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Abstract

I study tâtonnement processes in a matching market without transfers. In each

period, schools set cutoffs, i.e. the preference ranks of the least preferred students

they are willing to admit, and students accept their most preferred offers. Cutoffs are

adjusted on the basis of demand-supply imbalances. A school’s adjustment from one

period to the next is moderate if it is bounded by the most recently observed imbalance

at that school. I show that for any period in which all schools adjust moderately,

the sum of demand-supply imbalances across all schools weakly decreases. Moreover,

if all schools always adjust moderately and there is a unique stable matching, then

adjustments converge to a market clearing cutoff vector. If there is more than one

stable matching, moderate adjustments may cycle indefinitely but the supremum and

the infimum of all cutoff vectors observed along a cycle are both market clearing.
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1 Introduction

Starting with Gale and ShapleyGale and Shapley (19621962)’s seminal analysis of the marriage problem, matching

theory has been successful in developing centralized mechanisms with appealing allocative

and incentive properties. These mechanisms are not only theoretically appealing but also

work well in practice. In fact, extensions of the Gale-Shapley deferred acceptance algorithm

are now used to, for example, match children to public schools (see Abdulkadiroglu et al.Abdulkadiroglu et al.

(20062006, 20092009); PathakPathak (20112011)) and medical graduates to their first professional position (see

Roth and PeransonRoth and Peranson (19991999)). However, many markets with very similar characteristics operate

in a decentralized manner. An important example is university admissions, where centralized

clearinghouses are the exception rather than the norm and full centralization often seems

unlikely. Since the decentralized processing of admission offers, rejections and acceptances in

these markets takes a non-negligible amount of time, there is often only room for relatively

few rounds of offers. To avoid missing their enrolment targets, universities typically overbook,

i.e. make more offers than they’d ideally like to be accepted. It is easy to find examples

in which universities overbook too little or too much.11 Motivated by these observations, I

focus on the question of what happens in the long- and in the short-run when schools adjust

their admission offers on the basis of observed discrepancies between target and realized

enrolments. In particular, I am interested in finding simple conditions under which successive

updating by schools from an arbitrary starting point eventually leads to market clearing or

at least comes close to it.

At a theoretical level, my research speaks to the justification of stability as an equilibrium

concept for many-to-one matching markets. One important justification for an equilibrium

concept is that it can be learned by “myopic” agents via a distributed, iterative adjustment

procedure.22 A classic example of such a procedure for competitive equilibrium is tâtonnement

1For example, US universities often admit a significant number of students from waitlists, indicating that
not enough of their initial offers had been accepted to reach target enrolment. On the other hand, one can
also find examples in which enrolment exceeded the target. A severe case of excess enrolment happened at
the University of Bonn in 2009, when the university had 590 incoming law students - significantly exceeding
its enrolment target of 350 (see herehere; accessed on January 23, 2025).

2To quote Kenneth J. Arrow (when talking about competitive equilibrium): “How can equilibrium be
established? The attainment of equilibrium requires a disequilibrium process. What does rational behavior
mean in the presence of disequilibrium? Do individuals speculate on the equilibrating process?” (ArrowArrow (19861986),
p. S387)
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where producers of goods in excess demand increase prices and producers of goods in excess

supply decrease prices. In the context of many-to-one matching between universities and

students, the natural analogy is a tâtonnement process in which universities make admission

offers to students and each university adjusts its selectivity in the direction of its excess

enrolment. If such a process was guaranteed to converge to a stable matching, it would

provide us with a “learning foundation” for stability as an equilibrium concept. I show that

convergence obtains whenever the underlying matching market has a unique stable matching

but may fail otherwise.

I consider a standard many-to-one matching problem with responsive preferences and

no monetary transfers. There are finite sets of students and schools. Each student has

a strict preference ranking of available schools. Each school has a fixed enrolment target

and responsive preferences with respect to some strict ranking of individual students. My

analysis focuses on tâtonnement processes in which schools make binding admission offers,

each student demands the most preferred school among those from which she received an

offer, and schools then update offers on the basis of observed demand-supply imbalances. For

the most part, I restrict attention to the case where schools’ offers can be described by cutoffs,

i.e. each school decides on the least preferred individual student it wants to admit and then

makes an offer to all weakly preferred candidates. Cutoff adjustments from one period to

the next are moderate, if they are bounded by the most recently observed demand-supply

imbalances: Schools increase their cutoffs by no more than their most recent excess demand

and decrease their cutoffs by no more than their most recent excess supply.33

My main results are as follows: First, moderate adjustments always bring the market

weakly closer to clearing in the sense of weakly decreasing the aggregate imbalance, which

I define as the sum of demand-supply imbalances across all schools (Theorem 11). Second,

if schools adjust moderately and either (A) schools only decrease cutoffs when there is no

school in excess demand, or (B) schools only increase cutoffs when there is no school in excess

supply, then adjusted cutoffs are guaranteed to converge to a market clearing cutoff vector

3Here, the “excess demand” for school s is taken to be the maximum of 0 and the difference between
the demand for school s and its enrolment target. Similarly, the “excess supply” of school s is taken to be
the maximum of 0 and the difference between the enrolment target of school s and its demand. One can
actually allow a school in excess demand to increase its cutoff by more than the difference between demand
and enrolment target - see Definition 11 and the discussion that follows it.
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(Theorem 22).44 Third, moderate adjustments may cycle indefinitely when the underlying

matching market has more than one stable matching (Theorem 33). Finally, if moderate

adjustments cycle indefinitely, then the supremum and the infimum of all cutoff vectors

observed along the cycle are both market clearing (Theorem 44). As a corollary, I obtain

that moderate adjustments are guaranteed to converge to market clearing if the underlying

matching market has a unique stable matching (Corollary 33).

1.1 Related literature

Since I study a tâtonnement process in which schools use observed enrolments to update

their admissions offers, one line of research that is closely connected to my paper is that

on tâtonnement processes for markets with indivisible goods and continuous monetary

transfers.55 Demange et al.Demange et al. (19861986) introduce a dynamic clock auction for markets with multiple

heterogeneous goods and unit-demand bidders. This auction mechanism is guaranteed to

converge to the smallest competitive equilibrium price vector, provided it starts from the

vector of reservation prices. Gul and StachettiGul and Stachetti (20002000) extend the dynamic clock auction to the

case where bidders’ preferences satisfy the gross substitutes condition of Kelso and CrawfordKelso and Crawford

(19821982). Contrary to the finding of Demange et al.Demange et al. (19861986), Gul and StachettiGul and Stachetti (20002000) show that

in general there is no dynamic clock auction mechanism with a single ascending price trajectory

that implements the VCG outcome. AusubelAusubel (20062006) presents a different tâtonnement based

auction process to compute competitive equilibrium prices. His process ensures that agents

ultimately receive their VCG payments and converges from any initial price vector.66 There are

two crucial differences between this line of research and mine. First, cutoffs are different from

prices since they determine who gets an offer from which school but otherwise do not affect

students’ utilities. Second, all of the above papers assume that there is one central auctioneer

who controls price movements of all objects in the economy. In contrast, I explicitly want to

allow for situations in which schools react independently to imbalances between realized and

4A cutoff vector is market clearing, if there is no school in excess demand and all schools in excess supply
make offers to all students.

5See HahnHahn (19821982) for a survey of results on tâtonnement processes for markets with divisible goods. See
ManeaManea (20072007) for an analysis of tâtonnement processes for coalitional games with transferable utility.

6For an extension of Ausubel’s techniques to the class of preferences satisfying the gross substitutes and
complements condition introduced by Sun and YangSun and Yang (20062006), see Sun and YangSun and Yang (20092009).

4



target enrolments.

Also related is a literature that has developed a linear programming approach to stable

matchings. VandeVateVandeVate (19891989) and RothblumRothblum (19921992) have shown that the set of stable

matchings in a one-to-one matching problem can be described by a linear programming

problem whose extreme points are all integral.77 That finding extends to many-to-one matching

problems (see e.g. Baiou and BalinskiBaiou and Balinski (20002000), FleinerFleiner (20032003), and Sethuraman et al.Sethuraman et al. (20062006)).

Given the connection to linear programming, it is natural to try to leverage linear programming

techniques to solve stable matching problems. For one-to-one matching problems, (both

versions of) the Gale-Shapley algorithm can be interpreted as a dual ascent algorithm, see

Abeledo and RothblumAbeledo and Rothblum (1995b1995b) and VohraVohra (20122012).88 Dual ascent algorithms solve a linear

programming problem through a series of relaxed programming problems that are connected

via the updating of dual variables associated with constraints that are violated in the solutions

of these relaxed problems. An important similarity between dual gradient methods and the

tâtonnement processes that I study is that, for both, the individual adjustment at a specific

school only depends on the extent to which feasibility and stability constraints involving that

school are violated. A key difference is that dual gradient methods often rely on a carefully

chosen starting point, whereas I study cutoff adjustments from arbitrary starting points. The

focus on such fully distributed procedures - where there is no coordination on specific initial

conditions or the adjustments of cutoffs across different schools - is motivated by the desire

to understand the conditions under which completely decentralized matching markets arrive

at a stable matching.

Several papers have studied different decentralized implementations of Gale and ShapleyGale and Shapley

(19621962)’s famous deferred acceptance algorithm (DAA). In these studies the main question

typically is whether a stable matching is reached in (subgame perfect) equilibrium. For

example, Niederle and YarivNiederle and Yariv (20092009) consider a decentralized market game where in each

period firms simultaneously make an offer to some worker and workers then simultaneously

decide on received offers. Preferences of the agents are assumed to satisfy a strong alignment

7Roth et al.Roth et al. (19931993) show how to use complementary slackness conditions for the associated linear pro-
gramming problem to derive several key results on stable matchings for the one-to-one matching problem.

8See Vries et al.Vries et al. (20072007) for a primal-dual algorithm to find efficient allocations and supporting prices for a
setting in which multiple indivisible and heterogenous objects are to be distributed among bidders who may
depend multiple objects.
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condition which, among other things, guarantees that there is a unique stable matching.

Niederle and Yariv show that under complete information a stable matching is implemented

with probability one in any equilibrium that survives iterative elimination of weakly dominated

strategies. This finding does not extend to the case of incomplete information and it is possible

that no (Bayes-Nash) equilibrium implements a stable matching with certainty. Other papers

that have studied different decentralized implementations of the DAA under the assumption

of complete information are PaisPais (20082008) and Haeringer and WoodersHaeringer and Wooders (20112011).

Also related to my work is the question of whether processes that, starting from an

unstable matching, allow randomly selected blocking pairs to rematch converge to a stable

matching. Roth and Vande VateRoth and Vande Vate (19901990) show that for two-sided matching markets in which

no agent can be matched to more than one partner, such a random process converges to a

stable matching with probability one.99 This finding was extended to a certain class of many-

to-many matching markets by Kojima and ÜnverKojima and Ünver (20082008), to (solvable) roommate markets by

Diamantoudi et al.Diamantoudi et al. (20042004), to (solvable) matching markets with couples by Klaus and KlijnKlaus and Klijn

(20072007), and to matching markets with salaries by Chen et al.Chen et al. (20102010).1010 While these papers

are interesting studies of market equilibration in matching markets, they do rely on implicit

assumptions about the coordination between and the information available to the agents.

First, they assume that agents have sufficiently detailed information to identify a blocking

opportunity. Second, it is taken for granted that agents coordinate in a way that guarantees

that intended deviations are actually realized. I relate my findings to the random paths

literature in more detail below.

Finally, Lauermann and NöldekeLauermann and Nöldeke (20142014) embed a standard marriage market in a search

model with random meetings and study the limit of steady-state equilibria when frictions

vanish. Lauermann and NöldekeLauermann and Nöldeke show that equilibrium matchings are guaranteed to converge

to stable matchings if and only if the underlying matching market has a unique stable

matching. Although there does not seem to be a direct connection between sequences of

steady-state equilibria and the adjustment processes that I study, the just described result

mirrors my finding that moderate cutoff adjustments are guaranteed to converge to market

9See Jackson and WattsJackson and Watts (20022002) for another type of dynamics that may lead to stable matchings.
10See also PradelskiPradelski (20152015) and Leshno and PradelskiLeshno and Pradelski (20212021) on the speed of convergence for random

blocking dynamics in the assignment game.
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clearing if and only if the core is a singleton.

2 Model

There is a finite set of students I with |I| = N and a finite set of schools S with |S| = M .

Each student i has a strict preference relation Ri over the set of available schools and strictly

prefers all schools to being left unmatched. Each school s ∈ S has a fixed enrolment target

qs ∈ {1, . . . , N} and a fixed strict ranking R#
s of individual students in I.1111 In addition, each

school s has a weak preference ranking1212 Rs on the set of all potential entering classes, 2I ,

that is responsive (RothRoth (19851985)) to R#
s and qs in the sense that for any J ⊆ I, i, j ∈ I \ J ,

J∪{i}PsJ∪{j} if and only if iP#
s j, J∪{i}PsJ if |J | < qs, and JPsJ∪{i} if |J | ≥ qs. For school

s ∈ S and student i ∈ I, i’s score at s is given by eis = N + 1− ris, where ris ∈ {1, . . . , N} is

the rank that i has in R#
s . Hence, the tth most preferred student according to R#

s has a score

of N + 1 − t at school s. The underlying matching market (I, S, (Ri)i∈I , (R
#
s )s∈S, (qs)s∈S)

is assumed fixed from here on out. To simplify notation, relevant market features, such as

preferences or capacities, are typically suppressed in the following.

A matching is a mapping µ : I ∪ S → (S ∪ I) ∪ 2I such that (i) µ(i) ∈ S ∪ {i} for all

i ∈ I,1313 (ii) µ(s) ∈ 2I for all s ∈ S, (iii) |µ(s)| ≤ qs, and (iv) i ∈ µ(s) if and only if µ(i) = s.

A matching µ is stable, if there is no student-school pair (i, s) such that sPiµ(i) and either

|µ(s)| < qs or eis > ejs for some j ∈ µ(s). One of the central results in matching theory is that

there always exist student- and school-optimal stable matchings (Gale and ShapleyGale and Shapley (19621962);

RothRoth (19841984)). Denote the student-optimal stable matching by µI and the school-optimal

stable matching by µS.

11The formulation here assumes that all schools are acceptable to all students and all individual students are
acceptable to all schools. These assumptions are without loss of generality since one can always introduce a
“null school” that plays the role of being left unassigned and “null students”who represent the option of leaving
places unfilled. The assumption that schools’ rankings of individual students are strict is restrictive and may
fail in some applications. For example, Abdulkadiroglu et al.Abdulkadiroglu et al. (20062006) empirically analyze the Boston school
choice system where there are only four distinct classes of scores that are used to rank thousands of students.
See Erdil and ErginErdil and Ergin (20082008), Abdulkadiroglu et al.Abdulkadiroglu et al. (20092009), Abdulkadiroglu et al.Abdulkadiroglu et al. (20112011), Abdulkadiroglu et al.Abdulkadiroglu et al.
(20152015), and Ehlers and WestkampEhlers and Westkamp (20182018) for analyses of school choice problems with indifferences in priority
orders.

12That is, a complete and transitive binary relation on 2I .
13Here, as usual in the literature, µ(i) = i means that i is left unmatched.
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Cutoffs and market clearing A cutoff for school s ∈ S is an integer cs ∈ {1, . . . , N + 1}

that represents the minimum score needed to get into school s. School s is called selective if

cs > 1. Let C = {1, . . . , N + 1}M be the set of all cutoff vectors. I say that i can afford s

at c ∈ C if eis ≥ cs. Note that a cutoff vector acts like a price vector in that it determines

exactly who can afford which school, but that cutoffs differ from prices in that students only

care about whether a school is affordable to them or not. Given a vector of cutoffs c ∈ C,

student i’s demand is given by the most preferred school that she can afford (or by being

unmatched if no school is affordable), that is,

Di(c) =

s∗ , if eis∗ ≥ cs∗ and cs′ > eis′ for all s
′ such that s′Pis

∗

i , if cs > eis for all s ∈ S.

The demand for school s ∈ S is the set of all students who demand s at c, that is, Ds(c) =

{i ∈ I : Di(c) = s}. I refer to the cardinality of s’ entering class at cutoff vector c, |Ds(c)|, as

the enrolment of s’ at c. Note that students’ scores lie in {1, . . . , N} and hence |Ds(c)| = 0 if

cs = N + 1. Allowing for cutoffs that exceed every student’s score enables me to incorporate

situations in which no offers are made. School s is oversubscribed at c if its enrolment strictly

exceeds its target, i.e. |Ds(c)| > qs, and undersubscribed at c if its enrolment falls strictly

short of its target, i.e. |Ds(c)| < qs. A cutoff vector c ∈ C is market clearing if there are no

oversubscribed schools and undersubscribed schools at c are not selective, that is, |Ds(c)| ≤ qs

for all s ∈ S and cs = 1 for all s such that |Ds(c)| < qs. The requirement that undersubscribed

schools are not selective translates the familiar notion that goods in excess supply should

have a price of zero to the matching context.

Azevedo and LeshnoAzevedo and Leshno (20162016) have shown that market clearing and stability are essentially

equivalent concepts.1414 To describe this insight more formally, first fix a matching µ and define

an induced cutoff vector cµ by setting cµs = mini∈µ(s) eis if |µ(s)| ≥ qs and cµs = 1, otherwise.

Next, given a cutoff vector c, define a mapping µc by setting µc(s) = Ds(c) and µc(i) = Di(c).

We have the following.

14Balinski and SönmezBalinski and Sönmez (19991999) were the first to connect cutoff vectors to stability, but use a slightly different
notion of market clearing.
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Lemma 1 (Azevedo and LeshnoAzevedo and Leshno (20162016)). If µ is stable, then cµ is market clearing. If c is

market clearing, then µc is stable. Moreover, there exists a uniformly lowest market clearing

cutoff vector C∗ and a uniformly highest market clearing cutoff vector C∗
.

Given some stable matching µ, say that c induces µ if µc = µ. As discussed in

Azevedo and LeshnoAzevedo and Leshno (20162016), C∗ induces µI and C∗
induces µS.

Tâtonnement processes I consider simple tâtonnement processes in which schools set cutoffs,

each student “demands”her most preferred school among those for which her score exceeds the

cutoff, and schools then update cutoffs on the basis of observed discrepancies to their quotas.

Tâtonnement can be interpreted as taking place either over multiple admission periods (where

cutoffs represent binding admission offers), within a given admission period (where cutoffs

represent tentative admission offers that only convert to binding ones when enrolment targets

are met), or a mix between the two (for example, a few rounds of adjustments within a given

period and then an initial round of offers in the next period that reflects students’ reactions

to the last round of offers in the previous period). In case of adjustments across multiple

periods, my analysis assumes that the underlying matching problem is always the same, i.e.

that a new and identical student population arrives in each period. That assumption is

approximately satisfied if the admission environment is stable over time so that enrolments

only change significantly when schools change their cutoffs.

Since the underlying matching market is fixed throughout, a cutoff vector c ∈ C induces

the demand vector (Ds(c))s∈S and the vector of demand-supply imbalances (||Ds(c)| − qs|)s∈S.

Hence, while tâtonnement processes will typically be defined on the basis of some intermediary

statistic, such as demand-supply imbalances, I can define them directly on the basis of cutoff

vectors. For now, I restrict attention to time-invariant adjustment processes where adjustments

only depend on the current cutoff vector. Formally, a time-invariant adjustment process is

a mapping A from C to itself. Until Section 4.24.2 adjustments will always be assumed to be

time-invariant and I will simply refer to adjustment processes. I assume throughout that

A(c) = c only if c is market-clearing or, equivalently, at least one school adjusts its cutoff

when the current cutoff vector is not market-clearing. Finally, for any c ∈ C, let At(c) denote

the t-fold application of A to c.
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To fix ideas, here are two examples.1515

Example 1. Let s ∈ S and c ∈ C be arbitrary. The simple adjustment of s at c is given by

SIMPs(c) =


cs + 1 , if |Ds(c)| > qs and cs < N + 1

cs − 1 , if |Ds(c)| < qs and cs > 1

cs , in all other cases

In words, the simple adjustment of s at c is to increase its cutoff by one if it is oversubscribed

at c and to decrease its cutoff by one if it is undersubscribed at c.

Next, I focus on a generalization of Gale and ShapleyGale and Shapley (19621962)’s famous deferred acceptance

(DA) algorithm by AdachiAdachi (20002000) that encompasses the student- and school proposing variants

as special cases. The main idea is to characterize stable matchings as the set of fixed points

of an operator from a finite lattice into itself. This idea figures heavily in the literature on

generalized matching models following Hatfield and MilgromHatfield and Milgrom (20052005) and OstrovskyOstrovsky (20082008).1616

Example 2. Let s ∈ S and c ∈ C be arbitrary. The generalized DA adjustment for school s is

defined by

Gs(c) =

∆s(c) , if |Ds(c)| ≥ qs

cs −min{qs − |Ds(c)|, cs − 1} , otherwise,

where for any school s ∈ S such that |Ds(c)| ≥ qs, ∆s(c) is the qsth highest score of students

in Ds(c). Let G(·) = (Gs(·))s∈S be the collection of DA adjustments for the various schools.

It is straightforward to see that the set of fixed points of G coincides with the set of market-

clearing cutoff vectors. The student-proposing DA algorithm corresponds to the generalised

Gale-Shapley adjustment process starting from c and the school-proposing DA algorithm to

the generalised Gale-Shapley adjustment process starting from c.

While the two DA variants have been central to matching theory and its applications,

nothing is known about the behaviour of DA dynamics from arbitrary starting points. In

15In the working paper version (WestkampWestkamp, 20252025), I present another adjustment process that is related to
the well known Boston, or Immediate Acceptance, mechanism.

16Azevedo and LeshnoAzevedo and Leshno (20162016) were the first to formulate a generalized Gale-Shapley algorithm on the basis
of cutoff adjustments.
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practice, even if the admissions process is centralized and relies on a DA algorithm, a school

may be able to place bounds on its selectivity that have to be respected if it manages to hit its

target enrolment. Hence, we might be faced with situations in which DA algorithms cannot

be guaranteed to start from the extreme points for which their behavior is well understood.

My results below show under which conditions DA algorithms are guaranteed to converge.

3 Main Results

The aim of my analysis is to derive simple conditions that guarantee adjustment processes to

converge - or at least come closer - to market clearing. Given that everything else is fixed

exogenously, the main determinant for the evolution of cutoffs is how schools adjust their

cutoffs from one period to the next. As usual for tâtonnement processes, the main conditions

require that cutoffs are adjusted in the direction of excess demand: An oversubscribed school

becomes more selective, i.e. increases its cutoff, and an undersubscribed school becomes less

selective, i.e. decreases its cutoff. Furthermore, the conditions also require that the size of

cutoff adjustments is bounded from above by the most recently observed imbalance between

demand and supply. In order to state the conditions formally, for any c ∈ C and s ∈ S, let

∆s(c) be the qsth highest score of students in Ds(c) if |Ds(c)| ≥ qs and ∆s(c) = cs otherwise,

that is,

∆s(c) =

ei∗s , if Di∗(c) = s and |{j ∈ Ds(c) : ejs ≥ ei∗s}| = qs,

cs , if |Ds(c)| < qs.

With these preparations, we have the following.

Definition 1. An adjustment process A

(i) increases moderately , if, for all c ∈ C and s ∈ S, As(c) ≤ ∆s(c);

(ii) decreases moderately , if, for all c ∈ C and s ∈ S, As(c) ≥ cs −max{qs − |Ds(c)|, 0};

(iii) is moderate, if it increases and decreases moderately.

Going back to the examples presented in the previous subsection, the simple adjustment

process and the generalized Gale-Shapley process are both moderate.

Note that if a school s is oversubscribed at c and increases its cutoff moderately, then at
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A(c) it will remain affordable to at least qs of the students who demanded it at c and can

therefore only become undersubscribed if at least one other school has decreased its cutoff.

Similarly, if a school s is undersubscribed at c and decreases its cutoff moderately, then at

A(c) it will become affordable to at most qs − |Ds(c)| additional students and can therefore

only become oversubscribed if at least one other school has increased its cutoff. Note that

both of these statements do not rely on information about students’ preferences beyond what

students demand at the cutoff vector c.1717

In the first part of my analysis, I focus on the short-run properties of adjustment processes.

The anecdotal evidence gathered in the introduction supports the view that demand-supply

imbalances occur in practice and that these imbalances are costly - students have to cramp

into crowded lecture halls for oversubscribed schools, while undersubscribed schools suffer

significant revenue losses. Here is a simple aggregate measure for these costs.

Definition 2. The aggregate imbalance at c ∈ C is given by

E(c) =
∑
s∈S

||Ds(c)| − qs|.

Note that if c ∈ C minimizes the aggregate imbalance, then either c is market clearing or

there is a market clearing cutoff vector c′ such that c′s = cs for all s such that |Ds(c)| ≥ qs.

Taking aggregate imbalance as a measure of distance to market clearing assumes that there

is a constant cost associated to every student above or below a school’s target enrolment.

While it would certainly be interesting to study other cost measures, this is out of the scope

of the current paper. Now remember that moderate adjustments ensure that the imbalance

of a given school, defined as ||Ds(c)| − qs|, will weakly decrease if no other school changes its

cutoff, that is, for any moderate adjustment process A, ||Ds(As(c), c−s)| − qs| ≤ ||Ds(c)| − qs|

for any cutoff vector c. However, this property may easily fail if multiple schools adjust their

cutoffs simultaneously. Furthermore, even if only one school were to change its cutoff, it

17Given the assumption of responsive preferences, schools always prefer enrolments that are closer to their
target capacities. The preceding discussion then implies that As(c) is a weakly better response to c−s than
cs, if s’ adjustment from cs to As(c) is moderate in the sense of Definition 11. Hence, moderate adjustment
processes correspond to better reply dynamics in a cutoff setting game between schools. This connection and
the relationship to the seminal work of Milgrom and RobertsMilgrom and Roberts (19901990) is developed more fully in the working
paper version (WestkampWestkamp, 20252025).
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may well be that imbalances at other schools increase. The first main result of this paper is

that moderate adjustments always bring the market weakly closer to clearing in the sense of

weakly decreasing the aggregate imbalance.

Theorem 1. If A is moderate, then E(A(c)) ≤ E(c) for all c ∈ C.

Theorem 11 relies on the fact that lowering a cutoff by x units makes the corresponding

school affordable to exactly x additional students and increasing it by x units makes the school

unaffordable to exactly x students. Hence, adjusting a cutoff is different from adjusting the

(non-personalised) price of an object, since the latter affects the affordability and attractiveness

of the object to all agents. Before discussing the intuition behind Theorem 11, I show via a

small example that the aggregate imbalance may strictly increase if only one school does not

adjust moderately.

Example 3. There are three students i, i′, i′′ and two schools s, s′ with target enrolments qs =

qs′ = 1. Students’ scores are given by eis = 3, ei′s = 2, ei′′s = 1 and ei′s′ = 3, eis′ = 2, ei′′s′ = 1.

Students’ preferences are given by s′Pis, sPi′s
′, sPi′′s

′.

Consider the cutoff vector c = (cs, cs′) = (2, 3). At c, students i and i′ both demand s,

while i′′ cannot afford any school. Hence, the aggregate imbalance at c is 2. Now consider

the cutoff vector c′ = (3, 1). Note that the adjustment from c to c′ is moderate for s but not

for s′. At c′, all students demand s′ and the aggregate imbalance is 3.

To get some intuition for Theorem 11, assume there are only two schools, s+ and s−. Fix

a moderate adjustment process A and some cutoff vector c such that s+ is over- and s−

undersubscribed at c. Since A is moderate, s+ cannot decrease and s− cannot increase its

cutoff from c to A(c). Hence, no student can demand s− at c but s+ at A(c). Therefore, we

can restrict attention to students whose demand switches from s+ to s− when going from c

to A(c). First, let V + be the set of those students who switch their demands to s− at A(c)

and who strictly prefer s− over s+. The total effect of demand changes by agents in V + is to

decrease the aggregate imbalance by 2min{|V +|, |Ds+(c)| − qs+}. To see this, I distinguish

two cases.

Case 1: |V +| ≤ |Ds+(c)| − qs+

13



The demand change of each student in V + decreases the excess supply at s− due to

moderate decreases and the excess demand at s+.

Case 2: |V +| > |Ds+(c)| − qs+

The demand changes of the first |Ds+(c)| − qs+ students in V + decrease the excess

supply at s− and the excess demand at s+. The demand changes of the remaining

|V +| − (|Ds+| − qs+) students in V + do not affect the aggregate imbalance since they

decrease the excess supply at s− and increase the excess supply at s+.

Second, let V − be the set of those students who switch their demands to s− at A(c) and

who strictly prefer s+ to s−. I will argue that the demand changes of students in V − can at

most increase the aggregate imbalance by 2min{|V +|, |Ds+(c)| − qs+}. I again distinguish

two cases.

Case 1: |V +| ≥ |Ds+(c)| − qs+

By moderate increases, we have that |V −| ≤ |Ds+(c)| − qs+ . Since the demand change

of each individual student can increase the aggregate imbalance by at most two, we

obtain that the demand changes of students in V − increase the aggregate imbalance by

at most 2(|Ds+(c)| − qs+).

Case 2: |V +| = k for some k < |Ds+(c)| − qs+

The demand changes of at least |Ds+(c)| − qs+ − k students in V − cannot increase the

aggregate imbalance since these demand changes decrease the excess demand at s+.

The demand changes of the remaining at most k students in V − increase the aggregate

imbalance by at most 2k.

Hence, if each school limits its adjustments by the magnitude of its most recent demand-supply

imbalance, then adjustments always at least weakly reduce the aggregate disparity between

supply and demand. Since the aggregate imbalance is bounded from below, we immediately

obtain the following important implication of Theorem 11.

Corollary 1. If A is moderate, then limt→∞ E(At(c)) exists for all c ∈ C.
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From now on, I will focus on results about the long run behavior of adjustment processes.

The first result shows that it is relatively easy to ensure convergence to market clearing

from any initial cutoff vector if schools are willing to coordinate their cutoff adjustments and

temporarily maintain cutoffs despite demand-supply imbalances.

Theorem 2. Suppose A is moderate and either

(i) cutoffs are only increased when there is no undersubscribed selective school, i.e. for all

c ∈ C, A(c) ≤ c if there is at least one school s such that cs > 1 and |Ds(c)| < qs, or

(ii) cutoffs are only decreased when there is no oversubscribed school, i.e. for all c ∈ C,

A(c) ≥ c if there is at least one school s such that |Ds(c)| > qs.
1818

Then limt→∞At(c) exists for all c ∈ C.

The intuition for this result is straightforward: If A only increases cutoffs when there

is no undersubscribed school with non-trivial cutoff, there must eventually come a point at

which no school is undersubscribed if A satisfies moderate decreases. But from this point

onwards, no school can become undersubscribed again if A satisfies moderate increases. As I

show in Theorem 77 in Appendix B.2B.2, both types of adjustment processes have a variety of

other appealing features, such as independence of adjustment magnitudes (subject to being

moderate) and convergence to market clearing cutoff vectors that are “close” to the initial

cutoff vector.

Next, I focus on adjustment processes which randomly select a set of schools which are

allowed to moderately adjust their cutoffs. Theorem 22 can be used to show that such processes

are guaranteed to converge to market clearing if there is always a positive probability that

only over- and a positive probability that only undersubscribed schools are selected. To

formulate this corollary, some further notation and terminology is useful. Given a cutoff

vector c ∈ C, let S+(c) be the set of all oversubscribed schools at c. Similarly, define S−(c) to

be the set of undersubscribed schools with non-trivial cutoffs at c. With these preparations,

we have the following.

18If we start from a cutoff vector at which no school is oversubscribed, this class of dynamics is conceptually
very similar to the vacancy chain dynamics analyzed in Blum et al.Blum et al. (19971997). Both types of dynamics are
related to the “gender consistent” rules for selecting blocking pairs of unstable matchings in marriage markets
that were introduced by Abeledo and RothblumAbeledo and Rothblum (1995a1995a).
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Corollary 2. Fix an arbitrary cutoff vector c ∈ C and let X(c) = (X1(c), X2(c), . . .) be

a random sequence of cutoff vectors such that for each t ≥ 1, whenever X t−1(c) is not

market-clearing, then X t(c) is obtained from X t−1(c)1919 by

(i) randomly selecting a set of schools St and

(ii) allowing schools in St to adjust their cutoffs moderately from X t−1(c) subject to the

requirement that X t
s(c) ̸= X t−1

s (c) for at least one school in St.

If for any t ≥ 1, there is a strictly positive probability that St ⊆ S+(X t−1(c)) and a strictly

positive probability that St ⊆ S−(X t−1(c)), then X(c) converges to a market clearing cutoff

vector with probability one.

The corollary follows from Theorem 22 upon noting that this result implies that from any

c, there are at least two finite paths of cutoff adjustments that lead to a market clearing

cutoff vector. If the random sequence of cutoff vectors defined in the corollary were to cycle

indefinitely, at least one cutoff vector must occur infinitely often and the random process

would have to choose a non-convergent path each time it reaches that cutoff vector. Under

the assumptions of the corollary, however, finite convergent paths always have a strictly

positive probability of being chosen (since there is always a positive probability of only

choosing oversubscribed schools until there are no more oversubscribed schools and always

a positive probability of only choosing undersubscribed selective schools until there are no

more undersubscribed selective schools) and we obtain a contradiction. The random blocking

dynamics studied by Roth and Vande VateRoth and Vande Vate (19901990) are similar to a special case of the dynamic

defined in Corollary 22 in which we require that only one school is selected at each point.2020

Corollary 22 shows that if at each instance there is a positive probability that all schools

who do adjust their cutoffs, adjust in the same direction, then convergence to market clearing

is guaranteed. The just mentioned result implicitly relies on the existence of some coordinating

entity that can identify which schools are over- and which are undersubscribed, and that can

at least temporarily prevent some schools from adjusting their cutoffs. For the remainder

of this section, I focus on adjustment processes that represent situations in which there is

19Here, I set X0(c) ≡ c for all c.
20The correspondence is not completely exact, since moderate decreases precludes some blockings to be

implemented in one step. To see this, consider a school s and a cutoff vector c such that qs = 1 and cs ≥ 3. If
Ds(c) = ∅ and the only student i who strictly preferes s over her offers at c has eis = 1, the block between i
and c cannot be implemented in one step.
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no such coordinating entity and schools that do not achieve their enrollment target always

adjust their cutoffs. The latter condition is the subject of the next definition.

Definition 3. An adjustment process A is strict, if for all c ∈ C and all s, As(c) = cs only

when either |Ds(c)| = qs or |Ds(c)| < qs and cs = 1.

I also need the following more stringent notion of moderate adjustments.

Definition 4. An adjustment process A is strongly moderate if, for all c ∈ C,

As(c) ≤ cs +max{|Ds(c)| − qs, 0}.

Note that the simple adjustments in the sense of Example 11 are strongly moderate. On

the other hand, the generalized DA adjustment process of Example 22 is moderate but not

strongly so: A school that is oversubscribed at c increases its cutoff to the qsth highest score

at s among all students in Ds(c) and that score may exceed cs + (|Ds(c)| − qs).

The next result shows that strict adjustment processes can only be guaranteed to converge

if the underlying matching market has a unique stable matching.

Theorem 3. Suppose A is strict and strongly moderate. If µI ̸= µS, then there exists a cutoff

vector c such that limt→∞ At(c) does not exist.

The intuition for this result is that if there are two stable matchings, we can always find

a cutoff vector for which some students can afford their more preferred stable match, while

others cannot. Furthermore, the cutoff vector can be constructed so that schools, which

are affordable to all students who match to them in the more preferred stable outcome for

the students, are over- and all other schools are undersubscribed. Given the restrictions on

adjustment magnitudes, a strict adjustment process cycles forever. However, as the next

result shows, the lowest and the highest cutoffs observed along any cycle of an eventually

moderate adjustment process are both market clearing.

Theorem 4. Let A be a strict adjustment process, c ∈ C be an arbitrary cutoff vector, and T

be such that At(c) = AT+(t mod T )(c) for all t ≥ T .2121 Define cutoff vectors cmax and cmin by

21Note that such a T must always exist since the set of possible cutoff vectors is finite and since the
adjustment in each period only depends on the current cutoff vector.
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setting, for each school s, cmax
s = maxt≥T A

t
s(c) and cmin

s = mint≥T A
t
s(c). If A is moderate,

then cmax and cmin are market-clearing.

Theorem 44 implies immediately that any strict and moderate adjustment process will

eventually enter the “market-clearing corridor” between C∗ and C∗
, that is, for all c ∈ C there

exists a T̂ such that C∗ ≤ At(c) ≤ C∗
for all t ≥ T̂ . Hence, if the difference between the

two extreme market-clearing cutoff vectors is very small, strict and moderate adjustment

procedures will become almost constant in the long-run.

Theorem 44 is also readily seen to imply that moderate adjustment processes always

converge if the underlying market has a unique stable matching.2222

Corollary 3. If A is moderate and strict, and µI = µS, then, limt→∞ At(c) exists for all c ∈ C.

Corollary 33 is particularly useful when the market under consideration is large. For such

markets, there is often a unique stable matching - see e.g. Kojima and PathakKojima and Pathak (20092009) and

Azevedo and LeshnoAzevedo and Leshno (20162016) - and thus moderate, strict adjustment procedures are guaranteed

to converge to market-clearing.

4 Extensions

The analysis up to this point has assumed that schools use cutoff strategies and that

adjustments are time-invariant. However, in decentralized and congested matching markets,

schools may sometimes prefer to make offers that are not representable by cutoffs, for example

because they also care about the likelihood with which an offer is accepted.2323 On the other

hand, a school may condition adjustments on the whole history of cutoffs, for example because

it is initially uncertain about the fraction of its offers that will be accepted and then tries to

revise its estimated “yield” on basis of all enrolments observed so far. I now briefly sketch

two extensions that allow for more general offers by schools and time-dependent adjustments,

respectively.

22In the working paper version (WestkampWestkamp, 20252025), I show that the adjustment process related to the Boston
mechanism is guaranteed to converge if and only if all schools essentially have the same preferences over
students, which is a stronger requirement than that there is a unique stable matching.

23For a classic example of such “strategic targeting” see Roth and XingRoth and Xing (19971997)’s study of the entry level
labor market for clinical psychologists in the United States.
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4.1 Beyond cutoffs

An offer for school s ∈ S is a subset Os ⊆ I of students. Note that the analysis so far focused

on the special case where offers have a cutoff structure, i.e. where for any school s, i ∈ Os

implies j ∈ Os for all j such that ejs ≥ eis. Now let Os = 2I be the set of all possible offers

by school s and O = ×s∈SOs be the set of all possible offer vectors. Say that school s is

selective at O ∈ O if Os ⊊ I. Given a vector of offers O ∈ O, student i demands her most

preferred offer, i.e.

D̂i(O) = {s ∈ S : i ∈ Os and i /∈ Os′ for all s
′ s.t. s′Pis}

and D̂i(O) = {i} if i /∈ ∪s∈SOs. The demand for school s ∈ S at O is the set of all students

who demand s at O, that is, D̂s(O) = {i ∈ I : D̂i(O) = {s}}. I refer to the cardinality of

the demand for s at O, |D̂s(O)|, as the enrolment of s at O. School s is oversubscribed at

O if its enrolment strictly exceeds its target, i.e. |D̂s(O)| > qs, and undersubscribed at O if

its enrolment falls strictly short of its target, i.e. |D̂s(O)| < qs. An offer vector O ∈ O is

market clearing if there are no oversubscribed schools and undersubscribed schools at O are

not selective, that is, |D̂s(O)| ≤ qs for all s ∈ S and Os = I for all s such that |D̂s(O)| < qs.

While market-clearing offer vectors are desirable since they prevent the excess supply of or

demand for schools, they may lack the strong normative foundation of market clearing cutoff

vectors. In particular, market clearing offer vectors can support unstable and even inefficient

matchings.2424

One can now define generalized adjustment processes starting at some exogenously given

vector of offer sets O. As for adjustment processes, I assume that A(O) = O only if

O is market-clearing. For generalized adjustment processes, Definition 66 in Appendix AA

introduces a natural generalization of Definition 11: A generalized adjustment process Â

increases moderately if undersubscribed schools expand their set of admission offers and

if each oversubscribed school s continues to offer admission to at least qs of the students

who demanded it at O; a generalized adjustment process Â decreases moderately at O, if

24For an easy example, assume that |I| ≥
∑

s∈S qs. In this case, any profile of offer vectors O such that
|Os| ≥ qs for all s and Os ∩Os′ = ∅ whenever s ̸= s′ is market clearing.
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oversubscribed schools shrink their set of admission offers and if each undersubscribed school

s makes at most as many new admission offers as it had vacant seats at O. In Appendix AA, I

show that Theorems 11 and 22 both extend to moderate generalized adjustment processes. By

contrast, Theorem 44 does not directly extend unless offer sets are “very close” to having a

cutoff structure (details are available upon request).

4.2 Dynamic adjustments

If adjustments are allowed to depend on the whole history of cutoffs, we can define an

adjustment procedure for school s as a mapping As : ∪∞
t=1C

t−1 → {1, . . . , N + 1}, where,

for any t ≥ 1, Ct−1 is the set of all sequences of cutoff vectors of length t. Here, for any

ct−1 = (c0, . . . , ct−1) ∈ Ct−1, As(c
t−1) is the cutoff that s sets for period t if cutoffs in periods 0

to t− 1 are given by the vectors c0 to ct−1. The adjustment of school s at ct−1 = (c1, . . . , ct−1)

may depend on any information directly or indirectly (for example, via demand-supply

imbalances) conveyed by (c1, . . . , ct−1). As in the analysis of the preceding sections, I focus

on the evolution of cutoffs induced by a profile of adjustment procedures from an arbitrary

initial condition as defined in the following.

Definition 5. Let A = (As)s∈S be a profile of adjustment procedures and c be an arbitrary

cutoff vector. The adjustment process induced by A and c is defined inductively by setting

A0(A, c) = c and At(A, c) = A(A0(A, c), . . . , At−1(A, c)) for each t ≥ 1.

For the remainder of this discussion, I take a profile of adjustment procedures A to be

fixed and focus directly on properties of the induced adjustment processes. For each c ∈ C

and t, let At(c) ≡ At(A, c). Instead of assuming directly that adjustment processes can only

come to rest at market-clearing cutoff vectors, I make the weaker assumption that adjustment

processes are responsive to demand in the sense that no school ignores upward or downward

pressure on its cutoff forever.

Assumption 1. There do not exist a cutoff vector c ∈ C, a school s ∈ S, and a time T , such

that either

(i) At
s(c) = AT

s (c) and |Ds(A
t(c))| > qs, for all t ≥ T , or

(ii) At
s(c) = AT

s (c), |Ds(A
t(c))| < qs, and cs > 1, for all t ≥ T .
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Thus, from any point onwards, a school that is continuously oversubscribed eventually

increases its cutoff and thus makes fewer offers. Similarly, a selective school that is con-

tinuously undersubscribed eventually decreases its cutoff and thus makes more offers. It is

straightforward to show that Assumption 11 ensures that adjustment processes can only come

to rest at market clearing cutoff vectors.

Observation 1. If an adjustment process A satisfies Assumption 11, then for all c ∈ C such

that limt→∞At(c) exists, limt→∞At(c) is market clearing.

To illustrate, here is an example in which adjustments are not time-invariant.

Example 4. Suppose each school s has some prior belief on its yield γ0
s , that is, a belief

about the fraction of offers that will be accepted by students. Given its prior belief, each

school sets its cutoff so that expected enrolment equals its target. Hence, a school s with

prior γ0
s initially sets a cutoff of c0s = N + 1− ⌈ qs

γ0
s
⌉.2525 If all schools follow this routine, we

get an initial cutoff vector c0 = (c0s)s∈S that induces observed enrolments |Ds(c
0)| and yields

γ̂s(c
0) = |Ds(c0)|

n+1−c0s
. Given observations about past enrolments, school s updates its yield to

γ1
s = (1− ω1)γ0

s + ω1γ̂0
s (c

0), where ω1 ∈ (0, 1) is the weight s places on the observed yield in

period 1, and then updates its cutoff to Ys(c
0) = N + 1− ⌈ qs

γ1
s
⌉, again ensuring that expected

equals target enrolment.

More generally, in each non-initial period t ≥ 1 schools similarly use past enrolments in

previous periods to update their yield estimates. I assume that at the beginning of period t,

school s estimates its yield to be γt
s = (1− ωt)γt−1

s + ωtγ̂s(Y
t−1(c0)), where γt−1

s is school s’

yield estimate at the beginning of period t− 1 and ωt ∈ (0, 1) is the weight school s attaches

to the realized yield in period t− 1, γ̂s(Y
t−1(c0)). For period t+ 1, school s then sets a cutoff

of Y t
s (c

0) = N +1−⌈ qs
γt
s
⌉, so that it meets its enrolment target in expectation given its revised

estimate of the yield.

Note that the adjustment process Y satisfies Assumption 11. In contrast to the generalized

DA adjustment process in Example 22, this process uses information about all previous

enrolments and not just the most recent one.

25Note that this corresponds to being in the budget set of ⌈ qs
γ0
s
⌉ students.
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Depending on schools’ priors, the average yields adjustment process may initially require

large downward or upward adjustments and therefore fail to be moderate. However, if ωt > 0

for all t and limt→∞ ωt = 0, adjustments become moderate for large enough t. More formally,

I say that an adjustment process is eventually moderate, if, for any c there exists some T ≥ 0,

such that At(c) is a moderate adjustment from At−1(c) for all t ≥ T .

In terms of results, Theorem 11 extends straightforwardly: whenever we arrive at a period

where adjustments to the next period are moderate, the aggregate imbalance will weakly

decrease. Hence, if adjustments are moderate for large enough t, the aggregate imbalance

will converge. Similarly, if adjustments satisfy the conditions in Theorem 22 or Corollary 22 for

large enough t, we obtain convergence. The negative result of Theorem 33 obviously extends

to the more general adjustment processes I consider in this subsection. Finally, for Theorem 44

note that for a non time-invariant adjustment process A, AT (c) = At(c) for some cutoff vector

c does not imply that adjustments cycle from period t onwards. However, it is not difficult to

see that the proof of Theorem 44 implies that for any eventually moderate A and any c, the

supremum and infimum of all accumulation points of the sequence {At(c)}t≥0 both define

market-clearing cutoff vectors - see Theorem 88 in Appendix B.6B.6 for a formal statement and

proof.

5 Conclusion

I have studied tâtonnement processes for matching markets without transfers. Schools have

fixed enrolment targets and use their observations about realized enrolments to adjust their

cutoffs. It was shown that whenever schools’ cutoff adjustments are bounded by the most

recently observed imbalance between actual and target enrolment, the market moves weakly

closer to clearing. If at each point in time only over- or only undersubscribed schools adjust

their cutoffs, convergence to market clearing was seen to be guaranteed from any initial

situation. However, whenever the underlying matching market has more than one stable

matching and all schools instantaneously react to enrolment imbalances, the existence of

initial conditions from which adjustment processes cycle indefinitely was established. For

the case where schools adjust moderately, it was shown that market clearing cutoff vectors
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can be constructed from cycles in the adjustment process as the supremum and the infimum

of all cutoff vectors observed along a cycle are both always market clearing. In particular,

convergence is guaranteed when the underlying matching market has a unique stable matching.

There are many avenues for future research on the topics presented in this paper. Most

importantly, if one takes tâtonnement processes as a model of decentralized matching markets,

there are a number of assumptions that one might want to relax. First, the analysis implicitly

assumed that application costs are negligible so that students apply to all schools. If this

assumption is not satisfied, students face a difficult portfolio allocation problem. In this case,

one should expect students to also rely on their observations about past market conditions to

decide where to apply. Second, the environment was assumed to be completely stationary and

it is important to study the effects of substantial preference shocks on adjustment processes.

Third, it would be useful to derive optimal learning rules as a theoretical benchmark. This

and most of the other open questions will most likely require additional assumptions about

(the evolution of) schools’ and students’ preferences.
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Appendices

A Beyond cutoffs

In this section, I consider the more general version of my model introduced in Section 4.14.1. In the

process, I present and prove more general versions of several of the results in the main body of the

paper. I start by generalizing the notion of moderate adjustments from the main body of the paper.

Definition 6. A generalized adjustment process Â
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(i) increases moderately at O ∈ O if for all s ∈ S,

Âs(O) ⊇ Os if qs > |D̂s(O)|

and

|Ât
s(O) ∩ D̂s(O)| ≥ min{qs, |D̂s(O)|};

(ii) decreases moderately at O ∈ O if for all s ∈ S,

Ât
s(O) ⊆ Os if |D̂s(O)| > qs

and

|Ât
s(O) \Os| ≤ max{qs − |D̂s(O)|, 0};

(iii) is moderate at O ∈ O, if it increases and decreases moderately at O.

I now relate cutoffs to offer sets. First, note that a cutoff vector c induces the offer vector Oc,

where Oc
s = {i ∈ I : eis ≥ cs}. Furthermore, say that O ∈ O has a cutoff structure, if there exists

a cutoff vector c such that O = Oc. Second, given an adjustment process A, we can define an

associated generalized adjustment process Ã as follows: Let Ô ∈ O be such that Ô = Oc for some

cutoff vector c and then set Ã(Ô) = OA(c). Note that an adjustment process A converges if and

only if the associated generalized adjustment process Ã converges. Note also that, for any c, it holds

that Ds(c) = D̂s(O
c) for all s ∈ S. The next lemma describes the basic relationships between cutoff

adjustment processes and their generalized counterparts that apply for any vector of offer sets.

Lemma 2. If adjustment process A

(i) increases moderately in the sense of Definition 11, then Ã increases moderately at all Ô ∈ O

that have a cutoff structure;

(ii) decreases moderately in the sense of Definition 11, then Ã decreases moderately at all Ô ∈ O

that have a cutoff structure;

(iii) is moderate in the sense of Definition 11, then Ã is moderate at all Ô ∈ O that have a cutoff

structure.

Proof of Lemma 22. (i) Fix some Ô ∈ O with cutoff structure and let c be such that Oc = Ô.

If |D̂s(O
c)| = |Ds(c)| < qs, then ∆s(c) = cs and thus As(c) ≤ cs. The last inequality
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immediately implies O
A(c)
s ⊇ Oc

s. If |D̂s(O
c)| = |Ds(c)| ≥ qs, then ∆s(c) is equal to the qsth

highest score of students in Ds(c). Hence, we obtain that |OA(c)
s ∩ D̂s(O

c)| ≥ qs.

(ii) Fix some Ô ∈ O with cutoff structure and let c be such that Oc = Ô. By the second part of

Definition 11, we have that As(c) ≥ cs −max{qs − |Ds(c)|, 0}. The last inequality immediately

implies |OA(c)
s \ Oc

s| ≤ max{qs − |D̂s(O
c)|, 0}. Moreover, I also obtain that O

A(c)
s ⊆ Oc

s if

|D̂s(O
c)| > qs.

(iii) Follows immediately from the first two parts.

The next definition generalizes the notion of aggregate imbalance.

Definition 7. The aggregate imbalance at O ∈ O is given by

Ê(O) =
∑
s∈S

||D̂s(O)| − qs|.

With these preparations, I now state and prove a generalized version of Theorem 11.

Theorem 5. Let O ∈ O be arbitrary. If the generalized adjustment process Â is moderate at O, then

Ê(Â(O)) ≤ Ê(O).

Proof of Theorem 55. Suppose the generalized adjustment process Â is moderate at O ∈ O and let

O′ = Â(O). Define S+(O) to be the set of over- and S−(O) to be the set of undersubscribed schools

at O. I now consider the aggregate effects of changes in individual demands caused by the move

from O to O′.

First, let I− = ∪s∈S\S+(O)D̂s(O) denote the set of all students who demand a school in S \S+(O)

at O. By the weak axiom of revealed preference we must have D̂i(O
′) ∈ S \S+(O) for all i ∈ I− since

O′ = Â(O) and, given that Â is moderate at t, all schools in S+(O) make less (in a subset sense)

offers at O′ than at O. Furthermore, if s′ := D̂i(O
′) ̸= D̂i(O) for some i ∈ I−, then s′ ∈ S−(O) and

i ∈ O′
s′ \Os′ . Now let s ∈ S \ S+(O) be arbitrary. Since Â decreases moderately at t and O, there

are at most qs − |D̂s(O)| students who get an offer from s at O′ = Ât(O) but not at O. Hence, if we

momentarily disregard potential demand changes of agents in I \ I−, then no school in S \ S+(O)

can be oversubscribed at O′. This implies that the aggregate imbalance is exactly the same after we

have accounted for the demand changes of agents I−: The demand change of an agent i ∈ I− from

s = D̂i(O) to s′ = D̂i(O
′) increases the excess supply of seats at s by one and decreases the excess
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supply of seats at s′ by one. Let D1
s = D̂s(O

′) ∩ I− for all schools s ∈ S \ S+(O), D1
s = D̂s(O) for

all s ∈ S+(O), and E1(= Ê(O)) be the associated aggregate imbalance.

Next, I account for the demand changes of agents in I+ := I \ I− = ∪s∈S+(O)D̂s(O). Call an

agent i ∈ I+ a voluntary leaver of s ∈ S+(O), if D̂i(O) = s and D̂i(O
′)Pis. Let Vs denote the set of

all voluntary leavers of s and V = ∪s∈S+(O)Vs. Note that for all i ∈ V , D̂i(O
′) ∈ S−(O). I will first

consider the aggregate effects caused by demand changes of agents in V . For this analysis, I neglect

demand changes of agents in I \ (I− ∪ V ), as these will be considered in the last step of the proof.

Set D2
s = D̂s(O) \ Vs for all s ∈ S+(O), D2

s = D1
s ∪ {i ∈ V : D̂i(O

′) = s} for all s ∈ S \ S+(O),2626

and E2 be the associated aggregate imbalance.

Consider first a school s ∈ S+(O) such that |D2
s | ≥ qs. In this case, the aggregate imbalance at O′

is 2|Vs| units lower than the aggregate imbalance at O after we have accounted for the demand changes

of agents in Vs. To see this, note first that |D2
s |−qs = |D̂s(O)|−|Vs|−qs ≥ 0, so that after accounting

for demand changes of agents in Vs the excess demand for places at s is |Vs| units lower at O′ than

at O. Furthermore, for all s′ ∈ S−(O), |D2
s′ | ≤ qs′ since from O to O′, s′ has become affordable to at

most qs′ − |D̂s′(O)| additional agents given that Â decreases moderately at t and Õ. This implies in

particular that
∑

s′∈S−(O)(|qs′ − (|D1
s′ |+ |{i ∈ Vs : D̂i(O

′) = s′}|)|) =
∑

s′∈S−(O)(qs′ − |D1
s′ |)− |Vs|,

so that after accounting for demand changes of agents in Vs aggregate excess supply of schools in

S−(O) is |Vs| units lower at O′ than at O.

Next, consider a school s ∈ S+(O) such that |D2
s | < qs. In this case, the aggregate imbalance at

O′ is 2(|D̂s(O)| − qs) units lower than at O after we have accounted for demand changes of agents in

Vs. To see this, note first that ||D2
s |−qs| = qs−|D̂s(O)|+|Vs|, so that from O to O′ the absolute value

of excess enrolment at school s changes by qs−|D̂s(O)|+ |Vs|−(|D̂s(O)|−qs) = |Vs|−2(|D̂s(O)|−qs).

On the other hand, as in the previous case, after accounting for demand changes of agents in Vs

aggregate excess supply of schools in S−(O) is |Vs| units lower at O′ than at O. Summing up these

changes we see that after we have accounted for demand changes of agents in Vs the aggregate

imbalance is 2(|D̂s(O)| − qs) units lower at O
′ than at O.

Summing up, after we have accounted for demand changes of agents in Vs for all s ∈ S, the

aggregate imbalance is E2 = Ê(O)− 2
∑

s∈S+(O)min{|Vs|, |D̂s(O)| − qs}.

To complete the proof, I now consider the effect of demand changes of students i ∈ I \ (I− ∪ V ).

For the following, fix a school s ∈ S+(O) and let Fs = {i ∈ D̂s(O) : sPiD̂i(O
′)} be the set of

students who are forced to leave s going from O to O′. Note that since Â increases moderately

26Note that D2
s = D1

s for all s /∈ S+(O) ∪ S−(O) by the weak axiom of revealed preference.
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at t and Õ, |Fs| ≤ |D̂s(O)| − qs. I now consider the change in aggregate imbalance caused by the

demand changes of agents in Fs starting at E2. I distinguish three cases.

Suppose first that |D̂s(O)|− |Vs|− qs ≥ 0 > |D̂s(O)|− |Fs|− qs−|Vs|. In this case, the change in

the imbalance at s due to demand changes of agents in Fs starting at E2 is |Fs|+ |Vs| − (|D̂s(O)| −

qs) − (|D̂s(O)| − |Vs| − qs) = |Fs| + 2|Vs| − 2(|D̂s(O)| − qs). Furthermore, in the worst case each

student in Fs increases the excess enrolment at some school s′ ∈ S \ {s} by one unit. Hence, the

total increase in the aggregate imbalance caused by demand changes in Fs starting at E2 is at most

max{2|Fs| − 2(|D̂s(O)| − qs) + 2|Vs|, 0} ≤ 2|Vs| given moderate decreases. Since |Vs| ≤ |D̂s(O)| − qs

in the case I consider here, E2 = Ê(O) − 2|Vs| − 2
∑

s̃∈S+(O)\{s}min{|Vs̃|, |D̂s̃(O)| − qs̃} and the

aggregate imbalance demand after accounting for demand changes of agents in Fs is at most

Ê(O)− 2
∑

s̃∈S+(O)\{s}min{|Vs̃|, |D̂s̃(O)| − qs̃}.

Next, suppose that 0 > |D̂s(O)|− |Vs|−qs. In this case, the increase in the excess supply of seats

at s due to demand changes of agents in Fs starting at E2 is |Fs|. Furthermore, in the worst case each

agent in Fs increases the excess enrolment at some school s′ ∈ S\{s} by one. Since |Vs| > |D̂s(O)|−qs

in the case I consider here, E2 = Ê(O)− 2(|D̂s(O)| − qs)− 2
∑

s̃∈S+(O)\{s}min{|Vs̃|, |D̂s̃(O)| − qs̃}.

After accounting for demand changes of agents in Fs, the aggregate imbalance is at most

Ê(O) + 2|Fs| − 2(|D̂s(O)| − qs)− 2
∑

s̃∈S+(O)\{s}min{|Vs̃|, |D̂s̃(O)| − qs̃}

≤ Ê(O)− 2
∑

s̃∈S+(O)\{s}min{|Vs̃|, |D̂s̃(O)| − qs̃},

where the inequality follows since |Fs| ≤ |D̂s(O)| − qs given that Â is moderate at t and Õ.

Finally, when |D̂s(O)| − qs − |Fs| − |Vs| ≥ 0 demand changes of agents in Fs cannot increase the

aggregate imbalance relative to E2.

An iterative application of this argument for all schools in S+(O) shows that E(O′) ≤ E(O)

and thus completes the proof.

In the following, I refer to a moderate generalized adjustment process Â that satisfies Âs(O) ⊆ Os

for all s ∈ S as long as there is at least one oversubscribed school as an upward-downward generalized

adjustment process. Similarly, I refer to a generalized adjustment process Â that satisfies Âs(O) ⊇ Os

for all s ∈ S whenever there is at least one undersubscribed school as a downward-upward generalized

adjustment process. The next result summarizes a key property of the two processes just described.
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Theorem 6. If Â is either a moderate generalized upward-downward adjustment process or a moderate

generalized downward-upward adjustment process, then limt→∞ Ât(O) exists for all O ∈ O.

Proof of Theorem 66. The proof relies on the following lemma.

Lemma 3. (i) If O ∈ O is such that for all s ∈ S, either |D̂s(O)| ≥ qs or Os = I, then

limt→∞ Ât(O) exists for any moderate generalized adjustment process Â.

(ii) If O ∈ O is such that for all s ∈ S, |D̂s(O)| ≤ qs, then limt→∞ Ât(O) exists for any moderate

generalized adjustment process Â.

Proof of Lemma 33. (i) Let Â be an arbitrary moderate generalized adjustment process.

I show first that if no selective school is undersubscribed at O, then all students are weakly

worse off under O′ = Â(O) than under O and no selective school is undersubscribed at O′.

The first property follows immediately since all selective schools are undersubscribed at O

and Â is moderate. For the second property, note first that the weak axiom of revealed

preference implies that, for all s ∈ S, if i ∈ D̂s(O) ∩ O′
s, then i ∈ D̂s(O

′). Since Â is

moderate, |D̂s(O)| ≥ qs therefore implies that |D̂s(O
′)| ≥ qs. By the contrapositive of the last

observation, we have that qs > |Ds(O
′)| implies qs > |Ds(O)| and thus, by our assumptions

about O, Os = I. Since Â is moderate, O′
s = I as well.

Iterating the above reasoning, for all t such that Ât(O) is not market clearing, we must

have Ât+1
s (O) ⊊ Ât

s(O) for at least one s. Hence, there must exist a t′ ≥ t + 1 such

that Di(Â
t(O))PiDi(Â

t′(O)) for some i. Since student welfare is bounded from below,

limt→∞ Ât(O) exists.

(ii) Let Â be an arbitrary moderate generalized adjustment process.

I show first that if no school is oversubscribed at O, then all students are weakly better off

under O′ = Â(O) and no school is oversubscribed at O′. The first property follows immediately

since no school is oversubscribed at O and Â is moderate. For the second property, note

first that the weak axiom of revealed preference implies that, for all s ∈ S, if i ∈ Os and

D̂i(O) ̸= s, then D̂i(O
′) ̸= s. Hence, D̂s(O

′) \ D̂s(O) ⊆ O′
s \ Os for all s ∈ S. Since Â

is moderate, |O′
s \ Os| ≤ qs − |D̂s(O)| and, combined with the previous finding, I obtain

|D̂s(O
′)| ≤ |D̂s(O)|+ qs − |D̂s(O)| = qs. Hence, no school is oversubscribed at O′ if no school

is oversubscribed at O.

Iterating the above reasoning, for all t such that Ât(O) is not market clearing, we must

have Ât+1
s (O) ⊋ Ât

s(O) for at least one s. Hence, there must exist a t′ ≥ t + 1 such
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that Di(Â
t′(O))PiDi(Â

t(O)) for some i. Since student welfare is bounded from above,

limt→∞ Ât(O) exists.

Let Â be any moderate upward-downward generalized adjustment process and O ∈ O be arbitrary.

Note that there must be a T1 such that |D̂s(Â
T1(O))| ≤ qs for all s ∈ S: For any t such that there

is a school s for which |D̂s(A
t(O))| > qs, then the assumption that Â is upward-downward jointly

implies Ât+1(O) ⊊ Ât(O); since the set of offers for each school is bounded from below by ∅, I obtain

a contradiction. Let O′ = ÂT1(O) and note that (i) of Lemma 33 implies that limt→∞ Ât(O′) exists.

This completes the proof of convergence for the case of moderate upward-downward generalized

adjustment processes. To establish the convergence of moderate downward-upward generalized

adjustment processes one first establishes that such a generalized adjustment process must eventually

reach an offer vector at which no selective school is undersubscribed and then applies (ii) of Lemma 33.

I omit the details.

B Proofs

The following additional lemma describes some important structural properties of cutoffs that induce

a given stable matching.

Lemma 4. Let µ be some stable matching.

1. There exist cutoff vectors c(µ) and c(µ) such that c(µ) and c(µ) both induce µ and, for any

cutoff vector c that induces µ, c(µ) ≥ c ≥ c(µ).

2. For any c such that c(µ) ≥ c ≥ c(µ), Ds(c) = µ(s) for all s ∈ S.

Proof. 1. For each school s, let cs(µ) = mini∈µ(s) eis if µ(s) ̸= ∅ and cs(µ) = N + 1, otherwise.

Since µ is stable, it is straightforward that c(µ) induces µ. Now consider some cutoff

vector c such that cs∗ > cs∗(µ) for some s∗. I claim that c does not induce µ. Given the

construction of c(µ) and the assumption that cs∗ > cs∗(µ), we must have µ(s∗) ̸= ∅. But then,

cs∗ > mini∈µ(s∗) eis∗ and c cannot induce µ since there is at least one student in µ(s∗) who

cannot afford s∗ at c.
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Next, I construct c(µ). For any school s, let D∗
s(µ) = {i ∈ I : sPiµ(i)} be the set of students

who desire s at µ. For any school s such that D∗
s(µ) = ∅, let cs(µ) = 1. For any school s

such that D∗
s(µ) ̸= ∅, let cs(µ) = max{eis : i ∈ D∗

s(µ)}+ 1. Stability of µ again immediately

implies that c(µ) induces µ. Now consider some cutoff vector c such that cs < cs∗(µ) for some

s∗. I claim that c does not induce µ. Given the construction of c(µ), it is immediate that

D∗
s(µ) ̸= ∅. Let i∗ be such that ei∗s∗ = cs∗(µ). By the definitions of cs∗(µ) and D∗

s∗(µ), we

must have s∗Pi∗µ(i
∗). Since i∗ can afford s∗ at c, we have Di∗(c) ̸= µ(i∗) and thus c does not

induce µ.

2. Let c be an arbitrary cutoff vector such that c(µ) ≥ c ≥ c(µ). Note first that since cs ≤

mini∈µ(s) eis for all s such that µ(s) ̸= ∅, all students can afford the schools that they are

matched to under µ. Next, let i be an arbitrary student for whom there exists a school s such

that sPiµ(i). Since D∗
s(µ) ̸= ∅, we have cs(µ) = min{eis : i ∈ D∗

s(µ)}+ 1 and thus cs > eis.

Hence, i cannot afford s at c and Di(c) = µ(i).

B.1 Proof of Theorem 11

The proof follows immediately from Theorem 55 and Lemma 22.

B.2 Proof of Theorem 22

Similar to Appendix AA, I refer to an adjustment process A that satisfies A(c) ≥ c if there is at least

one oversubscribed school at c as an upward-downward adjustment process. Furthermore, I refer to

an adjustment process A that satisfies A(c) ≤ c if there is at least one undersubscribed selective

school at c as a downward-upward adjustment process. I start by introducing a stronger version of

Theorem 22.

Theorem 7. (i) If A is a moderate upward-downward adjustment process, then for all c, limt→∞At(c)

exists. Moreover, for any c and any moderate upward-downward adjustment process B,

Ds(limt→∞Bt(c)) = Ds(limt→∞At(c)) for all s ∈ S.

(ii) If A is a moderate downward-upward adjustment process, then for all c, limt→∞At(c) exists.

Moreover, for any c and any moderate downward-upward adjustment process B, Ds(limt→∞Bt(c)) =

Ds(limt→∞At(c)) for all s ∈ S.
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(iii) If A is a moderate upward-downward adjustment process and c ≤ C∗
, then limt→∞At(c) ≥ c

and there is no market clearing cutoff vector c′ such that c ⪇ c′ ⪇ limt→∞At(c) and Ds(c
′) ̸=

Ds(limt→∞At(c)) for some s ∈ S.

(iv) If A is a strongly moderate downward-upward adjustment process2727 and c ≥ C∗, then limt→∞At(c) ≤

c and there is no market clearing cutoff vector c′ such that c ⪈ c′ ⪈ limt→∞At(c) and

Ds(c
′) ̸= Ds(limt→∞At(c)) for some s ∈ S.

Proof of Theorem 77. The existence of the limits in Parts (i) and (ii) follows immediately from

Theorem 66 and Lemma 22. For the remaining parts of Theorem 77, I now introduce and prove two

additional lemmata.

Lemma 5. (i) If c and c′ are two cutoff vectors such that c′ ≥ c, then ∆(c′) ≥ ∆(c).

(ii) Given a cutoff vector c and a school s, define

Ys(c) =


cs −min{qs − |Ds(c)|, cs − 1} , if qs ≥ |Ds(c)|

cs , otherwise

and let Y(c) = (Ys(c))s∈S. If c and c′ are two cutoff vectors such that c′ ≤ c, then Y(c′) ≤ Y(c).

Proof of Lemma 55. (i) I only need to establish that ∆s(c
′) ≥ ∆s(c) for any s that is oversub-

scribed at c since the statement is trivially true otherwise. If |{i ∈ I : eis ≥ c′s and i ∈

Ds(c)}| < qs, the definition of ∆ implies that ∆s(c) ≤ c′s ≤ ∆s(c
′). Otherwise, note that since

c′ ≥ c, we must have {i ∈ I : eis ≥ c′s and i ∈ Ds(c)} ⊆ Ds(c
′). In particular, the qsth highest

score of agents in {i ∈ I : eis ≥ c′s and i ∈ Ds(c)} must be weakly lower than the qsth highest

score of agents in Ds(c
′). This establishes the statement.

(ii) Consider some school s that is undersubscribed at c and let δ = min{qs − |Ds(c)|, cs − 1}. If

cs−δ ≥ c′s, the statement follows since c′ ≥ Y(c′). So suppose that cs ≥ c′s > cs−δ and let l > 0

be such that c′s = cs−(δ−l). Note that for any i such that eis ≥ cs and i /∈ Ds(c), we must have

i /∈ Ds(c
′) since c′ ≤ c. Hence, it has to be the case thatDs(c

′) ⊆ Ds(c)∪{i ∈ I : cs > eis ≥ c′s}.

This in turn implies |Ds(c
′)| ≤ |Ds(c)|+|{i ∈ I : cs > eis ≥ cs−(δ−l)}|. Since |Ds(c)| ≤ qs−δ

and |{i ∈ I : cs > eis ≥ cs − (δ − l)}| = δ − l, we obtain |Ds(c
′)| ≤ qs − l. The definition of Y

implies that Ys(c
′) ≤ c′s − l = cs − (δ − l)− l = cs − δ = Ys(c) and this completes the proof.

27Recall that the difference between a moderate and a strongly moderate adjustment process is that for
the latter As(c) ≤ cs +max{|Ds(c)| − qs, 0} and, in particular, As(c) ≤ cs if |Ds(c)| = qs.
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Lemma 6. Let c and c′ be such that D(c) = D(c′) and one of the following two conditions is satisfied:

1. For all s ∈ S, either |Ds(c)| ≥ qs or cs = c′s = 1.

2. For all s ∈ S, |Ds(c)| ≤ qs.

For any pair of moderate adjustment processes A and B we have that Ds(A
T1(c)) = Ds(B

T2(c′)) for

all s ∈ S, where T1 is the smallest integer such that AT1(c) is market-clearing and T2 is the smallest

integer such that BT2(c′) is market-clearing.

Proof. 1. Assume that c and c′ are such that D(c) = D(c′) and, for all s ∈ S, either |Ds(c)| ≥ qs

or cs = c′s = 1.

I show first that for all T ≤ T2 there exists a T ′ ≤ T1 such that Di(B
T (c′))RiDi(A

t(c)) for

all i ∈ I and all t ∈ {T ′, . . . , T1}.

Note first that the statement is trivially true for T = 0 since (A) B0(c′) = c′, (B)Ds(c) = Ds(c
′)

for all s ∈ S, and (C) At(c) ≥ c for all t ≤ T1 given that A is moderate and given that, for all

s ∈ S, either |Ds(c)| ≥ qs or cs = c′s = 1.

So suppose the statement is true up to some T < T2 and let T ′ ≤ T1 be such that

Di(B
T (c′))RiDi(A

t(c)) for all i ∈ I and all t ∈ {T ′, . . . , T1}. I need to show that there

is some T ′′ ≤ T1 such that Di(B
T+1(c′))RiDi(A

t(c)) for all i ∈ I and all t ∈ {T ′′, . . . , T1}.

Suppose not. Then there has to exist some i∗ such that Di∗(A
t(c))Pi∗Di∗(B

T+1(c′)) for all

t ≤ T1. Let s
∗ = Di∗(A

T1(c)). Note that we must have

{i ∈ Ds∗(A
T ′
(c)) : eis∗ ≥ AT1

s∗ (c)} ⊆ Ds∗(A
T1(c))

sinceAT1(c) ≥ AT ′
(c). Furthermore, given the inductive assumption thatDi(B

T (c′))RiDi(A
t(c))

for all i ∈ I and all t ∈ {T ′, . . . , T1}, we also have

{i ∈ Ds∗(B
T (c′)) : eis∗ ≥ AT1

s∗ (c)} ⊆ {i ∈ Ds∗(A
T ′
(c)) : eis∗ ≥ AT1

s∗ (c)}.

Since s∗ = Di∗(A
T1(c))Pi∗Di∗(B

T+1(c′)), we have that BT+1
s∗ (c′) > AT1

s∗ (c) and hence

{i ∈ Ds∗(B
T (c′)) : eis∗ ≥ B

T+1
s∗ (c)} ⊆ {i ∈ Ds∗(B

T (c′)) : eis∗ ≥ AT1
s∗ (c)}.

Combining the last insights, I find that

{i ∈ Ds∗(B
T (c′)) : eis∗ ≥ B

T+1
s∗ (c)} ⊆ Ds∗(A

T1(c)).
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Next, we must have BT+1
s∗ (c′) > 1 given that BT+1

s∗ (c′) > AT1
s∗ (c). Since B is moderate and, by

the conditions on demands at c′, either |Ds∗(c
′)| ≥ qs∗ or c

′
s∗ = 1, we must have |Ds∗(B

T (c′))| ≥

qs∗ and |{i ∈ Ds∗(B
T (c′)) : eis∗ ≥ BT+1

s∗ (c′)}| ≥ qs∗ . Since {i ∈ Ds∗(B
T (c′)) : eis∗ ≥

BT+1
s∗ (c′)} ⊆ Ds∗(A

T1(c)) and i∗ ∈ Ds∗(A
T1(c)) \Ds∗(B

T+1(c′)), we obtain |Ds∗(A
T1(c))| >

qs∗ , which is a contradiction to the definition of T1.

By the statement that I have just established, I obtain that Di(B
T2(c′))RiDi(A

T1(c)) for

all i ∈ I. A symmetric argument yields the converse. Since preferences are strict, I obtain

Ds(A
T1(c)) = Ds(B

T2(c′)) for all s ∈ S.

2. Assume that c and c′ are such that D(c) = D(c′) and, for all s ∈ S, |Ds(c)| ≤ qs.

I show first that for all T ≤ T2 there exists a T ′ ≤ T1 such that Di(A
t(c))RiDi(B

T (c′)) for

all i ∈ I and all t ∈ {T ′, . . . , T1}.

Note first that the statement is trivially true for T = 0 since (A) B0(c′) = c′, (B)Ds(c) = Ds(c
′)

for all s ∈ S, and (C) At(c) ≤ c for all t ≤ T1 given that A is moderate and given that, for all

s ∈ S, |Ds(c)| ≤ qs.

So suppose the statement is true up to some T < T2 and let T ′ ≤ T1 be such that

Di(A
t(c))RiDi(B

T (c′)) for all i ∈ I and all t ∈ {T ′, . . . , T1}. I need to show that there

is some T ′′ ≤ T1 such that Di(A
t(c))RiDi(B

T+1(c′)) for all i ∈ I and all t ∈ {T ′′, . . . , T1}.

Suppose not. Then there has to exist some i∗ such that Di∗(B
T+1(c′))Pi∗Di∗(A

t(c)) for all

t ≤ T1. In particular, Di∗(B
T+1(c′))Pi∗Di∗(A

T1(c)).

Let s∗ = Di∗(B
T+1(c′)) and note that we must have min{AT1

s∗ (c), B
T
s∗(c

′)} > ei∗s∗ ≥ BT+1
s∗ (c′).

Next, observe that

Ds∗(A
T1(c)) ⊆ Ds∗(A

T ′
(c)) ∪ {i ∈ I : AT ′

s∗ (c) > eis∗ ≥ AT1
s∗ (c)}

sinceAT1(c) ≤ AT ′
(c). Furthermore, given the inductive assumption thatDi(A

t(c))RiDi(B
T (c′))

for all i ∈ I and all t ∈ {T ′, . . . , T1}, if BT
s∗(c

′) > AT ′
s∗ (c), then

Ds∗(A
T ′
(c)) ⊆ Ds∗(B

T (c′)) ∪ {i ∈ I : BT
s∗(c

′) > eis∗ ≥ AT ′
s∗ (c)},

and if AT ′
s∗ (c) ≥ BT

s∗(c
′), then Ds∗(A

T ′
(c)) ⊆ Ds∗(B

T (c′)).

Now consider first the case where BT
s∗(c

′) > AT ′
s∗ (c). Combining the above insights, we have

Ds∗(A
T1(c)) ⊆ Ds∗(B

T (c′)) ∪ {i ∈ I : BT
s∗(c

′) > eis∗ ≥ AT1
s∗ (c)}.
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Since B is moderate, I obtain

|{i ∈ I : BT
s∗(c

′) > eis∗ ≥ BT+1
s∗ (c)}| ≤ qs∗ − |Ds∗(B

T (c′))|.

Since s∗ = Di∗(B
T+1(c′))Pi∗Di∗(A

T1(c)), we have i∗ /∈ {i ∈ I : BT
s∗(c

′) > eis∗ ≥ AT1
s∗ (c)} and

therefore |Ds∗(A
T1(c))| < qs∗ , which is a contradiction to the definition of T1.

Next, assume that AT ′
s∗ (c) ≥ BT

s∗(c
′). By the inductive assumption, there cannot be an agent i

such that AT ′
s∗ (c) > eis∗ ≥ BT

s∗(c
′), Di(A

T1(c)) = s∗, and Di(B
T (c′)) ̸= s∗ (because such an

agent would strictly prefer Di(B
T (c′)) over Di(A

T1(c))). Hence,

Ds∗(A
T1(c)) ⊆ Ds∗(B

T (c′)) ∪ {i ∈ I : BT
s∗(c

′) > eis∗ ≥ AT1
s∗ (c)}

and we obtain a contradiction as before.

With the help of Lemmas 55 and 66, I now complete the proof of Theorem 77.

(i) Let A and B be two moderate upward-downward adjustment processes and c be an arbitrary

cutoff vector. For any integer t, set at := At(c) and bt := Bt(c).

Let T1 be the smallest integer such that no school is oversubscribed at aT1 and T2 be the

smallest integer such that no school is oversubscribed at bT2 . Define a second sequence of

cutoffs δt by setting δ0 = c and δt = ∆(δt−1) for all t ≥ 1. Let T be the smallest integer such

that no school is oversubscribed at δT .

Claim 1: Ds(a
T1) = Ds(b

T2) = Ds(δ
T ) for all s ∈ S.

Proof. I show the statement for the sequence at. The proof for the sequence bt is completely

analogous. Note first that at ≤ δt for all t: The statement is trivially true for t = 0; suppose

we had already shown that δt−1 ≥ at−1. Then, by Lemma 55 (i) and since A is moderate,

δt = ∆(δt−1) ≥ ∆(at−1) ≥ at.

Next, I argue that aT1 ≤ δT . By definition of T and what was just established, I immediately

obtain aT ≤ δT . If T = T1, I immediately obtain the desired inequality. So assume that

T < T1.
2828 By the first part of Lemma 55, I obtain ∆(aT ) ≤ ∆(δT ). Since no school is

28Note that T > T1 is impossible given that A is moderate.
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oversubscribed at δT , we have that ∆(δT ) = δT . Since A is moderate, aT+1 ≤ ∆(aT ). Hence,

aT+1 ≤ δT and iterating these arguments, I obtain the desired result.

To complete the proof of Claim 1, I now show by induction that for all l ∈ {0, . . . , T ′}, there

exists a tl ≤ T1 such that for all t ∈ {tl, . . . , T1} and all i ∈ I, Di(δ
l)RiDi(a

t). In particular,

Di(δ
T )RiDi(a

T1) for all i ∈ I and, given the already established fact that δT ≥ aT1 , we must

have Ds(δ
T ) = Ds(a

T1) for all s ∈ S.

Now the desired statement is trivially true for l = 0 since at ≥ c and therefore Di(c)RiDi(a
t)

for all t ≤ T1. Now suppose the statement is true for all l′ ≤ l < T . I show that it is also

true for l + 1. Fix t ∈ {tl, . . . , T1} and i so that s′ := Di(a
t)PiDi(δ

l+1). We must have

δl+1
s′ > eis′ ≥ ats′ ≥ cs′ . By definition of ∆(·), there must be at least qs′ students j ̸= i such

that ejs′ ≥ δl+1
s and j ∈ Ds′(δ

l). By the inductive assumption, for all t ≥ tl, none of these

students can afford a more preferred school s′ at at and consequently all enrol at s′ at at.

Hence, for any t ≥ tl such that Di(a
t)PiDi(δ

l+1) for at least one i ∈ I, at least one school must

be oversubscribed. Since A(c) = c only if c is market-clearing, there must exist a tl+1 ≥ tl

such that for all t ∈ {tl+1, . . . , T1}, each student weakly prefers her demand at δl+1 over her

demand at at.

To complete the proof, I can now apply the second part of Lemma 66 to aT1 and bT2 .

(ii) Let A and B be two moderate downward-upward adjustment processes and c be an arbitrary

cutoff vector. For any integer t, set at := At(c) and bt := Bt(c).

Let T1 be the smallest integer such that no selective school is undersubscribed at aT1 and

T2 be the smallest integer such that no selective school is undersubscribed at bT2 . Define a

second sequence of cutoffs yt by setting y0 = c and yt = Y(yt−1) for all t ≥ 1. Let T be the

smallest integer such that no selective school is undersubscribed at yT .

Claim 2: Ds(a
T1) = Ds(b

T2) = Ds(y
T ) for all s ∈ S.

Proof. I show the statement for the sequence at. The proof for the sequence bt is completely

analogous. Note first that yt ≤ at for all t. This is trivially true for t = 0. So suppose we

had already established that yt−1 ≤ at−1 for some t ≥ 1. By the second part of Lemma 55, I

obtain yt = Y(yt−1) ≤ Y(at−1) ≤ at.

Next, I argue that aT1 ≥ yT . By definition of T and what was just established, I immediately

obtain aT ≥ yT . If T = T1, I immediately obtain the desired inequality. So assume that

T < T1. By the second part of Lemma 55, I obtain Y(aT ) ≥ Y(yT ). Since no selective school
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is undersubscribed at yT , we have that Y(yT ) = yT . Since A is moderate, aT+1 ≥ Y(aT ).

Hence, aT+1 ≥ yT and iterating these arguments, I obtain the desired result.

To complete the proof of Claim 2, I now show by induction that for all l ∈ {0, . . . , T}, there

exists a tl ≤ T2 such that for all t ∈ {tl, . . . , T2} and all i ∈ I, Di(a
t)RiDi(y

l). In particular,

Di(a
T1)RiDi(y

T ) for all i ∈ I and, given the already established fact that aT1 ≥ yT , we must

have Ds(a
T1) = Ds(y

T ) for all s ∈ S.

The desired statement is trivially true for l = 0 since at ≤ c and therefore Di(a
t)RiDi(c) for

all t ≤ T1. Now suppose the statement is true for all l′ ≤ l < T . I show that it is also true

for l + 1. Fix t ∈ {tl, . . . , T1} and i so that s′ := Di(y
l+1)PiDi(a

t). Since t ≥ tl the inductive

assumption yields Dj(a
t)RjDj(y

l) for all j ∈ I. Furthermore, s′ = Di(y
l+1)PiDi(a

t)RiDi(y
l)

so that s′ must have been undersubscribed at yl and yl+1
s′ ≤ eis′ < min{yls′ , ats′}. The inductive

assumption also implies that for all j such that s′ ̸= Dj(y
l) and ejs′ ≥ yls′ , s

′ ̸= Dj(a
t). Hence,

Ds′(a
t) ⊆ Ds′(y

l) ∪ {i ∈ I : yl > eis′ ≥ ats′}

⊊ Ds′(y
l) ∪ {i ∈ I : yl > eis′ ≥ yl+1

s′ }.

By definition of Y(·), yl+1
s′ = max{cs′ − (qs′ − |Ds′(y

l)|), 1}. Hence, we must have

|{i ∈ I : yls′ > eis′ ≥ yl+1
s′ }| ≤ qs′ − |Ds′(y

l)|

and consequently |Ds′(a
t)| < qs′ . In particular, for any t such that Di(y

l+1)PiDi(a
t) for at

least one i ∈ I, at least one school must be undersubscribed. Since A(c) = c only if c is

market-clearing, there is a tl+1 ∈ {tl, . . . , T2} such that, for all t ≥ tl+1, Di(a
t)RiDi(y

l+1) for

all i ∈ I.

To complete the proof, I can now apply the first part of Lemma 66 to aT1 and bT2 .

(iii) Since A is upward-downward, there exists a T1 such that AT1(c) ≥ c and |Ds(A
T1(c))| ≤ qs

for all s ∈ S. Furthermore, ∆(C∗
) = C∗

and Lemma 55 is easily seen to imply AT1(c) ≤ C∗
.

Let S∗ = {s ∈ S : |Ds(C
∗
)| = qs} and I∗ = {i ∈ I : Di(C

∗
) ∈ S∗}. Note that we must have

|I∗| =
∑

s∈S∗ qs. Since AT1(c) ≤ C∗
and C∗

s = 1 for all s ∈ S \ S∗, we have that AT1
s (c) = C∗

s

for all s ∈ S \ S∗. By the weak axiom of revealed preference, I then obtain Di(A
T1(c)) ∈ S∗

for all i ∈ I∗ and therefore I∗ ⊆ ∪s∈S∗Ds(A
T1(c)). Since |Ds(A

T1(c))| ≤ qs for all s ∈ S and
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|I∗| =
∑

s∈S∗ qs, I obtain that |Ds(A
T1(c))| = qs for all s ∈ S∗. Since AT1

s = 1 for all s ∈ S\S∗,

AT1(c) is market clearing and given that A is moderate, we have that limt→∞At(c) ≥ c.

Now take any market clearing cutoff vector c′ such that c′ ≥ c. By Lemma 55, we have

that ∆(c) ≤ ∆(c′). Furthermore, the definitions of ∆ and c(µc′) immediately imply ∆(c′) ≤

c(µc′). Since A is moderate, I obtain A(c) ≤ c(µc′). Iterating this argument, I find that

limt→∞At(c) ≤ c(µc′), which completes the proof.

(iv) Since A is downward-upward, there exists a T1 such that AT1(c) ≤ c and for all s ∈ S, either

|Ds(A
T1(c))| ≥ qs or AT1

s (c) = 1. Furthermore, Y(C∗) = C∗ and Lemma 55 is easily seen to

imply AT1(c) ≥ C∗. Let S∗ = {s ∈ S : |Ds(C∗)| = qs} and I∗ = {i ∈ I : Di(C∗) ∈ S∗}. Note

that we must have |I∗| =
∑

s∈S∗ qs. Now for any i ∈ I \ I∗, AT1(c) ≥ C∗ and the weak axiom

of revealed preference imply Di(A
T1(c)) /∈ S∗. Hence, ∪s∈S∗Ds(A

T1(c)) ⊆ I∗. Furthermore,

for any s ∈ S∗ such that AT1
s (c) = C∗

s = 1, the weak axiom of revealed preference implies

|Ds(A
T1(c)| ≥ |Ds(C∗)| = qs. So |Ds(A

T1(c))| ≥ qs for all s ∈ S∗. Since ∪s∈S∗Ds(A
T1(c)) ⊆ I∗

and |I∗| =
∑

s∈S∗ qs, I thus obtain |Ds(A
T1(c))| = qs for all s ∈ S∗. Given that A is strongly

moderate, it is then straightforward to show At
s(c) = AT1

s (c) for all s ∈ S∗ and all t ≥ T1.

By (ii), At(c) converges to a market clearing cutoff vector limt→∞At(c) =: c∗. By the rural

hospitals theorem (RothRoth, 19861986), we have that |Ds(c
∗)| < qs for all s ∈ S \ S∗ and therefore

c∗s = 1 for all such s. Combining the previous two insights, I obtain that c∗ ≤ c.

Now take any market clearing cutoff vector c′ such that c′ ≤ c. By Lemma 55, I obtain

y(c) ≥ y(c′) = c′. Hence, limt→∞At(c) ≥ c′ and the desired result follows.

B.3 Proof of Theorem 33

Let A be any strongly moderate and strict adjustment process. Take any stable matching µ ̸= µI .

By Erdil and ErginErdil and Ergin (20082008), there exists a stable improvement cycle i1, . . . , iL of µ, that is, for all l,

sl+1 := µ(il+1)Pilµ(il) =: sl and eil,sl+1
> ej,sl+1

for all j ̸= il such that sl+1Pjµ(j) (with L+1 := 1).

Consider the following cutoff vector:

cs1 = eiL,s1 + 1, csl = eil−1,sl , for all l ∈ {2, . . . , L}

cs = min
j∈µ(s)

ej,s, for all s ∈ S \ {s1, . . . , sL} such that |µ(s)| = qs

cs = 1, for all s such that |µ(s)| < qs.
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I start by deriving the result of the first round of adjustments.

Consider first an arbitrary school s ∈ S \ {s1, . . . , sL}. If there is an agent j ∈ I such that

j /∈ µ(s) but s = Dj(c), we obtain a contradiction to the stability of µ since (1) cµ(j) ≤ ej,µ(j), so

that s = Dj(c) implies sPjµ(j), and (2) ej,s > cs = minj′∈µ(s) ej′,s, since scores are strict. The same

arguments show that if there is an agent j ∈ µ(s) such that s ̸= Dj(c), we must have Dj(c) = sl for

some l ∈ {1, . . . , L}. This is impossible unless slPjs and ej,s ≥ eil−1,sl + 1, which would contradict

the definition of a stable improvement cycle. Hence, we must have µ(s) = Ds(c) so that As(c) = cs

since either |µ(s)| = qs or cs = 1.

Next, I consider the schools involved in the stable improvement cycle. First, take some l ∈

{1, . . . , L − 1} and agent il. Since sl+1Pilsl and csl+1
= eil,sl+1

, Dil(c) ̸= sl. If Dil(c) = sl′ for

some l′ ̸= l + 1, we obtain a contradiction to the definition of a stable improvement cycle since

sl′Pilµ(il) and eil,sl′ ≥ eil′−1,sl′ . Hence, we must have Dil(c) = sl+1. A completely analogous

argument shows that µ(sl) \ {il} ⊆ Dsl(c) for all l ∈ {1, . . . , L}. Now consider agent iL. By

the definition of a stable improvement cycle and csL < eiL,sL , we must have DiL(c) ∈ {s1, sL}.

Since cs1 = eiL,s1 + 1, DiL(c) = sL. Together with the above this implies |Ds1(c)| = qs1 − 1,

|DsL(c)| = qsL + 1, and |Dsl(c)| = qsl for all l ∈ {2, . . . , L− 1}. Since A is strongly moderate and

strict, I obtain As1(c) = eiL,s1 , AsL(c) = eiL−1,sL + 1, and Asl(c) = eil−1,sl for all l ∈ {2, . . . , L− 1}.

An iterative application of these arguments is easily seen to imply that, for all t ≤ L, At
sL−t+1

(c) =

eiL−t,sL−t+1 + 1 (where i0 := iL), A
t
sl
(c) = eil−1,sl for all l ̸= L − t + 1, and At

s(c) = cs for all

s ∈ S \ {s1, . . . , sL}. In particular, AL(c) = c and this completes the proof.

B.4 Proof of Theorem 44

To simplify the notation in the proof, set ct := At(c) for all t.

• I first establish that no school is oversubscribed at cmin. Suppose to the contrary that s is

such that |Ds(c
min)| > qs and let Is = Ds(c

min). Note that by the definition of cmin and the

weak axiom of revealed preference, we must have, for all i ∈ Is, Di(c
t) = s whenever t is such

that eis ≥ cts. Since the adjustment process is strict, there must thus exist a smallest T ′ such

that cT
′

s > cmin
s .

Let ls = |{i ∈ Is : eis ≥ cT
′

s |. By the above arguments, we must have |Ds(c
T ′
)| ≥ ls.

Hence, if ls ≥ qs, then the above arguments imply that s is not undersubscribed at cT
′
and
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cT
′+1

s ≥ cT
′

s > cmin
s since A decreases moderately. If ls < qs, then since A decreases moderately,

we obtain cT
′+1

s ≥ cT
′

s −(qs− ls). Furthermore, cT
′

s ≥ cmin
s +(|Is|− ls). Combining the last two

observations, I find that cT
′+1

s ≥ cmin
s + (|Is| − ls)− (qs − ls). Hence, c

T ′+1
s > cmin

s given that

|Is| > qs. I have shown that if cT
′

s > cmin
s , then cT

′+1
s > cmin

s as well. Iterating this argument,

I find that cts > cmin
s for all t ≥ T ′. But the last relationship contradicts the definition of cmin

s

and this contradiction completes the proof.

• Next, I show that no selective school is undersubscribed at cmax. Suppose to the contrary that

s is such that |Ds(c
max)| < qs as well as c

max
s > 1. Note that for all t and i, Di(c

t)RiDi(c
max).

The last observation implies that for any student i such that eis ≥ cmax
s but Di(c

max) ̸= s,

we have Di(c
t)Pis for all t. Hence, s must be undersubscribed whenever cts = cmax

s . Since the

adjustment process is strict, there must thus exist a smallest T ′ such that cT
′

s < cmax
s .

If |Ds(c
T ′
)| < qs, we must have cT

′+1
s ≤ cT

′
s since A increases moderately. Next, consider the

case of |Ds(c
T ′
)| ≥ qs. Since A increases moderately, we must have cT

′+1
s ≤ ∆s(c

T ′
). Since

|Ds(c
max)| < qs, we must therefore have that cT

′+1
s < cmax

s . The preceding arguments show

that whenever cT
′

s < cmax
s , cT

′+1
s < cmax

s if A increases moderately. Iterating this argument,

we find that cts < cmax
s for all t ≥ T ′. This contradicts the definition of cmax

s .

Using the just established findings, I now show that cmin and cmax are both market-clearing.

Note first that cmin ≥ C∗ given that no school is oversubscribed at cmin and cmax ≤ C∗
given that no

selective school is undersubscribed at cmax. Now let s′ be a school such that |µ(s′)| < qs′ for some

stable matching µ. By the rural hospitals theorem (RothRoth, 19861986), we have µ(s′) = µ′(s′) for all stable

matchings µ′. Hence, C∗
s′ = C∗

s′ = 1 and cmin
s′ = cmax

s′ = 1. Furthermore, it is straightforward to verify

that Ds′(c
min) = Ds′(c

max) = Ds′(C∗) = Ds′(C
∗
). Next, let S∗ = {s ∈ S : |Ds(C∗)| = qs} be the set

of all schools that fill their capacities in any stable matching. By the previous observations, we have

that ∪s∈S∗Ds(c
min) = ∪s∈S∗Ds(c

max) = ∪s∈S∗Ds(C∗), that is, between cmin and cmax demand can

only flow between schools that fill their capacities in all stable matchings. Furthermore, by definition

of S∗,
∑

s∈S∗ |Ds(c
min)| =

∑
s∈S∗ |Ds(c

min)| =
∑

s∈S∗ qs. But then, if there was an undersubscribed

selective school at cmin, there would also have to be an oversubscribed school at cmin. Hence,

cmin is market clearing. Finally, if there was an oversubscribed school s+ at cmax, the previous

findings indicate that there would also have to be a school s− ∈ S∗ that is undersubscribed at cmax.

Since there are no undersubscribed selective schools at cmax, we must have cmax
s− = 1 and thus also

cmin
s− = 1. But by revealed preference and cmax ≥ cmin, we then obtain Ds−(c

min) ⊆ Ds−(c
max) and
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thus |Ds−(c
min)| < qs− . Since we have already shown that cmin is market clearing, we obtain a

contradiction to s− ∈ S∗.

B.5 Proof of Corollary 33

By Theorem 44 (iii) there is a T such that C∗ ≥ At(c) ≥ C∗ for all t ≥ T . It is straightforward to

show that in the case I consider here, any cutoff vector that lies between the lowest and highest

market clearing cutoff vector must be market clearing.

B.6 Time-varying adjustments

In this subsection, I first formulate a more general version of Theorem 44 and then discuss the

necessary adjustments to the proof.

Theorem 8. Let A be an arbitrary adjustment process, c ∈ C be an arbitrary cutoff vector, and Cacc

be the set of accumulation points of the sequence {At(c)}t≥0. Let cmax be the supremum of Cacc and

cmin be the infimum of Cacc. If A is moderate, then cmax and cmin are market-clearing.

Proof. Note that there exists T such that At(c) ∈ Cacc for all t ≥ T by the definition of Cacc.

Conditional on this observation, the remainder of the proof proceeds almost exactly as the proof

of Theorem 44. The only remaining difference is that we now use Assumption 11 to infer that an

oversubscribed school at cmin and an undersubscribed selective school at cmax must both eventually

adjust their cutoffs.
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