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Tâtonnement in matching markets
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I study tâtonnement processes in a matching market without transfers. In each
period, schools set cutoffs, i.e., the preference ranks of the least preferred students
they are willing to admit, and students accept their most preferred offers. Cutoffs
are adjusted on the basis of demand–supply imbalances. A school’s adjustment
from one period to the next is moderate if it is bounded by the most recently ob-
served imbalance at that school. I show that for any period in which all schools ad-
just moderately, the sum of demand–supply imbalances across all schools weakly
decreases. Moreover, if all schools always adjust moderately and there is a unique
stable matching, then adjustments converge to a market-clearing cutoff vector. If
there is more than one stable matching, moderate adjustments may cycle indefi-
nitely, but the supremum and the infimum of all cutoff vectors observed along a
cycle are both market-clearing.

Keywords. Tâtonnement, matching without transfers, cutoffs, moderate adjust-
ments, stable matchings, market-clearing.
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1. Introduction

Starting with Gale and Shapley (1962)’s seminal analysis of the marriage problem,
matching theory has been successful in developing centralized mechanisms with ap-
pealing allocative and incentive properties. These mechanisms are not only theoreti-
cally appealing but also work well in practice. In fact, extensions of the Gale–Shapley
deferred acceptance algorithm are now used, for example, to match children to public
schools (see Abdulkadiroglu, Pathak, Roth, and Sönmez (2006), Abdulkadiroglu, Pathak,
and Roth (2009), Pathak (2011)) and medical graduates to their first professional position
(see Roth and Peranson (1999)). However, many markets with very similar characteris-
tics operate in a decentralized manner. An important example is university admissions,
where centralized clearinghouses are the exception rather than the norm and full cen-
tralization often seems unlikely. Since the decentralized processing of admission offers
(rejections and acceptances) in these markets takes a nonnegligible amount of time,
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there is often only room for relatively few rounds of offers. To avoid missing their en-
rollment targets, universities typically overbook, i.e., make more offers than they would
ideally like to be accepted. It is easy to find examples in which universities overbook too
little or too much.1 Motivated by these observations, I focus on the question of what
happens in the long and short run when schools adjust their admission offers on the
basis of observed discrepancies between target and realized enrollments. In particular, I
am interested in finding simple conditions under which successive updating by schools
from an arbitrary starting point eventually leads to market-clearing or at least comes
close to it.

At a theoretical level, my research speaks to the justification of stability as an equi-
librium concept for many-to-one matching markets. One important justification for an
equilibrium concept is that it can be learned by “myopic” agents via a distributed, it-
erative adjustment procedure.2 A classic example of such a procedure for competitive
equilibrium is tâtonnement where producers of goods in excess demand increase prices
and producers of goods in excess supply decrease prices. In the context of many-to-one
matching between universities and students, the natural analogy is a tâtonnement pro-
cess in which universities make admission offers to students and each university adjusts
its selectivity in the direction of its excess enrollment. If such a process were guaranteed
to converge to a stable matching, it would provide us with a “learning foundation” for
stability as an equilibrium concept. I show that convergence obtains whenever the un-
derlying matching market has a unique stable matching, but may fail otherwise.

I consider a standard many-to-one matching problem with responsive preferences
and no monetary transfers. There are finite sets of students and schools. Each student
has a strict preference ranking of available schools. Each school has a fixed enrollment
target and responsive preferences with respect to some strict ranking of individual stu-
dents. My analysis focuses on tâtonnement processes in which schools make binding
admission offers, each student demands the most preferred school among those from
which she received an offer, and schools then update offers on the basis of observed
demand–supply imbalances. For the most part, I restrict attention to the case where
schools’ offers can be described by cutoffs, i.e., each school decides on the least pre-
ferred individual student it wants to admit and then makes an offer to all weakly pre-
ferred candidates. Cutoff adjustments from one period to the next are moderate if they
are bounded by the most recently observed demand–supply imbalances: Schools in-
crease their cutoffs by no more than their most recent excess demand and decrease their
cutoffs by no more than their most recent excess supply.3

1For example, U.S. universities often admit a significant number of students from wait lists, indicating
that not enough of their initial offers were accepted to reach target enrollment. On the other hand, one can
also find examples in which enrollment exceeded the target. A severe case of excess enrollment happened
at the University of Bonn in 2009, when the university had 590 incoming law students, which significantly
exceeded its enrollment target of 350 (see here; accessed on June 3rd, 2025).

2To quote Kenneth J. Arrow (when talking about competitive equilibrium), “How can equilibrium be
established? The attainment of equilibrium requires a disequilibrium process. What does rational behavior
mean in the presence of disequilibrium? Do individuals speculate on the equilibrating process?” (Arrow
(1986), p. S387).

3Here, the “excess demand” for school s is taken to be the maximum of 0 and the difference between
the demand for school s and its enrollment target. Similarly, the “excess supply” of school s is taken to be

http://www.spiegel.de/unispiegel/studium/jura-zulassungspanne-huch-sind-wir-beliebt-a-659616.html


Theoretical Economics 20 (2025) Tâtonnement in matching markets 975

My main results are as follows: First, moderate adjustments always bring the mar-
ket weakly closer to clearing in the sense of weakly decreasing the aggregate imbalance,
which I define as the sum of demand–supply imbalances across all schools (Theorem 1).
Second, if schools adjust moderately and either (a) schools only decrease cutoffs when
there is no school in excess demand or (b) schools only increase cutoffs when there is no
school in excess supply, then adjusted cutoffs are guaranteed to converge to a market-
clearing cutoff vector (Theorem 2).4 Third, moderate adjustments may cycle indefinitely
when the underlying matching market has more than one stable matching (Theorem 3).
Finally, if moderate adjustments cycle indefinitely, then the supremum and the infimum
of all cutoff vectors observed along the cycle are both market-clearing (Theorem 4). As
a corollary, I obtain that moderate adjustments are guaranteed to converge to market-
clearing if the underlying matching market has a unique stable matching (Corollary 3).

1.1 Related literature

Since I study a tâtonnement process in which schools use observed enrollments to up-
date their admissions offers, one line of research that is closely connected to my pa-
per is that on tâtonnement processes for markets with indivisible goods and continu-
ous monetary transfers.5 Demange, Gale, and Sotomayor (1986) introduce a dynamic
clock auction for markets with multiple heterogeneous goods and unit-demand bid-
ders. This auction mechanism is guaranteed to converge to the smallest competitive
equilibrium price vector, provided it starts from the vector of reservation prices. Gul
and Stachetti (2000) extend the dynamic clock auction to the case where bidders’ pref-
erences satisfy the gross substitutes condition of Kelso and Crawford (1982). Contrary to
the finding of Demange, Gale, and Sotomayor (1986), Gul and Stachetti (2000) show that,
in general, there is no dynamic clock auction mechanism with a single ascending price
trajectory that implements the Vickrey–Clarke–Groves (VCG) outcome. Ausubel (2006)
presents a different tâtonnement-based auction process to compute competitive equi-
librium prices. His process ensures that agents ultimately receive their VCG payments
and converges from any initial price vector.6 There are two crucial differences between
this line of research and mine. First, cutoffs are different from prices since they deter-
mine who gets an offer from which school, but otherwise do not affect students’ utilities.
Second, all of the above papers assume that there is one central auctioneer who controls
price movements of all objects in the economy. In contrast, I explicitly want to allow
for situations in which schools react independently to imbalances between realized and
target enrollments.

the maximum of 0 and the difference between the enrollment target of school s and its demand. One can
actually allow a school in excess demand to increase its cutoff by more than the difference between demand
and enrollment target; see Definition 1 and the discussion that follows it.

4A cutoff vector is market-clearing if there is no school in excess demand and all schools in excess supply
make offers to all students.

5See Hahn (1982) for a survey of results on tâtonnement processes for markets with divisible goods. See
Manea (2007) for an analysis of tâtonnement processes for coalitional games with transferable utility.

6For an extension of Ausubel’s techniques to the class of preferences satisfying the gross substitutes and
complements condition introduced by Sun and Yang (2006), see Sun and Yang (2009).
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Also related is a literature that has developed a linear programming approach to sta-
ble matchings. VandeVate (1989) and Rothblum (1992) have shown that the set of stable
matchings in a one-to-one matching problem can be described by a linear programming
problem whose extreme points are all integral.7 That finding extends to many-to-one
matching problems (see, e.g., Baiou and Balinski (2000), Fleiner (2003), and Sethura-
man, Teo, and Qian (2006)). Given the connection to linear programming, it is natural to
try to leverage linear programming techniques to solve stable matching problems. For
one-to-one matching problems, (both versions of) the Gale–Shapley algorithm can be
interpreted as a dual ascent algorithm; see Abeledo and Rothblum (1995b) and Vohra
(2012).8 Dual ascent algorithms solve a linear programming problem through a series
of relaxed programming problems that are connected via the updating of dual variables
associated with constraints that are violated in the solutions of these relaxed problems.
An important similarity between dual gradient methods and the tâtonnement processes
that I study is that, for both, the individual adjustment at a specific school only depends
on the extent to which feasibility and stability constraints involving that school are vi-
olated. A key difference is that dual gradient methods often rely on a carefully chosen
starting point, whereas I study cutoff adjustments from arbitrary starting points. The
focus on such fully distributed procedures, where there is no coordination on specific
initial conditions or the adjustments of cutoffs across different schools, is motivated by
the desire to understand the conditions under which completely decentralized match-
ing markets arrive at a stable matching.

Several papers have studied different decentralized implementations of Gale and
Shapley (1962)’s famous deferred acceptance algorithm (DAA). In these studies, the
main question typically is whether a stable matching is reached in (subgame perfect)
equilibrium. For example, Niederle and Yariv (2009) consider a decentralized market
game where, in each period, firms simultaneously make an offer to some worker and
workers then simultaneously decide on received offers. Preferences of the agents are
assumed to satisfy a strong alignment condition that, among other things, guarantees
that there is a unique stable matching. Niederle and Yariv show that under complete in-
formation, a stable matching is implemented with probability 1 in any equilibrium that
survives iterative elimination of weakly dominated strategies. This finding does not ex-
tend to the case of incomplete information and it is possible that no (Bayes–Nash) equi-
librium implements a stable matching with certainty. Other papers that have studied
different decentralized implementations of the DAA under the assumption of complete
information are Pais (2008) and Haeringer and Wooders (2011).

Also related to my work is the question of whether processes that, starting from an
unstable matching, allow randomly selected blocking pairs to rematch converge to a
stable matching. Roth and Vande Vate (1990) show that for two-sided matching markets

7Roth, Rothblum, and VandeVate (1993) show how to use complementary slackness conditions for the
associated linear programming problem to derive several key results on stable matchings for the one-to-one
matching problem.

8See de Vries, Schummer, and Vohra (2007) for a primal-dual algorithm to find efficient allocations and
supporting prices for a setting in which multiple indivisible and heterogenous objects are to be distributed
among bidders who may demand multiple objects.
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in which no agent can be matched to more than one partner, such a random process
converges to a stable matching with probability 1.9 This finding was extended to a cer-
tain class of many-to-many matching markets by Kojima and Ünver (2008), to (solvable)
roommate markets by Diamantoudi, Miyagawa, and Xue (2004), to (solvable) matching
markets with couples by Klaus and Klijn (2007), and to matching markets with salaries by
Chen, Fujishige, and Yang (2010).10 While these papers are interesting studies of market
equilibration in matching markets, they do rely on implicit assumptions about the co-
ordination between and the information available to the agents. First, they assume that
agents have sufficiently detailed information to identify a blocking opportunity. Second,
it is taken for granted that agents coordinate in a way that guarantees that intended de-
viations are actually realized. I relate my findings to the random paths literature in more
detail below.

Finally, Lauermann and Nöldeke (2014) embed a standard marriage market in a
search model with random meetings and study the limit of steady-state equilibria when
frictions vanish. Lauermann and Nöldeke show that equilibrium matchings are guar-
anteed to converge to stable matchings if and only if the underlying matching market
has a unique stable matching. Although there does not seem to be a direct connec-
tion between sequences of steady-state equilibria and the adjustment processes that I
study, the just described result mirrors my finding that moderate cutoff adjustments are
guaranteed to converge to market-clearing if and only if the core is a singleton.

2. Model

There is a finite set of students I with |I| = N and a finite set of schools S with |S| = M .
Each student i has a strict preference relation Ri over the set of available schools and
strictly prefers all schools to being left unmatched. Each school s ∈ S has a fixed enroll-
ment target qs ∈ {1, � � � , N } and a fixed strict ranking R#

s of individual students in I.11 In
addition, each school s has a weak preference ranking12 Rs on the set of all potential
entering classes, 2I , that is responsive (Roth (1985)) to R#

s and qs in the sense that for any
J ⊆ I, i, j ∈ I \ J, J ∪ {i}PsJ ∪ {j} if and only if iP#

s j, J ∪ {i}PsJ if |J| < qs, and JPsJ ∪ {i}
if |J| ≥ qs. For school s ∈ S and student i ∈ I, i’s score at s is given by eis = N + 1 − ris,
where ris ∈ {1, � � � , N } is the rank that i has in R#

s . Hence, the tth most preferred student
according to R#

s has a score of N + 1 − t at school s. The underlying matching market

9See Jackson and Watts (2002) for another type of dynamics that may lead to stable matchings.
10See also Pradelski (2015) and Leshno and Pradelski (2021) on the speed of convergence for random

blocking dynamics in the assignment game.
11The formulation here assumes that all schools are acceptable to all students and all individual stu-

dents are acceptable to all schools. These assumptions are without loss of generality since one can always
introduce a “null school” that plays the role of being left unassigned and “null students,” who represent the
option of leaving places unfilled. The assumption that schools’ rankings of individual students are strict
is restrictive and may fail in some applications. For example, Abdulkadiroglu et al. (2006) empirically an-
alyze the Boston school choice system, where there are only four distinct classes of scores that are used to
rank thousands of students. See Erdil and Ergin (2008), Abdulkadiroglu, Pathak, and Roth (2009), Abdulka-
diroglu, Che, and Yasuda (2011), Abdulkadiroglu, Che, and Yasuda (2015), and Ehlers and Westkamp (2018)
for analyses of school choice problems with indifferences in priority orders.

12That is, a complete and transitive binary relation on 2I .
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(I, S, (Ri )i∈I , (R#
s )s∈S , (qs )s∈S ) is assumed fixed from here on out. To simplify notation,

relevant market features, such as preferences or capacities, are typically suppressed in
the following text.

A matching is a mapping μ : I ∪ S → (S ∪ I ) ∪ 2I such that (i) μ(i) ∈ S ∪ {i} for all
i ∈ I,13 (ii) μ(s) ∈ 2I for all s ∈ S, (iii) |μ(s)| ≤ qs, and (iv) i ∈ μ(s) if and only if μ(i) = s.
A matchingμ is stable, if there is no student–school pair (i, s) such that sPiμ(i) and either
|μ(s)| < qs or eis > ejs for some j ∈ μ(s). One of the central results in matching theory is
that there always exist student- and school-optimal stable matchings (Gale and Shapley
(1962), Roth (1984)). Denote the student-optimal stable matching by μI and the school-
optimal stable matching by μS .

Cutoffs and market-clearing A cutoff for school s ∈ S is an integer cs ∈ {1, � � � ,
N + 1} that represents the minimum score needed to get into school s. School s is called
selective if cs > 1. Let C = {1, � � � , N + 1}M be the set of all cutoff vectors. I say that i

can afford s at c ∈ C if eis ≥ cs . Note that a cutoff vector acts like a price vector in that
it determines exactly who can afford which school, but that cutoffs differ from prices
in that students only care about whether a school is affordable to them. Given a vector
of cutoffs c ∈ C, student i’s demand is given by the most preferred school that she can
afford (or by being unmatched if no school is affordable), that is,

Di(c) =
{︄
s∗ if eis∗ ≥ cs∗ and cs′ > eis′ for all s′ such that s′Pis

∗,

i if cs > eis for all s ∈ S.

The demand for school s ∈ S is the set of all students who demand s at c, that is, Ds(c) =
{i ∈ I : Di(c) = s}. I refer to the cardinality of the demand for school s at cutoff vector c,
|Ds(c)|, as the enrollment of s at c. Note that students’ scores lie in {1, � � � , N } and, hence,
|Ds(c)| = 0 if cs = N + 1. Allowing for cutoffs that exceed every student’s score enables
me to incorporate situations in which no offers are made. School s is oversubscribed at
c if its enrollment strictly exceeds its target, i.e., |Ds(c)| > qs , and undersubscribed at c
if its enrollment falls strictly short of its target, i.e., |Ds(c)| < qs. A cutoff vector c ∈ C is
market-clearing if there are no oversubscribed schools and undersubscribed schools at c
are not selective, that is, |Ds(c)| ≤ qs for all s ∈ S and cs = 1 for all s such that |Ds(c)| < qs.
The requirement that undersubscribed schools are not selective translates the familiar
notion that goods in excess supply should have a price of 0 to the matching context.

Azevedo and Leshno (2016) have shown that market-clearing and stability are es-
sentially equivalent concepts.14 To describe this insight more formally, first fix a match-
ing μ and define an induced cutoff vector cμ by setting c

μ
s = mini∈μ(s) eis if |μ(s)| ≥ qs

and c
μ
s = 1 otherwise. Next, given a cutoff vector c, define a mapping μc by setting

μc(s) =Ds(c) and μc(i) = Di(c). We have the following lemma.

Lemma 1 (Azevedo and Leshno (2016)). If μ is stable, then cμ is market-clearing. If c
is market-clearing, then μc is stable. Moreover, there exists a uniformly lowest market-
clearing cutoff vector 𝒞∗ and a uniformly highest market-clearing cutoff vector 𝒞∗

.

13Here, as usual in the literature, μ(i) = i means that i is left unmatched.
14Balinski and Sönmez (1999) were the first to connect cutoff vectors to stability, but use a slightly differ-

ent notion of market-clearing.
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Given some stable matching μ, say that c induces μ if μc = μ. As discussed in
Azevedo and Leshno (2016), 𝒞∗ induces μI and 𝒞∗

induces μS .

Tâtonnement processes I consider simple tâtonnement processes in which schools set
cutoffs, each student demands her most preferred school among those for which her
score exceeds the cutoff, and schools then update cutoffs on the basis of observed dis-
crepancies to their quotas. Tâtonnement can be interpreted as taking place either over
multiple admission periods (where cutoffs represent binding admission offers), within
a given admission period (where cutoffs represent tentative admission offers that only
convert to binding ones when enrollment targets are met), or a mix between the two (for
example, a few rounds of adjustments within a given period and then an initial round of
offers in the next period that reflects students’ reactions to the last round of offers in the
previous period). In case of adjustments across multiple periods, my analysis assumes
that the underlying matching problem is always the same, i.e., that a new and identical
student population arrives in each period. That assumption is approximately satisfied if
the admission environment is stable over time so that enrollments only change signifi-
cantly when schools change their cutoffs.

Since the underlying matching market is fixed throughout, a cutoff vector c ∈ C

induces the demand vector (Ds(c))s∈S and the vector of demand–supply imbalances
(||Ds(c)| − qs|)s∈S . Hence, while tâtonnement processes will typically be defined on the
basis of some intermediary statistic, such as demand–supply imbalances, I can define
them directly on the basis of cutoff vectors. For now, I restrict attention to time-invariant
adjustment processes where adjustments only depend on the current cutoff vector. For-
mally, a time-invariant adjustment process is a mapping A from C to itself. Until Sec-
tion 4.2, adjustments will always be assumed to be time-invariant and I will simply refer
to adjustment processes. I assume throughout that A(c) = c only if c is market-clearing
or, equivalently, at least one school adjusts its cutoff when the current cutoff vector is
not market-clearing. Finally, for any c ∈ C, let At(c) denote the t-fold application of A
to c.

To fix ideas, here are two examples.15

Example 1. Let s ∈ S and c ∈ C be arbitrary. The simple adjustment of s at c is given by

SIMPs(c) =

⎧⎪⎪⎨
⎪⎪⎩
cs + 1 if

⃓⃓
Ds(c)

⃓⃓
> qs and cs < N + 1,

cs − 1 if
⃓⃓
Ds(c)

⃓⃓
< qs and cs > 1,

cs in all other cases.

In words, the simple adjustment of s at c is to increase its cutoff by 1 if it is oversub-
scribed at c and to decrease its cutoff by 1 if it is undersubscribed at c. ◊

Next, I focus on a generalization of Gale and Shapley (1962)’s famous deferred ac-
ceptance (DA) algorithm by Adachi (2000) that encompasses the student- and school-
proposing variants as special cases. The main idea is to characterize stable matchings

15In the working paper version (Westkamp (2025)), I present another adjustment process that is related
to the well known Boston, or immediate acceptance, mechanism.
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as the set of fixed points of an operator from a finite lattice into itself. This idea figures
heavily in the literature on generalized matching models following Hatfield and Milgrom
(2005) and Ostrovsky (2008).16

Example 2. Let s ∈ S and c ∈ C be arbitrary. The generalized DA adjustment for school
s is defined by

Gs(c) =
{︄
�s(c) if

⃓⃓
Ds(c)

⃓⃓ ≥ qs,

cs − min
{︁
qs − ⃓⃓

Ds(c)
⃓⃓
, cs − 1

}︁
otherwise,

where for any school s ∈ S such that |Ds(c)| ≥ qs, �s(c) is the qsth highest score of stu-
dents in Ds(c). Let G(·) = (Gs(·))s∈S be the collection of DA adjustments for the various
schools. It is straightforward to see that the set of fixed points of G coincides with the
set of market-clearing cutoff vectors. The student-proposing DA algorithm corresponds
to the generalized Gale–Shapley adjustment process starting from c and the school-
proposing DA algorithm to the generalized Gale–Shapley adjustment process starting
from c. ◊

While the two DA variants have been central to matching theory and its applications,
nothing is known about the behavior of DA dynamics from arbitrary starting points. In
practice, even if the admissions process is centralized and relies on a DA algorithm, a
school may be able to place bounds on its selectivity that have to be respected if it man-
ages to hit its target enrollment. Hence, we might be faced with situations in which DA
algorithms cannot be guaranteed to start from the extreme points for which their behav-
ior is well understood. My results below show under which conditions DA algorithms are
guaranteed to converge.

3. Main results

The aim of my analysis is to derive simple conditions that guarantee that adjustment
processes converge—or at least come closer—to market-clearing. Given that every-
thing else is fixed exogenously, the main determinant for the evolution of cutoffs is how
schools adjust their cutoffs from one period to the next. As usual for tâtonnement pro-
cesses, the main conditions require that cutoffs are adjusted in the direction of excess
demand: An oversubscribed school becomes more selective, i.e., increases its cutoff, and
an undersubscribed school becomes less selective, i.e., decreases its cutoff. Further-
more, the conditions also require that the size of cutoff adjustments is bounded from
above by the most recently observed imbalance between demand and supply. So as to
state the conditions formally, for any c ∈ C and s ∈ S, let �s(c) be the qsth highest score
of students in Ds(c) if |Ds(c)| ≥ qs and �s(c) = cs otherwise, that is,

�s(c) =
{︄
ei∗s if Di∗(c) = s and

⃓⃓{︁
j ∈Ds(c) : ejs ≥ ei∗s

}︁⃓⃓ = qs,

cs if
⃓⃓
Ds(c)

⃓⃓
< qs.

16Azevedo and Leshno (2016) were the first to formulate a generalized Gale–Shapley algorithm on the
basis of cutoff adjustments.
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With these preparations, we have the following definition.

Definition 1. An adjustment process A

(i) increases moderately if, for all c ∈ C and s ∈ S, As(c) ≤ �s(c)

(ii) decreases moderately if, for all c ∈ C and s ∈ S, As(c) ≥ cs − max{qs − |Ds(c)|, 0}

(iii) is moderate if it increases and decreases moderately.

Going back to the examples presented in the previous subsection, the simple adjust-
ment process and the generalized Gale–Shapley process are both moderate.

Note that if a school s is oversubscribed at c and increases its cutoff moderately,
then at A(c), it will remain affordable to at least qs of the students who demanded it
at c and can, therefore, only become undersubscribed if at least one other school has
decreased its cutoff. Similarly, if a school s is undersubscribed at c and decreases its cut-
off moderately, then at A(c) it will become affordable to at most qs − |Ds(c)| additional
students and can, therefore, only become oversubscribed if at least one other school has
increased its cutoff. Note that both of these statements do not rely on information about
students’ preferences beyond what students demand at the cutoff vector c.17

In the first part of my analysis, I focus on the short-run properties of adjustment
processes. The anecdotal evidence gathered in the Introduction supports the view that
demand–supply imbalances occur in practice and that these imbalances are costly: stu-
dents have to cramp into crowded lecture halls for oversubscribed schools, while under-
subscribed schools suffer significant revenue losses. Here is a simple aggregate measure
for these costs.

Definition 2. The aggregate imbalance at c ∈ C is given by

E(c) =
∑︂
s∈S

⃓⃓⃓⃓
Ds(c)

⃓⃓ − qs
⃓⃓
.

Note that if c ∈ C minimizes the aggregate imbalance, then either c is market-
clearing or there is a market-clearing cutoff vector c′ such that c′

s = cs for all s such that
|Ds(c)| ≥ qs. Taking aggregate imbalance as a measure of distance to market-clearing as-
sumes that there is a constant cost associated to every student above or below a school’s
target enrollment. While it would certainly be interesting to study other cost measures,
this is out of the scope of the current paper. Now remember that moderate adjustments
ensure that the imbalance of a given school, defined as ||Ds(c)| − qs|, will weakly de-
crease if no other school changes its cutoff, that is, for any moderate adjustment pro-
cess A, ||Ds(As(c), c−s )| −qs| ≤ ||Ds(c)| −qs| for any cutoff vector c. However, this prop-
erty may easily fail if multiple schools adjust their cutoffs simultaneously. Furthermore,

17Given the assumption of responsive preferences, schools always prefer enrollments that are closer to
their target capacities. The preceding discussion then implies that As(c) is a weakly better response to
c−s than cs if s′ adjustment from cs to As(c) is moderate in the sense of Definition 1. Hence, moderate
adjustment processes correspond to better reply dynamics in a cutoff setting game between schools. This
connection and the relationship to the seminal work of Milgrom and Roberts (1990) is developed more fully
in the working paper version (Westkamp (2025)).
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even if only one school were to change its cutoff, it may well be that imbalances at other
schools increase. The first main result of this paper is that moderate adjustments al-
ways bring the market weakly closer to clearing in the sense of weakly decreasing the
aggregate imbalance.

Theorem 1. If A is moderate, then E(A(c)) ≤E(c) for all c ∈ C.

Theorem 1 relies on the fact that lowering a cutoff by x units makes the correspond-
ing school affordable to exactly x additional students and increasing it by x units makes
the school unaffordable to exactly x students. Hence, adjusting a cutoff is different from
adjusting the (nonpersonalized) price of an object, since the latter affects the affordabil-
ity and attractiveness of the object to all agents. Before discussing the intuition behind
Theorem 1, I show via a small example that the aggregate imbalance may strictly in-
crease if only one school does not adjust moderately.

Example 3. There are three students, i, i′, and i′′, and two schools s and s′ with target
enrollments qs = qs′ = 1. Students’ scores are given by eis = 3, ei′s = 2, ei′′s = 1 and ei′s′ =
3, eis′ = 2, ei′′s′ = 1. Students’ preferences are given by s′Pis, sPi′s′, and sPi′′s′.

Consider the cutoff vector c = (cs , cs′ ) = (2, 3). At c, students i and i′ both demand
s, while i′′ cannot afford any school. Hence, the aggregate imbalance at c is 2. Now
consider the cutoff vector c′ = (3, 1). Note that the adjustment from c to c′ is moderate
for s but not for s′. At c′, all students demand s′ and the aggregate imbalance is 3. ◊

To get some intuition for Theorem 1, assume there are only two schools, s+ and s−.
Fix a moderate adjustment process A and some cutoff vector c such that s+ is over-
subscribed and s− is undersubscribed at c. Since A is moderate, s+ cannot decrease
and s− cannot increase its cutoff from c to A(c). Hence, no student can demand s−
at c, but s+ at A(c). Therefore, we can restrict attention to students whose demand
switches from s+ to s− when going from c to A(c). First, let V + be the set of those stu-
dents who switch their demands to s− at A(c) and who strictly prefer s− over s+. The
total effect of demand changes by agents in V + is to decrease the aggregate imbalance
by 2 min{|V +|, |Ds+(c)| − qs+ }. To see this, I distinguish two cases.

Case 1: |V +| ≤ |Ds+(c)| − qs+ . The demand change of each student in V + decreases
the excess supply at s− due to moderate decreases and the excess demand at s+.

Case 2: |V +| > |Ds+(c)| − qs+ . The demand changes of the first |Ds+(c)| − qs+ stu-
dents in V + decrease the excess supply at s− and the excess demand at s+. The
demand changes of the remaining |V +| − (|Ds+| − qs+ ) students in V + do not affect
the aggregate imbalance since they decrease the excess supply at s− and increase
the excess supply at s+.

Second, let V − be the set of those students who switch their demands to s− at A(c) and
who strictly prefer s+ to s−. I will argue that the demand changes of students in V − can at
most increase the aggregate imbalance by 2 min{|V +|, |Ds+(c)| −qs+ }. I again distinguish
two cases.
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Case 1: |V +| ≥ |Ds+(c)| −qs+ . By moderate increases, we have that |V −| ≤ |Ds+(c)| −
qs+ . Since the demand change of each individual student can increase the aggre-
gate imbalance by at most 2, we obtain that the demand changes of students in V −
increase the aggregate imbalance by at most 2(|Ds+(c)| − qs+ ).

Case 2: |V +| = k for some k < |Ds+(c)| − qs+ . The demand changes of at least
|Ds+(c)| − qs+ − k students in V − cannot increase the aggregate imbalance since
these demand changes decrease the excess demand at s+. The demand changes
of the remaining at most k students in V − increase the aggregate imbalance by at
most 2k.

Hence, if each school limits its adjustments by the magnitude of its most recent
demand–supply imbalance, then adjustments always at least weakly reduce the aggre-
gate disparity between supply and demand. Since the aggregate imbalance is bounded
from below, we immediately obtain the following important implication of Theorem 1.

Corollary 1. If A is moderate, then limt→∞E(At(c)) exists for all c ∈ C.

From now on, I will focus on results about the long-run behavior of adjustment pro-
cesses. The first result shows that it is relatively easy to ensure convergence to market-
clearing from any initial cutoff vector if schools are willing to coordinate their cutoff
adjustments and temporarily maintain cutoffs despite demand–supply imbalances.

Theorem 2. Suppose A is moderate and either of the following conditions holds:

(i) Cutoffs are only increased when there is no undersubscribed selective school, i.e., for
all c ∈ C, A(c) ≤ c if there is at least one school s such that cs > 1 and |Ds(c)| < qs.

(ii) Cutoffs are only decreased when there is no oversubscribed school, i.e., for all c ∈ C,
A(c) ≥ c if there is at least one school s such that |Ds(c)| > qs.18

Then limt→∞At(c) exists for all c ∈ C.

The intuition for this result is straightforward: If A only increases cutoffs when there
is no undersubscribed school with nontrivial cutoff, there must eventually come a point
at which no school is undersubscribed if A satisfies moderate decreases. However, from
this point onward, no school can become undersubscribed again if A satisfies moderate
increases. As I show in Theorem 7 in Appendix B.2, both types of adjustment processes
have a variety of other appealing features, such as independence of adjustment mag-
nitudes (subject to being moderate) and convergence to market-clearing cutoff vectors
that are “close” to the initial cutoff vector.

18If we start from a cutoff vector at which no school is oversubscribed, this class of dynamics is concep-
tually very similar to the vacancy chain dynamics analyzed in Blum, Roth, and Rothblum (1997). Both types
of dynamics are related to the “gender-consistent” rules for selecting blocking pairs of unstable matchings
in marriage markets that were introduced by Abeledo and Rothblum (1995a).
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Next, I focus on adjustment processes that randomly select a set of schools that are
allowed to moderately adjust their cutoffs. Theorem 2 can be used to show that such pro-
cesses are guaranteed to converge to market-clearing if there is always a positive prob-
ability that only oversubscribed and a positive probability that only undersubscribed
schools are selected. To formulate this corollary, some further notation and terminology
is useful. Given a cutoff vector c ∈ C, let S+(c) be the set of all oversubscribed schools at
c. Similarly, define S−(c) to be the set of undersubscribed schools with nontrivial cutoffs
at c. With these preparations, we have the following corollary.

Corollary 2. Fix an arbitrary cutoff vector c ∈ C and let X(c) = (X1(c), X2(c), � � �) be
a random sequence of cutoff vectors such that for each t ≥ 1, whenever Xt−1(c) is not
market-clearing, then Xt(c) is obtained from Xt−1(c)19 by the following method.

(i) Randomly select a set of schools St .

(ii) Allow schools in St to adjust their cutoffs moderately from Xt−1(c) subject to the
requirement that Xt

s (c) ≠ Xt−1
s (c) for at least one school in St .

If for any t ≥ 1, there is a strictly positive probability that St ⊆ S+(Xt−1(c)) and a strictly
positive probability that St ⊆ S−(Xt−1(c)), then X(c) converges to a market-clearing cut-
off vector with probability 1.

The corollary follows from Theorem 2 on noting that this result implies that from any
c, there are at least two finite paths of cutoff adjustments that lead to a market-clearing
cutoff vector. If the random sequence of cutoff vectors defined in the corollary were to
cycle indefinitely, at least one cutoff vector must occur infinitely often and the random
process would have to choose a non-convergent path each time it reaches that cutoff
vector. Under the assumptions of the corollary, however, finite convergent paths always
have a strictly positive probability of being chosen (since there is always a positive prob-
ability of only choosing oversubscribed schools until there are no more oversubscribed
schools and always a positive probability of only choosing undersubscribed selective
schools until there are no more undersubscribed selective schools) and we obtain a con-
tradiction. The random blocking dynamics studied by Roth and Vande Vate (1990) are
similar to a special case of the dynamic defined in Corollary 2 in which we require that
only one school is selected at each point.20

Corollary 2 shows that if at each instance there is a positive probability that all
schools that do adjust their cutoffs adjust in the same direction, then convergence to
market-clearing is guaranteed. The just mentioned result implicitly relies on the exis-
tence of some coordinating entity that can identify which schools are oversubscribed
and which are undersubscribed, and that can at least temporarily prevent some schools
from adjusting their cutoffs. For the remainder of this section, I focus on adjustment

19Here, I set X0(c) ≡ c for all c.
20The correspondence is not completely exact, since moderate decreases preclude some blockings being

implemented in one step. To see this, consider a school s and a cutoff vector c such that qs = 1 and cs ≥ 3.
If Ds(c) = ∅ and the only student i who strictly prefers s over her offers at c has eis = 1, the block between i

and c cannot be implemented in one step.
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processes that represent situations in which there is no such coordinating entity and
schools that do not achieve their enrollment target always adjust their cutoffs. The latter
condition is the subject of the next definition.

Definition 3. An adjustment process A is strict, if for all c ∈ C and all s, As(c) = cs only
when either |Ds(c)| = qs or |Ds(c)| < qs and cs = 1.

I also need the following more stringent notion of moderate adjustments.

Definition 4. An adjustment process A is strongly moderate if, for all c ∈ C,

As(c) ≤ cs + max
{︁⃓⃓
Ds(c)

⃓⃓ − qs , 0
}︁

.

Note that the simple adjustments in the sense of Example 1 are strongly moderate.
On the other hand, the generalized DA adjustment process of Example 2 is moderate,
but not strongly so: A school that is oversubscribed at c increases its cutoff to the qsth
highest score at s among all students in Ds(c) and that score may exceed cs + (|Ds(c)| −
qs ).

The next result shows that strict adjustment processes can only be guaranteed to
converge if the underlying matching market has a unique stable matching.

Theorem 3. Suppose A is strict and strongly moderate. If μI ≠ μS , then there exists a
cutoff vector c such that limt→∞At(c) does not exist.

The intuition for this result is that if there are two stable matchings, we can al-
ways find a cutoff vector for which some students can afford their more preferred stable
match, while others cannot. Furthermore, the cutoff vector can be constructed so that
schools, which are affordable to all students who match to them in the more preferred
stable outcome for the students, are oversubscribed and all other schools are undersub-
scribed. Given the restrictions on adjustment magnitudes, a strict adjustment process
cycles forever. However, as the next result shows, the lowest and the highest cutoffs ob-
served along any cycle of an eventually moderate adjustment process are both market-
clearing.

Theorem 4. Let A be a strict adjustment process, let c ∈ C be an arbitrary cutoff vector,
and let T be such that At(c) = AT+(t mod T )(c) for all t ≥ T .21 Define cutoff vectors cmax

and cmin by setting, for each school s, cmax
s = maxt≥T At

s(c) and cmin
s = mint≥T At

s(c). If A
is moderate, then cmax and cmin are market-clearing.

Theorem 4 implies immediately that any strict and moderate adjustment process
will eventually enter the “market-clearing corridor” between 𝒞∗ and 𝒞∗

, that is, for all
c ∈ C, there exists a T̂ such that 𝒞∗ ≤ At(c) ≤ 𝒞∗

for all t ≥ T̂ . Hence, if the difference be-
tween the two extreme market-clearing cutoff vectors is very small, strict and moderate
adjustment procedures will become almost constant in the long run.

21Note that such a T must always exist since the set of possible cutoff vectors is finite and since the
adjustment in each period only depends on the current cutoff vector.
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Theorem 4 is also readily seen to imply that moderate adjustment processes always
converge if the underlying market has a unique stable matching.22

Corollary 3. If A is moderate and strict, and μI = μS , then limt→∞At(c) exists for all
c ∈ C.

Corollary 3 is particularly useful when the market under consideration is large. For
such markets, there is often a unique stable matching (see, e.g., Kojima and Pathak
(2009) and Azevedo and Leshno (2016)) and, thus, moderate, strict adjustment proce-
dures are guaranteed to converge to market-clearing.

4. Extensions

The analysis up to this point has assumed that schools use cutoff strategies and that ad-
justments are time-invariant. However, in decentralized and congested matching mar-
kets, schools may sometimes prefer to make offers that are not representable by cut-
offs, for example, because they also care about the likelihood with which an offer is ac-
cepted.23 On the other hand, a school may condition adjustments on the whole history
of cutoffs, for example, because it is initially uncertain about the fraction of its offers that
will be accepted and then tries to revise its estimated “yield” on the basis of all enroll-
ments observed so far. I now briefly sketch two extensions that allow for more general
offers by schools and time-dependent adjustments, respectively.

4.1 Beyond cutoffs

An offer for school s ∈ S is a subset Os ⊆ I of students. Note that the analysis so far fo-
cused on the special case where offers have a cutoff structure, i.e., where for any school
s, i ∈ Os implies j ∈ Os for all j such that ejs ≥ eis . Now let 𝒪s = 2I be the set of all possi-
ble offers by school s and let 𝒪 = ×s∈S𝒪s be the set of all possible offer vectors. Say that
school s is selective at O ∈ 𝒪 if Os ⊊ I. Given a vector of offers O ∈ 𝒪, student i demands
her most preferred offer, i.e.,

D̂i(O) = {︁
s ∈ S : i ∈Os and i /∈Os′ for all s′ s.t. s′Pis

}︁
and D̂i(O) = {i} if i /∈ ⋃︁

s∈S Os . The demand for school s ∈ S at O is the set of all students
who demand s at O, that is, D̂s(O) = {i ∈ I : D̂i(O) = {s}}. I refer to the cardinality of the
demand for s at O, |D̂s(O)|, as the enrollment of s at O. School s is oversubscribed at
O if its enrollment strictly exceeds its target, i.e., |D̂s(O)| > qs , and is undersubscribed
at O if its enrollment falls strictly short of its target, i.e., |D̂s(O)| < qs. An offer vector
O ∈ 𝒪 is market-clearing if there are no oversubscribed schools and undersubscribed

22In the working paper version (Westkamp (2025)), I show that the adjustment process related to the
Boston mechanism is guaranteed to converge if and only if all schools essentially have the same preferences
over students, which is a stronger requirement than that there is a unique stable matching.

23For a classic example of such “strategic targeting,” see Roth and Xing (1997)’s study of the entry level
labor market for clinical psychologists in the United States.
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schools at O are not selective, that is, |D̂s(O)| ≤ qs for all s ∈ S and Os = I for all s such
that |D̂s(O)| < qs . While market-clearing offer vectors are desirable since they prevent
the excess supply of or demand for schools, they may lack the strong normative foun-
dation of market-clearing cutoff vectors. In particular, market-clearing offer vectors can
support unstable and even inefficient matchings.24

One can now define generalized adjustment processes starting at some exogenously
given vector of offer sets O. As for adjustment processes, I assume that A(O) = O only if
O is market-clearing. For generalized adjustment processes, Definition 6 in Appendix A
introduces a natural generalization of Definition 1: A generalized adjustment process
Â increases moderately if undersubscribed schools expand their set of admission offers
and if each oversubscribed school s continues to offer admission to at least qs of the stu-
dents who demanded it at O; a generalized adjustment process Â decreases moderately
at O if oversubscribed schools shrink their set of admission offers and if each undersub-
scribed school s makes at most as many new admission offers as it had vacant seats at
O. In Appendix A, I show that Theorems 1 and 2 both extend to moderate generalized
adjustment processes. By contrast, Theorem 4 does not directly extend unless offer sets
are very close to having a cutoff structure (details are available upon request).

4.2 Dynamic adjustments

If adjustments are allowed to depend on the whole history of cutoffs, we can define an
adjustment procedure for school s as a mapping 𝒜s :

⋃︁∞
t=1 C

t−1 → {1, � � � , N + 1}, where,
for any t ≥ 1, Ct−1 is the set of all sequences of cutoff vectors of length t. Here, for
any ct−1 = (c0, � � � , ct−1 ) ∈ Ct−1, 𝒜s(ct−1 ) is the cutoff that s sets for period t if cutoffs
in periods 0 to t − 1 are given by the vectors c0 to ct−1. The adjustment of school s at
ct−1 = (c1, � � � , ct−1 ) may depend on any information directly or indirectly (for exam-
ple, via demand–supply imbalances) conveyed by (c1, � � � , ct−1 ). As in the analysis of the
preceding sections, I focus on the evolution of cutoffs induced by a profile of adjustment
procedures from an arbitrary initial condition as in the following definition.

Definition 5. Let 𝒜 = (𝒜s )s∈S be a profile of adjustment procedures and let c be an ar-
bitrary cutoff vector. The adjustment process induced by 𝒜 and c is defined inductively
by setting A0(𝒜, c) = c and At(𝒜, c) = 𝒜(A0(𝒜, c), � � � , At−1(𝒜, c)) for each t ≥ 1.

For the remainder of this discussion, I take a profile of adjustment procedures 𝒜 to
be fixed and focus directly on properties of the induced adjustment processes. For each
c ∈ C and t, let At(c) ≡At(𝒜, c). Instead of assuming directly that adjustment processes
can only come to rest at market-clearing cutoff vectors, I make the weaker assumption
that adjustment processes are responsive to demand in the sense that no school ignores
upward or downward pressure on its cutoff forever.

Assumption 1. There do not exist a cutoff vector c ∈ C, a school s ∈ S, and a time T , such
that either

24For an easy example, assume that |I| ≥ ∑︁
s∈S qs . In this case, any profile of offer vectors O such that

|Os| ≥ qs for all s and Os ∩Os′ = ∅ whenever s ≠ s′ is market-clearing.
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(i) At
s(c) =AT

s (c) and |Ds(At(c))| > qs for all t ≥ T or

(ii) At
s(c) =AT

s (c), |Ds(At(c))| < qs , and cs > 1 for all t ≥ T .

Thus, from any point onward, a school that is continuously oversubscribed eventu-
ally increases its cutoff and, thus, makes fewer offers. Similarly, a selective school that is
continuously undersubscribed eventually decreases its cutoff and, thus, makes more of-
fers. It is straightforward to show that Assumption 1 ensures that adjustment processes
can only come to rest at market-clearing cutoff vectors.

Observation 1. If an adjustment process A satisfies Assumption 1, then for all c ∈ C

such that limt→∞At(c) exists, limt→∞At(c) is market-clearing.

To illustrate, here is an example in which adjustments are not time-invariant.

Example 4. Suppose each school s has some prior belief on its yield γ0
s , that is, a belief

about the fraction of offers that will be accepted by students. Given its prior belief, each
school sets its cutoff so that expected enrollment equals its target. Hence, a school s with
prior γ0

s initially sets a cutoff of c0
s = N + 1 − ⌈ qs

γ0
s
⌉.25 If all schools follow this routine, we

get an initial cutoff vector c0 = (c0
s )s∈S that induces observed enrollments |Ds(c0 )| and

yields γ̂s(c0 ) = |Ds(c0 )|
n+1−c0

s
. Given observations about past enrollments, school s updates

its yield to γ1
s = (1 − ω1 )γ0

s + ω1γ̂0
s (c0 ), where ω1 ∈ (0, 1) is the weight s places on the

observed yield in period 1, and then updates its cutoff to Ys(c0 ) = N + 1 − ⌈ qs
γ1
s
⌉, again

ensuring that expected enrollment equals target enrollment.
More generally, in each non-initial period t ≥ 1, schools similarly use past enroll-

ments in previous periods to update their yield estimates. I assume that at the beginning
of period t, school s estimates its yield to be γt

s = (1 − ωt )γt−1
s + ωtγ̂s(Yt−1(c0 )), where

γt−1
s is the yield estimate of school s at the beginning of period t − 1 and ωt ∈ (0, 1) is

the weight school s attaches to the realized yield in period t−1, γ̂s(Yt−1(c0 )). For period
t + 1, school s then sets a cutoff of Yt

s (c0 ) = N + 1 − ⌈ qs
γts

⌉, so that it meets its enrollment

target in expectation given its revised estimate of the yield.
Note that the adjustment process Y satisfies Assumption 1. In contrast to the gen-

eralized DA adjustment process in Example 2, this process uses information about all
previous enrollments, not just the most recent one. ◊

Depending on schools’ priors, the average yields adjustment process may initially
require large downward or upward adjustments and, therefore, fail to be moderate.
However, if ωt > 0 for all t and limt→∞ωt = 0, adjustments become moderate for large
enough t. More formally, I say that an adjustment process is eventually moderate, if, for
any c there exists some T ≥ 0, such that At(c) is a moderate adjustment from At−1(c)
for all t ≥ T .

In terms of results, Theorem 1 extends straightforwardly: whenever we arrive at a pe-
riod where adjustments to the next period are moderate, the aggregate imbalance will

25Note that this corresponds to being in the budget set of ⌈ qs
γ0
s
⌉ students.
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weakly decrease. Hence, if adjustments are moderate for large enough t, the aggregate
imbalance will converge. Similarly, if adjustments satisfy the conditions in Theorem 2 or
Corollary 2 for large enough t, we obtain convergence. The negative result of Theorem 3
obviously extends to the more general adjustment processes I consider in this subsec-
tion. Finally, for Theorem 4, note that for a non-time-invariant adjustment process A,
AT (c) = At(c) for some cutoff vector c does not imply that adjustments cycle from pe-
riod t onward. However, it is not difficult to see that the proof of Theorem 4 implies that
for any eventually moderate A and any c, the supremum and infimum of all accumu-
lation points of the sequence {At(c)}t≥0 both define market-clearing cutoff vectors; see
Theorem 8 in Appendix B.6 for a formal statement and proof.

5. Conclusion

I have studied tâtonnement processes for matching markets without transfers. Schools
have fixed enrollment targets and use their observations about realized enrollments
to adjust their cutoffs. It was shown that whenever schools’ cutoff adjustments are
bounded by the most recently observed imbalance between actual and target enroll-
ment, the market moves weakly closer to clearing. If, at each point in time, only oversub-
scribed or only undersubscribed schools adjust their cutoffs, convergence to market-
clearing was seen to be guaranteed from any initial situation. However, whenever the
underlying matching market has more than one stable matching and all schools instan-
taneously react to enrollment imbalances, the existence of initial conditions from which
adjustment processes cycle indefinitely was established. For the case where schools ad-
just moderately, it was shown that market-clearing cutoff vectors can be constructed
from cycles in the adjustment process as the supremum and the infimum of all cutoff
vectors observed along a cycle are both always market-clearing. In particular, conver-
gence is guaranteed when the underlying matching market has a unique stable match-
ing.

There are many avenues for future research on the topics presented in this pa-
per. Most importantly, if one takes tâtonnement processes as a model of decentralized
matching markets, there are a number of assumptions that one might want to relax.
First, the analysis implicitly assumed that application costs are negligible so that stu-
dents apply to all schools. If this assumption is not satisfied, students face a difficult
portfolio allocation problem. In this case, one should expect students also to rely on
their observations about past market conditions to decide where to apply. Second, the
environment was assumed to be completely stationary and it is important to study the
effects of substantial preference shocks on adjustment processes. Third, it would be
useful to derive optimal learning rules as a theoretical benchmark. This and most of the
other open questions will most likely require additional assumptions about (the evolu-
tion of) schools’ and students’ preferences.

Appendix A: Beyond cutoffs

In this section, I consider the more general version of my model introduced in Sec-
tion 4.1. In the process, I present and prove more general versions of several of the
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results in the main body of the paper. I start by generalizing the notion of moderate
adjustments from the main body of the paper.

Definition 6. A generalized adjustment process Â

(i) increases moderately at O ∈ 𝒪 if for all s ∈ S,

Âs(O) ⊇ Os if qs >
⃓⃓
D̂s(O)

⃓⃓
and ⃓⃓

Ât
s(O) ∩ D̂s(O)

⃓⃓ ≥ min
{︁
qs ,

⃓⃓
D̂s(O)

⃓⃓}︁
(ii) decreases moderately at O ∈ 𝒪 if for all s ∈ S,

Ât
s(O) ⊆ Os if

⃓⃓
D̂s(O)

⃓⃓
> qs

and ⃓⃓
Ât

s(O) \Os

⃓⃓ ≤ max
{︁
qs − ⃓⃓

D̂s(O)
⃓⃓
, 0

}︁
(iii) is moderate at O ∈𝒪, if it increases and decreases moderately at O.

I now relate cutoffs to offer sets. First, note that a cutoff vector c induces the offer
vector Oc , where Oc

s = {i ∈ I : eis ≥ cs}. Furthermore, say that O ∈ 𝒪 has a cutoff structure
if there exists a cutoff vector c such that O = Oc . Second, given an adjustment process
A, we can define an associated generalized adjustment process Ã as follows: Let Ô ∈ 𝒪
be such that Ô = Oc for some cutoff vector c and then set Ã(Ô) = OA(c). Note that an
adjustment process A converges if and only if the associated generalized adjustment
process Ã converges. Note also that, for any c, it holds that Ds(c) = D̂s(Oc ) for all s ∈ S.
The next lemma describes the basic relationships between cutoff adjustment processes
and their generalized counterparts that apply for any vector of offer sets.

Lemma 2. (i) If adjustment process A increases moderately in the sense of Definition 1,
then Ã increases moderately at all Ô ∈ 𝒪 that have a cutoff structure.

(ii) If adjustment process A decreases moderately in the sense of Definition 1, then Ã

decreases moderately at all Ô ∈ 𝒪 that have a cutoff structure.

(iii) If adjustment process A is moderate in the sense of Definition 1, then Ã is moderate
at all Ô ∈ 𝒪 that have a cutoff structure.

Proof. (i) Fix some Ô ∈ 𝒪 with cutoff structure and let c be such that Oc = Ô. If
|D̂s(Oc )| = |Ds(c)| < qs, then �s(c) = cs and, thus, As(c) ≤ cs . The last inequality im-
mediately implies OA(c)

s ⊇ Oc
s . If |D̂s(Oc )| = |Ds(c)| ≥ qs , then �s(c) is equal to the qsth

highest score of students in Ds(c). Hence, we obtain that |OA(c)
s ∩ D̂s(Oc )| ≥ qs.

(ii) Fix some Ô ∈ 𝒪 with cutoff structure and let c be such that Oc = Ô. By the second
part of Definition 1, we have that As(c) ≥ cs − max{qs − |Ds(c)|, 0}. The last inequality
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immediately implies |OA(c)
s \ Oc

s | ≤ max{qs − |D̂s(Oc )|, 0}. Moreover, I also obtain that
OA(c)
s ⊆ Oc

s if |D̂s(Oc )| > qs.
(iii) The last part follows immediately from the first two parts.

The next definition generalizes the notion of aggregate imbalance.

Definition 7. The aggregate imbalance at O ∈ 𝒪 is given by

Ê(O) =
∑︂
s∈S

⃓⃓⃓⃓
D̂s(O)

⃓⃓ − qs
⃓⃓
.

With these preparations, I now state and prove a generalized version of Theorem 1.

Theorem 5. Let O ∈ 𝒪 be arbitrary. If the generalized adjustment process Â is moderate
at O, then Ê(Â(O)) ≤ Ê(O).

Proof. Suppose the generalized adjustment process Â is moderate at O ∈ 𝒪 and let
O′ = Â(O). Define S+(O) to be the set of oversubscribed and S−(O) to be the set of un-
dersubscribed schools at O. I now consider the aggregate effects of changes in individual
demands caused by the move from O to O′.

First, let I− = ⋃︁
s∈S\S+(O) D̂s(O) denote the set of all students who demand a school

in S \ S+(O) at O. By the weak axiom of revealed preference, we must have D̂i(O′ ) ∈
S \ S+(O) for all i ∈ I− since O′ = Â(O) and, given that Â is moderate at t, all schools in
S+(O) make less (in a subset sense) offers at O′ than at O. Furthermore, if s′ := D̂i(O′ ) ≠
D̂i(O) for some i ∈ I−, then s′ ∈ S−(O) and i ∈O′

s′ \Os′ . Now let s ∈ S \S+(O) be arbitrary.

Since Â decreases moderately at t and O, there are at most qs − |D̂s(O)| students who get
an offer from s at O′ = Ât(O) but not at O. Hence, if we momentarily disregard potential
demand changes of agents in I \ I−, then no school in S \ S+(O) can be oversubscribed
at O′. This implies that the aggregate imbalance is exactly the same after we have ac-
counted for the demand changes of agents I−: The demand change of an agent i ∈ I−
from s = D̂i(O) to s′ = D̂i(O′ ) increases the excess supply of seats at s by 1 and decreases
the excess supply of seats at s′ by 1. Let D1

s = D̂s(O′ ) ∩ I− for all schools s ∈ S \ S+(O),
D1

s = D̂s(O) for all s ∈ S+(O), and E1(= Ê(O)) be the associated aggregate imbalance.
Next I account for the demand changes of agents in I+ := I \ I− = ⋃︁

s∈S+(O) D̂s(O).

Call an agent i ∈ I+ a voluntary leaver of s ∈ S+(O) if D̂i(O) = s and D̂i(O′ )Pis. Let Vs
denote the set of all voluntary leavers of s and V = ⋃︁

s∈S+(O) Vs. Note that for all i ∈ V ,

D̂i(O′ ) ∈ S−(O). I will first consider the aggregate effects caused by demand changes of
agents in V . For this analysis, I neglect demand changes of agents in I \ (I− ∪V ), as these
will be considered in the last step of the proof. Set D2

s = D̂s(O) \ Vs for all s ∈ S+(O), set
D2

s =D1
s ∪{i ∈ V : D̂i(O′ ) = s} for all s ∈ S\S+(O),26 and letE2 be the associated aggregate

imbalance.
Consider first a school s ∈ S+(O) such that |D2

s | ≥ qs. In this case, the aggregate im-
balance at O′ is 2|Vs| units lower than the aggregate imbalance at O after we have ac-
counted for the demand changes of agents in Vs . To see this, note first that |D2

s | − qs =
26Note that D2

s = D1
s for all s /∈ S+(O) ∪ S−(O) by the weak axiom of revealed preference.
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|D̂s(O)| − |Vs| − qs ≥ 0, so that after accounting for demand changes of agents in Vs the
excess demand for places at s is |Vs| units lower at O′ than at O. Furthermore, for all s′ ∈
S−(O), |D2

s′| ≤ qs′ since from O to O′, s′ has become affordable to at most qs′ − |D̂s′(O)|

additional agents given that Â decreases moderately at t and Õ. This implies, in partic-
ular, that

∑︁
s′∈S−(O)(|qs′ − (|D1

s′ | + |{i ∈ Vs : D̂i(O′ ) = s′}|)|) = ∑︁
s′∈S−(O)(qs′ − |D1

s′|) − |Vs|,
so that after accounting for demand changes of agents in Vs , aggregate excess supply of
schools in S−(O) is |Vs| units lower at O′ than at O.

Next consider a school s ∈ S+(O) such that |D2
s | < qs. In this case, the aggregate

imbalance at O′ is 2(|D̂s(O)| − qs ) units lower than at O after we have accounted for
demand changes of agents in Vs. To see this, note first that ||D2

s | − qs| = qs − |D̂s(O)| +
|Vs|, so that from O to O′ the absolute value of excess enrollment at school s changes
by qs − |D̂s(O)| + |Vs| − (|D̂s(O)| − qs ) = |Vs| − 2(|D̂s(O)| − qs ). On the other hand, as in
the previous case, after accounting for demand changes of agents in Vs, aggregate excess
supply of schools in S−(O) is |Vs| units lower at O′ than at O. Summing up these changes,
we see that after we have accounted for demand changes of agents in Vs , the aggregate
imbalance is 2(|D̂s(O)| − qs ) units lower at O′ than at O.

Summing up, after we have accounted for demand changes of agents in Vs for all
s ∈ S, the aggregate imbalance is E2 = Ê(O) − 2

∑︁
s∈S+(O) min{|Vs|, |D̂s(O)| − qs}.

To complete the proof, I now consider the effect of demand changes of students
i ∈ I \ (I− ∪ V ). For the remainder of the proof, fix a school s ∈ S+(O) and let Fs = {i ∈
D̂s(O) : sPiD̂i(O′ )} be the set of students who are forced to leave s going from O to O′.
Note that since Â increases moderately at t and Õ, |Fs| ≤ |D̂s(O)| −qs. I now consider the
change in aggregate imbalance caused by the demand changes of agents in Fs starting
at E2. I distinguish three cases.

Suppose first that |D̂s(O)| − |Vs| − qs ≥ 0 > |D̂s(O)| − |Fs| − qs − |Vs|. In this case,
the change in the imbalance at s due to demand changes of agents in Fs starting at
E2 is |Fs| + |Vs| − (|D̂s(O)| − qs ) − (|D̂s(O)| − |Vs| − qs ) = |Fs| + 2|Vs| − 2(|D̂s(O)| − qs ).
Furthermore, in the worst case, each student in Fs increases the excess enrollment at
some school s′ ∈ S \ {s} by one unit. Hence, the total increase in the aggregate imbal-
ance caused by demand changes in Fs starting at E2 is at most max{2|Fs| − 2(|D̂s(O)| −
qs ) + 2|Vs|, 0} ≤ 2|Vs| given moderate decreases. Since |Vs| ≤ |D̂s(O)| − qs in the case I
consider here, E2 = Ê(O) − 2|Vs| − 2

∑︁
s̃∈S+(O)\{s} min{|Vs̃|, |D̂s̃(O)| − qs̃} and the aggre-

gate imbalance demand after accounting for demand changes of agents in Fs is at most
Ê(O) − 2

∑︁
s̃∈S+(O)\{s} min{|Vs̃|, |D̂s̃(O)| − qs̃}.

Next suppose that 0 > |D̂s(O)| − |Vs| − qs. In this case, the increase in the ex-
cess supply of seats at s due to demand changes of agents in Fs starting at E2 is |Fs|.
Furthermore, in the worst case, each agent in Fs increases the excess enrollment at
some school s′ ∈ S \ {s} by 1. Since |Vs| > |D̂s(O)| − qs in the case I consider here,
E2 = Ê(O) − 2(|D̂s(O)| − qs ) − 2

∑︁
s̃∈S+(O)\{s} min{|Vs̃|, |D̂s̃(O)| − qs̃}. After accounting for

demand changes of agents in Fs, the aggregate imbalance is at most

Ê(O) + 2|Fs| − 2
(︁⃓⃓
D̂s(O)

⃓⃓ − qs
)︁ − 2

∑︂
s̃∈S+(O)\{s}

min
{︁|Vs̃|, ⃓⃓

D̂s̃(O)
⃓⃓ − qs̃

}︁
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≤ Ê(O) − 2
∑︂

s̃∈S+(O)\{s}

min
{︁|Vs̃|, ⃓⃓

D̂s̃(O)
⃓⃓ − qs̃

}︁
,

where the inequality follows since |Fs| ≤ |D̂s(O)| − qs, given that Â is moderate at t

and Õ.
Finally, when |D̂s(O)| − qs − |Fs| − |Vs| ≥ 0 demand changes of agents in Fs cannot

increase the aggregate imbalance relative to E2.
An iterative application of this argument for all schools in S+(O) shows that E(O′ ) ≤

E(O) and, thus, completes the proof.

In the following discussion, I refer to a moderate generalized adjustment process
Â that satisfies Âs(O) ⊆ Os for all s ∈ S as long as there is at least one oversubscribed
school as an upward–downward generalized adjustment process. Similarly, I refer to a
generalized adjustment process Â that satisfies Âs(O) ⊇ Os for all s ∈ S whenever there
is at least one undersubscribed school as a downward—upward generalized adjustment
process. The next result summarizes a key property of the two processes just described.

Theorem 6. If Â is either a moderate generalized upward–downward adjustment pro-
cess or a moderate generalized downward–upward adjustment process, then
limt→∞ Ât(O) exists for all O ∈ 𝒪.

Proof. The proof relies on the following lemma.

Lemma 3. (i) If O ∈ 𝒪 is such that for all s ∈ S, either |D̂s(O)| ≥ qs or Os = I, then
limt→∞ Ât(O) exists for any moderate generalized adjustment process Â.

(ii) If O ∈ 𝒪 is such that for all s ∈ S, |D̂s(O)| ≤ qs, then limt→∞ Ât(O) exists for any
moderate generalized adjustment process Â.

Proof. (i) Let Â be an arbitrary moderate generalized adjustment process.
I show first that if no selective school is undersubscribed at O, then all students are

weakly worse off under O′ = Â(O) than under O and no selective school is undersub-
scribed at O′. The first property follows immediately, since all selective schools are un-
dersubscribed at O and Â is moderate. For the second property, note first that the weak
axiom of revealed preference implies that, for all s ∈ S, if i ∈ D̂s(O) ∩O′

s , then i ∈ D̂s(O′ ).
Since Â is moderate, |D̂s(O)| ≥ qs therefore implies that |D̂s(O′ )| ≥ qs . By the contrapos-
itive of the last observation, we have that qs > |Ds(O′ )| implies qs > |Ds(O)| and, thus,
by our assumptions about O, Os = I. Since Â is moderate, O′

s = I as well.
Iterating the above reasoning, for all t such that Ât(O) is not market-clearing, we

must have Ât+1
s (O) ⊊ Ât

s(O) for at least one s. Hence, there must exist a t ′ ≥ t + 1 such
that Di(Ât(O))PiDi(Ât ′(O)) for some i. Since student welfare is bounded from below,
limt→∞ Ât(O) exists.

(ii) Let Â be an arbitrary moderate generalized adjustment process. I show first that
if no school is oversubscribed at O, then all students are weakly better off under O′ =
Â(O) and no school is oversubscribed at O′. The first property follows immediately,
since no school is oversubscribed at O and Â is moderate. For the second property,
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note first that the weak axiom of revealed preference implies that, for all s ∈ S, if i ∈ Os

and D̂i(O) ≠ s, then D̂i(O′ ) ≠ s. Hence, D̂s(O′ ) \ D̂s(O) ⊆ O′
s \ Os for all s ∈ S. Since Â

is moderate, |O′
s \ Os| ≤ qs − |D̂s(O)| and, combined with the previous finding, I obtain

|D̂s(O′ )| ≤ |D̂s(O)| + qs − |D̂s(O)| = qs. Hence, no school is oversubscribed at O′ if no
school is oversubscribed at O.

Iterating the above reasoning, for all t such that Ât(O) is not market-clearing, we
must have Ât+1

s (O) ⊋ Ât
s(O) for at least one s. Hence, there must exist a t ′ ≥ t + 1 such

that Di(Ât ′(O))PiDi(Ât(O)) for some i. Since student welfare is bounded from above,
limt→∞ Ât(O) exists.

Let Â be any moderate upward–downward generalized adjustment process and let
O ∈ 𝒪 be arbitrary. Note that there must be a T1 such that |D̂s(ÂT1 (O))| ≤ qs for all s ∈ S:
For any t such that there is a school s for which |D̂s(At(O))| > qs, then the assump-
tion that Â is upward–downward jointly implies Ât+1(O) ⊊ Ât(O); since the set of offers
for each school is bounded from below by ∅, I obtain a contradiction. Let O′ = ÂT1 (O)
and note that Lemma 3(i) implies that limt→∞ Ât(O′ ) exists. This completes the proof
of convergence for the case of moderate upward–downward generalized adjustment
processes. To establish the convergence of moderate downward–upward generalized
adjustment processes, first establish that such a generalized adjustment process must
eventually reach an offer vector at which no selective school is undersubscribed and
then apply Lemma 3(ii). I omit the details.

Appendix B: Proofs

The following additional lemma describes some important structural properties of cut-
offs that induce a given stable matching.

Lemma 4. Let μ be some stable matching.

(i) There exist cutoff vectors c(μ) and c(μ) such that c(μ) and c(μ) both induce μ, and,
for any cutoff vector c that induces μ, c(μ) ≥ c ≥ c(μ).

(ii) For any c such that c(μ) ≥ c ≥ c(μ), Ds(c) = μ(s) for all s ∈ S.

Proof. (i) For each school s, let cs(μ) = mini∈μ(s) eis if μ(s) ≠ ∅ and let cs(μ) = N + 1
otherwise. Since μ is stable, it is straightforward that c(μ) induces μ. Now consider
some cutoff vector c such that cs∗ > cs∗(μ) for some s∗. I claim that c does not induce
μ. Given the construction of c(μ) and the assumption that cs∗ > cs∗(μ), we must have
μ(s∗ ) ≠ ∅. However, then, cs∗ > mini∈μ(s∗ ) eis∗ and c cannot induce μ, since there is at
least one student in μ(s∗ ) who cannot afford s∗ at c.

Next I construct c(μ). For any school s, let D∗
s (μ) = {i ∈ I : sPiμ(i)} be the set of

students who desire s at μ. For any school s such that D∗
s (μ) = ∅, let cs(μ) = 1. For any

school s such that D∗
s (μ) ≠ ∅, let cs(μ) = max{eis : i ∈ D∗

s (μ)} + 1. Stability of μ again
immediately implies that c(μ) induces μ. Now consider some cutoff vector c such that
cs < cs∗(μ) for some s∗. I claim that c does not induce μ. Given the construction of c(μ),
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it is immediate that D∗
s (μ) ≠ ∅. Let i∗ be such that ei∗s∗ = cs∗(μ). By the definitions of

cs∗(μ) and D∗
s∗(μ), we must have s∗Pi∗μ(i∗ ). Since i∗ can afford s∗ at c, we have Di∗(c) ≠

μ(i∗ ) and, thus, c does not induce μ.
(ii) Let c be an arbitrary cutoff vector such that c(μ) ≥ c ≥ c(μ). Note first that since

cs ≤ mini∈μ(s) eis for all s such that μ(s) ≠ ∅, all students can afford the schools that they
are matched to under μ. Next, let i be an arbitrary student for whom there exists a school
s such that sPiμ(i). Since D∗

s (μ) ≠ ∅, we have cs(μ) = min{eis : i ∈ D∗
s (μ)} + 1 and, thus,

cs > eis . Hence, i cannot afford s at c and Di(c) = μ(i).

B.1 Proof of Theorem 1

The proof follows immediately from Theorem 5 and Lemma 2.

B.2 Proof of Theorem 2

Similar to Appendix A, I refer to an adjustment process A that satisfies A(c) ≥ c if there
is at least one oversubscribed school at c as an upward–downward adjustment process.
Furthermore, I refer to an adjustment process A that satisfies A(c) ≤ c if there is at least
one undersubscribed selective school at c as a downward–upward adjustment process.
I start by introducing a stronger version of Theorem 2.

Theorem 7. (i) If A is a moderate upward–downward adjustment process, then for all
c, limt→∞At(c) exists. Moreover, for any c and any moderate upward–downward
adjustment process B, Ds(limt→∞Bt(c)) =Ds(limt→∞At(c)) for all s ∈ S.

(ii) If A is a moderate downward–upward adjustment process, then for all c,
limt→∞At(c) exists. Moreover, for any c and any moderate downward–upward
adjustment process B, Ds(limt→∞Bt(c)) =Ds(limt→∞At(c)) for all s ∈ S.

(iii) If A is a moderate upward–downward adjustment process and c ≤ 𝒞∗
, then

limt→∞At(c) ≥ c and there is no market-clearing cutoff vector c′ such that c ⪇

c′ ⪇ limt→∞At(c) and Ds(c′ ) ≠Ds(limt→∞At(c)) for some s ∈ S.

(iv) If A is a strongly moderate downward–upward adjustment process27 and c ≥ 𝒞∗,
then limt→∞At(c) ≤ c and there is no market-clearing cutoff vector c′ such that
c ⪈ c′ ⪈ limt→∞At(c) and Ds(c′ ) ≠Ds(limt→∞At(c)) for some s ∈ S.

Proof. The existence of the limits in parts (i) and (ii) follows immediately from Theo-
rem 6 and Lemma 2. For the remaining parts of Theorem 7, I now introduce and prove
two additional lemmata.

Lemma 5. (i) If c and c′ are two cutoff vectors such that c′ ≥ c, then �(c′ ) ≥ �(c).

27Recall that the difference between a moderate and a strongly moderate adjustment process is that for
the latter, As(c) ≤ cs + max{|Ds(c)| − qs , 0} and, in particular, As(c) ≤ cs if |Ds(c)| = qs .
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(ii) Given a cutoff vector c and a school s, define

𝒴s(c) =
{︄
cs − min

{︁
qs − ⃓⃓

Ds(c)
⃓⃓
, cs − 1

}︁
if qs ≥ ⃓⃓

Ds(c)
⃓⃓
,

cs otherwise,

and let 𝒴(c) = (𝒴s(c))s∈S . If c and c′ are two cutoff vectors such that c′ ≤ c, then
𝒴(c′ ) ≤ 𝒴(c).

(i) I only need to establish that �s(c′ ) ≥ �s(c) for any s that is oversubscribed at c,
since the statement is trivially true otherwise. If |{i ∈ I : eis ≥ c′

s and i ∈ Ds(c)}| < qs, the
definition of � implies that �s(c) ≤ c′

s ≤ �s(c′ ). Otherwise, note that since c′ ≥ c, we
must have {i ∈ I : eis ≥ c′

s and i ∈ Ds(c)} ⊆ Ds(c′ ). In particular, the qsth highest score of
agents in {i ∈ I : eis ≥ c′

s and i ∈ Ds(c)} must be weakly lower than the qsth highest score
of agents in Ds(c′ ). This establishes the statement.

(ii) Consider some school s that is undersubscribed at c and let δ = min{qs −
|Ds(c)|, cs − 1}. If cs − δ ≥ c′

s , the statement follows since c′ ≥ 𝒴(c′ ). So suppose that
cs ≥ c′

s > cs − δ and let l > 0 be such that c′
s = cs − (δ − l). Note that for any i such that

eis ≥ cs and i /∈ Ds(c), we must have i /∈ Ds(c′ ) since c′ ≤ c. Hence, it has to be the case
that Ds(c′ ) ⊆Ds(c)∪ {i ∈ I : cs > eis ≥ c′

s}. This, in turn, implies |Ds(c′ )| ≤ |Ds(c)| + |{i ∈ I :
cs > eis ≥ cs − (δ− l)}|. Since |Ds(c)| ≤ qs −δ and |{i ∈ I : cs > eis ≥ cs − (δ− l)}| = δ− l, we
obtain |Ds(c′ )| ≤ qs − l. The definition of 𝒴 implies that 𝒴s(c′ ) ≤ c′

s − l = cs − (δ− l) − l =
cs − δ= 𝒴s(c) and this completes the proof.

Lemma 6. Let c and c′ be such that D(c) = D(c′ ) and one of the following two conditions
is satisfied:

(i) For all s ∈ S, either |Ds(c)| ≥ qs or cs = c′
s = 1.

(ii) For all s ∈ S, |Ds(c)| ≤ qs.

For any pair of moderate adjustment processes A and B, we have that Ds(AT1 (c)) =
Ds(BT2 (c′ )) for all s ∈ S, where T1 is the smallest integer such that AT1 (c) is market-
clearing and T2 is the smallest integer such that BT2 (c′ ) is market-clearing.

Proof. (i) Assume that c and c′ are such that D(c) = D(c′ ) and, for all s ∈ S, either
|Ds(c)| ≥ qs or cs = c′

s = 1. I show first that for all T ≤ T2, there exists a T ′ ≤ T1 such
that Di(BT (c′ ))RiDi(At(c)) for all i ∈ I and all t ∈ {T ′, � � � , T1}.

Note first that the statement is trivially true for T = 0, since (a) B0(c′ ) = c′, (b) Ds(c) =
Ds(c′ ) for all s ∈ S, and (c) At(c) ≥ c for all t ≤ T1 given that A is moderate and given that,
for all s ∈ S, either |Ds(c)| ≥ qs or cs = c′

s = 1.
So suppose the statement is true up to some T < T2 and let T ′ ≤ T1 be such that

Di(BT (c′ ))RiDi(At(c)) for all i ∈ I and all t ∈ {T ′, � � � , T1}. I need to show that there is
some T ′′ ≤ T1 such that Di(BT+1(c′ ))RiDi(At(c)) for all i ∈ I and all t ∈ {T ′′, � � � , T1}.
Suppose not. Then there has to exist some i∗ such that Di∗(At(c))Pi∗Di∗(BT+1(c′ )) for
all t ≤ T1. Let s∗ =Di∗(AT1 (c)). Note that we must have{︁

i ∈ Ds∗
(︁
AT ′

(c)
)︁

: eis∗ ≥ AT1
s∗ (c)

}︁ ⊆ Ds∗
(︁
AT1 (c)

)︁
,
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since AT1 (c) ≥ AT ′
(c). Furthermore, given the inductive assumption that

Di(BT (c′ ))RiDi(At(c)) for all i ∈ I and all t ∈ {T ′, � � � , T1}, we also have{︁
i ∈Ds∗

(︁
BT

(︁
c′)︁)︁ : eis∗ ≥ AT1

s∗ (c)
}︁ ⊆ {︁

i ∈Ds∗
(︁
AT ′

(c)
)︁

: eis∗ ≥ AT1
s∗ (c)

}︁
.

Since s∗ =Di∗(AT1 (c))Pi∗Di∗(BT+1(c′ )), we have that BT+1
s∗ (c′ ) >AT1

s∗ (c) and, hence,

{︁
i ∈Ds∗

(︁
BT

(︁
c′)︁)︁ : eis∗ ≥ B

T+1
s∗ (c)

}︁ ⊆ {︁
i ∈Ds∗

(︁
BT

(︁
c′)︁)︁ : eis∗ ≥ AT1

s∗ (c)
}︁

.

Combining the last insights, I find that{︁
i ∈ Ds∗

(︁
BT

(︁
c′)︁)︁ : eis∗ ≥ B

T+1
s∗ (c)

}︁ ⊆ Ds∗
(︁
AT1 (c)

)︁
.

Next we must have BT+1
s∗ (c′ ) > 1 given that BT+1

s∗ (c′ ) > AT1
s∗ (c). Since B is mod-

erate and, by the conditions on demands at c′, either |Ds∗(c′ )| ≥ qs∗ or c′
s∗ = 1, we

must have |Ds∗(BT (c′ ))| ≥ qs∗ and |{i ∈ Ds∗(BT (c′ )) : eis∗ ≥ BT+1
s∗ (c′ )}| ≥ qs∗ . Since {i ∈

Ds∗(BT (c′ )) : eis∗ ≥ BT+1
s∗ (c′ )} ⊆ Ds∗(AT1 (c)) and i∗ ∈Ds∗(AT1 (c))\Ds∗(BT+1(c′ )), we ob-

tain |Ds∗(AT1 (c))| > qs∗ , which is a contradiction to the definition of T1.
By the statement that I have just established, I obtain that Di(BT2 (c′ ))RiDi(AT1 (c))

for all i ∈ I. A symmetric argument yields the converse. Since preferences are strict, I
obtain Ds(AT1 (c)) =Ds(BT2 (c′ )) for all s ∈ S.

(ii) Assume that c and c′ are such that D(c) = D(c′ ) and, for all s ∈ S, |Ds(c)| ≤ qs. I
show first that for all T ≤ T2, there exists a T ′ ≤ T1 such that Di(At(c))RiDi(BT (c′ )) for
all i ∈ I and all t ∈ {T ′, � � � , T1}.

Note first that the statement is trivially true for T = 0, since (a) B0(c′ ) = c′, (b) Ds(c) =
Ds(c′ ) for all s ∈ S, and (c) At(c) ≤ c for all t ≤ T1, given that A is moderate and given that,
for all s ∈ S, |Ds(c)| ≤ qs.

So suppose the statement is true up to some T < T2 and let T ′ ≤ T1 be such that
Di(At(c))RiDi(BT (c′ )) for all i ∈ I and all t ∈ {T ′, � � � , T1}. I need to show that there is
some T ′′ ≤ T1 such that Di(At(c))RiDi(BT+1(c′ )) for all i ∈ I and all t ∈ {T ′′, � � � , T1}.
Suppose not. Then there has to exist some i∗ such that Di∗(BT+1(c′ ))Pi∗Di∗(At(c)) for
all t ≤ T1. In particular, Di∗(BT+1(c′ ))Pi∗Di∗(AT1 (c)).

Let s∗ = Di∗(BT+1(c′ )) and note that we must have min{AT1
s∗ (c), BT

s∗(c′ )} > ei∗s∗ ≥
BT+1
s∗ (c′ ). Next observe that

Ds∗
(︁
AT1 (c)

)︁ ⊆ Ds∗
(︁
AT ′

(c)
)︁ ∪ {︁

i ∈ I : AT ′
s∗ (c) > eis∗ ≥ AT1

s∗ (c)
}︁

,

since AT1 (c) ≤ AT ′
(c). Furthermore, given the inductive assumption that

Di(At(c))RiDi(BT (c′ )) for all i ∈ I and all t ∈ {T ′, � � � , T1}, if BT
s∗(c′ ) >AT ′

s∗ (c), then

Ds∗
(︁
AT ′

(c)
)︁ ⊆Ds∗

(︁
BT

(︁
c′)︁)︁ ∪ {︁

i ∈ I : BT
s∗

(︁
c′)︁> eis∗ ≥ AT ′

s∗ (c)
}︁

,

and if AT ′
s∗ (c) ≥ BT

s∗(c′ ), then Ds∗(AT ′
(c)) ⊆Ds∗(BT (c′ )).

Now consider first the case where BT
s∗(c′ ) > AT ′

s∗ (c). Combining the above insights,
we have

Ds∗
(︁
AT1 (c)

)︁ ⊆Ds∗
(︁
BT

(︁
c′)︁)︁ ∪ {︁

i ∈ I : BT
s∗

(︁
c′)︁> eis∗ ≥ AT1

s∗ (c)
}︁

.
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Since B is moderate, I obtain⃓⃓{︁
i ∈ I : BT

s∗
(︁
c′)︁> eis∗ ≥ BT+1

s∗ (c)
}︁⃓⃓ ≤ qs∗ − ⃓⃓

Ds∗
(︁
BT

(︁
c′)︁)︁⃓⃓.

Since s∗ = Di∗(BT+1(c′ ))Pi∗Di∗(AT1 (c)), we have i∗ /∈ {i ∈ I : BT
s∗(c′ ) > eis∗ ≥ AT1

s∗ (c)} and,
therefore, |Ds∗(AT1 (c))| < qs∗ , which is a contradiction to the definition of T1.

Next assume that AT ′
s∗ (c) ≥ BT

s∗(c′ ). By the inductive assumption, there cannot be an
agent i such that AT ′

s∗ (c) > eis∗ ≥ BT
s∗(c′ ), Di(AT1 (c)) = s∗, and Di(BT (c′ )) ≠ s∗ (because

such an agent would strictly prefer Di(BT (c′ )) over Di(AT1 (c))). Hence,

Ds∗
(︁
AT1 (c)

)︁ ⊆ Ds∗
(︁
BT

(︁
c′)︁)︁ ∪ {︁

i ∈ I : BT
s∗

(︁
c′)︁> eis∗ ≥AT1

s∗ (c)
}︁

and we obtain a contradiction as before.

With the help of Lemmas 5 and 6, I now complete the proof of Theorem 7.
(i) Let A and B be two moderate upward–downward adjustment processes and let c

be an arbitrary cutoff vector. For any integer t, set at :=At(c) and bt := Bt(c).
Let T1 be the smallest integer such that no school is oversubscribed at aT1 and let T2

be the smallest integer such that no school is oversubscribed at bT2 . Define a second se-
quence of cutoffs δt by setting δ0 = c and δt = �(δt−1 ) for all t ≥ 1. Let T be the smallest
integer such that no school is oversubscribed at δT .

Claim 1. Ds(aT1 ) =Ds(bT2 ) = Ds(δT ) for all s ∈ S.

Proof. I show the statement for the sequence at . The proof for the sequence bt is com-
pletely analogous. Note first that at ≤ δt for all t: The statement is trivially true for t = 0;
suppose we had already shown that δt−1 ≥ at−1. Then, by Lemma 5(i) and since A is
moderate, δt = �(δt−1 ) ≥ �(at−1 ) ≥ at .

Next I argue that aT1 ≤ δT . By definition of T and what was just established, I imme-
diately obtain aT ≤ δT . If T = T1, I immediately obtain the desired inequality. So assume
that T < T1.28 By the first part of Lemma 5, I obtain �(aT ) ≤ �(δT ). Since no school is
oversubscribed at δT , we have that �(δT ) = δT . Since A is moderate, aT+1 ≤ �(aT ).
Hence, aT+1 ≤ δT and iterating these arguments, I obtain the desired result.

To complete the proof of Claim 1, I now show by induction that for all l ∈ {0, � � � , T ′},
there exists a tl ≤ T1 such that for all t ∈ {tl, � � � , T1} and all i ∈ I, Di(δl )RiDi(at ). In par-
ticular, Di(δT )RiDi(aT1 ) for all i ∈ I and, given the already established fact that δT ≥ aT1 ,
we must have Ds(δT ) =Ds(aT1 ) for all s ∈ S.

Now the desired statement is trivially true for l = 0 since at ≥ c and, therefore,
Di(c)RiDi(at ) for all t ≤ T1. Now suppose the statement is true for all l′ ≤ l < T . I show
that it is also true for l + 1. Fix t ∈ {tl, � � � , T1} and i so that s′ := Di(at )PiDi(δl+1 ). We
must have δl+1

s′ > eis′ ≥ ats′ ≥ cs′ . By definition of �(·), there must be at least qs′ students
j ≠ i such that ejs′ ≥ δl+1

s and j ∈Ds′(δl ). By the inductive assumption, for all t ≥ tl, none
of these students can afford a more preferred school s′ at at and, consequently, all enroll
at s′ at at . Hence, for any t ≥ tl such that Di(at )PiDi(δl+1 ) for at least one i ∈ I, at least

28Note that T > T1 is impossible given that A is moderate.
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one school must be oversubscribed. Since A(c) = c only if c is market-clearing, there
must exist a tl+1 ≥ tl such that for all t ∈ {tl+1, � � � , T1}, each student weakly prefers her
demand at δl+1 over her demand at at .

To complete the proof, I can now apply the second part of Lemma 6 to aT1 and bT2 .
(ii) Let A and B be two moderate downward–upward adjustment processes and let c

be an arbitrary cutoff vector. For any integer t, set at :=At(c) and bt := Bt(c).
Let T1 be the smallest integer such that no selective school is undersubscribed at aT1

and let T2 be the smallest integer such that no selective school is undersubscribed at bT2 .
Define a second sequence of cutoffs yt by setting y0 = c and yt = 𝒴(yt−1 ) for all t ≥ 1. Let
T be the smallest integer such that no selective school is undersubscribed at yT .

Claim 2. We have Ds(aT1 ) = Ds(bT2 ) = Ds(yT ) for all s ∈ S.

Proof. I show the statement for the sequence at . The proof for the sequence bt is com-
pletely analogous. Note first that yt ≤ at for all t. This is trivially true for t = 0. So sup-
pose we had already established that yt−1 ≤ at−1 for some t ≥ 1. By the second part of
Lemma 5, I obtain yt = 𝒴(yt−1 ) ≤ 𝒴(at−1 ) ≤ at .

Next I argue that aT1 ≥ yT . By definition of T and what was just established, I im-
mediately obtain aT ≥ yT . If T = T1, I immediately obtain the desired inequality. So
assume that T < T1. By the second part of Lemma 5, I obtain 𝒴(aT ) ≥ 𝒴(yT ). Since no
selective school is undersubscribed at yT , we have that 𝒴(yT ) = yT . Since A is moder-
ate, aT+1 ≥ 𝒴(aT ). Hence, aT+1 ≥ yT and iterating these arguments, I obtain the desired
result.

To complete the proof of Claim 2, I now show by induction that for all l ∈ {0, � � � , T },
there exists a tl ≤ T2 such that for all t ∈ {tl, � � � , T2} and all i ∈ I, Di(at )RiDi(yl ). In par-
ticular, Di(aT1 )RiDi(yT ) for all i ∈ I and, given the already established fact that aT1 ≥ yT ,
we must have Ds(aT1 ) =Ds(yT ) for all s ∈ S.

The desired statement is trivially true for l = 0 since at ≤ c and, therefore,
Di(at )RiDi(c) for all t ≤ T1. Now suppose the statement is true for all l′ ≤ l < T . I
show that it is also true for l + 1. Fix t ∈ {tl, � � � , T1} and i so that s′ := Di(yl+1 )PiDi(at ).
Since t ≥ tl, the inductive assumption yields Dj(at )RjDj(yl ) for all j ∈ I. Furthermore,
s′ = Di(yl+1 )PiDi(at )RiDi(yl ) so that s′ must have been undersubscribed at yl and
yl+1
s′ ≤ eis′ < min{yls′ , a

t
s′ }. The inductive assumption also implies that for all j such that

s′ ≠ Dj(yl ) and ejs′ ≥ yls′ , s
′ ≠Dj(at ). Hence,

Ds′
(︁
at

)︁ ⊆Ds′
(︁
yl

)︁ ∪ {︁
i ∈ I : yl > eis′ ≥ ats′

}︁
⊊Ds′

(︁
yl

)︁ ∪ {︁
i ∈ I : yl > eis′ ≥ yl+1

s′
}︁

.

By definition of 𝒴(·), yl+1
s′ = max{cs′ − (qs′ − |Ds′(yl )|), 1}. Hence, we must have

⃓⃓{︁
i ∈ I : yls′ > eis′ ≥ yl+1

s′
}︁⃓⃓ ≤ qs′ −

⃓⃓
Ds′

(︁
yl

)︁⃓⃓
and, consequently, |Ds′(at )| < qs′ . In particular, for any t such that Di(yl+1 )PiDi(at ) for
at least one i ∈ I, at least one school must be undersubscribed. Since A(c) = c only if c
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is market-clearing, there is a tl+1 ∈ {tl, � � � , T2} such that for all t ≥ tl+1, Di(at )RiDi(yl+1 )
for all i ∈ I.

To complete the proof, I can now apply the first part of Lemma 6 to aT1 and bT2 .
(iii) Since A is upward–downward, there exists a T1 such that AT1 (c) ≥ c and

|Ds(AT1 (c))| ≤ qs for all s ∈ S. Furthermore, �(𝒞∗
) = 𝒞∗

and Lemma 5 is easily seen to
imply AT1 (c) ≤ 𝒞∗

. Let S∗ = {s ∈ S : |Ds(𝒞∗
)| = qs} and I∗ = {i ∈ I : Di(𝒞∗

) ∈ S∗}. Note
that we must have |I∗| = ∑︁

s∈S∗ qs. Since AT1 (c) ≤ 𝒞∗
and 𝒞∗

s = 1 for all s ∈ S \ S∗, we
have that AT1

s (c) = 𝒞∗
s for all s ∈ S \ S∗. By the weak axiom of revealed preference, I

then obtain Di(AT1 (c)) ∈ S∗ for all i ∈ I∗ and, therefore, I∗ ⊆ ⋃︁
s∈S∗ Ds(AT1 (c)). Since

|Ds(AT1 (c))| ≤ qs for all s ∈ S and |I∗| = ∑︁
s∈S∗ qs, I obtain that |Ds(AT1 (c))| = qs for all

s ∈ S∗. Since AT1
s = 1 for all s ∈ S \ S∗, AT1 (c) is market-clearing and given that A is

moderate, we have that limt→∞At(c) ≥ c.
Now take any market-clearing cutoff vector c′ such that c′ ≥ c. By Lemma 5, we

have that �(c) ≤ �(c′ ). Furthermore, the definitions of � and c(μc′
) immediately im-

ply �(c′ ) ≤ c(μc′
). Since A is moderate, I obtain A(c) ≤ c(μc′

). Iterating this argument, I
find that limt→∞At(c) ≤ c(μc′

), which completes the proof.
(iv) Since A is downward–upward, there exists a T1 such that AT1 (c) ≤ c and for all

s ∈ S, either |Ds(AT1 (c))| ≥ qs or AT1
s (c) = 1. Furthermore, 𝒴(𝒞∗ ) = 𝒞∗ and Lemma 5 is

easily seen to imply AT1 (c) ≥ 𝒞∗. Let S∗ = {s ∈ S : |Ds(𝒞∗ )| = qs} and I∗ = {i ∈ I : Di(𝒞∗ ) ∈
S∗}. Note that we must have |I∗| = ∑︁

s∈S∗ qs. Now for any i ∈ I \ I∗, AT1 (c) ≥ 𝒞∗ and the
weak axiom of revealed preference imply Di(AT1 (c)) /∈ S∗. Hence,

⋃︁
s∈S∗ Ds(AT1 (c)) ⊆

I∗. Furthermore, for any s ∈ S∗ such that AT1
s (c) = 𝒞∗

s = 1, the weak axiom of revealed
preference implies |Ds(AT1 (c)| ≥ |Ds(𝒞∗ )| = qs. So |Ds(AT1 (c))| ≥ qs for all s ∈ S∗. Since⋃︁

s∈S∗ Ds(AT1 (c)) ⊆ I∗ and |I∗| = ∑︁
s∈S∗ qs, I thus obtain |Ds(AT1 (c))| = qs for all s ∈ S∗.

Given that A is strongly moderate, it is then straightforward to show At
s(c) = AT1

s (c)
for all s ∈ S∗ and all t ≥ T1. By (ii), At(c) converges to a market-clearing cutoff vector
limt→∞At(c) =: c∗. By the rural hospitals theorem (Roth (1986)), we have that |Ds(c∗ )| <
qs for all s ∈ S \ S∗ and, therefore, c∗

s = 1 for all such s. Combining the previous two
insights, I obtain that c∗ ≤ c.

Now take any market-clearing cutoff vector c′ such that c′ ≤ c. By Lemma 5, I obtain
y(c) ≥ y(c′ ) = c′. Hence, limt→∞At(c) ≥ c′ and the desired result follows.

B.3 Proof of Theorem 3

Let A be any strongly moderate and strict adjustment process. Take any stable matching
μ ≠ μI . By Erdil and Ergin (2008), there exists a stable improvement cycle i1, � � � , iL of
μ, that is, for all l, sl+1 := μ(il+1 )Pilμ(il ) =: sl and eil ,sl+1 > ej,sl+1 for all j ≠ il such that
sl+1Pjμ(j) (with L+ 1 := 1). Consider the cutoff vector

cs1 = eiL,s1 + 1, csl = eil−1,sl for all l ∈ {2, � � � , L},

cs = min
j∈μ(s)

ej,s for all s ∈ S \ {s1, � � � , sL} such that
⃓⃓
μ(s)

⃓⃓ = qs ,

cs = 1 for all s such that
⃓⃓
μ(s)

⃓⃓
< qs.

I start by deriving the result of the first round of adjustments.
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Consider first an arbitrary school s ∈ S \ {s1, � � � , sL}. If there is an agent j ∈ I such
that j /∈ μ(s) but s =Dj(c), we obtain a contradiction to the stability of μ since (i) cμ(j ) ≤
ej,μ(j ), so that s = Dj(c) implies sPjμ(j), and (ii) ej,s > cs = minj′∈μ(s) ej′,s , since scores are
strict. The same arguments show that if there is an agent j ∈ μ(s) such that s ≠ Dj(c),
we must have Dj(c) = sl for some l ∈ {1, � � � , L}. This is impossible unless slPjs and ej,s ≥
eil−1,sl + 1, which would contradict the definition of a stable improvement cycle. Hence,
we must have μ(s) = Ds(c) so that As(c) = cs, since either |μ(s)| = qs or cs = 1.

Next I consider the schools involved in the stable improvement cycle. First, take
some l ∈ {1, � � � , L − 1} and agent il. Since sl+1Pil sl and csl+1 = eil ,sl+1 , Dil (c) ≠ sl. If
Dil (c) = sl′ for some l′ ≠ l + 1, we obtain a contradiction to the definition of a stable im-
provement cycle since sl′Pilμ(il ) and eil ,sl′ ≥ eil′−1,sl′ . Hence, we must have Dil (c) = sl+1.
A completely analogous argument shows that μ(sl ) \ {il} ⊆ Dsl (c) for all l ∈ {1, � � � , L}.
Now consider agent iL. By the definition of a stable improvement cycle and csL < eiL,sL ,
we must have DiL(c) ∈ {s1, sL}. Since cs1 = eiL,s1 + 1, DiL(c) = sL. Together with the
above arguments, this implies |Ds1 (c)| = qs1 − 1, |DsL(c)| = qsL + 1, and |Dsl (c)| = qsl for
all l ∈ {2, � � � , L − 1}. Since A is strongly moderate and strict, I obtain As1 (c) = eiL,s1 ,
AsL(c) = eiL−1,sL + 1, and Asl (c) = eil−1,sl for all l ∈ {2, � � � , L− 1}.

An iterative application of these arguments is easily seen to imply that, for all t ≤
L, At

sL−t+1
(c) = eiL−t ,sL−t+1 + 1 (where i0 := iL), At

sl
(c) = eil−1,sl for all l ≠ L − t + 1, and

At
s(c) = cs for all s ∈ S \ {s1, � � � , sL}. In particular, AL(c) = c and this completes the proof.

B.4 Proof of Theorem 4

To simplify the notation in the proof, set ct :=At(c) for all t.

• I first establish that no school is oversubscribed at cmin. Suppose to the contrary that
s is such that |Ds(cmin )| > qs and let Is =Ds(cmin ). Note that by the definition of cmin

and the weak axiom of revealed preference, we must have, for all i ∈ Is , Di(ct ) = s

whenever t is such that eis ≥ cts . Since the adjustment process is strict, there must
thus exist a smallest T ′ such that cT

′
s > cmin

s .
Let ls = |{i ∈ Is : eis ≥ cT

′
s |. By the above arguments, we must have |Ds(cT

′
)| ≥

ls . Hence, if ls ≥ qs , then the above arguments imply that s is not undersub-
scribed at cT

′
and cT

′+1
s ≥ cT

′
s > cmin

s since A decreases moderately. If ls < qs,
then since A decreases moderately, we obtain cT

′+1
s ≥ cT

′
s − (qs − ls ). Further-

more, cT
′

s ≥ cmin
s + (|Is| − ls ). Combining the last two observations, I find that

cT
′+1

s ≥ cmin
s + (|Is| − ls ) − (qs − ls ). Hence, cT

′+1
s > cmin

s given that |Is| > qs. I have
shown that if cT

′
s > cmin

s , then cT
′+1

s > cmin
s as well. Iterating this argument, I find

that cts > cmin
s for all t ≥ T ′. However, the last relationship contradicts the definition

of cmin
s and this contradiction completes the proof.

• Next I show that no selective school is undersubscribed at cmax. Suppose to the
contrary that s is such that |Ds(cmax )| < qs as well as cmax

s > 1. Note that for all t and
i, Di(ct )RiDi(cmax ). The last observation implies that for any student i such that
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eis ≥ cmax
s but Di(cmax ) ≠ s, we have Di(ct )Pis for all t. Hence, s must be undersub-

scribed whenever cts = cmax
s . Since the adjustment process is strict, there must thus

exist a smallest T ′ such that cT
′

s < cmax
s .

If |Ds(cT
′
)| < qs, we must have cT

′+1
s ≤ cT

′
s , since A increases moderately. Next

consider the case of |Ds(cT
′
)| ≥ qs. Since A increases moderately, we must have

cT
′+1

s ≤ �s(cT
′
). Since |Ds(cmax )| < qs , we must, therefore, have that cT

′+1
s < cmax

s .
The preceding arguments show that whenever cT

′
s < cmax

s , cT
′+1

s < cmax
s if A in-

creases moderately. Iterating this argument, we find that cts < cmax
s for all t ≥ T ′.

This contradicts the definition of cmax
s .

Using the just established findings, I now show that cmin and cmax are both market-
clearing. Note first that cmin ≥ 𝒞∗ given that no school is oversubscribed at cmin and
that cmax ≤ 𝒞∗

given that no selective school is undersubscribed at cmax. Now let s′ be a
school such that |μ(s′ )| < qs′ for some stable matching μ. By the rural hospitals theorem
(Roth (1986)), we have μ(s′ ) = μ′(s′ ) for all stable matchings μ′. Hence, 𝒞∗

s′ = 𝒞∗
s′ = 1 and

cmin
s′ = cmax

s′ = 1. Furthermore, it is straightforward to verify that Ds′(cmin ) = Ds′(cmax ) =
Ds′(𝒞∗ ) = Ds′(𝒞∗

). Next let S∗ = {s ∈ S : |Ds(𝒞∗ )| = qs} be the set of all schools that fill
their capacities in any stable matching. By the previous observations, we have that⋃︁

s∈S∗ Ds(cmin ) = ⋃︁
s∈S∗ Ds(cmax ) = ⋃︁

s∈S∗ Ds(𝒞∗ ), that is, between cmin and cmax, de-
mand can only flow between schools that fill their capacities in all stable matchings.
Furthermore, by definition of S∗,

∑︁
s∈S∗ |Ds(cmin )| = ∑︁

s∈S∗ |Ds(cmin )| = ∑︁
s∈S∗ qs. How-

ever, if there was an undersubscribed selective school at cmin, then there would also have
to be an oversubscribed school at cmin. Hence, cmin is market-clearing. Finally, if there
was an oversubscribed school s+ at cmax, the previous findings indicate that there would
also have to be a school s− ∈ S∗ that is undersubscribed at cmax. Since there are no un-
dersubscribed selective schools at cmax, we must have cmax

s− = 1 and, thus, also cmin
s− = 1.

However, by revealed preference and cmax ≥ cmin, we then obtain Ds−(cmin ) ⊆Ds−(cmax )
and, thus, |Ds−(cmin )| < qs− . Since we have already shown that cmin is market-clearing,
we obtain a contradiction to s− ∈ S∗.

B.5 Proof of Corollary 3

By Theorem 4(iii), there is a T such that 𝒞∗ ≥At(c) ≥ 𝒞∗ for all t ≥ T . It is straightforward
to show that in the case I consider here, any cutoff vector that lies between the lowest
and highest market-clearing cutoff vector must be market-clearing.

B.6 Time-varying adjustments

In this subsection, I first formulate a more general version of Theorem 4 and then discuss
the necessary adjustments to the proof.

Theorem 8. Let A be an arbitrary adjustment process, let c ∈ C be an arbitrary cutoff
vector, and let 𝒞acc be the set of accumulation points of the sequence {At(c)}t≥0. Let cmax

be the supremum of 𝒞acc and let cmin be the infimum of 𝒞acc. If A is moderate, then cmax

and cmin are market-clearing.
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Proof. Note that there exists T such that At(c) ∈ 𝒞acc for all t ≥ T by the definition
of 𝒞acc. Conditional on this observation, the remainder of the proof proceeds almost
exactly as the proof of Theorem 4. The only remaining difference is that we now use
Assumption 1 to infer that an oversubscribed school at cmin and an undersubscribed
selective school at cmax must both eventually adjust their cutoffs.
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