termined up to a constant. We can similarly determine, up to a constant, the concave

potential for the dual demand complex (Π∗,Λ∗). Let Λ∗(P) denote the set of vertices of

P ∈Π and Λ∗ =∪P∈ΠΛ∗(P). Define U : co(ℓ)→R as follows11

U(q) = min
ℓ∗∈Λ∗ (cℓ∗ +ℓ∗ ·q) (8)

where the constants {cℓ∗}ℓ∗∈Λ∗ satisfy cℓ∗−cr∗ = ℓ·(r∗−ℓ∗) if there is a P ∈Π containing

both ℓ∗ and r∗, and ℓ is the label of any such P. Then (Π∗,Λ∗) is generated by ∂U(q).

4. Conclusions

We establish the Subgradient Theorem, which is an extension of the well known Gra-

dient Theorem to monotone correspondences. Specifically, we show that any maximal

11The dual potential U is assumed to be −∞ outside of the convex hull of the labels, co(ℓ).
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conservative monotone correspondence has a convex or concave potential and, con-

versely, that the subdifferential of any convex or concave potential defines a maximal

conservative monotone correspondence. Further, our Potential Theorem shows how to

construct the potential from the correspondence, and our Duality Theorem shows that

the inverse of the correspondence is also a maximal conservative monotone correspon-

dence with a potential that is the dual of the potential of the original correspondence.

Our results allow us to apply the tools of convex analysis to economies with indivisi-

ble goods, generating analogues to classic results including Roy’s identity and equating

marginal utilities to prices. Moreover, it enables a reinterpretation of the important

results of Baldwin and Klemperer (2019), couching their duality results and insights

within the familiar realm of convex analysis. This allowed us to sharpen their notion

of a demand complex to include the prices at which certain bundles are demanded.

A. Appendix: Proofs

We adapt Aumann’s (1965) definition for integrals of multi-valued maps defined on the
unit interval. For each t ∈ [0,1], let M(t) be a nonempty bounded subset of R. We say
that a single-valued function m : [0,1] → R is a measurable selection from M if it is
integrable and m(t) ∈ M(t) for all t ∈ [0,1]. The Aumann integral of M is then defined
as ∫ 1

0
M(t)dt =

{∫ 1

0
m(t)dt : m is a measurable selection from M

}
Generally, the right side yields a non-empty convex set (Aumann, 1965). Our main
interest, however, is in monotone correspondences, i.e. (m2 − m1)(t2 − t1) ≥ 0 for all
m1 ∈ M(t1), m2 ∈ M(t2), t1, t2 ∈ [0,1]. Throughout we assume that the correspondence
is maximal, i.e. its graph is not properly contained in the graph of another monotone
correspondence, and comment on how results change if it is not. Kenderov (1975, Th.
2.7) shows that the set on which a maximal monotone correspondence is multi-valued
has measure zero. Different selections from M are therefore equal almost everywhere
and are continuous almost everywhere (as their set of discontinuity points coincides
with the set where M is multi-valued). Since M(t) is non-empty and bounded for all
t ∈ [0,1], each selection is also bounded, and hence, it is Riemann integrable. To sum-
marize, the Aumann integral of a monotone correspondence on [0,1] is unique, i.e. a
singleton, and we can use any selection from M to compute it. Finally, since M(t) is
monotone we have

m0 ≤
∫ 1

0
M(t)dt ≤ m1

for all m0 ∈ M(0) and m1 ∈ M(1).
Following Romano et al. (1993), we next extend uniqueness of the Aumann integral
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to line integrals of maximal monotone correspondences M : C → Rn defined on some
convex domain C ⊆Rn.12 Recall that M is monotone if and only if

(m2 −m1) · (p2 −p1) ≥ 0

for all p1,p2 ∈ C, m1 ∈M(p1), m2 ∈M(p2). For p1,p2 ∈ C, the projection of M along the
line segment p(t)= (1− t)p1 + tp2 defines a correspondence on [0,1]

M(t) = {m(t) · (p2 −p1) : m(t) ∈ M(p(t))}

that is monotone. To see this, note that for all m1 ∈ M(t1), m2 ∈ M(t2) we have

(m2 −m1)(t2 − t1)= (m(t2)−m(t1)) · (p2 −p1)(t2 − t1)= (m(t2)−m(t1)) · (p(t2)−p(t1)) ≥ 0

where the inequality follows from monotonicity of M. The inequality (m2−m1)(t2−t1)≥
0 for all m1 ∈ M(t1), m2 ∈ M(t2), t1, t2 ∈ [0,1], is the same as the one of the previous
paragraph where it was used to establish uniqueness. Hence, the line integral of M(p)
from p1 to p2 is uniquely defined, i.e. independent on the choice of m(t) ∈ M(p(t)).
Moreover,

m1 · (p2 −p1) ≤
∫ p2

p1

M(p) ·dp ≤ m2 · (p2 −p1)

for all m1 ∈M(p1) and m2 ∈M(p2).
Finally, the integral of M along a closed path, Γ, made out of a finite number of line

segments is the sum of the integrals for each of the segments. For k = 1, . . . ,K (with
K arbitrary), let pk denote the start of segment k and let pk+1 denote its end, with
pK+1 ≡p1 and mK+1 ≡m1. We have

K∑
k=1

mk · (pk+1 −pk) ≤
∮
Γ

M(p) ·dp ≤
K∑

k=1
mk+1 · (pk+1 −pk)

If the closed-path integral of M along the polyline Γ vanishes then the left inequality
is the definition of M being cyclically monotone.13 Rockafellar (1970, Th. 24.8, 24.9)
shows that M is cyclically monotone if and only if M(p) ⊆ ∂F(p) for some convex func-
tion F with equality when M is maximal. Krishna and Maenner (2001) prove that the
integral of the subdifferential of a convex function along any closed path14 vanishes.
Combining these results allows us to define conservative monotone correspondences
and state the Subgradient Theorem.15

12If M is not maximal then the existence of a maximal extension of is ensured by Zorn’s lemma.
13And the right inequality, which can be rewritten as

∑K
k=1 xk ·(mk+1−mk)≤ 0, implies that the inverse

of M is also cyclically monotone.
14When we write path we will implicitly assume it is differentiable almost everywhere.
15Note that if the integral of M along any closed polyline vanishes then its integral along any closed

path vanishes. This might also be shown by approximating an arbitrary closed path by closed polylines
with increasingly many segments.
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Proof of Theorem 1. Rockafellar (1970, Th. 24.9 and Cor. 31.5.2) shows that ∂V
is maximal cyclically monotone and maximal monotone. Krishna and Maenner (2001)
provide an elegant proof that ∂V is conservative. Here we provide a slightly different
proof based on the intuition that for any m1,m2 ∈ ∂V (p) their difference is normal to the
curve that passes through p almost everywhere. Recall that the directional derivative
of V is defined as

V ′(p;y) = lim
ε↓0

V (p+εy)−V (p)
ε

see Rockafellar (1970, Sec. 23) who shows that V ′(p;y) exists and −V ′(p;−y)≤V ′(p;y)
for all y, see Rockafellar (1970, Th. 23.1). Moreover, Rockafellar (1970, Th. 23.2)
implies

−V ′(p;−y) ≤ m ·y ≤ V ′(p;−y)

for all y iff m in ∂V (p). Hence, for m1,m2 ∈−∂V (p) we have

−V ′(p;y)−V ′(p;−y) ≤ (m2 −m1) ·y ≤ V ′(p;y)+V ′(p;−y)

Consider a path p : [0,1]→ C with p(0)=p(1) that is differentiable almost everywhere.
Define φ(t) = V (p(t)), which is regular Lipschitzian, so for almost all t ∈ [0,1], φ(t) is
differentiable, i.e. φ′(t;1) = −φ′(t;−1), or, equivalently, V ′(p(t); ṗ(t)) = −V ′(p(t);−ṗ(t)).
Hence, for almost all t ∈ [0,1], the above inequality implies (m2 −m1) · ṗ(t) = 0 for any
m1,m2 ∈ ∂V (p(t)), i.e. the difference between two selections from the subdifferential
is normal to the path almost everywhere. Hence,

∮
∂V (p) · dp = ∫ 1

0 ∂V (p(t)) · ṗ(t)dt is
independent of the selection from ∂V (p) and since ∂V (p(t)) · ṗ(t) = V ′(p(t); ṗ(t)) = φ′(t)
for almost all t ∈ [0,1], we have

∮
∂V (p) ·dp= ∫ 1

0 φ
′(t)dt =φ(1)−φ(0)= 0, as first shown

by Krishna and Maenner (2001).
For the proof of the converse part, consider the integral of M along a closed path,

Γ, made out of a finite number of line segments. For k = 1, . . . ,K (with K arbitrary), let
pk denote the start of segment k and let pk+1 denote its end, with pK+1 ≡p1. We have
shown in the above

K∑
k=1

mk · (pk+1 −pk) ≤
∮
Γ

M(p) ·dp ≤
K∑

k=1
mk+1 · (pk+1 −pk)

where mk is any selection from M(pk) for k = 1, . . . ,K . If M is conservative, the path
integral vanishes and we have

K∑
k=1

mk · (pk+1 −pk) ≤ 0

for all pk ∈ C and mk ∈ M(pk), which are the inequalities that define cyclical mono-
tonicity of M, see Rockafellar (1970, p. 238). Indeed, the idea behind choosing a closed
polyline is to generate the above inequalities. Hence, M(p) ⊆ ∂V (p) for some convex
function V , and, if M is maximal then M= ∂V , see (Rockafellar, 1970, Th. 24.8 and Th.
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24.9). (Note that a vanishing closed polyline integral of M also implies

0 ≤
K∑

k=1
mk+1 · (pk+1 −pk)=

K∑
k=1

pk · (mk+1 −mk)

which implies that the inverse P of M is also cyclically monotone and, hence, P ⊆ ∂U
for some concave potential U with equality when P is maximal.) ■

An easy corollary is that a monotone correspondence is cyclically monotone if and
only if it is conservative. (Note that every cyclically monotone correspondence is mono-
tone, e.g. use K = 2 in the definition of cyclical monotonicity.)

Proof of Theorem 2. Let p1 ∈ C and let Γ(p1,p2) denote the line from p1 to p2. From
definition of the potential (2) and the proof of Theorem 1 we have

V (p2) = V (p1)+
∫
Γ(p1,p2)

M(p) ·dp ≥ V (p1)+m1 · (p2 −p1)

for all p2 ∈ C, m1 ∈ M(p1). Hence, m1 ∈ ∂V (p1) for all p1 ∈ C and m1 ∈ M(p1), i.e.
M⊆ ∂V (with equality when M is maximal, see above). ■
Proof of Theorem 4. (i) Pℓ in (6) can equivalently be described as

Pℓ = {p ∈ Rn | cℓ−ℓ ·p ≥ cℓ′ −ℓ′ ·p ∀ℓ′ ∈ Λ}

= {p ∈ Rn | (ℓ−ℓ′) ·p ≤ cℓ− cℓ′ ∀ℓ′ ∈ Λ}

which is the standard definition of a polyhedron. It is n-dimensional because irre-
ducibility of V (p) = maxℓ∈Λ (cℓ −ℓ ·p) means cℓ −ℓ ·p > cℓ′ −ℓ′ ·p ∀ℓ′ ̸= ℓ for some
p ∈Rn and these strict inequalities hold for a small n-dimensional open ball around p.

Lower dimensional faces can be defined similarly, e.g. for ℓ,ℓ′ ∈ Λ the facets are
Fℓ,ℓ′ = {p ∈Rn |ℓ,ℓ′ ∈−∂V (p)} if non-empty. More generally, for d = 1, . . . ,min(n+1, |Λ|),
let Sd be a set of d different labels. If FSd = {p ∈ Rn |Sd ∈ −∂V (p)} is non-empty then
it is a (n+1− d)-dimensional face in Π. For k ≤ n, the k-skeleton Πk of Π is the set
of all faces in Π of dimensional k or less, i.e. Πk = ∪d≥n+1−k ∪Sd FSd . This defines a
complex ; = Π−1 ⊆ Π0 ⊆ ·· · ⊆ Πn = Π that satisfies properties (i) and (ii) of Definition
2.16 To verify the final property of Definition 2, note that for any p ∈ Rn, at least one
term in V (p) is the maximum so the {Pℓ}ℓ∈Λ cover Rn. Finally, to verify Definition
3, note that any p in a facet shared by two adjacent polyhedra Pℓ,Pℓ′ ∈ Π satisfies
cℓ−ℓ ·p= cℓ′−ℓ′ ·p. Hence, (ℓ−ℓ′) ·p= cℓ− cℓ′ for any p in the facet, which shows that
ℓ−ℓ′ is normal to the facet and Π is normally labeled.

(ii) The constructed V is a polyhedral convex function. To show that ℓP ∈ −∂V (p)
for p ∈ P, it is sufficient that cP −ℓP ·p ≥ cQ −ℓQ ·p for all Q ∈Π that are adjacent to
P (since V is convex).17 The constants satisfy cP − cQ = ℓ∗ · (ℓP −ℓQ) so we can rewrite

16Note that many of the Πk may be empty, but not Πn. For instance, if V (p) = α−β ·p then Πn = Rn

and Πk =; for k < n.
17To elucidate, consider minimizing µ−ℓ · p over the epigraph epi(V )= {(p,µ) ∈Rn+1 |µ ≥ V (p)}, which
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Figure 3: Balancedness and normal labeling.

this inequality as
(p−ℓ∗) · (ℓP −ℓQ) ≤ 0 (9)

Let ℓk
P and ℓk

Q denote the k-th entries of ℓP and ℓQ respectively. Recall from Definition
3 that the normal n= ℓQ −ℓP to the facet P∩Q points from Q to P. So, if ℓk

P ≤ ℓk
Q then

pk ≥ qk and if ℓk
P ≥ ℓk

Q then pk ≤ qk for any p ∈ P and q ∈Q. Hence, (p−q)·(ℓP −ℓQ)≤ 0
for any p ∈ P and q ∈Q. Since ℓ∗ ∈Q the condition in (9) is met.

To show the constructed V is irreducible, we sharpen (9) to (p−ℓ∗) ·(ℓP −ℓQ)< 0, or
equivalently, cP−ℓP ·p> cQ−ℓQ ·p for p ∈ int(P). Write p ∈ int(P) as p= ℓ∗∗+αn where
ℓ∗∗ is a vector in the affine hull of P∩Q and α> 0. Then (p−ℓ∗)·(ℓP−ℓQ)=−αn·n< 0.

Finally, we show that normal labeling implies Mikhalkin’s (2004) balancing condi-
tion. Consider the configuration in Figure 3 where K facets with normals nk intersect
and the K adjacent regions are labeled ℓk for k = 1, . . . ,K . Normal labeling requires
e.g. n1 = ℓ2−ℓ1 or ℓ2 = ℓ1+n1, and ℓ3 = ℓ2+n2 etc. If we make a full counterclockwise
circle we get

ℓ1 = ℓK +nK = ℓK−1 +nK +nK−1 = ·· · = ℓ1 +
K∑

k=1
nk

i.e. normal labeling implies the balancing condition18 ∑K
k=1 nk = 0.

is a polyhedron in Rn+1. This is a standard linear programming problem

min
µ≥ cP−ℓP ·p ∀P ∈Π

µ−ℓ ·p
and the simplex method used to solve it rests on the idea that a vertex in epi(V ) is optimal when neighbor
vertices do not yield lower values, which works if the feasible set is convex (like epi(V )). The intuition
is that the vertex is a local minimum and convexity ensures it is a global minimum. For special values
of the objective, e.g. when ℓ = ℓP , the solution to the minimization problem is not just a vertex but
the entire polyhedron Pk. Nonetheless, optimality of any p ∈ Pk can be established by comparing its
objective value to the best objective value obtained from adjacent polyhedra.

18The usual formulation of the balancing condition is that the sum of weighted normals vanishes, i.e.∑K
k=1 wknk = 0, see Section 3. This is because labels are assumed to be integer and the difference ℓ′−ℓ

is divided by the greatest common divisor of its elements to define a primitive integer normal vector.
However, there is no need to separate out weights in the generalization we consider, i.e. when labels are
real numbers. Hence, the condition

∑K
k=1 wknk = 0 reduces to

∑K
k=1 nk = 0.
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